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Multiple overtracing strokes are common drawing behaviors in freehand sketching; that is, additional strokes are often drawn
repeatedly over the existing ones to add more details. This paper proposes a method based on stroke-tolerance zones to group
multiple overtraced strokes which are drawn to express a 2D primitive, aiming to convert online freehand sketches into 2D line
drawings, which is a base for further 3D reconstruction. Firstly, after the user inputs a new stroke, a tolerance zone around the
stroke is constructed by reference to its polygonal approximation points obtained from the stroke preprocessing. Then, the input
strokes are divided into stroke groups, each representing a primitive through the stroke grouping process based on the overtraced
ratio of two strokes. At last, each stroke group is fitted into one or more 2D geometric primitives including line segments,
polylines, ellipses, and arcs. The proposed method groups two strokes together based on their screen-space proximity directly
instead of classifying and fitting them firstly, so that it can group strokes of arbitrary shapes. A sketch-recognition prototype
system has been implemented to test the effectiveness of the proposed method. The results showed that the proposed method
could support online multiple overtracing freehand sketching with no limitation on drawing sequence, but it only deals with

strokes with relatively high overtraced ratio.

1. Introduction

Generally, concept designers use paper and pencil to share,
communicate, and record new ideas. However, the paper
becomes cluttered with all sorts of changes. Freehand
sketching in a real-time 3D styling system presents a dif-
ferent way to create a 3D model from the traditional CAD
system [1]. However, there is a wide gap between the de-
signer’s intentions and the abilities of computers to un-
derstand that [2]. To better explain the design concept and to
integrate it more closely with the back-end engineering
design, a large number of studies have been conducted in
this field to make computers correctly catch the designer
purposes from conceptual design sketches [3].

In the field of mechanical design, sketching is often used
in its conceptual design stage before the depicted design is
converted into a 3D model. Current high-end commercial
CAD modeling systems, such as Maya, SolidWorks, and

CATIA, do help tremendously in the detailed design phase,
but they do not robustly support the creation of 3D objects
directly from 2D freehand sketches and hence are not well
suitable for conceptual design. In recent years, there is
considerable research on sketch-based modeling (SBM), the
goal of which is twofold [4]. One is to support rapid geo-
metric modeling either in 2D or 3D, and the other is to
support freehand sketching activity with a more intuitive
interface for the user. SBM systems obtain freehand sketches
with pencil and paper or digital tools, which are referred to
as offline or online freehand sketches, respectively [5]. Real
pencil-and-paper is a vibrant medium for communication,
but a model reconstruction from an offline scanning of a
sketch has been a challenge, and improved information
obtained from sketching is reduced to a batch of data points
representing lines [5]. On the other hand, online-based
sketching systems with figure drawing or other intuitive
drawing devices can not only support the drawing activity


mailto:2008wangshuxia@163.com
https://orcid.org/0000-0001-6951-5772
https://orcid.org/0000-0001-8538-8136
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/7393846

with the same or very similar user experience as drawing
with paper and pencil, but also obtain the instant digital
creation of design artifacts. Comparing with the image-
based recognition of offline sketches, online sketches rec-
ognition benefits from more information such as drawing
sequence, speed, and pressure to the application and con-
stant feedback to the user [6]. The locations of vertices,
corners, and edges of the object can be determined when
drawing the strokes. Therefore, more research has focused
on online 2D and 3D reconstruction technology towards Al-
based design [7]. Sketch-based modeling techniques gen-
erally start with an axonometric drawing of a model, which is
a kind of stereoscopic graph made by two-dimensional lines
and is applied extensively in engineering because of its three-
dimensional effect. Extraction clean vector drawings from
rough and messy freehand sketches is a crucial step towards
sketch-based modeling. Currently, in the field of recon-
struction of 3D models from 2D sketches, sketch inter-
pretation is usually based on primitives. Such methods
addresses the uniqueness problem of the sketch interpre-
tation, which involves sketch segmentation [6,8], stroke
grouping [9,10], line fitting [11], endpoint fusion, and 2D
regularity enhancement [12].

