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Abstract： 

Deployable structures are widely used in space applications such as solar arrays 

and antennas. Recently, inspired by origami, more deployable structures have been 

developed. This paper outlined a novel design scheme for deployable structures by 

taking a plane linkage as an origami unit with a large deployable ratio. The mountain 

and valley (M-V) crease assignment and kinematics of the plane linkage were analyzed. 

Physical interference in the folding progress was discovered geometrically and resolved 

by the split-vertex technique. Finally, tessellation of the derived pattern was 

successfully used to create a large-deployable-ratio structure, which was found to 

exhibit considerable potential in future space applications. 
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1. Introduction 

Origami is an ancient oriental art, which can fold two-dimensional (2D) materials 

into complex three-dimensional (3D) sculptures by following the designed crease 

patterns [1]. In the field of space engineering, origami-inspired deployable structures 

such as solar arrays [2] and satellite antennas [3] have to be packed into smaller volumes 

for transportation [4]. As many space structures are rigid when deployed, rigid origami, 

a branch of origami, has become the focus of research [5-7]. Rigid origami emphasizes 

that the facets around creases rotate without being stretched or bended during folding 

[8]. From a viewpoint of kinematics, creases can be considered as hinges and facets can 

be considered as rigid links [9-11]. Hence, the whole origami pattern can be converted 

into a network of mechanisms [12], and the kinematic theory can be applied to analyze 

the folding process and mechanical features of rigid origami [13-15]. Generally, an 

origami pattern contains of two types of creases called mountain and valley creases, 

which constrains the rotation on the mechanism joints into a half circle, i.e., (0, ) for 

dihedral angles as the folding facets cannot penetrate each other after fully folded. 

Many rigid origami patterns, such as Miura-ori pattern [16], Resch pattern [17], 

Huffman's tessellations [18] and PCCP shells [19], are tessellations of basic unit 

patterns [20]. Inspired by the tessellating origami patterns, large deployable structures 

such as solar arrays and shelters have been created [21, 22]. On the other hand, we can 

construct large deployable structures from seeking ideal basic origami units. 

In 1942, Goldberg designed a simple origami pattern termed as a plane linkage 
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[23] as illustrated in Fig. 1, whose large deployable ratio makes it a potential 

construction unit for deployable structures. Yet, there was very little study on its 

kinematics. Therefore, this paper aims to analyze the kinematic behaviours of the plane 

linkage and modify it into an ideal origami unit for deployable structures. 

The layout of this paper is as follows. The analysis of the M-V crease assignment 

and kinematics for the plane linkage are presented in section 2, followed by kinematic 

analysis of the equivalent 7R linkage in section 3. In section 4, the interference of the 

plane linkage is detected and overcome by proposing a split-vertex pattern. We design 

a one-DOF pattern with a large deployable ratio by tessellating the derived unit pattern 

in section 5. Conclusions and further discussion are given in section 6, which ends this 

paper. 

 

2. Kinematics of the Plane Linkage 

The plane linkage is an origami pattern with a twisted folding feature. As shown 

in Fig. 1(a), it consists of three regular triangular facets and five rhombus facets, of 

which interior angles are / 3  or 2 / 3 . The lengths of all polygon sides are identical, 

and mountain and valley creases are defined as solid and dash lines, respectively. If 

considering creases as hinges and facets as rigid links, two spherical 4R linkages with 

facets 1, 8, 3, 2 and 3, 8, 5, 4 and a spherical 5R linkage with facets 1, 7, 6, 5, 8 form 

the whole plane linkage. Comparing the deployed and folded configurations in Fig. 1, 

the deployable ratio of a single plane linkage unit is 13/4. 

 

 
Fig. 1 Two states of the plane linkage: (a) the deployed state; (b) the folded state [23] 

 

To study the kinematics of the plane linkage, Denavit and Harternberg’s (D-H) 

matrix method [24] is employed. D-H notation is used to describe the geometrical 

parameters and kinematic variables of two links, which are connected by a revolute 

joint as shown in Fig. 2(a). Here, 
( 1)i ia +

 represents the length of the link. iz  is the axis 

of joint i and ix  is the common normal from 
1iz −
 to iz . The rotation angle between 

iz  and 1iz +  is defined by 
( 1)i i +

, positively about +1ix . The rotation angle between 

ix   and +1ix   is defined by i  , positively about iz  . iR  , called the offset of joint i, 

represents the distance from ix   to +1ix  , positively about iz  . With the D-H matrix 

method in kinematics, the closure equation of a closed-loop linkage is 

12 23 34 ( 1) 1...T T T T T Ιi i i− = ,                       (1) 

where matrix 
( 1)i i+T  transforms the expression in the (i+1)th coordinate system to the 

ith coordinate system,  
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The inverse transformation can be expressed as  
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. 

