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Abstract

Spacecraft observations allow us to reconstruct the velocity distributions of space plasmas, which fully describe the
kinetic state of the plasma. Space plasmas often exist in stationary states out of equilibrium, which are typically
described by kappa distributions. Thus, the kappa index and temperature that govern these distributions are
parameters that need to be determined for a full and accurate description of these plasmas. In this study, we
demonstrate a novel and reliable way to determine the kappa index and temperature of plasma distribution
functions constructed from counts observed in a narrow energy range by typical electrostatic sensors. Our method
applies to cases in which the high-energy tail of the plasma is observed with significant uncertainty, or not
observed at all. For the validation of our method, we produce pseudo-observations for typical input plasma
parameters, specifically considering the design of the ion plasma instrument SWA-PAS on board the Solar Orbiter
mission. Our method reliably estimates the relevant plasma parameters by fitting the angular spread of the
distribution in a narrow energy range around the core bulk energy. We compare the output of our technique with
the input parameters used to generate artificial data for a selected range of the kappa index and the temperature, and
for a bulk energy typical for the solar wind. In addition, we study the effects of Poisson errors on the instrument’s
counting statistics, test our method against Helios 2 measurements, and discuss its potential applications
and limitations.

Key words: methods: data analysis – plasmas – solar wind

1. Introduction

Space plasmas have been observed for decades in many
different regions of space, with a wide range of different
conditions. Instruments designed to sample the plasma velocity
distribution generally record the count rates for particles
arriving at the instrument in a given mass, energy, and angular
range. For many applications, the desired products from these
plasma observations are the plasma fluid parameters, such as
the bulk speed, the density, and the temperature. These higher-
level products are derived from the count rates taking into
account the instruments’ properties, which are determined
from ground and/or in-flight calibration procedures. A
common method for the calculation of the plasma fluid
parameters is the direct fitting of the instrument’s response
model to the observations, using a given expression for the
plasma distribution (e.g., Richardson 1987, 2002; Wilson et al.
2008, 2012b, 2013; Elrod et al. 2012; Livi et al. 2014; Nicolaou
et al. 2014, 2015a, 2015b; Elliott et al. 2016). In an alternative
approach, a direct numerical integration scheme derives the
velocity moments from the observed distribution function (e.g.,
Paschmann & Daly 1998; Wilson et al. 2012a). This method
requires that the full distribution function be within the
energy and angular range of the instrument (see also Kasper
et al. 2006).

Plasmas in collisional equilibrium exhibit a Maxwellian
distribution. Space plasmas, however, are very often in

stationary states out of equilibrium that can be described by
kappa distributions. Kappa distributions are characterized by a
Maxwellian-like “core” (velocities close to the bulk velocity of
the distribution function) and a high-energy tail that follows a
power law. They have been observed in the solar wind (e.g.,
Maksimovic et al. 1997, 2005; Pierrard et al. 1999; Chotoo
et al. 2000; Mann et al. 2002; Zouganelis et al. 2004; Marsch
2006; Štverák et al. 2009; Livadiotis & McComas 2013b; Yoon
2014; Heerikhuisen et al. 2015; Pierrard & Pieters 2014),
planetary magnetospheres (e.g., Christon 1987; Collier &
Hamilton 1995; Jurac et al. 2002; Pisarenko et al. 2002;
Kletzing et al. 2003; Mauk et al. 2004; Schippers et al. 2008;
Dialynas et al. 2009; Ogasawara et al. 2013; Carbary
et al. 2014; Qureshi et al. 2014; Stepanova & Antonova 2015),
the outer heliosphere, and the inner heliosheath (e.g., Decker &
Krimigis 2003; Decker et al. 2005; Heerikhuisen et al. 2008,
2010; Zank et al. 2010; Livadiotis et al. 2011, 2012, 2013;
Livadiotis & McComas 2011a, 2012), and have been studied in
other various plasma-related analyses (e.g., Milovanov &
Zelenyi 2000; Saito et al. 2000; Yoon et al. 2006; Raadu &
Shafiq 2007; Hellberg et al. 2009; Livadiotis 2009, 2014,
2015b, 2015c, 2016a, 2016b; Livadiotis & McComas 2009,
2010a, 2010b, 2011b, 2013c; Tribeche et al. 2009; Baluku
et al. 2010; Le Roux et al. 2010; Eslami et al. 2011; Kourakis
et al. 2012; Fisk & Gloeckler 2014; Randol & Christian
2014; Varotsos et al. 2014; Liu et al. 2015; Viñas et al. 2015).
Furthermore, several studies (e.g., Milovanov & Zelenyi 2000;
Leubner 2002; Livadiotis & McComas 2009; Livadiotis 2015a)
have shown that the kappa distributions arise naturally from
Tsalis nonextensive statistical mechanics (Tsallis 1988, 2009;
Tsallis et al. 1998). For other examples of kappa-distributed
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plasmas, see Livadiotis (2017) and references therein. Previous
studies have shown that fitting a Maxwellian distribution to the
core of a kappa distribution can lead to major misestimations in
the plasma temperature (Livadiotis & McComas 2009, 2013a;
Nicolaou & Livadiotis 2016). Therefore, a careful treatment
of the kappa distribution is important, taking into account
the contribution of particles with velocities in the tail of the
distribution. The Maxwellian distribution is the limit of the
kappa distribution for k  ¥. Therefore, the use of kappa
distributions includes the identification of Maxwellian distribu-
tions. We note that the kappa index is an additional free
parameter for the distribution that has to be determined.

