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Abstract

This thesis focuses on bridging the gap between solar and stellar physics through the study

of flares. Solar flares are the most powerful explosions in the solar system and many stellar

flares have been observed to be orders of magnitudes larger. However, is not yet known if

these phenomena are formed through the same physical process. In this thesis we explore their

common origins through a detailed case study of a solar flare and a robust statistical analysis

of stellar flares with bespoke observations. Using data from the Swedish Solar Telescope,

a detailed study of a solar flare associated with a filament eruption and jet was compared

with advanced 3D MHD simulations. This amalgamation of observation and theory allows for

a complete picture of the event including the pre-flare magnetic structure and the resulting

kinematics of the jet post eruption. Overall, this study aims to characterise the physical

environment capturing many evolutionary properties of the event providing a unique perspective

on eruptive phenomena on the Sun.

With regards to stellar flares, observational data from both K2 and TESS are used to conduct

a statistical analysis on flares from both low mass and solar-type stars. As a result of this, no

relationship between the rotational phase of stellar flares and starspots is present. This was

unexpected as there is a well-established relationship between solar flares and sunspots. This

result yields potential implications for how the magnetic field in fully convective low mass stars

is generated. Possibly, this result implies the surface of these stars is more complex than the

Sun. Furthermore, groups of rapidly fast rotating low mass and solar-type stars were discovered

to exhibit very little flaring activity. This is unusual, as rotation is linked to a star’s dynamo

mechanism and so faster rotating stars are expected to show higher levels of activity.

This research has raised new questions surrounding the underpinning mechanisms driving stellar

flares. In an effort to address this the solar 3D MHD simulation is scaled up to replicate flare

energies seen in the observed stellar flares. This comparative analysis allows for the exploration

of the flare mechanism and potential magnetic structure on these stars, which will be a subject

of future research, in order to explain such high energy flares.
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1 Introduction

The Sun has been observed, studied and even worshipped for many centuries with the first

records of early attempts to understand our nearest star dating back to 3300 BC (Tayler,

1997). The Sun is critical for life and our existence here on Earth and plays an important role

in everyday life, signifying the beginning and end of each day. Today, the Sun is continuously

observed and the knowledge gained from studying its many phenomena forms the basis for the

understanding of other stars in the solar neighbourhood.

Over the years, solar and stellar flare research have each progressed in isolation with many solar

flares being observed from radio through visible and infra-red to X-ray wavelengths, whereas

stellar flares are mainly observed in white light. More recently, there have been observations

of stellar flares in X-ray and radio wavelengths, however, with missions such as Kepler and

TESS optical observations of stellar flares are more frequent and easier to access. One of the

key reasons why activity, including solar flares, from our Sun is studied in such great detail

is due to the implications these events can have on Earth. In fact, the effects of solar flares,

coronal mass ejections and the solar wind can be seen through the entire solar system and so

understanding these events is important. Additionally, a particularly large solar flare which is

directed towards Earth can have consequences for satellites’ functionality, including GPS and

power grid failure and even impact upon health and safety astronauts.

Overall, as the Sun is our nearest star it offers a great opportunity to study the phenomena of

sunspots and flares in a manner which is not possible on other stars. It is through these studies

that we can gain a much greater insight into solar flares, gaining a deeper understanding of

the processes and activity on other stars and the effects it can have on potential exoplanetary

1
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 Figure 1.1: The Hertzsprung Russell Diagram for stars within the solar neighbourhood. A star

has been added to show the location of the Sun and its place amongst other stars of varying
types. Image courtesy of NASA.

systems.

1.1 The Sun

The Sun is a comparably average star in relation to the billions of other stars including low

mass and solar-type stars which populate the universe. By average, I am referring to the level

of flaring activity observed on the Sun in comparison to other active flare stars which show

much larger flares more frequently. Astronomers have been studying the Sun for centuries and

today the magnetic phenomena we observe is relatively well understood. The Sun is a G2 class

star with a surface temperature of 5,800 K, placing it in the middle of the Hertzsprung Russell

Diagram on the main sequence, see Figure 1.1. It is composed mainly of Hydrogen and Helium

which contribute to 71% and 27% of the solar mass respectively, with the remaining 2% being

heavier metals. The Sun is approximately 4.5 billion years old and is roughly half way through

its life, generating energy in the core by converting hydrogen to helium via the proton-proton

chain (Carroll and Ostlie, 2006). The solar rotation period at the equator is 24.5 days and this

is known as the sidereal rotation period. Differential rotation plays a role with regards to the
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rotation period of the Sun, where the rotation speed is different at varying latitudes on the

solar surface. However, the synodic rotation period of 26.24 days is more commonly referred

to as the solar rotation period as this is the time it takes for a fixed feature at the equator to

rotate to the same apparent position viewed from Earth.

These properties of the Sun are important, especially later on in the thesis where rotation rates

on other types of stars will be discussed and compared to our nearest star. However, there

are many other aspects such as the atmospheric structure, including the interior and outer

atmospheres, which are both important for understanding the processes which occur within

the star. Furthermore, there is the solar dynamo which plays an important role in generating

the magnetic activity observed on the Sun. In the remainder of this Chapter we will overview

these aspects in more detail, discussing various observed phenomena and setting the scene for

the remainder of the thesis.

1.1.1 The Solar Interior

Figure 1.2 shows the solar interior and atmospheric structure of the Sun. Firstly, The Core

of the Sun is where thermonuclear reactions take place through a process known as nuclear

fusion (Cox et al., 1991). Due to fusion the core is heated to a temperature of 15 M K as

it converts hydrogen into helium, whereby today the mass fraction of hydrogen has decreased

by 37% over the Sun’s lifetime (Carroll and Ostlie, 2006). As a result, high energy photons

are produced which propagate throughout the interior of the Sun. Overall, 99% of the Sun’s

energy is generated in the core but only accounts for half of the mass extending out to one

quarter of the solar radius.

Next is the Radiative Zone where the high energy photons from the core are transported

via radiation, reducing their temperature to between 2-7 MK. Additionally, the photons are

scattered off ions and electrons as they travel through this layer of the solar interior, taking

approximately 1 million years to reach the edge meeting the tachocline. Even though the

photons are travelling at the speed of light they become trapped within the radiative zone for

long periods of time due to radiative transfer evoking a random walk.

Between the radiative and convective zones lies a small interface layer known as the Tachocline.
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Figure 1.2: A diagram showing the structure of the solar interior and solar atmosphere, this
has not been drawn to scale. The photospheric layer separates what we define as the solar
interior from the solar atmosphere.

Many solar physicists believe the tachocline is where the global solar magnetic field is gener-

ated. It is a region where the energy transfer transitions from being radiative to convective,

causing great shear as the rotation rate changes rapidly. This is a result of the radiative zone

rotating as a solid body where the convective zone rotates as a fluid. Therefore, differential

rotation also begins in the tachocline with its affects observed on the solar surface.

Finally, there is the Convection Zone the last layer within the solar interior which extends out

to the visible surface. Once the high energy photons have left the tachocline, radiative transport

has broken down and convection takes over. This is due to the decreasing temperature of the

plasma allowing ions to recombine with electrons producing neutral hydrogen. As a result this

leads to an increase in the opacity of the plasma were it becomes opaque to UV photons,

therefore, radiation becomes inefficient for energy transfer so convection dominates. Overall,

the convective zone is much more turbulent than the radiative zone and as a result, carries

heat rapidly to the surface where the temperature drops from 2 MK to 5,800 K. The effects

of these convective motions can be seen on the surface in the form of supergranulation and

granulation. The convective zone is very important for generating solar phenomena such as

flares and CME’s as the motions twist up the magnetic field as it travels through the zone to
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Figure 1.3: These images from The Solar Dynamics Observatory capture the different layers
of the solar atmosphere at one instance in time. Image courtesy of SDO/NASA.

the surface (see alpha and omega effects in Figure 1.5).

1.1.2 The Solar Atmosphere

The solar atmosphere is composed of four main layers; the photosphere, the chromosphere,

the transition region and the corona. When studying phenomena close to the surface it is

impossible to only concentrate on one of these layers in isolation. Various parts of the solar

spectrum are emitted at various optical depths, within a corresponding height scale, in the solar

atmosphere. The emitted spectra at varying optical depths / heights in the solar atmosphere

is also related to the temperature of the plasma which is emitting. Figure 1.3 from the

Solar Dynamics Observatory is a perfect example of this multi-thermal structuring of the solar

atmosphere. Therefore, it is vital to observe solar phenomena across a broad range of spectral

lines sampling a broad range of the EM spectrum including the (E)UV, visible and near-infrared

in order to adequately understand the physics driving them.

The Photosphere is the visible surface of the Sun as it is defined as the layer where visible

light is seen and is largely emitted at 500 nm. Overall, 99% of the energy generated within the

Sun is emitted in the photoshpere which has a temperature range of 3,800 K - 6,600 K and

extends within a height range of approximately 400km. There are many phenomena observed

within the photosphere including supergranulation and sunspots. Supergranulation is a pattern

of the convective cells within the convective zone which are observed in the photosphere as
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Figure 1.4: An image of the 2019 Chilean total solar eclipse taken by Aoife Maria Ryan. In this
image you can see the structure of the corona along with the reddish tinge of the chromosphere
in the bottom right edge.

horizontal velocity flows using Doppler velocity measurements. Sunspots contain the strongest

magnetic field of the photosphere between 1 - 3 kG, however, a very weak field runs through

the whole solar surface which can manifest as concentrated strong fields between granules

(Phillips, 1995).

Above the photosphere we have the Chromosphere with a height range of approximately

2 Mm and a temperature range from 5,800 K at the photosphere to about 25,000 K at the

edge (Carroll and Ostlie, 2006). The main characteristics of the chromosphere include a rise

in temperature with height and a complex structure which is always changing. At the high

temperatures, hydrogen emits H-alpha (Hα: 656.28 nm) and by using spectrograph filters in

this wavelength many features of the chromosphere can be observed in absorption in Hα. For

example, one feature observed in Hα is jet-like protrusions of plasma which are present in the

chromosphere and can extend up to heights of 10,000 km. These are known as spicules which

have lifetimes as short as 1 minute (De Pontieu et al., 2007) and up to 15 minutes, otherwise

known as macrospicules (Scullion et al., 2009). Overall, it is estimated that around 30,000 of

these can exist at any given time, covering 2-3% of the Sun’s surface. The chromosphere is a

layer of importance as this is where flares radiate most of their energy away.

Next, lies a thin region of approximately 100km in depth known as the Transition Region.
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This region exhibits a rapid increase in temperature reaching between 2× 105 - 106 K (Judge,

2008). As you move outwards in the solar atmosphere the gas pressure drops exponentially,

whereas the magnetic pressure drops much slowly. Therefore, the plasma beta (β) (ratio of

gas pressure to magnetic pressure) becomes β < 1 and the magnetic field shapes the plasma

(Mariska, 1992). As a result of this, flows and dynamic activity dominate where the magnetic

field defines the structures (i.e. coronal loops and spicules) which are observed.

Finally, we have the Corona which can be observed as a halo surrounding the Sun in white

light during a total solar eclipse, see Figure 1.4. Observational features of the corona include

streamers, plumes and loops where the temperature range is a few million Kelvin. The visible

corona extends out to several million kilometres, however, it could be said its effects extends

to the edge of the heliosphere at 100 AU. Emission from the corona is also observed in a wide

range of wavelengths including X-rays, Extreme Ultraviolet (EUV) and radio. Close to the Sun,

it has a very low density, typically 108 - 109 particles cm−3, and so is essentially transparent

to most electromagnetic radiation, therefore, it is not in local thermal equilibrium (Carroll

and Ostlie, 2006). One of the biggest unanswered questions in solar physics is the Coronal

Heating Problem as it is still unknown how magnetic energy dissipates within the corona to

heat the plasma to such high temperatures. Additionally, the solar wind is a phenomenon

which originates from the corona where the effects can be seen throughout the entire solar

system. The slow solar wind is made up of streams of ions and electrons which flow outwards

from the Sun at a speed of 440 km/s and temperature of 83,000 K (Richardson, 2010), higher

solar wind speeds originating from open magnetic flux regions (coronal holes) can reach speeds

of thousands of km/s at 1 AU (Tu et al., 2005).

1.2 The Solar Dynamo

Over the course of the ∼ 11-year solar cycle the Sun displays a vast array of magnetic phe-

nomena across varying temporal, spatial and energy scales. The solar dynamo is a mechanism

which should explain the origins of the atmospheric solar magnetic field and the manifestation

of the magnetic phenomena. Additionally, advances in our understanding of the solar dynamo

are important for explaining the magnetic fields and stellar dynamos in other stars.
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Figure 1.5: A series of diagrams showing the alpha (α) and omega (Ω) effects on the magnetic
field structure in the Sun.

Dynamo action is a term used to describe the maintenance of the Sun’s magnetic field as a

result of its interactions with plasma motions. The question of dynamo action as an answer

to the Sun’s magnetic field was a big scientific question in the 1950s - 1980s. During this

time, it was shown that turbulence driven by convection within a rotating system can produce

a magnetic field with scales comparable to those observed on the Sun. Today, solar physicists

are still trying to replicate the dynamo mechanism through models to produce the magnetic

field of the Sun we observe (Larmor, 1919; Parker, 1955; Herzenberg, 1958; Steenbeck et al.,

1966).

