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Abstract

Migratory insects are capable of actively sustaining powered flight for several hours. This 

extraordinary phenomenon requires a highly efficient transport system to cope with the energetic 

demands placed on the flight muscles. Here, we provide evidence that the role of the hydrophobic 

ligand binding of odorant binding proteins (OBPs) extends beyond their typical function in the 

olfactory system to support insect flight activity via lipid-interactions. Transcriptomic and 

candidate gene analyses show that two phylogenetically clustered OBPs (OBP3/OBP6) are 

consistently over-expressed in adult moths of the migrant Old-World bollworm, Helicoverpa 

armigera, displaying sustained flight performance in flight activity bioassays. Tissue-specific 

over-expression of OBP6 was observed in the antennae, head and thorax in long-fliers of H. 

armigera. Transgenic Drosophila flies over-expressing a H. armigera transcript of OBP6 

(HarmOBP6) in the flight muscle attained higher flight speeds on a modified tethered flight 

system. Quantification of lipid molecules using mass-spectrometry showed a depletion of 

triacylglyerol and phospholipids in flown moths. Protein homology models built from the crystal 

structure of a fatty acid carrier protein identified the binding site of OBP3 and OBP6 for 

hydrophobic ligand binding with both proteins exhibiting a stronger average binding affinity with 

TAG and phospholipids compared with other groups of ligands. We propose that HarmOBP3 and 

HarmOBP6 contribute to the flight capacity of a globally invasive and highly migratory noctuid 

moth, and in doing so, extend the function of this group of proteins beyond their typical role as 

chemosensory proteins in insects.
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Introduction

Insect flight is one of the most energetically demanding processes in the animal kingdom. Long-

distance insect migrants can actively sustain periods of flight for several hours. To achieve these 

remarkable feats of endurance, migratory insects have evolved a suite of morphological, sensory 

and physiologically traits that form part of an inherited ‘migratory syndrome’ (Dingle, 2014; 

Liedvogel, Akesson, & Bensch, 2011; Roff & Fairbairn, 2007). Comparative genomics and 

quantitative trait analyses reveal considerable genetic variation for single migratory traits but the 

associated molecular genetic mechanisms and biochemical pathways remain poorly understood.

The vital role of chemical cues in host location and oviposition (Bruce & Pickett, 2011; Hansson 

& Stensmyr, 2011; Mescher & De Moraes, 2015) means that the involvement of a sophisticated 

olfactory system in migration and flight ability is an attractive proposition (Getahun et al., 2016; 

McCormick et al., 2017). For example, the odorant receptor family (OR), central to the olfactory 

system of pterygotes, emerged prior to the evolution of winged flight in insects as an adaptation to 

terrestrial life (Brand et al., 2018). New evidence suggests that OR-based signal transduction in 

Drosophila is necessary for efficient odour localization in flight (Getahun et al., 2016). Our recent 

transcriptomic work (RNAseq) in the Old World bollworm, Helicoverpa armigera, show that 

specific odorant binding proteins (OBPs), OBP3 and OBP6, are highly and consistently over-

expressed in moths displaying sustained flight activity (Jones et al., 2015). This suggests that 

OBPs have a direct or indirect role in supporting insect flight and their function extends beyond 

their part in host-seeking and mating behaviour. 

Insect OBPs are small, water soluble extracellular transporter proteins (13–16 kDa) (Lartigue et 

al., 2002; Tegoni, Campanacci, & Cambillau, 2004; Zhou, 2010), and possess extreme diversity 

between species with as little as 8% amino acid conservation (Pelosi, Zhou, Ban, & Calvello, 

2006; Zhou, He, Pickett, & Field, 2008). They are generally thought to contribute to the sensitivity 

of the olfactory system by participating in the binding, solubilization and transportation of 

hydrophobic ligands through the sensillum lymph of the antennae (Grosse-Wilde, Svatos, & 

Krieger, 2006; Leal, 2013; Tsuchihara et al., 2005) and protecting odours from enzymatic 

degradation (Chertemps et al., 2012; Gomez-Diaz, Reina, Cambillau, & Benton, 2013). Some 

OBPs, however, are found in non-chemosensory tissues and may participate in other physiological 

processes (Graham et al., 2001; Guo et al., 2011; Missbach, Vogel, Hansson, & Grosse-Wilde, 

2015; Pelosi et al., 2006). The Drosophila OBP28a is not required for odorant transport and signal A
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transduction, implying a different function altogether (Larter, Sun, & Carlson, 2016). The 

homologues of OBP6 and OBP3 in H. armigera are highly expressed in non-olfaction tissues in 

other noctuid moths, Agrotis ipsilon and Helicoverpa assulta (Gu et al., 2014; Li et al., 2015). In 

arthropods, OBPs are found exclusively in insects (Pelosi, Iovinella, Felicioli, & Dani, 2014) and 

comparative genomics suggests that the evolution of this protein family provided a mechanism to 

mediate the transport of hydrophobic chemical signals present in a terrestrial environment (Vieira 

& Rozas, 2011).

The Noctuidae family of moths possess some of the most important and polyphagous agricultural 

insect pests globally. A key characteristic that makes them such devastating pests is their ability to 

spread hundreds of kilometres in response to deteriorating local conditions. This exacerbates their 

potential to invade new territories as observed with the current fall armyworm (Spodoptera 

frugiperda) which has spread eastwards into the Asian continent and the rapid expansion of H. 

armigera in the Americas following its recent incursion (Fitt, 1989; Jones, Parry, Tay, Reynolds, 

& Chapman, 2019). Adult moths from both species can climb to high-altitudes and sustain active 

flight for several hours (Chapman et al., 2010). This requires an enormous amount of fuel 

consumption, metabolism and intra-cellular transport to the flight muscles. Given the well-

established hydrophobic binding capacity of OBPs and their over-expression in H. armigera, it is 

possible that this group of proteins act as lipid transport carriers in H. armigera – the main flight 

fuel of migratory insects (Van der Horst & Ryan, 2012).