In practice, however, high-energy tails are not always
observed due to instrumental constraints. For example, the
plasma instrument on board Voyager 2 provides observations
of only a few data points in a limited energy range, which
complicates the determination of the distribution-function fit
parameters (e.g., Scherer et al. 2018). In addition, there are
cases in which two or more plasma populations overlap within
the instrument’s energy range. For example, Nicolaou et al.
(2014) report that it is not possible to clearly distinguish the
high-energy tail of the Jovian magnetosheath proton distribu-
tion due to the overlap with the alpha particle distribution. In
such cases, the necessity for an alternative method to determine
kappa distributions arises, especially one that can be usefully
applied using a limited range of energies and angles so that, for
example, different species of particles can be excluded. We
present such a method to generate reliable and efficient
determinations of plasma bulk parameters when the full
distribution is not accessible.

This paper is organized as follows: In Section 2, we
introduce a new method to estimate the kappa index and
temperature of kappa distribution functions by analyzing data
obtained in a limited energy and angular range around the
energy and direction associated with the plasma bulk flow. In
Section 3, we validate our method, considering the expected
observations of the SWA-PAS instrument on board Solar
Orbiter, which can adopt our method for on-board processing
in the future. In Section 4, we apply our method to three ion
distributions observed by Helios 2 at heliocentric distances
between ∼0.4 and ∼0.7 au. In Section 5, we discuss the results
and we summarize our conclusions.

2. Method

The goal of our study is to determine the kappa index and
the plasma temperature of kappa-distributed particles when
observations are only available in a narrow energy range and a
narrow azimuth range. Therefore, we consider plasma particle
populations with an isotropic (in temperature and particle
correlation) kappa distribution function:
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The distribution is a function of the particle velocity u. In
the above equation, n is the density, =u k T m2th B is the
thermal speed, kB is the Boltzmann constant, T is the
temperature, m is the mass of a particle of the species, u0 is
the bulk velocity, Γ is the gamma function, and κ is the kappa
index of the distribution function with values between 3/2 and
infinity. In this formulation, T is the second velocity moment of
the distribution function and does not depend on κ. In the limit
k  ¥ the distribution asymptotes toward the Maxwellian
distribution. In the limit k  3 2, the distribution describes
plasma in the state furthest from the classical thermal
equilibrium (anti-equilibrium—for more details, see Livadiotis
& McComas 2010a, 2013a; Livadiotis 2015a). The normal-
ization is such that the distribution satisfies:
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where ω is the angle between the particle velocity u and the
bulk velocity u0 vector, and is a function of the elevation θ and

Figure 1. Coordinate system we use in this study. The elevation angle
θ measures the angle of a particle velocity vector (black arrow) from the x–y
plane (increasing toward the z-axis) while the azimuth angle j is the angle
between the x-axis and the projection of the velocity vector on the x–y plane
(measured from the x-axis and increasing toward the y-axis). The bulk velocity
vector is represented with the blue vector. We illustrate a case in which the
particle velocity has the same azimuth as the bulk velocity vector, so that
the two vectors lie within the same plane (red shadowed plane). Then the
ω angle between the two vectors corresponds to the difference between the
measurement elevation angle for a particular bin and the measured elevation
angle of the bulk velocity bin.
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the azimuth j angle of the spherical coordinate system (see
Figure 1). In Equation (2), N is a normalization factor.

