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Abstract  

Hydrogen enriched natural gas (HNG) is a promising alternative fuel. But the blended fuel 

will inevitably have different ignition and combustion characteristics as compared to natural gas. 

The extent of the resulting difference depends on the percentage of hydrogen addition. It may 

affect the compatibility of combustion systems and have safety implications. The present study 

was aimed at enhancing the safety of HNG through inhibition by inert gases. Laboratory tests 

were conducted for methane/hydrogen/air premixed flame propagating in a closed channel with 

either nitrogen (N2) or carbon dioxide (CO2) as the inhibitor. Mixtures with different hydrogen 

volumetric fractions in fuel, including 0%, 20%, 50% or 80% were investigated. The flame shape 

evolution and the overpressure in the channel were recorded by high-speed Schlieren 

mailto:ustcshenxb@gmail.com


 2 

photography and pressure sensor, respectively. The flame shape was found to change in various 

ways depending on the inhibitor and hydrogen content. The pressure wave had remarkable 

impacts on flame and pressure dynamics. The effect of buoyancy on the flame deformation was 

observed and discussed. Both N2 and CO2 were found to have considerable inhibition effect on 

the flame speed and overpressure build-up in the channel while the inhibiting effect of CO2 was 

stronger. The inhibition mechanisms of either N2 or CO2 were revealed from thermal and kinetic 

aspects.  

Keywords: HNG, Premixed flame, Inhibition, Buoyancy, Mechanism 

1 Introduction 

Hydrogen enriched natural gas (HNG) is a promising alternative fuel.  It was proved that the 

hydrogen addition (enrichment) can overcome the shortages of NG combustion system, such as 

high ignition energy, local flame extinction, low power output [1, 2] and significantly enhance the 

flame dynamics and combustion efficiency [3, 4]. Besides, due to its composition of only natural 

gas and hydrogen, the combustion of HNG mainly yields CO2 and H2O with constraint pollutant 

released. Given the series of environmental problems associated with fossil fuel, the HNG 

certainly has an excellent prospect as energy carrier in the near future. However, the mixed fuel 

will inevitably have different ignition and combustion characteristics as compared to natural gas. 

The extent of the resulting difference will depend on the percentage of hydrogen addition. It may 

affect the compatibility of the combustion systems and have safety implications. 

From the safety perspective, both hydrogen and natural gas are highly flammable. Hydrogen 

is featured with low ignition energy, broad flammable range and large burning velocity [5, 6]. 
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Therefore, the potential fire and explosion hazards related to HNG need to be evaluated. 

Particularly in confined spaces, once the HNG is exposed to air, a combustive mixture will be 

formed, which can be easily ignited, resulting in fire or explosion. Flame propagation in confined 

spaces is complicated by flame instability, pressure wave and boundary effect, etc. [7-9]. 

Confinement can generally promote flame acceleration and even induce deflagration to 

detonation transition (DDT) as a consequence [10]. At laboratory scale, flame propagation is 

usually investigated in channels simulating the confined spaces. For example, Mallard and Le 

Chatelier [11] reported their pioneering work in 1883, which captured a special flame structure 

in a long channel, namely, the flame front was irregular and would invert itself on the centreline. 

Thereafter, Ellis [12] took the first photograph of the inverted flame in the channel in 1928. 

Salamandra et al. [13] named this featured flame shape as “tulip flame”. Until 1990s, Clanet and 

Searby [14] distinguished four characteristic stages of flame deformation in channels, including 

spherical flame expansion, finger-shaped flame acceleration, flame-side wall contact and the 

tulip inversion. In recent years, the flame acceleration with shape changes attracted continuous 

attention in the area of combustion and explosions. For instance, Zhang et al. [15] found the 

varied structures of flame front during propagation in vented channel during their experimental 

and numerical investigations. Yu et al. [16-19] conducted a series of experiments in both closed 

and half-open channels to investigate the flame behaviour for methane, hydrogen and syngas in 

air. Xiao et al. [20] numerically investigated the influence of pressure wave on the stability of 

flame propagation in channels and found out that the Rayleigh-Taylor instability mainly causes 

the initiation of distorted tulip flame. Obviously from previous studies, the flame propagation in 
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confined spaces was very complex accompanied by drastic flame deformation and acceleration, 

which could result in violent pressure rise as well. 