In the present study, we use a combination of behavioural, molecular, transgenic and protein 

modelling approaches to (i) determine the tissue-specificity of two OBPs consistently expressed in 

H. armigera adult moths demonstrating sustained flight activity, (ii) show that the transgenic 

overexpression of one of these OBPs leads to enhanced flight performance in Drosophila, (iii) 

identify the primary lipids depleted in H. armigera following flight and (iv) the key residues 

responsible for lipid binding. Overall, our findings provide evidence that a subset of OBPs are 

responsible for binding key lipids commonly used by insect migrants and this relationship 

promotes insect flight.

Materials and Methods

H. armigera strains 
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The adult H. armigera used in this study originated from a long-term laboratory strain, Bayer 

(courtesy of the Max Planck Institute, Jena, Germany) and a wild-caught population from Spain 

(courtesy of the University of Valencia). The moths used in the RNA-seq were from a colony 

established from northern Greece. Insects were reared under a constant light regime of L:D 14:10 

at 26 ± 1ºC in the insectaries of Rothamsted Research and the flight mill trials were conducted 

under the same conditions. Larvae were reared individually in 37-ml clear plastic pots containing a 

chickpea artificial diet and allowed to pupate before transfer to clean pots filled with vermiculite. 

Adult emergence was checked daily and any emerged individuals were set aside for flight mill 

trials or for rearing onto the next generation.

Flight propensity of H. armigera measured by tethered flight mill 

A series of flight mill experiments were conducted to determine the effects of over-expression of 

candidate genes associated with migration or flight in H. armigera displaying contrasting flight 

abilities. A detailed description of the flight mill system is explained elsewhere (Jones et al., 2015; 

Minter et al., 2018). Insects from Bayer and Spain strains were reared through at least one 

generation in the insectary prior to flight mill trials and each strain flown in independent 

experiments. Adult moths assigned to flight mill trials were placed in 4-10ºC to facilitate the 

attachment of ~60 mg pins to the thorax with adhesive glue. Each moth was provided with 10% 

honey water solution ad libum prior to flight. Moths were attached randomly to one of 16 flight 

mills via a pin and allowed to rest on a paper platform until the first flight was initiated by the 

insect. All flights took place between 1900 and 0900 under a 10-hour dark cycle from 2000 to 

0600. At approximately 0900 the next morning, individuals were taken off the mills and placed 

into individual pots for weighing. Any dead, unhealthy (e.g. broken wings or damage through 

improper handling) or escaped individuals were recorded and excluded from further analyses. All 

individuals were snap-frozen or placed in RNAlater within two hours and stored at -80oC for 

downstream molecular analysis. 

The aggregated response variables were calculated for all individuals. We considered four 

response variables as being important discriminants of ‘strong’ and ‘weak’ fliers based on 

previous experiments; Total Distance Flown (m), Average Speed Flown (m/s), Maximum Speed 

attained (m/s) and number of bouts. Seven individuals from each strain were selected for RT-

qPCR of candidate genes from the ends of the flight activity distribution based on total distance 

and number of flight bouts. A
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Tissue-specific candidate gene expression profiling in H. armigera flown on the flight mills

Initially, we determined the expression of 20 candidate genes from the head and thorax of 28 

individual moths flown on the mills. The head (including the antennae) and thorax were removed 

using dissection instruments and placed in separate Eppendorf tubes with lysis buffer. The samples 

were homogenised using pellet pestles (Sigma-Aldrich). RNA was extracted using ISOLATE II 

RNA Mini Kit (Bioline) and RNA was eluted in RNase-free water. cDNA was synthesised from 

230 ng total RNA using SuperScript® IV Reverse Transcriptase (Invitrogen) and Oligo(dT)20 

(Invitrogen).

Twenty candidate genes were screened for gene expression levels. qPCR primers were screened 

over a five-fold serial dilution of a cDNA sample (1/10th to 1/6000th) and the primer efficiency 

calculated. qPCR reactions were completed on the RotorGene 6000 (Qiagen) with conditions of 

95oC for 2 minutes, followed by 40 cycles of 95oC 10 seconds, 57oC 15 seconds and 72oC 20 

seconds, followed by a melt curve analysis. Each reaction contained 10 µl of SYBR Green 

JumpStart Taq ready mix (Sigma-Aldrich), 300nM of each primer and 5 µl of cDNA 1/50th 

dilution. The control genes β-actin and elongation factor 1-α were used for normalization (Wang, 

Dong, Desneux, & Niu, 2013; Yan et al., 2013) and all reactions were run in duplicate. Ct values 

were adjusted for primer pair efficiency. Expression levels were compared using a two-sided t-test 

on the dCt values (p <0.05) and are presented as log10 fold-change using ddCt (Schmittgen & 

Livak, 2008). The RNA-seq was performed on moths flown and not-flown (N = 4 per group) 

according to previously described methods (Jones et al., 2015). All genes were considered 

significantly expressed at a False Discovery Rate of p <0.1.

Following the identification of strong OBP expression profiles from the twenty candidate genes 

we determined the tissue-specific expression of OBP6 in the antennae, heads, thoraces, abdomens, 

legs and wings of H. armigera flown on the flight mills. Tissues were dissected from 18 adults and 

promptly immersed in liquid nitrogen and stored at -80ºC. RNA was extracted using RNA-Solv 

reagent (Omega) following the manufacturer’s protocol. Total RNA was quantified and checked 

for purity and integrity using a NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific, 

Wilmington, DE) and gel electrophoresis. HiScript® II Q RT SuperMix for qPCR with gDNA 

wiper (R223-01, Vazyme, Nanjing China) was used for cDNA synthesis.

For tissue-specific expression profiling, RT-qPCR primer pairs were designed using Primer 5 

software (Untergasser et al., 2012) and the same control genes used as above. mRNA levels were A
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measured by RT-qPCR using the ChamQTM SYBR® qPCR Master Mix (Vazyme, Nanjing, 

China). Each amplification reaction contained 1 μl of synthesized cDNA, 10 μl of 2×ChamQTM 

SYBR qPCR Master Mix, 0.4 μl of 10μM of forward primer, 0.4 μl of reverse primer, and 8.2 μl 

water in a 20 μl reaction mix. Reaction were performed on an ABI 7500 Real-Time PCR System 

(Applied Biosystems, Carlsbad, CA, USA) under the following conditions: 30 sec denaturation at 

95 °C and 40 cycles of 95 °C for 10 sec, 60 °C for 30 sec followed by a melt curve for specificity 

analysis. Fold-changes were calculated from the mean of three biological replicates with the ddCt 

method and using the abdomen as the calibrator. The relative expression levels were compared 

using the dCt values (p <0.05) as described above. 

