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Abstract 

 

 
This paper analyses the potential impact of airport competition on technical efficiency by applying the spatial 

stochastic frontier approach (SSFA) rather than traditional model (SFA). The SSFA allows to isolate the cross-

sectional spatial dependence and to evaluate the role of intangible factors in influencing the airport economic 

performance, through the inclusion of the distance matrix and the shared destinations matrix, calibrated for 

different distances. By analysing statistical differences between the traditional and the spatial model, it is 

possible to identify the competition effects. This study includes 206 airports at worldwide level. First, the 

results show the existence of the spatial component, that could not be otherwise captured by the traditional 

SFA. Moreover, airport competition is found to affect the efficiency level with either a positive or a negative 

effect, depending on the distance considered in the spatial model. 
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1. Introduction 

 

Airport infrastructures strongly affect the socio-economic structure of a territory. They create new 

residential and productive settlements, promote new job opportunities and influence the choices of individuals. 

These infrastructures contribute to the local development of the area in which they are located, by integrating 

the regional economy with the rest of the national and international economic systems. In this context, the 

globalization process has extended the national borders, and, for this reason, air accessibility is one of the 

essential factors for the development of any advanced economy. The last decade registered a striking +214% 

increase in the worldwide number of passengers (World Bank, 2015). The trend is expected to speed up in the 

future with the demand for air travel forecasted to grow at an average annual rate of 4.1%, reaching 7.3 

billion/year passengers by 2034 (IATA, 2015). In this scenario, according to industry analysts, three major 

changes are influencing the competitive constraints and productivity of airports: more footloose airlines, 

greater passengers’ choice, and higher reactivity of airports4 (ACI, 2009). Furthermore, the changes in the 

aviation industry, shifting from a point-to-point system to a hub-and-spoke network, have redefined the 

industry globally by creating patterns of traffic concentration: in the early 2000s, the hubbing network 

strategies have emerged in US, Europe and Southeast Asia (Goetz and Sutton, 1997; Button, 2002; Reynolds-

Feighan, 2001; Bowen, 2000). After the deregulation period, airlines developed Hub-and-spoke networks 

allowing them to aggregate demand, increase frequency, decrease airfares and preclude entry into the 

marketplace (Adler, 2001). Later de-concentration tendencies have emerged again, especially among regional 

and low-cost carriers, which has involved a shift of passenger traffic volume away from the largest cities, 

toward airports of those next in rank (O’Connor, 2003). This phenomenon is quite evident in Europe5. To 

different degrees also other parts of the world are registering de-concentration toward smaller cities’ airports.  

Airports are usually classified as a two-sided market since revenues are generated by two different 

users, passengers and airline companies (Worldwide Air Transport Conference, 20136). In this view airports 

define their position in the market based on their ability to generate new demand and, at the same time, to 

attract airlines and passengers from other airports. For this reason, focussing on airports located in three 

different continents (Europe, North America, and Pacific Asia), we analyse the spatial effects of the airports, 

reflecting the territorial competitiveness, on efficiency through different matrices that capture in different and 

precise ways the competition patterns. For instance, in Europe, approximately 63 percent of the population is 

within two hours' drive of at least two airports, in the USA and in ASIA the rate is lower but still relevant 

(IATA, 2013). Moreover, digital innovations and the widespread use of online platforms allow passengers to 

                                                 
4 The growing attention by local authorities to the potential benefits from airport connectivity complicates the scene as 

incentive programs, investments, or benefits are put into place to either maintain demand, increase it, or reverse passenger 

losses (Ryerson, 2016; Sharkey, 2014). 

 
5 As shown by Burghouwt (2007), most of the intra-European traffic has been de-concentrated while the intracontinental 

flights are still concentrated in a few large hub airports.  

 
6 For details: Worldwide Air Transport Conference (ATCONF) ATConf/6-WP/90 4/3/13. 



compare both destinations and airfares when buying a ticket. In fact, internet allows consumers to increase 

their trading power choosing different airlines and the most competitive flights, while companies can easily 

check the behaviours of consumers to adapt their pricing tactics using internal information (Moreno-Izquierdo 

et al., 2015). In the case of leisure trips, this behaviour is extremely relevant in the context of airport 

competition (Granados et al., 2012). Airports need to attract passengers and airlines by strategically acting on 

marketing and route development and trying to differentiate their offer. These elements have led to an 

increasing interest in the transport-related literature on the potential interaction effects among airports. The 

underlying idea is that the strategies of a given airport may not be indifferent to those of other neighbouring 

airports. This is particularly true when the catchment areas physically overlap or when the airports compete 

for hub and spoke connections and, although physically distant, might have an overlapping market. It assists, 

on the one hand, to phenomena of airport passenger leakage - when passengers choose to travel longer 

distances to access more extensive air services offered by airlines at an out-of-region hub7 (or, substitute) 

airport (Qian Fu, Amy M. Kim, 2015; Elwakil et al., 2013; Fuellhart, 2007; Suzuki and Audino, 2003; Suzuki 

et al., 2004). In this case, airports with different natural catchment areas might become competitors, or, even, 

might decide to cooperate. On the other hand, there are increasing pressures on local authorities and airport 

management companies, especially when publicly owned, to subsidise, in some ways, airline companies to 

increase their connections or to establish themselves on the territory.  

Increasingly airports located nearby are placed in the conditions to compete to acquire airlines and, 

consequently, potential demand. Airports’ level of dynamism is often influenced by the ownership form, which 

is still very heterogeneous at a worldwide level, and by the effectiveness of the governing/regulatory bodies, 

given the relevant role still played in most countries by politics for the infrastructural system. Also, HSR 

connections have strongly influenced, especially in Europe, the scene of competing airports either within the 

same country (i.e. Florence and Bologna in Italy) or among different countries (i.e. Paris, Brussels, 

Amsterdam). More generally, all over the world the airport sector has become much more strategically 

oriented, respect to some years ago.  

 

1.1 Literature review 

 

Airport efficiency has been the focus of a large body of research (see Barros, 2008; Fung, Wan, Hui 

and Law, 2007; Martin et al., 2009; Oum and Yu, 2004; Pels et al., 2001, 2003; Suzuki et al., 2010; Yoshida, 

2004). Different aspects have been analysed. For instance, Suzuki et al. (2010), using a distance friction 

minimization approach in a DEA analysis, generate an appropriate efficiency-improving projection model for 

input reduction and output increase considering thirty European airports. Assaf and Gillen (2012), using a 

DEA and a semi-parametric Bayesian approach, examine the joint impact on airport efficiency of governance 

                                                 
7 Hub networks arise when passengers, goods or data flows are to be routed from origins to destinations (OD). Instead of 

connecting each OD pair directly in a network, flows are routed through hub infrastructure. Additionally, it is expected 

that the transfer cost between hubs is cheaper than the collection/distribution costs between hubs and non-hubs due to the 

economies of scale (Soylu and Katip, 2019). 



structure and economic regulation, finding that the latter affects more the efficiency than the governance 

structure. Adler and Golany (2001), using a DEA-PCA formulation in the European market, select the most 

efficient networks configurations that are desirable to choose for an airline. Differently, other studies focus on 

the number of runways and their effect on the landing procedure of aircraft at an airport (Bäuerle et al., 2007) 

or on reducing operational queueing delays at busy airports, formulating the optimal dynamic control of service 

facilities model (Shone et al., 2019). Airport slot scheduling problem is further analysed by Androutsopoulos 

et al. (2020) using a bi-objective resource-constrained project scheduling problem with partially renewable 

resources and non-regular objective functions. 

Frohlich and Niemeier (2011) state that the presence of spatial competition among airports lies within 

one market, although sometimes, overlapping competition circles are observed within common areas. 

However, only a few studies explain competition implications on airports’ efficiency levels from nearby 

airports and, in the available studies the evidence is mixed8. Specifically, Pavlyuk (2009) using an index of 

competition based on overlapping catchment areas into the stochastic frontier model, discovered a positive 

effect of competitive pressure on efficiency for a sample of European airports. In further research, Pavlyuk 

(2010) suggested a multi-tier model of competition and cooperation effects. The estimates point to both 

positive and negative effects, depending on the distance among airports. Malighetti et al. (2009), considering 

a sample of 57 European airports, conclude that the intensity of competition between airports has, on average, 

a positive effect on efficiency. By analysing the relationship between efficiency and the degree of competition 

within the same country (a sample of Italian airports between 2005 and 2008), Scotti et al. (2012), however, 

find the opposite result. They explain it considering the less intensive use of the inputs in the airports belonging 

to a local air transport system in which competition is stronger than in airports with local monopoly power. 

Adler and Liebert (2014), investigate the combined impact of economic regulation, ownership form, and 

competition on airport cost efficiency for 48 European airports and 3 Australian airports over ten years. They 

observe that under non-competitive conditions, public airports are less cost-efficient than fully private airports. 