Overtracing is a common phenomenon or drawing
behavior in freehand sketching; that is, additional strokes are
often drawn repeatedly over the existing ones to add more
information. It is a quick and effective way to correct a sketch
visually and to add more details. Overtracing makes it harder
to create line drawings from sketches towards geometrical
reconstruction. For an online non-overtraced sketch, strokes
are typically segmented into sets of smaller substrokes [13],
and then each substroke is fitted with a geometric primitive;
finally, the fitted lines are beautified to form a connected line
drawing. However, for an offline overtraced sketch, the
strokes that express a primitive are not inputted in sequence.
Therefore, the strokes need to be automatically grouped by
the sketch system to represent the related primitives. For
giving the drawing freedom, an interactive sketch-based
design system should allow designers to draw initial sketches
with overtraced strokes. The behavior further increases the
number of possible interpretations of a sketch, which in turn
increases the risk of misrecognition. Most of the current
online sketch systems do not support overtraced stroke
primitives or add additional constraints on users. Sup-
porting overtraced input is one of the challenges in online
sketch recognition.

As one of the critical steps in both online sketch rec-
ognition and artistic sketch simplification, stroke grouping
has attracted many researchers’ attention over the past few
years. Gestalt psychologists [14] provide the laws of per-
ceptual organization to explain how people understand
visual scenes. Gestalt laws consist of proximity, similarity,
closure, continuation, and common fate. In a stroke-based
interface, strokes are usually grouped in a bottom-up greedy
way according to the geometric relationships between them,
such as proximity, continuity, and parallelism. Sketches in
different fields may contain different line types, for example,
technical drawings usually composed of geometric primi-
tives such as straight lines and circular arcs, while free-form
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splines are more common in fashion design sketches and
cartoon images. Stroke grouping method should be closely
connected with specific-domain knowledge.

This paper proposes a tolerance zone-based method for
grouping multiple overtraced strokes into 2D primitives to
transform online freehand sketches into clean line drawings.
Firstly, each stroke is represented as a polyline by a po-
lygonal approximation approach, and then the tolerance
zone around the stroke is constructed through its related
polyline. Next, the overtraced ratio of two strokes is obtained
by computing the percentage of sample points of the smaller
stroke falling into the tolerance zone of the other stroke; then
this overtraced ratio is used to decide whether the two
strokes should be grouped together or not. In the last step,
each group of strokes is fitted as one or more simple geo-
metric primitives such as line segment, polyline, ellipse,
ellipse arc, and so on. The proposed stroke grouping method
can group strokes with arbitrary shapes and can overcome
the limitation that only strokes of the same types can be
grouped in some sketching systems which support over-
tracing inputs [9, 10]. A prototype system named FSR-MOS
has been developed to check the validity and feasibility of the
proposed method. The work presented here provides a
foundation for further line drawing reconstruction. In FSR-
MOS system, our previous fuzzy classification method [11] is
used to recognize primitives as straight lines, polylines, el-
lipses, elliptical arcs, circles, circular arcs, parabolas, or
hyperbolas. Among them, ellipses, elliptical arcs, circles,
circular arcs, parabolas, and hyperbolas are collectively
called conic curves in this paper.

The structure of this paper is as follows. Section 2, in-
troduces the related work on multiple overtracing sketch
recognition. Section 3 details the proposed stroke tolerance
zone-based grouping method. Section 4 reports the
implementation of the method and shows some examples
before the conclusion is drawn in Section 5.

2. Related Work

Sketch-based interface is an up-and-coming technology that
will release users from a maze of menus, toolbars, and many
complicated commands [15]. Lot of work has investigated
the use of sketch-based interfaces, but strict restrictions on
the drawing manner do not allow users to sketch naturally.
Most of the recognizers assume that any primitive shape will
be drawn with a single stroke [16, 17]. However, there are
many instances in which a user chooses to draw a primitive
shape with more than one stroke [18]. Multistroke over-
tracing sketches should be allowed to support free-form
sketching in many applications. Interpretation of such
sketches requires grouping strokes that belong to a per-
ceptual curve together. Although human vision can un-
derstand graphics from a large number of disconnected,
overtraced, or disordered strokes intuitively, it is difficult for
computers.