We now limit our analysis to a range of elevations θ at a
specific energy and azimuth that includes the part of the
distribution of particles at both the energy E0 and the azimuth
direction j0 of the bulk plasma flow. We directly determine E0

and the azimuth direction j0 as the peak of the distribution
function in the data matrices. For the special case in which
ε=E0, Equation (2) becomes:
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which for a given distribution is a function of ω only. If we
further consider only the particles with j=j0, then ω simply
represents the difference of the particle elevation θ and the bulk
velocity elevation direction θ0 (see Figure 1). Equation (3) then
becomes:

e q j j

q q

k

= =

= +
- -

-

k- -⎡

⎣
⎢⎢

⎤

⎦
⎥⎥( )

( )

( ( )) ( )

f E

N
E

k T

, ,

1
2 1 cos

, 4

0 0

0 0

3

2 B

1

which is a function of the elevation angle only and can be fitted
to the one-dimensional (1D) distribution obtained in one full
elevation scan at the bulk energy and azimuth of the bulk.
Electrostatic sensors usually perform elevation-angle scans
in discrete energy and azimuth bins. Therefore, we directly
obtain the 1D distribution at E0 and j0 from the observations.
We note that the specific method requires that the fitting routine
successfully identifies the dependence of the observed
distribution on the elevation direction, which is not the c
ase when E0/kBT=1. For solar-wind protons, however,
E0/kBT?1, allowing accurate fits to the 1D elevation scans.
The free parameters of the fitting are the normalization factor N,
the elevation of the bulk θ0, the kappa index κ and the plasma
temperature T. We determine the factor N and the elevation of
the bulk θ0 directly from the observed data as the peak value of
the distribution and the elevation scan at which the peak is
observed. For this study, we leave them as free parameters for a
better adjustment of the fitted curve.

3. Validation

3.1. SWA-PAS Model

We develop a model of the SWA-PAS sensor response for a
given plasma distribution and then analyze the modeled
observations with our method. The SWA-PAS sensor consists
of an electrostatic analyzer designed to make high temporal
resolution measurements of the solar-wind protons in the
energy-per-charge range from ∼0.2 keV/q to 20 keV/q. This
energy range is resolved in 96 steps, with an energy resolution
of ΔE/E=∼0.075. The field of view (FOV) covers angles
from −22°.5 to +22.5° in elevation and from −24° to +42° in
azimuth with respect to the direction of the Sun, through 9
sectors (using deflector plates) with ∼5° resolution in elevation
and 11 physical sectors (∼6° each) in azimuth (Figure 2).

We create artificial SWA-PAS data for a given input plasma
distribution, f, as proton counts per specific-energy and solid-angle

element, C(E, Θ, Φ), as
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where E, Θ, and Φ are the bin-centered discrete energy,
elevation, and azimuth coordinates of the instrument, respec-
tively, corresponding to the detected particle energy and
direction that is opposite to the instrument’s viewing direction.
Δτ is the integration time, m is the proton mass, and Aeff is the
effective aperture of the instrument, which is in general a
function of the energy and direction of the detected particles.
The limits of the above integral are defined by the instrument’s
energy resolution and the angular resolution (in the case of
PAS these are ΔE/E=0.075, ΔΘ=5°, ΔΦ=6° respec-
tively). For simplicity, we assume that Aeff does not vary within
an elevation bin and is a discrete function proportional to

