1	Genomic epidemiology of a complex, multi-species plasmid-borne $bla_{\rm KPC}$
2	carbapenemase outbreak in Enterobacterales in the UK, 2009-2014
3	
4	Stoesser N* ^{#1, 2} /Phan HTT* ^{2,3} , Anna C. Seale ^{1,4} , Zoie Aiken ⁵ , Stephanie Thomas ⁵ ,
5	Matthew Smith ⁵ , David Wyllie ¹ , Ryan George ⁵ , Robert Sebra ⁶ , Amy J Mathers ^{7,8} ,
6	Alison Vaughan ¹ , Tim EA Peto ^{1,2,9} , Matthew J Ellington ¹⁰ , Katie L Hopkins ¹⁰ ,
7	Derrick W Crook ^{1,2,9} , Alex Orlek ^{1,2} , William Welfare ¹¹ , Julie Cawthorne ⁵ , Cheryl
8	Lenney ⁵ , Andrew Dodgson ^{5, 12} , Neil Woodford ¹⁰ , A Sarah Walker ^{1,2,9} , and the
9	TRACE Investigators' Group
10	* These authors contributed equally to this work
11	# Corresponding author
12	
13	¹ Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
14	² NIHR Health Protection Research Unit in Healthcare Associated Infections and
15	Antimicrobial Resistance, University of Oxford, Oxford, UK
16	³ Faculty of Medicine, University of Southampton, Southampton, UK
17	⁴ Department of Infectious Disease Epidemiology, London School of Hygiene and
18	Tropical Medicine, UK
19	⁵ Manchester University NHS Foundation Trust, Manchester, UK
20	⁶ Icahn Institute and Department of Genetics and Genomic Sciences, Icahn School of
21	Medicine, Mount Sinai, New York, USA
22	⁷ Division of Infectious Diseases and International Health, Department of Medicine,
23	University of Virginia Health System, Charlottesville, Virginia, USA
24	⁸ Clinical Microbiology Laboratory, Department of Pathology, University of Virginia
25	Health System, Charlottesville, Virginia, USA

- 26 ⁹NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- 27 ¹⁰ Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI)
- 28 Reference Unit, National Infection Service, Public Health England, London, UK
- 29 ¹¹ Public Health England North West, Manchester, UK
- 30 ¹² Public Health Laboratory, Public Heath England, Manchester, UK
- 31
- 32 Keywords: carbapenemase, Enterobacterales, KPC, whole genome sequencing, short-
- 33 read sequencing, long-read sequencing, outbreak analysis
- 34
- 35 **Corresponding author**: Nicole Stoesser
- 36 Email: nicole.stoesser@ndm.ox.ac.uk
- 37 Tel: +44 (0) 1865 220856

bioRxiv preprint doi: https://doi.org/10.1101/779538. this version posted October 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. It is made available under a CC-BY 4.0 International license.

38 ABSTRACT

39	Carbapenem resistance in Enterobacterales is a public health threat. Klebsiella
40	pneumoniae carbapenemase (encoded by alleles of the $bla_{\rm KPC}$ family) is one of the
41	commonest transmissible carbapenem resistance mechanisms worldwide. The
42	dissemination of $bla_{\rm KPC}$ has historically been associated with distinct K. pneumoniae
43	lineages (clonal group 258 [CG258]), a particular plasmid family (pKpQIL), and a
44	composite transposon (Tn4401). In the UK, bla_{KPC} has caused a large-scale, persistent
45	outbreak focused on hospitals in North-West England. This outbreak has evolved to
46	be polyclonal and poly-species, but the genetic mechanisms underpinning this
47	evolution have not been elucidated in detail; this study used short-read whole genome
48	sequencing of 604 bla_{KPC} -positive isolates (Illumina) and long-read assembly
49	(PacBio)/polishing (Illumina) of 21 isolates for characterisation. We observed the
50	dissemination of bla_{KPC} (predominantly bla_{KPC-2} ; 573/604 [95%] isolates) across eight
51	species and more than 100 known sequence types. Although there was some variation
52	at the transposon level (mostly Tn4401a, 584/604 (97%) isolates; predominantly with
53	ATTGA-ATTGA target site duplications, 465/604 [77%] isolates), <i>bla</i> _{KPC} spread
54	appears to have been supported by highly fluid, modular exchange of larger genetic
55	segments amongst plasmid populations dominated by IncFIB (580/604 isolates),
56	IncFII (545/604 isolates) and IncR replicons (252/604 isolates). The subset of
57	reconstructed plasmid sequences also highlighted modular exchange amongst non-
58	$bla_{\rm KPC}$ and $bla_{\rm KPC}$ plasmids, and the common presence of multiple replicons within
59	$bla_{\rm KPC}$ plasmid structures (>60%). The substantial genomic plasticity observed has
60	important implications for our understanding of the epidemiology of transmissible
61	carbapenem resistance in Enterobacterales, for the implementation of adequate
62	surveillance approaches, and for control.

IMPORTANCE

64	Antimicrobial resistance is a major threat to the management of infections, and
65	resistance to carbapenems, one of the "last line" antibiotics available for managing
66	drug-resistant infections, is a significant problem. This study used large-scale whole
67	genome sequencing over a five-year period in the UK to highlight the complexity of
68	genetic structures facilitating the spread of an important carbapenem resistance gene
69	$(bla_{\rm KPC})$ amongst a number of bacterial species that cause disease in humans. In
70	contrast to a recent pan-European study from 2012-2013(1), which demonstrated the
71	major role of spread of clonal <i>bla</i> _{KPC} - <i>Klebsiella pneumoniae</i> lineages in continental
72	Europe, our study highlights the substantial plasticity in genetic mechanisms
73	underpinning the dissemination of $bla_{\rm KPC}$. This genetic flux has important
74	implications for: the surveillance of drug resistance (i.e. making surveillance more
75	difficult); detection of outbreaks and tracking hospital transmission; generalizability
76	of surveillance findings over time and for different regions; and for the
77	implementation and evaluation of control interventions.

78 INTRODUCTION

79	Antimicrobial resistance (AMR) in Enterobacterales is a critical public health threat.
80	Carbapenem resistance is of particular concern, and outbreaks involving multiple
81	species of carbapenemase-producing Enterobacterales (CPE) are increasingly
82	reported(2-5). Exchange of AMR genes, including carbapenem resistance genes,
83	happens at multiple genetic levels(6), and is often facilitated by their presence on
84	plasmids [circular DNA structures of variable size (2kb~>1Mb)], and/or other smaller
85	mobile genetic elements (MGEs) such as transposons and insertion sequences (IS),
86	that form part of the accessory genome.
87	
88	Whole genome sequencing (WGS) has significantly improved our understanding of
89	infectious diseases epidemiology and is used in both community-associated and
90	nosocomial transmission analyses(7, 8). Although useful for delineating transmission
91	routes in clonal, strain-based outbreaks, standard phylogenetic approaches and
92	comparative analyses have been more difficult for outbreaks involving multiple
93	bacterial strains/species and transmissible resistance genes(6). Reconstruction of the
94	genetic structures of plasmids carrying relevant antimicrobial resistance genes using
95	long-read sequencing has improved our understanding of the genetic complexity of
96	these resistance gene outbreaks, but has been difficult to undertake on a large scale.
97	
98	Although approximately 40 Klebsiella pneumoniae carbapenemase (KPC; encoded by
99	bla _{KPC}) variants have now been described (as per NCBI's AMR reference gene
100	catalogue, available at https://www.ncbi.nlm.nih.gov/pathogens/isolates#/refgene/),
101	only two have been most widely reported globally, namely KPC-2 and KPC-3
400	

102 (H272Y with respect to KPC-2; single nucleotide difference in *bla*_{KPC} [C814T])(9,

103	10). In the UK, the first KPC isolate identified was a KPC-4-containing Enterobacter
104	sp. isolated in Scotland in 2003(11), with subsequent identification of KPC-3 in
105	isolates in the UK in 2007. From 2007, increasing numbers of suspected KPC isolates
106	were referred to Public Health England (PHE's) Antimicrobial Resistance and
107	Healthcare Associated Infections (AMRHAI) Reference Unit, with the majority of
108	confirmed KPC-producers (>95%) coming from an evolving KPC-2-associated
109	outbreak in hospitals in North-West England, first recognised in 2008(12). These
110	isolates were predominantly $bla_{\rm KPC}$ -positive Enterobacterales cultured from patients
111	in the Central Manchester University Hospitals NHS Foundation Trust (CMFT; now
112	part of Manchester University NHS Foundation Trust)(13). bla_{KPC} is thought to have
113	been introduced into the region via a pKpQIL-like plasmid(14, 15), a plasmid
114	backbone previously associated with the global dissemination of bla_{KPC} in K.
115	pneumoniae clonal group 258, and already observed in other K. pneumoniae sequence
116	types (STs) and species in an analysis of 44 UK KPC-Enterobacterales from 2008-
117	2010(15).
118	
119	We used WGS to undertake a large-scale retrospective study of this multi-species,
120	polyclonal, bla_{KPC} outbreak in North-West England from 2009, generating complete
121	genome structures, including $bla_{\rm KPC}$ plasmids, for a subset of isolates. We
122	contextualised our analysis of regional outbreak strains using isolates from a national
123	$bla_{\rm KPC}$ surveillance programme, with the goal of understanding the genetic structures
124	associated with the regional emergence of $bla_{\rm KPC}$ in this setting.
125	