The solar dynamo is a physical process which generates and maintains the Sun’s magnetic

field. It is a naturally occurring electric generator within the solar interior, producing an

electric current and consequently a magnetic field. It does this through the laws of magneto-

hydrodynamics, however, we do not need to go into such detail here as it is beyond the scope

of this thesis. Overall, the solar dynamo is seen as an alpha-omega (αΩ) dynamo where a

poloidial field threads through the photosphere. The omega effect is the winding up of this

poloidal field through differential rotation to produce a toroidal field, see Figure 1.5. The alpha

effect is the twisting of the magnetic field which is thought to result from rising flux ropes deep

within the solar interior following the convective motions. This alpha effect is responsible for

sunspot groups which follow Joy’s Law (Hale et al., 1919) where they are observed to be tilted
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Figure 1.6: An image of sunspot group in Active Region 1520 (July 2012) showing the overall
structure of sunspots. The largest spot on the left has a size approximate to 11 Earths and
the whole array of sunspots stretches across 322,000 km. Image courtesy of Alan Friedman/
NASA Goddard.

with the trailing spots further from the equator in comparison with the leading spot.

1.3 Solar Activity

1.3.1 Sunspots

Sunspots have been observed for centuries with continuous observations dating back to the

1600s and even some records as old as 1128AD (Bray and Loughhead, 1964, : see Chapter

7). They are continuously used as an indicator of solar activity and are closely correlated with

solar flares. Sunspots appear as dark features on the solar surface and are the most visible

manifestations of the magnetic field. The characteristics of a sunspot include a dark centre

known as the umbra and a slightly lighter halo known as the penumbra, see Figure 1.6. They

always occur in active regions and typically possess a bipolar magnetic structure. Sunspots

are restricted to the activity belts on the Sun and therefore, are not observed beyond ±30◦

latitude on each side of the equator (Solanki, 2003). In the photosphere, these dark spots are

cooler than their surroundings with temperatures in the range of 3500 – 4550 K. The cooler

temperature of sunspots is a result of their high magnetic field strengths which suppress the

convective transport of heat giving them their darker appearance. Overall, the magnetic field

is vital for sunspots as it determines their physical properties where strengths lie between 2 –
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Figure 1.7: The daily sunspot area averaged over individual solar rotation, plotted for multiple
solar cycles. This is commonly known as the ‘butterfly’ diagram, detailing the increase/decrease
of sunspot coverage during solar maximum/minimum. Image sourced from (Baykan and
Özçelik, 2006).

4 kG depending on the region of the sunspot (Solanki, 2003).

During a solar cycle there is a great variation in the size distribution of sunspots. For example,

a very large sunspot can reach 60,000 km in diameter whereas a smaller spot can be 3,500 km

(Bray and Loughhead, 1964). Typically, the larger sunspots are less common than the smaller

ones with the distribution of sizes following a log-normal function (Bogdan et al., 1988). In

relation to sunspot sizes, there is a classification system by McIntosh (1990) using white light

observations. The classification is based on three factors; (i) the size of a sunspot group and

the distribution of the penumbrae, (ii) the principle and largest spot in the group and (iii) the

degree of compactness (i.e. these classifications are determined by eye). This classification is

an expansion on the Zurich classes producing 60 different types of sunspot groups. On the Sun,

sunspots can have lifetimes lasting from hours to months, where the lifetime increases linearly

with size. Generally, sunspots last for days with longer lifetimes being difficult to monitor due

to the setting Sun or the spot moving behind the solar disk.

Observations of sunspots show their number and area varies over the solar cycle and this can

be observed in the butterfly diagram in Figure 1.7. The 11-year solar cycle and the 27-day
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rotation period are well known and studied in solar physics and are linked directly to sunspot

number. At solar minimum there are few sunspots and overall the Sun is very quiet. However,

by solar maximum there are multiple groups of spots which interact producing high levels of

flaring activity.

1.3.2 Solar Flares

Solar flares have been studied for over one hundred years with the first record of a solar flare

being observed by Richard Carrington in 1859 (Carrington, 1859). While making drawings

of the sunspots present on the surface of the Sun, Carrington observed brightenings in the

same area as the sunspots which is now known as a white light flare. Following Carrington’s

observations there were problems with telegraphs worldwide and Northern Lights were observed

as far south as Cuba, marking the first ever recorded space weather event. This paved the

way into solar flare research which today has become a thriving field with great importance

not only with regards to the effects on Earth but the applications to exoplanets.

A solar flare is observed as a sudden and localised brightening in the solar corona which is

visible across all wavelengths and results from a rapid reconfiguration of the magnetic field.

Flares are an increase in radiation and are often accompanied by a mass motion of fast moving

high energy particles, known as a Coronal Mass Ejection (CME). Overall, flares are powerful

and energetic events and can reach energy outputs of 1032 ergs (Fletcher et al., 2011). Prior

to the release of a solar flare the magnetic field becomes stressed and twisted, resulting in a

build up of magnetic energy in the form of a build up of current. This is converted into kinetic

energy, thermal energy and particle acceleration when the magnetic field structure simplifies

through a process described as magnetic reconnection, see Figure 1.8.

Magnetic reconnection is a process by which a magnetic field in an almost ideal plasma (i.e.

E+v×B = 0) changes its topology. As mentioned earlier, prior to a solar flare, the magnetic

field becomes twisted producing a build up of magnetic energy. Think of this scenario within

a set of coronal loops where fully ionised plasma of the corona becomes guided by a magnetic

field. If the topology of the magnetic field has to change, then the path the particles and plasma

follow must also change. Magnetic reconnection occurs within a region called the diffusion
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Figure 1.8: A simple schematic diagram showing magnetic reconnection. Two parts of the
magnetic field of opposite polarity are forced together causing them to break and snap back
to a different configuration releasing a large amount of magnetic free energy in the form of
heating and kinetic processes.

region which is a boundary layer where the disconnection and reconnection takes place. Within

this layer, dissipation is responsible for the changing of the magnetic field topology (Shibata

and Magara, 2011). The increase in diffusivity is caused by large gradients in the magnetic

field, B. Due to this, the particles of the plasma can change to different parts of the magnetic

field which can then reconnect. This process results in energy being liberated from the system

which is followed by a relaxation of the magnetic field to a lower energy state. This liberated

energy is responsible for many of the phenomena observed on the Sun’s surface but also other

events which occur in the solar system.

Solar flares are known to originate from active regions which typically host sunspots, however,

there are other observable phenomena associated with flares which occur in or around the active

region. Firstly, two or more footpoints are always present during a flare release, appearing as

bright patches within the active region in the lower atmosphere. These footpoints form the

ends of coronal loops with one positive and one negative polarity, connecting the loop to the

photosphere.

In addition, footpoints are connected to another phenomena, flare ribbons, which result from

particle beams accelerated via magnetic reconnection. They are often observed in Hα and

ultraviolet (UV) wavelengths and are the most prominent feature of a solar flare. These

ribbons occur at the same time as the flare release and can be observed to separate from each

other as the flare progresses (Janvier et al., 2016). Eventually, they brighten briefly before
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Table 1.1: A table showing the peak X-ray brightness in the 1–8Å range for each of the flare
classifications (Harra et al., 2016).

Class Peak (W/m2) between 1 – 8Å
X > 10−4

M 10−5 – 10−4

C 10−6 – 10−5

B 10−7 – 10−6

A < 10−7

dissipating and then disappearing. Flare ribbons represent the footpoints of coronal loops

within the chromosphere which have reconnected. As a result of the reconnection, accelerated

particles flow down from the site of reconnection along the magnetic field producing bright

ribbon shaped features in the lower chromosphere (Masson et al., 2009). Overall, flare ribbons

are important for providing details regarding the topology of the magnetic field during the

reconnection (e.g. Fletcher and Hudson, 2001).

Finally, there are post-flare arcades/coronal loops which form and grow around the active region

experiencing a brightening upon a flare release which produces high fluxes of Soft X-ray (SXR)

emission (Fletcher et al., 2011). Following the release of the flare, the loops are observed to

cool through EUV temperatures.

There are three key stages which are observed in larger solar flares (Doyle, 2017).

1. Preflare Phase – During this stage SXR emission gradually increases and very little

Hard X-Rays (HXRs) or gamma rays are detected above background instrument level.

2. Impulsive Phase – Next, gamma rays and HXRs rise impulsively in short bursts of

emission. These bursts only last between a few to tens of seconds where the SXR flux

also rises rapidly.

3. Gradual Phase – The last stage results in the rapid decay of the HXRs and gamma rays

with a time consistent of a few minutes. The SXRs follow a similar pattern but with a

significantly longer decay time of approximately hours.

Flares are classified using their peak X-ray brightness between 1Å and 8Å as observed by the

Geostationary Operational Environmental Satellite (GOES: see section 2.1.3 for more details).

The individual classes are noted in Table 1.1 with the classes of X, M, C, B and A which are
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also divided into nine subdivisions. This is of particular importance later in the thesis as we

begin to discuss flaring activity from other solar-type and low mass stars.

1.3.3 Other Magnetic Phenomena

There are many other magnetic phenomena on the Sun including prominences, filaments, plage

regions and many more. For the purposes of this thesis we will go into a couple of these in

more detail as they will appear in further discussions.

Filaments (or prominences when observed at the limb) are long-lived, stable features which are

present in the solar atmosphere and appear as long, thin, dark structures when viewed against

the solar disk (Engvold, 2015, and references therein). However, filaments within active regions

tend to be shorter in length, lower in height and have shorter timescales than those present

in the quiet Sun (Parenti, 2014). They consist of relatively cool, dense plasma suspended

against gravity by the magnetic field in the corona. Both quiet Sun and active region filaments

form along a polarity inversion line (PIL) in photospheric magnetic fields (Parenti, 2014; Chen,

2017). They exist in force balance, with the outward magnetic pressure of the filament channel

balanced by the downward tension of the strapping field above. Filament eruption follows from

the catastrophic loss of this force balance via resistive processes, e.g. breakout reconnection

(Antiochos, 1998; Antiochos et al., 1999) and tether-cutting (Moore et al., 2001), and/or

via an ideal instability (Chen, 2011, and references therein), e.g. the kink (Török and Kliem,

2005) and torus (Kliem and Török, 2006) instabilities.

Plages are bright patches which are often observed surrounding sunspots in the photosphere.

They are associated with concentrations of the magnetic field but unlike sunspots are not

large enough to appear dark in colour. They are formed from many small flux tubes giving

them their bright appearance which is mainly observed in Hα. Typically, plage regions can be

anywhere from 500 – 5,000 km in diameter, however, solar active region plage can cover a

surface area of at least one order of magnitude more than sunspots (Solanki, 1999).
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Figure 1.9: A graphic showing the differing interiors of varying star types including massive,
solar-type and low mass stars as a result of their mass.

1.4 Solar-Type Stars

There are many terms in stellar physics which are used to define stars similar to the Sun, namely

solar analogues, solar twins and solar-type (Cayrel de Strobel, 1996). Solar analogues have

detailed properties such as temperature and metalicity which is similar to the Sun, whereas

solar twins are indistinguishable from the Sun in terms of their stellar properties. Solar-type is a

definition which is more fluid and the stars are similar to the Sun in both mass and evolutionary

state. The key feature of solar-type stars is they have a convective envelope like the Sun and

are not fully convective like low mass stars. For the purposes of the research within this thesis,

solar-type stars are defined as being between spectral types F8 – K2.

1.5 Low Mass Stars

Low mass stars (namely M dwarfs) make up 70% of the stars in the solar neighbourhood.

They are small, cool main sequence stars with temperatures in the range of 2400 - 3400 K and

radii between 0.20 - 0.63 R� (Gershberg, 2005). For stars with spectral type later than M4 it

is thought their interiors are fully convective (Hawley et al., 2014), see Figure 1.9. Although

more recent work by Mullan and Houdebine (2020), suggest the dynamo mode transition may

be narrowed down to between M2.1 and M2.3. However, since these stars have no tachocline
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(a boundary zone between the radiative and convective zones) the star would have a negligible

magnetic field but, this is not the case and some late M dwarfs do show strong flaring activity

suggesting these flares are generated by a different mechanism. The study of magnetic activity

on these small, cool stars is of particular interest due to the implications and effects it can

have on orbiting exoplanets.

Twenty-five years ago, there were no known exoplanets. However, over the course of my life

nearly 4,000 have been discovered with many more candidates awaiting confirmation. We now

know that most main sequence stars from solar-like to low mass are likely to possess planetary

systems. Low mass stars have become increasingly popular targets for exoplanet surveys due to

their abundance in the solar neighbourhood and the relative ease of detecting planets around

them. Flares have been observed from many low mass stars over decades including our nearest

star Proxima Centauri (Walker, 1981; Güdel et al., 2004). After the discovery of 7 planets,

including five Earth-sized, orbiting an ultra-cool red dwarf known as TRAPPIST-1 (Gillon

et al., 2017), the study of low mass stars and their flaring activity has become increasingly

prominent.

