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Abstract—FPGA hardware accelerators have recently enjoyed
significant attention as platforms for further accelerating compu-
tation in the datacenter but they potentially add additional layers
of hardware and software interfacing that can further increase
communication latency. In this paper, we characterize these
overheads for streaming applications where latency can be an
important consideration. We examine the latency and throughput
characteristics of traditional server-based PCIe connected accel-
erators, and the more recent approach of network attached FPGA
accelerators. We additionally quantify the additional overhead
introduced by virtualising accelerators on FPGAs.

I. INTRODUCTION

FPGAs have seen increased deployment within the datacen-
ter to accelerate compute-intensive workloads. The growing
complexity and scale of applications and the associated data,
alongside the stalled performance scaling of CPU architec-
tures, has resulted in heterogeneity being explored as a way of
addressing performance, throughput, and power consumption
challenges[1]. FPGA acceleration has been demonstrated to
provide considerable benefits in computation latency for a
variety of applications [2], [3], [4], [5], and improved perfor-
mance per Watt compared to GPUs [6]. Virtualisation of FPGA
resources is also emerging [7], [8], [9], allowing a single
FPGA to be shared by multiple users and applications. These
designs comprise a static shell that manages communication
and control for multiple partitioned reconfigurable regions.
Accelerators are swapped into these regions as needed, hence
requiring accelerator allocation middleware to manage data
stream sharing at runtime.

Latency reduction is a key challenge within the datacenter,
in particular for streaming applications, where data is pro-
cessed itemwise, and is often time-sensitive. Low latency can
be a critical requirement in some applications such as high
frequency trading, or customer facing web applications. The
performance of distributed applications such as Memcached
has been shown to be degraded by fundamental datacenter
latency factors [10]. While individual packet latencies are
small, they can accumulate in applications where data is
spread across multiple packets that travel through multiple
switches or servers. Latency variability is also an important
consideration. Processing is often distributed across many
machines in parallel, and overall completion time is dependent
on the slowest response [11]. Some applications rely on large
fan-out requests for data across distributed sources, and though

average latencies may be low, the effect of small variations can
be amplified to cause significant degradation in performance.

While hardware accelerators improve computational latency,
they can also introduce additional communication latency.
Accelerators are typically attached to a host server through
PCI Express (PCIe), which can achieve high throughput
communication. Streaming data from the network must then
traverse the host NIC and software network stack, subsystems
that have been identified to contribute significantly to both
average and tail latencies [12]. Inter-accelerator interconnect
is also gaining importance for larger applications[13]. More
recently, driven by the demand for low latency, there has been
a growing interest in network-attached accelerators, where
an FPGA is connected directly to the network [14], [15],
[16], processing data in-line. While these deployments do
reduce communication latency, their impact on overall system
latency has not been studied in detail. Finally, the virtualisation
required to allow FPGA resources to be shared can contribute
further overhead.

Past work has characterised the components that contribute
to datacenter latency including the different software compo-
nents of host machines, the network interconnect, the NIC,
PCIe, and switch latencies [12]. An in-depth study of PCIe
communication latency and bandwidth as relevant to NICs
was presented in [17]. The latency implications of software
virtualisation were investigated in [18].

There has thus far been no such study into the commu-
nication overheads for FPGA accelerators in the datacenter.
In this paper, we present experiments that characterise these
important overheads, in particular in the context of streaming
applications, where latency is a key performance metric. We
characterise the latency characteristics for PCIe-hosted and
network-attached FPGA accelerators and isolate the additional
delays introduced through virtualisation. We compare these to
latency measurements for a typical host server, allowing us
to isolate the latency contributions of host networking and
management and data transfer to the PCIe accelerators.

Some work has compared the performance of PCIe
and network-attached FPGA accelerators for specific
applications[15] and minimising streaming data latency for
embedded accelerators [19]. We characterise the fundamental
delays more generally, to gain insights into the costs of
accelerator deployments and inform design decisions for a
wide range of scenarios.



