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Hypocoercivity of linear kinetic equations via

Harris’s Theorem

José A. Cañizo∗ Chuqi Cao† Josephine Evans‡ Havva Yoldaş §

August 19, 2019

Abstract

We study convergence to equilibrium of the linear relaxation Boltzmann (also
known as linear BGK) and the linear Boltzmann equations either on the torus
(x, v) ∈ T

d × R
d or on the whole space (x, v) ∈ R

d × R
d with a confining poten-

tial. We present explicit convergence results in total variation or weighted total
variation norms (alternatively L1 or weighted L1 norms). The convergence rates
are exponential when the equations are posed on the torus, or with a confining
potential growing at least quadratically at infinity. Moreover, we give algebraic
convergence rates when subquadratic potentials considered. We use a method
from the theory of Markov processes known as Harris’s Theorem.
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1 Introduction

The goal of this paper is to give quantitative rates of convergence to equilibrium for some
linear kinetic equations, using a method based on Harris’s Theorem from the theory
of Markov processes [28, 35, 27] that we believe is very well adapted to hypocoercive,
nonlocal equations. We consider equations of the type

∂tf + v · ∇xf = Lf,

where f = f(t, x, v), with time t ≥ 0, space x ∈ T
d (the d-dimensional unit torus), and

velocity v ∈ R
d. The operator L acts only on the v variable, and it must typically be

the generator of a stochastic semigroup for our method to work. We give explicit results
for L equal to the linear relaxation Boltzmann operator (sometimes known as linear
BGK operator), and for L equal to the linear Boltzmann operator (see below for a full
description). We also consider the equations posed on the whole space (x, v) ∈ R

d×R
d

with a confining potential Φ:

∂tf + v · ∇xf − (∇xΦ · ∇vf) = Lf.

We are able to give exponential convergence results on the d-dimensional torus, or
with confining potentials growing at least quadratically at ∞, always in total vari-
ation or weighted total variation norms (alternatively, L1 or weighted L1 norms).
For subquadratic potentials we give algebraic convergence rates, again in the same
kind of weighted L1 norms. Some results were already available for these equations
[11, 21, 38, 18, 29, 22]. We will give a more detailed account of them after we de-
scribe them more precisely. Previous proofs of convergence to equilibrium used strongly
weighted L2 norms (typically with a weight which is the inverse of a Gaussian), so one
advantage of our method is that it directly yields convergence for a much wider range
of initial conditions. The result works, in particular, for initial conditions with slow
decaying tails, and for measure initial conditions with very bad local regularity. The
method gives also existence of stationary solutions under quite general conditions; in
some cases these are explicit and easy to find, but in other cases they can be nontrivial.
We also note that our results for subquadratic potentials are to our knowledge new.
Apart from these new results, our aim is to present a new application of a probabilistic
method, using mostly PDE arguments, and which is probably useful for a wide range
of models.

The study of the speed of relaxation to equilibrium for kinetic equations is a well
known problem, both for linear and nonlinear models. The central obstacle is that
dissipation happens only on the v variable via the effect of the operator L, while only
transport takes place in x. The transport then “mixes” the dissipation into the x vari-
able, and one has to find a way to estimate this effect. The theory of hypocoercivity
was developed in [39, 29, 30] precisely to overcome these problems for linear operators.
In a landmark result, [17] proved that the full nonlinear Boltzmann equation converges
to equilibrium at least at an algebraic rate. Exponential convergence results for the
(linear) Fokker-Planck equation were given in [16], and a theory for a range of linear
kinetic equations has been given in [18]. All of these results give convergence in expo-
nentially weigthed L2 norms or H1 norms; convergence to equilibrium in weigthed L1

norms can then be proved for several kinetic models by using the techniques in [25].
There are also works which deal directly with the L1 theory via abstract semigroup
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methods. We mention [5, 36] which give results for linear scattering equations on the
torus with spatially degenerate jump rates.

Let us describe our equations more precisely. The linear relaxation Boltzmann equa-
tion is given by

∂tf + v · ∇xf − (∇xΦ · ∇vf) = L+f − f, (1)

where

L+f =

(∫
f(t, x, u)du

)
M(v),

and M(v) := (2π)−d/2 exp(−|v|2/2). The function f = f(t, x, v) depends on time t ≥ 0,
space x ∈ R

d, and velocity v ∈ R
d, and the potential Φ: Rd → R is a C2 function of

x. Alternatively, we consider this equation on the torus; that is, for x ∈ T
d, v ∈ R

d,
assuming periodic boundary conditions. In that case we omit Φ (which corresponds to
Φ = 0 in the above equation):

∂tf + v · ∇xf = L+f − f. (2)

This simple equation is well studied in kinetic theory and can be thought of as a
toy model with similar properties to either the non-linear BGK equation or linear
Boltzmann equation. It is also one of the simplest examples of a hypocoercive equation.
Convergence to equilibrium in H1 for this equation has been shown in [11], at a rate
faster than any function of t. It was then shown to converge exponentially fast in both
H1 and L2 using hypocoercivity techniques in [29, 38, 18].

The linear Boltzmann equation is of a similar type:

∂tf + v · ∇xf − (∇xΦ · ∇vf) = Q(f,M), (3)

where Φ is a C2 potential and M(v) := (2π)−d/2 exp(−|v|2/2) as before, and Q is the
Boltzmann operator

Q(f, g) =

∫

Rd

∫

Sd−1

B(|v − v∗|, σ) (f(v′)g(v′∗)− f(v)g(v∗)) dσ dv∗,

v′ =
v + v∗

2
+

|v − v∗|
2

σ, v′∗ =
v + v∗

2
− |v − v∗|

2
σ,

and B is the collision kernel. We always assume that B is a hard kernel and can be
written as a product

B(|v − v∗|, σ) = |v − v∗|γ b
(
σ · v − v∗

|v − v∗|

)
, (4)

for some γ ≥ 0 and b integrable and uniformly positive on [−1, 1]; that is, there exists
Cb > 0 such that

b(z) ≥ Cb for all z ∈ [−1, 1]. (5)

This assumption includes for example the physical hard-spheres collision kernel, for
which b ≡ 1. The so-called non-cutoff kernels, for which b is not integrable, are not
considered in this work.

As before, alternatively we consider the same equation posed for x ∈ T
d, v ∈ R

d,
without any potential Φ:

∂tf + v · ∇xf = Q(f,M). (6)
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This equation models gas particles interacting with a background medium which is
already in equilibrium. Moreover, it has been used in describing many other systems
like radiative transfer, neutron transportation, cometary flow and dust particles. The
spatially homogeneous case has been studied in [33, 6, 10, 32]. The kinetic equations
(3) or (6) fit into the general framework in [38, 18], so convergence to equilibrium in
weighted L2 norms may be proved by using the techniques described there.

We denote by P(Ω) the set of probability measures on a set Ω ⊆ R
k (that is, the

probability measures defined on the Borel σ-algebra of Ω). We state our main results
on the torus, and then on R

d with a confining potential:

Theorem 1.1 (Exponential convergence results on the torus). Suppose that t 7→ ft is
the solution to (2) or (6) with initial data f0 ∈ P(Td × R

d). In the case of equation
(6) we also assume (4) with γ ≥ 0 and (5). Then there exist constants C > 0, λ > 0
(independent of f0) such that

‖ft − µ‖∗ ≤ Ce−λt‖f0 − µ‖∗,

where µ is the only equilibrium state of the corresponding equation in P(Td ×R
d) (that

is, µ(x, v) = M(v)). The norm ‖·‖∗ is just the total variation norm ‖·‖TV for equation
(2),

‖f0 − µ‖∗ = ‖f0 − µ‖TV :=

∫

Rd

∫

Td

|f0 − µ| dx dv for equation (2),

and it is a weigthed total variation norm in the case of equation (6):

‖f0 − µ‖∗ =
∫

Rd

∫

Td

(1 + |v|2)|f0 − µ| dx dv for equation (6).

Theorem 1.2 (Exponential convergence results with a confining potential). Suppose
that t 7→ ft is the solution to (1) or (3) with initial data f0 ∈ P(Rd×R

d) and a potential
Φ ∈ C2(Rd) which is bounded below, and satisfies

x · ∇xΦ(x) ≥ γ1|x|2 + γ2Φ(x)−A, x ∈ R
d,

for some positive constants γ1, γ2, A. Define 〈x〉 =
√
1 + |x|2. In the case of equation

(6) we also assume (4) with γ ≥ 0, (5) and

x · ∇xΦ(x) ≥ γ1〈x〉γ+2 + γ2Φ(x)−A,

for some positive constants γ1, γ2, A. Then there exist constants C > 0, λ > 0 (inde-
pendent of f0) such that

‖ft − µ‖∗ ≤ Ce−λt‖f0 − µ‖∗,
where µ is the only equilibrium state of the corresponding equation in P(Rd × R

d),

dµ = M(v)e−Φ(x)dvdx.

The norm ‖ · ‖∗ is a weighted total variation norm defined by

‖ft − µ‖∗ :=
∫ (

1 +
1

2
|v|2 + Φ(x) + |x|2

)
|ft − µ| dv dx.
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In all results above the constants C and λ can be explicitly estimated in terms of
the parameters appearing in the equation by following the calculations in the proofs.
We do not give them explicitly since we do not expect them to be optimal, but they
are nevertheless completely constructive.

We also look at Harris type theorems with weaker controls on moments to give
analogues of all our theorems when the confining potential is weaker and give algebraic
rates of convergence with rates depending on the assumption we make on the confining
potential. Subgeometric convergence for kinetic Fokker-Planck equations with weak
confinement has been shown in [19, 1, 13]. To our knowledge this is the only work
showing this type of convergence in a quantitative way for the equations we present.

Theorem 1.3 (Subgeometric convergence results with weak confining potentials). Sup-
pose that t 7→ ft is the solution to (1) in the whole space with a confining potential
Φ ∈ C2(Rd) which is bounded below. Define 〈x〉 =

√
1 + |x|2. Assume that for some β

in (0, 1) the confining potential satisfies

x · ∇xΦ(x) ≥ γ1〈x〉2β + γ2Φ(x)−A,

for some positive constants γ1, γ2, A. Then there exists a constant C > 0 such that

‖ft−µ‖TV ≤ min

{
‖f0 − µ‖TV, C

∫
f0(x, v)

(
1 +

1

2
|v|2 + Φ(x) + |x|2

)
(1 + t)−β/(1−β)

}
.