Quantitative triacylglycerol analysis

Total lipids were extracted from moth tissue ground in liquid nitrogen (Usher et al., 2017). The 

molecular species of triacylglycerols were analysed by electrospray ionisation triple quadrupole 

mass spectrometry (ESI-MS) (using API 4000 QTRAP; Applied Biosystems). Triacylglycerols 

(TAGs) are defined by the presence of one acyl fragment and the mass/charge of the ion formed 

from the intact lipid (neutral loss profiling) (Krank, Murphy, Barkley, Duchoslav, & McAnoy, 

2007). This allowed identification of one triacylglycerol acyl species and the total acyl carbons 

and total number of acyl double bonds in the other two chains. The procedure does not allow 

identification of the other two fatty acids individually nor the positions (sn-1, sn-2, or sn-3) that 

individual acyl chains occupy on the glycerol. Triacylglycerol was quantified after background 

subtraction, smoothing, integration, isotope deconvolution and comparison of sample peaks with 

those of the internal standard (using LipidView™, AB-Sciex, Framingham, MA, USA). The 

profiling samples were prepared by combining 10 μL of the total lipid extract with 990 μL of 

isopropanol/methanol/50 mM ammonium acetate/dichloromethane (4:3:2:1). Samples were 

infused at 15 μL min−1 with an autosampler (LC mini PAL, CTC Analytics, Switzerland). The 

scan speed was 100 μ s−1. The collision energy, with nitrogen in the collision cell set to +25 V; 

declustering potential +100 V; entrance potential 14 V; and exit potential +14 V. Sixty continuum 

scans are averaged in the multiple channel analyser mode. For product ion analysis, the first 

quadrupole mass spectrometer (Q1) was set to select the triacylglycerol mass and Q3 for the 

detection of fragments fragmented by collision induced dissociation. The mass spectral responses 

of various triacylglycerol species are variable, owing to differential ionisation of individual 

molecular triacylglycerol species. For all analyses gas pressure was set on ‘low’, and the mass A
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analysers were adjusted to a resolution of 0.7 μ full width height. The source temperature was set 

to 100 °C; the interface heater deployed, +5.5 kV applied to the electrospray capillary; the curtain 

gas set at 20 (arbitrary units; and the two ion source gases set at 45 (arbitrary units). The data are 

normalised to the internal standard Tri15:0 (Sigma Aldrich) and further normalized to the weight 

of the initial sample.

Quantitative Phospholipid Analysis

Quantitative analyses to measure, phospholipids (PL) (phosphatidylcholine (PC), 

phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylglycerol (PG), and 

phosphatidylserine (PS) was carried out using electrospray ionization tandem triple-quadrupole 

mass spectrometry (API 4000 QTRAP; Applied Biosystems; ESI-MS/MS). The lipid extracts are 

diluted and resuspended in CHCl3/MeOH/300 mM ammonium acetate in water, 300/665/35. 

Internal standards obtained and quantified as previously described (Devaiah et al., 2006). Samples 

were directly infused at 15 μL/min with an autosampler (HTS-xt PAL, CTC-PAL Analytics AG, 

Switzerland). Data acquisition and acyl group identification of the polar lipids was performed with 

modifications (Ruiz-Lopez, Haslam, Napier, & Sayanova, 2014). The internal standards are 

supplied by Avanti (Alabaster, AL, USA), incorporated as, 0.085 nmol of di24:1-PC, 0.08 nmol of 

di14:0-PE, 0.08 nmol of di18:0-PI, and 0.032 nmol of di18:0-PS and 0.08 nmol of di14:0-PG. 

The molecular species of polar lipids are defined on the basis of the presence of a head-group 

fragment and the mass/charge of the intact lipid ion formed by ESI. However, tandem ESI-MS/MS 

precursor and product ion scanning, based on head group fragment, do not determine the 

individual fatty acyl species. Instead, polar lipids are identified at the level of class, total acyl 

carbons and total number of acyl carbon–carbon double bonds.

The data was processed using the program Lipid View Software (AB-Sciex, Framingham, MA, 

USA) where isotope corrections are applied. The peak area of each lipid was normalized to the 

internal standard and further normalized to the weight of the initial sample. A parametric two-

sided t-test was used to compare lipid content between flown and not flown moths (N = 4-5 moths 

per group).

Phylogenetic analysis of H. armigera OBPs

N-terminal signal peptides of OBPs were predicted by Signal IP 4.0 

(http://www.cbs.dtu.dk/services/SignalP/). Alignment of amino acid sequences (without signal A
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peptides) was performed by MAFFT (https://www.ebi.ac.uk/Tools/msa/mafft/). The phylogenetic 

trees of OBPs were constructed using MEGA6 software by the maximum-likelihood method at 

bootstrap 1000 with the p-distance model (Gong, Zhang, Zhao, Xia, & Xiang, 2009). 

Development of a novel flight mill for Drosophila melanogaster and other small insects

We designed a new set of flight mills to accommodate smaller insects to examine the flight ability 

of wild type and transgenic Drosophila flies (Fig. S1). These flight mills are similar in structural 

design to the mills used in the H. armigera experiments, comprising of a flight arm and rotational 

disc to allow flies to move around an axis by means of a very low friction magnetic bearing (Fig. 

S1).

As part of the study we developed a robust standard operating procedure for tethering Drosophila. 

Briefly, an individual fly was lightly anesthetized with CO2 and transferred to a custom-made 

paper groove which had been made to allow accurate positioning of an anesthetized fly (Fig. S1). 

The paper groove was placed on the platform with CO2 passing through the groove bottom. When 

the flies were under CO2 anaesthesia, the tip of a small flight mill arm (a 5-cm-long, 0.2-mm-

diameter copper wire) was tethered onto the dorsal side of the anesthetized fly’s thorax with Super 

Glue under a stereomicroscope (Olympus SZ40). Individual flies and the small flight mill arms 

were gently handled with either a small brush or jeweler’s vacuum tweezers. Once the glue was 

dry and hard, the tethered flies were moved to the experimental chamber, fed with sucrose solution 

from a small piece of filter paper and allowed to rest in the recording chambers to adapt to the 

experimental environment overnight prior to data collection. At 10:00 the following day, filter 

papers were removed from the recording chambers and data collection was started using the same 

software as the larger mills. Experiments were run till approximately 14:30 to ensure each mill had 

run for at least 3 hours. Any flies which looked damaged, unhealthy or had escaped from the flight 

arm were disregarded from further analyses.