D'Alfonso et al. (2015), assess the impact of competition on airport efficiency, to evaluate whether airports are 

more efficient when the intensity of competition is higher. They find that on average the impact of competition 

on technical efficiency is negative, confirming the significant role of economies of scale and thus, also, of the 

size of demand.   

Different studies detected the importance of spatial effects on the efficiency of Chinese airports (Chi-Lok and 

Zhang, 2009; Chang et al., 2013). They just consider dummy variables as a spatial proxy that could measure 

the observed spatial heterogeneity (Pavlyuk, 2016). However, Barros (2008) and Pavlyuk (2016) argue that 

                                                 
8 The assumption that airports act as monopolists in the market, stemming from the situation prior to the deregulation 

wave in the airline industry, is no longer undisputed (Thelle and la Cour Sonne, 2018). Airports cannot be considered as 

isolated entities any longer since they compete and decide their strategic behaviour considering other airports' strategies. 

Normally, an increase in competition should be welfare-enhancing, leading to greater efficiency. This, however, is not 

always the case. When additional airports come into an oligopolistic market, they may lead to greater competition, but 

overall welfare can fall because of the loss of economies of scale, given the high level of fixed costs in the sector (Forsyth 

et al., 2010). Furthermore, market power is mainly determined by the availability of proximate airports that can act as 

close substitutes (Starkie, 2002). 

 



unobserved spatial heterogeneity is also crucial for affecting airport performance. Ha et al. (2013), measuring 

the Chinese airport efficiency and competition among airports and other modes of transportation, find that 

competition among airports and competition from substitutable transportation modes have a positive impact 

on efficiency scores of airports. Chen et al. (2017) show that spatial effects are present in a hub and spoke 

Chinese services and as certain airports serve as origins or destinations of point-to-point services. Authors state 

that any public policy focusing on airports must take the spatial effect into consideration since it indicates that 

traffic among Chinese airports produces autocorrelation or spatial dependency. 

 

1.2 Contributions and outline 

 

In the light of the results illustrated by the literature and following Starkie (2002), which stated that the 

appropriate framework of analysis should consider the airport industry “as an imperfect or monopolistic 

competition sector in a spatial setting”, in this work we explicitly consider the space in the efficiency analysis. 

Specifically, by considering the distance between airports as crucial for determining economic relations, we 

estimate the spatial heterogeneity and the efficiency spillovers across airports at a worldwide level. Ignoring 

spatial autocorrelation among residuals limits the strength of the empirical investigation for several reasons: it 

causes serious consequences to statistical inference, reducing both efficiency and the consistency of the 

estimations. Furthermore, it generates a negative impact on the validity of testing procedures and the predicting 

capability of the model (Vidoli et al., 2016).  

The principal models accounting for spatial dependence in frontier analysis can be divided into two main 

groups. First, those that analyse efficiency/inefficiency in terms of exogenous determinants investigating 

heterogeneity. The others consider the spatial dependence, including in the model a spatial autoregressive 

specification (Vidoli et al., 2016). Different researchers (Lavado and Barrios, 2010; Hughes et al., 2011; 

Jeleskovic and Schwanebeck, 2012; Brem, 2013) focused on heterogeneity by including contextual factors as 

regressors or by modeling the inefficiency term. However, these methodologies tend to introduce a substantial 

quantity of bias in the estimated values of technical efficiency (Simar and Wilson, 2007). Differently, the 

second stream of research (Affusso, 2010; Glass et al., 2013, 2014, 2016; Adetutu et al., 2015; Skevas, 2020; 

Vidoli and Canello, 2016), trying to deal with these problems focuses on approaches that account for spatial 

dependence in the data adding a spatial autoregressive specification in the stochastic frontier model. 

Specifically, Areal et al. (2010), through a Bayesian procedure, suggested to include a spatial lag directly into 

inefficiency, enable to split the inefficiency into a spatial component and a specific term for every observation. 

The empirical approach is based on the spatial model developed by Fusco and Vidoli (2013), which measure 

the global effect of spatial factors through a spatial lag in the inefficiency term of the stochastic frontier 

specification. This method has been used only once for the analysis of the airport industry by Pavlyuk (2016). 

He found, in fact, a spatial heterogeneity among 365 European airports for the year 2011, using only a 

contiguity matrix, proving the necessity of incorporation of spatial heterogeneity into airport benchmarking 

procedures. No study so far has focused on a worldwide scale.  



Analysing the 206 airports located in Europe, North America, and Pacific Asia, we focus on the spatial effects 

of the airports on efficiency through different matrices that capture in different and precise ways the 

competition patterns. For this purpose, for the first time, two types of matrices are considered: the first one 

that reflects the distance among airports and the second one the number of sharing destinations among airports 

at different distances.  

The rest of the paper is structured as follows. In section 2 are presented the methodology and the econometric 

approach used for integrating spatial dependence into the stochastic frontier analysis.  Section 3 is dedicated 

to the description of the data and the variables used. In Section 4 we show the results and provide the 

discussion. Finally, the main findings, some concluding remarks, and suggestions for possible future research 

are summarized in Section 5. 

 

2. Methodology 

 

Stochastic Frontier Analysis (SFA) is a well-known methodology estimating observations' inefficiency 

and separating it from the stochastic noise. SFA assumes a homogeneous underlying technology and 

independence between observations. However, the latter hypothesis is violated in the presence of spatially 

auto-correlated observations. When spatial effects are significant, the traditional SFA estimation techniques 

generate biased results and inconsistent estimators (Vidoli et al. 2016; Fusco and Vidoli, 2013). This work 

follows the approach implemented by Fusco and Vidoli (2013). Spatial dependence is incorporated in technical 

efficiency analysis by using an autoregressive specification of the inefficiency. The inclusion of spatial 

autocorrelation into stochastic frontier production framework, as proposed by Fusco and Vidoli (2013), is 

suitable since (i) it limits the analysis of the spatial dependence to the inefficiency term, excluding the need to 

choose exogenous determinants and to implement two-stage approaches that have proved to introduce bias in 

the estimates, (ii) it reduces the amount of complexity in the model and, (iii) it is comparable with the classical 

SFA model. This specification allows to isolate the local intangible factors, often statistically and economically 

difficult to capture through specific proxies, that nonetheless are determinant in influencing the airport 

productivity, since contextual variables would have not been sufficient to explain the spatial heterogeneity 

existing among the airports in the sample (Vidoli et al., 2016). 

Denoting yi the output of the observation i, xi the inputs vector and f a generic parametric function, the standard 

cross-sectional production frontier model can be specified as: 

 

                                      log 𝑦𝑖 = log(𝑓( 𝑥𝑖; 𝛽𝑖)) + 𝑣𝑖 − 𝑢𝑖                                [1] 

 

where: 

1) 𝑣𝑖 ~ 𝑖𝑖𝑑 𝑁(0, 𝜎𝑣
2) is the random term; 

2) 𝑢𝑖~ 𝑖𝑖𝑑 𝑁+(0, 𝜎𝑢
2) is the inefficiency term; 

3) 𝑣 and 𝑢 are assumed to be independently and identically distributed. 



The traditional SFA model presented in the equation [1] estimates airport-level efficiency from the residuals, 

assuming that all the airports in the sample are independent. However, this assumption is violated if we 

consider the spatial effects in the theoretical model. When spatial effects are significant, the traditional 

approaches used to estimate SFA or MLE (or its variants) generate biased results: indeed, if the disturbances 

are spatially correlated, the assumption of a spherical error covariance matrix is violated, leading to biased and 

inconsistent estimators (Lesage, 1997). 

To consider the spatial effects, is introduced a spatial lag in the efficiency term 𝑢𝑖 by reformulating the SFA 

density function with a spatial error autoregressive specification. Rewriting the equation [1] by specifying the 

𝑢𝑖 term, the spatial stochastic frontier (SSFA) model can be defined as: 

 

                                          log 𝑦𝑖 = log (f(𝑥𝑖; 𝛽𝑖)) + 𝑣𝑖 − 𝑢𝑖 = log(𝑓(𝑥𝑖; 𝛽𝑖)) + 𝑣𝑖 − (1 − 𝜌∑𝑤𝑖.)
−1𝑢�̃�                      

[2] 

where: 

1) 𝑣𝑖 ~ 𝑖𝑖𝑑 𝑁(0, 𝜎𝑣
2) is the random term; 

2)  𝑢𝑖~ 𝑖𝑖𝑑 𝑁+(0, (1 − 𝜌 ∑ 𝑤𝑖.𝑖 )−2𝜎�̃�
2) is the inefficiency spatial autoregressive term; 

3) 𝑢�̃�~ 𝑖𝑖𝑑 𝑁(0, 𝜎�̃�
2); 

4) 𝑣 and 𝑢 are independent of each other and of the regressors. 