Similarly if t 7→ ft is the solution to (3) in the whole space, satisfies (4) (5) and

x · ∇xΦ(x) ≥ γ1〈x〉1+β + γ2Φ(x)− A, Φ(x) ≤ γ3〈x〉1+β,

for some positive constants γ1, γ2, γ3A, β, then there exists a constant C > 0 such that

‖ft − µ‖TV ≤ min

{
‖f0 − µ‖TV, C

∫
f0(x, v)

(
1 +

1

2
|v|2 + Φ(x) + |x|

)
(1 + t)−β

}
.

We carry out all of our proofs using variations of Harris’s Theorem from probability.
Harris’s Theorem originated in the paper [28] where Harris gave conditions for existence
and uniqueness of a steady state for Markov processes. It was then pushed forward by
Meyn and Tweedie [35] to show exponential convergence to equilibrium. The last paper
[27] gives an efficient way of getting quantitative rates for convergence to equilibrium
once you have quantitatively verified the assumptions, we use this version of the result.
Harris’s Theorem says, broadly speaking, that if you have a good confining property
and some uniform mixing property in the centre of the state space then you have
exponentially fast convergence to equilibrium in a weighted total variation norm. We
give the precise statement in the next section.

Harris’s Theorem is based on the classical Doeblin’s Theorem. The use of such tools
to analyse PDEs was first introduced in [4, 31] to study integro-differential equations for
scatterers. These results are very broad and include both models with non-equilibrium
steady states and spatially degenerate jump rates. Doeblin’s Theorem has also been
used in [3] to show ergodicity for a kinetic equation. In all these papers the authors do
not seek to find explicit rates. Harris’s Theorem has already been used to show conver-
gence to equilibrium for some kinetic equations. In [34], the authors show convergence
to equilibrium for the kinetic Fokker-Planck equation with non-quantitative rates. In
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[14], the authors show quantitative exponential convergence to a non-equilibrium steady
state for some non-linear kinetic equations on the torus using Doeblin’s Theorem.

This method is also applicable to some integro-PDEs describing several biological
and physical phenomena. In [24], Doeblin’s argument is used to show exponential relax-
ation to equilibrium for the conservative renewal equation which is a common model in
population dynamics, often referred as the McKendrick-von Foerster equation. In [12],
the authors show existence of a spectral gap property in the linear (no-connectivity)
setting for elapsed-time structured neuron networks by using Doeblin’s Theorem. Re-
laxation to the stationary state for the original nonlinear equation is then proved by a
perturbation argument where the non-linearity is weak. Moreover, in [20] the authors
consider a nonlinear model which is derived from mean-field description of an excitatory
network made up of leaky integrate-and-fire neurons. In the case of weak connectivity,
the authors demonstrate the uniqueness of a stationary state and its global exponential
stability by using Doeblin’s type of contraction argument for the linear case. Also in
[2], the authors extend similar ideas to obtain quantitative estimates in total variation
distance for positive semigroups, that can be non-conservative and non-homogeneous.
They provide a speed of convergence for periodic semigroups and new bounds in the
homogeneous setting.

Using Harris’s Theorem gives an alternative and very different strategy for proving
quantitative exponential decay to equilibrium. It allows us to look at hypocoercive
effects on the level of stochastic processes and to look at specific trajectories which
might allow one to produce quantitative theorems based on more trajectorial intuition.
Another difference is that the confining behaviour is shown here by exploiting good
behaviour of moments rather than a Poincaré inequality, this means looking at point
wise bounds rather than integral controls on the operator. These are often equivalent
for time reversible processes [1, 15] and have advantages and disadvantages. However,
the condition on the moments used here might be much easier to verify in the case where
the equilibrium state cannot be made explicit. This is the motivation behind [4, 14].
These works also allow us to look at a large class of initial data. We only need f0 to
be a probability measure where ‖f0 − µ‖ is finite. Harris’s Theorem has a restriction
which is that we can only consider Markov processes. Many kinetic equations are linear
Markov processes but this excludes the study of linearized non-linear equations which
are not necessarily mass preserving.

The plan of the paper is as follows. We introduce Harris’s Theorem in Section 2.
Then we have a section for each of our equations where we prove our results.

2 Harris’s Theorem

Now let us be more specific about Harris’s Theorem. We give the theorems and as-
sumption as in the setting of [27] where they make it clear how the rates depend on
those in the assumptions. Markov operators can be defined by means of transition
probability functions. We always assume that (Ω,S) is a measurable space. A function
S : Ω × S → R is a transition probability function on a finite measure space if S(x, ·)
is a probability measure for every x and x 7→ S(x,A) is a measurable function for
every A ∈ S. We can then define P, the associated stochastic operator on probability
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measures by

Pµ(·) =
∫

Ω

µ(dx)S(x, ·).

In a similar way we can define the action of S on functions (observables) by

(P∗ψ)(x) :=

∫

Ω

ψ(y)S(x, dy).

Since we are looking at a process we have Markov transition kernel St for each t > 0.
We also define Pt from St as above. In our situation Ptµ is the weak solution to the
PDE with initial data µ. If we define M(Ω) as the space of finite measures on (Ω,S)
then we have that Pt is a linear map

Pt : M(Ω) → M(Ω).

From the conditions on St we see that Pt will be linear, mass preserving and positivity
preserving.

We can define the forwards operator U , associated to St as the operator which
satisfies

d

dt
P∗

t ψ

∣∣∣∣
t=0

= Uψ, (7)

for all ψ ∈ C∞
c (Ω).

We begin by looking at Doeblin’s Theorem. Harris’s Theorem is a natural successor
to Doeblin’s Theorem. Harris’s and Doeblin’s theorems are normally stated for a fixed
time t∗. In our theorems we work to choose an appropriate t∗.

Hypothesis 1 (Doeblin’s Condition). We assume (Pt)t≥0 is a stochastic semigroup,
coming from a Markov transition kernel, and that there exists t∗ > 0, a probability
distribution ν and α ∈ (0, 1) such that for any z in the state space we have

Pt∗δz ≥ αν.

Using this we prove

Theorem 2.1 (Doeblin’s Theorem). If we have a stochastic semigroup (Pt)t≥0 satis-
fying Doeblin’s condition (Hypothesis 1) then for any two measures µ1 and µ2 and any
integer n ≥ 0 we have that

‖Pn
t∗µ1 −Pn

t∗µ2‖TV ≤ (1− α)n‖µ1 − µ2‖TV. (8)

As a consequence, the semigroup has a unique equilibrium probability measure µ∗, and
for all µ

‖Pt(µ− µ∗)‖TV ≤ 1

1− α
e−λt‖µ− µ∗‖TV, t ≥ 0, (9)

where

λ :=
log(1− α)

t∗
> 0.
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Proof. This proof is classical and can be found in various versions in [27] and many
other places.

Firstly we show that if Ptδz ≥ αν for every z, then we also have Ptµ ≥ αν for every
probability measure µ. Here since Pt comes from a Markov transition kernel we have

Ptδz(·) =
∫
St(z

′, ·)δz(dz′) = St(z, ·).

Therefore our condition says that

St(z, ·) ≥ αν(·)

for every z. Therefore,

Ptµ(·) =
∫
St(z, ·)µ(dz) ≥ α

∫
ν(·)µ(dz) = αν(·).

By the triangle inequality we have

‖Pt∗µ1 −Pt∗µ2‖TV ≤ ‖Pt∗µ1 − αν‖TV + ‖Pt∗µ2 − αν‖TV.

Now, since Pt∗µ1 ≥ αν, we can write

‖Pt∗µ1 − αν‖TV =

∫
(Pt∗µ1 − αν) =

∫
µ1 − α = 1− α,

due to mass conservation, and similarly for the term ‖Pt∗µ2 − αν‖TV. This gives

‖Pt∗µ1 − Pt∗µ2‖TV ≤ 2(1− α) = (1− α)‖µ1 − µ2‖TV

if µ1, µ2 have disjoint support. By homogeneity, this inequality is obviously also true
for any nonnegative µ1, µ2 having disjoint support with

∫
µ1 =

∫
µ2. We obtain the

inequality in general for any µ1, µ2 with the same integral by writing µ1 − µ2 = (µ1 −
µ2)+− (µ2−µ1)+, which is a difference of nonnegative measures with the same integral.
This proves

‖Pt∗µ1 − Pt∗µ2‖TV ≤ (1− α)‖µ1 − µ2‖TV. (10)

We then iterate this to obtain (8). The contractivity (10) shows that the operator Pt∗

has a unique fixed point, which we call µ∗. In fact, µ∗ is a stationary state of the whole
semigroup since for all s ≥ 0 we have

Pt∗Psµ∗ = PsPt∗µ∗ = Psµ∗,

which shows that Psµ∗ (which is again a probability measure) is also a stationary state
of Pt∗ ; due to uniqueness,

Psµ∗ = µ∗.

Hence the only stationary state of Pt must be µ∗, since any stationary state of Pt is in
particular a stationary state of Pt∗ .

In order to show (9), for any probability measure µ and any t ≥ 0 we write

k :=

⌊
t

t∗

⌋
,
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(where ⌊·⌋ denotes the integer part) so that

t

t∗
− 1 < k ≤ t

t∗
.

Then,

‖Pt(µ− µ∗)‖TV = ‖Pt−kt∗Pkt∗(µ− µ∗)‖TV ≤ ‖Pkt∗(µ− µ∗)‖TV

≤ (1− α)k‖µ− µ∗‖TV ≤ 1

1− α
exp

(
t log

(
1− α

t∗

))
‖µ− µ∗‖TV.

Harris’s Theorem extends this to the setting where we cannot prove minorisation
uniformly on the whole of the state space. The idea is to use the argument given above
on the centre of the state space then exploit the Lyapunov structure to show that any
stochastic process will return to the centre infinitely often.