For safety consideration, it is beneficial to develop measures that can inhibit potential flame 

acceleration during combustion. The addition of some inhibitor is useful to constrain the flame 

and pressure dynamics in combustion. Many studies on the inhibiting effect of inert gas, water 

mist, powder and halogenated compounds have been carried out. For instance, Benedetto et al. 

[21] conducted explosion tests of CH4/O2/N2/CO2 and H2/O2/N2/CO2 in a closed cylindrical 

chamber. The results illustrated that the addition of CO2 influenced the ignition, laminar burning 

velocity, flame temperature and combustion rate. Shen et al. [22] discussed the inhibiting effect 

and mechanism of N2 or CO2 on C2H4/N2O mixture explosion at various initial pressures. Explosion 

mitigation by water mist was examined for methane/air explosion in the tube by Wang et al. [23] 

in varied droplet sizes and pipe sizes. Yang et al. [24] built an inhibition model for water mist. Pei 

et al. [25] discussed the synergistic inhibition of inert gas and ultrafine water mist and proposed 

a promoted inhibiting effect of gas-liquid two phase medium. Yu et al. [26] compared the 

performance of Urea, Al(OH)3 and Mg(OH)2 on gas explosion. Dounia et al. [27] investigated the 

sodium bicarbonate powder on flame propagation inhibition by theoretical analysis and 

simulation. The combined effect of water/sodium chloride mist on the methane/air explosion 

was explored by Cao et al. [28]. Linteris and Truett [29] considered the inhibiting effect of 

fluoromethanes (CH2F2, CF3H or CF4) on the burning velocity by calculations and measurements. 

The numerical study of the inhibiting efficiency of halogenated compounds (CF3Br, CF3I, CF3H, 

C2HF5, C2F6 or CF4) was elucidated by Noto et al. [30]. These studies identified potential inhibitors 

and initiated the discussion about the underlying mechanism. Among above-mentioned 
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inhibitors, N2 and CO2 have the advantages of cleanliness, abundant in reserve and low cost [25]. 

Some previous studies on the inhibiting effect of N2 or CO2 for methane/air [31-35], hydrogen/air 

[36-39] combustion have been conducted. However, as mentioned before, the mixed fuel would 

have distinct combustion characteristics, and thus would probably give different response to 

either N2 or CO2 inhibition. Therefore, present study aimed to investigate their inhibiting effect 

on methane/hydrogen/air premixed flame, which is quite beneficial for quantitative assessment 

on safety measures for HNG utilization. 

2 Experimental setup 

The experimental setup is shown in Fig. 1, which mainly contains a rectangular channel with 

an inner cross-section of 25 mm × 25 mm and 300 mm long, a Schlieren system, a high-speed 

camera (FASTCAM SA2), a pressure sensor, a high-voltage igniter, an oscilloscope, a gas mixing 

system and a synchronization controller. The bottom and top walls of the channel were made of 

TP304 stainless steel, while the side walls were entirely replaced by two thick quartzs for optical 

path of Schlieren photography to capture the whole process of flame evolution from ignition. 

The premixed gas mixture was firstly prepared in a gas mixing device then injected into the 

channel. The mixture was settled for at least 10 min. A pair of spark electrodes were located near 

the left end wall and the spark gap was rightly on the axis of the channel. The pressure sensor 

was placed on the top wall near the right end wall. 