 

The spatial lag parameter 𝜌 takes values from -1 to 1 and determine the correlation between two airports. This 

technique does not rely on Bayesian method, but it reformulates the SFA density function with a spatial error 

autoregressive specification (SEM) using a maximum likelihood function (Fusco and Vidoli, 2013). The idea 

is that spatial dependence refers to how much the level of technical efficiency of airport i depends on the levels 

set by other airports (j=1, …, n) under the assumption that part of the airport i efficiency is linked to the 

neighbour DMU j’s performances (Fusco and Vidoli, 2013; Glass et al., 2016). This is consistent with previous 

research in SFA literature: indeed, all the main stochastic estimation models focused on u and v terms being 

equal the deterministic part of the production function, given that the compounded residuals are the main 

motivation of the investigation. It needs to be considered that frontier estimations techniques considering the 

spatial dependence also in the deterministic part (like Simultaneous Autoregression or the Spatial Durbin 

models) have not been yet completely developed in this field of research (Vidoli et al., 2016).  

 

The spatial information is incorporated into the symmetric spatial weight matrix wk. The spatial weight 

matrices are generated from the latitude and longitude of the airport. Specifically, in this work, we build two 

different kinds of matrices: the distance matrix and a shared destinations matrix among airports. The distance 

matrices are based on the geographical distance between airports (eq. n.3). Given the purpose of our analysis, 

we include different cut-off distances in estimating the stochastic frontier. 

 



We define the cut-off distances (k) of 100, 150, 200, 250, 300 and 350 km. Each generic element of wk is 

defined as: 

 𝑤𝑖𝑗
𝑘 = {

1

𝑑𝑖𝑗
  𝑖𝑓 𝑑𝑖𝑗  ≤ k

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                         [3] 

           

 

where 𝑑𝑖𝑗 is the distance between airport i and airport j and k is the cut off established. The spatial weights 𝑤𝑖𝑗 

are defined as the inverse standardized distance between two airports 𝑖 and 𝑗. The matrices are row-

standardized (i.e. the weights are standardized such that ∑ 𝑤𝑖. = 1, ∀𝑖) to ensure that |𝜌| < 1 (i.e. stability 

condition) is satisfied. 

To further investigate and to verify the results obtained regarding the competition that may exist between two 

airports and consequently its effect on efficiency, in the second approach, we consider the number of common 

destinations between two airports 𝑖 and 𝑗 at a different cut off distances (eq. n.4). The shared destinations 

matrix ŵ 
k is defined as: 

ŵ𝑖𝑗
𝑘 = {

𝑛𝑖𝑗  𝑖𝑓 𝑛𝑖𝑗    ≤ k

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     [4] 

     

where 𝑛𝑖𝑗 is the number of shared destinations between airport i and airport j and k is the cut off considered. 

Once the estimate results of the SFA and the SSFA have been obtained and verified at the average level, we 

analyse the effects of spatial competition on airport efficiencies by applying the equation proposed by Fusco 

and Vidoli (2013)9. To test local perturbations, we consider the differences in terms of efficiency estimated 

among the SFA models with and without spatial interactions (i.e. 𝐸𝑓𝑓𝑆𝐹𝐴, 𝐸𝑓𝑓𝑆𝑆𝐹𝐴), calculating the following 

distance of efficiencies index (𝑥∗): 

 

                                 𝑥∗ =
𝐸𝑓𝑓𝑆𝐹𝐴 𝑖−𝐸𝑓𝑓𝑆𝑆𝐹𝐴 𝑖

𝐸𝑓𝑓𝑆𝐹𝐴 𝑖 
∗ 100,              𝑖 = 1, … , 𝑛                   [5] 

 

The term 𝑥∗shows the absolute magnitude of the effect of the airport endowment of the area k on the efficiency 

of each unit and the signs observe if the interdependencies among airports are positive or not. Moreover, a 

negative 𝑥∗ indicates a positive local effect on the catchment area (and vice versa). This is because even in the 

presence of the global index of high spatial dependence, dependencies do not occur uniformly over the whole 

territory examined (Fusco and Vidoli, 2013). 

 

 

 

                                                 
9 For software details: Fusco, E., Vidoli, F., (2015a) Spatial Stochastic frontier models: Instruction for use. Vignette 

r Package Version 1.1. 

Fusco, E., Vidoli, F., (2015b). Ssfa: Spatial Stochastic Frontier Analysis. R Package Version 1.1. 



3. Data  

 

The database employed in this research is composed by observations coming from 206 worldwide 

airports in the year 2015. The airports considered in our study are larger among the geographical areas 

considered. However, it is important to remark that the sample is not including all the existing airports. This 

leads to a potential bias in the results since the competition effect on efficiency may be underestimated. The 

complete list of the airports is reported in Appendix A. The data source is the Airport Transport Research 

Society (ATRS) database. All airports have been geolocated to use spatial techniques. The choice of inputs 

and outputs for our research is consistent with the extensive efficiency analysis literature. As outputs, we 

included the number of passengers and the cargo transported combined in the Work Load Unit (WLU). The 

WLUs is a well-known metric in the aviation industry and it is equivalent to one passenger or 100 kg of freight. 

The second output considered in our analysis is the number of aircraft movements at the airport. On the input 

side, we consider the terminal size measured in square meters (Yoshida, 2004; Yoshida and Fujimoto, 2004; 

Fung et al., 2008a, 2008b), the number of gates, the number of staffs employed at the airport (average number 

of full-time equivalent employees employed at the airport during the year), and the number of runways (Fan 

et al., 2014; Fragoudaki et al., 2016). The descriptive statistics of the variables used are shown in Table 1.  

 

Table 1 - Summary statistics 

Variable         Obs. Mean Std. Dev. Min Max 

WLU 206 24,200,000 24,500,000 861,982 113,000,000 

Air Movements 206 189,759 154,616 6,800 867,860 

Terminal size 206 222,986 281,157 6,450 1,972,474 

N. of Gates 206 59.47 47.93 5.00 226.00 

N. of Staff 206 1,053 1,634 23.00 15,929 

N. of Runways 206 2.45 1.25 1.00 8.00 

 

The sample composition by geographical region is shown in Table 2. While Europe and North America are 

self-explaining groupings, a clarification is needed for the Pacific Asia group. The latter includes airports 

located in the Asian, Australian and New Zealand areas. About 85% of the WLU output measure is given by 

the passenger movement, while the remaining 15% by freight movement. The European airports considered 

in the dataset show, on average, less WLU output in comparison to the other macro-areas. 

 

 

Table 2 - Sample composition by geographical region 

 

  Obs. WLU Passengers(n.) Cargo (100 kg) % of total WLU 

Pacific Asia 55 1,680,267,541 1,363,551,357 316,716,184 34.06 

Europe 68 1,437,116,630 1,275,848,196 161,268,434 29.13 

North America 83 1,815,845,014 1,530,459,544 285,385,470 36.81 

  206 4,933,229,185 4,169,859,097 763,370,088 100.00 

 



Table 3 reports the number of airports with at least one competitor for each different cut-off distance. The 

number of competitors increases as the distance considered increases. Indeed, the efficiency level could differ 

among different competition interactions (in the various matrices considered). 

 

Table 3 - Number of Airports in competition for each cut-off distance (k) 

 

 
100 150 200 250 300 350 

With competitors 64 91 124 141 155 165 

Without competitors 142 115 82 65 51 41 

 

 

Table 4 shows the number of competing airports for each geographical area. It should be noted that the airports 

for each cut-off compete only with other airports located in the same geographical area. The number of airports 

is constantly increasing for the three areas analysed. Considering the cut-off of 300 and 350km the number of 

competing airports increases slightly. We believe that 350km is a valid maximum measure to monitor 

competition among airports and that monitoring longer distances may not correspond to reality. In fact, 

increasing by 50 km the cut-off distance (i.e. from 350 to 400km), the airports with competitors increase only 

by 4 units (from 165 to 169). 