In recent years, some researches have done to allow
overtracing or multistroke input to sketch-based user in-
terfaces, strokes are grouped automatically and then they are
converted into 2D line drawings. Some sketching systems
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placed additional constraints on users that restricted their
freedom of rapid design expression. Fonseca and Jorge [19]
presented a method based on fuzzy logic for recognizing
multistroke sketches. Their system processes one or more
strokes, which are drawn within a specified time, and then
they are classified into one of several predefined shape types.
Calhoun et al. [20] utilized simple button clicks to designate
when a shape is finished and ready to be recognized. Some
sketch-based interfaces allow overtraced input and grouped
strokes into geometric lines automatically to generate line
drawings for 3D reconstruction. SMARTPAPER [21] sim-
plified sketches composed exclusively of straight line seg-
ments by replacing strokes sharing similar slopes and
proximate endpoints with an average straight line. Chansri
and Koomsap [5] created line drawing from a paper-based
overtraced freehand sketch by image processing techniques
such as dilation and thinning, but it is still limited to the
polyhedron sketch composed of straight line segments. Ku
etal. [10] and Wang et al. [9] both have studied the grouping
problem of online overtraced sketches. They both can
process overtraced line segments and curves, while the later
can also deal with overtraced polylines and fit them as a
whole polyline to avoid losing connective information due to
segmenting a polyline into line segments. Both the methods
in [9, 10] first classified input strokes into 2D geometric
primitives and then grouped strokes based on their fitting
characteristics, so only strokes of the same geometric types
are grouped. In their way, the case that a primitive is drawn
with strokes of different geometric types cannot be solved,
which is common in users’ sketches. Moreover, the curve
grouping method in [10] may result in over-group cases
because curves are grouped if there is an overlap between
their bounding boxes.

There exists considerable research dedicated to line drawing
simplification. Much work has focused on the problem of
simplifying artistic line drawings. While such methods also face
the challenge of merging strokes to form long curves, the ad-
ditional knowledge provided by the shape and orientation of the
input strokes greatly facilitates proper handling of junctions
[22]. Barla et al. [23] used the proximity of the strokes as the
primary constraint to combine them for the simplification of
line drawings. The method is based on a “€-line” that has a user-
specified width covering the strokes to be grouped. However,
the “€-line” cannot fold onto itself and hence is not applicable to
the folding or self-intersecting curves. Pusch et al. [24] used
hierarchical space partitioning to divide many strokes into
locally orientable segments and then fitted a B-spline curve
passing through the segments. The method was more suitable
for nonintersecting curves. Shesh and Chen [25] merged strokes
according to proximity, color, local gradient, and extent of
overlap. The method works for both contour strokes and
hatching strokes. But their concept of overlapping can be weak
because the contour curves may not overlap so much. Orbay
and Kara [26] proposed a method that simplifies freehand
sketches into free-form curves through a trainable stroke
clustering algorithm that learns the rules for stroke grouping
from the users” sketches. The method can handle self-inter-
secting and bifurcating curves that are often difficult to dis-
tinguish using a purely local analysis. Chien et al. [27] proposed

an algorithm to simplify line drawing sketches. It firstly used a
low-pass filter to assign a weight to every stroke. Then strokes
are moved to the position of the higher weight. Finally, strokes
are paired based on the endpoints’ position and tangent.
However, the method cannot simplify the strokes locally. Liu
et al. [28] made the first attempt in incorporating the law of
closure into the semantic analysis of the sketches to simplify
sketch drawings. The method combined stroke grouping with
region interpretation based on the notion of regions formed by
strokes. However, the method did not explicitly handle closed
strokes and only deals with contour lines. Ogawa et al. [29]
proposed a method to convert a rough sketch into a line
drawing using a machine learning approach such as in [26]. But
it can be trained without the use of manual annotations. These
line-drawing simplification methods cannot directly deal with
long and tortuous strokes, because they were designed to cal-
culate the geometric relationship between short smooth strokes.
Moreover, the stroke segmentation step broke the original
information of strokes such as closure and geometric types, and
stroke clustering process may not restore the original data.
Therefore, they are not entirely applicable to the multistroke
primitive grouping in mechanical drawings where contour lines
are made up of normal curves.

Several approaches have been proposed to extract
simplified drawings from scanning pencil sketches [5, 22,
30-34]. Such approaches are built directly upon overtraced
strokes for line drawing creation because strokes are blended
“for free” as the user draws [19]. Kara and Stahovich [35]
presented a sketch recognizer which allows overtracing
symbol input, but it relies entirely on the symbol libraries for
the recognition where the sketch is examined in pixel, and
hence no work has been done on individual stroke inter-
pretation. Sezgin and Davis [36] applied moving least
squares to move a circular window along overtraced strokes
of non-self-intersecting polylines to obtain several small
segments before linking to form a single line. Chansri and
Koomsap [5, 37] proposed a method to extract single-line
drawings from binary images, for their 3D reconstruction
system. The method starts from using image processing
techniques to cluster strokes to form a thick-line sketch, then
contour expanding and shrinking concept is applied for
identifying segments from every pair of extracted contours
that are said to be neighbors. A single-line drawing consisted
of line segments and polylines is created after all junctions
were identified. Bonnici et al. [31, 34] described approaches
based on Gabor and Kalman filtering to convert rough
strokes into vectorized representation. SimoSerra et al.
[30, 32] proposed approaches based on Convolutional
Neural Networks to directly simplify rough raster sketches.
They are able to tackle multiple lines that have to be col-
lapsed into a single line by using their dataset for large-scale
learning of sketch simplification. Favreau et al. [22] pro-
posed the first vectorization algorithm that explicitly bal-
ances fidelity to the input bitmap with simplicity output, as
measured by the number of curves and their degree. Chen
et al. [33] presented an improved topology extraction ap-
proach for vectorization of crude line drawings. It was
proved to be efficient and robust but lacked high-level
understanding of the line drawing.