We make two assumptions on the behaviour of Pt∗ , for some fixed t∗:

Hypothesis 2 (Lyapunov condition). There exists some function V : Ω → [0,∞) and
constants D ≥ 0, α ∈ (0, 1) such that

(P∗
t∗V )(z) ≤ αV (z) +D.

Remark. We use the name Lyapunov condition as it is the standard name used for
this condition in probability literature. However, we should stress this condition is not
related to the Lyapunov method for proving convergence to equilibrium. We do not
prove monotonicity of a functional.

Remark. In our situation, we have an equation on the law f(t) ≡ Ptf0. This is equivalent
to the statement ∫

Ω

f(t, z)V (z)dz ≤ α

∫

Ω

f0(z)V (z)dz +D. (11)

We normally verify this by showing that

d

dt

∫

Ω

f(t, z)V (z)dz ≤ −λ
∫

Ω

f(t, z)V (z)dz +K,

for some positive constants K and λ, which then implies (11) for α = e−λt and D =
K
λ
(1− e−λt) ≤ Kt. Equivalently, one can show that

UV ≤ −λV +K,

where U is the forwards operator defined in (7).

The idea behind verifying the Lyapunov structure in our case comes from [34] where
they use similar Lyapunov structures for the kinetic Fokker-Planck equation. When we
work on the torus the Lyapunov structure is only needed in the v variable and the result
is purely about how moments in v are affected by the collision operator.

The next assumption is a minorisation condition as in Doeblin’s Theorem

Hypothesis 3. There exists a probability measure ν and a constant β ∈ (0, 1) such
that

inf
z∈C

Pt∗δz ≥ βν,

where
C = {z : V (z) ≤ R}

for some R > 2D/(1− α).
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Remark. Production of quantitative lower bounds as a way to quantify the positivity
of a solution has been proved and used in kinetic theory before. For example it is
an assumption required for the works of Desvillettes and Villani [16, 17]. Such lower
bounds have been proved for the non-linear Boltzmann equation in [37, 7, 8].

This second assumption is more challenging to verify in our situations. Here we use
a strategy based on our observation about how noise is transferred from the v to the x
variable as described earlier. The actual calculations are based on the PDE governing
the evolution and iteratively using Duhamel’s formula.

We define a weighted total variation norm on measures for each a by:

‖µ1 − µ2‖V,a =
∫
(1 + aV (z))|µ1 − µ2|(dz).

Theorem 2.2 (Harris’s Theorem as in [27]). If Hypotheses 2 and 3 hold then there
exist ᾱ ∈ (0, 1) and a > 0 such that

‖Pt∗µ1 − Pt∗µ2‖V,a ≤ ᾱ‖µ1 − µ2‖V,a. (12)

Explicitly if we choose β0 ∈ (0, β) and α0 ∈ (α + 2D/R, 1) then we can set γ = β0/K
and ᾱ = max {1− (β − β0), (2 +Rγα0)/(2 +Rγ)} .

Remark. We have that

min{1, a}‖µ1 − µ2‖V,1 ≤ ‖µ1 − µ2‖V,a ≤ max{1, a}‖µ1 − µ2‖V,1.

We can also iterate Theorem 2.2 to get

‖Pnt∗µ1 −Pnt∗µ2‖V,a ≤ ᾱn‖µ1 − µ2‖V,a.

Therefore we have that

‖Pnt∗µ1 −Pnt∗µ2‖V,1 ≤ ᾱnmax{1, a}
min{1, a} ‖µ1 − µ2‖V,1.

Remark. In this paper we always consider functions V where V (z) → ∞ as |z| → ∞.
In this case, we can replace C in Hypothesis 3 with some ball of radius R′ which will
contain C.

Doeblin’s Theorem corresponds to the irreducibility property for Markov processes
in the bounded state space. But when the state space is unbounded it is expected that
the process may drift arbitrarily far away and we cannot prove a uniform minorisation
condition on the whole state space. Harris’s Theorem is one way to extend the ideas
of Doeblin to the unbounded state space by finding a Lyapunov functional with small
level sets to show that transition probabilities of the process converge towards a unique
invariant measure. Therefore Harris’s Theorem is based on providing a combination
of a minorisation and a geometric drift conditions. The minorisation condition can be
thought as finding a bound on the probability of transitioning in one step from any
initial state to some specified region which corresponds to the small level sets of the
Lyapunov functional.

Another way to prove convergence towards a unique invariant measure for a Markov
process is to show the Markov semigroup has the strong Feller property, meaning that
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the semigroup maps bounded measurable functions to bounded continuous functions.
We refer the reader to [26] for further comments on this.

There are versions of Harris’s Theorem adapted to weaker Lyapunov conditions
which give subgeometric convergence [19]. We use the following theorem which can be
found in Section 4 of [26].

Theorem 2.3 (Subgeometric Harris’s Theorem). Given the forwards operator, U , of
our Markov semigroup P, suppose that there exists a continuous function V valued in
[1,∞) with pre compact level sets such that

UV ≤ K − φ(V ),

for some constant K and some strictly concave function φ : R+ → R with φ(0) = 0 and
increasing to infinity. Assume that for every C > 0 we have the minorisation condition
like Hypothesis 3. i.e. for some t∗ a time and ν a probability distribution and α ∈ (0, 1),
then for all z with V (z) ≤ C:

Pt∗δz ≥ αν.

With these conditions we have that

• There exists a unique invariant measure µ∗ for the Markov process and it satisfies

∫
φ(V (z))dµ∗ ≤ K.

• Let Hφ be the function defined by

Hφ =

∫ u

1

ds

φ(s)
.

Then there exists a constant C such that

‖Ptµ− µ∗‖TV ≤ Cµ(V )

H−1
φ (t)

+
C

(φ ◦H−1
φ )(t)

holds for every µ where µ(V ) =
∫
V (z)µ(dz).

We will apply the subgeometric Harris’s Theorem to the PDEs we study to show
convergence when only a weaker confinement condition is available.

3 The linear relaxation Boltzmann equation

3.1 On the torus

This is the simplest operator on the torus, so we do not in fact need to use Harris’s
Theorem. We can instead use Doeblin’s Theorem where we have a uniform minorisation
condition.

We consider
∂tf + v · ∇xf = Lf, (13)

11



posed for (x, v) ∈ T
d × R

d, where T
d is the d-dimensional torus of side 1 and

Lf(x, v) := L+f(x, v)− f(x, v) :=

(∫

Rd

f(x, u) du

)
M(v)− f(x, v), (14)

which is a well defined operator from L1(Td × R
d) to L1(Td × R

d), and can also be
defined as an operator from M(Td × R

d) to M(Td × R
d) with the same expression

(where
∫
Rd f(x, u) du now denotes the marginal of the measure f with respect to u).

We define (Tt)t≥0 as the transport semigroup associated to the operator −v · ∇xf in
the space of measures with the bounded Lipschitz topology (see for example [9]); that
is, t 7→ Ttf0 solves the equation ∂tf + v · ∇xf = 0 with initial condition f0. In this case
one can write Tt explicitly as

Ttf0(x, v) = f0(x− tv, v). (15)

Using Duhamel’s formula repeatedly one can obtain that, if f is a solution of (13) with
initial data f0, then

etft ≥
∫ t

0

∫ s

0

Tt−sL+Ts−rL+Trf0 dr ds. (16)

We will now check two properties, which we list as lemmas. The first one says that
the operator L always allows jumps to any small velocity. We always use the notation
1A to denote the characteristic function of a set A (if A is a set), or the function which
is 1 where the condition A is met, and 0 otherwise (if A is a condition).

Lemma 3.1. For all δL > 0 there exists αL > 0 such that for all g ∈ P(Td × R
d) we

have

L+g(x, v) ≥ αL

(∫

Rd

g(x, u) du

)
1{|v|≤δL} (17)

for almost all (x, v) ∈ T
d × R

d.

Proof. Given any δL it is enough to choose αL := M(v) for any v with |v| = δL.

The second one is regarding to the behaviour of the transport part alone. It says that
if we start at any point inside a ball of radius R, and we are allowed to start with any
small velocity, then we can reach any point in the ball of radius R with a predetermined
bound on the final velocity. We use B(δ) to denote the open ball {x ∈ R

d | |x| < δ}, and
in general we will use the notation B(z, δ) to denote the open ball of radius δ centered
at z ∈ R

d.The lemma is:

Lemma 3.2. Given any time t0 > 0 and radius R > 0 there exist δL, R
′ > 0 such that

for all t ≥ t0 it holds that
∫

B(R′)

Tt

(
δx0(x)1{|v|≤δL}

)
dv ≥ 1

td
1{|x|≤R} for all x0 with |x0| < R. (18)

In particular, if we take R >
√
d, there exist δL, R

′ > 0 such that
∫

B(R′)

Tt

(
δx0(x)1{|v|≤δL}

)
dv ≥ 1

td
for all x0 ∈ T

d. (19)
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Proof. Take t, R > 0. We have

Tt
(
δx0(x)1B(δL)(v)

)
= δx0(x− vt)1B(δL)(v).

Integrating this and changing variables gives that

∫

B(R′)

Tt
(
δx0(x)1B(δL)(v)

)
dv =

1

td

∫

B(x,tR′)

δx0(y)1B(δL)

(
x− y

t

)
dy.

Since |x− y| ≤ |x|+ |y| we have that

1B(δL)

(
x− y

t

)
≥ 1B(δL/2)

(x
t

)
1B(δL/2)

(y
t

)
.

Therefore if we take δL > 2R/t we have

1B(δL)

(
x− y

t

)
≥ 1B(R)(x)1B(R)(y).

On the other hand, if we take |x| < R and R′ > 2R/t then

B(x, tR′) ⊇ B(x, 2R) ⊇ B(R).

Hence if δL > 2R/t and R′ > 2R/t,

∫

B(R′)

Tt
(
δx0(x)1B(δL)(v)

)
dv ≥ 1

td
1B(R)(x),

which proves the result.

Lemma 3.3 (Doeblin condition for the linear relaxation Botzmann equation on the
torus). For any t∗ > 0 there exist constants α, δL > 0 (depending on t∗) such that any
solution f to equation (13) with initial condition f0 ∈ P(Td × R

d) satisfies

f(t∗, x, v) ≥ α1{|v|≤δL}, (20)

where the inequality is understood in the sense of measures.