The testing gas in this study was methane/hydrogen/air mixture with various inhibitor 

contents (𝜑𝐶𝑂2
 or 𝜑𝑁2

) and hydrogen fractions in fuel (𝜑𝐻2
), which were defined as follows: 
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𝜑𝑁2
=  

𝑉𝑁2

𝑉𝑚𝑖𝑥𝑡𝑢𝑟𝑒 
                                                                 (1)  

𝜑𝐶𝑂2
=  

𝑉𝐶𝑂2

𝑉𝑚𝑖𝑥𝑡𝑢𝑟𝑒 
                                                                (2) 

𝜑𝐻2
=  

𝑉𝐻2

𝑉𝐻2+𝑉𝐶𝐻4

                                                                (3) 

where 𝑉𝑁2
, 𝑉𝐶𝑂2

, 𝑉𝐻2
, 𝑉𝐶𝐻4

 and 𝑉𝑚𝑖𝑥𝑡𝑢𝑟𝑒  were the volumes of nitrogen, carbon dioxide, 

hydrogen, methane and the testing gas mixture, respectively. The purity of gases used in this 

work were 99.98% for CO2, 99.98% for N2, 99.90% for air, 99.99% for H2 and 99.99% for CH4. The 

experiments were repeated at least three times to ensure the repeatability and the 

measurement uncertainty of the pressure sensor was ±1%. The initial conditions were 298 K and 

101325 Pa. 

3 Flame shape evolution 

Experiments were conducted for premixed methane/air flame inhibited by 0%-20% N2 and 

0%-20% CO2. Examples of the entire process of flame evolution recorded by the high-speed 

Schlieren photography are shown in Fig. 2, which captured the four-stage flame deformation 

defined by Clanet and Searby [14]. The flame expanded spherically right after ignition. After a 

short period, due to the confinement of the wall, the flame was gradually stretched into a finger 

shape. Then the skirt of the flame touched the sidewall. The flame-wall contact points moved 

along the wall fast catching the flame tip on the centreline. Eventually, the flame front turned 

into a plane shape and immediately after this, the flame front inverted forming a cusp towards 

the burnt gas. A classic tulip flame came into being. With the increase of inhibitor content, the 

moment when these characteristic structures were formed delayed. 
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Following the classic tulip inversion, some peculiar flame shapes appeared under certain 

conditions as shown in Figs. 3a and 3b. With the same inhibiting condition, the extent of flame 

deformation was stronger for mixtures with higher hydrogen content. For instance, the pure 

methane flame maintained its tulip shape until quenching in the absence of inhibition. When the 

hydrogen content, 𝜑𝐻2
 was increased to 20%, a few wrinkles appeared on the tulip flame lips. 

When 𝜑𝐻2
 was increased to 50%, some new cusps emerged near the sidewalls and they moved 

along the flame front towards the primary cusp. Such phenomenon was referred to as “cloudy 

flame” in our previous publication [40]. With 𝜑𝐻2
 reached 80% in the absence of inhibition, the 

flame shape underwent a more complicated deformation including elongated tulip shape, T-

shape [5], and cellular flame [41] until the end. With the inhibition of N2 or CO2, the flame 

structures were more stable. For example, for 𝜑𝐻2
 = 50% and 10% N2 addition, the flame 

maintained the classic tulip flame until the end without changing to “cloudy flame”. In almost all 

cases, the flame propagated faster near the upper wall (e.g. at 61.90 ms with 10% N2 and 𝜑𝐻2
 = 

0% in Fig. 3a). This was thought to be due to the buoyancy effects: firstly, as the density of N2 (or 

CO2) is higher than that of CH4 and H2 mixtures, concentration gradients would be built up with 

time leading to relatively higher H2 content near the top and higher N2 fraction near the bottom. 

Thus, the inhibition was stronger on the flame near the bottom. Such effect was, however, less 

obvious for the cases with 80% H2 within the range of N2 fractions investigated, this was thought 

to be due to the higher flame speeds and relatively shorter physical times within the channel 

during which the concentration gradients were not sufficiently developed. Secondly, the flame 

with inhibition was slowed down, during which the movement of burnt gas affected by buoyancy 
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became more and more apparent. Therefore, the flame propagated obliquely with resultant 

force from buoyancy and combustion. 