RESULTS

127	Of 742 isolates identified for sequencing, 60 (8%) were not retrievable or cultivable
128	from the laboratory archives. After de-duplicating by taking the first $bla_{\rm KPC}$ -positive
129	Enterobacterales (KPC-E) per patient, and excluding sequencing failures, any
130	sequences without $bla_{\rm KPC}$ (assumed lost in culture), and mixtures (identified from
131	genomic data analysis, see Methods), 604 evaluable isolate sequences were included.
132	These included: 327 archived isolates (54%) from inpatients in the early stages of the
133	observed outbreak (2009-2011), of which 309 and 18 isolates were from CMFT and
134	the University Hospital of South Manchester NHS Foundation Trust (UHSM; now
135	part of Manchester University NHS Foundation Trust) respectively; 78 (13%) later
136	isolates from CMFT/UHSM (2012-2014); 119 (20%) isolates from other hospitals
137	(n=15 hospitals) in North-West England (2009-2014, excluding CMFT and UHSM,
138	up to the first 25 consecutive KPC-E isolates per hospital); 72 (12%) isolates from
139	UK and Republic of Ireland hospitals (n=72 locations [n=4 from the Republic of
140	Ireland]) outside the North-West (2009-2014) (first KPC-E isolate per hospital); and 8
141	(1%) isolates from English outpatient/primary care settings.
142	
143	Although three bla_{KPC} variants were observed in the 604 included isolates, bla_{KPC-2}
144	dominated (n=573, 95%); bla_{KPC-3} [n=27, 4%] and bla_{KPC-4} [n=4, 1%]) were also
145	observed. Two isolates (0.3%; trace524, trace534) showed evidence of mixed
146	populations of bla_{KPC-2} and bla_{KPC-3} . The median bla_{KPC} copy number estimate was 1.8
147	(IQR: 1.6-2.1), with a maximum of 8.2. Across the three main species, bla_{KPC} copy
148	numbers were higher in K. pneumoniae (n=525 [87%], median 1.8 [IQR: 1.6-2.1]),
149	than E. coli (40 [7%]: 1.7 [1.5-1.9]) or E. cloacae (26 [4%], 1.6 [1.4-2.0]) (Kruskal-
150	Wallis; p=0.0003; Fig.1A). Amongst common STs, copy number was highest in <i>K</i> .

151	pneumoniae ST258 (n=65 [11	%], media	n 2.4 [IOR:	: 1.8-2.9])	versus other s	pecies/STs

152 (n=531 [89%], median 1.8 [1.6, 2.0]) (Kruskal-Wallis; p=0.0001; Fig.1B, Fig.S1).

153

- 154 Other broad or extended-spectrum beta-lactamase genes were also commonly present
- across isolates, including: bla_{TEM} (n=452, all $bla_{\text{TEM-1}}$), bla_{OXA} (n=492; $\Delta bla_{\text{OXA-9}}$

156 [n=425], *bla*_{OXA-1} [n=138]), *bla*_{SHV} (n=497) and *bla*_{CTX-M} (n=89; *bla*_{CTX-M-15} [n=57],

157 *bla*_{CTX-M-9} [n=28]). Aminoglycoside resistance genes were also widely prevalent: *aac*

158 (n=243), aph (n=196), ant (n=93) and aadA (n=280). In terms of acquired quinolone

resistance, 160 isolates contained qnr variants, and 137 isolates contained aac(6')-Ib-

160 *cr*; no *qep* variants were seen.

161

162 Insertion sequences (ISs) have been shown to be key in the reshaping and

163 streamlining of bacterial genomes, as well as exerting more subtle effects in the

164 regulation of gene expression(16). The median number of different IS types in isolates

165 was 15 (IQR: 13-16), with a maximum of 32. Four hundred distinct IS profiles were

166 identified amongst the 604 isolates, with only five identical profiles shared amongst

 $167 \ge 10$ isolates - these included a distinct profile seen only in national K. pneumoniae

168 ST258 isolates (IS1F, IS1R, IS3000, IS6100, IS903B, ISEcl1, ISKpn1, ISKpn14,

169 ISKpn18, ISKpn25, ISKpn26, ISKpn28, ISKpn31, ISKpn6, ISKpn7), and other unique

170 profiles seen in small groups of *K. pneumoniae* ST588, ST11, ST321 and ST54. This

171 highlights the significant flux of small mobile genetic elements within and between

172 lineages in our dataset.

173

174 Tn4401 is a ~10kb transposon that has been the major transposable context for bla_{KPC} 175 to date(17, 18). A predominant Tn4401 isoform was associated with both $bla_{\text{KPC-2}}$ and

176	$bla_{\rm KPC-3}$ in this study, namely Tn4401a(17), which occurred in 584/604 (97%)
177	isolates. Other known variants included Tn4401b (n=7) and Tn4401d (n=3). Only
178	20/584 (3%) isolates demonstrated evidence of SNV-level variation in Tn4401a
179	(homozygous calls at 6 positions; heterozygous calls [i.e. mixed populations] at 3
180	positions). <i>bla</i> _{KPC-2} -Tn4401a (n=539 isolates) was predominantly flanked by a 5-bp
181	target site duplication (TSD) ATTGA, with 465/604 (77%; 465/539 [86%] of this
182	sub-type) isolates with this Tn4401/TSD combination (Fig.2A). In 74 other bla_{KPC-2} -
183	Tn4401a isolates, the Tn4401a was flanked by other target site sequence (TSS)
184	combinations, consistent with additional transposition events. Thirty-two of these
185	were TSDs (16 AATAT-AATAT, 16 AGTTG-AGTTG), which have been described
186	as more consistent with inter-plasmid transposition of Tn4401(19), and 35 were non-
187	duplicate TSS combinations (ATTGA with either ATATA, TGGTA, CTGCC,
188	AATAA, AGGAT), described as more consistent with intra-plasmid transposition.
189	Evidence of multiple TSSs around bla_{KPC-2} -Tn4401a within single isolates was seen
190	in 6 cases (i.e. multiple right and/or left Tn4401 TSSs); 1 case had a right TSS
191	present, but no left TSS identified.
192	
193	The 604 isolates contained 91 unique combinations of plasmid Inc types (a crude
194	proxy of plasmid populations present); no isolate was replicon negative. However,
195	there were seven predominant combinations (Fig.2B) represented in 443/604 (73%)
196	isolates, and these included six major Inc types, namely IncF (FIB [found in n=580
197	isolates], FII [n=545]), FIA (n=103), IncR (n=252), ColRNAI (n=86), and IncX3

- 198 (n=60). For many of the plasmid families, several different reference replicon
- sequences exist in the PlasmidFinder database, with a degree of homology amongst
- 200 sequences in the same family, making it difficult to establish exactly which exact sub-

- 201 type of replicon is present. However, restricting to 100% matches to reference
- 202 replicon types for these common families, top matches included:
- 203 IncFIB(pQil)_JN233705 (n=300) and IncFIB(K)_1_Kpn3_JN233704 (n=107);
- 204 ColRNAI_1_DQ298019 (n=84); IncR_1_DQ449578 (n=70); and
- 205 IncFII_1_pKP91_CP000966 (n=62; plasmid MLST IncFII_{K4}),
- 206 IncFII(K)_1_CP000648 (n=51; plasmid MLST IncFII_{K1}) and IncFII_1_AY458016
- 207 (n=19; plasmid MLST $IncFII_{K2}$).

- 209 Species and lineage diversity in the outbreak was substantial, with eight different
- 210 species amongst sequenced isolates, and many different known STs, including: *K*.
- 211 pneumoniae (n=525 isolates, 70 known STs), E. coli (n=40, 20 known STs),
- 212 Enterobacter cloacae (n=26, 9 known STs), Klebsiella oxytoca (n=6, 3 known STs),
- 213 Raoultella ornithinolytica (n=4), Enterobacter aerogenes (n=2), Serratia marcescens
- 214 (n=1) and *Kluyvera ascorbata* (n=1). The most common STs were all *K. pneumoniae*,
- 215 including ST258 (n=66), ST11 (n=35), ST491 (n=31), ST1162 (n=29) and ST54
- 216 (n=27) (Fig.2C). Therefore, although some of the earliest sequenced isolates were
- 217 KPC-K. pneumoniae ST258 and ST11 (both in 2009) [two major KPC strains from
- 218 CG258 circulating globally and in China at the time(9, 20)] and although KPC-
- 219 producing *K. pneumoniae* ST258 appears to have been one of the earliest strains
- 220 observed in CMFT and UHSM, multiple diverse STs and species were subsequently
- rapidly recruited to the outbreak in 2010 and 2011. This was most likely by the
- 222 widespread sharing of a *bla*_{KPC-2}-Tn4401a-ATTGA-ATTGA transposon within and
- between IncFIB, IncFII and IncR plasmid populations (Fig.2B, 2C).
- 224
- 225 Long-read sequencing analyses