Proof. It is enough to prove it for f0 := δ(x0,v0), where (x0, v0) ∈ T
d×R

d is an arbitrary

point. From Lemma 3.2 (with R >
√
d and t0 := t∗/3) we will use that there exists

δL > 0 such that
∫

Rd

Tt

(
δx0(x)1{|v|≤δL}

)
dv ≥ 1

td
for all x0 ∈ T

d, t > t0.

Also, Lemma 3.1 gives an αL > 0 such that

L+g ≥ αL

(∫

Rd

g(x, u) du

)
1{|v|≤δL}.

Take any r > 0. Since Trf0 = δ(x0−v0r,v0), using this shows

L+Trf0 ≥ αL δx0−v0r(x)1{|v|≤δL}.
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Hence, whenever s− r > t0 we have

L+Ts−rL+Trf0 ≥ αL

(∫

Rd

Ts−rL+Trf0 du

)
1{|v|≤δL}

≥ α2
L

(∫

Rd

Ts−r

(
δx0−v0r(x)1{|u|≤δL}

)
du

)
1{|v|≤δL}

≥ 1

(s− r)d
α2
L 1{|v|≤δL}.

Finally, for the movement along the flow Tt−s, notice that

Tt

(
1Td(x)1{|v|<δL}(v)

)
= 1Td(x)1{|v|<δL}(v) for all t ≥ 0.

This means that for all t > s > r > 0 such that s− r > t0 we have

Tt−sL+Ts−rL+Trf0 ≥
1

(s− r)d
α2
L 1{|v|≤δL}.

For any t∗ we have then, recalling that t0 = t∗/3,

∫ t∗

0

∫ s

0

Tt∗−sL+Ts−rL+Trf0 dr ds ≥ α2
L 1{|v|≤δL}

∫ t∗

2t0

∫ t0

0

1

(s− r)d
dr ds

≥ t20
td∗
α2
L1{|v|≤δL} =

1

9
t2−d
∗ α2

L1{|v|≤δL}.

Finally, from Duhamel’s formula (16) we obtain

f(t∗, x, v) ≥
1

9
e−t∗t2−d

∗ α2
L1{|v|≤δL},

which gives the result.

Proof of Theorem 1.1 in the case of the linear relaxation Boltzmann equation. Lemma 3.3
allows us to apply directly Doeblin’s Theorem 2.1 to obtain fast exponential convergence
to equilibrium in the total variation distance. This rate is also explicitly calculable.
Therefore, the proof follows.

3.2 On the whole space with a confining potential

Now we consider the equation

∂tf + v · ∇xf −∇xΦ(x) · ∇vf = Lf, (21)

where L is defined as in the previous section and x, v ∈ R
d. We want to use a slightly

different strategy to show the minorisation condition based on the fact that we instan-
taneously produce large velocities. We first need a result on the trajectories of particles
under the action of the potential Φ. Always assuming that Φ is a C2 function, we con-
sider the characteristic ordinary differential equations associated to the transport part
of (21):

ẋ = v

v̇ = −∇Φ(x),
(22)
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and we denote by (Xt(x0, v0), Vt(x0, v0)) the solution at time t to (22) with initial data
x(0) = x0, v(0) = v0. Performing time integration twice, it clearly satisfies

Xt(x0, v0) = x0 + v0t+

∫ t

0

∫ s

0

∇Φ(Xu(x0, v0)) du ds (23)

for any x0, v0 ∈ R
d and any t for which it is defined. Intuitively the idea is that for small

times we can approximate (Xt, Vt) by (X
(0)
t , V

(0)
t ) which is a solution to the ordinary

differential equation
ẋ = v

v̇ = 0,
(24)

whose explicit solution is (X
(0)
t , V

(0)
t ) = (x0 + v0t, v0). If we want to hit a point x1 in

time t then if we travel with the trajectory X(0) we just need to choose v0 = (x1−x0)/t.
Now we choose an interpolation between (X(0), V (0)) and (X, V ). We denote it by
(X(ǫ), V (ǫ)) which is a solution to the ordinary differential equation

ẋ = v

v̇ = −ǫ2∇Φ(x),
(25)

still with initial data (x0, v0). We calculate that

X
(ǫ)
t (x0, v0) = Xǫt

(
x0,

v0
ǫ

)
, V

(ǫ)
t (x0, v0) = ǫVǫt

(
x0,

v0
ǫ

)
.

Now we can see from the ODE representation (and we will make this more precise later)
that (X, V ) is a C1 map of (t, ǫ, x, v). Therefore if we fix t and x0 we can define a C1

map
F : [0, 1]× R

d → R
d,

by
F (ǫ, v) = X

(ǫ)
t (x0, v).

Then for ǫ = 0 we can find v∗ such that F (0, v∗) = x1 as given above. Furthermore
∇F (0, v∗) 6= 0 so by the implicit function theorem for all ǫ less than some ǫ∗ we have a
C1 function v(ǫ) such that F (ǫ, v(ǫ)) = x1. This means that

Xǫt

(
x0,

v(ǫ)

ǫ

)
= x1.

So if we take s < ǫ∗t then we can choose v such that Xs(x0, v) = x1. We now need to
get quantitative estimates on ǫ∗, and we do this by tracking the constants in the proof
of the contraction mapping theorem.

In order to make these ideas quantitative and to check that the solution is in fact
C1 we need to get bounds on (Xt, Vt) and ∇Φ(Xt) for t is some fixed intervals. For
the potentials of interest we will have that the solutions to these ODEs will exist for
infinite time. We prove bounds on the solutions and ∇Φ(Xt) for any potential:

Lemma 3.4. Assume that the potential Φ is C2 in R
d. Take λ > 1, R > 0 and

x0, v0 ∈ R
d with |x0| ≤ R. The solution t 7→ Xt(x0, v0) to (22) is defined (at least) for

|t| ≤ T , with

T := min

{
(λ− 1)R

2|v0|
,

√
(λ− 1)R√
2CλR

}
, CλR := max

|x|≤λR
|∇Φ(x)|.
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(It is understood that any term in the above minimum is +∞ if the denominator is 0.)
Also, it holds that

|Xt(x0, v0)| ≤ λR for |t| ≤ T .

from this we can deduce

|Vt(x0, v0)| ≤ |v0|+ CλRt for |t| ≤ T .

Proof. By standard ODE theory, the solution is defined in some maximal (open) time
interval I containing 0; if this maximal interval has any finite endpoint t∗, thenXt(x0, v0)
has to blow up as t approaches t∗. Hence if the statement is not satisfied, there must
exist t ∈ I with |t| ≤ T such that |Xt(x0, v0)| ≥ λR. By continuity, one may take t0 ∈ I
to be the “smallest” time when this happens: that is, |t0| ≤ T and

Xt0(x0, v0) = λR,

|Xt0(x0, v0)| ≤ λR for |t| ≤ |t0|.

By (23) and using that |t0| ≤ T we have

λR = |Xt0(x0, v0)| ≤ |x0|+ |v0t0|+
t20
2
max{|∇Φ(Xt(x0, v0))| : t ≤ t0}

≤ R +
(λ− 1)R

2
+
CλR

2
t20 =

(λ+ 1)R

2
+
CλR

2
t20,

which implies that
(λ− 1)R ≤ CλRt

2
0.

If CλR = 0 this is false; if CλR > 0, then this contradicts with that |t0| ≤ T .

We now follow the intuition given at the beginning of this section. However we
collapse the variables ǫ and t together and consequently look at Xt

(
x, v

t

)
which is

intuitively less clear but algebraically simpler.

Lemma 3.5. Assume that Φ ∈ C2(Rd), and take x0, x1 ∈ R
d. Let R := max{|x0|, |x1|}.

There exists 0 < t1 = t1(R) such that for any t ≤ t1 we can find a |v0| ≤ 4R such that

Xt

(
x0,

v0
t

)
= x1.

In fact, it is enough to take t1 > 0 such that

Ct21e
Ct21 ≤ 1

4
, t1 ≤

√
R√

2C2R

, t1 ≤
2
√
R√

C9R

,

where
C := sup

|x|≤9R

|D2Φ(x)|

, CλR is defined in Lemma 3.4 and D2Φ denotes the Hessian matrix of Φ.

Proof. We define

f(t, v) = Xt

(
x0,

v

t

)
− x1, t 6= 0, v ∈ R

d,

f(0, v) := x0 + v − x1, v ∈ R
d.
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Notice that due to Lemma 3.4 with λ = 9, this is well-defined whenever

|t| ≤ 2
√
R√

C9R

=: t2, |v| ≤ 4R.

Our goal is to find a neighbourhood of t = 0 on which there exists v = v(t) with
f(t, v(t)) = 0, for which we will use the implicit function theorem.

Now, notice that we have
f(0, x1 − x0) = 0

and
∂f

∂vi
(0, x1 − x0) = 1, i = 1, . . . , d.

We can apply the implicit function theorem to find a neighbourhood I of t = 0 and a
function v = v(t) such that f(t, v(t)) = 0 for t ∈ I. However, since we need to estimate
the size of I and of v(t), we carry out a constructive proof.

Take v0, v1 ∈ R
d with |v0|, |v1| ≤ 4R, and denote ṽ0 := v0/t, ṽ1 := v1/t. By (23), for

all 0 < t ≤ t2 we have

Xt(x0, ṽ1)−Xt(x0, ṽ0) = (ṽ1 − ṽ0)t +

∫ t

0

∫ s

0

∇Φ(Xu(x0, ṽ1))−∇Φ(Xu(x0, ṽ0)) du ds.

(26)
Take any t1 ≤ t2, to be fixed later. Then Lemma 3.4 implies, for all 0 ≤ t ≤ t1,

|Xt(x0, ṽ1)−Xt(x0, ṽ0)| ≤ |ṽ1 − ṽ0|t+ Ct1

∫ t

0

|Xu(x0, ṽ1)−Xu(x0, ṽ0)| du.

by Gronwall’s Lemma we have

|Xt(x0, ṽ1)−Xt(x0, ṽ0)| ≤ |ṽ1 − ṽ0|teCt1t for 0 < t ≤ t1.