Generation of transgenic Drosophila expressing HarmOBP6 

All Drosophila strains were maintained on standard food (Bloomington formulation) at 24oC and 

65% RH on a 12/12-hour light/dark cycle. Proteinase K treatment and phenol/chloroform 

extraction were used to isolate genomic DNA (gDNA) from adult D. melanogaster flies for use in 

PCR. 

A
cc

ep
te

d 
A

rt
ic

le

https://www.ebi.ac.uk/Tools/msa/mafft/


This article is protected by copyright. All rights reserved

HarmOBP6 (B5X24_HaOG200803 with the addition of a stop codon) was codon optimised for 

expression in D. melanogaster and synthetized by GeneArtTM (ThermoFisher Scientific). The 

codon-optimised sequence was transferred from the sub-cloning plasmid pMA (GeneArtTM) to the 

attB-carrying plasmid pUAST (pUASTattB_EF362409) using EcoRI and XhoI restriction sites. 

The pUAST-Harm-OBP6 construct was microinjected into syncytial blastoderm embryos of a an 

integration strain (y w M(eGFP, vas-int, dmRFP)ZH-2A; Pattp40) (Dundas et al., 2006) that 

carries an attP docking site on the second chromosome (attP40) and the phiC31 integrase gene 

under the control of a germline-specific (vasa) promoter on the X chromosome. This strain was 

sourced from the Fly Facility-University of Cambridge. The GAL4 strains (w[1118]; 

Pw[+mW.hs]=GawBDJ757) was sourced from Bloomington Drosophila Stock Centre (BDSC-

8184). Microinjections were performed in house using an inverted microscope (eclipse TieU 

Nikon, Japan) equipped with a 10x/0.25 lens, 10x/22 eyepiece and fluorescence illumination. 

Injection mixtures comprised of 0.5x phosphate buffer (pH 6.8, 0.05 mM sodium phosphate, 2.5 

mM KCl), 300 ng/µl of the pUAST-Harm-OBP6 construct and 200 mg L-1 fluorescein sodium salt 

and delivered by a FemtoJet express micro injector (Eppendorf, Hamburg, Germany) controlled by 

a motorised micromanipulator TransferMan NK2 (Eppendorf, Hamburg, Germany). Injection 

needles were prepared following (Miller, Holtzman, & Kaufman, 2002). 

Microinjection survivors were back-crossed and the F1 progeny was screened for the presence of 

the white marker gene (orange eye phenotype). Positive flies were inter-crossed to generate 

homozygous flies (red eyes) which were selected to establish the final strain.  Control flies 

carrying an empty pUAST plasmid (UAS-empty strain) were generated following the same 

protocols described above. 

Tethered flight of transgenic Drosophila and statistical analysis of flight response variables

Three flight mill experiments were performed to compare the flight ability of transgenic 

Drosophila flies carrying HarmOBP6 (GAL4>UAS-OBP6 line) with control flies (GAL4>UAS 

line). In addition, we were also interested in how flight activity changes with the age of the fly. A 

total of eight flies were flown simultaneously per run with each trial consisting of a mixture of 

HarmOBP and control flies. 

1. Experiment 1: flies generated from crosses between male UAS-OBP6 (UAS-empty for 

controls) and female muscle-GAL4 strains. GAL4>UAS-OBP6 virgin females (N = 28) A
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were flown on the mills alongside GAL4>UAS virgin female control flies (N = 28). The 

age of the flies in this experiment ranged from 24h to 144h after emergence.

2. Experiment 2: flies were generated from crosses between female UAS-OBP6 (UAS-empty 

for controls) and male muscle-GAL4. Both GAL4>UAS-OBP6 (N = 23) and GAL4>UAS 

controls (N = 21) female flies were mated prior to the flight mill trials. Flies were either 

2d, 6d or 15 days old after emergence.

3. Experiment 3: GAL4>UAS-OBP6 (N = 43) and GAL4>UAS (N = 34) control flies were 

generated as Experiment 2 but without mating. The age of the flies ranged from 7d to 26d 

old after emergence.

After preliminary trials, we determined that a one-hour cut-off period was sufficient to measure 

flight performance with difference between the average speeds attained between 1 hour and 3 

hours of flight (example from Experiment 3 in Fig. S2). We were primarily interested in the two 

response variables, the average speed flown (AVGSP) (m/s) and maximum speed attained 

(MAXSP) (m/s). We hypothesise that the average or maximum speed of flight is a much more 

useful metric to distinguish the flight activity of flies such as Drosophila since they are not 

capable of sustaining hours of flight like larger insects (e.g. Lepidoptera). The distribution of each 

flight parameter was assessed using the fitdist package (Delignette-Muller & Dutang, 2015) using 

QQ plots and goodness of fit statistics. AVGSP and MAXSP were both normally distributed (Fig. 

S2).

Data was fitted using Generalised Linear Mixed Models (GLMMs) using the package lme4 

package in R (Bates, Machler, Bolker, & Walker, 2015). To model AVGSP and MAXSP as a 

function of the covariates we used a Gaussian linear mixed-effects model. Fixed covariates are 

strain (transgenic or control) and age (categorical). An interaction term strain x age was included. 