 

Table 4 - Number of Airports in competition for geographical area for each cut-off distance (k) 

 

 
100 150 200 250 300 350 

Pacific Asia 12 13 21 24 32 37 

Europe 26 38 46 49 55 58 

North America 26 40 57 68 68 70 

 

 

4. Results and Discussion 

 

To estimate airports’ efficiency levels, the spatial stochastic frontier model has been applied. A multi-

output Cobb-Douglas (CD) production function has been estimated as the functional form of the frontier 

specified in equation [4]. Despite being less flexible than other functional forms, the CD specification ensures 

the convergence of the estimates considering the relative low number of observations in our sample. The 

distance function approach is included in the model to account for the airports' multi-output nature. The 

important properties of this function are to be non-decreasing, linearly homogeneous and concave in inputs, 

and non-increasing and quasi-concave in outputs (Coelli et al. 2005). This function can be estimated when the 

homogeneity restriction is imposed. A convenient method of imposing the homogeneity constraint on the 

distance function is to follow Lovell et al. (1994). Specifically, we choose one output and rewrite the constant 



regress and the other output using the output selected as a numeraire. The arbitrary choice of the output and 

the resulting estimates will be invariant to the normalization.10  

The econometric model specification can be expressed by the following form: 

 

− log(𝑊𝐿𝑈) = 1 log (
𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠

𝑊𝐿𝑈
) + 2 𝑙𝑜𝑔(𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙) + 3 𝑙𝑜𝑔(𝐺𝑎𝑡𝑒𝑠) +         [4] 

4 log(𝑆𝑡𝑎𝑓𝑓) +5 log(𝑅𝑢𝑛𝑤𝑎𝑦) + 𝑣𝑖 − (1 − 𝜌∑𝑤𝑖. )−1𝑢�̃�  

 

This research starts with the classical approach (OLS estimation) and, then, moves up to more complex 

specifications. OLS model does not consider either the presence of inefficiencies nor spatial interactions. Table 

5 contains the results. The OLS estimation confirms the validity of the model specifications, given the high 

and significant R-squared (0.83). All the coefficients are statistically significant. Moreover, the multioutput 

coefficient has a positive sign, while the four input coefficients present negative coefficients. Using the OLS 

as a starting point model for the analysis, we further consider a more complexed analysis by introducing the 

inefficiency term in the error component. The estimated SFA results are shown in Table 6. The appropriateness 

of the methodological approach is confirmed: the values of the coefficients are similar to the OLS case, except 

for the intercept that decreases in absolute term. This expected trend can be explained by a shift in the 

production function from the average values to efficient ones without producing effects in the relationship 

between inputs and outputs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
10 Homogeneity implies that  

𝐷0(𝑥,𝜇𝑦)=𝜇𝐷0(𝑥,𝑦),𝜇>0
  and by arbitrarily choosing one of the outputs, such as the Mth output,  we can set 𝜇 = 1

𝑦𝑀⁄ : 

𝐷0 (𝑥,
𝑦

𝑦𝑀
) =  

𝐷0  (𝑥,𝑦)

𝑦𝑀
 which yields a regression of the general form 

1

𝑦𝑁𝑖𝑡
=  𝐷0(𝑦𝑖𝑡,𝑥𝑖𝑡,𝛽) ∗ ℎ (𝜀𝑖𝑡) where 𝑌𝑖𝑡

∗ = (𝑦1𝑖𝑡 𝑦𝑁𝑖𝑡⁄ , 𝑦2𝑖𝑡 𝑦𝑁𝑖𝑡⁄ , … , 𝑦𝑁 − 1𝑖𝑡 𝑦𝑁𝑖𝑡⁄ ) (Cuesta and Orea, 2001) 

 



Table 5 - OLS estimation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 - SFA estimation 

              Dependent variable: Work Load Unit   

          Estimate     

Intercept         -10.3468***    

          (1.6004)     

Movements/WLU         3.6694*        

          (2.0008)     

Terminal         -0.4938***    

          (0.0475)     

Gates         -0.4714***    

          (0.0721)     

Staff         -0.0930**      

          (0.0417)     

Runway         -0.1984          

          (0.1270)     

𝜎𝑢
2         

 

0.2520**      

          (0.1148)     

         0.1115***    

          (0.0378)     

γ         0.6933     

Mean efficiency     0.6986     

Moran's I     0.1390**    
     (0.0145)     

LR-Test     2.093*    

Observations     206     

Note: Standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.10.    

                      Dependent variable: Work Load Unit 

          Estimate   

Intercept     -11.8645***   

          (1.3834)   

Movements/WLU     4.8798***   

          (1.8305)   

Terminal         -0.4700***   

          (0.0459)   

Gates         -0.4810***   

          (0.0737)   

Staff         -0.0866**   

          (0.0435)   

Runway         -0.2276*   

          (0.1301)   

Observations         206   

 

  
 

        
0.8306 

  

Adjusted          0.8264   

Note: Standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.10. 

𝑅2 

𝑅2 

𝜎𝑣
2 



The inefficiency standard deviation (𝜎𝑢
2 = 0.252) is statistically significant. Similarly, the parameter λ 

suggests that 69% of the variation is due to inefficiency, while the remaining part to the random variation. All 

coefficients remain statistically significant, except for the runway variable. Also, the signs are as expected, 

being negative for the input variables and positive for the output ones. The traditional stochastic frontier 

specification shows the presence of strong spatial autocorrelation. Indeed, the Moran’s I statistic is significant 

and equal to 0.1390 witnessing how the use of spatial methodologies are appropriate for the analysed data. 

Autocorrelation among residuals can be locally displayed through the Moran’s I test shown in Figure 1.  

 

Figure 1 Moran’s I plot (SFA) 

 

 

 

 

 

 

 

 

 

 

 

The scatterplot assesses that SFA results hide the presence of a high spatial correlation. Given the presence of 

spatial autocorrelation in the SFA residuals, we apply the Spatial Stochastic Frontier (SSFA) model to account 

for such correlation. In this way, we can isolate and evaluate the territorial component separately from the 

individual performance of the airport. SSFA results for the different distance matrices are shown in Table 7. 

 

 

 

 

 

 

 

 

 

 

 



 

Table 7 - SSFA estimation (distance matrices) 

  Dependent variable: Work Load Unit 

    W100   W150   W200   W250   W300   W350 

    Estimate   Estimate   Estimate   Estimate   Estimate   Estimate 

Intercept   -9.8426***  -10.3288***  -9.6961***  -9.5482***  -9.7136***  -9.7011*** 

    (1.6407)  (1.4863)  (1.4377)  (1.7347)  (1.4617)  (1.5585) 

Movements/WLU   3.1808  3.6470**  2.7913  2.5865  2.4825  2.3922 

    (2.0142)  (1.8241)  (1.7969)  (2.1541)  (1.7853)  (1.8523) 

Terminal   -0.4982***  -0.4935***  -0.4822***  -0.4836***  -0.4468***  -0.4388*** 

    (0.0473)  (0.0479)  (0.0473)  (0.0489)  (0.0517)  (0.0531) 

Gates   -0.4408***  -0.4704***  -0.4697***  -0.4701***  -0.5053***  -0.5159*** 

    (0.0760)  (0.0732)  (0.0698)  (0.0711)  (0.0705)  (0.0709) 

Staff   -0.1087**  -0.0939**  -0.1045**  -0.1011**  -0.1032**  -0.0972** 

    (0.0437)  (0.0429)  (0.0417)  (0.0428)  (0.0428)  (0.0436) 

Runway   -0.2029  -0.1981  -0.1857  -0.1754  -0.1749  -0.1787 

    (0.1265)  (0.1252)  (0.1252)  (0.1279)  (0.1256)  (0.1283) 

 

sigmau2_dmu  
 

  0.2731**  0.2526**  0.2741***  0.2846***  0.2297**  0.2137* 

    (0.1089)  (0.1141)  (0.1028)  (0.1048)  (0.1143)  (0.1194) 

 

sigmav2  
 

  0.1033***  0.1113***  0.1009***  0.0974***  0.1096***  0.1125*** 

    (0.0348)  (0.0375)  (0.0326)  (0.0327)  (0.0382)  (0.0404) 

Mean efficiency   0.6896  0.6984  0.6893  0.6850  0.7083  0.7160 

Spatial parameter ρ   0.1799  0.0088  0.1772  0.1867  0.3138  0.3791 

Ineff. parameter λ   2.6440  2.2690  2.7180  2.9222  2.0970  1.8993 

Moran's I   -0.0512  -0.0131  -0.0879  -0.0930  -0.1270  -0.1369 

Value LR-Test   3.413**  2.098*  5.493***  5.642***  11.129***  13.581*** 

Observations   206  206  206  206  206  206 

Note: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.10.   

 

Most of the coefficients are significant with expected signs. When introducing the spatial autocorrelation, the 

Moran’s I tests are no more significant, implying the goodness of SSFA. The Moran’s I test scatterplot is 

displayed in figure 2, showing the opposite and not significant result compared to figure 1. 

 

 

 

 

 

 

 

 

 

 



Figure 2 Moran’s I plot (SSFA) 

 

 

 

 

 

 

 

 

 

 

The results show that the SSFA approach implemented is able to neutralize the high spatial correlation present 

in the residuals. The increase of the likelihood ratio test in all the SSFA estimations, respect to the SFA 

estimation, confirms the better fit of the data analysed by introducing spatial specifications. The coefficients 

ρ, which represent the unobserved spatial heterogeneity, are positive and significant in all the spatial estimates.  