Our tolerance-based stroke grouping method overcomes
the limitations of the algorithms [9, 10] that only grouped
the strokes of the same types. It groups the original strokes
directly without fitting them first and can group the different
types of strokes together. Our approach allows users to draw
a primitive with any strokes without considering their
shapes, thus giving users more freedom and making the
sketch system more robust. Additionally, the proposed
approach can group overtracing self-intersecting strokes;
overtracing strokes of self-intersecting polylines that have
free shapes can be fitted as a whole polyline.

3. Tolerance Zone-Based Grouping Method

The input of our online multistroke sketch recognition
system is a set of digital strokes drawn by the user via a tablet
stylus or a mouse. A stroke is a time-ordered sequence of 2D
points that are sampled along the trajectory of the stylus. The
flow chart of our system is presented in Figure 1. The
proposed approach that converts an online multiple over-
traced sketch into a line drawing consists of four main steps:
(1) preprocess an input stroke as a polyline by polygonal
approximation; (2) build a tolerance zone around the input
stroke, which is then used to judge the overlapping ratio of
two strokes; (3) after the completion of the whole sketch,
conduct the grouping process to cluster multiple overtraced
strokes into groups together; (4) fit geometric primitives to
the stroke groups obtained from the grouping step in se-
quence. The details of all steps are discussed in the following
subsections. The explanations of symbols used to introduce
the approach are shown in Table 1.

3.1. Preprocessing an Input Stroke. In our sketch system, a
stroke is defined as a sequence of mouse positions which is
sampled along the trajectory of the stroke. The mouse po-
sitions are measured in the screen coordinate system with
the upper-left corner as origin, one unit being a screen pixel
with system time. The split and merge algorithm of po-
lygonal approximation [38] is used to represent a stroke as a
polyline. The algorithm depends on a given threshold which
is expressed by a measure function as described in [39].

Assume a stroke S is represented by a linked list of
sampling points {p; = (x;, y;,t;); 0 <i<n}, where p; is the
coordinate and time of the ith point in the sampling point
list. Through stroke preprocessing, a set of polygonal ap-
proximation points {z;;0<i<u<n} are obtained, where
{z;} € {p;}. The polygonal approximation points are linked
orderly to create a polyline to represent the stroke, shown in
red line in Figure 2, where the polygonal approximation
points are labeled in small blue circles.

3.2. Building a Tolerance Zone Around a Stroke. The tolerance
zone of a stroke is described as a region around the stroke
and is formed by several pairs of equidistant curves, as
shown in Figure 3. It is obtained by the polygonal ap-
proximate points of the stroke {z;;0<i<u} as follows:
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v

| Input a new stroke |
v

| Perform stroke preprocessing |
v

| Build a hull around stroke |

Sketch complete?

| Perform stroke grouping process |

I
v

| Retrieve a stroke group from the set |

Y v
| Classify the types of the stroke group |

]

v v v
| Line segment fitting | | Polyline fitting | | Conic curve fitting |

Is there still a group to be fitted?

2D line drawing

FiGure 1: Flowchart of line drawing creation from multiple
overtracing sketches in FSR-MOS system.

Step 1: Compute the bounding box of the stroke, which
reflects the scale of the stroke. Two steps compute it.
First, Graham’s convex hull algorithm [40] is used to
find the convex hull of the sampling points of the
stroke; then the bounding box of the convex hull is
obtained by the extremal method.

Step 2: Create a rectangle R; of width w between every
two adjacent polygon approximate points z;, z;,; in
sequence, where z; and z;,, are located in one of the
center lines of R;, as shown in Figure 4(a). Thus, a set of
rectangles along the stroke {R;;0<i<u} are obtained.