1.6 Fully Convective Dynamos

It is widely accepted that large scale magnetic fields are created in the Sun, solar-type stars

and early M dwarfs through differential rotation on a poloidal field (Ω-effect) in the tachocline

between the radiative core and convective envelope. This shear layer creates large scale toroidal

fields and this process is known as the αΩ-dynamo which has a strong correlation between

activity and rotation. To date the origin of the magnetic field on M dwarf stars which are fully

convective has been speculated. In fully convective stars there is the absence of a tachocline

and the topology of the magnetic field within these stars exhibits a multipole structure differing

from the aligned dipole field generated by the αΩ-dynamo on the Sun. Therefore, the αΩ-

dynamo is not feasible for the generation of the complex large scale magnetic field seen in

these M dwarfs.

Durney et al. (1993) proposed a dynamo generated by a turbulent velocity field causing the gen-

eration of chaotic magnetic fields in the absence of rotation. This produces a self-maintained
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small-scale magnetic field where rotation is not a factor and when rotation is included only

increases the generation rate of the field mildly. In light of this, a small-scale field can pro-

duce and maintain certain levels of activity, however, not the high levels observed in certain

M dwarfs. Chabrier and Küker (2006) attempt to answer the question: what very active dy-

namo is responsible for the magnetic field in cool, fully convective objects? The magnetic

field generation does not disappear in such objects such as low mass stars and brown dwarfs,

therefore, there must be a change in dynamo mechanism for fully convective stars. Mullan

and Houdebine (2020) use Ca II data with projected rotational velocities (vsin(i)) to explore

the spectral range where the transition to of the dynamo mechanism occurs. They conclude

that between spectral types M2 - M3 (0.3 - 0.35 M�) the dynamo mechanism of M dwarfs

changes corresponding to a change in the interior of the star to fully convective.

Chabrier and Küker (2006) explore the possibility of an α2-dynamo generating a large scale

magnetic field. In this dynamo model the strength of the field depends on the stellar param-

eters, rotation rate and a larger Coriolis force yields a stronger field. The Coriolis force is

an effect on a mass which is moving within a rotating system and experiences a force which

acts perpendicular to the direction of motion and axis of rotation. The α2 dynamo requires

a high Rossby number (ratio of inertial force to Coriolis force) producing large Coriolis forces.

These Coriolis forces will act in the plasma of the star producing helical motions rising from

the convective core and hence produce a stable large scale magnetic field. This can then be

affected by the rotation of the star, as a higher rotation period will churn up the fields making

them more stressed and twisted which should result in a greater number of flares with higher

energies.

However, in a study by Donati et al. (2006) they use spectropolametric data to construct a

Zeeman-Doppler magnetic map of the fully convective, rapidly rotating M dwarf V374 Peg.

Surprisingly, these maps show this star has a strong large scale field which is largely axisym-

metric. Both the turbulent dynamo and α2 dynamo models produce a large scale magnetic

field which is non axisymmetric. Overall, the mapping of magnetic fields through Zeeman

Doppler Imaging (ZDI) allows for the mapping of the large scale magnetic field but not the

small scale features such as spots. To do this, many studies use Zeeman Broadening as an

indication of the magnetic flux associated with these smaller scale features (e.g. Lang et al.,
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2014; Llama et al., 2018; See et al., 2019). Despite the efforts of these studies on low mass

stars the dynamo mechanisms at play generating the magnetic fields is still an unanswered

question. Additionally, there is the possibility of multiple dynamos operating simultaneously

on the star to produce the observed magnetic fields (Mullan and Houdebine, 2020).

In solar physics the presence of a tachocline is regarded as being important in various solar

dynamo theories for organising the Sun’s magnetic field (see Dikpati and Charbonneau, 1999;

Ossendrijver, 2003; Charbonneau, 2010). However, in a recent study Bice and Toomre (2020)

show that the convective zone of fast rotating early M dwarfs is capable of generating and

organising strong magnetic fields without the presence of a tachocline. In addition, rotation

plays an important role and would suggest is a key factor in the dynamo mechanism of fully

convective stars. Therefore, it is possible to generate fields strong enough in fully convective

M dwarfs capable of producing the high flaring activity observed.

1.7 Stellar Magnetic Activity

1.7.1 Spots and Rotation

The earliest observations of magnetic activity on the Sun are dark sunspots which appear and

disappear as they travel across the solar disk. The sunspots are widely associated with flares

and have been observed for centuries. Solar-type and low mass stars can show considerable

amplitude variations in their lightcurves which have been explained by the presence of large

dominant starspots on the surface moving in and out of view as the star rotates, see Figure

1.10. These changes in brightness represent one way of determining the stars rotation period

and has produced accurate values of rotation periods for thousands of low mass stars observed

by Kepler/K2 (see e.g. McQuillan et al., 2013).

Figure 1.11 shows an example of a photometric lightcurve from the star TIC 229141941, a

M3.5 star with a rotation period of 1.6 days observed by TESS, which displays clear rotational

modulation. The size of spots observed on solar-type and low mass stars are vastly larger than

the sunspots we observe on the solar disk. Typically during solar maximum, sunspots can cover

up to 1% of the visible solar disk, however, on M dwarfs starspots can cover up to 50% of the
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Figure 1.10: A diagram showing the location of a dominant starspot on a star, and the
corresponding photometric TESSlightcurve. This highlights the observed change in brightness
as the cooler and darker starspot passes across the stellar disk. The sharp spikes amongst the
rotational modulation represent stellar flares.

visible stellar surface (Tregloan-Reed and Unda-Sanzana, 2019).

Determining rotation periods for low mass stars has become an increasingly popular topic

especially as it is considered to drive the magnetic field generation of stars and is directly

related to magnetic activity. In Stelzer et al. (2016) they used K2 observations of 134 M dwarfs

to focus on the relation between magnetic activity and stellar rotation. They found a difference

between slow and fast rotating M dwarfs where for periods greater than approximately 10 days

there is an abrupt change in activity.

Newton et al. (2016) use photometry from the MEarth project to derive rotation periods of

387 mid-to-late M dwarfs finding values between 0.1 – 140 days. They find the rotation

period distribution is dependent on mass. In addition, these M dwarf stars maintain a fast

rotation period for the first several gigayears before spinning down quickly. This aligns with

their findings, where a gap between the fast and slow rotators is observed, indicating an

age-rotation relation.

Rotation is not only important as it relates to age but also magnetic activity in general.

Rapidly rotating low mass stars are expected to produce increased levels of activity as rotation

is strongly related to their dynamo mechanism (Hartmann and Noyes, 1987; Maggio et al.,

1987). This is known as the rotation-activity-age relation and becomes an important paradigm

throughout discussions in this thesis.
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Figure 1.11: A TESSlightcurve of TIC 229141941 which has a rotational period of 1.6 days,
spectral type M3.5 and was observed in both Sectors 2 and 3. This lightcurve shows an
example of the rotational modulation which is observed on many solar-type and low mass stars
and also includes some evidence of flaring activity.

1.7.2 Stellar Flares

Stellar flares are a phenomena which have been studied for a century. Some of the first detailed

optical observations of stellar flares on M dwarfs were made by Bopp and Moffett (1973) and

Gershberg and Shakhovskaya (1983). Amongst the first X-ray observations of stellar flares

were made by Heise et al. (1975) using EXOSAT which detected an X-ray flare from the

M4.5V star YZ CMi. Since then, the physics of stellar flares has been studied by many over

the years and in the full energy range from γ-rays to radio frequencies.

More recently, the Kepler (Borucki et al., 2010) mission allowed almost uninterrupted obser-

vations of stars lasting many months, or in some cases years, allowing many studies into the

flare properties of stars. The M dwarf star GJ 1243 was of particular interest because it shows

frequent flaring in its lightcurve. This star has a spectral type of M4 making it a great exam-

ple of a star which possesses a fully convective core. Several papers have been published on

this star including Ramsay et al. (2013) where they observed many short-duration low energy

flares on the star using short cadence Kepler data. Hawley et al. (2014) used the same data

of this star to analyse classical and complex flares, finding correlations between flare energy,

amplitude, duration and decay time.

Further to this Stelzer et al. (2016) focused on the relation between magnetic activity and

stellar rotation using K2 data of 134 M dwarfs. They found a difference between slow and

fast rotating M dwarfs where after a period of approximately 10 days there is an abrupt
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Figure 1.12: This schematic shows the properties of a classical flare profile which are observed
in white light by missions such as Kepler and TESS. Overall, a classical flare has a sharp rise
and exponential decay with the equivalent duration being the area under the flare lightcurve
profile.

change in activity, suggesting a link between activity and rotation. However, with the vast

majority of targets only having long cadence (30 min) data, short duration flares would be

missed (for context solar flares can have timescales in the range of minutes to hours), leading

to an incomplete analysis of flare statistics. Other studies into the flaring activity of stars

includes Davenport (2016) where they used every available Kepler light curve to search for and

catalogue stellar flares from stars of all spectral types, opening a new avenue in stellar flare

statistics.

A classical stellar flare profile (Figure 1.12) possess a sharp rise and exponential decay whereas

complex profiles contain multiple peaks. These flares can last from a few minutes up to a

couple of hours in duration with energies significantly exceeding the largest 1032 erg flares

observed on the Sun. In recent years the study of highly active stars has become more popular

due to the increased discovery of planetary systems orbiting these stars which can have drastic

effects on the atmospheres of any orbiting exoplanets.
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1.8 Thesis Aims

As the Sun is our nearest star, we are able to collect detailed spatial observations of its many

phenomena from large scale flares and CMEs to the smaller scale granulation and spicules.

In addition, there are historical data including spot and flare observations dating back to the

1600s and since the launch of the Solar Dynamics Observatory in 2010 the Sun is observed

continuously. Along with all these observations comes a deep knowledge and understanding

of the mechanisms which are at play on our nearest star and how they can affect the Earth

and Solar System. In stellar physics, although the number of stars now observed by missions

such as Kepler, TESS and Gaia are nearing 2 billion, the lack of detailed (multi-spectral and

high temporal cadence) and long-term observations remains an issue. The capabilities of our

technology and the vast distances between us and our neighbouring stars restricts our ability

to produce observations which show details of the magnetic activity. Therefore, we should

attempt to apply the knowledge gained from detailed solar observations to illuminate our

understanding of stellar flares.

In this thesis, I look at the solar-stellar flare connection through detailed observations of both

a confined solar flare event and stellar flares from solar-type and low mass stars. Using the

results from these studies I aim to provide insights into large scale flare events observed on other

stars. Chapter 2 details the observational data both from solar and stellar physics missions

and telescopes which will be used throughout this thesis.

In Chapter 3, I present a detailed analysis of a confined filament eruption and jet associated

with a C1.5 class solar flare. Multi-wavelength observations from both the Global Oscilla-

tions Network Group and Solar Dynamics Observatory are used to reveal the details of the

formation of the filament. Utilising high-resolution Hα observations from the Swedish Solar

Telescope/CRisp Imaging Spectro Polarimeter, velocity maps of the outflows are constructed,

demonstrating their highly structured but broadly helical nature. The observations are con-

trasted with a 3D magnetohydrodynamic (MHD) simulation of a breakout jet in a closed-field

background where a close qualitative comparison is found with the observations. This Chapter

discusses the details of both the observations and simulations which are important for the

subsequential chapters as the key to investigating the solar-stellar flare connection.
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In Chapters 4 & 5 data from both Kepler/K2 and TESS are used to conduct statistical analyses

into the flares from other stars. Chapter 4 looks at the stellar flares from a small sample of

low mass stars observed with K2. In this study the rotational phase of the flares is investigated

where I explore a correlation between the starspot causing the modulation and flare number.

In Chapter 5, this study is then expanded using TESS data of a much larger sample of low

mass stars to study this relationship on a greater sample.

Chapter 6 expands on the studies of low mass stars looking at solar-type stars with TESS.

Again the relationship between starspots and flare number is tested with historic solar flare and

sunspot data, brought in to make a comparison of this relationship on the Sun. Additionally,

two of the solar-type stars possess one year worth of TESS observations, allowing for a more

detailed study into the magnetic variability of these stars.

Finally, in Chapter 7 all of the studies from both solar-type stars, low mass stars and the Sun

are brought together to discuss the solar-stellar flare connection. The future work which stems

from this thesis is also discussed with studies already underway to investigate the magnetic

activity in general of solar-type and low mass stars.



2 Observational Data

The research presented in this thesis has used observational solar and stellar data from sev-

eral telescopes and instruments. There is a mixture of both ground based and space based

observations and in this chapter I detail the specifics of each telescope/instrument.

2.1 Solar Flare Observations

2.1.1 Solar Swedish Telescope

The Swedish 1-m Solar Telescope (SST: Scharmer, Bjelksjo, Korhonen, Lindberg and Petter-

son, 2003) is a solar telescope in La Palma which is run by the Institute for Solar Physics of

the Royal Swedish Academy of Sciences. It received first light on 2nd March 2002 without any

adaptive optics and a smaller aperture of 60 cm. Once the adaptive optics were installed the

telescope was opened to a full aperture on the 21st May 2002 (Scharmer, Bjelksjo, Korhonen,

Lindberg and Petterson, 2003).