In Fig. 2(b), as the axes of spherical linkages intersect at one point, each link has 

no length and offset. We can simplify Eq. (1) to 

12 23 34 ( 1) 1...Q Q Q Q Q Ιi i i− = ,                       (2) 

where 

 

 
Fig. 2 The D-H coordinate system of (a) adjacent links connected by revolute joints (b) a portion 

of a spherical linkage 
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and 

( 1) ( 1) ( 1) ( 1)
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sin sin sin cos cos
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= − 
 − 

. 

The setup of D-H notation for each vertex in the plane linkage is shown in Fig. 3. 

The geometric condition of the whole unit is  

18 21 39 43 5(10)

2
= = = =

3
     = , 

89 92 9(10) (10)4 87 (10)8 76 65

1
= = = = = =

3
        = = ,         (3) 

( 1) =0, 0i i ia R+ = . 

The closure equation for the four-crease vertex A, which can be modelled as a spherical 

4R linkage, is 

18 89 12 29Q Q = Q Q .                           (4) 

There are two solutions,  

8
2 8 1 9 1

1
, , 2arctan( tan )

2 2


    = = − =                (5a) 

and 

2 8 1 9 1
8

2
, , 2arctan( ).

tan
2

= − = =

−

    


              (5b) 

 
Fig. 3 Kinematic setup of the plane linkage (a) in the linkage form; (b) in the origami pattern. 

 

Similarly, we can also get two solutions of the spherical 4R linkage at vertex B, 

4
4 9 3 10 3

1
, , 2arctan( tan )

2 2


    = = − =                (5c) 

and 
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4 9 3 10 3
4

2
, , 2arctan( ),

tan
2

= − = = −    


              (5d) 

where 
9 9
 =   as they are on the same crease, see Fig. 3(b). Combining Eqs. (5a-5d), 

there are four cases, 

8 4
2 8 1 9 4 9 3 10 1 3

1 1
, , , , 2arctan( tan ), 2arctan( tan ),

2 2 2 2
= = − = = − = =

 
           (6a) 

8
2 8 1 9 4 9 3 10 1 3

4

1 2
, , , , 2arctan( tan ), 2arctan( ),

2 2
tan

2

= = − = − = = = −


         


 (6b) 

4
2 8 1 9 4 9 3 10 1 3

8

2 1
, , , , 2arctan( ), 2arctan( tan ),

2 2
tan

2

= − = = = − = =

−


         


 (6c) 

2 8 1 9 4 9 3 10 1 3
8 4

2 2
, , , , 2arctan( ), 2arctan( ).

tantan
22

= − = = − = = = −

−

         
 

 (6d) 

As shown in Fig. 4, 
9  corresponds to the mountain crease AB, then we can get 

four M-V crease assignments at vertices A and B according to Eq. (6). Only the 

assignment in Fig. 4(a) meets the request that all creases move simultaneously, while 

the collinear creases at vertex A or B in Figs. 4(b-d) marked in red could cause that the 

corresponding vertex has undesired two-stage folding. 

 

 
Fig. 4 Four cases of the M-V crease assignments at vertices A and B. 

 

 
Fig. 5 The M-V crease assignments at vertex C in the plane linkage. 
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The kinematic relationship of linkage in Fig. 4(a) is Eq. (6a), which can be further 

simplified as 

1
2 8

1
3

4 9 1

1
10

=2arctan(2 tan ),
2

1
2arctan( tan ),

2 2

= ,

1
=2arctan( tan ).

2 2

=

= −

= −


 




  




                    (7) 

Next, to explore the M-V crease assignments at vertex C, a five-crease vertex, all 

eight possible cases are shown in Fig. 5. After folding the card models, we found that 

only case (g) can be flat-foldable. 

For the spherical 5R linkage at vertex C, 
8 8
 =    and 

10 10
 =    due to the 

common creases CA and CB are shared with the adjacent 4R linkages at vertices A and 

B, respectively, see Fig. 3(b). Its closure equation is 

78 8(10) (10)5 76 65.Q Q Q = Q Q                     (8) 

The solution for 5 , 6  and 7  can be obtained,  

10 5 8 10 5 8 5 10 8 5

5 6 10 5 8 10 5 8 5 10

6 8 10 8 10 8 10

8 10 8 10

2sin cos 2cos sin cos 4sin cos cos 3cos sin

sin 4sin cos sin cos cos sin 2sin sin sin 0,

1 1 1 1
cos cos cos cos cos sin sin ,

2 2 2 2

2cos sin sin cos

+ + − +

− − − + =

= − + + −

+ −

         

         

      

    8 7 7 6 7 6sin sin 2cos sin sin cos 0.− − − =     

 (9) 

Equations (7) and (9) form the whole set of kinematic equations of the plane 

linkage in Fig. 3. We can tell that this linkage is one DOF with ten kinematic variables 

and nine constraints.  