226	In addition to short-read data, to resolve genetic structures fully we obtained long-
227	read PacBio data for 23 isolates, chosen to maximise the bla_{KPC} plasmid diversity
228	assayed and focussing on isolates collected from the two main Manchester hospitals
229	(12 CMFT isolates, 5 UHSM; plus 2 from other hospitals in North-West England, 4
230	from other UK locations). These included the two presumed earliest $bla_{\rm KPC}$ isolates
231	from both CMFT and UHSM, as well as isolates sharing the same species/ST but with
232	different plasmid replicon combinations or from North West regional versus national
233	locations, same-species isolates with different STs, and isolates of different species.
234	One PacBio sequencing dataset represented a clear isolate mixture (trace597 [UHSM]
235	of E. cloacae ST133 and K. pnemoniae ST258), and for one isolate (trace457
236	[CMFT]), there were discrepancies between the short-read and long-read sequencing
237	datasets, suggesting a laboratory error (E. cloacae ST45 long-read, E. coli ST88
238	short-read). These two assemblies were excluded, leaving 21 assemblies for further
239	analysis (Table S1).
240	
241	Of the 153 contigs from these 21 assemblies, 30 were clearly chromosomal, 77
242	plasmid, one chromosomal with an integrated plasmid, and 45 with unclear
243	provenance (i.e. possibly phage, plasmid, or chromosomal). Overall 78/153 [51%]
244	contigs were circularised, including 56/77 [73%] clear plasmid sequences. Thirty-one
245	contigs (21 (68%) circularised) harboured bla_{KPC} , of which one (trace552, K.
246	pneumoniae ST11) had bla_{KPC} integrated into the chromosome. Four isolates had
247	multiple copies of <i>bla</i> _{KPC} (trace205 [K. pneumoniae, ST468; 2 copies, 1 contig],
248	trace457 [E. cloacae, ST45; 5 copies [1 truncated], 2 contigs], trace75 [K.
249	pneumoniae, ST252; 2 copies, 2 contigs], trace149 [9 copies, 9 contigs]). Trace149
250	(<i>E. coli</i> , ST1642), which had nine conject of <i>blarma</i> , had one converse on a long

250 (*E. coli*, ST1642), which had nine copies of *bla*_{KPC}, had one copy each on: a long,

251	incomplete bla_{KPC} contig (203kb), seven nearly identical complete bla_{KPC} -containing
252	circularised sequences of size ~10kb (possibly representing circularised translocatable
253	intermediates(21)), and a short linear bla_{KPC} contig (~18kb).
254	
255	We observed bla_{KPC} in multiple plasmid backgrounds (Fig.3), including a majority of
256	$bla_{\rm KPC}$ plasmids with multiple replicons (13/21 [60%] clear plasmid contigs, as
257	represented in Fig.3), particularly with IncFIB/IncFII and/or IncR, consistent with
258	replicon patterns in the isolates overall (Fig.2). For the IncFII group, for which we
259	had 17 plasmid sequences with an IncFII(K)_CP000648-like replicon (plasmidFinder
260	match; 5 bla_{KPC} -negative [i.e. not represented in Fig.3] and 12 bla_{KPC} -positive), there
261	was evidence of significant exchange and rearrangement of plasmid components
262	between both bla_{KPC} -positive and bla_{KPC} -negative plasmids, integration of $IncFII_K$ and
263	IncR plasmids, and gene duplication events of Tn4401/bla _{KPC} , as well as sharing
264	between STs and species (Fig.4).
265	
266	In addition to their plasticity, part of the success of these $bla_{\rm KPC}$ plasmids may also be
267	attributable to the presence of toxin-antitoxin plasmid addiction systems ($ccdA/ccdB$
268	n=4 <i>bla</i> _{KPC} plasmids; <i>higA</i> n=6; <i>vapB/vapC</i> n=11); anti-restriction mechanisms (<i>klcA</i>
269	n=16, previously shown to promote bla_{KPC} dissemination(22)); and heavy metal
270	resistance (<i>terB</i> [tellurite] n=3; <i>ars</i> operon [arsenicals] n=3; chromate resistance n=1;
271	<i>cop</i> operon/ <i>pcoC</i> / <i>pcoE</i> [copper] n=7; <i>mer</i> operon [mercury] n=10).
272	
273	bla _{KPC} plasmid typing
274	Attempts to identify complete plasmids (as opposed to plasmid replicon typing) from

short-read data by comparison to a reference plasmid database has been estimated as

276	being correct in only ~45%-85% of cases in previous studies(6, 23). However, $13/14$
277	(93%) of isolates for which we had hybrid assemblies with only one completely
278	reconstructed bla_{KPC} plasmid had the correct top match using our bla_{KPC} plasmid
279	typing method (Table S2). Noting that any complete plasmid typing approach from
280	short-read data is sub-optimal, we compared all short-read sequences with our
281	reference bla_{KPC} plasmid database (see Methods); matches to one or more reference
282	$bla_{\rm KPC}$ plasmid sequences were identified in 554/604 (92%) isolates. Filtering the
283	single match with the highest score at the predefined ≥ 0.80 threshold left a subset of
284	428/554 (77%) for evaluation. These 428 isolates had matches to 12 $bla_{\rm KPC}$ plasmid
285	clusters.
286	

287 Based on classification by these top plasmid-cluster matches, *bla*_{KPC} plasmid clusters 288 were shared across a median (IQR) of 3 (1-6) STs, with pKpQIL-like plasmids being 289 most widespread across species/STs (7 species, 75 STs), and clearly playing a major 290 role in the North-West England outbreak, as well as being spread regionally and 291 nationally (Fig.5). Other plasmid types identified as top-matches across the entire 292 dataset included those fully resolved by long-read sequencing performed within this 293 study, some of which were seen in \geq 5% of study isolates (e.g. pKPC-trace75 [a non-294 typeable replicon]), and in non-North-West settings, likely reflecting recombination 295 and generation of new *bla*_{KPC} plasmid variants in North-West England and their 296 subsequent dissemination.

297

298 **DISCUSSION**

We present the largest WGS-based analysis of bla_{KPC} -positive isolates (n=604) to our knowledge, focused on assessing genetic diversity around the carbapenemase gene

301	itself rather than limiting the analysis based on species type, and incorporating a
302	sampling frame from UK regional and national collections, over five years. $bla_{\rm KPC}$
303	remains one of the three most common carbapenemases observed in the UK,
304	accounting for ~15% of cases referred to the AMRHAI Reference Unit in 2017(24),
305	and presenting a significant challenge to hospitals in North-West England, including
306	Manchester, where it accounted for >97% of carbapenem resistance through
307	2015(25).
308	
309	Our study provides an interesting context in which to consider the findings of a
310	recently published pan-European survey of carbapenem non-susceptible K.
311	pneumoniae (the EuSCAPE study; 6 months, 2013-2014; 244 hospitals, 32
312	countries)(1). In EuSCAPE, 684 carbapenemase-producing Klebsiella spp. isolates
313	were Illumina sequenced, and similar to our study, most cases were healthcare-
314	exposed (<2% from outpatients). EuSCAPE carbapenemase-producing isolates were
315	also predominantly bla_{KPC} (~45%, n=311 isolates), but mostly bla_{KPC-3} (232/311
316	[75%] versus 27/604 [5%] in our study), and ST258/ST512 (226/311 [73%] versus
317	107/525 (20%) of K. pneumoniae overall in our study). Based on identifying genetic
318	"nearest-neighbours" in their data, the EuSCAPE team found 51% of bla_{KPC} -K.
319	pneumoniae were most closely related to another isolate from the same hospital. The
320	authors concluded that there was strong geographic structuring of strains, and that the
321	expansion of a handful of clonal lineages was predominantly responsible for the
322	spread of carbapenemases in K. pneumoniae in Europe, with onward nosocomial
323	transmission. Like bla_{KPC-3} in EuSCAPE, bla_{KPC-2} has also been linked with the clonal
324	expansion of ST258 in Australia(26), where 48% of 176 K. pneumoniae isolates
325	sequenced were bla_{KPC-2} -containing ST258.

327	However, instead of clonal expansion, in our study we found rapid dissemination of
328	mobile backgrounds supporting bla_{KPC-2} , similar to observations from sequencing of
329	other polyclonal bla_{KPC} outbreaks reported elsewhere, including the US(6, 27).
330	Tn4401a, associated with high levels of bla_{KPC} expression(28), has been previously
331	predominantly seen in K. pneumoniae, and in isolates from the US, Israel and Italy,
332	and similarly most commonly with an ATTGA-ATTGA TSD(10). Thus our findings
333	are consistent with the importation of the predominant bla_{KPC-2} -Tn4401a-ATTGA-
334	ATTGA motif into CMFT/North-West England and subsequent horizontal spread.
335	Notably, as in EuSCAPE, 46/72 (64%) singleton isolates we sampled from UK
336	hospitals were also CG258, but our detailed sampling within a region reflected a very
337	different molecular epidemiology. Although the EuSCAPE study is large and
338	impressive, its breadth may have been limiting in understanding regional diversity -
339	for example, the subset of bla_{KPC} -K. pneumoniae from the UK that were analysed in
340	EuSCAPE consisted of 11 isolates submitted from six centres
341	(https://microreact.org/project/EuSCAPE_UK). The focus was also more on analysing
342	species-specific clonal relationships, with no analysis of other species or MGEs.
343	
344	Although in our study diversification occurred at all genetic levels (Tn4401+TSSs,
345	plasmids, plasmid populations, strains, species), there was more limited variation
346	observed within the transposon and its flanking regions, and the spread of $bla_{\rm KPC}$
347	appears to have been supported by highly plastic modular exchange of larger genetic
348	segments within a distinct plasmid population, particularly IncFIB/IncFII (found in
349	580 and 545 of the 604 isolates respectively) and IncR replicons (252/604 isolates). A
350	previous study, in which 11 transformed bla_{KPC} plasmids from the UK (2008-2010)