Q-sin 1 only, i.e., e q j º Q = Q( ) ( )A A A, , sineff eff 0 . A
more realistic response will be assessed when the full flight
calibration of the instrument is completed. Under the current
assumption, our model Equation (5) simplifies to:
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In a realistic measurement, the instrument provides us with C
(E, Θ, Φ), and our goal is the determination of the underlying
velocity distribution function. We achieve this goal by
inverting Equation (6) in order to determine a (discrete)
approximation fout(E, Θ, Φ) of the underlying distribution
function. From Equation (6), using the approximation of small
ΔE, ΔΘ, and ΔΦ, we find:
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leading to the discrete (output) distribution function as a
function of the observed counts:
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where t= D DQDFDG A E

E0 is the geometric factor of the
instrument.
To demonstrate the use of our model, we numerically

integrate Equation (6) using a Riemann integration algorithm.
We choose small enough integration steps (dε, dθ, dj) to reach
convergence of the output parameters. We model the counts for
each energy scan E, in each elevation scan Θ, in each azimuth
sector Φ, and for specific integration time Δτ. We construct
pseudo-observations as counts in an elevation-energy matrix
(integrated over azimuth) and in an azimuth-energy matrix
(integrated over elevation). In Figure 3, we show both matrices
for plasma protons described by a kappa distribution with bulk
energy E0=1 keV, temperature T=40 eV, and a kappa
index κ=3.
We then derive the distribution function fout from the

observed counts with Equation (8). This result is shown in
Figure 4 as matrices of the distribution function, using the same
parameters as in the proton example shown in Figure 3.
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In order to apply our method to the produced SWA/PAS
pseudo-observations, we first identify the specific energy Emax

and the azimuth sector Φmax for which fout has its peak (see also
Figure 4). These are approximately the energy E0 and azimuth
j0 of the bulk flow respectively. We then select the part of fout
found in the elevation bins with E=Emax and Φ=Φmax. The
resulting 1D elevation profile is then directly fitted to
Equation (4), returning an estimation of the output kappa index
κ1D and plasma temperature T1D. We present two examples for
these fits at E=Emax and Φ=Φmax in Figure 5.

Because of the instrument’s limited energy and angular
resolution, the plasma parameters derived using our method
deviate to some extent from those of the underlying
distribution. We quantify this systematic error (deviation
between the input and the method output) by examining the
ratio between the fitted kappa and the input kappa (κ1D/κ) as
well as the ratio between the fitted temperature and the input
temperature (T1D/T) for a range of input values for kappa (κ)

and temperatures (T) in Figure 6. The results of our method
may also depend on the plasma bulk energy E0. In this
example, however, we set the plasma bulk energy to
E0=1 keV, which is representative of slow solar-wind
protons.

3.2. Poisson Statistics

Counting statistics introduce uncertainties to particle
measurements in electrostatic analyzers that follow the
Poisson distribution. The Poisson error for a measurement
of C counts has an uncertainty of d = C C counts. In order
to determine the effect of counting statistics on the accuracy
of our method, we follow the procedure described in
Section 3, but with C(E, Θ, Φ) randomly selected from the
Poisson distribution with an expectation value given by
Equation (6). We repeat this procedure 500 times for each set
of κ and T and study histograms of the derived κ1D and T1D.

Figure 2. Field of view (FOV) of the SWA-PAS instrument: (a) The elevation FOV covers angles from −22°. 5 to +22°. 5 with respect to the Sunward direction through
nine electrostatic sectors with a resolution of ∼5°. (b) The azimuth FOV covers angles from −24° to +42° with respect to the Sunward direction through 11 azimuth
sectors (physical sectors of the instrument) with a resolution of ∼6°.

Figure 3. (Left) Elevation-energy matrix and (right) azimuth-energy matrix of SWA-PAS pseudo-observations for protons with bulk energy E0=1 keV, temperature
T=40 eV, and a κ=3.
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We show two examples for such histograms in Figure 7, in
which we apply our method to observations that have a peak
at ∼4000 counts. In this example, ∼70% of the pseudo-
observation analyses with Poisson error derive a kappa index
within 25% of the true value. This fraction is even higher
(∼90%) for the temperature. Consequently, even though
counting noise has an impact on the accuracy of our method,
the actual SWA-PAS observations will allow the successful
use of our method. When applying our method to data sets
with a greater number of counts than the counts of this
example, the relative Poisson error is smaller, increasing the
accuracy of the derived parameters.