In table 8 we show the results obtained from the SSFA models for different shared destinations matrix (see 

specification n.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 Table 8 – SSFA estimation (destination matrices) 

 Dependent variable: Work Load Unit 

 W100d W150d W200d W250d W300d W350d 

Intercept -9.8128*** 

(1.6709) 

-9.9493*** 

(1.6473) 

-9.720*** 

(1.7314) 

-9.855*** 

(1.5247) 

-10.203*** 

(1.3912) 

-9.9030*** 

(1.3345) 

Movements/WLU 2.5832     

(1.9858) 

2.8187     

(1.9956) 

2.7964     

(2.1369) 

2.9452       

(1.887) 

3.5041** 

(1.7172) 

3.2384*  

(1.6636) 

Terminal -0.4362*** 

(0.0541) 

-0.4483*** 

(0.0535) 

-0.482*** 

(0.0493) 

-0.477*** 

(0.0489) 

-0.491*** 

(0.0479) 

-0.4972*** 

(0.0466) 

Gates -0.5294*** 

(0.0717) 

-0.5075*** 

(0.0721) 

-0.473*** 

(0.0718) 

-0.474*** 

(0.0710) 

-0.464*** 

(0.0728) 

-0.443*** 

(0.0746) 

Staff -0.0940** 

(0.0443) 

-0.1022** 

(0.0436) 

-0.0984** 

(0.0430) 

-0.1015** 

(0.0422) 

-0.0995** 

(0.0431) 

-0.1078** 

(0.0419) 

Runway -0.1772   

(0.1289) 

-0.1837   

(0.1274) 

-0.1873   

(0.1275) 

-0.1996   

(0.1261) 

-0.1968  

(0.1253) 

-0.2039   

(0.1247) 

sigmau2_dmu 0.2119*   

(0.1170) 

0.2326** 

(0.1169) 

0.2761** 

(0.1081) 

0.2625** 

(0.1069) 

0.2585** 

(0.1109) 

0.2694** 

(0.1064) 

sigmav2 0.1139*** 

(0.0396) 

0.1113** 

(0.0390) 

0.101*** 

(0.03426) 

0.105*** 

(0.0345) 

0.1091*** 

(0.0361) 

0.1047*** 

(0.0341) 

Mean efficiency 
0.7172 0.7072 0.6884 0.6941 0.6958 0.6911 

Spatial parameter ρ   
0.4118 0.2813 0.1680 0.1816 0.0608 0.1687 

Ineff. parameter λ 
1.8596 2.0888 2.7308 2.4963 2.3692 2.5728 

Moran's I 
-0.1094 -0.0959 -0.0728 -0.0728 -0.0328 -0.0466 

Value LR-Test 
12.927*** 8.453** 4.619** 4.943** 2.359* 3.233** 

Observations 
206 206 206 206 206 206 

Note: Standard errors in parentheses. *** p<0.01, ** p<0.05, *p<0.10.      
 

Results are consistent with the distance matrices estimations (Table 7). Specifically, the same signs and 

statistically significant values are found for all the variables, except for the multioutput variable that is 

significant for the destination matrix 300 and 350. Consistently with table 7, the spatial parameter is positive 

and significant in all the specifications.  

To estimate the effect of airport competition and to predict the related efficiency levels, the differences in 

terms of efficiency between the two methodologies are analysed by applying equation [5]11. Table 9 shows the 

descriptive statistics of the computed 𝑥∗based on the stochastic frontier estimated for different distance 

matrices, while table 10 consider shared destinations matrix by distance.  

                                                 
11 After estimating the 𝑥∗for each distance matrix (equation [3]), the efficiency distances (𝑥∗) are tested to detect if they 

are statistically significant for both the models that include distance matrices and destination matrices by distance, for the 

airports that have at least one competitor. The p-values of the t-test are shown in tables 9 and 10. Appendix B shows the 

estimated efficiency for each airport considering the SFA and the SSFA models with the distance matrix of 200 km. 



 

Table 9 - Summary statistics of 𝑥∗ for each distance matrix 

With 

Competitors 
Observations Mean Std. Dev. Min Max 

𝑥∗ (w100) 64 1.2681 *** 3.2916 -4.4304 9.7844 

𝑥∗ (w150) 91 0.0309     * 0.1504 -0.3352 0.5115 

𝑥∗ (w200) 124 1.6098 *** 3.6443 -6.4329 12.6472 

𝑥∗ (w250) 140 2.2327 *** 4.0205 -9.0128 14.4847 

𝑥∗ (w300) 154 -1.9555 *** 5.3279 -30.4801 10.2485 

𝑥∗ (w350) 164 -3.2151 *** 6.0261 -28.5844 8.1975 

Note: *** p<0.01, ** p<0.05, * p<0.10 

 

Table 10 - Summary statistics of 𝑥∗ for each destination matrix by distance 

With 

Competitors 
Observations Mean Std. Dev. Min Max 

𝑥∗ (ŵ100) 64 1.0577 *** 2.9862 0.3177 1.7976 

𝑥∗ (ŵ150) 91 0.4561 *** 1.1369 0.2180 0.6943 

𝑥∗ (ŵ200) 124 0.7165 *** 2.9231 0.1881 1.2448 

𝑥∗(ŵ250) 140 1.6774 *** 3.1537 1.1446 2.2102 

𝑥∗ (ŵ300) 154 -1.7526 *** 4.4333 -2.4631 -1.0421 

𝑥∗ (ŵ350) 164 -3.4157 *** 5.8589 -4.3219 -2.5094 

Note: *** p<0.01, ** p<0.05, * p<0.10 

 

 

The results show positive 𝑥∗ values for the distances from 100 km to 250 km, while negative values from 300 

km to 350 km. Our estimates suggest that competition has different effects on the efficiency levels depending 

on the cut-off distance considered. Specifically, we find evidence of the negative pressure of competition on 

the technical efficiency level for distances below 250 km. In other words, airports in competition show a lower 

level of efficiency. A possible explanation may be related to a higher level of competition occurring between 

airports that are closer to each other, possibly due to their overcapacity not exploited (i.e. competition for 

passengers and cargo within the same catchment area). Indeed, in case of capacity excess, the marginal cost of 

a flight may be quite low, though the airport will face large sunk costs associated with its construction, for 

example, in building runways, parking, etc. (Forsyth, 2003). Differently, for cut-off greater than 250km, we 

obtain statistically significant negative efficiency differences. This can be interpreted as a positive effect of 

competition on efficiency levels. This may be read as an absence of competition among airports from 300 km 

to 350 km. These results are consistent with Fuellhart (2003) which finds that airports are subject to strategic 

interaction if they are located within a circle with 95 km -150 km rays. Similarly, Scotti et al. (2012), using a 

100 km radius to define the catchment area, find a negative effect of competition on technical efficiency. As 

well as Bottasso et al. (2017) adopt a standard approach to identify an airport catchment area as defined by a 



circle of 90 km around each airport. Furthermore, these positive and negative effects (tables 9 and 10) are also 

consistent for the three areas considered using both matrices (tables 11 and 12). 

 

Table 11 – Summary statistics of 𝑥∗ for each distance matrix and area 

 

 
w100 w150 w200 w250 w300 w350 

Pacific Asia 1.98 0.05 2.25 3.26 -2.59 -4.36 

Europe 1.26 0.04 1.62 2.13 -0.52 -1.35 

North America 1.58 0.04 1.34 2.05 -2.08 -3.58 

 

 

Table 12 – Summary statistics of 𝑥∗ for each destination matrix by distance and area 
 

 
ŵ100 ŵ150 ŵ200 ŵ250 ŵ300 ŵ350 

Pacific Asia 1.57 0.57 1.27 2.56 -2.02 -4.37 

Europe 1.08 0.40 0.82 1.58 -0.71 -1.76 

North America 1.31 0.51 0.46 1.46 -1.82 -3.72 

 

 

In conclusion, we observe that the spatial effects are important in competition analysis to estimate unbiased 

efficiency levels in the airports' sector, as found by Pavluk (2016), also confirmed, through a different 

methodology approach, by D'Alfonso et al. (2015) for the Italian airport sector. Moreover, it’s important to 

compare the results obtained from the two models that consider different matrices. The stochastic frontier 

estimated considering distance matrices and destination matrices are equivalent in terms of results. As a 

robustness check, the effect on efficiency is captured either on a pure geographical distance and also by 

overlapping origins and destination flows.  

 

 

5. Concluding Remarks 

 

In this paper, we analyse 206 airports located in different continents for the year 2015. By applying a traditional 

SFA and a SSFA, and comparing results, we observe how the spatial dependence and its effects differ among 

different characterizations of the airport neighbourhood. The SSFA allows us to isolate the local intangible 

factors, often statistically and economically difficult to capture through specific proxies, that nonetheless are 

determinant in influencing the airport productivity.  This method, in fact, is able to disentangle the observed 

spatial effect by isolating a particular component that is erroneously attributed to the error term in the 

traditional SFA approach.  