In origami, dihedral angles are preferred to present the folding process visually. 

As presented in Fig. 3(b), the relationship between the kinematic variable i  and the 

dihedral angle i   for the plane linkage is   = +i i   for a mountain crease and 

  = −i i  for a valley crease. For vertex A in Fig. 3, we have 

1 1 2 2 8 8 9 9, , , ,= − = − = − = +                     (10a) 

for vertex B, 

3 3 4 4 10 10, , ,= + = + = −                       (10b) 

and for vertex C, 

5 5 6 6 7 7, , .= − = − = +                       (10c) 

Finally, we obtain the motion equations of the plane linkage,  

1
2 8

1
= =2arctan( tan ),

2 2


                    (11a) 

4 9 1= = ,                             (11b) 

1
3 10

1
= = 2arctan( cot ),

2 2
−


                   (11c) 

10 5 8 10 5 8 10 5 8 5

5 6 10 5 8 10 5 8 10 5

2sin cos 2cos sin cos 4sin cos cos 3cos sin

sin 4sin cos sin cos cos sin 2sin sin sin 0,

− + + + +

− + − + =

         

         
 (11d) 
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6 8 10 8 10 8 10

1 1 1 1
cos cos cos cos cos sin sin ,

2 2 2 2
= − − + − +          (11e) 

8 10 8 10 8 7 7 6 7 62cos sin sin cos sin sin 2cos sin sin cos 0.− − − + + + =           (11f) 

The relationships between 1  and i  are plotted in Fig. 6. When 1  changes from 

0 to , there is always 0 i ，which means that there is no kinematic interference. 

Once 1  is given, the other dihedral angles can be definitely determined, i.e., the plane 

linkage has one DOF. 

 

 
Fig. 6 The relationships of dihedral angles of the plane linkage. 

 

3. A Derived 7R Linkage Based on the Plane Linkage 

When the central triangular facet ABC, one of the eight facets, is cut out from the 

plane linkage, see Fig. 7, the remaining seven facets can be considered as a 7R linkage, 

whose kinematic parameters is setup in Fig. 8. Set the length of every side of the triangle 

and rhombus in Fig. 8(b) as a, according to the D-H notation, geometrical parameters 

of this 7R linkage are 

12 34 56 67 23 45 71

12 34 56 67 23 45 71

1 3 5 6 2 4 7

3
= = = =0, = = = ,

2

2 1
= = ,  = = ,  = = =0,

3 3

0,  ,
2

a a a a a a a a

a
R R R R R R R= = = = = = =

      

      

      

                    (12) 

where the superscript   represents the derived 7R linkage. 

The closure equation of this 7R linkage is 

67 71 12 23 65 54 43T T T T = T T T                      (13a) 

or 

67 71 12 65 54 43 32.T T T = T T T T                     (13b) 
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Fig. 7 The card models of (a) the plane linkage and (b) the derived 7R linkage from the plane 

linkage. 

 

 
Fig. 8 Kinematic setup of the 7R linkage (a) in the linkage form; (b) in the origami pattern 

 

Combining Eqs. (12-13), we can get the relationship between 
1

  and 
i

 ,  

1

3 4 7 1 5 1 6 1

1

2 6 6 1 6 1 6 1

tan 3
32=2arctan( ), = = , = , 2arctan( cos ),
4

1 3tan
2

2cos( ) 2cos cos sin sin sin 2cos



       



       



       


       

−
− =

−

− = − − + −

  (14) 

as plotted in Fig. 9(a). 

The relationship between the kinematic variable 
i

  and the dihedral angle 
i

  is 

1 1 2 2 3 3 4 4

5 5 6 6 7 7

3
, , , ,

2 2 2 2

3
, , .

2 2

= − = + = − = −

= − = − = −

       

     

   
       

 
      

       (15) 

Therefore, the relationship between 
1

  and 
i

  is, 

1

3

1

tan( ) 3
2 4= 2arctan

2
1 3tan( )

2 4







 



 

+ −
−

− +

,               (16a) 

4 5 7 1= = =       ,                       (16b) 
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6 1

3
2arctan( sin )

4

   = − ,                  (16c) 

2 6 6 1 6 1 6 12sin( ) 2cos sin sin cos sin 2sin              − = − + − .     (16d) 

When 
1

  varies from / 2  to 3 / 2 , 
1

  belongs to (0, ). As plotted in Fig. 