351 were sequenced (Roche 454/assembly, PCR+sequencing based gap closure),

352	identified a UK variant of the pKpQIL plasmid, designated pKpQIL-UK (IncFII _{K2} by							
353	plasmid MLST), that was highly similar to pKpQIL (maximum 32 SNVs diversity),							
354	and several other $IncFII_{K2}$ pKpQIL-like plasmids, but with novel segmental genetic							
355	rearrangements (gains/losses; pKpQIL-D1, pKpQIL-D2)(15). Our data support the							
356	importance of $IncFII_{K2}$ -like plasmids in this bla_{KPC} outbreak too, but also that other							
357	$IncFII_{K}$ -like plasmids (e.g. $IncFII_{K1, -K4, -K7, -K15}$) and replicons (IncFIB, IncR) have							
358	also been a significant feature. In addition to their plasticity, the plasmids identified							
359	frequently harboured AMR genes other than bla_{KPC} which might offer a selective							
360	advantage, alongside heavy metal resistance genes, and plasmid toxin-antitoxin							
361	addiction systems. The plasticity and association of $IncFII_K$ plasmids with resistance							
362	genes and IncFIB replicons has been supported by findings of a recent analysis of							
363	$IncFII_{K}$ plasmids(29).							
364								
365	The problem of accurately classifying plasmid populations from short-read data was							

exemplified in this analysis, and highlighted by our smaller long-read/short-read
hybrid assembly-based analysis, which demonstrated significant diversity within
structures assigned as similar by short-read based typing approaches. With this caveat,
it was interesting that even with relatively relaxed thresholds, 29% of isolates did not
have a match to our reference *bla*_{KPC} plasmid database (based on clustering of all
publicly available reference sequences, as in Methods), consistent with rapid
diversification in the genetic background of Tn*4401/bla*_{KPC} elements in this setting.

Our findings demonstrated that it is also important to consider plasmids without theresistance gene of interest in a population, as these may be relevant to a wider

376	understanding of the transmission and evolution of smaller mobile genetic elements							
377	harbouring resistance genes (Fig.4). This was also shown to be relevant in a previous							
378	analysis of a large KPC-E. coli outbreak in the same setting in 2015-2016, in which a							
379	circulating <i>bla</i> _{KPC} -negative plasmid, pCAD3 (IncFIB/FII), acquired Tn4401 from a							
380	IncHI2/HI2A <i>bla</i> _{KPC} -positive plasmid, and went on to dominate within a clonal <i>E. coli</i>							
381	lineage(25). Most studies in general however tend to focus on analysing AMR							
382	plasmids of interest. Fortunately, long-read sequencing is becoming increasingly low							
383	cost and high-throughput, and hybrid assembly is able to reconstruct plasmid							
384	sequences in Enterobacterales(30, 31). New developments in large-scale comparative							
385	genomics of complete genomes, including plasmid structures, are essential for future							
386	large-scale analysis of AMR gene outbreaks.							
387								
388	There are several limitations to our study. The reconstructed genomes generated using							
389	long-read PacBio data remained incomplete (49% of all contigs uncircularised).							
390	Improvements in long-read technology and assembly approaches will likely overcome							
391	this(30). Our short-read and long-read datasets were generated from the same frozen							

392 stocks of isolates, but from separate sub-cultures (because we used the short-read data 393 to inform selection for long-read sequencing); ideally they would have been generated 394 from the same DNA extract. PacBio sequencing library preparation incorporates size 395 selection, and this may have led to short plasmid sequences (<15kb) being lost. Our 396 interpretation of the evolution of backgrounds supporting bla_{KPC} was limited by the 397 diversity present, and the inability to capture sequential evolutionary events, even 398 with this large study. Lastly, very limited epidemiological data linked to the isolates 399 were available, meaning that we were unable to ascertain any epidemiological drivers 400 which might be contributing to the enormous heterogeneity of bla_{KPC} transmission

401	over apparently short timeframes; the latter finding also precluded the useful						
402	application of standard phylogenetic approaches based on identifying variants core to						
403	and within species. In addition, the collection of isolates by PHE as part of regional						
404	and national surveillance was dictated by referral patterns of isolates from the						
405	hospitals surveyed, and we do not have any denominator information on cultures						
406	(either bla_{KPC} -positive or bla_{KPC} -negative) to corroborate details on the robustness of						
407	this referral process.						

409 In conclusion, our large analysis highlights the difficulty and complexity of these 410 outbreaks once important AMR genes have "escaped" the genetic confines of 411 particular mobile genetic elements and bacterial species/lineages, with important 412 implications for surveillance. These include the need to consider multiple bacterial 413 species and plasmids as potential hosts of *bla*_{KPC}, and invest resource in sequencing 414 approaches to adequately reconstruct genetic structures and avoid misinterpreting the 415 molecular epidemiology. It also demonstrates that regional differences in AMR gene 416 epidemiology may be quite marked, which may affect the generalizability of control 417 methods. Finally, it is important to consider the wider genetic background of host 418 strains and plasmids in understanding the evolution and dissemination of important 419 AMR genes, as AMR gene transfer between plasmid backgrounds within bacteria 420 may occur over short timescales, and the interaction of several plasmids (i.e. not just 421 those harbouring the AMR gene of interest at any given time) in a population may be 422 highly relevant to the persistence and dissemination of the AMR gene itself.

423

424 MATERIAL AND METHODS

425 Study isolates and setting

426	We sequenced archived carbapenem-resistant Enterobacterales isolates from two								
427	hospital groups in Manchester (formerly known as CMFT and UHSM), aiming to								
428	include all inpatient isolates archived in the early stages of the observed outbreak,								
429	2009-2011, and a subset of bla_{KPC} -positive Enterobacterales (KPC-E) isolates								
430	sequenced as part of regional and national surveillance undertaken by Public Health								
431	England (PHE, 2009-2014). The PHE set included: (i) up to the first 25 consecutive								
432	KPC-E isolates from any hospital in North-West England (2009-2014) and referred to								
433	the PHE reference laboratory (2009-2014); (ii) the first KPC-E isolate from any other								
434	hospital in the UK and the Republic of Ireland referred to PHE (2009-2014); and, (iii)								
435	any KPC-E isolates from outpatient/primary care settings in the UK referred to PHE								
436	(2009-2014).								
436 437	(2009-2014).								
	(2009-2014). Ethical approval was not required as only bacterial isolates were sequenced, and their								
437									
437 438	Ethical approval was not required as only bacterial isolates were sequenced, and their								
437 438 439	Ethical approval was not required as only bacterial isolates were sequenced, and their								
437 438 439 440	Ethical approval was not required as only bacterial isolates were sequenced, and their collection was part of outbreak investigation and management.								
437 438 439 440 441	Ethical approval was not required as only bacterial isolates were sequenced, and their collection was part of outbreak investigation and management. DNA extraction and sequencing								
437 438 439 440 441 442	Ethical approval was not required as only bacterial isolates were sequenced, and their collection was part of outbreak investigation and management. <i>DNA extraction and sequencing</i> For short-read Illumina sequencing (HiSeq 2500, 150bp PE reads), DNA was								

- 446 with minor modifications and a custom automated protocol on a Biomek FX
- 447 (Beckman). Ligation of adapters was performed using Illumina Multiplex Adapters,
- 448 and ligated libraries were size-selected using Ampure magnetic beads (Agencourt).
- 449 Each library was PCR-enriched with custom primers (Index primer plus dual index
- 450 PCR primer) (32). Enrichment and adapter extension of each preparation was

451	obtained using 9ul of size-selected library in a 50ul PCR reaction. Reactions were							
452	then purified with Ampure beads (Agencourt/Beckman) on a Biomek NXp after 10							
453	cycles of amplification (as per Illumina recommendations). Final size distributions of							
454	libraries were determined using a Tapestation 1DK system (Agilent/Lab901), and							
455	quantified by Qubit fluorometry (Thermofisher).							
456								
457	For long-read sequencing (PacBio [n=28]), DNA was extracted using the Qiagen							
458	Genomic tip 100/G kit (Qiagen, Netherlands). DNA extracts were initially sheared to							
459	an average length of 15kb using g-tubes, as specified by the manufacturer (Covaris).							
460	Sheared DNA was used in SMRTbell library preparation, as recommended by the							
461	manufacturer. Quantity and quality of the SMRTbell libraries were evaluated using							
462	the High Sensitivity dsDNA kit and Qubit Fluorimeter (Thermo Fisher Scientific) and							
463	DNA 12000 kit on the 2100 Bioanalyzer (Agilent). To obtain the longest possible							
464	SMRTbell libraries for sequencing (as recommended by the manufacturer), a further							
465	size selection step was performed using the PippinHT pulsed-field gel electrophoresis							
466	system (Sage Science), enriching for the SMRTbell libraries >15kb for loading onto							
467	the instrument. Sequencing primer and P6 polymerase were annealed and bound to							
468	the SMRTbell libraries, and each library was sequenced using a single SMRT cell on							
469	the PacBio RSII sequencing system.							