4. Flame dynamics  

4.1 Flame propagation speed 

Figure 4 shows the propagation speed of flame forefront versus time with varied hydrogen 

or inhibitor concentrations. All the flames accelerated at the early stage until reaching the 

maximum. With either increase of inhibitor content or decrease of 𝜑𝐻2
, the occurrence of 

maximum flame propagation speed (vmax) delayed accordingly. After that, the propagation speed 

fluctuated with time accompanying the flame shape changes. At the condition of 𝜑𝐻2
 = 80% and 

0% inhibitor, the propagation speed of the flame forefront fluctuated most drastically and even 

receded with negative propagation speed. As discussed in our previous study [40], at conditions 

with high hydrogen content, relatively stronger pressure waves which also propagated faster 

were reflected from the end of the channel, pushing back the unburnt gas with the effect of 

causing the flame to propagate backwards. Besides, the loss of the flame area caused by the 

flame-wall contacting was also an important factor affecting the flame propagation speed. It is 

noteworthy that the maximum flame propagation speed always appeared at the moment after 

the flame first touching the sidewall. This indicated that the flame speed did not decrease 

immediately upon touching the wall. But due to the loss of flame surface area, the acceleration 

was believed to decline immediately. The flame speed decrease caused by N2 or CO2 addition 

underwent different tendency. Take the condition of 𝜑𝐻2
 = 20% as example. The decrement of 

vmax with addition of N2 or CO2 is shown in Table 1. With the same addition of N2 or CO2, the vmax 
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was always lower with CO2 dilution. However, the decrement of flame speed at the condition of 

10%-20% CO2 was lower than that at the condition of 10%-20% N2, though the value of vmax with 

CO2 dilution was still smaller. This phenomenon was different from the linear relationship 

between flame speed and inhibitor content in several previous studies [42-46] on laminar flame, 

which may be attributed to the effect of wall interaction in this channel. However, the laminar 

flame speed calculated and discussed in the later section presented similar descending trend with 

those in previous studies [42-46]. 

Table 1. The decrement of vmax with addition of N2 or CO2. 

 

4.2 Overpressure dynamics 

The overpressure in the channel is shown in Fig. 5. It rose rapidly following ignition before 

reaching its maximal value. With the increase of inhibitor content, the maximum overpressure 

decreased, and its arrival time was delayed. Analogous to the flame propagation speed, the 

overpressure rose and fluctuated more gently with increasing inhibitor content or decreasing 

Inhibitor 

content, % 

Inhibited by N2, 𝜑𝐻2
 = 20% Inhibited by CO2, 𝜑𝐻2

 = 20% 

vmax, m/s Decrement, m/s vmax, m/s Decrement, m/s 

0 22.76 / 22.76 / 

5 16.58 6.18 12.11 10.65 

10 13.05 3.53 4.24 7.87 

15 8.08 4.97 3.08 1.16 

20 5.75 2.33 1.32 1.76 
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hydrogen fraction. As illustrated in Fig. 6, with CO2 addition, the maximum overpressure was 

lower than that with N2 addition for the same fuel composition.  

5 Inhibiting mechanism of N2 and CO2 

5.1 Thermal diffusivity 

Thermal diffusivity is an important parameter to describe the heat transport in materials 

[47]. The decrease of thermal diffusivity would lead to the inhibition of flame propagation [48]. 

Figure 7 shows the thermal diffusivity versus inhibitor content with different hydrogen addition. 

It can be seen that the thermal diffusivity decreased with the increase of N2 or CO2, indicating 

that the addition of N2 or CO2 leads to reduction in the thermal diffusivity, resulting in the 

inhibition of flame propagation. The addition of CO2 had stronger effect in reducing the thermal 

diffusivity and hence stronger inhibition effect. With the increase of 𝜑𝐻2
 and constant inhibitor 

content, the thermal diffusivity increased. 