The SST is a vacuum telescope which uses its single 1 meter lens to seal it off. The vacuum is

filled with Helium gas which reduces the heating of the optics and gas by the sunlight producing

a crisp and clear image. There are two main instruments at the SST: 1) CRisp Imaging

SpectroPolimeter (CRISP) and 2) CHROMospheric Imaging Spectrometer (CHROMIS).

The instrument used to collect data for the study in this thesis is the CRisp Imaging SpectroPo-

larimeter (CRISP: Scharmer et al., 2008), a spectropolarimeter based on a dual Fabry-Pérot

interferometer design which operates in the red beam from 510 - 860 nm. It has three cameras,

24
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two of which are narrowband of 0.3 - 0.9 nm and one wideband. The CRISP spectral scans are

centred on the Hα 6562.8 Å absorption line of the chromosphere. The field of view (FOV) of

these observations is approximately 60 arcsec×60 arcsec with an image scale of 0.0592 arcsec

per pixel. CHROMIS is also a dual Fabry-Pérot system, similar to CRISP, but at the moment

does not measure polarimetry. It has been designed to be used between wavelengths of 380 nm

to 500 nm, observing lines such as Ca K, Ca H and Hβ, which form in the upper chromosphere.

For the purposes of the research in this thesis, data from only the CRISP instrument is used,

see Chapter 3.

2.1.2 Global Oscillations Network Group

The Global Oscillations Network Group (GONG: Harvey et al., 1996) is a global network of

six identical telescopes with the goal of observing the Sun continuously. The products of the

GONG network include full disk images of the velocity, intensity and magnetic flux of the Sun

every minute. In addition, there are high-cadence, high-sensitivity magnetograms and 2K x 2K

Hα intensity images obtained in 20-second cadence mode.

There are six GONG locations across the world which allows for the Sun to be observed 24

hours a day. These include; The Big Bear Solar Observatory (BBSO) in Southern California,

the Learmonth Solar Observatory in Australia, the Udaipur Solar Observatory in India, the El

Teide Observatory in the Canary Islands, the Cerro Tololo Interamerican Observatory in Chile

and the Mauna Loa Solar Observatory in Hawaii.

For the research within this thesis, Full-Disk Hα (FDHA) images were acquired from GONG

(Harvey et al., 2011) hosted by the National Solar Observatory. In particular FDHA images

were collected from the Big Bear Solar Observatory and the El Teide Observatory. FDHA

images are taken with a cadence of 1 minute and each 2k × 2k image has a spatial sampling

of 1 arcsec.

2.1.3 The Geostationary Operational Environmental Satellites

The Geostationary Operational Environmental Satellites (GOES: Menzel and Purdom, 1994)

are a group of, currently, four geosynchronous satellites which are owned and operated by the
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Figure 2.1: The Solar Dynamics Observatory satellite which has AIA, HMI and EVE onboard.
The two solar images show a HMI magnetogram and an AIA image in 171Å detailing the
relationship between strong magnetic fields and active regions on the Sun. Images courtesy of
NASA.

United States’ National Oceanic and Atmospheric Administration (NOAA). These satellites

are used to monitor many weather related phenomena on Earth including weather forecasting,

severe storm tracking and meteorology research. In addition, these satellites are important in

the solar physics community as they provide solar imagery, magnetometer data, solar X-ray

data and data on high energy solar protons at Earth. The solar X-ray data is of particular

importance as it is used to classify and monitor flaring activity which occurs on the Sun.

2.1.4 Solar Dynamics Observatory

The Solar Dynamics Observatory (SDO: Pesnell et al., 2012) is a NASA mission which is

part of the ‘Living With a Star’ program. It was launched in February 2010 and consists of

three separate instruments; the Atmospheric Imaging Assembly (AIA), the Helioseismic and

Magnetic Imager (HMI), and the Extreme-Ultraviolet Variability Experiment (EVE), see Figure

2.1. SDO is positioned in a circular geosynchronous orbit at an altitude of 35,789 km, at 102

degrees West longitude and inclined at 28 degrees (Pesnell, 2015). This orbit was chosen as

the optimal position to observe the Sun continuously with minimal distribution. The Solar

Dynamics Observatory was built with the primary objective to understand the physics of solar

variability which will improve our knowledge and understanding of how the Sun drives global

change and space weather.
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The Atmospheric Imaging Assembly

The Atmospheric Imaging Assembly (AIA: Lemen et al., 2012) consists of four 20cm dual-

channel telescopes which provide multiple simultaneous full-disk filtergram images (image scale

of 0.6 arcsec in AIA) of emission lines of the corona and transition region. Overall it has a

1.5 arcsec spatial resolution, 12 second temporal resolution and FOV of 41 arcmin, observing in

ten different wavelength channels. These channels include, narrowband images in seven EUV

channels centred on specific Fe lines and one He line; 94Å, 131Å, 171Å, 193Å, 211Å, 304Å

and 335Å. One of the telescopes is used to observe C IV near 1600Å and the nearby continuum

at 1700Å and has a filter which observes in the visible to enable co-alignment with images

from other telescopes. Overall, AIA covers a temperature range of 6 × 104 K to 2 × 107 K

(Lemen et al., 2012) and has been extremely valuable in the solar community, advancing our

understanding of the mechanisms of solar variability.

Helioseismic and Magnetic Imager

The Helioseismic and Magnetic Imager (HMI: Scherrer et al., 2012) was designed to study

the origins of solar variability and to understand the Suns interior along with the multiple

components of magnetic activity. The HMI instrument takes measurements of polarisation in

specific spectral lines tracking motions in the solar photosphere to image the components of

the photospheric magnetic field. It is essentially an enhanced version of the Michelson Doppler

Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO). In comparison with

SOHO, HMI has higher resolution, higher cadence and an extra camera providing additional

polarisation measurements. Every 45 seconds HMI provides 1 arcsecond resolution full-disk,

Doppler velocity, line-of-sight magnetic flux images. Vector magnetic field maps are provided

every 90 or 135 seconds depending on the frame sequence. Similar to AIA, HMI provides

images which fill the 4096 × 4096 CCD camera on-board where every pixel is approximately

0.5 arcseconds.
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Figure 2.2: In this image the Field of View (FOV) which Kepler monitored for four years is
shown to be located between the constellations of Cygnus and Lyra. Kepleŕs field of view
covers a total of 115 square degrees which is around 0.25 percent of the sky. Image courtesy
of Carter Roberts / Eastbay Astronomical Society.

2.2 Stellar Flare Observations

2.2.1 Kepler/K2

Kepler, a NASA mission, was launched in 2009 and stared at the same 115 square degree

patch of sky just north of the Galactic plane for 4 years (see Figure 2.2), providing extensive

photometric data for over 100,000 stars (Koch et al., 2004). It was originally launched with

the purpose of finding Earth-sized planets around other stars near or in habitable zones but,

surpassed its planned mission time and continued to exceed expectations. The telescope itself

is of Schmidt design with a 1.4 m primary mirror and is in an Earth-trailing heliocentric orbit.

The data obtained by Kepler revolutionised the study of astrophysics especially in the field

of exoplanets, where it is responsible for finding the majority through the transit method. In

addition, Kepler data has also revolutionised the field of Asteroseismology, the number of stars

with known rotation periods and interacting binaries. Kepler also provided the means to study

stellar flares due to the high precision and length of the light curves. It can operate in two

observation modes, short cadence (SC) 1 minute exposure and long cadence (LC) 30 minute

exposure.

In August 2013 Kepler lost the use of two of its reaction wheels and it was decided to abandon

the attempts to fix them. As a result the current mission would need to be modified, however,
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Figure 2.3: This graphic shows a selection of the K2 FOV’s along the ecliptic which are each
observed for approximately 70 days. In total there were 18 separate FOV’s observed during
the duration of the K2 mission. Image courtesy of W. Stenzel / NASA Ames.

it did not signify the end for Kepler. New life was given to the mission when it was re-purposed

as K2 which began taking observations in June 2014 where fields are observed along the ecliptic

(see Figure 2.3) for a duration of two months each (Howell et al., 2014).

Because of the way that K2 is pointed, stars typically move by ∼1 pixel over the course of

6 hours (Van Cleve et al., 2016). Without applying a photometric correction the resulting root

mean square (rms) on a lightcurve can be considerably higher than for Kepler. For instance

for stars in the 10 – 11 mag range, Kepler gave an rms of 18 parts per million (ppm). For K2

the uncorrected rms is 170 ppm. Amongst the first to provide readily available corrected data

were Vanderburg and Johnson (2014) who were able to bring the rms for 10–11 mag stars

down to 31 ppm.

A number of other groups have developed software which corrects for the instrumental effects

which are present in raw K2 data. Not all of these techniques are suitable for SC mode data

and some approaches can remove astrophysical effects. For the targets observed by K2 in

Chapter 4, the corrected K2 data was obtained using the EPIC Variability Extraction and

Removal for Exoplanet Science Targets (EVEREST) pipeline (Luger et al., 2016) in all but
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one star in our sample. For GJ 1224 observed in Field 9 the SC lightcurve was obtained from

Andrew Vandenburg, (Van Cleve et al., 2016).

The lightcurves of each source come with a range of data values and characteristics including a

‘QUALITY’ flag which can highlight various potential issues with the photometric values for that

specific photometric measurement. This is of particular importance when trying to find events

such as flares which could, in principal, be mistaken for an instrumental effect. The EVEREST

pipeline keeps the original flags from Kepler, but adds additional ‘bit values’. For instance, bits

’23’ and ’25’ could be detector anomalies but could also be events such as eclipses or flares

(Luger et al., 2016; Luger et al., 2018).

In searching for photometric variations longer than the typical duration of flares, such as the

stellar rotation period, we were cautious and removed all events which did not conform to

QUALITY=0. This removes all points which could have potential issues but also removes any

flaring activity. This is to allow for the rotation period to be derived without any interference

from other phenomena observed in the lightcurves. When we searched for flares we removed

photometric points which were identified as bad in the Kepler Archive Manual1 and points

corresponding to bit values which were clearly identifying times when the spacecraft thruster

was used such as bit value 20 and 21. We kept points which had bit values 23 and 25.

After nine years of observations including the legacy of 2,600 exoplanet discoveries, NASA

announced the retirement of the Kepler/K2 space telescope on 30th October 2018. This was

a result of the spacecraft running out of fuel which was needed for further science operations.

Despite this, the discoveries of Kepler will continue with the wealth of data collected and

available within the astrophysics community. The retirement of Kepler also paves the way for

its successor TESS to continue its legacy.

2.2.2 Transiting Exoplanet Survey Satellite

The Transiting Exoplanet Survey Satellite (TESS: Ricker et al., 2015) was launched in April

2018. Unlike Kepler and K2, during its initial two year mission TESS will make a near all-sky

survey, observing 200,000 of the closest stars to our Sun. It will target 500,000 stars, with
1https://archive.stsci.edu/kepler/manuals/archive manual.pdf

https://archive.stsci.edu/kepler/manuals/archive_manual.pdf
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Figure 2.4: These images shows the observing sequence of TESS detailing the overlapping of
the various sectors to produce the continuous viewing zone near the poles. Images courtesy of
NASA and MIT.

a focus on nearby G, K and M type with thousands of the closest red dwarfs being included

in the 2-min cadence programme. The primary mission for TESS is to search for exoplanets

via the transit method around low mass M dwarf stars. Therefore, TESS has a band-pass of

600 - 1000 nm and is centred on 786.5 nm (Ricker et al., 2015). TESS is fitted with four

CCD cameras which act as a 1 × 4 array providing a total FOV of 24◦ × 96◦. Each of the

hemispheres are split into 13 equal sectors which TESS will observe for a duration of 27.4 days

each. Close to the poles there are overlaps within Sectors producing certain areas which are

observed in excess of ∼ 300 days, this includes a continuous viewing zone (see Figure 2.4).

TESS data releases include Full Frame Images (FFIs) and Short Cadence (2-min) lightcurves.

For this study we will be using the 2-min lightcurves as they allow for the observation of the

shorter and typically less energetic flares.

The first batch of TESS data was released in late 2018/early 2019 and included observations

of the southern hemisphere from sectors 1 – 3 made between July 25th and October 17th

2018. The data release included both Full Frame Images (FFIs) and Short Cadence (2-min)

lightcurves. The 2-min lightcurves allow for the detection of short duration, low amplitude

flares, and it is these lightcurves which form the basis of the research in this thesis. The cali-

brated TESS lightcurves for each of our target stars in all samples discussed, were downloaded
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from the MAST data archive2. The data values for PDCSAP FLUX are used, which are the Sim-

ple Aperture Photometry values, SAP FLUX, after the removal of systematic trends common

to all stars in that chip. Each photometric point is assigned a QUALITY flag which indicates

if the data may have been compromised to some degree by instrumental effects, similar to

K2 data. Those points which did not have QUALITY 6= 0 are removed and each lightcurve is

normalised by dividing the flux of each point by the mean flux of the star. The TESS data is

different to the K2 data and bit values such as 23 and 25 are not used in terms of the QUALITY

flags.