To incorporate differences between the flight mills on which the individual was flown we include 

mill as a random effect. Best fit GLMMs were created using a backward stepwise approach from 

the maximally complex model which included the interaction. Explanatory variables were retained 

in the best fit model according to significance (p < 0.05) in Likelihood Ratio Tests (LRT). Model 

assumptions were verified using residual-fitted plots. Predictions of response variables from each 

model were made using Least Square Means (LSMs) in the package lsmeans (Lenth, 2016) and 

differences between groups assessed using Tukey post-hoc tests.A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Homology structure modelling of H. armigera OBPs

The amino acid sequences of HarmOBP6 and HarmOBP3 were used as a target while the template 

was the crystal structure of the blowfly Phormia regina OBP56a (PregOBP56a) (PDB code: 

5DIC). The pheromone binding protein 1 from the silkmoth Bonbyx mori BmorPBP1 (1DQE) was 

used as the template for HarmPBP1 structure modelling. Five hundred models of each OBP were 

obtained using MODELLER9.14 (http://salilab.org/modeller) and the best initial model was 

selected according to the lowest discrete optimized protein energy (DOPE) score provided by the 

software. The stereochemistry of the best model was assessed using the theoretical validation 

package ProCheck (Laskowski, Macarthur, Moss, & Thornton, 1993), and the overall structure 

was visualized using PyMOL software (http://www.pymol.org). Further refinement steps were 

carried out with NAMD v2.9 (parallel molecular dynamics code for biomolecular system 

simulation) installed in the high-performance computer (HPC) Lautaro Linux cluster at Centro de 

Modelación y Computación Científica (CMCC) from Universidad de La Frontera. CHARMM36 

force field was used for all the simulations. The selected protein model was solvated with TIP3P 

water model in a cubic box with a minimum distance of 10 Å between the protein and the edge of 

the box. Neutralization of the protein-water system was performed by adding Na+ or Cl- randomly 

placed in the box. Likewise, the system was simulated under periodic boundary conditions with a 

cutoff radius of 12 Å for non-bonded interactions and a time step of 2 fs. Alpha-carbons (Cα) of 

secondary structures were fixed with a constant force of 1 kcal/mol/Å. A first energy minimization 

of 10 000 steps was performed followed by heating through short simulations of 1 ps at 50, 100, 

150, 200, 250 and 300 K. Long simulations were kept at 300 K and 1 bar pressure in the NTP 

(referred to a constant number of particles, temperature and pressure) during 50 ns. Root-mean-

square deviation (RMSD) trajectory tool was used to calculate the RMSD with reference to the 

starting structure (Fig. S3). Therefore, when the plotted RMSD showed small fluctuations (~1-1.5 

Å), coordinates were analyzed by ProCheck every 100 frames to obtain the best structure (lowest 

energy). Finally, putative binding site and its volume were calculated by CASTp server (http://sts-

fw.bioengr.uic.edu/castp/calculation.php) (Dundas et al., 2006).

Molecular docking 

The refined structures of HarmOBP6 and HarmOBP3 were used as the target for molecular 

docking with AutoDock Vina (Trott & Olson, 2010). Likewise, a refined 3D structure of the 

pheromone binding protein HarmPBP1 was used as the reference template for the molecular A
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docking tasks based on its reported function in binding sex pheromones (Dong et al., 2017; Ye et 

al., 2017). Energy minimization and optimization for the ligands used in this study were 

performed using MM2 minimization methods in the Chem3D 16.0 Software (Perkin Elmer). For 

HarmOBP6, polar hydrogens were added using the interface AutoDock Tools, as well as torsional 

bonds for ligands. A grid box with 26×26×26 points and a default space of 1 Å was prepared via 

AutoGrid following the predicted binding site by CASTp server. For every docking run, an 

exhaustiveness of 500 was considered and the best binding modes were selected according to the 

lowest free binding energy (kcal mol-1). The triacylglycerols and phospholipids were energy 

minimized following the same protocol for fatty acids and semiochemicals. Considering that 

AutoDock Vina allows a maximum of 32 rotatable bonds, these compounds and their binding to 

HarmOBP6 and HarmOBP3 were submitted to DINC server (http://dinc.kavrakilab.org/) (Antunes 

et al., 2017; Dhanik, McMurray, & Kavraki, 2013). This server was used to dock the lipids into 

HarmOBP6 and HarmOBP3 binding site following the above grid box parameters and with all 

rotatable bonds active. DINC allows docking for large molecules based on the AutoDock 

algorithm and fragmentation processes, for which fragments that show best binding are 

incrementally expanded by adding atoms of the ligand to it in each of several rounds. Thus, both 

fully flexible and bound conformations of lipid molecules were extracted and docked again into 

HarmOBP6, HarmOBP3 and HarmPBP1 (control) using Autodock Vina.

Results and Discussion

Two H. armigera-specific odorant binding proteins are overexpressed in the thorax of moths 

displaying prolonged flight activity

Adult moths from two colonised strains of H. armigera (Bayer and Spain) were flown overnight 

on a computerised tethered flight mill system that experimentally quantifies the flight performance 

of individual insects in the absence of external stimuli (Minter et al., 2018). Previous flight mill 

studies with noctuid moths show an inverse relationship between the total distance flown and the 

number of individual flight bursts to discriminate those insects engaging in prolonged or more 

appetitive behaviour (Jones et al., 2015). We used this relationship to assign individual moths into 

two distinct flight activity groups, ‘short-distance’ (SD) or ‘long-distance’ (LD), for downstream 

gene expression analyses (Fig. 1A).  

We undertook a candidate gene approach to determine the differential expression of twenty genes 

in the two strains of H. armigera flown on the flight mills. As a baseline control, and to validate A
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some of our previously detected candidate genes from whole transcriptome studies (Jones et al., 

2015), an RNA-seq of moths flown and not flown on the flight mills was performed. Eight of our 

20 candidate genes were significantly up-regulated in the flown group with OBP6 showing the 

highest and most consistent level of up-regulation (Fig. S4). Each gene has a reported role in 

insect migration or sustained flight activity including those involved in circadian and 

photoreceptor processes (Reppert, Guerra, & Merlin, 2016), lipid metabolism (Arrese & Soulages, 

2010), odorant binding proteins (Jones et al., 2015), flight muscle structure (Zhan et al., 2014) and 

the metabolism of proline and phenylalaine/tryptophan (Arrese & Soulages, 2010; Rio, Attardo, & 

Weiss, 2016) (Fig. 1B).

In the Bayer strain four genes were significantly over-expressed in the thorax of the LD moths, all 

of which were up-regulated exclusively in the thorax and not the head (Fig. 1B, Table S1). These 

four genes encode two OBPs (OBP3 and OBP6), the protein henna-like isoform X3 and a fatty-

acid synthase-like gene. In the thorax of individuals from the strain Spain, three genes were 

significantly over-expressed in the LD group; myofilin, OBP3 and protein henna-like isoform X3 ; 

three genes were significantly over expressed in the SD group, collagen alpha subunit-1(IV), cry-1 

and phospholipase A2-like. Two genes were differentially expressed in the head of H. armigera 

individuals from the Spain strain (although the magnitude of this expression was small) (Fig. 1B).

