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ORIGINAL ARTICLE

Identifying geographical heterogeneity of pulmonary tuberculosis in 
southern Ethiopia: a method to identify clustering for targeted interventions
Mesay Hailu Dangissoa, Daniel Gemechu Datikob and Bernt Lindtjørn a,c

aDepartment of Public Health, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia; bDepartment of Clinical 
Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; cCentre for International Health, Faculty of Medicine, University of 
Bergen, Bergen, Norway

ABSTRACT
Background: Previous studies from Ethiopia detected disease clustering using broader geo
graphic settings, but limited information exists on the spatial distribution of the disease using 
residential locations. An assessment of predictors of spatial variations of TB at community 
level could fill the knowledge gaps, and helps in devising tailored interventions to improve TB 
control.
Objective: To assess the pattern of spatial distribution of pulmonary tuberculosis (PTB) based 
on geographic locations of individual cases in the Dale district and Yirga Alem town in 
southern Ethiopia.
Methods: The socio-demographic characteristics of PTB cases were collected using a struc
tured questionnaire, and spatial information was collected using geographic position sys
tems. We carried out Getis and Ord (Gi*) statistics and scan statistics to explore the pattern of 
spatial clusters of PTB cases, and geographically weighted regression (GWR) was used to 
assess the spatial heterogeneities in relationship between predictor variables and PTB case 
notification rates (CNRs).
Results: The distribution of PTB varied by enumeration areas within the kebeles, and we 
identified areas with significant hotspots in various areas ineach year. In GWR analysis, the 
disease distribution showed a geographic heterogeneity (non-stationarity) in relation to physi
cal access (distance to TB control facilities) and population density (AICc = 5591, R2 = 0.3359, 
adjusted R2 = 0.2671). The model explained 27% of the variability in PTB CNRs (local R2 ranged 
from 0.0002–0.4248 between enumeration areas). The GWR analysis showed that areas with 
high PTB CNRs had better physical accessibility to TB control facilities and high population 
density. The effect of physical access on PTB CNRs changed after the coverage of TB control 
facilities was improved.
Conclusion: We report a varying distribution of PTB in small and different areas over 10 years. 
Spatial and temporal analysis of disease distribution can be used to identify areas with a high 
burden of disease and predictors of clustering, which helps in making policy decisions and 
devising targeted interventions.
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Background

Tuberculosis (TB) is an infectious disease of public 
health importance causing considerable mortality and 
economic burden [1]. The burden of the disease 
varies between and within countries due to 
a varying distribution of individual and community- 
level risk factors, and variations in TB control pro
gramme performance. Different studies report spatial 
[2–4] and spatiotemporal clustering [4–8] of the dis
ease. Adverse socio-economic conditions [9–13], 
a high prevalence of HIV infection [14–17], geo
graphic factors such as altitude [18–21] and access 
to TB control facilities are all related to variations in 
the burden of disease.

Ethiopia has been implementing community-based 
TB control interventions [22], and the country has 
expanded directly observed treatment short course 

(DOTS) services to improve access to underserved com
munities in rural and hard-to-reach areas. As a result, 
the performance of TB control services has improved; 
however, the burden of disease remains a public health 
challenge. An assessment of trends in case notification 
rates (CNRs) of TB [23], could help understand the 
performance of TB control programmes such as esti
mating case detection, and missed cases (who were 
either not diagnosed and treated or diagnosed but not 
reported) [24]. Evidence shows that the variations in 
disease distribution can be due to poor access to diag
nostic and treatment facilities [25], or disproportionate 
distribution of risk factors. Reports from Ethiopia high
lighted variations in CNRs [23] and spatiotemporal 
clustering of TB [26,27]. The variations indicate the 
importance of targeted interventions and resource allo
cation at local level based on the burden of the disease.
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Spatial analysis of TB helps understand the spatial 
epidemiology of the disease occurrence in different 
geographic or administrative levels [25,27]. 
Understanding factors contributing to the geographic 
heterogeneities in disease occurrence helps in devis
ing targeted intervention at local level. Evidence from 
other countries also suggests the importance of 
understanding the spatial distribution pattern of TB 
in a community to design focused interventions [28]. 
However, studies from Africa and Ethiopia using TB 
notification data aggregated at larger areas and popu
lations, to assess the spatial distribution of the disease 
have poor resolution. Moreover, several of the pre
vious studies conducted at broader geographic level 
did not exclude cases who came from neighbouring 
areas diagnosed and treated in the reporting health 
facilities and could have underestimated or overesti
mated the true disease burden [29,30].