Using this again in (26) we have

|Xt(x0, ṽ1)−Xt(x0, ṽ0)− (ṽ1 − ṽ0)t| ≤ |ṽ1 − ṽ0|Ct1
∫ t

0

ueCt1u du

≤ |ṽ1 − ṽ0|t Ct21eCt21 .

Taking t1 such that

Ct21e
Ct21 ≤ 1

4
(27)

we have

|Xt(x0, ṽ1)−Xt(x0, ṽ0)− (ṽ1 − ṽ0)t| ≤
1

4
|ṽ1 − ṽ0|t

which is the same as

∣∣∣Xt

(
x0,

v1
t

)
−Xt

(
x0,

v0
t

)
− (v1 − v0)

∣∣∣ ≤ 1

4
|v1 − v0|, (28)

for any 0 < t ≤ t1 and any v0, v1 with |v0|, |v1| ≤ 4R. Now, for any 0 ≤ t ≤ t1 and
|v| ≤ 4R we define

At(v) = v − f(t, v).
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A fixed point of At(v) satisfies f(t, v) = 0, and by (28) At(v) is contractive:

|At(v1)−At(v0)| ≤
1

4
|v1 − v0| for 0 ≤ t ≤ t1, |v| ≤ 4R.

(Equation (28) proves this for 0 < t ≤ t1, and for t = 0 it is obvious.) In order to use
the Banach fixed-point theorem we still need to show that the image of At is inside the
set with |v| ≤ 4R. Using (28) for v1 = 0, v0 = v we also see that

∣∣∣Xt(x0, 0)−Xt

(
x0,

v

t

)
+ v

∣∣∣ ≤ 1

4
|v|,

which gives

|At(v) + x1 −Xt(x0, 0)| ≤
1

4
|v|,

so

|At(v)| ≤
1

4
|v|+ |x1|+ |Xt(x0, 0)| ≤ 2R + |Xt(x0, 0)|. (29)

If we take

t1 ≤
√
R√

2C2R

(30)

then Lemma 3.4 (used for λ = 2) shows that

|Xt(x0, 0)| ≤ 2R for 0 ≤ t ≤ t1,

and from (29) we have
|At(v)| ≤ 4R for 0 < t ≤ t1.

Hence, as long as t1 satisfies (27) and (30), At has a fixed point |v| for any 0 < t ≤ t1,
and this fixed point satisfies |v| ≤ 4R.

Lemma 3.6. Assume the potential Φ ∈ C2(Rd) is bounded below, and let Ts denote the
transport semigroup associated to the operator f 7→ −v · ∇xf + ∇xΦ(x) · ∇vf . Given
any R > 0 there exists a time t1 > 0 such that for any 0 < s < t1 one can find constants
α,R′, R2 > 0 (depending on s and R) such that

∫

B(R′)

Ts(δx01{|v|≤R2}) dv ≥ α1{|x|≤R}, (31)

for any x0 with |x0| ≤ R. The constants α,R′, R2 are uniformly bounded in bounded
intervals of time; that is, for any closed interval J ⊆ (0, t1) one can find α,R′, R2 for
which the inequality holds for all s ∈ J .

Proof. Since the statement is invariant if Φ changes by an additive constant, we may
assume that Φ ≥ 0 for simplicity. Using Lemma 3.5 we find t1 such that for any s < t1
and every x1 ∈ B(R) there exists v ∈ B(4R) (depending on x0, x1 and s) such that

Xs

(
x0,

v

s

)
= x1.

Since v/s ∈ B(4R/s), call R2 := 4R/s. We see that for every x1 ∈ B(0, R) there is at
least one u ∈ R

d such that

(x1, u) ∈ Ts ({x0} × {|v| ≤ R2}) .
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In other words,
Xs(x0, {|v| ≤ R2}) ⊇ B(0, R). (32)

This essentially contains our result, and we just need to carry out a technical argument
to complete it and estimate the constants α and R′. For any compactly supported,
continuous and positive ϕ : Rd → R we have

∫

Rd

ϕ(x)

∫

B(R′)

Ts(δx01{|v|≤R2}) dv dx

=

∫

Rd

∫

Rd

1{|Vs(x,v)|<R′} ϕ(Xs(x, v))δx0(x)1{|v|≤R2}) dv dx

=

∫

|v|≤R2

1{|Vs(x0,v)|<R′} ϕ(Xs(x0, v) dv, (33)

since the characteristics map (x, v) 7→ (Xs(x, v), Vs(x, v)) is measure-preserving. If we
write the energy as H(x, v) = |v|2/2 + Φ(x) and call

E0 := sup {H(x, v) : |x| < R, |v| < R2}.

Then for all s ≥ 0
H(Xs(x0, v), Vs(x0, v)) ≤ E0,

and in particular
|Vs(x0, v)| ≤

√
2E0.

If we take R′ >
√
2E0 then the term 1{|Vs(x0,v)|<R′} is always 1 in (33) and we get

∫

Rd

ϕ(x)

∫

B(R′)

Ts(δx01{|v|≤R2}) dv dx =

∫

|v|≤R2

ϕ(Xs(x0, v)) dv.

Now, take an M > 0 such that | JacvXs(x, v)| ≤ M for all (x, v) with |x| ≤ R and
|v| ≤ R2. (Notice this M depends only on Φ, R and R2.) Then

∫

|v|≤R2

ϕ(Xs(x0, v)) dv ≥
1

M

∫

|v|≤R2

ϕ(Xs(x0, v))| JacvXs(x0, v)| dv

=
1

M

∫

Xs(x0,{|v|≤R2})

ϕ(x) dx ≥ 1

M

∫

B(0,4R)

ϕ(x) dx,

where we have used (32) in the last step. In sum we find that
∫

Rd

ϕ(x)

∫

Rd

Ts(δx01{|v|≤R2}) dv dx ≥ 1

M

∫

B(0,R)

ϕ(x) dx

for all compactly supported, continuous and positive functions ϕ. This directly implies
the result.

Lemma 3.7 (Doeblin condition for linear relaxation Boltzmann equation with a con-
fining potential). Let the potential Φ: Rd → R be a C2 function with compact level sets.
Given t > 0 and K > 0 there exist constants α, δX , δV > 0 such that any solution f to
equation (21) with initial condition f0 ∈ P(Rd × R

d) supported on B(0, K)× B(0, K)
satisfies

f(t, x, v) ≥ α1{|x|<δX} 1{|v|<δV }

in the sense of measures.
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Proof. Fix any t,K > 0. Set

Hmax(K) = max
{
H(x, v) = |v|2/2 + Φ(x) : x ∈ B(0, K), v ∈ B(0, K)

}

and then define
R := max {|x| : Φ(x) ≤ Hmax(K)} .

Since our conditions on Φ imply that its level sets are compact we know that R is finite.
We use Lemma 3.6 to find constants α,R2 > 0 and an interval [a, b] ⊆ (0, t) such that

∫

Rd

Ts(δx01{|v|≤R2}) dv ≥ α1{|x|≤R},

for any x0 with |x0| ≤ R and any s ∈ [a, b]. From Lemma 3.1 we will use that there
exists a constant αL > 0 such that

L+g(x, v) ≥ αL

(∫

Rd

g(x, u) du

)
1{|v|≤R2} (34)

for all nonnegative measures g. We first notice that we can do the same estimate as
in formula (16), where now (Tt)t≥0 represents the semigroup generated by the operator
−v · ∇xf +∇xΦ(x) · ∇vf :

etft ≥
∫ t

0

∫ s

0

Tt−sL+Ts−rL+Trf0 dr ds. (35)

Take x0, v0 ∈ B(0, K), and call f0 := δ(x0,v0). For all r we have by the definition of R
that

|Xr(x0, v0)| ≤ R for all 0 ≤ r. (36)

For any r > 0, since Trf0 = δ(Xr(x0,v0),Vr(x0,v0)), using (17) gives

L+Trf0 ≥ αLδXr(x0,v0)(x)1{|v|≤R2}.

Then, using (36) and our two lemmas, whenever s− r ∈ [a, b] we have

L+Ts−rL+Trf0 ≥ αL

(∫

Rd

Ts−rL+Trf0 du

)
1{|v|≤R2}

≥ α2
L

(∫

Rd

Ts−r

(
δXr(x0,v0)(x)1{|u|≤R2}

)
du

)
1{|v|≤R2}

≥ α2
Lα1{|x|≤R}1{|v|≤R2}.

We now need to allow for a final bit of movement along the flow Tt−s. The time
gradient of the flow is bounded by |∇x(Φ(Xt(x, v))| + |Vt(x, v)| and this quantity is
bounded on sublevel sets of the Hamiltonian which are preserved by the flow so there
exists a sufficiently small, quantifiable ǫ > 0 so that for all 0 ≤ τ ≤ ǫ we have

Tτ

(
1B(R)(x)1B(R2)(v)

)
≥ 1B(R/2)(x)1B(R2/2)(v). (37)

(We point out a way to quantify ǫ: since Tτ is measure-preserving, we have Tτ (h)(x, v) =
h(Xτ (x, v), Vt(x, v)) for any function h = h(x, v). Define the inverse flow of Tτ by Gτ ,
if we denote Gτ (x0, v0) = (Yτ (x0, v0), Zτ (x0, v0)), then Yτ , Zτ satisfies

ẏ = −z
ż =W (y),
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with initial condition {x0, y0}. Hence (37) holds if |Yτ (x, v)| ≤ R and |Zτ(x, v)| ≤ R2

for all |x| ≤ R/2, |v| ≤ R2/2. It’s easily seen that the result of Lemma 3.4 will still
hold for Gτ , so we can take

ǫ = min

{
R

2R2
,

√
R

2
√
CR

,
R2

2R

}
, CR := max

|x|≤R
|∇Φ(x)|.

by Lemma 3.4.)
From (37), for all t, s, r such that t− s ≤ ǫ and s− r ∈ (a, b) we have

Tt−sL+Ts−rL+Trf0 ≥ α2
Lα 1{|x|≤R/2} 1{|v|≤R2/2}.