471 Sequencing data have been deposited in the NCBI (BioProject Accession:

472 PRJNA564424).

473

474 Sequence data processing and assembly

- 475 We used Kraken(33) to assign species to sequenced isolates. SPAdes(34) v3.6 was
- 476 used to *de novo* assemble reads (default options; subsequent removal of contigs
- 477 shorter than 500bp and assembly coverage <2X). Isolates with sequence assemblies
- 478 >6.5Mb were excluded to ensure that potentially mixed sequences were not included
- in the analyses. MLST was derived in silico by blasting de novo assemblies against
- 480 publicly available MLST databases for E. coli
- 481 (http://mlst.warwick.ac.uk/mlst/dbs/Ecoli), K. pneumoniae, E. cloacae and K. oxytoca
- 482 (<u>https://pubmlst.org/</u>). Isolates with mixed MLST outputs were excluded.
- 483 Antimicrobial resistance (AMR) genes, plasmid replicon (Inc) types and insertion
- 484 sequences (IS) were identified using resistType
- 485 (https://github.com/hangphan/resistType_docker; curated AMR gene database as
- 486 in(35), plasmid replicon reference sequences from PlasmidFinder(36), ISs from the
- 487 ISFinder platform(37); \geq 80% identity used as a threshold). *bla*_{KPC} copy number for
- 488 each isolate was estimated by dividing coverage of the contig containing $bla_{\rm KPC}$ by
- the average coverage for the assembly. Plasmid MLST for common family types
- 490 identified in short read data and for resolved genomes (i.e. based on PacBio and Pilon
- 491 assemblies see below) was confirmed by 100% sequence matches to reference
- alleles for families catalogued in the plasmidMLST website
- 493 (<u>https://pubmlst.org/plasmid/;</u> IncA/C, IncHI1/2, IncN).
- 494
- 495 PacBio sequencing data were assembled using the HGAP pipeline(38), and polished
- 496 with the corresponding Illumina datasets using Pilon (version 1.18, default
- 497 parameters)(39). Chromosomal sequences and plasmid sequences were then manually
- 498 curated where possible to create complete, closed, circular structures by using
- 499 BLASTn to identify overlaps at the end of assembled contigs. Those with overlapping

- 500 ends larger than 1000bp with sequence identity >99% were considered
- 501 circularised/complete, and trimmed appropriately for resolution. Complete sequences
- 502 were annotated using PROKKA (version 1.11)(40); annotations were used to
- 503 determine genes known to encode toxin-antitoxin systems, heavy metal resistance,
- and anti-restriction mechanisms.
- 505
- 506 Tn4401 typing
- 507 Tn4401 typing was performed using TETyper(10), using the Tn4401, SNP and
- 508 structural profile reference files included with the package
- 509 (https://github.com/aesheppard/TETyper; Aug 2019), and a flanking length of 5bp,
- 510 representative of the known target site signature sequence indicative of Tn4401
- 511 transposition(41).
- 512

- 513 Plasmid database for bla_{KPC} plasmid typing
- 514 A reference bla_{KPC} plasmid sequence database composed of bla_{KPC} -harbouring
- 515 contigs/plasmids from long-read sequencing of isolates in this study and all complete
- 516 *bla*_{KPC} plasmids from (42-44) (August 2018) was used for *bla*_{KPC} plasmid typing
- 517 within this study. To construct this database, all 279/6018 evaluable plasmid
- sequences carrying bla_{KPC} were first compared using dnadiff(45) to obtain the
- pairwise similarity between any two plasmid sequences p_i and p_j . The similarity was
- be defined as a function of their lengths l_i , l_j , and the aligned bases l_{ij} , l_{ji} as reported by:

$$(p_i, p_j) = \frac{1}{2} \left(\frac{l_{ij}}{l_i} + \frac{l_{ji}}{l_j} \right) \times \min \left(\frac{l_i}{l_j}, \frac{l_j}{l_i} \right)$$

522 The score was designed to penalise differences in length of the compared sequences,

523 i.e. to make sequences of different lengths proportionately more different. The

524	resulting similarity matrix was used to perform clustering of plasmid sequences using								
525	the affinity propagation clustering technique, suitable for graph clustering problems								
526	with sparse similarity matrix and uneven cluster size and cluster number(46), and								
527	resulted in 34 clusters of 1-43 plasmids per cluster (Table S3). The largest cluster was								
528	the set of pKpQIL-like plasmids comprising 43 related sequences. Representative								
529	sequences of each $bla_{\rm KPC}$ plasmid cluster in this network were chosen randomly, to								
530	generate a set (KPC-pDB) of plasmids ranging from 7,995bp (NC_022345.1; plasmid								
531	pAP-2) to 447,095bp (NZ_CP029436.1; plasmid pKPC_CAV2013) in the final								
532	database used for $bla_{\rm KPC}$ plasmid typing in this study.								
533									
534	Subsequently, bla_{KPC} plasmid typing for each study isolate sequence was performed								
535	as follows: (1) assembled sequences for each isolate were BLASTed (BLASTn)								
536	against KPC-pDB; (2) any >1kb contig with >90% nucleotide identity and >80% total								
537	coverage match to sequences in <i>KPC-pDB</i> was retained; (3) for any sequence p_i in								
538	<i>KPC-pDB</i> , a score s_i was calculated by dividing the total matched bases of all contigs								
539	matched to p_i by p_i 's length; and (4) an isolate was assumed to plausibly carry p_i if s_i								
540	\geq 0.80. An isolate could have several <i>bla</i> _{KPC} plasmid matches; we restricted to the top								
541	match for each isolate in our analyses.								
542									
543	Statistical analysis and data visualisation								
544	Statistical analysis (Kruskal-Wallis testing) was carried out in Stata 14.2. Plots for								

- figures 1, 2, 5 and S1 were generated using ggplot2 in R (version 1.1.463). Figure 4
- 546 was generated using the GenomeDiagram package(47) in Biopython(48).
- 547

548	Acknowledgements and funding: We are grateful to and acknowledge the sharing of							
549	isolates by microbiology and clinical teams from contributing UK hospitals, and from							
550	Martin Cormican and the contributing laboratories in Dublin, Republic of Ireland. We							
551	are also grateful to the microbiology laboratory staff and infection control teams at							
552	Manchester University NHS Foundation Trust (formerly CMFT and UHSM); the staff							
553	of the Manchester Medical Microbiology Partnership; and the research laboratory,							
554	informatics and project management teams working as part of the Modernising							
555	Medical Microbiology consortium (Oxford).							
556								
557	Contemporaneous investigation by CMFT, UHSM and PHE was undertaken as part							
558	of routine activity. The retrospective investigation was funded by the National							
559	Institute for Health Research Health Protection Research Unit (NIHR HPRU) in							
560	Healthcare Associated Infections and Antimicrobial Resistance at Oxford University							
561	in partnership with Public Health England (PHE) [grant HPRU-2012-10041] and							
562	supported by the NIHR Biomedical Research Centre, Oxford. The views expressed in							
563	this publication are those of the authors and not necessarily those of the NHS, the							
564	National Institute for Health Research, the Department of Health or Public Health							
565	England. NS is funded by a PHE/University of Oxford Academic Clinical							
566	Lectureship. TEAP, DWC and ASW are NIHR Senior Investigators.							
567								
568	The Transmission of Carbapenemase-producing Enterobacteriaceae (TRACE) study							
569	investigators are listed alphabetically, and include several of the authors also listed by							
570	name in the main author list: Zoie Aiken, Oluwafemi Akinremi, Aiysha Ali, Julie							
571	Cawthorne, Paul Cleary, Derrick W. Crook, Valerie Decraene, Andrew Dodgson,							

572 Michel Doumith, Matthew J. Ellington, Ryan George, John Grimshaw, Malcolm

573	Guiver, Robert Hill, Katie L. Hopkins, Rachel Jones, Cheryl Lenney, Amy J.							
574	Mathers, Ashley McEwan, Ginny Moore, Mark Neilson, Sarah Neilson, Tim E.A.							
575	Peto, Hang T.T. Phan, Mark Regan, Anna C. Seale, Nicole Stoesser, Jay Turner-							
576	Gardner, Vicky Watts, A. Sarah Walker, Jimmy Walker, David Wyllie, William							
577	Welfa	re and Neil Woodford.						
578								
579	None	of the authors has any conflicts of interest to declare.						
580	Refer	ences						
581	1.	David S, Reuter S, Harris SR, Glasner C, Feltwell T, Argimon S, Abudahab						
582		K, Goater R, Giani T, Errico G, Aspbury M, Sjunnebo S, Eu SWG, Group ES,						
583		Feil EJ, Rossolini GM, Aanensen DM, Grundmann H. 2019. Epidemic of						
584		carbapenem-resistant Klebsiella pneumoniae in Europe is driven by						
585		nosocomial spread. Nat Microbiol doi:10.1038/s41564-019-0492-8.						
586	2.	Mathers AJ, Stoesser N, Sheppard AE, Pankhurst L, Giess A, Yeh AJ, Didelot						
587		X, Turner SD, Sebra R, Kasarskis A, Peto T, Crook D, Sifri CD. 2015.						
588	Klebsiella pneumoniae Carbapenemase (KPC)-Producing K-pneumoniae at a							
589		Single Institution: Insights into Endemicity from Whole-Genome Sequencing.						
590		Antimicrobial Agents and Chemotherapy 59:1661-1668.						
591	3.	Cerqueira GC, Earl AM, Ernst CM, Grad YH, Dekker JP, Feldgarden M,						
592		Chapman SB, Reis-Cunha JL, Shea TP, Young S, Zeng Q, Delaney ML, Kim						
593		D, Peterson EM, O'Brien TF, Ferraro MJ, Hooper DC, Huang SS, Kirby JE,						
594		Onderdonk AB, Birren BW, Hung DT, Cosimi LA, Wortman JR, Murphy CI,						
595		Hanage WP. 2017. Multi-institute analysis of carbapenem resistance reveals						
596		remarkable diversity, unexplained mechanisms, and limited clonal outbreaks.						
597		Proc Natl Acad Sci U S A 114:1135-1140.						