A previous study from Ethiopia reported the spa
tial and spatio-temporal analysis of TB at kebele level, 
the smallest administration unit in Ethiopia [27]. 
However, even smaller geographic units, such as enu
meration area (EA) could provide better evidence 
about the disease distribution pattern at neighbour
hoods, and could reduce ecological bias. Investigating 
spatial variations of disease at coarser geographic 
scale conceals local and individual variations. 
A small-area scale analysis is recommended to reduce 
ecological biases because the analysis is closer to the 
level of the individual [31]. EA-level aggregation and 
analysis of the data requires individual TB cases’ 
location (geographic coordinates) because TB notifi
cation data do not have EA-level address of patients. 
Moreover, an assessment of the relationship between 
predictors and outcome variables in different geo
graphic levels is important to understand the magni
tude and direction of factors contributing to spatial 
variations of the disease.

To our knowledge, no previous studies from 
Ethiopia analysed possible disease clustering using 
the EA and spatial heterogeneities in relationships 
between PTB CNRs and potential predictors such as 
physical access, population density, household popu
lation size and altitude. A study from southern 
Ethiopia employed a linear regression to assess 
a relationship between TB CNRs and selected envir
onmental factors, but the study did not assess spatial 
heterogeneities in relationships between predictors 
and TB CNRs [25]. Common analysis such as linear 
regression models and Ordinary Least Square analysis 
are often employed to assess the relationships of out
come and predictor variables. However, these ana
lyses do not show heterogeneities in relationships in 
explanatory variables in each geographic level. Spatial 
heterogeneity or non-stationarity in relationship 
between predictors and TB CNRs can be addressed 
using Geographically Weighted Regression (GWR) 

which is being used to understand the spatial hetero
geneities of other communicable diseases [32–34]. 
Understanding the spatial distribution of PTB at 
smallest geographic units helps in devising focused 
interventions at community level. We therefore 
aimed to assess the trends in spatial distribution of 
the disease using the spatial information of individual 
PTB patients aggregated at EA level. We also looked 
for spatial heterogeneities in the relationship of dis
ease distribution with access to TB control facilities 
over 10 years in the Dale district and Yirga Alem 
town, southern Ethiopia.

Methods

Study area and setting

The study was carried out in the Sidama administration, 
southern Ethiopia. Currently, the administration has 
a population of about 4.6 million people, 30 districts, 6 
towns and 1 city administration. We conducted the 
study in the Dale district and Yirga Alem town. The 
Dale district consists of 36 rural and two semi-urban 
kebeles, and the Yirga Alem town has five urban 
kebeles. Kebele is the lowest administrative unit in 
Ethiopia with an average population of about 5000 
people. However, most kebeles have the population 
ranging from about 5000 to 10,000 people. In 2012, 
the population of the Dale district was 283,424 [35]. 
We included all 43 kebeles in the study. There are 458 
enumeration areas (EAs) in the Dale district and Yirga 
Alem town, and there are 4–17 EAs in each kebele.

Data collection and statistical analyses

The data were collected from September 2012 to 
March 2013. First, we registered PTB cases who were 
enrolled for treatment from 2003–2012 in all health 
facilities providing Directly Observed Treatment Short 
course (DOTS) strategy in the Dale district and Yirga 
Alem town administration from unit TB registers. We 
also linked the address of PTB cases that were from the 
study area but enrolled for treatment in the neighbouring 
districts to their actual home address and included them 
in the study [23]. PTB cases from other districts enrolled 
for treatment in the Dale district and Yirga Alem town 
were excluded from the study. This was done to avoid 
under- or over-reporting of the cases in actual adminis
trative areas. Under- or over-reporting of the cases hap
pen because cases from neighbouring areas are not 
a subset of the total population used as a denominator 
to calculate CNRs. On the other hand, cases that go to 
other areas for diagnosis and treatment are often 
reported outside of the catchment population. These 
cases are part of the denominator but not included in 
the numerator to calculate the CNRs and contribute to 
under reporting in the actual geographic area or in true 
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address [23]. Therefore, overlooking such information in 
spatial analyses can result in erroneous conclusion.

A list of PTB cases diagnosed and registered for treat
ment for each urban and rural kebele was prepared. We 
went to each kebele to verify whether the cases were 
living in the particular kebele, and the community lea
ders and elders who were permanent residents of those 
kebeles were asked to verify the address of PTB cases. We 
used a contact person for the treatment from the unit TB 
registers to identify cases that were not identified by the 
community leaders and elders. Thus, we were able to 
identify PTB patients who were not identified by the 
community leaders and elders by interviewing the treat
ment contacts.