We have then

∫ t

0

∫ s

0

Tt−sL+Ts−rL+Trf0 dr ds ≥ α2
Lα

∫ t

t−ǫ

∫ s−a

s−b

1{|x|≤R/2}1{|v|≤R2/2} dr ds

= α2
Lαǫ(b− a)1{|x|≤R/2}1{|v|≤R2/2}.

Finally, from Duhamel’s formula (35) we obtain

f(t, x, v) ≥ e−tα2
Lαǫ(b− a)1{|x|≤R/2}1{|v|≤R2/2},

which gives the result.

Lemma 3.8 (Lyapunov condition). Suppose that Φ(x) is a C2 function satisfying

x · ∇Φ(x) ≥ γ1|x|2 + γ2Φ(x)−A

for positive constants A, γ1 γ2. Then we have that

V (x, v) = 1 + Φ(x) +
1

2
|v|2 + 1

4
x · v + 1

8
|x|2

is a function for which the semigroup satisfies Hypothesis 2.

Remark. If Φ is superquadratic at infinity (which is implied by earlier assumptions) then
V is equivalent to 1+H(x, v) where the energy is defined as H(x, v) = |v|2/2+Φ(x). So
the total variation distance weighted by V is equivalent to the total variation distance
weighted by 1 +H(x, v).

Proof. We look at the forwards operator acting on an observable φ,

Uφ = v · ∇xφ−∇xΦ(x) · ∇vφ+ L∗φ =: T ∗φ+ L∗φ,

where L∗ is the adjoint of the linear relaxation Boltzmann operator L, given by

L∗φ(x, v) =

∫
φ(x, u)M(u) du− φ(x, v).

We want a function V (x, v) such that

UV ≤ −λV +K
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for some constants λ > 0, K ≥ 0. We need to make the assumption that

x · ∇xΦ(x) ≥ γ1|x|2 + γ2Φ(x)− A. (38)

for some positive constant A, γ1, γ2. We then try the function

V (x, v) = H(x, v) + ax · v + b|x|2 = Φ(x) +
1

2
|v|2 + ax · v + b|x|2,

with a, b > 0 to be fixed later. We want this to be positive so we impose a2 < 2b. Using
that

L∗(|v|2) = d− |v|2, L∗(x · v) = −x · v, L∗(Φ(x)) = L∗(|x|2) = 0

and that

T ∗(H(x, v)) = 0, T ∗(x · v) = |v|2 − x · ∇xΦ(x), T ∗(|x|2) = 2x · v,

we see that

U(V ) =d
2
− 1

2
|v|2 − ax · v + a|v|2 − ax · ∇xΦ(x) + 2bx · v

≤C ′ −
(
1

2
− a

)
|v|2 + (2b− a)x · v − aγ1|x|2 − aγ2Φ(x),

where we have used (38), and C ′ := d
2
+ aA. Now, taking a = 1/4, b = 1/8,

U(V ) =C ′ − 1

4
|v|2 − γ1

4
|x|2 − γ2

4
Φ(x)

≤C ′ − min(γ1, 1)

4
(|x|2 + |v|2)− γ2

4
Φ(x)

≤C ′ − min(γ1, 1)

4

(
1

2
|v|2 + 1

4
x · v + 1

8
|x|2

)
− γ2

4
Φ(x).

So V (x, v) works with

λ =
min(γ1, γ2, 1)

4
.

Proof of Theorem 1.2 in the case of the linear relaxation Boltzmann equation. The proof
follows by applying Harris’s Theorem since Lemmas 3.7 and 3.8 show that the equation
satisfies the hypotheses of the theorem.

3.3 Subgeometric convergence

When we do not have the superquadratic behaviour of the confining potential at infin-
ity we can still use a Harris type theorem to show convergence to equilibrium. This
time we must pay the price of having subgeometric rates of convergence. We use the
subgeometric Harris’s Theorem given in Section 2 which can be found in Section 4 of
[26]. Now instead of our earlier assumption on the confining potential Φ, we instead
make a weaker assumption that Φ is a C2 function satisfying
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x · ∇xΦ(x) ≥ γ1〈x〉2β + γ2Φ(x)−A,

for some positive constant A, γ1, γ2, where

〈x〉 =
√

1 + |x|2,

and β ∈ (0, 1).

Proof of Theorem 1.3 in the case of the linear relaxation Boltzmann equation. We have
already proved the minorisation condition. We can also replicate the calculations for
the Lyapunov function to get that in this new situation, take the V in Lemma 3.8, we
have for a = 1/4, b = 1/8 that

UV ≤ C ′ − 1

4
|v|2 − γ1

4
〈x〉2β − γ2

4
Φ(x).

For x, y ≥ 1
(x+ y)β ≤ xβ + yβ.

So we have

UV ≤C ′ − min(γ1, 1)

4

(
〈v〉2 + 〈x〉2β

)
− γ2

4
Φ(x)

≤C ′′ − min(γ1, 1)

4

(
1 + |x|2 + |v|2

)β − γ2
4
Φ(x)β

≤C ′′ − λ

(
1 +

1

2
|v|2 + 1

4
x · v + 1

8
|x|2

)β

− λΦ(x)β

≤C ′′ − λ

(
Φ(x) +

1

2
|v|2 + 1

4
x · v + 1

8
|x|2

)β

,

for some constant λ, C ′′ > 0 that can be explicitly computed, so we have that

UV ≤ −λV β + C ′′.

This means we can take φ(s) = 1 + sβ . Therefore, for u large

Hφ(u) =

∫ u

1

1

1 + tβ
dt ∼ 1 + u1−β,

and for t large
H−1

φ (t) ∼ 1 + t1/(1−β)

and
φ ◦H−1

φ (t) ∼ (1 + t)β/(1−β).

23



4 The linear Boltzmann Equation

We now look at the linear Boltzmann equation. This has been studied in the spatially
homogeneous case in [6, 10]. Here the interest is partly that this is a more complex
and physically relevant operator. Also, it presents less globally uniform behaviour in v
which means that we have to use a Lyapunov function even on the torus. Apart from
this, the strategy is very similar to that from the linear relaxation Boltzmann equation.
The full Boltzmann equation has been studied as a Markov process in [23], the linear
case is similar and more simple. It is well known that this equation preserves positivity
and mass, which follows from standard techniques both in the spatially homogeneous
case and the case with transport. The Lyapunov condition on the torus and the bound
below on the jump operator have to be verified in this situation.

We consider for x ∈ T
d

∂tf + v · ∇xf =

∫

Rd

∫

Sd−1

B

(
v − v∗
|v − v∗|

· σ, |v − v∗|
)
(f(v′)M(v′∗)− f(v)M(v∗)) dσdv∗.

(39)
We assume that B splits as

B

(
v − v∗
|v − v∗|

· σ, |v − v∗|
)

= b

(
v − v∗
|v − v∗|

· σ
)
|v − v∗|γ. (40)

We make a cutoff assumption that b is integrable in σ. In fact, we make a much
stronger assumption that b is bounded below by a constant. We also work in the
hard spheres/Maxwell molecules regime that is to suppose γ ≥ 0. When working with
the Boltzmann collision kernel we have a choice of parametrizations for the incoming
velocities. Choosing this ‘σ-parametrization’ allows for simpler calculations, but is not
otherwise essential. We notice that for the physical hard spheres kernel the angular
kernel b is bounded below in the σ parametrization. We have

∂tf + v · ∇xf = L+f − κ(v)f,

where κ(v) ≥ 0 and κ(v) behaves like |v|γ for large v; that is,

0 ≤ κ(v) ≤ (1 + |v|2)γ/2, v ∈ R
d. (41)

See [10] Lemma 2.1 for example.
We also look at the situation where the spatial variable is in R

d and we have a
confining potential. With hard sphere, the operator L+ acting on x · v produces error
terms which are difficult to deal with. We show that when we have hard spheres with
γ > 0 we can still show exponential convergence when Φ(x) is growing at least as fast as
|x|γ+2. In the subgeometric case we suppose Φ(x) grows at least as fast as |x|ǫ+1, ǫ > 0.
The equation is

∂tf + v · ∇xf − (∇xΦ(x) · ∇vf) = Q(f,M). (42)

We begin by proving lemmas which are useful for proving the Doeblin condition
in both situations. We want to reduce to a similar situation to the linear relaxation
Boltzmann equation.

Lemma 4.1. Let f be a solution to (39) or (42), and define H(x, v) := |v|2/2 on the
torus for (39) or H(x, v) := Φ(x) + |v|2/2 in the whole space for (42), where Φ is
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a C2 potential bounded below. Take E0 > 0 and assume that f has initial condition
f0 = δ(x0,v0) with

H(x0, v0) ≤ E0.

Then there exists a constant C1 > 0 such that

f(t, x, v) ≥ e−tC1

∫ t

0

∫ s

0

Tt−sL̃+Ts−rL̃+Tr(1Ef0(x, v)) dr ds,

where
L̃+g := 1EL+g, E := {(x, v) ∈ R

d × R
d : H(x, v) ≤ E0}.

Proof. Call (Xt(x, v), Vt(x, v)) the solution to the backward characteristic equations
obtained from the transport part of either (39) or (42). Let us call

Σ(s, t, x, v) = e
∫ t

s
κ(Vr(x,v))dr.

Looking at Duhamel’s formula again we get

f(t, x, v) = Σ(0, t, x, v)Ttf0 +

∫ t

0

Σ(0, t− s, x, v)(Tt−sL+fs)(x, v) ds

If a function g = g(x, v) has support on the set

E := {(x, v) : H(x, v) ≤ E0},

then the same is true of Ttg (since the transport part preserves energy). On the set E
we have, using (41),

∫ t

s

κ(Vr(x, v)) dr ≤ (t− s)C (1 + 2E0)
γ/2 =: (t− s)C1, (x, v) ∈ E.

Hence

f(t, x, v) ≥ Σ(0, t, x, v)Tt(1Ef0) +

∫ t

0

Σ(0, t− s, x, v)(Tt−s(1EL+fs))(x, v) ds

≥ e−tC1Tt(1Ef0) +

∫ t

0

e−(t−s)C1(Tt−s(1EL+fs))(x, v) ds

= e−tC1Ttf0 +

∫ t

0

e−(t−s)C1(Tt−s(L̃+fs))(x, v) ds,

where we define
L̃+g := 1EL+g.