3.3. Statistical Verification for the Fixed Parameters E0 and j0

In this subsection, we verify that the 1D elevation profile of a
distribution function obtained at the energy channel E=Emax and
azimuth sector Φ=Φmax, is a good approximation to the
elevation profile of the distribution function at ε=E0 and
j=j0. In order to demonstrate that, we fit Equation (2), which is
the full three-dimensional (3D) distribution equation, to the
truncated data set selected at E=Emax and Φ=Φmax. We let the
bulk energy E0 and the azimuth direction of the bulk velocity j0

as free parameters to be estimated by the best fit. In Figure 8, we
show such a fit to a pseudo-observation with input E0=1 keV,

Figure 4. Distribution function normalized to its minimum (excluding zeros), of plasma protons with E0=1 keV, thermal energy T=40 eV, and κ=3 presented as
a function of elevation and energy, integrated over azimuth (left) and as function of azimuth and energy, integrated over elevation (right), as derived with Equation (8)
from the pseudo-counts shown in Figure 3. The horizontal (vertical) dashed line shows the energy bin Emax (azimuth bin Φmax) of the distribution’s maximum.

Figure 5. Fits of the 1D elevation profiles of the distribution function at the energy bin E=Emax and azimuth bin Φ=Φmax for the artificial SWA-PAS data. These
bins approximately represent the energy E0 and azimuth j0 of the bulk flow velocity. The underlying pseudo-observations have (left) κ=3, E0=1 keV, T=40 eV
and (right) κ=4, E0=1 keV and T=50 eV. These input parameters and the corresponding output parameters κ1D and T1D are shown on the left- and right-hand
sides of the plot respectively.

5
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j0=9°, T=30 eV, and κ=4. The fitting method derives
E0fit≈1.08 keV, j0fit≈10°.8, Tfit=31 eV, and κfit=4.44.
The differences between the input bulk energy and azimuth
direction of the bulk velocity values (E0 and j0) and the
corresponding fitting results (Eofit and j0fit) are of the order of
the instrument’s energy and angular resolution respectively.

Nevertheless, the derived temperature and kappa index (Tfit and
κfit) are nearly identical to those derived by our method (T1D
and κ1D) by fitting the simplified Equation (4) to the truncated
data set assuming that Emax and Φmax approximately represent
the energy E0 and azimuth j0 of the bulk flow velocity
respectively.

Figure 6. (Left) Ratio, κ1D/κ, between the fitted kappa index, κ1D, and the input kappa index, κ, as a function of the input κ and T. (Right) Ratio, T1D/T, between the
fitted temperature, T1D, and the input temperature, T,as functions of the input κ and T in our analysis of SWA-PAS pseudo-observations. Both κ1D and T1D show
smaller deviations from the input parameters for higher κ and T. In general, our method overestimated the kappa index over the range of the examined input
parameters. The overestimation can be up to ∼25% for the smallest kappa and lowest temperature tested (κ=2, T=10 eV) but it can be as low as ∼7% for higher
kappa and temperature (κ=7, T=60 eV). The plasma temperature is returned with lower uncertainty (<12%) for the range of the input parameters and the bulk
speed we consider here.

Figure 7. Histograms of (left) the derived kappa index κ1D and (right) the derived plasma temperature T1D using our method of pseudo-observations with Poisson-
distributed random pseudo-counts for a plasma with E0=1 keV, T=40 eV, and κ=3. For this statistical analysis, we evaluate our method 500 times to pseudo-
observations with a peak at ∼4000 counts. The black lines show the input values while the gray lines indicate the output values without Poisson uncertainty is
introduced in the counts. For the specific example 70% of the pseudo-observations estimate the kappa index within 25% of its true value and 90% estimate the
temperature within 25% of its true value.
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3.4. Comparison with the Maximum Likelihood Estimation
Method (MLE)

In our analysis, we estimate T1D and κ1D by fitting the
reduced data sets to Equation (4). However, a future user may
use another approach to analyze the 1D elevation profiles of the
distributions. In this subsection, we apply the MLE method
(e.g., Lawless 2011) to some of the reduced data sets in order to
derive the plasma temperature TMLE and kappa index κMLE,
and we then compare them with the fitting results, T1D and

κ1D respectively. Figure 9 shows the 1D elevation profile
of a simulated distribution for E0=1 keV, T=40 eV,
and κ=3, and the corresponding elevation profiles from the
fitting method and the MLE method. Both methods yield
TMLE=T1D≈39 eV and κMLE=κ1D≈3.4. The compar-
ison shows that the two methods derive essentially the same
plasma temperature and kappa index for a wide range of the
input plasma parameters we consider in this study (see
Section 3.1).