Step 3: Create a circle C; of radius w/2 centered on each
polygon approximate point z; in turn, as shown in
Figure 4(b). Thus, a set of circles along the stroke
{C;;0<i<u} are obtained.

Step 4: The tolerance zone of a stroke built by the above
steps is represented as a region formed by several
rectangles {R;} and circles {C;} which are overlapped
with each other. It can be further simplified by com-
puting the union of {C;} and {R;}, as shown in
Figure 4(c). However, such simplification is useless for
the next grouping process. The width of the rectangle R;
is considered to be the width of the tolerance zone of
the stroke. Instead of using absolute width of the stroke
tolerance zone w, we make the value adaptive to the
scale of the stroke. A series of tests were conducted to
determine the adaptive function as in (1) based on
subjective decisions on whether two strokes should be
grouped together.
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TaBLE 1: Explanation of symbols.

Symbol Description

P Sampling points captured along the trajectory of the mouse, with drawing positions and drawing times, p = (x, y,t)
N Stroke formed by a set of sampling point, S = {p;}

Z Polygonal approximation points of a stroke

w Width of the tolerance zone of a stroke

R Rectangle created between two adjacent approximation points

C Circle centered on a polygonal approximation point

C Perimeter of the bounding box of a stroke

B Pen width of a stroke

G Stroke group represented by a linked list of strokes, g = {S;}

Sc Linked list of input strokes of the whole sketch, Sc = {S;}

rs.s, Overtrace ratio of two strokes S; and S,

) Overtrace ratio threshold to decide whether two strokes should be grouped together

\ 3% O

FiGURE 2: The polygonal approximation points of the stroke.

FiGURE 3: Stroke tolerance zone.

w= 2 +2b (1)
=37+

where ¢ and b are the perimeter of bounding box and the
width of the stroke respectively, b is set to 5 pixels in this

paper.

3.3. Grouping Multiple Overtraced Strokes. Given a sketch
Sc ={S;;0<i<u}, which is represented by a linked list of
input strokes, where u is the stoke number of Sc. The
proposed stroke grouping algorithm is used to cluster
overtraced strokes into groups together, finally the input
strokes are divided into several stroke groups. During the
stroke grouping process, our system iteratively chooses two
strokes to be grouped together if their overtraced ratio is
greater than a given threshold value § (this paper takes 0.5).

3.3.1. Overtraced Ratio of Two Strokes. Given two strokes S,
and S,, the overtraced ratio rg s of them is defined as the
percentage of the sample points of the smaller stroke
(compared by perimeter of their bounding box), which fall
into the other’s tolerance zone, as shown in Figure 5. The
overtraced ratio computing algorithm is as follows:

Step 1: Compare the perimeters of bounding boxes of
the two strokes. The stroke with shorter perimeter is
denoted by S, and the other is denoted by S,,,. The
number of the sampling points of S ;, is denoted by
Min-

Step 2: Count the number #,; of the sampling points of
Siin Which fall into the tolerance zone of S,,,. This
requires judging whether a point is inside the tolerance
zone of a stroke, since a series of rectangles and circles
form the tolerance zone of the stroke, it only needs to
judge whether the point is inside one of these rectangles
or circles.

Step 3: The overtraced ratio rg ¢ of S; and S, is the ratio
of ngy to nys that is rg ¢ = ng/n

min*

3.3.2. Stroke Grouping Algorithm. Grouping strokes is an
iterative process that creates new empty stroke groups and
removes the strokes from the linked list of input strokes Sc to
them. During the process, two strokes of higher overtracing
ratio are selected to be merged in priority. A stroke group is
also a linked list of strokes, which is represented as
g ={S;;0<i<t}, where t is the number of the strokes in it.
Each iteration consists of four main steps: (1) create a new
empty stroke group g; (2) move the first stroke from the
input stroke list Sc to the new group g; (3) compare a stroke
in the group g with the remaining strokes of the input stroke
list Sc in turn, if the overtraced ratio of two strokes is greater
than a threshold ¢ (it is set to 0.5 in this paper), then the
stroke of Sc is moved to the group g; (4) repeat Step 3 until
there is no stroke in the group g is overtraced with the
remaining strokes of Sc. After the grouping process, the
input strokes are divided into several groups that include one
or multiple strokes representing a primitive alone or col-
lectively. The pseudocode of the proposed stroke grouping
algorithm is shown as follows.
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(a) (b)

(c)

FIGURE 4: Process of building the tolerance zone of a stroke: (a) rectangles created by polygon approximate points; (b) circles by polygon

approximate points; (c) the combined region.