5.2 Thermal conductivity 

On the other hand, the thermal conductivity is another property affecting the laminar flame 

speed of the premixed flame [49]. The computed thermal conductivity values for the mixtures 

considered are plotted in Fig. 8. As expected, with the increase of 𝜑𝐻2
 and constant inhibitor 

content, the thermal conductivity and laminar flame speed both increased. With the increase of 

inhibitor content, the thermal conductivity decreased resulting in lower laminar flame speed 

shown in Fig. 9. CO2 had more profound effect on reducing the thermal conductivity and hence 

stronger inhibition effect.  
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5.3 Laminar flame speed 

The laminar flame speed versus time is shown in Fig. 9. The laminar flame speed decreased 

almost linearly with N2 addition. However, with CO2 addition, it decreased monotonically in a 

curve shape with the decrement reduced with gradual increasing CO2 content. But CO2 dilution 

always led to lower laminar flame speed than N2 dilution at the same content. 

5.4 Flame thickness 

Flame thickness has inhibiting effect on the hydrodynamic instability which influences the 

flame front stability [50, 51], i.e. the increase of flame thickness can lead to more stable flame 

evolution, i.e. presenting less flame shape changes. Flame thickness was calculated as follows [48, 

52]: 

𝛼 =  
𝜆

𝜌𝑢⋅𝐶𝑝
                                                                            (4) 

𝛿 =  
2𝜆

𝜌𝑢∙𝐶𝑝∙𝑆𝐿
(

𝑇𝑎𝑑

𝑇0
)0.7                                                               (5) 

where the α, 𝜆 , 𝜌𝑢 , 𝐶𝑝 , δ, 𝑆𝐿 , 𝑇𝑎𝑑  and 𝑇0  were thermal diffusivity, thermal conductivity, 

unburnt mixture density, specific heat, flame thickness, laminar flame speed, adiabatic flame 

temperature and initial temperature of unburnt mixture, respectively. The calculation of laminar 

flame speed was based on HP-Mech [53] using CHEMKIN Pro software [54]. The other parameters 

were calculated by GASEQ [55] using chemical equilibrium method. As shown in Fig. 10, the flame 

thickness was enlarged with increasing inhibitor content, which would stabilize the flame front 

against instabilities, as can be seen from flame images above. The increase of flame thickness 
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was more prominent with higher inhibitor content. In general, the flame deformation would be 

attenuated due to the thickening of flame front by N2 or CO2 addition, especially with CO2. 

5.5 Kinetic effect and Adiabatic flame temperature 

Firstly, due to the third-body collisional effect, the addition of N2 or CO2 would enhance two 

of the sensitive reactions for ignition (H + O2 + M = HO2 + M, CH3 + CH3 + M = C2H6 + M) and one 

of the sensitive reactions for laminar flame speed (H + O2 + M = HO2 + M) [56]. M is the third body 

and characterized by collisional efficiency. The reaction of CH3 + CH3 + M is a chain-terminating 

step, which would inhibit the combustion by producing relatively stable compound of C2H6 in the 

radical pool. The reaction (H + O2 + M = HO2 + M) will compete for highly active H radical with the 

reaction (H + O2 = O + OH) and produce less active HO2 radical [57]. As a result, the inhibitor 

addition would result in weakened combustion and flame propagation. In both reaction paths, 

the collisional efficiency of CO2 is greater than that of N2 [53]. Besides, it is noteworthy that CO2 

also acted as a main reactant in the path of (CO + OH = H + CO2) which is a very important reaction 

in combustion chemistry [45, 58]. Evidently, the addition of CO2 would reverse the reaction (CO 

+ OH = H + CO2), which competed for extra H radical with (H + O2 = O + OH) resulting in reductions 

of important radicals of O, H, and OH [58]. Therefore, compared to N2, CO2 had more pronounced 

inhibiting kinetics. Further, it could also infer that with higher hydrogen content, the advantage 

of CO2 inhibition would be more enhanced since the pathways evolving H radical are of such great 

importance. The experimental results give some proofs in Fig. 6 that the inhibition discrepancy 

between N2 and CO2 on maximum overpressure was enlarged with 80% H2 content. 
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The reduced adiabatic flame temperature can manifest the inhibited kinetics, which was 

calculated using the chemical equilibrium method [55] as shown in Fig. 11. The mixture with CO2 

addition at the same amount had lower flame temperature as expected. Nevertheless, it needs 

to mention that, besides the kinetic effect, both CO2 and N2 can reduce flame temperature with 

their high specific heat. Comparatively, CO2 has larger specific heat than N2 [42, 49]. As suggested 

by Law [49] and Hu et al. [44], the adiabatic flame temperature is closely related to laminar flame 

speed. Therefore, according to Eq. (5), the decreasing of adiabatic flame temperature would 

remarkably thicken the flame front. 