II. BACKGROUND AND RELATED WORK

FPGA accelerators connected to a host via PCIe have been
commonly deployed in the datacenter for various applications,
such as machine learning [20], [21] and database process-
ing [22]. PCIe offers a high throughput interface, existing
supporting infrastructure, and a way for the host to control and
configure the accelerator. The focus of such integration is high
throughput, moving larger batches of data to minimise the im-
pact PCIe transfer overheads. Distributed workloads, however,
often comprise streams of data arriving over a network, which
must be received over the host’s network interface, written
to memory via DMA transfers, with file descriptors pointing
to packets stored in the driver ring buffer. Packets are then
processed by the kernel’s network stack before being added to
the socket receive queue, which can then be accessed by an
application running in user space. In order to transfer data to
an accelerator, the user space application typically uses API
calls to write data to a memory buffer and issues a command
to the FPGA to initiate the transfer. The FPGA then reads the
data to be transferred from this buffer. These processes all add
to overall data latency when receiving data from the network
for processing in an FPGA accelerator.

Factors such as I/O, network, and CPU stress have been
demonstrated to have significant impact on the magnitude
and variability of packet delays [18], [23], [24]. The various
contributors of packet latencies in datacenter environments
were examined in detail in [12]. The PCIe interface used by
most NICs can be a significant contributor to latency f[17].
It was demonstrated in [18] that virtualisation using Linux
Vserver typically added a small delay to packet round trip
times, while Xen virtualisation added 3 to 4 times greater
latency.

A solution to the latency problem for high data rate
streaming applications is for the FPGA accelerator to interface
directly with the network, bypassing a host networking stack.
This is possible due to the high I/O performance flexibility
afforded in modern FPGA architectures and is a model that
cannot be considered for accelerators like GPUs that rely
on a host CPU for management. This approach has seen
use in a variety of scenarios [25], [26], [27], and has been
demonstrated to lead to reductions in latency for specific
applications compared to PCIe or purely software solutions.
There has not been a characterisation of the detailed latency
components introduced by this approach however, and there
has not been an investigation into the effects of virtualising
these devices. This model of accelerator integration poses
additional challenges. Without a CPU based host, control
of the accelerator and virtualisation logic is more complex.
Additionally, in some cases it can be more difficult to operate
on large datasets, due to limited available storage.

III. EXPERIMENTS

In this section, we detail our experimental testbed and the
experiments carried out to characterise the communication
latencies and throughputs of PCIe and network-attached FPGA
accelerators. Latency: We use an external device to measure

round trip times in order to achieve accurate measurements
and ensure fairness between different scenarios. This is a
Xilinx KC705 evaluation board programmed with specialised
hardware to transmit, receive, and timestamp packets. Packets
are sent over 10 Gb/s Ethernet using SFP+ transceivers and an
optical cable.

The measurement device sends packets to the platform
under test, recording a timestamp as it leaves. The platform
under test receives each packet up to the point where the
application accelerator would process the data, then returns
it to the measurement device, where a second timestamp is
recorded on reception. The round trip time is the difference
between these two timestamp values. Time values are captured
using a free running 64-bit counter implemented in the FPGA
measurement device fabric, driven by the 156.25MHz physical
board clock, giving a measurement precision of 6.4 ns. Mea-
surements were taken over 20,000 back-to-back transmissions
using a closed loop model where the latency of one packet
is recorded before the next experiment starts. We subtracted
the time taken for the packet to travel out of the measurement
FPGA and to the platform under test over an optical fibre from
all results (96ns). A 1 m optical cable was used to connect
the measurement device to the platform under test in each
experiment.

Throughput: To measure throughput, we used the FPGA
measurement device to generate traffic over the 10 Gb/s Eth-
ernet link to the platform under test at as high a packet rate
as possible, with the minimal 12 frame inter packet gap and
fully saturating the AXI4-Stream interface to the Ethernet core
IP. All packets received at the platform under test are looped
back to the traffic generation board.

The measurement device generates traffic for a 5 second
interval, and counts the number of packets it sends and receives
back from the platform under test in this interval. Each packet
sent in the interval is of the same size, and the tests were
repeated for multiple packet sizes. Using the packets received
per second, an average throughput is calculated.

Host Server: We represent the server platforms typically
found in a datacenter using a Linux server running CentOS 6.7
on a 12 core 2.20 GHz Intel Xeon E5-2650 v4 CPU with 64GB
of RAM. The network card is a 10 Gb/s Mellanox MT26448,
using SFP+ transceivers. The latency characteristics for CPU
based server platforms have been studied in detail in other
work [12]—the measurements detailed in this paper are used
to provide a baseline for fair comparison only.