Since the release of TESS data for sectors 1 – 3 in early 2019, all sectors in the southern

hemisphere have now been observed, with data available up to sector 13. This data is utilised

in the solar-type star sample in Chapter 6. TESS is now due to finish observations in the

northern hemisphere by April 2020 where data will be available shortly after. This includes

the TESS observations of the Kepler FOV which will see interesting comparisons over the next

few years. TESS has already had confirmation of an extension to the mission, which will see

it return to the southern hemisphere and includes a 20 second cadence mode for lightcurve

observations. It is safe to say, there are exciting times ahead for the TESS mission as it

continues to play a great role in stellar variability and exoplanet research.

2.2.3 TESS vs. Kepler/K2

Since there are observations from both Kepler/K2 and TESS within this thesis, therefore,

there are various factors which we need to take into account for the analysis. First, the TESS

camera’s have a 10.5 cm aperture compared to Kepler’s 95 cm diameter mirror. For the same

magnitude, TESS will therefore provide lightcurves with a greater noise level than Kepler.

The CCD’s in the Kepler detector had a pixel scale of 4′′ – this contrasts with 21′′ in TESS.

Indeed, the 90 percent encirclement radius for a stars flux in TESS is 42′′ (Ricker et al., 2015),

which compares with a 95 percent encirclement radius in Kepler of 8.4′′ . There is therefore a

potential issue of dilution of the flux of the target stars with other stars falling into the same

aperture.

We therefore used the Gaia DR2 (Gaia Collaboration, 2018) to search for stars within 42′′ of
2https://archive.stsci.edu/tess/

https://archive.stsci.edu/tess/
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Figure 2.5: This graph shows the difference between the TESS and Kepler band-passes with
TESS extending further into redder wavelengths. This was in order to observe more planets
orbiting low mass M dwarf stars. Image courtesy of Zach Berta-Thompson with data from
Sullivan at al. (2015).

the stars in our target list, see Chapter 5. All those targets which had another star with a

magnitude of up to 1.5 mag fainter (1/4 in flux) were flagged. Of the 167 low mass stars in

the sample, 46 had a star which was up to 1.5 mag fainter and within 42′′ of the target. Of

these, nine were actually brighter than the target. Whilst this does not affect the prime goal of

investigating the rotational phase of the flare it makes us less sensitive to lower energy flares

than for stars with no spatially coincident stars and we will underestimate the energy of the

flares unless we take into account the flux from the nearby star. Similarly, some flares may

originate from the nearby star and be mistaken as flares from the target star. The spectral type

of those nine stars were determined using the SIMBAD database and seven of them are classified

as M dwarfs. Therefore, we cannot exclude that a small fraction of flares from these stars

could originate from the nearby star. We come back to this issue in §5.6 where we investigate

the rotational phase distribution of the flares.

Additionally, it is important to mention the differing band-passes between Kepler and TESS,

see Figure 2.5. The TESS band-pass spans from 600 – 1000 nm and is centred on 786.5 nm

(Ricker et al., 2015), whereas the Kepler band-pass spans 400 – 900 nm. This redder band-

pass was chosen specifically to observe a larger number of M dwarfs as planets are easier to
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detect around these smaller, cooler stars. As the TESS band-pass is more sensitive to redder

wavelengths, TESS will not detect the less energetic events as flares typically have their peak

emission towards the blue. Overall, the rms of the TESS lightcurves for the M4 low mass star

GJ 1243 is 4.6 times lower than the Kepler lightcurves, this will differ for stars of other spectral

types. As a result, TESS will be unable to detect short duration, low amplitude flares (Ramsay

et al., 2020). However, this is related to the brightness of the stars where lower energy flares

could be detected on brighter targets, therefore, the key factor in detecting low energy flares

is the SNR of the lightcurve.



3 Observations and Modelling of a Confined Jet
and Solar Flare

The research outlined in this chapter has been published in the Astrophysical Journal (ApJ) as

Doyle et al., 2019, ApJ, 887(2), 246. This work was done in collaboration with Peter Wyper

from Durham University who was responsible for the modelling aspect of the research.

3.1 Introduction

Solar flares are a sudden increase in radiation caused by energy conversion resulting from

a rapid reconfiguration of the coronal magnetic field. These events are powerful bursts of

radiation with energy outputs sometimes exceeding 1032 erg and can be observed across the

entire electromagnetic spectrum (Fletcher et al., 2011, and references therein). Having been

studied for over 150 years, the underlying physical mechanisms leading to energy conversion

during solar flares remains a focus of investigation.

Magnetic energy release in solar flares can manifest itself in a number of different observables,

notably flare ribbons and post-flare arcades, but also in filament eruptions (e.g. Rust, 2001;

Sterling and Moore, 2005; Schmieder et al., 2013), CMEs (e.g. Moore et al., 2001; Emslie

et al., 2005; Karpen et al., 2012) and blow-out jets (e.g. Moore et al., 2010; Moore et al.,

2013; Young and Muglach, 2014). It is clear the pre-flare magnetic field topology dictates the

manifestation of any number (or all) of these phenomena in a solar flare. Here the focus is on

the role of a filament eruption (discussed in Section 1.3.3) in a confined solar flare.

Confined flares are flare events where the solar atmosphere is bound to the surface and there

is no eruption of plasma out into space. Confined flares are often associated with the failed

35
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eruption of a filament (e.g. Ji et al., 2003). Simulations and observations have revealed

that there are two main scenarios for confined filament eruptions. A pre-existing flux rope

in a bipolar active region becomes ideally unstable (usually to the kink instability), but the

overlying field is too strong or has a low decay index and halts the eruption (e.g. Török and

Kliem, 2005; Hassanin and Kliem, 2016; Amari et al., 2018; Liu et al., 2018). In some cases the

decay index may be high enough, but the development of the instability destroys the coherence

of the flux rope before it can erupt (Zhou et al., 2019). The kink instability is associated with

the conversion of twist (internal twisting of flux tubes which make up the flux rope) to the

dimensionless quantity of writhe, i.e. the measurement of the helical deformation of the flux

rope about its axis. Often there is a clear development of writhe in these events (e.g. Ji et al.,

2003; Török and Kliem, 2005). Alternatively, the filament forms in a multi-polar topology and

the erupting material is redirected along nearby coronal loops by reconnection of the erupting

structure, (e.g. DeVore and Antiochos, 2008; Sun et al., 2013; Joshi et al., 2014; Reeves et al.,

2015; Masson et al., 2017; Yang and Zhang, 2018). These events are associated with multiple

flare ribbons, and in particular several have been observed with circular ribbons indicative of

a coronal null point topology (e.g. Sun et al., 2013; Masson et al., 2017). The reconnection

and redirection of the erupting material is also sometimes associated with a jet-like surge of

plasma (e.g. Yang and Zhang, 2018).

Multi-polar confined filament eruptions and their associated redirected plasma flows are locally

similar in nature to coronal jets generated by the eruption of so-called “mini-filaments” – small-

scale filaments typically of length 10 to 30 Mm (e.g. Panesar et al., 2016). Coronal jets are a

solar phenomenon with a constant presence throughout the solar cycle and have been observed

since the launch of Yohkoh in X-ray emission (Shibata et al., 1993; Shimojo et al., 1996). They

are commonly found in coronal holes (and also active regions) and posses a collimated, beam

like structure originating from coronal bright points. Recent observations have revealed that

the majority of coronal jets are generated by mini-filament (or sigmoid) eruptions (e.g. Sterling

et al., 2015; Kumar et al., 2019). Typically these jets begin with a brightening at the base

followed by rapid helical plasma outflows guided by the surrounding magnetic field. They are

smaller than typical flares or CMEs with energies in the range of approximately 1026 - 1027 erg

(Pucci and Velli, 2013). Overall, jet properties include lengths, velocities and lifetimes which
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are in the range of 1.5 × 105 km (large side), 100 - 400 km/s and 100 - 16,000 seconds,

respectively.

Wyper et al. (2017, 2018) developed a three-dimensional simulation model for mini-filament

jets in coronal holes, building upon concepts introduced in previous jet/CME simulations and

observations (e.g. Shibata and Uchida, 1986; Antiochos et al., 1999; Lynch et al., 2008; Pariat

et al., 2009; Archontis and Hood, 2013; Moreno-Insertis and Galsgaard, 2013; Sterling et al.,

2015). In their model, surface motions are used to form a filament channel along a section of a

quasi-circular PIL beneath a coronal null point. In an analogous manner to how breakout CMEs

occur (Antiochos, 1998; Antiochos et al., 1999), breakout reconnection (reconnection between

upper and lower systems where a transfer of flux occurs at the two sides of the system)

at the null point allows the filament channel to rise, inducing tether cutting reconnection

(redistributed shear within a system to the edge of sheared region produces reconnection

leading to an eruption; Moore et al., 2001) that forms a flux rope if one is not already present.

When the flux rope reaches the breakout current layer, it is explosively reconnected on to the

ambient open field, launching non-linear Alfvén waves and driving a helical jet as the twist

within the opened section of flux rope propagates away.

This chapter, discusses the mechanisms for confined filament eruptions in multi-polar topolo-

gies and the links to solar flares and jets. Multi-wavelength observations are utilised of a

confined filament eruption from the Swedish Solar Telescope, Solar Dynamics Observatory,

Big Bear Solar Observatory and El Teide Observatory. These observations provide a unique

perspective of the area surrounding the filament eruption and also the inferred magnetic field

topology prior to the flare. To aid in the interpretation, reference is made to a modification

of the Wyper et al. (2017, 2018) jet model, where a filament channel eruption launches a

jet confined along coronal loops. The details of the observations are given in §3.2 to §3.5

describing the filament eruption and jet. The observations are contrasted with the MHD sim-

ulation in §3.6, where an excellent qualitative agreement is found. Finally, §3.7 summarises

the interpretation of the observations, whilst §3.8 discusses the broader ramifications of the

work and presents the conclusions.
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3.2 Observations

3.2.1 Ground Based

The SST observed a filament eruption associated with a C1.5 class solar flare on the 30th June

2013 in AR 11778 close to the disk centre, where the observations were made using CRISP.

The observations consist of a series of images scanning the Hα spectral line in the range of

±1.38Å with 50 milli-Angstrom equidistant steps resulting in 33 spectral line positions scanned.

Overall, the active region was observed for approximately one hour at a temporal resolution of

7.27 seconds with the eruption and flaring occurring within the first 5 minutes.

The CRISP FOV is corrected for solar tilt and the bright points in the wideband images are

cross-correlated with those in SDO/AIA 1700Å for co-alignment, achieving a sub-AIA pixel

accuracy in the CRISP pointing and establishing a heliocentric coordinate system for CRISP.

Sub-AIA pixel alignment of the CRISP pointing is achieved as a result of a cross-correlation

of the most intense CRISP pixel within the AIA pixel space of 10 coincident bright points

(initially identified by eye within a Graphic User Interface (GUI)). Then the CRISP pixel space,

within the AIA bright point, is explored for each of the 10 bright points in order to maximise

the correlation and a correction to the pointing information of CRISP is established. As a

result, the CRISP observations are centred on (x, y) = (323.36 arcsec,−287.91 arcsec) with a

roll angle of 62.04◦. Each pixel contains the 33-point spectral scan of Hα and this makes up

the spectral data cube for investigation using the CRisp SPectral EXplorer (CRISPEX: Vissers

and Van Der Voort, 2012)). The standard procedure for the reduction of CRISP is given

by de la Cruz Rodriguez et al. (2015), and includes a correction for differential stretching.

Post-processing was applied to the data sets using the image restoration technique Multi-

Object Multi-Frame Blind Deconvolution (MOMFBD), as outlined by Van Noort et al. (2005).

Overall, this data reducing process was completed by Eamon Scullion a collaborator within

this project who was also responsible for the observation and collection of the data.

GONG full-disk Hα images were used as context observations to identify and monitor the

filament emergence from its first appearance until it eventually erupts. These images were

vital in the determination of the events which unfolded within the eruption.
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Figure 3.1: The GOES lightcurve for the time of the SST/CRISP observations which show
this flare event as a C1.5 class flare in the 1.0 - 8.0Å channel.

3.2.2 Space Based

The GOES (Bornmann et al., 1996) soft X-Ray lightcurve of the C1.5 solar flare is presented

in Figure 3.1, showing the flare beginning at 09:11UT with a peak at 09:18UT. For analysis

of the flare ribbons in this flare event in particular, including HXR and high energy signatures,

refer to Druett et al. (2017).

Data was utilised from AIA as well as HMI on board the Solar Dynamics Observatory (SDO). In

this chapter, observations across multiple AIA channels are utilised, including 131Å (1.9× 105

- 2.5 × 107 K), 171Å (2 × 105 - 2.5 × 106 K), 211Å (63,000 - 6.3 × 106 K) and 304Å (40,

000 - 2 × 106 K) where the temperatures correspond to the passbands of each AIA channel

according to the AIA response functions. Additionally, the peak temperature of 131Å, 171Å,

211Å, and 304Å are 6.3× 105 K, 7.9× 105 K, 1.7× 106 K and 80,000 K respectively, covering

flaring regions, transition region, the corona and chromosphere within the solar atmosphere.