598	4.	Ruiz-Garbajosa P, Curiao T, Tato M, Gijon D, Pintado V, Valverde A,					
599		Baquero F, Morosini MI, Coque TM, Canton R. 2013. Multiclonal dispersal of					
600		KPC genes following the emergence of non-ST258 KPC-producing Klebsiella					
601		pneumoniae clones in Madrid, Spain. J Antimicrob Chemother 68:2487-92.					
602	5.	Martin J, Phan H, Findlay J, Stoesser N, Pankhurst L, Navickaite I, De Maio					
603		N, Eyre D, Toogood G, Orsi N, Kirby A, Young N, Turton J, Hill R, Hopkins					
604		K, Woodford N, Peto T, Walker A, Crook D, Wilcox M. 2017. Covert					
605		dissemination of carbapenemase-producing Klebsiella pneumoniae (KPC) in a					
606		successfully controlled outbreak: long and short-read whole-genome					
607		sequencing demonstrate multiple genetic modes of transmission. Journal of					
608		Antimicrobial Chemotherapy.					
609	6.	Sheppard AE, Stoesser N, Wilson DJ, Sebra R, Kasarskis A, Anson LW,					
610		Giess A, Pankhurst LJ, Vaughan A, Grim CJ, Cox HL, Yeh AJ, Modernising					
611		Medical Microbiology Informatics G, Sifri CD, Walker AS, Peto TE, Crook					
612		DW, Mathers AJ. 2016. Nested Russian Doll-Like Genetic Mobility Drives					
613		Rapid Dissemination of the Carbapenem Resistance Gene blaKPC.					
614		Antimicrob Agents Chemother 60:3767-78.					
615	7.	Quainoo S, Coolen JPM, van Hijum S, Huynen MA, Melchers WJG, van					
616		Schaik W, Wertheim HFL. 2017. Whole-Genome Sequencing of Bacterial					
617		Pathogens: the Future of Nosocomial Outbreak Analysis. Clin Microbiol Rev					
618		30:1015-1063.					
619	8.	Walker TM, Monk P, Smith EG, Peto TE. 2013. Contact investigations for					
620		outbreaks of Mycobacterium tuberculosis: advances through whole genome					
621		sequencing. Clin Microbiol Infect 19:796-802.					

622 9. Munoz-Price LS, Poirel L, Bonomo RA, Schwaber
--

- 623 M, Cornaglia G, Garau J, Gniadkowski M, Hayden MK, Kumarasamy K,
- 624 Livermore DM, Maya JJ, Nordmann P, Patel JB, Paterson DL, Pitout J,
- 625 Villegas MV, Wang H, Woodford N, Quinn JP. 2013. Clinical epidemiology
- 626 of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet 627 Infect Dis 13:785-96.
- 628 10. Sheppard AE, Stoesser N, German-Mesner I, Vegesana K, Sarah Walker A,
- 629 Crook DW, Mathers AJ. 2018. TETyper: a bioinformatic pipeline for
- 630 classifying variation and genetic contexts of transposable elements from short-631
- read whole-genome sequencing data. Microb Genom 4.
- 632 11. Palepou MFW, N.; Hope, R.; Colman, M.; Glover, J.; Kaufmann, M.; Lafong,
- 633 C.; Reynolds, R.; Livermore, D. M. 2005. Novel class A carbapenemase,
- 634 KPC-4, in an Enterobacter isolate from Scotland, abstr abstr. 1134_01_20.
- 635 Prog. Abstr. 15th Eur. Cong. Clin. Microbiol. Infect. Dis., Copenhagen,
- 636 Denmark.
- 637 12. Public Health England. 2011. Carbapenemase-producing Enterobacteriaceae: 638 laboratory confirmed cases, 2003 to 2013.
- 639 https://www.gov.uk/government/publications/carbapenemase-
- 640 producing-enterobacteriaceae-laboratory-confirmed-
- 641 cases/carbapenemase-producing-enterobacteriaceae-laboratory-
- 642 confirmed-cases-2003-to-2013. Accessed 02/09/2016.
- 643 13. Donker T, Henderson KL, Hopkins KL, Dodgson AR, Thomas S, Crook DW,
- 644 Peto TEA, Johnson AP, Woodford N, Walker AS, Robotham JV. 2017. The
- 645 relative importance of large problems far away versus small problems closer

bioRxiv preprint doi: https://doi.org/10.1101/779538. this version posted October 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. It is made available under a CC-BY 4.0 International license.

646	to home: in	sights into	limiting the	he spread of	of antimic	robial	resistance	in
-----	-------------	-------------	--------------	--------------	------------	--------	------------	----

- 647 England. BMC Med 15:86.
- 648 14. Findlay J, Hopkins KL, Doumith M, Meunier D, Wiuff C, Hill R, Pike R, Loy
- 649 R, Mustafa N, Livermore DM, Woodford N. 2016. KPC enzymes in the UK:
- an analysis of the first 160 cases outside the North-West region. J AntimicrobChemother 71:1199-206.
- 15. Doumith M, Findlay J, Hirani H, Hopkins KL, Livermore DM, Dodgson A,
- 653 Woodford N. 2017. Major role of pKpQIL-like plasmids in the early
- dissemination of KPC-type carbapenemases in the UK. J Antimicrob
- 655 Chemother 72:2241-2248.
- 656 16. Siguier P, Gourbeyre E, Chandler M. 2014. Bacterial insertion sequences:
- their genomic impact and diversity. FEMS Microbiol Rev 38:865-91.
- 658 17. Cuzon G, Naas T, Nordmann P. 2011. Functional characterization of Tn4401,
- a Tn3-based transposon involved in blaKPC gene mobilization. Antimicrob
 Agents Chemother 55:5370-3.
- 18. Cuzon G, Naas T, Truong H, Villegas MV, Wisell KT, Carmeli Y, Gales AC,
- 662 Venezia SN, Quinn JP, Nordmann P. 2010. Worldwide diversity of Klebsiella
- pneumoniae that produce beta-lactamase blaKPC-2 gene. Emerg Infect Dis
 16:1349-56.
- He S, Hickman AB, Varani AM, Siguier P, Chandler M, Dekker JP, Dyda F.
 2015. Insertion Sequence IS26 Reorganizes Plasmids in Clinically
 Isolated Multidrug-Resistant Bacteria by Replicative Transposition. mBio
 668 6:e00762-15.

- 669 20. Qi Y, Wei Z, Ji S, Du X, Shen P, Yu Y. 2011. ST11, the dominant clone of
- 670 KPC-producing Klebsiella pneumoniae in China. J Antimicrob Chemother671 66:307-12.
- 672 21. Harmer CJ, Hall RM. 2016. IS26-Mediated Formation of Transposons
- 673 Carrying Antibiotic Resistance Genes. mSphere 1.
- 674 22. Liang W, Xie Y, Xiong W, Tang Y, Li G, Jiang X, Lu Y. 2017. Anti-
- 675 Restriction Protein, KlcAHS, Promotes Dissemination of Carbapenem
- 676 Resistance. Front Cell Infect Microbiol 7:150.
- 677 23. Arredondo-Alonso S, Willems RJ, van Schaik W, Schurch AC. 2017. On the
- 678 (im)possibility of reconstructing plasmids from whole-genome short-read
- 679 sequencing data. Microb Genom 3:e000128.
- 680 24. Public Health England. 2018. English Surveillance Programme for

681 Antimicrobial Utilisation and Resistance (ESPAUR), Report 2018.

- 682 25. Decraene V, Phan HTT, George R, Wyllie DH, Akinremi O, Aiken Z, Cleary
- 683 P, Dodgson A, Pankhurst L, Crook DW, Lenney C, Walker AS, Woodford N,
- 684 Sebra R, Fath-Ordoubadi F, Mathers AJ, Seale AC, Guiver M, McEwan A,
- 685 Watts V, Welfare W, Stoesser N, Cawthorne J, Group TI. 2018. A Large,
- 686 Refractory Nosocomial Outbreak of Klebsiella pneumoniae Carbapenemase-
- 687 Producing Escherichia coli Demonstrates Carbapenemase Gene Outbreaks
- 688 Involving Sink Sites Require Novel Approaches to Infection Control.
- 689 Antimicrob Agents Chemother 62.
- 690 26. Sherry NL, Lane CR, Kwong JC, Schultz M, Sait M, Stevens K, Ballard S,
- 691 Goncalves da Silva A, Seemann T, Gorrie CL, Stinear TP, Williamson DA,
- Brett J, van Diemen A, Easton M, Howden BP. 2019. Genomics for Molecular