Our empirical results can be summarised as follows. First, positive spatial heterogeneity is discovered in the 

model specifications considered, as evidence of uneven distribution of airport productivity-related factors over 

the data examined. Additionally, the effect of competition on airports' efficiency levels, which varies according 



to the geographical distances, is detected. This paper, for the first time, uses two different specifications of 

matrices, one based on geographical distances and the other one based on the number of shared destinations 

among two airports calibrated by each distance cut-off. This latter measure is considered an indicator of the 

degree of overlapping markets among the airports. Specifically, comparing SFA and SSFA model, splitting 

the analysis among airports with and without competitors, we find a positive mean efficiency difference until 

250 km cut-off and a negative one starting from 300 km. This paper is the first in discovering and analysing 

these effects. We argue that the negative effect could be related to a higher level of competition occurring 

between airports that are closer to each other, while for larger distances the negative efficiency differences are 

interpreted as positive effects of competition on the efficiency levels. Moreover, the resulting estimates (tables 

8 and 9) are consistent using the two different matrices. 

Overall, we can confirm that the SSFA is a valid instrument to estimate the levels of efficiency at worldwide 

level. We prove that the dynamics of competition are strongly dependent on the spatial distance among airports. 

This finding requires further analysis in order to understand the implications on efficiency and on regulation 

and competition policies. Based on our findings, the definition of the relevant market, is, in fact, a relative 

concept. Furthermore, policymakers when deciding on promoting the development of specific airports should 

consider the spillover effects on the neighbouring ones, considering the different patterns of competition. This 

is extremely relevant since distance matters for international policy regulation. For instance, the EU developed 

in the last years, policy related to "state aid for airports and airlines", excluding however those airports located 

close to existing airports that provide scheduled air services. An airport is defined close to another one if it is 

located within 100 km of distance or 60 minutes of travel by car, bus, train or high-speed train from an existing 

airport that manages scheduled air services. Our results open interesting future research opportunities with 

regards to state aid and level playing field among airports. First of all, the attention can be devoted to relevant 

aspects for policymakers (i.e. public funding, ownership network, presence of airlines in the ownership; etc.) 

across different areas of the world. But ownership is not the only determinant of heterogeneity of the 

production function. A further aspect that could affect the airport performance could be the management 

concession and airport infrastructure size. Also, additional development would be to test the robustness of the 

results taking into consideration the time dimension. The panel data analysis would allow controlling for 

seasonal or other unobserved factors that can influence the results. Finally, the introduction of territorial and 

contextual variables could yield additional insights to calibrate policy measures and investment decisions.  

 

 