This allows us to view the flaring active region, thereby, providing a larger FOV (in comparison

with CRISP) and broader context of the overlying magnetic topology and subsequent evolution

of the filament eruption prior to the flare. HMI magnetic flux images are also used to provide
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a clear interpretation of the magnetic topology of the active region photosphere containing the

filament. Data reduction was carried out using SSWIDL aia prep for SDO instruments and

for GONG preprocessed data from the online data archive1 was acquired.

3.3 Pre-eruption Magnetic Configuration

In order to determine the origin of the flaring event and filament eruption, HMI magnetograms

from SDO are used together with coronal loop observations from AIA to infer the topology of

the active region magnetic field. Two days prior to the flare (27th June 2013) the active region

exhibited a simple bipolar photospheric magnetic field footprint. Throughout the 28th June

2013, a patch of negative field (hereafter referred to as the parasitic polarity) emerges into

the positive field region, creating the embedded bipole surface field associated with a coronal

null point (e.g. Antiochos, 1990; Masson et al., 2009; Sun et al., 2013; Kumar et al., 2018).

Between the 29th and 30th June 2013, the parasitic polarity appears to weaken and fragment

as it evolves into the positive field.

Figure 3.2 shows the pre-flare bipolar magnetic field structure of the active region before, (a),

and after, (b), the emergence of the parasitic polarity region. Note the negative polarity within

panel (a) is a result of transient flux emergence and does not become a part of the parasitic

polarity. Panels (d) to (f) show Hα and EUV images after the emergence. In the Hα sequence

associated with image (d) a ring filament can be seen appearing in the upper right hand corner

which corresponds to the location of the PIL surrounding the parasitic polarity in the HMI

magnetogram (b). The filament forms and develops over 24 hours and this is simultaneous

with the beginning of the flux emergence in HMI. The EUV images in panels (e) and (f)

show that new connections have been formed between the negative parasitic polarity and the

surrounding positive polarity in the classic anemone shape associated with a coronal null point

(Shibata et al., 1994). From comparing the large-scale coronal loops, the filament position and

magnetogram it can be inferred the ring filament has formed beneath the spine-fan topology

of a coronal null. An outer spine is therefore expected to follow the large-scale loops and

connect to the surface in the negative magnetic flux concentrations on the left hand side of
1http://halpha.nso.edu/

http://halpha.nso.edu/
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Figure 3.2: Here multi-wavelength observations of the active region are shown where (a) and
(b) represent the HMI magnetograms before and after the parasitic polarity appears, respec-
tively. These images are taken 24 hours apart on the 27/06/2013 23:59UT and 28/06/2013
23:59UT. Panel (c) shows the pre-flare magnetic field of the simulation where the green lines
denote the PILs. Surface shading shows the normal component of the magnetic field scaled
between ±240 G. Panels (d) - (f) show the active region after the parasitic polarity emerges
at 23:59UT on 28/06/2013 in Hα, 171Å and 211Å. The FOV for each of the HMI, AIA and
Hα images is 220 arcsec×140 arcsec and is centred on (x, y) = (280 arcsec,−320 arcsec).

the magnetogram. For an illustrative comparison, in Figure 3.2(c) the pre-flare magnetic field

structure of the 3D MHD simulation is shown which contains the basic constituent features of

the observations described. Note that the surface field polarity is reversed with respect to the

observation.

Figure 3.3 describes the temporal evolution of magnetic flux and the average magnetic field

strength of the parasitic polarity, spanning before and after the flare. To construct the time

profiles in panel (b), the parasitic polarity field concentrations are identified within the enclosed

box of panel (a) using intensity contours at the level of -100 Gauss; this is denoted by the

yellow contour in (a). Panel (b) shows that the parasitic polarity first appears on 27th June

2013 at 15:59 UT and it grows in size and strength for approximately 1.5 days reaching a peak

intensity on 29th June 2013 at 00:00 UT.

After this the parasitic polarity begins to fragment and disperse covering a larger area ondisk

and by 2nd July 2013 it had disappeared. Overall, it had a total lifetime of 3 - 4 days, with the

flare under study occurring approximately 33 hours after the peak in magnetic flux. During the

cancelling of magnetic flux there were brightenings in the AIA hot channels at the Hα filament
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Figure 3.3: Panel (a) is a zoomed in view of the parasitic polarity detailing the contoured
region in yellow as the area used to derive the magnetic field strength and magnetic flux.
Panel (b) shows the average magnetic field strength (black line) of the contoured area of the
parasitic polarity and corresponding magnetic flux (red line) with respect to time. The black
dashed line represents the flare onset time of 09:11UT.

location, which may be indicative of small scale magnetic reconnection events.

3.4 The Filament Eruption

Figure 3.4 is a four image sequence from (a) - (d) spanning 10 minutes before and during

the eruption with respect to 171Å. Equivalent image sequences in Figure 3.5 are presented in

panels (a) - (d) with respect to 304Å and panels (e) - (h) with respect to the hot coronal

“flaring” line 131Å. For context, the FOV is shown by the zoomed image of the magnetogram

in Figure 3.3(a). In panel (a) the clear structure of the filament lying along the left section

of the quasi-circular PIL is observed. Four minutes later, as shown in panel (b), the filament

has started to erupt. At this time bright loops appear to the right of the rising filament which

increase in brightness over time as the filament erupts, panels (c) and (d). Further brightenings

are also observed immediately adjacent to the rising filament at these times in 171Å and in

131Å. As will be discussed further in §3.6 these brightenings are signatures of breakout and

flare reconnection, respectively. Throughout this phase of the eruption the filament material

is accelerated, moving from the north east to the south west of the region.

In Figure 3.6, the AIA observations in 304Å, 171Å, and 131Å detail the next phase of the

eruption. Panels (a) - (d) demonstrate that soon after beginning to erupt the filament material

is transferred to the extended (overlying) active region coronal loops, where it then propagates
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Figure 3.4: Observations in AIA 171Å of the active region before and during the filament
eruption detailing the brightenings adjacent to the filament as a consequence of magnetic
reconnection. The white arrow represents the direction of the erupting filament material. The
FOV is 70 arcsec×70 arcsec and is centred on (x, y) = (340 arcsec,−289 arcsec), it is the
same FOV as the zoom in box in Figure 3.3(a). 
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Figure 3.5: Observations in AIA 304Å and 131Å of the active region before and dur-
ing the filament eruption detailing the brightenings adjacent to the filament as a con-
sequence of magnetic reconnection. The FOV is 70 arcsec×70 arcsec and is centred on
(x, y) = (340 arcsec,−289 arcsec), it is the same FOV as the zoom in box in Figure 3.3(a).
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Figure 3.6: A sequence of AIA images in 304Å 171Å and 131Å spanning a total of 10 minutes
after the filament eruption has started. The FOV is 180 arcsec×150 arcsec and is centred on
(x, y) = (290 arcsec,−305 arcsec) and the white box represents the CRISP FOV. Abbreviations
are as follows: Circular Ribbon = CR, Remote Ribbon = RR, Flare Ribbon = FR.

eastward in the form of a large-scale outflow (jet) back to the surface, making the eruption

completely confined within the active region. Such a transfer is only possible if the field

lines supporting the erupting filament material have been reconnected through the null point.

Figure 3.6(e) - (l) shows that the jet is also multi-thermal, i.e. also containing a heated

plasma component, consistent with this picture. The multi-thermal jet appears to flow within

or beneath a set of substantially hotter overlying post-flare loops that already exist at the time

of the formation of the jet, i.e. comparing panels (a) and (i).This is a result of the filament

material being presumably denser that the hotter (outer) corona. Therefore, the filament was

physically below these hot loops (seen in AIA/131) otherwise the loops would not be visible

as their emissions would become absorbed by the filament.

Further evidence for reconnection through the null is provided by the flare ribbons. The bright-

est are the two parallel ribbons formed by flare reconnection beneath the erupting filament.

However, also present is a remote flare ribbon and circular flare ribbon. All three ribbons (FR:

Flare Ribbon; CR: Circular Ribbon; RR: Remote Ribbon) are shown in Figure 3.6(a). The

remote and circular ribbons are the expected signatures of energy deposition in the chromo-



CHAPTER 3. OBSERVATIONS AND MODELLING OF A SOLAR FLARE 45

sphere from non-thermal particles accelerated near the null point that escape along the outer

spine and fan plane, respectively (e.g. Masson et al., 2009). Druett et al. (2017) studied the

Hα response of the southern section of the circular ribbon in this flare event and obtained

excellent agreement with a 1D beam electron model.

SST/CRISP captured, in excellent detail, the crucial moments where the erupting material

was transferred to the overlying loops and the jet was launched. Figure 3.7 shows the CRISP

spectral image sequence of the filament eruption and flare ribbons, at four times in 50 s

intervals, i.e. from 09:16:50 UT to 09:19:20 UT (rows) and at four wavelength positions

(columns), sampling the Hα spectral profile. In panels (a) - (d), at the beginning of the

sequence, the filament eruption is well underway. At this time the erupting filament material

has formed an arch-like shape, having already erupted towards the south west (bottom right).

The two flare ribbons are also visible near the continuum in the Hα wings of panels (a) and (d)

which run parallel to the original location of the filament. The legs of the erupting structure

appear to be connected to the surface near the ends of the parallel flare ribbons, as one would

expect for a typical filament eruption. Also visible near the line core of panels (b) and (c)

is the southward section of the circular ribbon which appears to connect to the base of the

left-most flare ribbon at this time. The subsequent panels then show that over the next two

and half minutes, filament material from around the southern leg of the erupting structure

begins to be transferred to the overlying coronal loops, propagating away to the south east.

This is most easily seen in the blue wing, e.g. (a), (e), (i) and (m). Accompanying this

transfer of filament material is the development of a strong clockwise rotation of the filament

structure. The above along with the simulation results (discussed below) further supports the

conclusion that the flux rope supporting the erupting filament material has been reconnected

on to the overlying loops near its apex, transferring plasma from its southward leg. This will

be discussed in detail in §3.6.

3.5 Jet Kinematics from Hα profiles

In order to understand more about the plasma outflow and its development of rotation, a line

fitting analysis was carried out on the CRISP Hα observations. This section looks to describing
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Figure 3.7: This mosaic of CRISP Hα spectral images from (a) - (p) shows the observed
filament eruption in varying wavelengths at different times. Each column represent a different
wavelength position within the Hα line profile. The rows then represent the time stamps
which span a total of 2.5 minutes and show the evolving untwisting filament feature. The red
box in panel (a) represents the quiet Sun region used to calculate the rest wavelength profile
and the dashed yellow line is the filament location prior to erupting. Additionally, the white
arrow represents the direction of the erupting filament material. The FOV for each image is
60 arcsec×60 arcsec and is centred on (x, y) = (323.6 arcsec,−287.91 arcsec).
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the analysis techniques used and the resulting output which details the jet kinematics of the

plasma flows.

3.5.1 Fitting the Hα profiles

Due to the complex spectral line deformations within various spatial pixels throughout the

eruption, several multi-Gaussian fit functions were applied in order to identify which combina-

tion of Gaussian functions could achieve the overall best spectral line fit, following a reduced

χ2 minimisation test. Every pixel was fitted with a single, double and triple Gaussian and

the χ2 statistic was minimised to achieve the best fit to the line profile. For the double and

triple Gaussian fits, constraints were placed on the centroid wavelength of each Gaussian. This

enabled the Gaussian components to fit the various features of the profile, especially when it

was highly blue or red shifted. The constraints for the centroids of the double Gaussian are

6561.62 - 6563.1Å and 6563.1 - 6564.37Å and the triple Gaussian 6561.62 - 6562.82Å, 6562.82

- 6563.25Å and 6563.25 - 6564.37Å. In addition, the background level was set as a standard

polynomial fit with zero degrees (i.e. a constant) and was not constrained. The reduced χ2

obtained could then be used to select the most appropriate fit function on a pixel-by-pixel

basis and for all spectral scans in time. This process was completed for all pixels in the first

30 time frames of the observation, consisting of the full duration of the filament material

transfer.

In order to simplify this process a block fitting routine was implemented, available within SS-

WIDL, called cfit block. In addition, all of the profiles were normalised to each of their

maximum y-values, making up the background (zero) level. Once the iterative fitting process

is completed the resulting output is a data structure consisting of the centroid wavelength po-

sition, amplitude and Full Width at Half Maximum (FWHM) for each Gaussian fit component,

for each time frame, from which investigations of the evolving spectral profiles are possible in

greater detail.

Figure 3.8 shows example fits for a pixel within the filament eruption, (b), and a quiet Sun

pixel away from the event, (c). The corresponding components of each of the fit functions are

also shown, within 4 sub-panels to the right of (b) and (c), for completeness. By applying the
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reduced χ2 minimisation method and identifying the fitting combination that maximises the

number of zero-line crossings in the goodness-of-fit residuals, it is possible to iterate through

all pixels at all times. This process of selection of best fit functional form results in the

assignment of a key value from 1 - 3 for each pixel, in order to create a map of the preferred fit

as being either single (1), double (2) or triple (3) Gaussian. Further details on the distribution

of functional fits for the FOV and more examples of line fits to complex absorption profiles are

given in Figure 3.14.