Data is sent over the network to this machine to be pro-
cessed by a C++ application running in user space. The appli-
cation is pinned to a processor core to improve performance.

For the throughput experiments, to maximise the number
of packets receivable per second, we configured the NIC ring
buffer to be as large as possible for our device.

PCIe Attached FPGA: We used a Xilinx VC709 FPGA
evaluation board hosting a Virtex 7 XC7V690T FPGA as the
accelerator platform. We carried out tests for both virtualised
and non-virtualised FPGA accelerators. For both accelerator
configurations we used PCIe Gen3×8. For non-virtualised



(a) Server setup, with and with-
out either a virtualised or non-
virtualised FPGA accelerator

(b) Network attached FPGA
accelerator, with and without
virtualisation.

Fig. 1: Configurations used to measure server based and
network attached accelerators. Virtualised accelerators have
arbitration logic and utilise PR regions for application logic.

accelerators we based the deign on the open source RIFFA
framework [28]. It compiles the PCIe communication interface
with a fixed accelerator and provides a simple API that
abstracts low level transfer mechanics. This static accelerator
cannot be replaced without significant interruption to the
whole system. The architecture is typical of a fixed function
accelerator found in the datacenter, comprising a generic shell
of communication logic that simplifies the deployment of
applications.

For this scenario, the C++ application running on the host
receives the packets from the tester FPGA, writes them to the
FPGA accelerator using the RIFFA API, reads them back, then
sends them to the measurement FPGA through the network
interface. The write to the FPGA is non-blocking. During
the throughput experiments packets were transferred to the
accelerator packet-by-packet, and not batched.

To test a virtualised FPGA, we used a version of the
DyRACT [29] framework allowing for the application logic
to be modified at runtime without having to reconfigure the
entire FPGA. This allows for multiple accelerators to run
independently on the same device, with dynamic swapping
of accelerators using partial reconfiguration triggered through
the same PCIe interface used for data. This framework thus
includes extra logic that contributes to additional communica-
tion delays as well as additional software components within
the driver. We use the same C++ application as with the non-
virtualised FPGA but using the DyRACT API.

Network Attached FPGA: Finally, we consider the pro-
posed direct attachment of accelerators to the network, as
might be employed in standalone compute units, smart
switches/routers, or smart NICs. We again use the Xilinx
VC709 evaluation board to test this. The board sends and
receives 10Gb/s Ethernet through SFP+ transceiver modules
attached to the FPGA fabric instead via PCIe. This data
travels through the physical interface and Xilinx 10G Ethernet
subsystem IP, which includes the PHY, PCS/PMA and MAC
layers, interfacing inside the FPGA over an AXI4-Stream
interface. A pipeline of 3 state machines is used to remove the

TABLE I: Latency results for 20000 back-to-back UDP pack-
ets in microseconds.

Scenario Median 90th perc. 99th perc. 99.9th perc.

Server 6.961 11.300 13.170 21.770
Server+FPGA 13.100 14.910 22.910 29.130
Server+VFPGA 23.290 33.590 41.960 71.350
Net FPGA 0.667 0.673 0.673 0.673
Net VFPGA 0.726 0.737 0.737 0.737

Ethernet, IP, and UDP headers, with the UDP payload passed
to the accelerator. In our experiments we loop this payload
back out of the application logic, through the network stack
and back out of the device, using the same method in reverse.

We also modified this design to make it more representative
of a virtualised platform, by adding an additional stage that
checks the destination address and directs the data to the
correct accelerator among multiple. An additional FIFO buffer
is also placed between this stage and the application logic. An
arbiter FIFO is implemented before the transmit side of the
network stack. This logic uses round robin arbitration to allow
the multiple accelerator slots to share external bandwidth.

IV. RESULTS

Experiments were conducted using 20,000 back-to-back
80B UDP packet transfers, generating the results shown in
Table I. All results are in microseconds. A small packet
size, close to the minimum frame size is chosen to give a
better indication of the minimum unavoidable latencies in
our scenario. Packets were sent using a closed model, where
the latency measurement of one packet was taken before the
next packet was generated. This was done as uncontrolled
transmission from the measurement FPGA to the server based
platforms would result in queuing, buffer overflows, and
dropped packets.