Iterating this formula we obtain the result.

The next lemma we want to prove is a local version of Lemma 3.1, which states that
the operator L+ allows jumps between any two velocities with a probability which is
bounded below, provided the size of the two velocities is bounded by a fixed number.
In order to do this, let us first rewrite the operator L+. We have that

L+f =

∫

Rd

∫

Sd−1

b

(
v − v∗
|v − v∗|

· σ
)
|v − v∗|γf(v′)M(v′∗)dσdv∗.
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Using the Carleman representation we rewrite this as

L+f =

∫

Rd

f(v′)

|v − v′|d−1

∫

E(v,v′)

B(|u|, ξ)M(v′∗)dv
′
∗ dv

′,

where E(v,v′) denotes the hyperplane {v′∗ ∈ R
d | (v−v′)·(v−v′∗) = 0}, and the integral in

v′∗ is understood to be with respect to (n− 1)-dimensional measure on this hyperplane.
We want to bound this in the manner of Lemma 3.1 from the first part. We look at
hard spheres and no angular dependence, which means

B(|u|, ξ) = C|u|γξd−2

with γ ≥ 0. We also have that

ξ =
|v − v′|

|2v − v′ − v′∗|
, |u| = |2v − v′ − v′∗|.

So we have that

L+f =

∫

Rd

f(v′)

|v − v′|

∫

E(v,v′)

|2v − v′ − v′∗|γ−d−2M(v′∗)dv
′
∗ dv

′.

With this we can give the following lower bound of L+, which the reader can compare
to Lemma 3.1:

Lemma 4.2. Consider the positive part L+ of the linear Boltzmann operator for hard
spheres, assuming (4) with γ ≥ 0, and (5). For all RL, rL > 0, there exists α > 0 such
that for all g ∈ P

L+g(v) ≥ α

∫

B(RL)

g(u) du for all v ∈ R
d with |v| ≤ rL.

Proof. First we note that on E(v,v′) we have

|2v − v′ − v′∗|−d−2 ≥ Cd exp

(
−1

2
|v − v′∗|2 −

1

2
|v − v′|2

)
.

Then since γ ≥ 0 we have

|2v − v′ − v′∗|γ =
(
|v − v′|2 + |v − v′∗|2

)γ/2 ≥ |v − v′∗|γ.

So this means that
∫

E(v,v′)

|2v − v′−v′∗|γ−d−2M(v′∗)dv
′
∗

≥ Ce−|v−v′|2/2

∫

E(v,v′)

|v − v′∗|γ exp
(
−1

2
|v − v′∗|2 −

1

2
|v′∗|2

)
dv′∗

≥ Ce−|v−v′|2/2−|v|2/2

∫

E(v,v′)

|v − v′∗|γe−|v−v′
∗
|2dv′∗

= C ′e−|v−v′|2/2−|v|2/2.
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So we have that

L+f(v) ≥ C

∫

Rd

f(v′)|v − v′|−1e−|v−v′|2/2−|v|2/2dv′

≥ C

∫

Rd

f(v′)e−2|v′|2−3|v|2 dv′

≥ Ce−2R2
Le−3|v|2

∫

B(0,RL)

f(v′)dv′,

which is a similar bound to the one we found in Lemma 3.1. This gives the result by
choosing α := C exp(−2R2

L − 3|rL|2).

4.1 On the torus

Now we work specifically on the torus. For the minorisation we can argue almost exactly
as for the linear relaxation Boltzmann equation.

Lemma 4.3 (Doeblin condition). Assume (4) with γ ≥ 0, and (5). Given t∗ > 0 and
R > 0 there exist constants 0 < α < 1, δL > 0 such that any solution f = f(t, x, v) to
the linear Boltzmann equation (39) on the torus with initial condition f0 = δ(x0,v0) with
|v0| ≤ R satisfies

f(t∗, x, v) ≥ α1{|v|≤δL}

in the sense of measures.

Proof. Take f0 := δ(x0,v0), where (x0, v0) ∈ T
d ×R

d is an arbitrary point with |v0| ≤ R.

From Lemma 3.2 (with R >
√
d and t0 := t∗/3) we will use that there exist δL, R

′ > 0
such that

∫

B(R′)

Tt

(
δx0(x)1{|v|≤δL}

)
dv ≥ 1

td
for all x0 ∈ T

d, t > t0. (43)

Also, Lemma 4.2 gives an α > 0 such that

L+g ≥ α

(∫

B(RL)

g(x, u) du

)
1{|v|≤δL}, (44)

where RL := max{R′, R}. Finally, from Lemma 4.1 we can find C1 > 0 (depending on
R) such that

f(t, x, v) ≥ e−tC1

∫ t

0

∫ s

0

Tt−sL̃+Ts−rL̃+Tr(1Eδ(x0,v0)) dr ds,

where E is the set of points with energy less than E0, with

E0 := max{R2/2, δ2L/2},

and we recall that L̃+f := 1EL+f . Due to our choice of E0, we see that equation (43)

also holds with L̃+ in the place of L+. One can then carry out the same proof as in
Lemma 3.3, using estimates (43) and (44) instead of the corresponding ones there.
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Since our Doeblin condition holds only on sets which are bounded in |v|, we do
need a Lyapunov functional in this case (as opposed to the linear relaxation Boltzmann
equation, where Lemma 3.3 gives a lower bound for all starting conditions (x, v)).
Testing with V = v2 involves proving a result similar to the moment control result from
[6]. Instead of the σ representation we use the n-representation for the collisions:

v′ = v − n(u · n), v′∗ = v∗ + n(u · n).

By our earlier assumption, the collision kernel can be written as

B̃(|v − v∗|, |ξ|) = |v − v∗|γ b̃(|ξ|),

where
ξ :=

u · n
|u| , u := v − v∗.

Here the B̃, b̃ are different from those in the σ representation because of the change of
variables. We also have by assumption that b̃ is normalised, that is,

∫

Sd

b̃(|w · n|) dn = 1

for all unit vectors w ∈ S
d−1.

Lemma 4.4. The function V (x, v) = |v|2 is a Lyapunov function for the linear Boltz-
mann equation on the torus in the sense that it is a function for which the associated
semigroup satisfies Hypothesis 2.

Proof. We define L to be the linear Boltzmann operator. Using the weak formulation
of the operator,

∫

Rd

L(f)|v|2 dv =

∫

Rd

∫

Rd

∫

Sd−1

f(v)M(v∗)|v − v∗|γ b̃(|ξ|)(|v′|2 − |v|2) dn dv dv∗.

In other words,

L∗(|v|2) =
∫

Rd

∫

Sd−1

M(v∗)|v − v∗|γ b̃(|ξ|)(|v′|2 − |v|2) dn dv∗.

We are going to prove the Lyapunov condition by showing that
∫

Rd

∫

Rd

(L(f) + T (f))|v|2 dx dv ≤ −λ
∫

Rd

∫

Rd

f |v|2 dx dv +K

∫

Rd

∫

Rd

f dx dv,

where T f = −v∇xf is the transport operator. The transport part plays no role, since
∫

Rd

∫

Rd

T (f)|v|2 dx dv = 0.

For the collisional part, we notice that

|v′|2 − |v|2 = |v∗|2 − |v′∗|2 = −(u · n)2 − 2(v∗ · n)(u · n)
= −|u|2ξ2 − 2(v∗ · n)(v · n) + 2(v∗ · n)2

= −|v|2ξ2 − |v∗|2ξ2 + 2v · v∗ξ2 − 2(v∗ · n)(v · n) + 2(v∗ · n)2.

28



Note that the first term is negative and quadratic in v, and the rest of the terms are of
lower order in v. Hence, calling γb :=

∫
Sd−1 ξ

2b̃(|ξ|) dξ we have

∫

Rd

L(f)|v|2 dv =− γb

∫

Rd

|v|2f(v)
∫

Rd

M(v∗)|v − v∗|γ dv∗ dv

− γb

∫

Rd

f(v)

∫

Rd

|v∗|2M(v∗)|v − v∗|γ dv∗ dv

+ 2γb

∫

Rd

vf(v)

∫

Rd

v∗M(v∗)|v − v∗|γ dv∗ dv

− 2

∫

Sd−1

∫

Rd

(v · n)f(v)
∫

Rd

(v∗ · n)M(v∗)|v − v∗|γ dv∗ dv dn

+

∫

Sd−1

∫

Rd

f(v)

∫

Rd

(v∗ · n)2M(v∗)|v − v∗|γ dv∗ dv dn

≤− γb

∫

Rd

|v|2f(v)
∫

Rd

M(v∗)|v − v∗|γ dv∗ dv

+ (2 + γb)

∫

Rd

|v|f(v)
∫

Rd

|v∗|M(v∗)|v − v∗|γ dv∗ dv

+

∫

Rd

f(v)

∫

Rd

|v∗|2M(v∗)|v − v∗|γ dv∗ dv.

We can now use the following bound, which holds for all k ≥ 0 and some constants
0 < Ak ≤ Ck depending on k:

Ak(1 + |v|γ) ≤
∫

Rd

|v∗|kM(v∗)|v − v∗|γ dv∗ ≤ Ck(1 + |v|γ), v ∈ R
d.

Choosing ǫ > 0 we get

∫

Rd

L(f)|v|2 dv ≤−A0γb

∫

Rd

|v|2(1 + |v|γ)f(v) dv + C1(2 + γb)

∫

Rd

|v|(1 + |v|γ)f(v) dv

+ C2

∫

Rd

f(v)(1 + |v|γ) dv

≤
∫

Rd

f(v)(C2 + C1(1 + γb/2)/ǫ) (1 + |v|γ) dv

− (A0γb − ǫC1(1 + γb/2))

∫

Rd

|v|2(1 + |v|γ)f(v)dv

≤
∫

Rd

(
C2 + C1(1 + γb/2)/ǫ+ (ǫC1(1 + γb/2)− A0γb)|v|2

)
(1 + |v|γ)f(v)dv

− (A0γb − ǫC1(1 + γb/2))

∫

Rd

|v|2f(v)dv

≤α1

∫

Rd

f(v)dv − α2

∫

Rd

|v|2f(v)dv.