Following the detection of OBP over-expression both in this study and from transcriptome profile 

analysis (RNA-seq (Fig. S4); (Jones et al., 2015)), we showed that the relative expression levels of 

OBP3 and OBP6 in individual H. armigera displayed a significant positive correlation with flight 

performance which was strongest in the thorax (HarmOBP3: head: R = 0.49, p = 0.006, thorax: R 

= 0.81, p < 0.001; HarmOBP6: head: R = 0.31, p = 0.18, thorax: R = 0.65, p = 0.002) (Fig. 1C). 

Furthermore, we quantified the expression of HarmOBP6 in the antenna, head, thorax, abdomen, 

leg and wing of SD and LD moths. HarmOBP6 was significantly over-expressed in the antennae 

(p = 0.016) , thoraces (p = 0.009) and wings (p = 0.05) and this expression was significantly 

upregulated in LD moths compared with those in the SD group (Fig. 1D, Table S2). 

The simple phenotypic comparisons of SD and LD insects presented here provide a measurement 

of flight performance in terms of the raw physiological capacity to fly. We recognise that a full 

spectrum of flight behaviours exists and that these are controlled by intricate internal and external 

processes. For example, the migratory flight behaviour of the Monarch butterfly (Danaus 

plexippus) is controlled in response to environmental changes (temperature, photoperiod) via A
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internal genetic, and possibly epigenetic, cascades (Merlin & Liedvogel, 2019). Here we focus on 

raw flight capacity and use our expression profiling to speculate on the functional role of OBPs in 

insect flight. 

Phylogenetic analysis of the odorant binding proteins implicated in H. armigera flight

An alignment of the protein sequences of HarmOBP3 (Acc No: AEB54582), and HarmOBP6 (Acc 

No: AEB54587) is provided in Fig. S5. Based on the sequence alignment, HarmOBP6 belongs to 

the classic OBP subgroup, which contains typical characteristic sequence features of six conserved 

cysteine residues and the classic insect OBP motif: C1-X15-39-C2-X3-C3-X21-44-C4-X7-12-C5-X8-C6 

(Fig. S5.) (Zhou et al., 2008). The phylogenetic analysis shows that HarmOBP3 and HarmOBP6 

are clustered into the same branch with a 100% bootstrapping support between OBP3 and OBP6, 

indicating that they share a high homologous amino acid sequence similarity and most likely a 

similar function (Fig. S6). There is an 81% amino acid identity between OBP3 and OBP6. 

HarmOBP6 is also closely clustered with other Helicoverpa OBPs such as Helicoverpa assulta, 

HassOBP6 (Acc No: AEX07270) and Heliothis virescens, HvirOBP0136 (Acc No: ACX53819) 

(Fig. S6). 

Transgenic Drosophila expressing OBP6 in the flight muscle attain higher speeds on a novel 

flight mill system

To functionally validate the role of OBPs in flight activity we generated a transgenic D. 

melanogaster strain that over-expresses HarmOBP6 in muscle cells and assessed the performance 

of these flies on a newly designed flight mill system for small dipterans (Fig. S1). We chose OBP6 

based on its magnitude of expression in a Chinese strain of H. armigera previously reported as 

well as the flown/not flown comparison (Fig. S4) but postulate that the high conservation between 

the protein sequences of OBP6 and OBP3 (see phylogenetic analysis above) would lead to similar 

results had we chosen OBP3. Transgenic strains were generated using the φC31 integration system 

(Bischof, Maeda, Hediger, Karch, & Basler, 2007). Genomic integration of HarmOBP6 in 

generated transgenic flies, hereafter referred to as UAS-OBP6 strain, was confirmed by PCR and 

sequencing (Fig. 2A). The GAL4/UAS expression system (Brand & Perrimon, 1993) was employed 

to induce the expression of HarmOBP6 in muscle cells by using a muscle-specific GAL4 driver 

strain (Seroude, Brummel, Kapahi, & Benzer, 2002) (referred to as muscle-GAL4 strain). The 

over-expression of HarmOBP6 in transgenic flies generated from the cross between the UAS-

OBP6 and muscle-GAL4 strains (GAL4>UAS-OBP6 flies), was confirmed by RT-PCR and RT-A
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qPCR (Fig. 2A). The expression of HarmOBP6 increased by more than 15 times in GAL4>UAS-

OBP6 flies when compared to parental muscle-GAL4 and UAS-OBP6 (Fig. 2A).

We performed a series of flight mill experiments with three separate experimental trials. First, we 

compared the one-hour flight activity of Gal4>UAS-OBP6 transgenic and Gal4>UAS control 

flies. These flies are genetically identical where the only difference was the absence of 

HarmOBP6 in the controls. The average and maximum speeds (m/s) attained during the one-hour 

of flight activity were analysed using Generalised Linear Mixed Models (GLMMs) as a function 

of the covariates strain and age (Table 1). There was no difference in the average or maximum 

speed between Gal4>UAS-OBP6 and Gal4>UAS control flies when Gal4>UAS-OBP6 originated 

from crosses using UAS-OBP6 as the male parent (Experiment 1, Table 1). In this experiment 

there was evidence for increased speeds in older (over 48h old) Gal4>UAS-OBP6 flies. 

By contrast, Gal4>UAS-OBP6 flies originating from the reciprocal cross (UAS-OBP6 as the 

female parent) flew consistently faster and attained higher maximum speeds than control flies 

(Fig. 2B-2E, Table 1) and this pattern was observed in both mated and virgin F1 flies (Experiment 

2 and 3). There was an effect of age in both experiments, flies from the older age groups (those 

flies emerging after one week) flew faster than the younger cohort. The discrepancy in the F1 

flight activity results between UAS-OBP6 male and female parental lines could be due to maternal 

effects as observed in laboratory crosses of ‘short’ and ‘long’ flight phenotypes from other moth 

species (Gu & Danthanarayana, 1992). 