We recruited local guides from the community who 
knew the residences of the cases in each kebele, and the 
guides were used to locate the address of the cases. The 
data collectors were university graduates and trained on 
the data collection formats (checklist), and how to collect 
geographic information (latitude, longitude, and alti
tude) of households and TB control facilities using the 
geographic positioning system (GPS) tools. We used 
Garmin GPS-72 H and 76-AM receivers with accuracy 
less than 10 metres (ranged from 3 metres to 9 metres). 
A pretested structured questionnaire was used to collect 
the socio-demographic information and the GPS recei
vers were used to collect the geographic coordinates and 
altitude of TB cases’ locations. Altitude data were col
lected to assess relationships between PTB CNRs because 
previous studies reported the association between TB 
CNRs and altitude [19–21]. We obtained informed con
sent from the study participants prior to the interview 
and the data collectors interviewed the cases at their 
residences if they were alive at the time of interview 
and family members of the cases were interviewed if 
the cases were deceased. We supervised the data collec
tion process on a daily basis during the study period.

The geographic data (geographic coordinates) were 
downloaded from GPS receivers using Garmin DNR 
5.4.1, 2001 Minnesota, and exported to ArcGIS 10.4. 
The collected data were double entered by different 
individuals and errors such as duplication and missing 
information were corrected. We used a geographic pro
jection of the World Geodetic System (WGS 1984), 
Universal Transverse Mercator (UTM) Zone 37 N. All 
PTB cases were geocoded and matched to the kebele 
and EA-level layers of polygon and points using ArcGIS 
10.4 (Figures 1 and 2).

We aggregated the number of cases (point data) in 
each EA in each kebele for each year for spatial analysis. 
Enumeration area centroids were used to represent 
a geographically weighted central location as co- 
ordinates.

We carried out a hotspot analysis for each year to 
explore the pattern of spatial clusters and location of 
PTB cases over 10 years. The hotspot analysis was 
done by employing the Getis-Ord (Gi*) [36] statistics 

in ArcGIS 10.4. We used the mean and each year’s 
CNRs of PTB per 100,000 people for the analysis. The 
Gi* statistics perform the spatial analysis by looking 
at each feature within the context of a neighbouring 
feature. When the local sum of PTB CNR is signifi
cantly different from the expected sum, and the dif
ference is too large to be the result of random chance, 
a statistically significant Z-score results and the com
puted values of Gi*≥ 1.96 and a P-value of < 0.05 
were both considered to represent significant hot
spots [36]. Last, we explored the point distributions 
of individual PTB cases and compared the distribu
tion pattern of them with the results of Gi* statistics.

We also used a Kulldroff’s scan statistics (SaTScan 
9.2) [37], to identify purely spatial and space-time clus
ters. The scan statistics carry out a purely spatial- and 
space-time cluster analysis, detect clusters size and loca
tions, compute the relative risk and provide a P-value 
using Monte Carlo simulation. The inputs used were 
coordinates (EA centroids), population of each EA, and 
number of cases aggregated at each EA location for 
spatial and space-time analysis. The number of permu
tation was set to 999, and a P-value <0.05 considered to 
be statistically significant high rates. We also included 
distance to TB control facilities as co-variate. The details 
of the spatial and space-time analysis are presented 
elsewhere [37,38].

In 2010, a community-based active case finding 
campaign was employed by the administration’s 
health office to improve case detection in the district 
and the town, and since 2011 a community-based 
active case finding intervention has been implemen
ted in all kebeles in the study area to improve TB 
CNRs and treatment outcomes. Moreover, the num
ber of DOTS and TB diagnostic facilities also 
increased in 2010–2012, which improved physical 
accessibility to TB services.

We obtained a population size of each kebele and 
EAs for each year (2003–2012) from the Central 
Statistical Agency of Ethiopia [35], which was pro
jected from 2007 census. Population density per 
square kilometre for each EA and for each year was 
also computed. The elevations above sea level (alti
tude) for each EA were extracted from ASTER Global 
Digital Elevation Model Version 2 [39]. We com
puted mean household population size for each EA. 
The mean Euclidean distance from each enumeration 
location to the nearest TB diagnostic and treatment 
facilities was also computed for each year using 
proximity-near function of ArcGIS 10.4.

OLS and GWR models are often used to analyse 
spatial relationship between outcome and explanatory 
variables. Global regression analysis such as OLS 
regression models estimate one coefficient for each 
explanatory variable, averaged for all areas, whereas 
GWR models estimate a regression coefficient for 
each location which show spatial heterogeneities in 
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the association between explanatory variables and 
outcomes. The GWR models also help test 
a hypothesis that whether the relationships between 
explanatory and outcome variables vary across space 
(different geographic areas). The application and 
details of GWR in epidemiological studies were 
explained elsewhere [32,34].