Appendix A: Airports considered in the study 

Number Airport Name Continent 

1 Adelaide International Airport Asia Pacific

2 Antonio B. Won Pat International Airport Asia Pacific

3 Auckland International Airport Asia Pacific

4 Bai Yun Airport Asia Pacific

5 Bandaranaike International Airport Asia Pacific

6 Beijing Capital International Airport Asia Pacific

7 Brisbane Airport Asia Pacific

8 Cairns International Airport Asia Pacific

9 Central Japan International Airport Asia Pacific

10 Chennai International Airport Asia Pacific

11 Chhatarpati Shivaji International Airport Asia Pacific

12 Chiang Mai International Airport Asia Pacific

13 Christchurch International Airport Asia Pacific

14 Darwin International Airport Asia Pacific

15 Dubai International Airport Asia Pacific

16 Dunedin International Airport Asia Pacific

17 Gimhae International Airport Asia Pacific

18 Gold Coast Airport Asia Pacific

19 Haneda Airport Asia Pacific

20 Hat Yai International Airport Asia Pacific

21 Hong Kong International Airport Asia Pacific

22 Incheon International Airport Asia Pacific

23 Indira Gandhi International Airport Asia Pacific

24 Jakarta Soekarno-Hatta International Airport Asia Pacific

25 Jeju International Airport Asia Pacific

26 Juanda International Airport Asia Pacific

27 Kansai International Airport Asia Pacific

28 Kuala Lumpur International Airport Asia Pacific

29 Macau International Airport Asia Pacific

30 Mae Fah Luang-Chiang Rai Int. Apt. Asia Pacific

31 Meilan International Airport Asia Pacific

32 Melbourne Airport Asia Pacific

33 Nadi International Airport Asia Pacific

34 Newcastle Airport Asia Pacific

35 Ninoy Aquino International Airport Asia Pacific

36 Penang International Airport Asia Pacific

37 Perth International Airport Asia Pacific

38 Phnom Penh International Airport Asia Pacific

39 Phuket International Airport Asia Pacific

40 Queenstown Airport Asia Pacific

41 Seoul Gimpo International Airport Asia Pacific

42 Shanghai Hongqiao International Airport Asia Pacific

43 Shanghai Pudong International Airport Asia Pacific

44 Shenzhen Bao'an International Airport Asia Pacific

45 Siem Reap International Airport Asia Pacific

46 Singapore Changi International Airport Asia Pacific

47 Suvarnabhumi Airport Asia Pacific

48 Sydney Airport Asia Pacific

49 Taiwan Taoyuan International Airport Asia Pacific

50 Tokyo Narita International Airport Asia Pacific

51 Townsville Airport Asia Pacific

52 Wellington International Airport Asia Pacific

53 Xiamen Gaoqi International Airport Asia Pacific



 Number Airport Name Continent 

54 Alicante Airport Europe

55 Amsterdam Airport Schiphol Europe

56 Athens International Airport Europe

57 Barcelona El Prat Airport Europe

58 Belgrade Nikola Tesla Airport Europe

59 Ben Gurion International Airport Europe

60 Bergamo-Orio al Serio Airport Europe

61 Berlin Schönefeld Airport Europe

62 Berlin Tegel Airport Europe

63 Birmingham Airport Europe

64 Bologna Airport Europe

65 Bratislava Milan Rastislav Stefanik Airport Europe

66 Bristol Airport Europe

67 Brussels Airport Europe

68 Budapest Ferenc Liszt International Airport Europe

69 Cologne/Bonn Konrad Adenauer Airport Europe

70 Copenhagen Airport Kastrup Europe

71 Dublin Airport Europe

72 Düsseldorf International Airport Europe

73 Edinburgh Airport Europe

74 EuroAirport Basel-Mulhouse-Freiburg Europe

75 Frankfurt Airport Europe

76 Genève Aéroport Europe

77 Glasgow Airport Europe

78 Gran Canaria Airport Europe

79 Hamburg Airport Europe

80 Hannover Airport Europe

81 Helsinki Vantaa Airport Europe

82 Istanbul Atatürk Airport Europe

83 Istanbul Sabiha Gökçen International Apt Europe

84 Keflavik International Airport Europe

85 Kiev Boryspil International Airport Europe

86 Lennart Meri Tallinn Airport Europe

87 Lisbon Portela Airport Europe

88 Ljubljana Jože Pucnik Airport Europe

89 London Gatwick International Airport Europe

90 London Heathrow Airport Europe

91 London Luton Airport Europe

92 London Stansted Airport Europe

93 Luxembourg Airport Europe

94 Lyon-Saint Exupery Airport Europe

95 Madrid Barajas Airport Europe

96 Malaga-Costa del Sol Airport Europe

97 Malta International Airport Europe

98 Manchester Airport Europe

99 Milan Linate Airport Europe

100 Milan Malpensa Airport Europe

101 Munich Airport Europe

102 Naples International Airport Europe

103 Nice Cote D’Azur Airport Europe

104 Oslo Airport Gardermoen Europe

105 Palma de Mallorca Airport Europe

106 Paris Charles de Gaulle Airport Europe

107 Paris Orly Airport Europe

108 Porto Airport Europe

109 Prague International Airport Europe

110 Pulkovo Airport Europe

111 Riga International Airport Europe

112 Rome Ciampino Airport Europe

113 Rome Leonardo Da Vinci/Fiumicino Airport Europe

114 Salzburg W.A. Mozart Airport Europe

115 Sheremetyevo International Airport Europe

116 Sofia Airport Europe

117 Stockholm-Arlanda Airport Europe

118 Stuttgart Airport Europe

119 Turin Caselle Airport Europe

120 Venice Marco Polo Airport Europe

121 Vienna International Airport Europe

122 Warsaw Chopin Airport Europe

123 Zagreb Airport Europe

124 Zurich Airport Europe

Number Airport Name Continent 

125 Albany International Airport North America

126 Albuquerque International Sunport North America

127 Austin Bergstrom International Airport North America

128 Baltimore Washington International Airport North America

129 Bob Hope Airport North America

130 Boston Logan International Airport North America

131 Bradley International Airport North America

132 Buffalo Niagara International Airport North America

133 Calgary International Airport North America

134 Charlotte Douglas International Airport North America

135 Chicago Midway Airport North America

136 Chicago O'Hare International Airport North America

137 Cincinnati/Northern Kentucky International AirportNorth America

138 Cleveland-Hopkins International Airport North America

139 Dallas Forth Worth International Airport North America

140 Dallas Love Field Airport North America

141 Denver International Airport North America

142 Detroit Metropolitan Wayne County Airport North America

143 Edmonton International Airport North America

144 Eppley Airfield North America

145 Fort Lauderdale Hollywood International AirportNorth America

146 General Mitchell International Airport North America

147 George Bush Intercontinental Airport North America

148 Halifax Stanfield International Airport North America

149 Hartsfield-Jackson Atlanta International AirportNorth America

150 Honolulu International Airport North America

151 Indianapolis International Airport North America

152 Jacksonville International Airport North America

153 John Wayne Orange County Airport North America

154 Kahului Airport North America

155 Kansas City International Airport North America

156 LA/Ontario International Airport North America

157 LaGuardia International Airport North America

158 Las Vegas McCarran International Airport North America

159 Los Angeles International Airport North America

160 Louis Armstrong New Orleans Iint. Apt North America

161 Louisville International-Standiford Field North America

162 Memphis International Airport North America

163 Miami International Airport North America

164 Minneapolis/St. Paul International Airport North America

165 Montréal-Pierre Elliott Trudeau Int. Apt North America

166 Nashville International Airport North America

167 New York-John F. Kennedy International AirportNorth America

168 Newark Liberty International Airport North America

169 Norman Y. Mineta San José International AirportNorth America

170 Oakland International Airport North America

171 Orlando International Airport North America

172 Ottawa Macdonald-Cartier International AirportNorth America

173 Palm Beach International Airport North America

174 Philadelphia International Airport North America

175 Phoenix Sky Harbor International Airport North America

176 Pittsburgh International Airport North America

177 Port Columbus International Airport North America

178 Portland International Airport North America

179 Québec City Jean Lesage International Apt North America

180 Raleigh-Durham International Airport North America

181 Regina International Airport North America

182 Reno/Tahoe International Airport North America

183 Richmond International Airport North America

184 Ronald Reagan Washington National Apt North America

185 Sacramento International Airport North America

186 Salt Lake City International Airport North America

187 San Antonio International Airport North America

188 San Diego International Airport North America

189 San Francisco International Airport North America

190 San Juan Luis Muñoz Marín International AirportNorth America

191 Seattle-Tacoma International Airport North America

192 Southwest Florida International Airport North America

193 St. John's International Airport North America

194 St. Louis-Lambert International Airport North America

195 Tampa International Airport North America

196 Ted Stevens Anchorage International Apt North America

197 Theodore Francis Green State Airport North America

198 Toronto Lester B. Pearson International Apt North America

199 Tucson International Airport North America

200 Tulsa International Airport North America

201 Vancouver International Airport North America

202 Victoria International Airport North America

203 Washington Dulles International Airport North America

204 Will Rogers World Airport North America

205 William P. Hobby Airport North America

206 Winnipeg James Armstrong Richardson Int. North America



Appendix B: Airports Efficiency – SSFA 200 km 

 

 

Airports 
eff. 

SFA 

eff. 

SSFA 

eff. 

Diff % 
Comp. Airports 

eff. 

SFA 

eff. 

SSFA 

eff. 

Diff 

% 

Comp. 

Berlin Schönefeld Airport 
0,63 0,67 -6,43 1 

Bandaranaike Int. Airport 
0,73 0,72 1,09 0 

Penang Int. Airport 0,69 0,73 -5,76 1 Las Vegas McCarran Int. Airport 0,69 0,69 1,13 0 

Tokyo Narita Int. Airport 0,71 0,74 -3,69 1 Orlando Int. Airport 0,81 0,80 1,19 1 

Rome Leonardo Da 

Vinci/Fiumicino Airport   
0,70 0,72 -3,63 1 

Venice Marco Polo Airport 
0,78 0,77 1,20 1 

Istanbul Sabiha Gökçen Int. 

Airport   
0,64 0,66 -3,48 1 

San Diego Int. Airport 
0,51 0,51 1,21 1 

Toronto Lester B. Pearson Int. 

Airport 
0,80 0,82 -3,45 1 

Porto Airport 
0,78 0,77 1,25 0 

Mae Fah Luang-Chiang Rai Int. 

Airport 
0,80 0,82 -3,44 1 

Luxembourg Airport 
0,83 0,82 1,26 1 

Incheon Int. Airport 0,75 0,77 -3,31 1 Palma de Mallorca Airport 0,77 0,76 1,29 0 

Dallas Forth Worth Int. Airport 0,72 0,74 -3,18 1 Minneapolis/St. Paul Int. Airport 0,72 0,71 1,32 0 

Honolulu Int. Airport 0,74 0,77 -3,15 1 Salzburg W.A. Mozart Airport  0,85 0,84 1,33 1 

Macau Int. Airport 0,77 0,79 -3,15 1 Wellington Int. Airport 0,69 0,68 1,42 0 

San Antonio Int. Airport 0,66 0,68 -2,61 1 Düsseldorf Int. Airport   0,80 0,79 1,44 1 

Hannover Airport 0,82 0,84 -2,52 1 Port Columbus Int. Airport 0,80 0,79 1,48 1 

Brisbane Airport 0,72 0,73 -2,42 1 Dublin Airport 0,68 0,67 1,55 0 

Lyon-Saint Exupery Airport 0,81 0,83 -2,31 1 Southwest Florida Int. Airport 0,73 0,72 1,56 1 

Shenzhen Bao'an Int. Airport 0,65 0,67 -2,25 1 Portland Int. Airport 0,71 0,70 1,58 0 

Cincinnati/Northern Kentucky Int. 

Airport 
0,80 0,81 -2,24 1 

Austin Bergstrom Int. Airport 
0,57 0,56 1,60 1 

San Francisco Int. Airport 0,71 0,73 -2,11 1 Auckland Int. Airport 0,74 0,73 1,62 0 

George Bush Intercontinental 

Airport 
0,74 0,76 -2,08 1 

Dubai Int. Airport 
0,77 0,75 1,63 0 

Indianapolis Int. Airport 0,63 0,64 -1,98 1 Munich Airport 0,83 0,81 1,64 1 

General Mitchell Int. Airport 0,81 0,83 -1,81 1 Baltimore Washington Int. Airport 0,71 0,70 1,68 1 

Québec City Jean Lesage Int. 

Airport 
0,78 0,80 -1,77 0 

Athens Int. Airport 
0,70 0,69 1,71 0 

Philadelphia Int. Airport 
0,76 0,77 -1,70 1 

Theodore Francis Green State 

Airport 
0,80 0,79 1,74 1 

London Stansted Airport   0,78 0,79 -1,42 1 Berlin Tegel Airport   0,46 0,45 1,76 1 

Chicago O'Hare Int. Airport 
0,62 0,63 -1,36 1 

Cologne/Bonn Konrad Adenauer 

Airport   
0,82 0,80 1,76 1 

Lennart Meri Tallinn Airport 0,81 0,82 -1,09 1 Queenstown Airport 0,84 0,83 1,80 1 

Washington Dulles Int. Airport 
0,85 0,85 -1,08 1 

Ottawa Macdonald-Cartier Int. 

Airport 
0,82 0,80 1,83 1 

Nadi Int. Airport 0,69 0,70 -1,06 0 Salt Lake City Int. Airport 0,66 0,64 1,84 0 

Tucson Int. Airport 0,83 0,84 -0,94 1 Frankfurt Airport   0,81 0,80 1,86 1 

Naples Int. Airport 0,56 0,57 -0,86 1 Bologna Airport 0,66 0,65 1,87 1 

Regina Int. Airport 0,83 0,84 -0,86 0 Calgary Int. Airport 0,66 0,65 1,88 0 

Victoria Int. Airport 0,73 0,74 -0,77 1 Cleveland-Hopkins Int. Airport 0,82 0,80 1,93 1 

Shanghai Hongqiao Int. Airport 
0,78 0,78 -0,67 1 

Jakarta Soekarno-Hatta Int. 

Airport 
0,64 0,63 1,99 0 

Halifax Stanfield Int. Airport 0,86 0,86 -0,64 0 Milan Linate Airport 0,68 0,66 2,14 1 

Bob Hope Airport 0,59 0,60 -0,61 1 Lisbon Portela Airport   0,68 0,67 2,32 0 

Winnipeg James Armstrong R. Int. 

A. 
0,75 0,75 -0,61 0 

Bristol Airport 
0,64 0,63 2,41 1 

Ljubljana Jože Pučnik Airport  0,81 0,82 -0,59 1 Tampa Int. Airport 0,75 0,74 2,43 1 



Kiev Boryspil Int. Airport  0,88 0,89 -0,59 0 Suvarnabhumi Airport 0,69 0,68 2,44 0 

Norman Y. Mineta San José Int. 