9(b), the motion of this derived 7R linkage is identical to the plane linkage. 

 

 
Fig. 9 The relationships of (a) rotation angles r

i ; (b) dihedral angles r

i  for the derived 7R 

linkage.  

 

4. Split-vertex Technique to Avoid Physical Interference 

During folding the card model of the plane linkage, physical interference occurs 

as intersection happens between the red creases BD and CG in Fig. 10. Such 

interference has to be avoided when designing a rigidly deployable structure. 

In Fig. 10(b), a coordinate system is set up, whose origin is at vertex C. The y axis 

is set along crease CA and the z axis is perpendicular to facet 8. 
8  is the dihedral 

angle between facet 1 and facet 8. 
10  is the dihedral angle between facet 5 and facet 

8. From Eq. (11a-c), we have 8
10

1
= 2arctan( cot )

4 2
−


  . 

Set the length of every side of the triangle and rhombus in Fig. 10 as a, the 

coordinates of B, C, D and G can be represented as follows, 

10 10 10

8 8

3
( , ,0),

2 2

(0,0,0),

3 3 3 3
( cos , cos , sin ),

4 4 4 4 2

3 3
( cos , , sin ).

2 2 2

a
B a

C

a a
D a a a

a
G a a

− +  

 

            (17) 

Further, we can get three vectors: 



10 

 

8 8

10 10 10

3 3
( cos , , sin ),

2 2 2

3 3 3 3
( cos , cos , sin ),

4 4 4 4 2

3
( , ,0).

2 2

a
a a

a a
a a a

a
a

=

= − − − +

=

 

  

CG

BD

CB

      (18) 

 

 
Fig. 10 The physical interference in the plane linkage. (a) Folding of the card model; (b) the setup 

of the coordinate system and dihedral angles; (c) the obtuse angle   when crease CG penetrates 

facet 5 

 

To further simplify the calculation, we replace CE, CB and CG with their parallel 

vectors 1v , 2v  and 3v , respectively. 

1 10 10 10

2

3 8 8

( 3 3 cos , 1 cos ,2 3 sin )

( 3,1,0)

( 3 cos ,1, 3 sin )

v

v

v

  

 

= − − − +

=

=

         (19) 

Thus, we have the normal vector of facet 5 as 

4 1 2 10 10 10( 2 3sin ,6sin , 4 3 cos )v v v   =  = − −          (20) 

and   is the angle between vector 3v  (CG) and 4v , 

3 4

3 4

cos ,


=



v v

v v
                         (21) 

3 4 8 10 10 8 10

3 4 8 10 10 8 10

cos sin sin 2sin coscos
.

cos cos sin sin 2sin cos
k

 − + −
= = =

 − + −

    

     

v v

v v
    (22) 

As shown in Fig. 10(b-c), in the folding progress of the plane linkage, when   is 
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an acute angle, no interference occurs, 1=k . When   is an obtuse angle, crease CG 

penetrates facet 5, 1= −k . 

In three-dimensional space, the distance between creases CG and BD can be 

calculated as 

( )
.d k

 
= 



CG BD CB

CG BD
                        (23) 

10 8 10 8 10

2

10 8 10 8 8 10 8

2 2

8 10 8 10 8 10

3 3 3
sin sin cos cos sin

8 4 8

3 3 3 3 3 3
( sin sin cos sin ) ( sin cos sin

4 8 8 8 8

3 3 3 3 3 3
cos sin ) ( cos cos cos cos )

4 8 8 8 8

d
k

a

    

      

     

− −

= 
 

− + + − − 
 
 
− + − + + 
 

(24a) 

The relationship curve between d/a and 8  is plotted in Fig. 11. We can see that 

when 8  changes from 0 to 0.44 rad, the value of d/a is negative, which means that 

crease CG penetrates facet 5. As a result, there is physical interference during the 

folding. 

 

 
Fig. 11 The relation between d/a and 8  

 

To avoid physical interference in the plane linkage, the distance between crease 

CG and crease BD must be increased. Here, the split-vertex technique [25, 26] is taken 

into consideration. In Fig. 12, we split vertex C into vertex C and vertex C′. Valley 

crease CF becomes valley crease CF and mountain crease C′F′, which are parallel to 

each other. The split distance between vertices C and C′ is l. The length of AB is 

extended with l correspondingly. In such a way, the plane linkage is split into a pattern 

with four vertices, each with four creases, and the pattern is one DOF under the 

overconstrained condition [27, 28]. 
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Fig. 12 The split-vertex the plane linkage: (a) the plane linkage; (b) the split pattern; (c) the card 

model. 