The equation used for OLS is; βo +β1 +β2 + β3 +β4 
+ε, where, (βo +β (population density) +β (physical 
access) +β (Household population size)+ β (Altitude) 
+ε; whereas the equation for GWR is yi ¼ β 
0 ui; við Þ þ

Pk

j¼1
βjðui; viÞxijþ εi; where yi is the value of 

the outcome variable (PTB CNRs) at the coordinate loca
tion i(EA) where ui,vi represents the coordinates of i, β0 

and βj represents the local estimated intercept and effect 
of variable j for location i, respectively. The locations near 
to i have a more influence in the estimation of βj (ui,vi) 
than locations farther from i. In the GWR model localized 
parameter estimates can be obtained for any location 
i which in turn allows for the creation of a map of 
parameter values and an examination of the spatial varia
bility (non-stationarity) of these parameters.

First, we carried out the global method, OLS 
model to look for the relationship between outcome 
and predictor variables. Then we compared the 
results of OLS regression model with local GWR 
model. Corrected Akaike Information Criterion 
(AICc) is often used to compare the relative fitness 
of the model and the goodness of fit of the model was 
also explored using R-squared and adjusted 
R-squared. AICc is a measure of model performance 
and is helpful for comparing other regression models. 
If a difference in the AICc values between OLS and 
GWR models vary by more than three [40], a model 
with the lower AICc is considered as the better fit 
model.

Results

Socio-demographic and clinical characteristics of 
PTB cases

From 3883 PTB cases geocoded to the actual address, 
we collected the socio-demographic information and 
geographic coordinates of 3237(83.4%) PTB cases 
(Figures 1–2). Twenty smear-negative PTB and 8 
smear-positive PTB cases’ locations were from the 
same households (having the same coordinates), from 
the same family corresponding to the same geographic 
location. Fifty-two percent, 1695 cases, were men and 
1542 (47.6%) were women. The mean age of the respon
dents was 30.4 years (SD = 15.4). Majority, 74% of cases 
were from rural areas (Table 1). About 39% of cases had 
no schooling and 2272 (70.2%) were smear-positive 
PTB cases. High proportions of PTB cases were notified 
in 2011 and 2012. The overall treatment success was 
82.3% (increased from 81.6% in 2003 to 90.3% in 2011, 

and declined to 85.3% in 2012). The death rate was 5.2% 
during 2003–2012, declined from 11.8% in 2003 to 3% 
in 2012. (Supplementary Table 1).

Spatial distribution of pulmonary tuberculosis, 
access to TB control facilities and environmental 
factors

The PTB rates varied between kebeles within the 
district, and ranged from 0/105 to 584/105 people in 
2003 and were between 0/105 to 689/105 people in 
2012 (Supplementary Figure 2). The mean PTB CNRs 
between kebeles ranged from 51/105 to 337/105 peo
ple from 2003 to 2012. The EA-level mapping also 
shows a varying pattern of disease distribution in 
different neighbourhoods. The mean PTB CNRs var
ied between EAs within kebeles ranged from 0/105 

people to 856/105 people from 2003–2012. High rates 
of PTB was observed in the enumeration areas within 
Semen Mesenkala, Chume, Moto, Wayicho, Shoye, 
Tula, Yirgalem town, Manche, and in the Sasamo 
Dela kebeles in 2003–2012 (Figure 3 and 
Supplementary Figure 2).

There were also areas with stable and low CNRs 
over ten years. EAs with new cases of PTB in the 
following year were adjacent to areas with PTB cases 
in the preceding years (Figure 3 and Supplementary 
Figure 3). High PTB CNRs were observed in south- 
eastern border and central parts around urban setting 
of the study area in 2003–2005.

The distribution pattern of PTB CNRs changed in 
2007–2010. Thus, the high rates of PTB were identified 
in central and northern parts of the study area. In 
2011–2012, high rates were found in northern and south
ern parts of the study area. Overall high CNRs were 
identified in northern, central and south-eastern parts 
of the district (Figure 3 and Supplementary Figure 2).

The mean population density ranged from 8 to 13285 
people/km2 in EAs. North-eastern, south-eastern and 
central urban settings have a higher population densities 
than northern, western and south-western parts of the 
study area (Supplementary Figure 4).

The mean distance ranged from <1 km to 10 km 
between EAs in 2003–2008 and declined to <1 km to 
6 km in 2012 (the reduction ranged from <1 km to 
7.7 km between EAs). North-eastern, western, 
south-western and north-western areas and borders 
of the study area have poorer physical access (longer 
distance) than northern, north-central and south- 
eastern parts. The mean household population size 
also varies between EAs (ranged from 1 to 6 people 
per household). The EAs have altitudes range from 
1615 metres above sea level to 2395 metres above sea 
level, and 92.4% of the EAs have altitudes ranging 
from 1701 metres to 1999 metres (Supplementary 
Figure 4).
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Trends of spatial clustering of pulmonary 
tuberculosis