Airport 
0,69 0,69 -0,57 1 

Meilan Int. Airport 
0,67 0,65 2,53 0 

Newcastle Airport 0,92 0,93 -0,56 1 Albany Int. Airport 0,82 0,79 2,68 1 

Bratislava Milan Rastislav 

Stefanik Airport 
0,90 0,90 -0,48 1 

Xiamen Gaoqi Int. Airport 
0,58 0,56 2,78 0 

Sofia Airport 0,85 0,86 -0,47 0 Rome Ciampino Airport   0,50 0,49 2,79 1 

LA/Ontario Int. Airport 0,71 0,71 -0,45 1 Amsterdam Airport Schiphol 0,75 0,73 2,83 1 

Antonio B. Won Pat Int. Airport 0,85 0,85 -0,39 0 Dunedin Int. Airport 0,80 0,78 2,85 1 

Edmonton Int. Airport 0,78 0,79 -0,39 0 Singapore Changi Int. Airport 0,70 0,68 2,87 0 

Miami Int. Airport 
0,77 0,78 -0,37 1 

Louis Armstrong New Orleans 

Int. Airport 
0,66 0,64 2,94 0 

Prague Int. Airport 0,84 0,85 -0,32 0 Chicago Midway Airport 0,53 0,52 2,98 1 

Milan Malpensa Airport 0,85 0,86 -0,29 1 Chennai Int. Airport 0,66 0,64 2,99 0 

Warsaw Chopin Airport   
0,82 0,82 -0,25 0 

Detroit Metropolitan Wayne 

County Airport 
0,78 0,76 2,99 1 

St. John's Int. Airport 0,76 0,77 -0,25 0 Ninoy Aquino Int. Airport 0,66 0,63 3,23 0 

London Heathrow Airport   0,68 0,68 -0,16 1 Zagreb Airport 0,71 0,69 3,28 1 

Palm Beach Int. Airport 
0,76 0,76 -0,15 1 

Hartsfield-Jackson Atlanta Int. 

Airport 
0,62 0,60 3,31 0 

Richmond Int. Airport 0,82 0,82 -0,14 1 Brussels Airport 0,74 0,71 3,31 1 

Newark Liberty Int. Airport 0,65 0,65 -0,11 1 Sheremetyevo Int. Airport 0,60 0,58 3,35 0 

Riga Int. Airport 0,73 0,73 -0,10 0 Adelaide Int. Airport 0,61 0,59 3,35 0 

Bai Yun Airport 0,57 0,57 -0,08 1 Ben Gurion Int. Airport 0,60 0,58 3,43 0 

Los Angeles Int. Airport 0,58 0,58 -0,07 1 Zurich Airport   0,72 0,70 3,57 1 

Reno/Tahoe Int. Airport 
0,83 0,83 -0,06 1 

San Juan Luis Muñoz Marín Int. 

Airport 
0,45 0,44 3,57 0 

Albuquerque Int. Sunport 0,79 0,79 -0,03 0 Beijing Capital Int. Airport 0,66 0,63 3,58 0 

Christchurch Int. Airport 0,81 0,82 -0,03 0 Nice Cote D’Azur Airport   0,74 0,71 3,91 1 

John Wayne Orange County 
Airport 

0,65 0,65 -0,02 1 
Will Rogers World Airport 

0,80 0,76 3,93 1 

London Gatwick Int. Airport   0,67 0,67 0,00 1 Oslo Airport Gardermoen 0,55 0,53 3,94 0 

Turin Caselle Airport 0,83 0,83 0,04 1 Indira Gandhi Int. Airport 0,67 0,64 4,02 0 

Raleigh-Durham Int. Airport 0,80 0,80 0,06 0 London Luton Airport 0,52 0,50 4,26 1 

Bradley Int. Airport 0,86 0,86 0,07 1 Charlotte Douglas Int. Airport 0,50 0,48 4,29 0 

Madrid Barajas Airport 0,85 0,85 0,08 0 William P. Hobby Airport 0,58 0,56 4,35 1 

Malta Int. Airport 0,85 0,85 0,19 0 Seattle-Tacoma Int. Airport 0,60 0,57 4,39 1 

EuroAirport Basel-Mulhouse-

Freiburg 
0,79 0,78 0,20 1 

Kahului Airport 
0,49 0,47 4,41 1 

St. Louis-Lambert Int. Airport 0,77 0,77 0,21 0 Paris Orly Airport   0,74 0,71 4,52 1 

Stockholm-Arlanda Airport  0,74 0,73 0,22 0 Dallas Love Field Airport 0,53 0,51 4,59 1 

Belgrade Nikola Tesla Airport 0,75 0,75 0,23 0 Kansai Int. Airport 0,66 0,63 4,68 1 

Kansas City Int. Airport 0,80 0,80 0,23 0 Boston Logan Int. Airport 0,72 0,69 4,83 1 

Glasgow Airport 0,85 0,84 0,24 1 Gimhae Int. Airport 0,45 0,43 4,90 0 

Malaga-Costa del Sol Airport 0,85 0,84 0,29 0 Oakland Int. Airport 0,51 0,48 5,15 1 

Central Japan Int. Airport 0,74 0,74 0,35 1 Chhatrapati Shivaji Int. Airport 0,44 0,42 5,28 0 

Paris Charles de Gaulle Airport   0,83 0,83 0,36 1 Sydney Airport 0,57 0,54 5,42 0 

Gran Canaria Airport 0,82 0,82 0,41 0 Shanghai Pudong Int. Airport 0,63 0,60 5,42 1 

Pittsburgh Int. Airport 0,88 0,87 0,41 1 Bergamo-Orio al Serio Airport  0,63 0,59 5,54 1 

Barcelona El Prat Airport 0,83 0,82 0,42 0 Helsinki Vantaa Airport   0,70 0,66 5,57 1 



Siem Reap Int. Airport 
0,70 0,70 0,42 0 

Fort Lauderdale Hollywood Int. 

Airport 
0,57 0,54 5,59 1 

Sacramento Int. Airport 0,73 0,72 0,44 1 Hat Yai Int. Airport 0,43 0,40 5,62 1 

Copenhagen Airport Kastrup 0,75 0,75 0,49 0 Melbourne Airport 0,57 0,54 5,65 0 

Kuala Lumpur Int. Airport 0,80 0,80 0,53 0 Juanda Int. Airport 0,43 0,40 5,75 0 

Tulsa Int. Airport 0,85 0,85 0,60 1 Taiwan Taoyuan Int. Airport 0,58 0,54 6,11 0 

Phnom Penh Int. Airport 0,74 0,73 0,61 0 Gold Coast Airport 0,56 0,52 6,34 1 

Darwin Int. Airport 
0,80 0,80 0,65 0 

Ronald Reagan Washington Nat. 

A. 
0,54 0,51 6,60 1 

Jacksonville Int. Airport 0,76 0,75 0,70 0 Genève Aéroport  0,57 0,53 6,62 1 

Alicante Airport 0,83 0,82 0,71 0 Hong Kong Int. Airport 0,44 0,41 6,95 1 

Vancouver Int. Airport 0,78 0,77 0,73 1 Phoenix Sky Harbor Int. Airport 0,66 0,61 7,33 1 

Birmingham Airport 0,75 0,74 0,74 0 Seoul Gimpo Int. Airport 0,46 0,42 7,35 1 

Stuttgart Airport 0,82 0,82 0,75 1 Phuket Int. Airport 0,38 0,35 7,38 0 

Keflavik Int. Airport 0,79 0,78 0,76 0 Buffalo Niagara Int. Airport 0,46 0,42 7,47 1 

Townsville Airport 
0,75 0,75 0,79 0 

Ted Stevens Anchorage Int. 

Airport 
0,41 0,38 7,64 0 

Perth Int. Airport 0,73 0,72 0,80 0 Haneda Airport 0,44 0,40 8,08 1 

Cairns Int. Airport 0,81 0,80 0,87 0 Vienna Int. Airport   0,73 0,67 8,29 1 

Pulkovo Airport 0,71 0,70 0,89 0 Jeju Int. Airport 0,34 0,31 8,30 0 

Nashville Int. Airport 0,74 0,73 0,93 0 Memphis Int. Airport 0,44 0,40 8,35 0 

New York-John F. Kennedy Int. 

Airport 
0,63 0,62 0,94 1 

Hamburg Airport   
0,51 0,47 8,82 1 

Denver Int. Airport 0,74 0,73 0,97 0 Chiang Mai Int. Airport 0,40 0,36 9,64 1 

Eppley Airfield 
0,73 0,73 0,98 0 

Louisville Int.-Standiford Field 
0,28 0,25 

10,0

5 
1 

Istanbul Atatürk Airport   
0,52 0,51 1,00 1 

Budapest Ferenc Liszt Int. Airport  
0,70 0,62 

11,2

9 
1 

Montréal-Pierre Elliott Trudeau 

Int. A. 
0,84 0,83 1,08 1 

Edinburgh Airport   
0,60 0,53 

12,2

9 
1 

LaGuardia Int. Airport 
0,53 0,53 1,09 1 

Manchester Airport  
0,74 0,65 

12,6
5 

1 
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