 

The distance between CG and BD, /ld a  is related to the split distance l  during 

the folding process,  

10 8 10 8 10 8

2

10 8 10 8 8 10 8

2 2

8 10 8 10 8 10

3 3 3 3 3 3 3
( )sin ( )sin cos ( )cos sin sin
8 8 4 8 8 8 8

.

3 3 3 3 3 3
( sin sin cos sin ) ( sin cos sin

4 8 8 8 8

3 3 3 3 3 3
cos sin ) ( cos cos cos cos )

4 8 8 8 8

l
l

l l l l

d a a a a
k

a

+ − + + − +

= 
 

− + + − − 
 
 
− + − + + 
 

     

      

     

 

(24b) 

From Fig. 11, we can infer that / 0ld a   when 
8   is quite small and / 0ld a  

when 
8   is large enough. So there must be a certain 

8   called 0

8    making 

/ =0ld a  if the split distance l  is not long enough to avoid the interference. Thus we 

mark 1= −lk  when 0

8 8<   and 1=lk  when 0

8 8  . 0

8  is obtained by solving 

/ =0ld a  as  

0
2 8 1 4 /

tan = .
2 16 / 20

l a

l a

−

+


                      (25) 

When 1 4 / 0l a−   , that is, / 1/ 4l a  , the solution of Eq. (25) is 
0

8 =2arctan (1 4 / ) / (16 / 20) − +l a l a . When / 1/ 4l a , no solution of Eq. (25) exists, 

which means that l  is long enough to avoid the interference, so we mark 1=lk . Then 

the curve of /ld a  vs. 
8  can be plotted as shown in Fig. 13. 
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Fig. 13 The relationship between ad l /  and 8  with different l.  

 

From Fig. 13, we can find that the maximum interference occurs when 0l =  

and the interference disappears when 0.25l a , which indicates that to avoid the 

interference, 
min 0.25l a= . 

 

 
Fig. 14 The folding of the split pattern. The folded shape for different l: (a) all min ; (b) 

al = ; (c) al  ; (d) The relationship between split distance and deployable ratio. 

 

When the split distance l  varies, the folded shape of the plane linkage changes, 

see Fig. 14(a-c). Thus the deployable ratio Rn also changes with l.  
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( )

2

min
22 2

2

2

613 3 3 3
13

4 2

3 ( ) 43
4

,
613 3 3 3

13
4 2 ( )

23 3 3 3
4 2

n

l
a a l

a l l a
l

a l
a

R
l

a a l
a l a

l
a a l

a


++ 

=  
 ++


= 
 ++ 


= 
+ + 



        (26) 

which is plotted in Fig. 14(d). When 0.78l a=  , the deployable ratio reaches its 

maximum at 3.84. 

 

5. Tessellation of the Split Pattern 

To design a hexagonal antenna, six split patterns can be tessellated into a large 

pattern with Miura-ori as the intermediate connection, see Fig. 15. Due to the 

compatibility between the split pattern and Miura-ori, the whole pattern presented in 

Fig. 15(a) has a single DOF. 

 
Fig. 15 Tessellation of the split pattern. (a) The pattern formed by six split patterns (no creases 

between red lines); (b) the card model of it. 
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To make a fully covered hexagon, the pattern is further modified by filling the gaps 

around the edge, see Fig. 16(a). The folding sequence of such a card model is presented 

in Fig. 16(b). It can be found that the deployable ratio of this structure is 30/1. 

It should be noted that the change of cutting position, shown by the red lines in 

Fig. 16(a), does not affect the DOF of the regular hexagon pattern. Because the patterns 

in the blue frames beside the cutting position can be considered as two one-DOF Miura-

ori patterns. 

 

 
Fig. 16 The regular hexagon pattern. (a) Improvement of the tessellation (no creases between 

red lines); (b) its folding sequence. 

 

6. Conclusions 

In this paper, a plane linkage with a twisted folding feature is used as the basic 

origami unit to design a large deployable structure with a large deployable ratio. The 

kinematics of the unit has been studied from the viewpoint of a rigid origami pattern 

and a derived 7R linkage. To avoid physical interference, a split pattern with 4-crease 

vertices has been proposed, and a tessellation of this unit was designed to achieve a 
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large deployable ratio and single DOF. Card models have been made to validate the 

study.  

To bring this work into application in the future, the physical thickness of panels 

has to be considered and the control strategy for deployment will be studied. Meanwhile, 

other tessellations of the plane linkage and split patterns should be explored to design 

deployable structures with more general geometric shape besides hexagon.  
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