The Gi* statistics identified local clusters (hotspots) 
of the disease across different areas in different 
years. Overall the hotspots were identified in 29 
(6.3%) of EAs in one rural (Awada), and three 

urban kebeles (Stadium, Mehal Ketema and 
Masincho Mewucha), which are located in the cen
tral part of the study area (Figure 4). These areas 
are parts of urban setting and EAs in neighbouring 
kebeles. No significant disease cluster was detected 
in Wuha Limat and Kidist Mariam kebels though 
these kebeles are urban settings with high rates. In 

4960 cases of all forms TB 

844 extra-pulmonary TB cases and   
19 cases with no TB classification were 
excluded because we aimed to assess PTB 
because it is contagious 

4097 pulmonary PTB cases 
2846 were smear-positive, 1251 were smear-
negative  

214 cases were the same individuals 
enrolled repeatedly and re-treated; 176 
were 2 times, 10 were treated 3 times, 2 
were treated 4 times 

3883 cases were followed up 
2701 smear positive and 1182 smear 
negative 

3237 (83.4%) PTB (2272 smear positive and 
965 smear-negative) cases’ geographic 
locations were identified, recorded and 
analysed 

646 lost-to-follow up (16.6%) 
429 smear positive and 217 smear 
negative 

Figure 1. Cohort flow chart of pulmonary TB cases included in the spatial analysis in the Dale district and Yirga Alem town, 
Ethiopia (2003–2012).

Figure 2. Spatial distribution of individual PTB cases and TB control facilities in the Dale district and Yirga Alem town, Sidama, 
Ethiopia.
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other kebeles where the disease clusters were 
detected, there were also EAs without significant 
clusters.

The purely spatial analysis also showed a most 
likely clusters in 26 (5.8%) locations and four 
secondary clusters in in 36 (7.9%) locations in 
central, western, and northern parts of the study 
area. The most likely space-time clusters were also 
identified in 48 (10.5%) locations in northern and 
north-eastern parts in 2007–2012, and the second
ary space-time clusters were identified in central 
and southern and south-western parts in 
2003–2007 (Figure 5 and Supplementary 
Table 2).

We looked for the pattern of the clusters in 
each year and found variations in the location of 
clusters. The EAs with hotspot of the disease ran
ged from 82 (17%) in 2003 to 28(6.1%) in 2012. In 
2003, significant clusters were identified in central 
location, south-eastern border, and in two EAs in 
northern part of the district. This pattern has chan
ged and the clusters were identified almost in the 
same locations and became stable in 2004, 2005, 
2008, 2009 and 2011. In 2007, the spatial clusters 
showed similar pattern with the clusters in 2003 
except differences in few locations. In 2010, the 
spatial clusters identified in 66 (14%) of EAs in 
new locations in the northern and north-eastern 
part of the study area. In 2012, the spatial hotspots 
showed different pattern and were detected in new 
areas in central and south-central parts of the study 
area. In the same year, the clusters detected in 
urban settings in the preceding years were detected 
no longer (Figure 4).

Table 1. Sociodemographic characteristics of PTB cases in the 
Dale district and Yirga Alem town in Sidama, southern 
Ethiopia (2003–2012).

Variables Frequency (%)

Age group
0–14 312 (9.6)
15–24 906 (28.0)
25–34 919 (28.4)
35–44 471 (14.6)
45–54 331 (10.2)
55–64 172 (4.3)
≥65 126 (3.9)
Sex
Women 1542 (47.6)
Men 1695 (52.4)
Place of residence
Urban 838 (25.9)
Rural 2399 (74.1)
Educational Status
Primary (1–6) 995 (30.7)
Junior secondary (7–8) 426 (13.2)
High school (9–12) 473 (14.6)
Above high school (12+) 95 (2.9)
No schooling 1248 (38.6)
TB classification
Smear Positive 2272 (70.2)
Smear Negative 965 (29.8)
Year of treatment
2003 255 (7.9)
2004 214 (6.6)
2005 233 (7.2)
2006 207(6.4)
2007 356 (11.0)
2008 370 (11.4)
2009 324 (10.0)
2010 315 (9.7)
2011 451 (13.9)
2012 495 (15.3)
Not mentioned 17 (0.5)
Treatment outcome
Cured 1683 (52)
Completed 981 (30.3)
Died 169 (5.2)
Lost-follow-up 183 (5.7)
Transferred out 103 (3.2)
Treatment failure 5 (0.2)
Unknown 113 (3.5)

Figure 3. Trends in PTB CNRs between 2003–2012 at EA levels in the Dale district and Yirga Alem town, Sidama, Ethiopia.
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Factors associated with the geographical 
distribution of PTB

The global OLS regression showed a spatially signifi
cant relationship between physical access (coefficient 
−17.7, P <0.0001), population density (0.015, 
P <0.0001) and altitude (−0.091, p = 0.0407) with 
PTB CNRs. Household population size did not 
show a significant association. Overall the model 
explained 20% of spatial variations (AICc = 5607, 
R2 = 0.2098, adjusted R2 = 0.20278) (Table 2).