N

max

S

in

FiGure 5: Two overtraced strokes.

Input: a linked list of input strokes Sc = {S;;0<i<u},
where u is the stroke number of Sc.

Output: a linked list of stroke groups g;, where
g;= {Sk;OSk<tj Su}, t; is the stroke number of g;.

Step 1: Initialize parameters, set j=¢; =0,x =y = 1.
Step 2: Create a new stroke list g;.

Step 3: Remove the first stroke S, from Sc and insert it at
theendof g, thent; =¢;+ 1L, u=u-1ifu=0,goto
Step 7.

Step 4: Let x = y, y = £;. Assume that g, is the list of
strokes that were added into g; in the previous step and
are the (x—1)th to the yth strokes of g;; that is,
9p = {Sk;x —1<k<y}. Compare the strokes of g,
with the remaining strokes of the input stroke list Sc in
turn; if the overtraced ratio of two strokes that belong to
g, and Sc, respectively, is greater than a threshold & (it
is set to 0.5), then move the stroke S; in Sc to the group
9j

Step 5:If x = t; or u = 0, then go to Step 6; otherwise go
to Step 4.

Step 6: If u>0, then j = j+1, go to Step 2.
Step 7: Over.

3.3.3. Fitting Group of Strokes. The stroke group fitting
algorithm is used to fit geometric primitives to stroke
groups. A stroke group from the grouping process may
contain one or more geometric primitives. Before the fitting
process, a fuzzy classification method in [11] is used to
recognize each stroke of the group as a line segment, a
polyline or a conic curve.

When a group is merely composed of line segment
strokes, it would be fitted into a line segment if the whole
group is recognized as a line segment by comparing the
length and width of its bounding box [11]. A line segment is
obtained from connecting the two furthest polygonal ap-
proximate points of the group. Otherwise, we use an in-
terpolation method to iteratively simplify pairs of strokes
into one longer stroke, as shown in Figure 6.

When a group is mixed with polylines and line segments,
not only the connection information of the vertexes but also
the fork structure formed by two partly overtraced strokes
should be taken into consideration. Taking Figure 7 as an
example, such stroke group is simplified as follows. Firstly,
each polyline is divided into several substrokes at its ap-
proximate polygonal points. Then, the above stroke
grouping method is used to group these substrokes and
original line segments into groups. Next, each stroke group
is fitted into a line segment according to the two furthest
polygonal approximate points. Thirdly, the two most ad-
jacent line segments is linked by their intersections in order,
and the minimum distance of their endpoints must be
smaller than a threshold (this paper takes 20). Finally, repeat
the third step until there is no line segments can be linked
with others.

When a group is made up merely of conic curves, it is
fitted into a conic curve by quadratic curve fitting method,
where the fitted data comes from all approximate polygonal
points of all strokes of the stroke group. Then the closure
detection and endpoint determination process presented in
[9] was performed to determine the endpoints of the fitting
line.

When a group consists of strokes of different types, the
fitting result is determined by the type of the longer strokes
of the group, or a human-computer interactive dialog if
desired. Firstly, find the stroke of the largest perimeter of
bounding box c,,,. Then, compare the perimeter of the
bounding box of each stroke with c,,, and record the stroke
as a dominant stroke if the difference was smaller than
Cmax/4- If the dominant strokes are all conic curves, as shown
in Figure 8(b), then we fit the stroke group into a conic curve.
Otherwise, if the dominant strokes are polylines or include
both conic curves and polylines, as shown in Figures 8(b)
and 8(c) separately, the system highlights the strokes of the
group and pops up a dialog box for users to select the fitting
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FiGure 6: The simplification of two overtracing strokes.

w’/ g \[/ \r/ \W/
(a) ®) () (d)

FIGURE 7: Process of fitting a polyline group: (a) input sketch with polygonal approximate points; (b) segmenting strokes into substrokes; (c)
grouping substrokes into groups and fitting a line segment to each substroke group; (e) connecting adjacent line segments in sequence.
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FiGure 8: The bounding box of strokes: (a) the dominant strokes are conic curves; (b) the dominant stroke is a polyline; (c) the dominant

strokes include both conic curve and polyline.

results: (1) fit the stroke group as a conic curve; (2) filter all
conic curves of the group, and fit the remainder polylines or
line segments as a whole polyline; (3) fit all conic curves of
the stroke group as a conic curve, and fit the remainder
polylines or line segments as a polyline.