693		Epidemiology and Detecting Transmission of Carbapenemase-Producing
694		Enterobacterales in Victoria, Australia, 2012 to 2016. J Clin Microbiol 57.
695	27.	Weingarten RA, Johnson RC, Conlan S, Ramsburg AM, Dekker JP, Lau AF,
696		Khil P, Odom RT, Deming C, Park M, Thomas PJ, Program NCS, Henderson
697		DK, Palmore TN, Segre JA, Frank KM. 2018. Genomic Analysis of Hospital
698		Plumbing Reveals Diverse Reservoir of Bacterial Plasmids Conferring
699		Carbapenem Resistance. MBio 9.
700	28.	Cheruvanky A, Stoesser N, Sheppard AE, Crook DW, Hoffman PS, Weddle
701		E, Carroll J, Sifri CD, Chai W, Barry K, Ramakrishnan G, Mathers AJ. 2017.
702		Enhanced Klebsiella pneumoniae Carbapenemase Expression from a Novel
703		Tn4401 Deletion. Antimicrob Agents Chemother 61.
704	29.	Bi D, Zheng J, Li JJ, Sheng ZK, Zhu X, Ou HY, Li Q, Wei Q. 2018. In Silico
705		Typing and Comparative Genomic Analysis of IncFIIK Plasmids and Insights
706		into the Evolution of Replicons, Plasmid Backbones, and Resistance
707		Determinant Profiles. Antimicrob Agents Chemother 62.
708	30.	De Maio N, Shaw LP, Hubbard A, George S, Sanderson ND, Swann J, Wick
709		R, AbuOun M, Stubberfield E, Hoosdally SJ, Crook DW, Peto TEA, Sheppard
710		AE, Bailey MJ, Read DS, Anjum MF, Walker AS, Stoesser N, On Behalf Of
711		The Rehab C. 2019. Comparison of long-read sequencing technologies in the
712		hybrid assembly of complex bacterial genomes. Microb Genom
713		doi:10.1099/mgen.0.000294.
714	31.	Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Completing bacterial genome
715		assemblies with multiplex MinION sequencing. Microb Genom 3:e000132.
716	32.	Lamble S, Batty E, Attar M, Buck D, Bowden R, Lunter G, Crook D, El-
717		Fahmawi B, Piazza P. 2013. Improved workflows for high throughput library

bioRxiv preprint doi: https://doi.org/10.1101/779538. this version posted October 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. It is made available under a CC-BY 4.0 International license.

718		preparation using the transposome-based nextera system. BMC Biotechnology
719		13:104.
720	33.	Wood DE, Salzberg SL. 2014. Kraken: ultrafast metagenomic sequence
721		classification using exact alignments. Genome Biol 15:R46.
722	34.	Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS,
723		Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV,
724		Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new
725		genome assembly algorithm and its applications to single-cell sequencing. J
726		Comput Biol 19:455-77.
727	35.	Stoesser N, Batty EM, Eyre DW, Morgan M, Wyllie DH, Del Ojo Elias C,
728		Johnson JR, Walker AS, Peto TE, Crook DW. 2013. Predicting antimicrobial
729		susceptibilities for Escherichia coli and Klebsiella pneumoniae isolates using
730		whole genomic sequence data. J Antimicrob Chemother 68:2234-44.
731	36.	Carattoli A, Zankari E, Garcia-Fernandez A, Voldby Larsen M, Lund O, Villa
732		L, Moller Aarestrup F, Hasman H. 2014. In silico detection and typing of
733		plasmids using PlasmidFinder and plasmid multilocus sequence typing.
734		Antimicrob Agents Chemother 58:3895-903.
735	37.	Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. 2006. ISfinder: the
736		reference centre for bacterial insertion sequences. Nucleic Acids Res 34:D32-
737		б.
738	38.	Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A,
739		Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J. 2013.
740		Nonhybrid, finished microbial genome assemblies from long-read SMRT
741		sequencing data. Nat Methods 10:563-9.

742 39. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo

- 743 CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: an integrated tool
- for comprehensive microbial variant detection and genome assembly
- 745 improvement. PLoS One 9:e112963.
- 746 40. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation.
- 747 Bioinformatics 30:2068-9.
- 748 41. Naas T, Cuzon G, Villegas MV, Lartigue MF, Quinn JP, Nordmann P. 2008.
- Genetic structures at the origin of acquisition of the beta-lactamase bla KPCgene. Antimicrob Agents Chemother 52:1257-63.
- 751 42. Villa L, Feudi C, Fortini D, Brisse S, Passet V, Bonura C, Endimiani A,
- 752 Mammina C, Ocampo AM, Jimenez JN, Doumith M, Woodford N, Hopkins
- 753 K, Carattoli A. 2017. Diversity, virulence, and antimicrobial resistance of the
- 754 KPC-producing Klebsiella pneumoniae ST307 clone. Microbial Genomics 3.
- 43. Orlek A, Phan H, Sheppard AE, Doumith M, Ellington M, Peto T, Crook D,
- Walker AS, Woodford N, Anjum MF, Stoesser N. 2017. A curated dataset of
 complete Enterobacteriaceae plasmids compiled from the NCBI nucleotide
- database. Data in Brief 12:423-426.
- 44. Stoesser N, Sheppard AE, Peirano G, Anson LW, Pankhurst L, Sebra R, Phan
- 760 HTT, Kasarskis A, Mathers AJ, Peto TEA, Bradford P, Motyl MR, Walker
- AS, Crook DW, Pitout JD. 2017. Genomic epidemiology of global Klebsiella
- 762 pneumoniae carbapenemase (KPC)-producing Escherichia coli. Sci Rep
- 763 7:5917.
- 45. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C,
- 765 Salzberg SL. 2004. Versatile and open software for comparing large genomes.
- Genome Biol 5:R12.

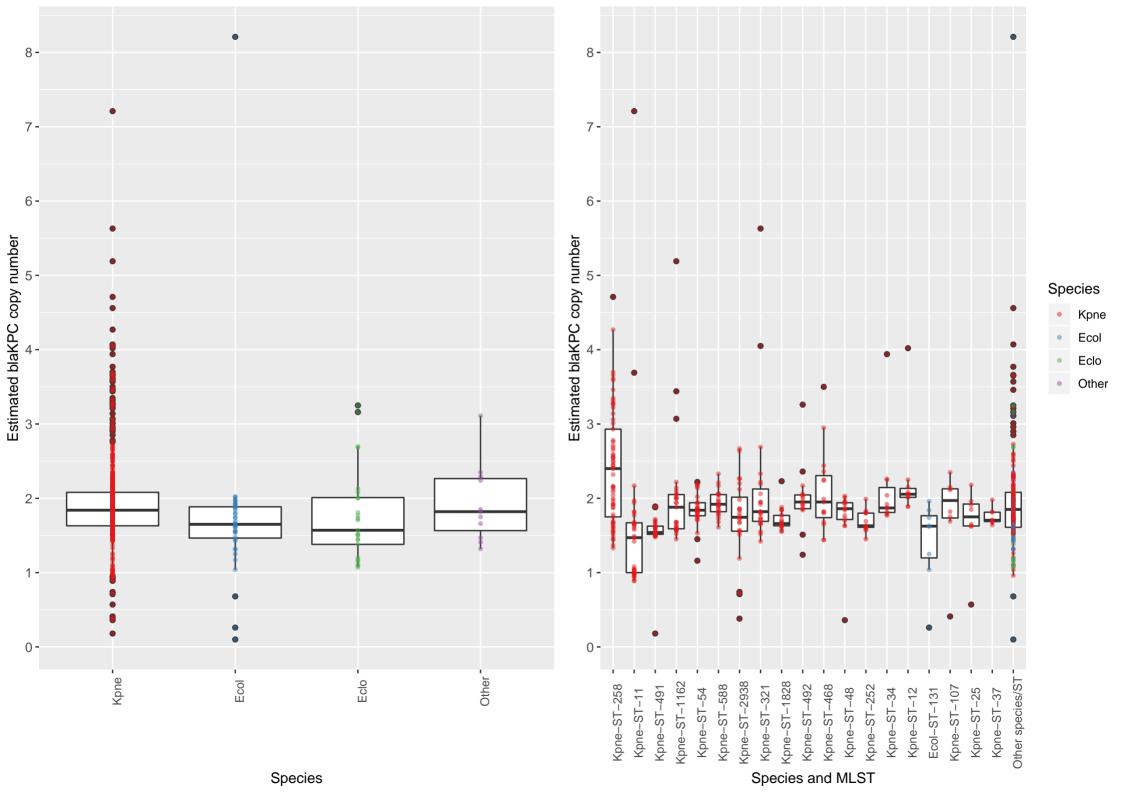
767	46.	Frey BJ, Dueck D. 2007. Clustering by passing messages between data points.	

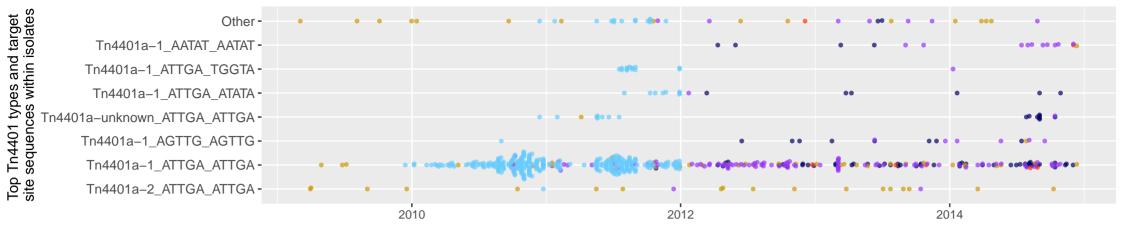
768 Science 315:972-6.