We employed GWR analysis to determine the 
spatial heterogeneity in association between access 
to TB control facilities, population density, popula
tion size and altitude, and PTB CNRs. However, we 
excluded house hold population size because it was 
not significantly associated with PTB CNRs in the 
global OLS model. Similarly, we excluded altitude 

from the GWR model because of local multicollinear
ity. Distance from TB control facilities and popula
tion density were included in the final model.

Overall the model explained 27% of total model 
variations (ranging from 0.0002–0.4248 between 
EAs). The AICc (5591) was less than that for global 
model and the co-efficient of determination 
(R2 = 0.3359, adjusted R2 = 0.2671) was also higher 
than that of the global model. Therefore, the GWR 
model was better at modelling the data (Table 3 and 
Figure 6). We also looked for the distribution of local 
R2 and it was distributed heterogeneously in 458 EAs. 
The model weakly fitted in northern, north-eastern, 
south-eastern and north-eastern borders of the study 
area. The model was better fitted in central and 
north-western borders of the study area (R2 ranging 
from 0.3204 to 0.4248) (Figure 6).

Table 2. Summary of OLS results.
Coefficients of OLS results

Variable Coefficient Standard error t-statistic Probability Robust SE Robust-t Robust Probability VIF*

Intercept 308.32 109.87 2.81 0.00523 87.076 3.541 0.00045
Distance −17.65 3.11 −5.67 0.0000* 2.83 −6.23 0.0000* 1.18
House hold population 9.073 6.12 1.48 0.139 5.73 1.584 0.1140 1.03
Mean population density 0.015 0.0024 5.93 0.0000* 0.0031 4.797 0.000003* 1.17
Altitude −0.091 0.057 −1.587 0.1133 0.0443 −2.053 0.04070 1.10

Model diagnostics of OLS
Number of observation 458
Multiple R squared 0.20976
Adjusted R-squared 0.20278
AICc 5607
Joint F statistic 30.1 prob (>F), (4453) degrees of freedom p <0.001 -
Joint Wald statistic 91.15 prob (>chi-squared), (4) degrees of freedom p <0.001 -
Koenker (BP) statistic 13.45 prob (> chi-squared), (4) degrees of freedom P = 0.009 -
Jarque-Beta statistic 256.1 Pro (>chi-squared), (2) degrees of freedom p <0.001 -

Coefficient represents the strength and type of relationship between each explanatory variable and dependent variable 
VIF* variance inflation factor 

Figure 4. Trends in spatial clustering of PTB between 2003–2012 in the Dale district and Yirga Alem town, Sidama, Ethiopia.
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We also analysed the data in two time periods 
(2003–2008 and 2010–2012) to assess whether 
changes occurred in relationship between physical 
access and PTB CNRs. This is because in 
2003–2008, the physical access to TB control facilities 
was the same and there were only five TB control 
facilities in the district. In 2010–2012, physical access 
to TB control facilities improved due to higher cover
age of health facilities (increased to 11 TB control 
facilities) than in 2003–2008 and due to community- 
based interventions. Therefore, we found the geogra
phical heterogeneities in the relationship between 
distance to TB control facilities and TB CNRs in 
2003–2008 (AICc = 4745, R2 = 0.3088, adjusted 
0.2608). In 2010–2012, heterogeneity in the relation
ship between distance and population density with 
PTB CNRs was weaker (AICc = 5908, R2 = 0.1869, 
adjusted R2 = 0.1238). The model explained only 12% 
of variations (Table 3).

Distance had negative regression coefficients in 
south-eastern, north-western and eastern parts of 
the study area. On the contrary, south-western, 

central, northern and north-eastern borders of the 
study area had positive regression coefficients. Thus, 
areas with longer distance to TB control facilities 
(with poor access) had lower case notifications and 
there were also areas with short distance (with better 
physical access) with low PTB CNRs. Population 
density also showed similar trends (Figure 7). This 
implies that factors associated with PTB CNRs were 
important determinants in some areas and were not 
important in others. This helps to assess how the 
relationships between physical accessibility vary spa
tially with PTB CNRs even after adjusting for popula
tion density.