4. Implementation and Examples

A freehand sketch-recognition system FSR-MOS for mul-
tiple overtraced sketches has been implemented on Win7 by
using Visual C++. The input device could be a mouse or a
tablet stylus. In order to test the grouped strokes and their
fitting results of the proposed method, a number of test cases
were carried out and some of them are shown in
Figures 9-11, where the strokes are shown in different colors,
and the fitted line segments, polylines, and conic curves are
shown in blue, green, and red separately. We also compare
our method to the existing grouping methods [9, 10], the
results of the comparison are shown in Figures 10, 12, and
13. All our experiments are conducted on a 3.5 GHz com-
puter with 10 GB of RAM.

Some fitting examples of various kinds of stroke groups
that consist of multiple overtraced strokes are given in

Figure 9 to test the performance of the proposed stroke
group fitting method. Figure 9(a) shows 5 stroke groups.
Figure 9(b) shows the primitive recognition and fitting
results of every stroke. Figure 9(c) shows the fitting results of
stroke groups. Figure 9(d) shows the comparison of the
original stroke groups and their fitting results, which are
respectively shown in gray and black. Figure 9(e) gives the
composition of the 6 stroke groups, where n;, np, and nc,
respectively, denote the number of line segments, polylines,
and conic curves.

Each of the five examples shown in Figure 9(a) repre-
sents one type of stroke groups: (1) a multi-overtraced line
segment merely composed of line segments; (2) a multi-
overtraced ellipse merely composed of line segments; (3) a
multi-overtraced ellipse merely composed of line segments;
(3) a group composed of polylines and line segments; (4) a
multi-overtraced circle merely composed of conic curves; (5)
a group composed of polylines, line segments, and conic
curves and is fitted into a conic curve directly by the system;
(6) a group consisting of three type of strokes and is fitted
into different results from artificial selection. From Figure 9,
it can be concluded that the proposed method can fit
multiple overtraced strokes of various cases into three types
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FIGURE 9: Examples of fitting overtraced strokes.

of basic primitives including line segments, conic curves, or
self-intersecting polylines. From the fitting results of
sketches 2, 5, and 6, it can be seen that the proposed method
can not only fit primitives into a group composed of dif-
ferent types of strokes but also group one type of strokes but
fit them into another type of geometry.

Figure 10 shows some examples of creating line drawings
from multiple overtracing sketches. Figure 10(a) shows 6
sketches with their stroke numbers ns. Sketch 1 is composed
merely of line segments; sketch 2 is mixed up with line
segments and polylines. Besides overtracing line segments
and polylines, sketches 3-6 also include overtracing conic
curves. Figure 10(b) shows the primitive recognition and
fitting results of each stroke. Figure 10(c) shows the grouped
results and the numbers of stroke groups ng, and different
groups are shown in different colors. Figure 10(d) shows the
fitting results of each stroke group. To compare the effec-
tiveness of the proposed approach with the methods [9,10],
the 6 sketches are also processed using the two methods, and
the results are shown in Figures 10(e) and 10(f).

As shown in Figure 10(c), the overtraced strokes of the 6
sketches are grouped together properly. As shown in
Figure 10(d), the resulted stroke groups are also fitted into
right primitives. It can be concluded that the proposed
method can deal with sketches containing multiple over-
tracing line segments, polylines, and conic curves, and
convert the overtracing sketches into 2D line drawing ef-
fectively. In sketches 1-3, all the overtraced strokes are of the
same types: line segments are only overtraced with line
segments, conic curves are only overtraced with conic
curves, and polylines are overtraced with polylines or line
segments. In sketches 4-6, some overtraced strokes are of the
different types. From sketches 1-4, all overtraced strokes are
automatically grouped. From sketches 4-6, when fitting
stroke groups that contain conic curves and polylines, the
system pops up a dialog to let users choose the fitting results

manually. It can be concluded that the proposed method can
not only group overtraced strokes of the same types, but also
group strokes of different types together, and fit the over-
traced strokes with correct primitives.