Here we choose ǫ sufficiently small to make the constant in front of the second moment
negative. This also means that

(C2 + C1(1 + γb/2)/ǫ+ (ǫC1(1 + γb/2)− A0γb))|v|2(1 + |v|γ)
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is bounded above. These things together give that

∫

Rd

∫

Rd

(L(f) + T (f))|v|2 dx dv ≤ −α2

∫

Rd

∫

Rd

f |v|2 dx dv + α1

∫

Rd

∫

Rd

f dx dv,

which finishes the proof.

Proof of Theorem 1.1 in the case of the linear Boltzmann equation. We have the Doe-
blin condition from Lemma 4.3 and the Lyapunov structure from Lemma 4.4. Harris’s
Theorem gives the result.

4.2 On the whole space with a confining potential

We now work on the whole space with a confining potential. As we stated earlier, we
cannot verify the Lyapunov condition in the hard spheres case. However, the proof for
the Doeblin’s condition is the same in the hard sphere or Maxwell molecule case. We
need to combine the Lemmas 3.6, 4.1 and 4.2.

Lemma 4.5. Let the potential Φ: Rd → R be a C2 function with compact level sets.
Given t > 0 and K > 0 there exist constants α, δX , δV > 0 such that for any (x0, v0)
with |x0|, |v0| < K the solution f to (42) with initial data δ(x0,v0) satisfies

ft ≥ α1{|x|≤δX}1{|v|≤δV }.

Proof. We fix R > 0 as in Lemma 3.7. We use Lemma 3.6 to find constants α,R2, R
′ > 0

and an interval [a, b] ⊆ (0, t) such that

∫

B(R′)

Ts(δx01{|v|≤R2}) dv ≥ α1{|x|≤R},

for any x0 with |x0| ≤ R and any s ∈ [a, b]. From Lemma 4.2 we will use that there
exists a constant αL > 0 such that

L+g(x, v) ≥ αL

(∫

RL

g(x, u) du

)
1{|v|≤R2} (45)

for all nonnegative measures g, where RL := max{R,R′}. From Lemma 4.1 we can find
C1 > 0 (depending on R) such that

f(t, x, v) ≥ e−tC1

∫ t

0

∫ s

0

Tt−sL̃+Ts−rL̃+Tr(1Eδ(x0,v0)) dr ds,

where E is the set of points with energy less than E0, with

E0 := max{H(x, v) : |x| ≤ R, |v| ≤ max{RL, R2}},

and we recall that L̃+f := 1EL+f . These three estimates allow us to carry out a proof
which is completely analogous to that of Lemma 3.7; notice that the only difference is
the appearance of R′ here, and the need to use L̃+ (which still satisfies a bound of the
same type).
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Now we need to find a Lyapunov functional. As before we will look at V of the form

V (x, v) = Φ(x) +
1

2
|v|2 + αx · v + β|x|2.

for some α, β > 0. In this case we need a stronger bound for Φ, as stated in the
following:

Lemma 4.6. Assume that for some γ1, γ2 > 0 and some A ∈ R we have,

x · ∇xΦ(x) ≥ γ1〈x〉γ+2 + γ2Φ(x)−A,

where γ is the exponent in (40). We can find α, β such that

V (x, v) = Φ(x) +
1

2
|v|2 + αx · v + β|x|2

is a function for which the semigroup associated to equation (42) satisfies Hypothesis 2.

Proof. We are going to show that, for an appropriate choice of α, β it holds that

(T ∗ + L∗)(V ) ≤ −λV +K,

for some λ,K > 0, where L∗ is the dual of the Boltzmann collision operator, and
T ∗f = v · ∇xf − ∇xΦ · ∇vf (the dual of the transport operator, which has the same
expression as -T ). This will show Hypotheses 2 (see Remark 2).

Let us look at how the collision operator acts on the different terms. First,

∫

Rd

L(f)|v|2dv =
∫

Rd

∫

Rd

∫

Sd−1

f(v)M(v∗)b̃(|ξ|)|v − v∗|γ
(
|v′|2 − |v|2

)
dndvdv∗.

Repeating the same calculation as in the proof of Lemma 4.4 in this case, we see that

∫

Rd

L(f)|v|2dv ≤ −α1

∫

Rd

〈v〉γ+2f(v)dv + α2

∫

Rd

f(v)dv.

That is,
L∗(|v|2) ≤ −α1〈v〉γ+2 + α2. (46)

Similarly we have

∫

Rd

L(f)x · vdv =

∫

Rd

∫

Rd

∫

Sd−1

f(v)M(v∗)b̃(|ξ|)|v − v∗|γ (v′ · x− v · x) dndvdv∗.

We can see that
v′ · x− v · x = (v · n)(x · n)− (v∗ · n)(x · n).

Integrating this gives that

∫

Rd

L(f)x · vdv =

∫

Rd

∫

Rd

∫

Sd−1

f(v)M(v∗)b̃(|ξ|)|v − v∗|γ(v · n)(x · n)dv∗dvdn

≤
∫

Rd

f(v)〈v〉γ+1|x|dv,
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so
L∗(x · v) ≤ 〈v〉γ+1|x|. (47)

For the effect of T ∗, notice that

V (x, v) = Φ(x) + |v|2/2 + αx · v + β|x|2 = H(x, v) + αx · v + β|x|2,

where H(x, v) denotes the energy. We have

T ∗(H(x, v)) = 0, T ∗(|x|2) = 2x · v, T ∗(x · v) = |v|2 − x · ∇xΦ(x)

Using this together with (46) and (47) we have

(L∗ + T ∗)(V ) ≤ −α1

2
〈v〉γ+2 +

α2

2
+ α〈v〉γ+1|x|+ α|v|2 − αx · ∇xΦ(x) + 2βx · v

≤
(
α− α1

2

)
〈v〉γ+2 + (α + 2β)|x|〈v〉γ+1 − αγ1〈x〉γ+2 − αγ2Φ(x) +

α2

2
+ αA.

Setting β = α, α ≤ α1/4, and using Young’s inequality AB ≤ 1
p
Ap+1

q
Bq on (|x|/ǫ) (〈v〉γ+1ǫ)

with p = (γ + 2)/(γ + 1) and q = γ + 2, we get

(L∗ + T ∗)(V ) ≤
(
−α1

4
+ 3ǫ

γ+2
γ+1

γ + 1

γ + 2

)
〈v〉γ+2 +

(
3αγ+2

(γ + 2)

1

ǫγ+2
− αγ1

)
〈x〉γ+2

− αγ2Φ(x) +
α2

2
+ αA.

Now we can choose ǫ small enough so that the 〈v〉γ+2 term is negative and then for this
ǫ choose α small enough so that the 〈x〉γ+2 term is negative (since γ + 2 ≥ 1). Then,
since 〈z〉γ+2 grows faster than |z|2 at infinity this gives

(L∗ + T ∗)(V ) ≤ −λ1(|x|2 + |v|2)− λ2Φ(x) +K.

Then using equivalence between the quadratic forms

|x|2 + |v|2 and
1

2
|v|2 + αx · v + α|x|2,

when α < 1/2 we have the result in the Lemma.

Proof of Theorem 1.2 in the case of the linear Boltzmann equation. We have the minori-
sation condition in Lemma 4.5 and the Lyapunov condition from Lemma 4.6. Therefore
we can apply Harris’s Theorem.

4.3 Subgeometric convergence

As with the linear relaxation Boltzmann equation, the minorisation results in Lemma
4.5 holds for Φ which are not sufficiently confining to prove the Lyapunov structure.
However in this situation we can still prove subgeometric rates of convergence. Here in
order to find a Lyapunov functional we need to be more precise about how L acts on
the x · v moment.

We need Φ(x) to provide a stronger confinement if we are in the hard potential case.
We want

x · ∇xΦ(x) ≥ γ1〈x〉1+δ + γ2Φ(x)−A, Φ(x) ≤ γ3〈x〉1+δ (48)

for some γ1, γ2, γ3, δ > 0. Then we have
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Lemma 4.7. Assume that Φ is a C2 potential satisfying (48). Then there exist some
α, β > 0 satisfying 4α2 < β such that the function

V (x, v) = Φ(x) +
1

2
|v|2 + αx · v

〈x〉 + β〈x〉

satisfies
U(V ) ≤ −λV δ/(1+δ) +K,

for some positive constants λ,K.

Remark 4.8. Notice that

V (x, v) ≥ Φ(x) +
1

4
|v|2 + (β − 4α2)〈x〉,

so that the sub level sets of V are bounded.

Proof. Using (46), (47) and that

T ∗(H(x, v)) = 0, T ∗(〈x〉) = x · v
〈x〉 , T ∗

(
x · v
〈x〉

)
=

|v|2
〈x〉 − (x · v)2

〈x〉2 −∇xΦ · x

〈x〉 ,

we have the following

(L∗ + T ∗)(V (x, v)) ≤ −α1〈v〉γ+2 + α2 + α〈v〉γ+1 + α|v|2 − αx · ∇xΦ(x)

〈x〉 +
βx · v
〈x〉 .

Using (48),
x · v
〈x〉 ≤ 〈v〉 ≤ 〈v〉2+γ and Φ(x)δ/(1+δ) ≤ γ

δ/(1+δ)
3 〈x〉δ we obtain

(L∗ + T ∗)(V (x, v))

≤ (2α− α1 + β)〈v〉γ+2 − αγ1〈x〉δ − αγ2
Φ(x)

〈x〉 + α2 + αA

≤ λ1
(
−|v|2 − 〈x〉δ − Φ(x)δ/(1+δ) + C

)
≤ λV (x, v)δ/(1+δ) +K,

for some λ1, K > 0. To make the last two inequalities valid we choose α and β so that
α1 > 2α + β and 4α2 < β so that

V (x, v) ≥ Φ(x) +
1

4
|v|2 + (β − 4α2)〈x〉.

Proof of Theorem 1.3 in the linear Boltzmann case. We have the minorisation condi-
tion in Lemma 4.5 and the Lyapunov condition from Lemma 4.7. Therefore we can
apply Harris’s Theorem.
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