Discussion

We found varying trends in the distribution of PTB 
clustering over a decade in the study area. There were 
also spatial heterogeneities in relationship between 
access to TB control facilities and population density, 
and PTB CNRs. As access to TB control facilities 
improved, the location where spatial clusters 
occurred has changed. Thus, improved access to TB 
control facilities could be a contributing factor to 
a higher case notification of the disease and under
lying clusters in most areas. However, the effect of 
physical access on PTB CNRs changed after coverage 
of TB control facilities was improved, and during the 
introduction of community-based interventions in 
2010–2012.The introduction of active case finding 
intervention, which was implemented in all areas 
might have increased TB care seeking and service 

Table 3. Summary results of geographically weighted regres
sion (GWR).

Parameters

Time periods

2003–2012 2003–3008 2010–2012

Band width 3016.7 3605.8 3603.4
Residual squares 4558373.6 6719167.6 9537021
Effective number 43 30 33.9
Sigma 104 125.4 149.9
AICc 5587 5587 5908.5
R2 0.33587 0.33587 0.18694
Adjusted R2 0.26707 0.26707 0.12378

Figure 5. Purely spatial and space-time clusters of PTB in the Dale districts and Yirga Alem town in Sidama, Ethiopia, 
20,103–2012.
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utilization. High population density also associated 
with high PTB CNRs in some areas; however, there 
were areas with high population density had low PTB 
CNRs. This implies variations in relationships 
between population density and PTB CNRs 
between EAs.

Our finding is in agreement with other studies that 
reported the occurrence of spatial variations and 
clustering of TB [5,6]. Possible reasons for the disease 
clusters in our finding could be partly explained by 
a varying distribution of access to TB control facilities 
and differentials in the programme performance. The 

Figure 7. Spatial distribution of local regression coefficients (A) distance, (B) population density, (C) standard residuals for each 
enumeration area, based on the computation of Geographically Weighted Regression model. The dependent variable was PTB 
CNRs in Dale district and Yirga Alem town, Sidama, 2003–2012.

Figure 6. Spatial distribution of local R2 values for GWR analysis in the Dale district and Yirga Alem town, Sidama, southern 
Ethiopia.
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spatial heterogeneity of the disease distribution could 
be attributed to variations in socioeconomic status, 
environmental factors, population density and access 
to TB control facilities [41].

We also found variations in the distribution pat
tern of the disease from year to year and the clusters 
were detected in the neighbourhoods close to areas 
where the disease clusters were identified in the pre
ceding years. However, the spatial clusters were stable 
in central part of the district in 2004, 2005, 2008, 
2009 and 2011. There were also significant clusters 
of the disease in the closest neighbourhoods and it 
was only detected in some EAs within kebeles (not in 
all EAs). This could partly explain the ongoing trans
mission of the disease from the neighbourhoods with 
the highest rates of the disease over years or an 
improved access to TB diagnostic facilities, which 
increases TB case notification.

Areas characterized by the disease clusters had 
a better access to TB control services were urban 
and semi-urban settings, and were areas with a high 
population density compared to most areas with low 
case notifications. However, there were areas with 
a better access to TB diagnostic facilities and had 
a high population density, which were not charac
terized by the highest rates of the disease. The GWR 
analysis also supported this evidence that there were 
areas with better access but with low PTB CNRs and 
others with poor access but with high rates of the 
disease. This could be due to a disproportionate 
distribution of risk factors such as HIV infection, 
factors that increase a contact with infectious cases, 
poor socioeconomic conditions, and varying perfor
mance of TB programs, which could contribute to 
variations in the burden of the disease over the years 
[16,17]. We were not able to compare the distribu
tion of HIV and socioeconomic factors with the 
disease clusters because the data were not available 
at EA level. A study from China [41] included 
population density, socioeconomic status, and avail
ability of infectious diseases network reporting agen
cies in GWR model and identified local variations in 
smear- positive TB and the spatial heterogeneities in 
relationship between predictors and smear-positive 
TB occurrence. The GWR model better explained 
the variations compared to our study. This could be 
due to that fact that the authors included socio- 
economic information in the analysis unlike our 
study [41]. We therefore suggest further investiga
tion in the future including socioeconomic factors in 
spatial analysis of the disease to improve our under
standing of the spatial heterogeneity and clustering 
of the disease. On the other hand, neighbourhoods 
of the areas with the disease clusters in the preced
ing years might have better awareness and health 
care seeking about the disease, which could increase 
the CNRs.

In 2010 a community-based active finding campaign 
was conducted in the district aiming at improving TB 
case notification. The campaign might have increased 
TB case notification in some kebeles. The pattern of 
spatial clusters of the diseases also has changed and 
identified in new areas. This could be partly explained 
by the intervention campaign increased access to infor
mation in addition to the increased number of TB 
control facilities (6 more health centres were func
tional), which increased physical access.