From Figures 10(e) and 10(f), the results of [10] com-
posed of line segments and conic curves, while the results of
[9] also contain polylines. Comparing the results of the
proposed method with the methods [9, 10], it can be seen
that all the three methods yield the same results for sketch 1,
and the proposed method yields the same results as the
method [9] in sketches 2-3. But our results are different with
the results of [9, 10] in sketches 3-6, the differences are
mainly manifested in overtraced strokes of different types:
instead of handling the overtraced strokes as a whole, the
methods [9, 10] divided them into groups that composed of
the same types of strokes. This is because the two methods
both classified and fitted each stroke first, then grouped fitted
lines by types, so only the same types of strokes are grouped
together. Such approaches cannot resolve the cases that a
geometric primitive is drawn with strokes of different types,
which are common in users’ sketches. However, the pro-
posed method can give correct results; it allows users draw a
primitive with any strokes without considering their shapes.
So, it gives the users more freedom to complete a sketch and
makes the system more robust.

Besides, for the conic curves grouping, in theory, the
method [10] may result in over-group cases shown in
Figure 12, because it grouped curves when there is an overlap
between the bounding boxes of the two curves. But the
proposed method can group such cases correctly, because it
clusters two strokes based on the relationship between the
tolerance zone of one stroke and the sampling points of the
other stroke, which are both generated along the stroke
trajectory. And for this reason, in the proposed method,
although each stroke is classified into line segment, polyline,
or conic curve before the grouping process, it still can group
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Figure 10: Examples of grouping and fitting overtraced sketches in FSR_MOS and comparison with methods [9, 10].

strokes of arbitrary shapes. As shown in Figure 11, the input
sketch is formed of 30 free-form strokes. The tolerance zones
of the strokes are shown in Figure 11(b). Through the
grouping process, the input strokes are divided into eight
groups, as shown in Figure 11(c). However, the fitting results
of groups consisting of strokes of arbitrary shapes are not
given because it is beyond the scope of this paper.

The overtrace ratio threshold § of the proposed grouping
algorithm is used globally. It has great impact on the effect of
grouped results, as shown in Figure 14. In Figure 14(b), the
sketch is over-grouped when ¢ is set to 0.35, this is mainly
because that a short stroke may be grouped with another
stroke with a wide tolerance zone, although it represents a
useful edge. In Figure 14(c), the overtraced strokes are
clustered into right groups when § is set to 0.5. In
Figures 14(d) and 14(e), the sketch is undergrouped when ¢

is set to 0.7 and 0.85. In this paper, the overtrace ratio
threshold § is taken as 0.5. However, the correct setting of §
which is generalizable to the variation in drawings is not
constant. Figure 13 shows the grouping and fitting results of
a sketch composed of overtracing line segments using the
method [9] and the proposed method. It can be seen that
some overtraced strokes are not grouped together by the
proposed method, but are grouped correctly by the method
[9]. This is because that the method [9] grouped line seg-
ments based on endpoints locations and slopes, so strokes
which are not overtraced that much can be grouped to-
gether. Besides, the method [9] used time stamps to group
short strokes that are close in drawing time and distance to
dashed lines. However, the line drawing that is under-
grouped generated from this paper can be further extended
to the method [9] to group strokes of the same types.
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(a)

(c)

FiGUure 11: Grouping of free-form strokes: (a) input sketch; (b) the tolerance zone of the strokes; (c) grouped result

ept

FIGURE 12: The over-group cases in [10].
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.

FI1GURE 13: Comparison with the method [9]: (a) input sketch; (b) and (c) grouping and fitting result of the method [9] and the proposed
method.

(d)

FIGURE 14: Grouping examples with different overtrace ratio threshold ¢: (a) input sketch and single stroke fitting results; (b) § =0.35; (c)
§=0.5; (d) 6=0.7; (¢) §=0.85.
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5. Conclusion

This paper proposes a tolerance zone-based method for
transforming online multiple overtraced sketches into 2D
line drawings. It consists of three parts including stroke
preprocessing, stroke grouping, and group fitting. The
proposed method is suitable for online conceptual design.
The user can draw over the existing drawing to complete,
correct, or enhance an edge. All strokes are considered as
part of the sketch, and multiple overtraced strokes are au-
tomatically grouped into geometric primitives. The stroke
grouping method presented does not like [9, 10] which rely
on fitted parameters of the stroke; it can group strokes that
represent arbitrary geometric primitives, such as line seg-
ments, polylines, and conic curves. The work presented here
is only part of our final sketched-based 3D modeling system,
but it could provide a good base point for 3D geometric
recognition from line drawing. This paper only studies the
grouping methods for strokes with relatively high overtraced
ratio. The future work is to research how to process strokes
that are not overtracing so much.
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