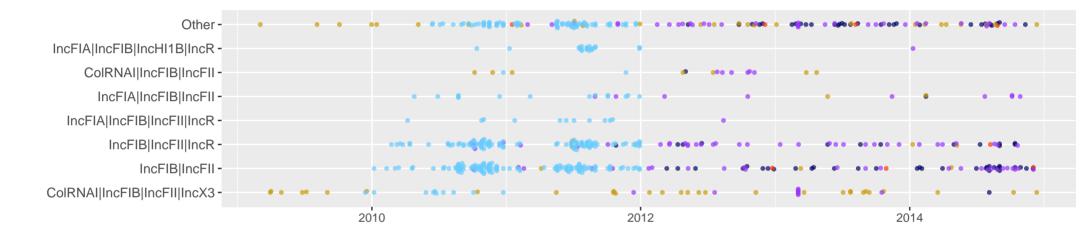
769 47. Pritchard L, White JA, Birch PR, Toth IK. 2006. GenomeDiagram: a python

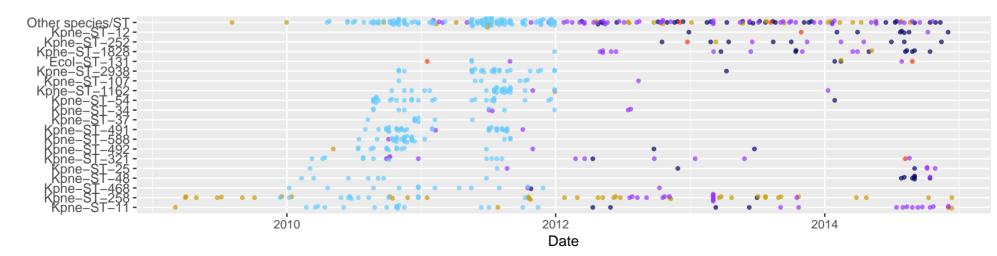
package for the visualization of large-scale genomic data. Bioinformatics

- 22:616-7.
- 48. Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I,
- Hamelryck T, Kauff F, Wilczynski B, de Hoon MJ. 2009. Biopython: freely
- available Python tools for computational molecular biology and
- bioinformatics. Bioinformatics 25:1422-3.

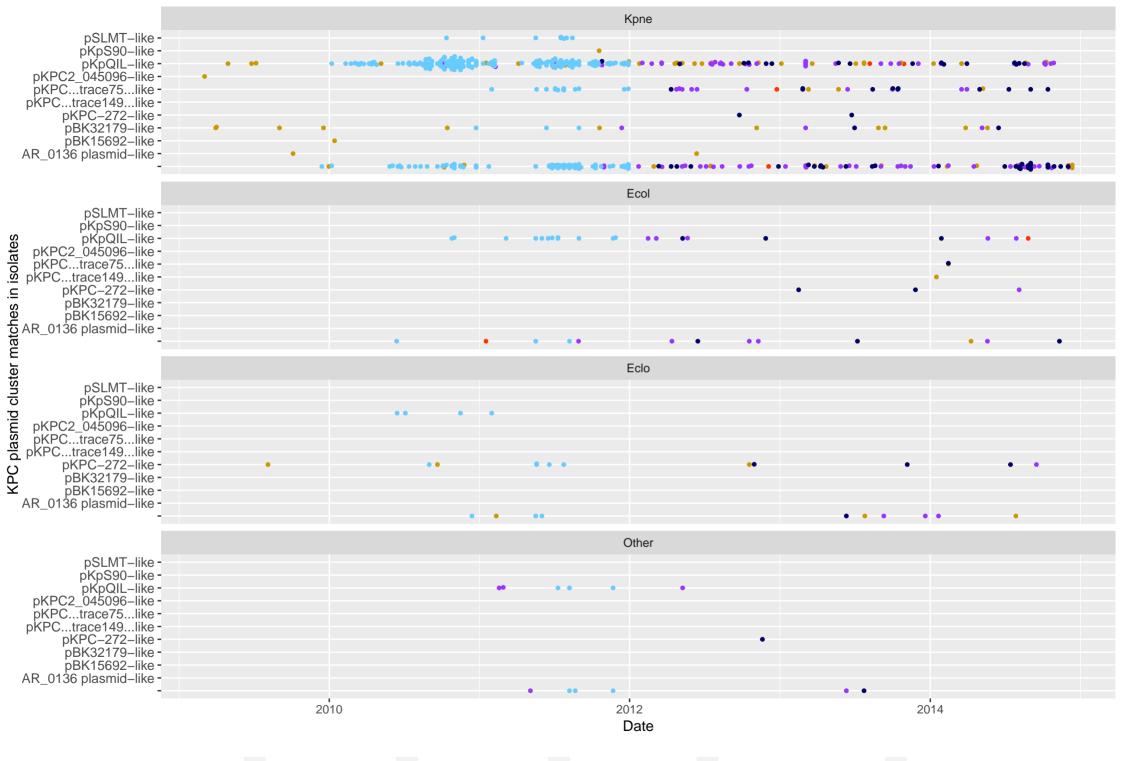

777 Figure legends


778	Figure 1 . Estimated bla_{KPC} copy number distributions within major species (Fig.1A),
779	and the top nineteen commonest species/ST combinations (Fig.1B) observed within
780	the study (other ST/species combinations assigned as "Other" or "Other species/ST"
781	respectively). Dots represent estimated copy number for single isolates; boxplots
782	represent median estimated bla_{KPC} copy number +/- 1.58*IQR/sqrt(n). Boxplots are
783	ordered by most common species and species/ST categories, left-to-right, except for
784	the "Other", "Other species/ST", assigned to the right of the plots. For species
785	assignations, "Kpne" = Klebsiella pneumoniae, "Ecol" = Escherichia coli, and "Eclo"
786	= Enterobacter cloacae.
787	
788	Figure 2. Incidence plots for 604 isolates included in the analysis. Dots are coloured
789	by location of isolate collection, as defined in Methods. (A) Incidence plot of
790	Tn4401/target site sequence (TSS; categories including \geq 10 isolates); Tn4401a-1 is
791	<i>bla</i> _{KPC-2} /Tn4401a, Tn4401a-2 is <i>bla</i> _{KPC-3} /Tn4401a; Tn4401a-unknown comprises a set
792	of Tn4401a (n=18) with mutational variation including C684T, G962A
793	C3042Y G4739R, C4121T, G5583A and C7187T. (B) Incidence plot of plasmid
794	replicon combinations (categories including ≥ 10 isolates). (C) Incidence plot of
795	species/ST (top 20 common categories as in Fig.1).
796	
797	Figure 3. Schematic of $bla_{\rm KPC}$ plasmid types and sizes identified from long-
798	read/short-read hybrid sequencing approach by species/ST and year of collection (NB
799	only 21 contigs clearly designated as plasmid are represented). Closed circles denote
800	circularised contigs (i.e. complete plasmids); circle colours denote replicon types
801	assigned to each plasmid sequence (i.e. multiple colours represent multi-replicon


- plasmids). Plasmids from isolates from the wider UK collection are denoted with a"*".
- 804


001	
805	Figure 4. Alignments of plasmid sequences harbouring an IncFII(K)_1_CP000648-
806	like replicon, includes bla_{KPC} -negative and bla_{KPC} -positive sequences. All sequences
807	were re-orientated to start at IncFII for the purposes of alignment visualization (this
808	also includes incomplete sequences, for which the exact structure and order may
809	therefore be a proxy only). Loci of interest have been coloured and annotated as
810	shown. Shading between sequences denotes regions of homology, with light pink
811	shading denoting areas \geq 90% nucleotide identity, dark pink areas \geq 50% nucleotide
812	identity, and light blue areas \geq 90% nucleotide identity in reverse orientation. The
813	order of sequences is adjusted to highlight genetic overlap between sequences, but not
814	to imply any specific direct exchange events.
815	
816	Figure 5. Short-read bla_{KPC} plasmid typing results (top match) for isolates by species
817	and date. Dots are coloured by location of isolate collection, as defined in Methods.
818	
819	Supplementary Tables and Figures
820	Figure S1. Estimated bla_{KPC} copy number distributions for species/ST combinations.
821	Dots represent estimated copy number for single isolates; boxplots represent median
822	estimated bla_{KPC} copy number +/- 1.58*IQR/sqrt(n). For species assignations, "Eclo"
823	= Enterobacter cloacae, "Ecol" = Escherichia coli, "Ente" = Enterobacter spp.,
824	"Kluy" = <i>Kluvera</i> spp., "Koxy" = <i>Klebsiella oxytoca</i> , "Kpne" = <i>Klebsiella</i>
825	pneumoniae, "Raou" = Raoultella ornithinolytica, "Serr" = Serratia marcescens.

- 826 **Table S1.** Details of isolates assembled using short-read (Illumina) and long-read
- 827 (PacBio) datasets.
- 828
- 829 Table S2. Plasmid typing matches for isolates with short-read (Illumina) and long-
- 830 read (PacBio) assemblies and reconstructed plasmid structures.
- 831
- **Table S3.** Assignation of bla_{KPC} plasmids in study reference database to clusters for
- 833 plasmid typing.



Top plasmid populations within isolates defined by Inc types

	2009	2010	2011	2012	2013	2014
Kpne ST37		\cap				
Kpne ST252						 Not typed IncN
Kpne ST258			*	A		 IncR IncA/C2 IncHI2 IncHI2A IncFII(pKP91)
Kpne ST468		()				 IncFIB(K)_KPN3 IncFIB(pQil)
Kpne ST588			0			 IncFII(K) * national isolate
Kpne ST883				0		
Kpne ST1162		0				
Kpne ST1828			0			0
Kpne ST1838	•					
Kpne STnew		0				
Rorn No ST			0			
Eclo ST45						
Eclo ST133					0	
Ecol ST372		0				
Ecol ST1642						