Figure 8. The 1D elevation profile of a modeled distribution obtained at the energy bin E=Emax and azimuth bin Φ=Φmax of the SWA-PAS (green circles) and two
different fits to the pseudo-data; a fit of Equation (4) with four free parameters (N, θ0, T, and κ; blue line), which is a direct application of our method, and a fit of
Equation (2) with six free parameters (N, E0, θ0, j0, T, and κ; red dashed line). The second fit estimates the energy and the azimuth direction of the bulk velocity
within the order of the instrument’s resolution, verifying the assumption Emax≈E0 and Φmax≈j0. Note also, that both fits derive nearly identical plasma temperature
and kappa index. In the specific example, the underlying pseudo-observation has E0=1 keV, T=30 eV, and κ=4.

Figure 9. Reduced 1D elevation profile of a modeled distribution at E=Emax and j=jmax (green circles) along with the curves as estimated by the best-fit method
(blue line) and the MLE method (red dashed line). The underlying pseudo-observation has κ=3, E0=1 keV, T=40 eV. Both the fitting and the MLE method
derive the same temperature T1D=TMLE=39 eV and the same kappa index κ1D=κMLE=3.4.
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We note, however, that the results of the two methods
deviate when applied to 1D distributions in the cold
(T<20 eV) and/or low kappa index (κ<3) range. For
instance, when applied to a distribution with E0=1 keV,
T=10 eV, and κ=2, the fitting yields T1D≈10 eV and
κ≈2.4, while the MLE method yields TMLE≈8 eV and
κMLE≈3.2. In general, the fitted curve describes the “tails” of
the elevation profiles more accurately in this low T and low κ
range. We recommend to apply similar validation methods
whenever an alternative statistical approach is chosen to
determine the plasma temperature and kappa index.

4. Application to Helios 2 Data

We now illustrate our method by applying it to a real data set
from the Helios spacecraft. The 3D electrostatic ion analyzer on
board Helios (Schwenn et al. 1975; Rosenbauer et al. 1977)
was designed to observe the velocity distributions of solar-wind
ions between 0.3 and 1 au. A full 3D distribution was
nominally obtained every 40 s, within the energy-per-charge
range from 0.155 to 15.3 keV/q, resolved in 32 exponentially
distributed energy channels. The FOV consisted of 9 elevation
channels and 16 azimuth channels with approximately 5°×5°

resolution. Marsch et al. (1982; referred to as M82 in this
paper) present a survey of proton velocity distribution functions
observed by the Helios probes and calculate the corresponding
plasma parameters from the moments of the observed
distributions by integration. We use some of M82ʼs published
measurements as test cases for our method. We choose three of
the most isotropic distributions from their work. We then
compare the kappa index κ1D and temperature T1D derived by
our method with the values we obtain by fitting the entire 3D
distribution (κ3D and T3D) to Equation (1) and with the
integrated temperature values given by M82 (as the temper-
ature ∣∣T parallel with respect to the magnetic field and the
temperature T̂ perpendicular to the magnetic field). Figure 10
shows the proton distribution function observed by Helios 2 on
day 67 of year 1976 at 22:32:33 UT. The upper panels show
the elevation-energy and the azimuth-energy matrices of the
observed distribution, and the lower panels show the results of
our 3D isotropic kappa distribution fit to the observations. We
apply our 1D fitting method at E=Emax and Φ=Φmax as
described in Section 2 and show the result in Figure 11. Table 1
shows the derived parameters and those given by M82 for the
three distributions we analyze.