There are other statistical methods to determine the best model to fit the spectral line profiles.

For example, the Akaike Information Criterion (AIC) can be used as a tool for model selection

as it estimates the quality of each model. It uses the number of model parameters and the

maximum value of the likelihood function to determine this (see Morton et al., 2012). When

AIC values are applied to the single, double and triple Gaussian models they consistently return

the same best fit model to the spectral line profile as does using the reduced χ2 and maximising

the number of zero line crossings. Therefore, the approach used in this analysis is an acceptable

method for determining the best model fit.

3.5.2 Producing Line-of-Sight Velocity Maps

An important parameter obtained from the fitting routine is the centroid wavelengths of each

Gaussian component. These wavelengths can be used to calculate the corresponding Doppler

velocities of the line profiles which can represent plasma upflows and downflows. To calculate

the Doppler shift from the Gaussian fit components, a rest wavelength was obtained from

the averaged quiet Sun profiles (see Figure 3.8a) summed over a section of pixels in the SST

FOV away from the flaring and eruption regions (see Figure 3.7a). Using the rest wavelength

of 6563.06Å determined from the profile obtained from the quiet Sun profiles, the Doppler

velocity of each pixel at each of the 30 time frames can be computed to produce velocity

maps as the erupting filamentary material is transferred into the confined jet. With regards

to the triple Gaussian best fit pixels, it is possible to construct Doppler velocity maps of the

plasma flows in the blue wing, core and red wing. Overall, the primary concerns are with the

motions of the erupting filament material which focus on the highly blue-shifted and red-shifted

components within the velocity maps, largely arising from double Gaussian best fits. Now I
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Key: 
Single      
Double   
Triple       

(a) 

(b) 

(c) 

Figure 3.8: Gaussian fits to the Hα absorption profiles are presented for a number of cases
in panel rows (a) - (c). Panel (a) presents the normalised, rest Hα line profile along with
the associated errors on each wavelength point.This normalised profile is made up from the
averaging of thousands of quiet sun profiles from the last frames in the SST data when the
filament has erupted and is not within the FOV. Panel (b) presents spectral line profile fits
for a pixel sampling the moving/outflowing filament which exhibits a highly blue-shifted wing
component. As a result of this, the double Gaussian model, highlighted within the red-boxed
sub-panel provides the best fit to the data. The individual components of each Gaussian model
are also presented in the sub panels. Panel (c) presents the line profile fit for a quiet Sun pixel
location showing a relatively unshifted Hα profile. The triple Gaussian model fits the line best
here and is highlighted within the red-boxed sub-panel.
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Figure 3.9: The two figures convey the statistics of the fitting method used. (a) A snapshot of
which features within the SST/CRISP FOV prefer particular Gaussian fits. It can be seen that
the majority of the filament eruption is fitted with a double Gaussian, whereas the background
quiet Sun requires a triple Gaussian. (b) A histogram detailing the percentage of pixels in all
time frames in the SST/CRISP FOV which preferred each of the three fits.

will discuss how these maps were constructed and the statistics of the fitting method as a

whole.

Producing the velocity maps involves a selective process which iterates through all pixels at

all times and assigns each pixel a key value from 1 - 3 which informs whether the pixel is best

fitted by a single, double or triple Gaussian, according to the χ2 minimisation together with

maximising the number of residual crossings. This ‘key’, shown in Figure 3.9(a), can then be

used to construct velocity maps in the blue wing, core and red wing. Where a single Gaussian

was preferred the core map would be assigned the velocity component and the blue and red

wings would be 0 km/s, as there is no component of large blue or red shift in these profiles. If

a triple Gaussian was preferred then each Gaussian component was assigned to the blue, core

or red wing. In addition, if the amplitude of the Gaussian in the blue or red wing was less

than a background intensity it was removed from the maps. This was designed to eliminate all

the random small velocity movements in the background quiet Sun (i.e. spicules etc.) as the

main concern lies with the large velocity movements associated with the extended line wings

corresponding to blue and red shifted components of the Hα component of the jet. Lastly,

if a double Gaussian was preferred, and if centroids lie within the FWHM of the Hα profile

then the velocity is calculated from an average of the two centroids and applied to the core

map. Similarly, if one of the centroids lies within the FWHM it is applied to the core map and
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the remaining Gaussian centroid lies outside the FWHM it is assigned to the red or blue maps

depending on its location.

In Figure 3.9(b), the histogram details which Gaussian fits were preferred for the line profiles

from all pixels during the first 30 time frames where the untwisting jet occurs. As you can see

the triple Gaussian is the most preferred fit to the line profiles with 76%, double 24% and single

2%. From the key image, Figure 3.9(a), it can be seen the triple Gaussian fits are located

in the background quiet Sun regions which is to be expected. This is because, these profiles

are very similar to the rest Hα profile and by providing more free parameters reduces the χ2.

Double Gaussian fits were preferred in the region of the filament where the highly red and blue

shifted plasma is located and single fits in the locations of the flare ribbons. This is a result of

the fact that the core chromosphere is being emptied during the event at the location of the

filament so, the core red and predominantly blue will become subsequently shifted which, then

becomes best fitted with two distinct Gaussians that neglect the rest wavelength intensity.

Overall, this histogram shows the significance of the fitting method implemented and the need

for multiple fit functions. For full disclosure of the profile fitting of the Hα absorption line

in this study a wide variety of single, double, triple and unsuccessful fits are shown in Figure

3.14.

3.5.3 The Velocity Maps

In Figure 3.10 each panel represents a different time step beginning at 09:15:54 UT and ending

at 09:19:06 UT. Each panel image represents an amalgamation of the red and blue velocity

maps which correspond to the red and blue wing components revealing the locations of the

largest outflows. In Figure 3.10(a), the inferred shape of the erupting filament is shown as a

dashed yellow line. The top portion of the arch shaped erupting filament is strongly blue-shifted

(reaching at least 60 km/s), whilst plasma in the legs to the left and top right is red shifted (≈

+45 km/s). The red shifts show that filament plasma in the legs is moving downward towards

the solar surface, whilst the plasma near the top of the arch is being ejected upwards. Similar

plasma motions are routinely observed in large-scale filament eruptions, (e.g. Pant et al., 2018,

and references therein). Based on its similarity to large-scale eruptions in this phase, it can be

conjectured that the downflows are predominantly due to mass draining along the legs as they
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Figure 3.10: Velocity maps constructed as an amalgamation of the extremely blue-shifted and
red-shifted components within the filament eruption. The dashed yellow line represents the
filament location prior to erupting and the black arrow the flows which move downwards to
the solar surface.

become angled upwards, however other mechanisms such as driving from pressure gradients or

magnetic tension can not be discounted. Note that due to the wavelength window available

for making these maps, the inferred velocities are effectively limited to ±60 km/s. Therefore,

the true line of sight velocity in the strongly blue shifted regions could be much higher.

Over the next few minutes, i.e. panels (b) - (d), the filament material develops fine structure

and becomes transferred on to the longer active region loops (flowing towards the south-west

in each panel). The transferred material remains strongly blue-shifted and begins to rotate

clockwise as it propagates away to the bottom left. Although more structured, the red shifts

of the right-most leg continue to generally show downflows throughout this time. Downflows

near the foot point of the other leg are also visible next to the strongly blue-shifted material in

the jet. Therefore it is found that downward as well as upward motions of the filament material

occur during the filament eruption and further confirm the conjecture that reconnection of the

erupting flux rope near its southern leg is responsible for launching the filament plasma into

the jet.
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3.6 3D MHD Simulation

This section was completed in collaboration with Peter Wyper from Durham University who

was responsible for the simulations. I will discuss the simulations here with regards to the

comparison to the observations, therefore, for the full details of the MHD simulation set up

please refer to Doyle et al. (2019).

3.6.1 Setup

To explore the conjectures further a 3D MHD simulation was conducted with the Adaptively

Refined Magnetohydrodynamics (ARMS code: DeVore and Antiochos, 2008) for qualitative

comparison with the filament eruption and jet in the observed event. The key details of the

simulation setup are described below. For further specifics please refer to the full published

paper Doyle, Wyper, Scullion, McLaughlin, Ramsay and Doyle (2019).

The simulation was initialised with a uniform background plasma and a potential magnetic field

containing a large-scale bipole with a small-scale embedded parasitic polarity. The resulting

field has a similar 3D magnetic null point topology to the one inferred from the observations.

The system was then energised using surface motions which formed a small-scale filament

channel beneath the null point in a similar position to the observed filament. This method of

creating the filament channel is simply a numerically convenient way of introducing the free

magnetic energy where it is wanted and is not meant to reproduce how this particular filament

was formed. The surface driving is then halted once the filament channel has formed, and the

system allowed to evolve without external forcing from this point onward. Field lines showing

the filament channel and the spine-fan topology of the null point in the simulation just before

eruption are shown in Figure 3.2(c).

3.6.2 Eruption evolution

The simulated filament channel eruption proceeds in the same manner as the coronal hole jet

simulations reported in Wyper et al. (2017, 2018). Figure 3.11(a) shows the filament channel

(yellow field lines) prior to eruption. Four other field line regions are also shown: cyan –
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(c) (d)

Strapping field

Filament channel

Side lobe 2

Side lobe 1

Overlying field

Breakout 

loops 2

Breakout 
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Flare loops 1

Helical jet

Flare loops 2

Figure 3.11: Field lines showing the eruption of the filament in the MHD model. Yellow: the
filament channel. Cyan: overlying strapping field. Green: side lobe regions. Red: overlying
background field. (a) t =12 min 55 s, (b) t =14 min 35 s, (c) t =16 min 15 s, (d) t =17 min
5 s.

overlying strapping field; green – side lobe regions (1 and 2) and red – overlying background

field. The null point resides where the four regions meet each other, with the closed outer

spine following the path between the overlying (red) and side lobe 1 (green) field lines.

The increasing magnetic pressure within the filament channel expands the overlying strapping

field upwards, quasi-statically balancing the outward magnetic pressure with magnetic tension.

However, this expansion also stresses the null point so that a current sheet forms there (the

breakout sheet). Reconnection within the sheet then slowly transfers the strapping field to the

side lobe regions, reducing the downward magnetic tension force on the filament channel and

allowing it to rise, Figure 3.11(b). This leads to a faster rise, which in turn leads to faster

breakout reconnection (the breakout feedback mechanism). Although the simulation does not

include dense chromospheric plasma and the effects of gravity, you would still expect a similar

qualitative evolution in a magnetically dominated low-β plasma. However, the timing and

speed of the filament rise might be expected to alter slightly.
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The reconnected strapping field forms new coronal loops in the two side lobe regions, labelled

breakout loops 1 and 2 in Figure 3.11(b). Loops 1 form nearby to the original position of the

outer spine, whereas loops 2 form beneath the domed fan plane separatrix. The rising filament

channel also stretches the strapping field, creating a flare current layer beneath it. Tether

cutting/slipping flare reconnection within this layer converts the sheared arcade into a twisted

flux rope, whilst also forming short flare loops beneath, Figure 3.11(c) (flare loops 1).

Although not explicitly included in the simulation, one would expect enhanced coronal EUV

emission associated with both the flare and breakout loops. As such, the origins of the ob-

served brightenings shown in Figure 3.4(b) during the filament eruption now become clear.

The adjacent loop brightening shows new loops formed by the breakout reconnection of the

strapping field, i.e. breakout loops 2. Interestingly, at this time there is no clear coronal EUV

signature of loop heating associated with breakout loops 1. This may be because the de-

posited energy from the breakout reconnection is spread over a much larger volume than that

for breakout loops 2, reducing the intensity of emission. The brightening beneath the filament

shows bright, heated plasma within the flare loops. Such energy release beneath the erupting

filament material implies flare-like reconnection has set in beneath the erupting material. This

flare reconnection forms a flux rope in the model (in common with all eruptive flare models).

Therefore, it can be inferred that if a flux rope was not already present prior to eruption, it

will be by this point in the evolution.

Returning to the simulation, the rise of the flux rope then accelerates as the feedback loop sets

in between the flux rope rise and the removal of strapping flux via breakout reconnection. This

continues until all of the strapping field is reconnected away, Figure 3.11(c). Such a feedback

loop could explain the steadily increasing intensity of the flare and adjacent loop brightenings

shown in Figure 3.4(c) - (d). Beyond this time in the simulation, the rising flux rope itself

begins to reconnect with the overlying field. The end of the flux rope rooted in the background

negative polarity is then connected on to distant closing field lines, whereupon the twist begins

to propagate along the loops as a non-linear Alfvén wave, Figure 3.11(d) (yellow field lines).