Quantification of TAG and phospholipids in flown H. armigera

We hypothesise that OBPs function as a fuel carrier for the supply of lipids to the flight muscles 

during prolonged flight in H. armigera. To determine candidate lipid molecular species for 

binding with OBPs we compared the total lipid content of age-matched moths flown on the flight 

mills with those reared to adults and not forced to undergo flight. Six lipid classes were assayed 

using electrospray ionization tandem triple-quadrupole mass spectrometry (ESI-MS) including 

triacylglycerol (TAG), phosphatidylethanolamine (PE), phosphatidylserine (PS), 

phosphatidylinositol (PI), phosphatidylglycerol (PG) and phosphatidylcholines (PC). 

Unsurprisingly total TAG levels were a) the most abundant class of the lipids analysed and b) 

underwent the most pronounced decline in flown moths (1.8-fold reduction from 739.6 to 410.5 

nmolsg-1fw, p = 0.006) (Fig. 3A). Sustained flight activity in insects is primarily powered by the A
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mobilisation of TAG in the insect fat body into diacylglycerol (DAG) which is then shuttled in the 

haemolymph to the flight muscle (Van der Horst & Ryan, 2012). The role of phospholipid 

metabolism in insects is far less understood although in this experiment we show a consistent 

depletion in each phospholipid class following flight (Fig. 3B, see Fig. S7 for individual lipid 

species and Table S3 for test statistics). In mammals the relative abundance of the two most 

common phospholipids, PC and PE (also the two most abundant classes in H. armigera moths 

measured by ESI-MS, Fig. 3B), regulates the size and dynamics of lipid droplets and energy 

metabolism (van der Veen et al., 2017). Phospholipids are critical to membrane structure and 

function; the fatty acyl components of the phospholipids can provide another potential energy 

source. When cells are subject to starvation, levels of phospholipid classes decrease (Steinhauser 

et al., 2018). Lipid droplets are storage organelles at the centre of lipid and energy homeostasis. 

They have a unique architecture consisting of a hydrophobic core of neutral lipids which is 

dominated by TAG, enclosed by a phospholipid monolayer that is decorated by a specific set of 

proteins (Olzmann & Carvalho, 2019). Utilizing the reserves of TAG from lipid droplets for 

energy will release phospholipids which can also be metabolised.

The protein structure and lipid binding site of H. armigera OBPs

We used the three-dimension structure of an OBP from the blowfly, Phormia regina, 

(PregOBP56a) (Ishida, Ishibashi, & Leal, 2013), as a template for HarmOBP6 and HarmOBP3, 

and the pheromone binding protein from the silkmoth Bombyx mori BmorPBP1 (1DQE) as a 

template for HarmPBP1, to build structural models and predict the binding efficacy to a range of 

fatty acids. We used HarmPBP1 as a positive control for semiochemical binding in relation to its 

observed role in female sex pheromone response (Ye et al., 2017). As expected, the structures of 

both HarmOBP6 and HarmOBP3 resemble typical insect OBPs composing of six α-helices 

connected by loops and three disulfide bridges that contribute to overall structural stability (Fig. 

4A & Fig. S8). Binding site prediction indicates the OBP has a pocket of 772.8 Å3 volume and 

917.1 Å2 area for OBP6 and 777.9 Å3 volume and 642.4 Å2 area for OBP3 with a “Tunnel” 

conformation suitable for lipid binding (Fig. 4B & Fig. S8).

To quantify the strength of molecular interactions between the over-expressed OBPs and potential 

substrates, molecular docking was conducted to determine binding energies with a range of fatty 

acids and olfactory odorants (semiochemicals) (Table 2). A total of 33 compounds were selected 

to dock with the predicted HarmOBP6, HarmOBP3 and HarmPBP1 protein structures, including 9 A
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fatty acids, 15 semiochemicals (identified from the Pherobase database 

https://www.pherobase.com), L-proline (amino acid) (Rio et al., 2016), D-trelahose (sugar) and a 

selection of DAG/TAG/phospholipid species analysed by ESI-MS (Table 2). 

The H. armigera OBPs possessed the lowest overall binding energies with TAG and 

phospholipids (Table 2). Apart from phosphatidylethanolamine (PE), HarmOBP3 had a greater 

binding affinity to each long-chain lipid than OBP6, with the mean docking values for modelled 

HarmOBP6 and HarmOBP3 -16.30±0.80 kcal mol-1 and -18.20±1.84 kcal mol-1 respectively. The 

lowest values were observed for HarmOBP3:TAG (52:2) and HarmOBP:phosphatidylinositol (PI 

36:3) (Table 2). The predicted binding model for PI in the pocket of OBP3 and OBP6 is shown in 

Fig. 4C with optimal predictions for TAG and other phospholipids in Fig. S8. In contrast, the 

binding predictions between HarmPBP1 and lipid molecules were highly inconsistent (Table 2). 

As expected from its putative role in sex pheromone transportation (Ye et al., 2017), HarmPBP1 

bound semiochemicals and fatty acids with greater negative values compared to the OBPs (Table 

2). There was little difference in semiochemical or fatty acid docking values between OBP6 and 

OBP3. Overall, these molecular docking patterns support the hypothesis that the H. armigera 

OBPs investigated in this study have a binding affinity for long-chain fatty acids which is either 

supplementary to their role in olfaction or represents an entirely new physiological function. There 

is now compelling evidence that OBPs perform physiological functions beyond olfaction (Pelosi, 

Iovinella, Zhu, Wang, & Dani, 2018). The sensilla of Drosophila maintain a robust response to a 

wide range of odours even when all abundantly expressed antennal OBP genes are deleted 

demonstrating that many OBPs are not essential to the olfactory response (Xiao et al., 2019). 

Humidity-detection (hygrosensation) relies on a single OBP (OBP59a) within Drosophila antenna 

(Sun et al., 2018) contravening the typical model that OBPs exclusively transport hydrophobic 

odorants to receptors. The diverse array of non-olfactory roles for OBPs in Dipteran include 

bacterial-induced haematopoiesis in tsetse flies (Benoit et al., 2017), the transportation of sex-

pheromones in Helicoverpa sp. (Sun et al., 2012) and eggshell formation in the mosquito Aedes 

aegypti (Marinotti et al., 2014). The degree of redundancy in OBP function and the circumstances 

under which dual or split roles are performed is currently unknown but tissue-specific functional 

genomics will undoubtedly begin to uncover the broader range of OBP operate.