In 2011, the community-based active case finding 
intervention was implemented in all kebeles of the dis
trict and access to TB control facilities also improved 
[23,42]. As a result, the CNRs of PTB increased in all 
kebeles. However, the disease clusters were identified in 
the same areas where the clusters were detected in the 
preceding years (2007–2009). In the same year, the 
disease clusters persisted in urban setting and neigh
bouring kebeles. These areas had persistent clusters in 
all years and further investigation and sub-survey 
should be conducted in these areas in order to identify 
factors contributing to the high burden of the disease. 
In 2012, one year after the community-based interven
tion, the pattern and locations of significant hotspots 
were changed and we identified EAs with the disease 
clustering in different kebeles and EAs from the pre
ceding years (2003–2011).

This change in the spatial distribution of the dis
ease could be attributed to the community-based 
intervention and improved access to TB control ser
vices [23,42]. Thus, improved access to TB control 
services and the community-based intervention 
might have influenced TB case notifications in some 
areas, which is reflected by increased PTB CNRs or 
reduced the transmission of the disease by reducing 
infectious cases in previously high burden areas. Our 
finding is consistent with other studies that report 
improving TB control efforts could change the geo
graphic distribution of the disease [27,43]. The effect 
of physical access on the PTB CNRs varies year 
after year due to variations in access to TB control 
facilities as evidenced in 2010–2012. The GWR model 
better explained during 2003–2009 than in 
2010–2012. This could be partly explained by 
a change in access to TB control facilities between 
two time periods.

In our data, even after controlling for physical access 
in scan statistics, we identified purely spatial and space- 
time clusters of PTB in the same areas except differences 
in the number of cluster locations. In GWR analysis, 
improved access to TB control services was also asso
ciated with increased CNRs of the disease, and the 
number of locations for the spatial clusters was also 
changed. However, there were areas with improved 
physical access to TB control facilities with low PTB 
CNRs. These findings could explain, at least in part, that 
improved access to TB control facilities might be one of 
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possible reasons for the highest rates of the disease in 
most areas. Nonetheless, we could not conclude that the 
highest rates of the disease were attributed to access 
alone because various socio-demographic and indivi
dual risk factors [13,17–19] could contribute to the 
disproportionate burden of TB.

Evidence from other studies suggests that different 
isolates of TB could be clustered [44], and the presence 
of clusters of similar strain of Mycobacterium tuberculosis 
in neighbourhoods indicate an ongoing transmission of 
the disease. In Ethiopia, different genotypes of 
Mycobacterium tuberculosis were reported [45]. 
Unfortunately, information on the spatial distribution 
of different strains of TB is non-existent in southern 
Ethiopia. Further study is therefore suggested on the 
spatial distribution of the strains of the Mycobacterium 
including drug resistant TB. We also suggest further 
studies to identify risk factors explaining the variations 
including HIV and MDR-TB burden. The application of 
spatial and temporal analysis to TB control programmes 
can provide important evidence for identifying clusters 
of the disease in place and time. This helps policy and 
decision makers to devise tailored disease control inter
ventions such as improving access to TB control services, 
resource allocation, and contact tracing. Moreover, inte
grating the application of GIS with existing health infor
mation system of National TB control programmes and 
other diseases of public health importance could improve 
disease control and surveillance.

The strengths our study are; the spatial analyses were 
carried out based on individual TB cases’ data aggregated 
at EAs level, which have shown better information about 
the disease clustering within kebeles and neighbour
hoods. The spatial modelling (GWR) we used provided 
better information about the geographic heterogeneities 
in spatial relationships between explanatory variables 
and PTB CNRs. The limitations of our study are; we 
could not include all variables and risk factors because of 
unavailability of such data. Thus, unmeasured environ
mental, socioeconomic, and demographic variables 
might have affected the relationships between PTB 
CNRs in different geographic areas. Furthermore, we 
could not confirm the strains of Mycobacterium to 
report whether the neighbourhood clusters might be 
attributed to the transmission of the disease with iden
tical strains of Mycobacterium tuberculosis. However, the 
study provided valuable information to understand the 
pattern of disease clustering and spatial heterogeneities, 
which could help in devising targeted interventions at 
local level.

Conclusion

We found the spatial variations and local clusters of PTB 
in the study area. Improving access to TB control facil
ities and programme performance could change the 
spatial clusters of the disease. We also found spatial 

heterogeneities in relationships between physical access 
and population density at EAs, and PTB CNRs. Targeted 
TB control interventions could be designed in areas 
where the disease clusters were identified and in the 
neighbourhoods close to the cluster areas as well as 
improving access to TB control facilities. Further studies 
are suggested on the spatial distribution of different 
strains of Mycobacterium tuberculosis, HIV burden 
including socio-economic factors so as to strengthen 
the disease surveillance. Understanding spatially varying 
relationships in explanatory variables and TB burden 
could help policy makers to devise targeted 
interventions.
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