6 Conclusions  

The flame propagation of methane/hydrogen/air mixture was studied in a closed channel 

with inhibitor (N2 or CO2) addition. The hydrogen fractions in the fuel mixture were 0%, 20%, 50% 

and 80% by volume. For different 𝜑𝐻2
 and inhibitor contents, different flame evolution processes 

were observed.  

Either increasing the inhibitor content or decreasing 𝜑𝐻2
 could remarkably decrease the 

flame propagation speed and the overpressure. At the same 𝜑𝐻2
 and inhibitor content, CO2 had 

more profound inhibition effect on flame acceleration and overpressure rise.  

Thermal analysis showed that the addition of N2 and CO2 would decrease thermal diffusivity 

and thermal conductivity, resulting in the reduction of laminar flame speed. The addition of the 

inhibitor resulted in the increase of flame thickness, which attenuated the flame deformation 

and consequently supressed the flame acceleration. The inhibitor could also decrease the 

adiabatic flame temperature by inhibited kinetics and high specific heat. Compared to N2, the 
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mixture with CO2 addition has lower thermal diffusivity, conductivity and laminar flame speed, 

smaller adiabatic flame temperature and larger flame thickness.  

Kinetic analysis showed that both N2 and CO2 addition could inhibit the chemical process 

due to their collisional effect on key elementary reactions including H + O2 + M = HO2 + M, CH3 + 

CH3 + M = C2H6 + M. The collisional efficiency of CO2 is higher than N2. Additionally, CO2 could 

reverse the reaction (CO + OH = H + CO2) effectively consuming extra H atom. Therefore, CO2 has 

more pronounced inhibition kinetics than that of N2. 
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Figure captions: 

Fig. 1 Experimental apparatus. 

Fig. 2 Flame evolution in the channel (a: inhibited by N2; b: inhibited by CO2). 

Fig. 3 The flame evolution in the channel at later stages with hydrogen addition (a: inhibited by 

N2; b: inhibited by CO2). 
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Fig. 4 Flame propagation velocity versus time with varied 𝜑𝐻2
 or inhibitor addition (a, b: 𝜑𝐻2

 = 

0%; c, d: 𝜑𝐻2
 = 20%; e, f: 𝜑𝐻2

 = 50%; g, h: 𝜑𝐻2
 = 80%; a, c, e, g: inhibited by N2; b, d, f, h: inhibited 

by CO2). 

Fig. 5 Overpressure in the channel versus time with varied 𝜑𝐻2
 and inhibitor content (a, b: 𝜑𝐻2

 = 

0%; c, d: 𝜑𝐻2
 = 20%; e, f: 𝜑𝐻2

 = 50%; g, h: 𝜑𝐻2
 = 80%; a, c, e, g: inhibited by N2; b, d, f, h: inhibited 

by CO2). 

Fig. 6 Maximum overpressure versus inhibitor content (a: 𝜑𝐻2
 = 0%; b: 𝜑𝐻2

 = 20%; c: 𝜑𝐻2
 = 50%; 

d: 𝜑𝐻2
 = 80%). 

Fig. 7 Thermal diffusivity versus inhibitor content with varying 𝜑𝐻2
. 

Fig. 8 Thermal conductivity versus inhibitor content with varying 𝜑𝐻2
. 

Fig. 9 Laminar flame speed versus inhibitor content with varying 𝜑𝐻2
 

Fig. 10 Flame thickness versus inhibitor content with varying 𝜑𝐻2
. 

Fig. 11 Adiabatic temperature versus inhibitor content with varying 𝜑𝐻2
. 
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Fig. 3 
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Fig. 5 
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