Summary
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It is recently become accepted that the versatility of OBPs is greater than previously thought and 

this group of proteins represent a highly adaptive set of hydrophobic carriers performing multiple 

physiological functions beyond their classical role in chemoreception (Pelosi, Iovinella, Zhu, 

Wang, & Dani, 2018). Our findings on two H. armigera OBPs are consistent with this view and 

we propose an additional physiological role in regulating insect flight in a migratory Lepidopteran 

organism. The affinity of OBPs for long-chain fatty acids (Ishida et al., 2013) lends support to the 

hypothesis that OBPs act as carriers of hydrophobic free fatty acids produced from upstream lipid 

metabolism as part of the flight fuel pathway. The OBP homology structure models and binding 

affinities for a range of substrates described here support this. The precise mechanism(s) of how 

over-expressed OBPs contribute to flight performance at the biochemical and cellular level needs 

further study. Coping with the extreme energy demands of sustained migratory flight in insects is 

just one of several traits that make up the heritable ‘migratory syndrome’ (Roff & Fairbairn, 

2007). Investigating the pathways and mechanisms that support such a fascinating feat of 

endurance is an excellent means to understand animal migration at the genetic level.
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Table 1. Estimated regression parameters, standard errors, t values for GLMM models for Drosophila flight mill experiments.  

Experiment Response Regression 

parameter 

Estimate Std. error t value 

#1 F0 = ♂UAS-OBP6 x ♀muscle-GAL4 avgsp Intercept 0.316 0.021 14.70 

F1 = Virgin ♀  StrainOBP6 -0.019 0.026 -0.72 

  AgeOver48h 0.048 0.026 1.84 

 maxsp Intercept 0.481 0.033 12.35 

  StrainOBP6 -0.017 0.035 -0.49 

  AgeOver48h 0.067 0.037 1.84 

#2 F0 = ♀UAS-OBP6 x ♂muscle-GAL4 avgsp Intercept 0.226 0.015 14.76 

F1 = Mated ♀  StrainOBP6 0.015 0.016 0.93 

  Age6D 0.097 0.019 5.11 

  Age15D 0.054 0.019 2.81 

 maxsp Intercept 0.326 0.024 13.68 

  StrainOBP6 0.010 0.025 0.40 

  Age6D 0.179 0.030 6.05 

  Age15D 0.135 0.030 4.50 

#3F0 = ♀UAS-OBP6 x ♂muscle-GAL4 avgsp Intercept 0.251 0.020 12.50 

F1 = Virgin ♀  StrainOBP6 0.019 0.015 1.34 

  Age2weeks 0.039 0.021 1.90 

  Age4weeks 0.046 0.021 2.22 A
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 maxsp Intercept 0.373 0.034 11.03 

  StrainOBP6 0.046 0.024 1.95 

  Age2weeks 0.088 0.034 2.62 

  Age4weeks 0.071 0.033 2.14 

Note: avgsp is the average speed and maxsp is the maximum speed flown on the flight mill 
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Table 2. Molecular docking between HarmOBP6 and HarmOBP3 with fatty acids,  

semiochemicals, TAG and phospholipids. 

Ligands Ligands 
Binding energy (kcal mol

-1
) 

OBP6 OBP3 PBP1* 

Fatty acids 

1,2-diacylglycerol -5.1 -4.6 -4.9 

α-linolenic acid -5.8 -5.7 -7.8 

cis-vaccenic acid -5.6 -5.3 -6.9 

D-trehalose -5.2 -5.5 -5.5 

γ-linolenic acid -6.2 -5.7 -7.5 

Linoleic acid -5.4 -5.3 -7.3 

L-proline -4.5 -4.4 -4.5 

Oleic acid -5.4 -5.5 -7.0 

Palmitic acid -5.3 -5.1 -6.5 

Palmitoleic acid -5.5 -5.9 -6.9 

Stearic acid -5.6 -5.5 -6.7 

trans-vaccenic acid -5.5 -6.0 -7.1 

Semiochemicals 

2-phenylacetaldehyde -5.1 -4.6 -5.9 

2-phenylethanol -4.9 -4.7 -5.8 

benzaldehyde -4.8 -4.6 -5.6 

heptanal -4.2 -3.9 -4.6 

hexadecanal -5.0 -4.9 -6.5 

hexadecanol -5.0 -4.8 -6.3 

nonanal -4.7 -3.9 -5.4 

phenylmethanol -4.7 -4.8 -5.4 

salicylaldehyde -5.0 -5.0 -5.2 

tetradecanal -5.0 -4.5 -6.0 

(Z)-7-hexadecenal -5.2 -5.0 -6.7 

(Z)-9-hexadecenal -5.5 -5.0 -6.6 

(Z)-9-tetradecenal -5.2 -4.8 -6.4 

(Z)-11-hexadecenal -5.4 -4.9 -6.7 

(Z)-11-hexadecenol -5.3 -5.0 -6.4 

TAG/phospholipid triacylglycerol – TAG (52:3) -13.0 -21.0 -7.5 A
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triacylglycerol – TAG (52:2) -18.0 -22.0 50.8 

phosphatidylethanolamine – PE 36:4 -17.5 -3.8 5.1 

phosphatidylserine – PS (36:2) -18.0 -19.4 19.1 

phosphatidylinositol – PI (36:3) -19.9 -21.4 26.0 

phosphatidylglycerol – PG (34:3) -17.6 -18.7 21.3 

phosphatidylcholines – PC (36:5)(1) -13.7 -18.2 -0.7 

phosphatidylcholines – PC (36:5)(2) -14.0 -19.3 -14.8 

phosphatidylcholines – PC (36:5)(3) -15.3 -19.7 -1.5 

Numbers in parentheses indicate isomers for phosphatidylcholines as carbon atoms:unsaturations. (1) represents 

18:3/18:2; (2) represents 18:2/18:3 and (3) represents 16:0/20:5. *Corresponds to HarmPBP1 used as reference 

target with a reported function in binding sex pheromones. “-“ indicates no binding predicted by molecular docking 

based on the settings used. 
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