Median Latency: It is clear that adding an FPGA accel-
erator to a server approximately doubles the packet return
latency. This is due to the additional movement of the data over
PCIe to reach the accelerator and back. Enabling virtualisation
on the PCIe attached FPGA adds a median delay of around
10µs. Part of this is the additional logic added to the FPGA
design, but the change in software running on the host server
also significantly contributes to this extra delay. Utilising
more of the available virtualised slots on the FPGA could
also potentially increase latency further if there is significant
saturation of the PCIe interface due to contention. Hence
an FPGA accelerator must accelerate an application by a
sufficient amount to overcome these additional latencies.

The network attached FPGA has latency an order of mag-
nitude smaller, as packets bypass the PCIe interface of the
network card, the server network stack, and the PCIe link to
the FPGA. While these delays therefore seem insignificant,
network attached accelerators are often deployed for low
latency, or high data rate applications, where even the sub-
microsecond delay introduced could be relevant.



TABLE II: Breakdown of delays measured from round trip
times of a packet travelling through a networked FPGA
accelerator design, for 80B UDP packets.

Delay Source Median Delay(µs)

Packet processing logic 0.135
PHY+MAC 0.532
User logic (simple loop-back) 0.013
Virtualisation logic (for V.FPGA) 0.059
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Fig. 2: Cumulative distribution function (CDF) of latencies for
each scenario.

FPGA Latency Breakdown: We use hardware counters
in the FPGA to isolate sources of the delays in the device;
results are shown in Table I.

The packet processing layer, which strips the layer 2/3/4
headers and passes data to the accelerator and user logic in our
experiments contributes to the total delay less than the PHY
and MAC cores. In more complex designs that may implement
more complete layer 3 and 4 functionality, packet processing
delay will be higher but a comparable order of magnitude.
Additionally, virtualisation logic adds further delay when there
are multiple active accelerators present, as network access
to different accelerators must be arbitrated. In our design,
the accelerator logic loops data back using a FIFO, so adds
minimal latency of a few clock cycles. For a real processing
task, this latency would depend on accelerator datapath.

Latency Distributions: The CDFs in Figure 2 show the
latency distributions for each scenario, demonstrating the
relative magnitudes and variations for the alternative platforms
(note the logarithmic x-axis).

Tail Latencies: We further examine the tails of these latency
distributions. While the median latency is a useful measure,
large spikes, even if infrequent, can significantly impact
latency-sensitive applications and undermine a system that
functions well most of the time. Latencies at the distribution
tail have also been acknowledged to have a negative impact
on applications where processing is distributed across many
machines in parallel, and overall completion time is dependent
on the slowest response [11]. To examine these latencies,
we measured the 90th, 99th and 99.9th percentile recorded
latencies in each scenario, with results shown in Table II.

The server running software has around a 6µs difference
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Fig. 3: Median latency for differing packet sizes.

between the median and 99th percentile, almost double the
delay, while the 99.9th percentile latency is around 3× the
median, meaning that 1 in every 1000 packets may have a
latency this high.

The PCIe FPGA accelerators show less of a latency spread
relative to the median. There is around a 2µs difference (14%)
between the median and 90th percentile for the non-virtualised
FPGA, and a 10µs difference (75%) between the median and
99th percentile, suggesting that this variability is primarily due
to the host. There is minimal latency variation for the network
attached FPGAs, due to all packet processing being done in
dedicated hardware. As soon as software network stacks are
introduced, latencies become significantly less deterministic.

Packet Size: We repeated the experiments with different
packet sizes, with results shown in Figure 3. Each run of
the experiment used 20,000 UDP packets of the same size.
All platforms show an increase in median latency as packet
size increases. The Server and PCIe platforms show greater
sensitivity to packet size, with the virtualisation causing further
increases. The PCIe accelerators add a relatively static over-
head on top of the host latency, regardless of packet size. Both
network attached FPGAs show smaller increases in latency.
The initial increase in latency for packet sizes up to around
200 bytes is significant, but reduces as packets grow further.

Throughput: Results are shown in Figure 4, for vary-
ing packet sizes. These are values measured with no actual
processing and therefore represent the upper limits enforced
by the communication infrastructure. These measurements
include the reception of the packets at the network interface,
and transfer to the accelerator.