Figure 10. (a) The elevation-energy matrix and (b) the azimuth-energy matrix of the proton distribution function observed by Helios 2 on day 67 of year 1976 at
22:32:33 UT. (c) The elevation-energy and (d) the azimuth-energy matrix of the 3D isotropic kappa distribution fit.
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Both the 1D and the 3D distribution fits suggest that the first
two distributions, denoted as F and C2, are kappa distributions
with low kappa index (κ<4). For distribution F, the derived
κ1D is by ∼10% greater than the derived κ3D index, but κ1D
and κ3D are equal to the first decimal figure for distribution C2.
Both fits give very large values for kappa (κ>15) for
distribution G, suggesting that the specific distribution is
practically a Maxwellian. For distribution F, both the 1D and
the 3D fits give higher temperatures than those derived
by M82. On the other hand, for distribution C2, the fit
temperatures are smaller than those given by M82. We discuss
possible reasons for this deviation in Section 5. For distribution
G, the derived T1D and T3D lie within 5% of the values derived
by M82.

5. Discussion and Conclusions

We present a method to estimate the kappa index and
temperature of space plasma populations assuming an isotropic
kappa velocity distribution based on measurements from a
sensor observing discrete sectors in azimuth, elevation, and
energy. Our method estimates the plasma parameters by
analyzing just part of the observed distribution. It is, therefore,
successful in cases in which the high-energy tails of the
distribution overlap with the distributions of other species, or in
cases in which they are not observed at all due to energy-range
limitations of the instrument. Our method first determines the

approximate bulk velocity (energy and direction) from the
distribution’s peak. We then fit the distribution as a function of
the instrument elevation angle at the energy and azimuth
coordinates of the bulk velocity. This choice simplifies the
fitting by reducing the number of free parameters.
To illustrate and validate our method, we first model the

expected response of the SWA-PAS instrument on board Solar
Orbiter, which is designed to measure the velocity distribution
functions of the solar-wind protons at heliocentric distances
between 0.3 and 1 au. Using the instrument’s characteristics
(such as FOV, sensitivity, and energy resolution), we construct
realistic pseudo-observations like those expected from SWA-
PAS when the plasma is kappa-distributed. Then, we derive the
kappa index and the temperature of the distribution by fitting
the elevation profile. For verification, we compare the results of
our method with the input of the pseudo-observations. We
conclude that:

(i) In general, our method successfully estimates the kappa
index and the temperature of the solar-wind protons from
data obtained at the energy channel and the azimuth
sector of the distribution’s maximum by the SWA-PAS
sensor (or similar design).

(ii) The systematic error of the derived kappa index and
temperature depends on the plasma parameters: it
decreases as the kappa index and the temperature increase.
For example, for a bulk energy of E0=1 keV, the kappa

Table 1
Parameters of the Three Distribution Functions Observed by Helios 2 and Analyzed in This Work

Name in M82 Day, 1976 Time, UT R, au κ1D κ3D T1D(10
5 K) T3D(10

5 K) ∣∣T (105 K) T̂ (105 K)

F 67 22:32:33 0.742 2.9 (±0.3) 2.7 (±0.4) 3.63 (±0.25) 4.43 (±0.30) 3.13 3.30
C2 77 13:32:14 0.639 3.6 (±0.5) 3.6 (±0.9) 2.56 (±0.15) 2.90 (±0.50) 3.99 3.19
G 122 01:57:09 0.421 65.8 (κ1D>20) 15.3 (κ3D>10) 0.75 (±0.03) 0.78 (±0.04) 0.75 0.80

Note. The fitting errors are given in parentheses.

Figure 11. Fit of the 1D cut of the distribution function shown in Figure 9 at the energy E=Emax and azimuth Φ=Φmax.
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index is overestimated by ∼25% when the method is
applied to plasma with κ=2 and T=10 eV, while the
overestimation drops to ∼7% for plasma of κ=7 and
T=60 eV. For the same bulk energy, the temperature is
overestimated by up to ∼12% when T=10 eV and
underestimated by the same order of magnitude when
κ=2. Both parameters approach the input values for
higher κ and T (see also Figure 6). For higher κ and T
the distribution function has a broader shape within the
instrument’s energy and angular bins. The discrete
distribution function obtained from counts, therefore,
represents more accurately the underlying continuous
distribution.