Predictably, the network-attached FPGA platforms approach
line rate for 10Gb Ethernet, as there is no software involvement
or additional interfacing. Adding the extra virtualisation logic
has minimal effect on the throughput, as the virtualisation
is all hardware based. What is likely to cause reductions in
effective throughput for a particular accelerator is when there
are multiple accelerators deployed across the other virtualised
slots, and this bandwidth must be shared.

The server based platforms suffer considerable throughput
penalties in comparison. The host running software was lim-
ited to a bandwidth of 153MB/s. While the NIC hardware was
capable of receiving data at line rate, the application was not
able to fetch the packets from the buffer fast enough, causing
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Fig. 5: Average measured packets per second for varying frame
sizes.

overflows and thus lost packets. This was despite pinning the
application to a CPU core, and maximising the size of the
ring buffer allocated to the NIC. Adding the non-virtualised
PCIe accelerator into the path resulted in the throughput
being reduced to 133MB/s on average, a 13% reduction. The
virtualised FPGA accelerator caused an even greater reduction
in the total throughput, to around 90MB/s, a 41% decrease.
The extra software driver components associated with the
virtualisation are likely to be the main cause of this.

The achievable packets per second that can be received and
then transmitted back out for each platform are shown in
Figure 5. This metric can be important for some streaming
applications that rely on packet by packet processing. The
network attached FPGA platforms again show the ability to
process packets at line rate. The decrease in packet processing
rate as packet size increases is due to the maximum number
of packets that can be transmitted on a 10Gb Ethernet link
decreasing as packet size increases.

The server and non-virtualised PCIe accelerator show a
slight decrease in packets processing rate as packet size
increases, likely due to the ring buffer allocated to the NIC
and the socket buffer using pointers instead of the packet data
itself. This means the buffers can hold the same number of
packets regardless of the packet size. The slight decrease in
the packets per second can then be attributed to the handling
of packet data in the user space application.

V. DISCUSSION

PCIe Accelerators: Utilising PCIe FPGA accelerators re-
sults in a significant additional latency for distributed stream-
ing applications. Virtualising the PCIe accelerator increases
latency, mostly due to the extra software that manages virtual-
isation. Driver optimisations and improved software control of
the virtualised accelerator could significantly improve latency.

While offload to PCIe accelerators has traditionally focused
on maximising throughput, especially for large machine learn-
ing applications, distributed data across a network introduces
a significant throughput bottleneck. Batched can mininmise
PCIe overhead and enhance throughput, but this introduces
extra latency, undesirable for streaming applications. Even
with large batches, total throughput is limited by the host and
its networking stack.

Network Attached Accelerators: The communication la-
tency associated with the network attached accelerators is
predictably much lower than PCIe hosted accelerators. Virtual-
isation logic added minimal additional latency - however when
there is competition for the shared communication resources
from accelerators in different virtualised slots, this is likely to
change. The biggest contributor to latency is the physical and
MAC layers, implemented in the Xilinx Ethernet core.

With the datacenter moving towards 40Gb/s and 100Gb/s,
the need for direct offload from the network interface to the
accelerator is increasing, via smart NICs or other networking
elements that enable FPGA offload. Network attached FPGA
accelerators however pose additional challenges, mainly fo-
cused around virtualisation, and managing resources across
multiple applications with minimal software involvement.

VI. CONCLUSION

In this paper we have presented detailed experiments to
measure the communication latency characteristics of FPGA
accelerators in a datacenter context. We showed the latency
overheads inherent in traditional deployments of accelerators
hosted on a server through PCIe, and the emerging approach
of network attached accelerators. This includes how latency is
affected by packet size, and the latency distributions and tail
latencies. We additionally detailed the throughput limitations
of these deployments in the context of distributed applications
where data is received over the network.

Our measurements can be used to aid in design decisions in
the deployment of FPGA accelerators. For PCIe deployments,
latency and throughput measurements can be used to calculate
optimal batch and buffer sizes for different applications. For
network attached accelerators, the measured latencies were
comparatively small, but these devices are often used for
applications that require ultra-low latency, where even sub-
microsecond communication delays measured are relevant.
These small delays will be even more relevant with emerging
40Gb/s and 100Gb/s networking.
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