(iii) Counting statistics cause an additional deviation (statis-
tical error) between the fit results and the parameters of
the underlying distribution (see Figure 7). Since this
counting uncertainty follows the Poisson statistics, the
accuracy of the output increases with the number of
counts of the analyzed sample. In cases with an
insufficient number of counts, we suggest (a) adding
the measurements of consecutive samples or (b) adding
the measurements obtained in consecutive energy
channels to lower the Poisson error. We note, however,
that in both cases an additional error is introduced
(a) through potential temporal variations of the plasma or
(b) through the reduction in energy resolution.

The method gives reliable and fast estimates for the expected
observations from SWA-PAS and is, therefore, a potentially
useful tool for on-board and/or ground processing of SWA-
PAS observations. We note that, when automated for on-board
processing, a minimal additional computational effort is
required for the detection of the distribution’s peak. In the
case of SWA-PAS, such an algorithm is already in place in
order to allow the instrument to take 3D measurements over a
limited parameter space centered on the peak of the count rate
distribution, precisely to save telemetry. SWA-PAS also has
deployable modes in which the distribution is scanned in a
limited (or even single) angular range in one spatial direction.
The specific modes, trade angular coverage for temporal
resolution, allowing very fast 1D measurements that are needed
for some of the science goals of the mission (e.g., turbulence
physics). Our method can provide the information on how the
distributions evolve (in one spatial dimension) on these small
timescales. In general, our method applies to any instrument
with the same detection principle as SWA-PAS (e.g., the Ion
Composition Analyzer on board Rosetta (Nilsson et al. 2007)
or the Ion Mass Analyzer on Mars and Venus Express
(Barabash et al. 2006, 2007)). The total error, however,
depends on the plasma parameters and the instrument’s
characteristics such as its angular and energy resolution.
Therefore, a careful validation for each individual instrument
would be necessary in the way shown for the SWA-PAS design
in Section 3.

As a first attempt to analyze existing plasma data similar to
the artificial SWA-PAS data, we apply our method to Helios
proton observations. We identify three examples of almost
isotropic distributions published in the literature and derive the
kappa indexes and temperatures with our method. The derived
values are compared with those provided in the literature and
the values we derive by fitting the entire 3D distribution
function. For the large value of kappa found in distribution G,
the shape of the distribution is nearly independent of its exact

value. The temperatures derived by our method lie within a
20% margin of those derived by 3D fits to the distributions. It is
possible that the amount of this misestimate lies within the
error expected for the instrument (systematic and statistical),
which is quantifiable with the methods presented in Section 3
for SWA-PAS. We also compare the derived temperatures with
the values given by M82. The derived temperatures for
distribution G lie within 5% of the temperatures derived
by M82. In the case of distribution F, the temperature derived
by our method and by the 3D fit is higher than the temperature
derived from the moments calculation by M82. A possible
explanation for this deviation is the tail contribution to the
temperature at times when it is not fully observed due to
instrumental sensitivity limitations. Therefore, the moment
calculation results in a lower temperature than the actual
temperature of the plasma. For distribution C2, our method and
the 3D fit yield lower temperatures than the temperature
derived from the moment integration. We note that the fitting
techniques consider a specific and smooth expression for the
distribution, whereas the moment integration does not. There-
fore, deviations of the actual distribution from our analytical
assumptions can lead to additional discrepancies between both
approaches.
We note that our method provides an estimate of the kappa

index and the plasma temperature in the direction vertical
to the instrument’s azimuth plane. Therefore, in the case of
anisotropic plasma distributions, the estimated κ1D likely has a
value between k∣∣ and k̂ , while the estimated T1D has a value
between ∣∣T and T̂ , where the indexes represent the directions
parallel and perpendicular to the magnetic field, respectively.
However, even in these cases, the derived parameters can have
a scientific value, especially if they can be returned at a higher
cadence than the full 3D distribution data set.
We finally note that we have also used the MLE method to

analyze the reduced 1D elevation profiles of the distribution
function and compared with the results obtained by the fitting
method. The comparison shows that both methods derive
essentially the same results over a wide range of the input plasma
parameters, but there is a deviation in the range of cold (T<
20 eV) and low kappa index (κ<3) plasma. In these cases, the
fitting method estimates the temperature and kappa index closer to
their input values. While future users may use alternative methods
to analyze the reduced 1D elevation profiles, we advise that any
method should be validated accordingly.
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