The end of the flux rope rooted in the minority polarity reforms the filament channel, but now

with a reduced shear (not shown). A similar evolution of the erupting flux rope is inferred in

the observed event from the filament plasma evolution in the SST/CRISP images (Figs. 3.7
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(a) (b)

(c) (d)

Figure 3.12: An isosurface of velocity (|v| = 500 km/s) showing the jet. The isosurface
is shaded to show the vz value (saturated at ±500 km/s), showing the jet rotation. (a):
t = 16 min 40 s. (b): t = 17 min 5 s. (c): t = 17 min 30 s. (d): t = 17 min 55 s.

and 3.10). That is, in both the simulation and observation a rotating jet is produced when

the erupting structure is reconnected, transferring its twist to the overlying field.

One further aspect of the field line evolution that is worthy of mention is that once the erupting

flux rope is reconnected, the flare reconnection after this time transfers the flux moved into the

side lobe regions in the breakout phase back into the overlying field and strapping flux regions,

Figure 3.11(d) (red and cyan field lines). As discussed in detail in Wyper et al. (2018), once the

flux rope is reconnected the null in the breakout current layer moves into the flare current layer

beneath the erupting structure. Thus, the new flare loops formed after this time (flare loops

2) are through null point reconnection as opposed to tether cutting/slipping reconnection prior

to this. Observationally, the signature of this transition should be that one of the parallel flare

ribbons becomes part of the circular ribbon, as the two are now formed by energy deposition

from the same reconnection region. This is precisely what is observed in the Hα (Figure 3.7)

and EUV 304Å (Figure 3.6e) in the event as the jet is launched.
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3.6.3 Helical Jet

Figure 3.12 shows an iso-surface of velocity depicting the plasma jet formed by the transfer

of twist in the simulation. Qualitatively, the jet is very similar to the observation in that (i) it

is helical in nature, (ii) it is guided along the ambient coronal loops back to the surface and

(iii) it is formed from a mixture of ambient coronal plasma swept up by the reconnection and

plasma from within the filament channel.

Quantitative comparison of the speeds, however, reveal that the simulation jet is significantly

faster. In the simulated jet the plasma propagates at roughly the local Alfvén speed within

the loop, reaching speeds of ≈ 450 km/s with typical coronal scaling values. This is higher

than in the observation, where values of 60 km/s were recorded, Figure 3.10. However, as

noted earlier, the wavelength window used for constructing the velocity maps leads to an

effective cap of ±60 km/s for the inferred velocities, with the real value expected to be higher.

Additionally, the simulation uses a simplified atmosphere with a uniform background plasma

and neglects gravity. As such, although the magnetic field structure of the filament channel is

formed and evolved in a qualitatively correct manner, it does so in the absence of the denser,

cooler filament material seen in the observation. It would not be unreasonable to expect that

were such dense plasma be included, the propagation speed along the loop might be reduced

by the locally slower Alfvén speed and the action of gravity. A more sophisticated simulation

would be required to test this claim. Despite this, the close qualitative comparison between the

observations and simulation, incorporating a simplified model atmosphere, serves to highlight

the pertinence of reconnecting magnetic fields in dictating the overall dynamics of this event

and the potential universality of this model in sufficiently describing a variety of similar events

within differing atmospheres and on different scales.

3.7 Event Summary

In this work a detailed analysis of a confined filament eruption/flare and its associated helical jet

is presented. Using observations from SDO/AIA/HMI, GONG and SST/CRISP the formation

of the filament and its surrounding magnetic topology, the eruption and the subsequent jet
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Breakout

Current Sheet

Figure 3.13: Schematic of the eruption. (a) pre-eruption. (b) during the breakout phase. (c)
after the filament is reconnected and the jet is launched.

kinematics are all studied. In particular, the SST/CRISP observations gave us a detailed

view of the transfer of filament material as the jet was launched. Qualitative comparison

with a 3D MHD simulation of a closed-field breakout jet further aided the interpretation of

the observations. Figure 3.13 shows a schematic which summarises the interpretation of the

different stages of the confined eruption.

Figure 3.13(a) shows the configuration just prior to eruption. The filament (dark grey) resides

along a section of the quasi-circular PIL (green) beneath the separatrix of the 3D null point.

This configuration forms over ≈ 1.5 days as the parasitic polarity emerges. The evolution of

magnetic flux in the parasitic polarity (Figure 3.3) suggest that a combination of flux emergence
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and cancellation is involved in the formation of the filament.

Figure 3.13(b) shows the filament mid-eruption. The null point above the filament has col-

lapsed into a breakout current sheet (pink). Breakout reconnection removes strapping field

from above the filament, forming bright loops adjacent to the erupting material (breakout

loops, orange). New loops should also be formed nearby the outer spine, but they are much

less intense and not clearly observed in the event. Additionally, the upward stretching of the

strapping field forms the flare current sheet beneath the filament material (pink). Reconnec-

tion in the flare sheet forms a flux rope if not already present (or adds further polodial flux if

one is present initially) and bright flare loops (orange). The flux rope forms an envelope (cross

section shown in black) around the erupting filament material which resides in its core. The

material near the core is accelerated upwards with the erupting flux rope, whilst the material in

the legs falls back to the surface (hollow arrows). Energy deposition from the breakout current

layer creates circular and remote ribbons at the base of the fan and outer spine, respectively

(thin red lines). Parallel flare ribbons also form at the base of the flare loops that stretch

between the two feet of the erupting flux rope (thick red lines).

Once the erupting flux rope reaches the breakout current layer it is reconnected, Figure 3.13(c).

This splits the flux rope near its apex, forming a new shorter closed loop along which downflows

of filament plasma are observed (e.g. top right arrow, Figure 3.10(f)). The other section of

flux rope is now connected to coronal loops with foot points nearby the original foot point

of the outer spine. As the twist within the flux rope propagates along the loops, it drives

a mixture of cooler, denser filament material and hotter, more tenuous heated plasma along

these loops as a helical jet. At this point the flare current layer has reached the separatrix, so

that the flare reconnection is actually null point reconnection. One of the parallel flare ribbons

now forms a section of the circular flare ribbon, whilst the other outlines field lines near the

foot point of the inner spine (thick red lines), e.g. Figure 3.6(a).

3.8 Discussion

The observations presented herein are consistent with the breakout picture for jet generation.

However, the possibility that the triggering mechanism differs from breakout and is instead an
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instability of the flux rope itself can not be ruled out. Figure 3.4 showed that the brightening

associated with breakout reconnection occurred simultaneously with the brightening from flare

reconnection. This could be consistent with slow, low-energy breakout reconnection prior to

the eruption that speeds up once flare reconnection is initiated (as in Karpen et al. (2012);

Wyper et al. (2018); Kumar et al. (2018) for example). Or equally the breakout reconnection

could be reactionary, following from the eruption of the filament driven by an ideal instability

(as suggested by e.g. Masson et al. (2017) for their event). The partial cancellation of the

parasitic polarity flux suggests that a flux rope may have formed in the filament channel prior

to the eruption, thus both of the above scenarios are a possibility. A non-linear force-free

extrapolation of the pre-eruption magnetic field could potentially help to pin down the pre-

eruptive field structure and aid in diagnosing the eruption trigger. However, this is outside the

scope of the present work which is focused on understanding the eruption kinematics.

Regardless of the exact trigger, once the eruption is underway it is clear that breakout re-

connection is heavily involved in the eruption as demonstrated by the similarities with the

simulation and the high resolution CRISP and AIA observations. As with jets involving mini-

filaments in coronal holes, the strength of the overlying field suppresses ideal expansion of

the flux rope once flare reconnection ensues. Without being able to blast the overlying field

outwards, breakout reconnection of the strapping field and then ultimately the erupting flux

rope provides the only avenue to eject the twist/helicity from the filament channel. In the case

of open-field coronal hole jets, the twist then propagates away along open field lines, whereas

in these confined events it becomes trapped on overlying loops.

Why then do all confined flares in null topologies not show clear evidence of associated jets?

This is likely to do with the relative size of the separatrix surface compared with the surrounding

coronal loops. Wyper et al. (2016) quantified this with the ratio L/N , where L is the distance

between the two spine foot points and N is the width of the footprint of the separatrix dome

on the solar surface. They found in simulations of jets driven by rotating the parasitic polarity

that in configurations where L/N ≈ 1 minimal jets were produced, whereas for larger ratios

the jets became more defined and higher energy. The classic jet producing topology of a

parasitic polarity surrounded by open field corresponds to L→∞ (and therefore L/N →∞),

consistent with this picture. Recently, Masson et al. (2017) studied a confined flare where
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L/N ≈ 1 finding little evidence of clear outflows, whereas in the event studied by Yang

and Zhang (2018) estimate that L/N ≈ 2.1 and a clear rotating jet spire was observed.

In the event, based on the pre-flare EUV loops (Figure 3.2(e) and (f)), it is estimated that

L/N ≈ 2.6.

The event and simulation are relatively small compared to some confined events. DeVore

and Antiochos (2008) studied homologous breakout eruptions that are much larger in scale.

However, in a similar manner to the breakout jet simulation they find that a full scale breakout

eruption and CME is suppressed when a strong overlying field is present. The erupting filament

channel is instead reconnected across the breakout current layer, transferring its shear/helicity

to the overlying field. The key differences from the present model is the larger scale of their

simulation (allowing greater ideal expansion of the filament channel) and an L/N ratio of 1,

giving less coherent jet-like outflows. However, the basic physics is the same in the two models.

In this sense, the current simulation bridges the gap between the large-scale confined eruption

simulations of DeVore and Antiochos (2008) and the open-field jet simulations of Wyper et al.

(2017, 2018).

Taken together with previous studies of jets (e.g. Wyper et al., 2017; Kumar et al., 2019),

CMEs (e.g. Lynch et al., 2008; Karpen et al., 2012; Chen et al., 2016) and other confined

filament channel eruptions (with and without associated jets) (e.g. Sun et al., 2013; Masson

et al., 2009; Yang and Zhang, 2018) the results support the conclusion that all of the above

phenomena can be tied together by the shared topology of a filament channel formed beneath

the separatrix of a coronal null. In such a configuration, breakout reconnection can and should

be expected to be involved in the eruption. The present investigation demonstrates that in the

context of confined filament eruptions, the breakout process provides and intuitive mechanism

for confining the eruption by redirecting it along overlying field.

3.9 Conclusion

These observations provide the evidence to validate the simulation which can be applied not

only to jets and CMEs but also confined eruptions and flares. Overall, the magnetic configura-

tion observed in the event and in the simulation can be applied to multiple eruptive phenomena
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on the Sun. In turn, this can then be applied to stellar scenarios, scaling up the simulation

to replicate flare energies observed on other stars. By monitoring the effects this has on the

size and strength of sunspots it is possible to determine whether it is likely these flares are

generated through a similar magnetic field configuration or if it is more complex. I come back

to discuss this further in Chapter 7 after looking at some stellar flare studies on solar-type and

low mass stars.
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Figure 3.14: This selection of Hα line profiles along with their respected model fits shows the
varying degrees of complex profiles and how the fitting method responds. Each column shows
profiles which prefer a single, double and triple Gaussian fit with the last column representing
unsuccessful fitted profiles. These unsuccessful profiles are a result of the flare ribbons which
produce Hα in emission and cause issues within the fitting method resulting in none of the
Gaussian fits being suitable. However, despite this the fitting of the ribbons are not of interest
as the main concern lies with the kinematics of the erupting filament and jet so these profiles
are insignificant.



4 The Rotational Phase of Stellar Flares on M
dwarfs with K2

The research outlined in this chapter has been accepted for publication in the Monthly Notices

of the Royal Astronomical Society (MNRAS) Doyle et al., 2018, MNRAS, 480, 2153.

4.1 Introduction

In solar physics, the relationship between sunspots and solar flaring activity has been studied

for decades and it is generally accepted that these two phenomena are closely related. Guo

et al. (2014) carried out a statistical study on the dependence of flares in relation to sunspots

and phase in the 22nd and 23rd solar cycles. They found the occurrence of X-class flares was

in phase with the solar cycle hence, flares closely follow the same 11 year cycle as sunspots.

Maehara et al. (2017) investigated the correlation between starspots and superflares on solar-

type stars using Kepler observations and identified starspots based on the rotational phase of

the brightness minima in the lightcurve, showing superflares tend to originate from a larger

starspot area.

Despite the extensive work over the years in stellar flare physics, one area which has not been

investigated in depth is the rotational phase distribution of flares in M dwarfs. If the analogy

between the physics of solar and stellar flares holds and these events occur from active regions

which typically host spots, then you would expect to see a correlation between starspots and

flare occurrence. A small number of stars have been studied to determine whether there is a

correlation between stellar rotation phase and number of flares but so far nothing has been

found. Ramsay et al. (2013), Ramsay and Doyle (2015), Hawley et al. (2014) and Lurie

64
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et al. (2015) examine the phase distribution of the flares in a small sample of M dwarf stars

using Kepler/K2. Each of the stars show flares at all rotational phases despite there being

clear rotational modulation present in their lightcurves. There is no evidence for a correlation

between rotational phase and number of flares. However, some do note the most energetic

flares occur at flux minimum (starspot most visible) in a handful of their stars, while the other

show flares near flux maximum.

This poses the question; do flares show any preference for rotational phase in M dwarfs in

general? It is expected that more flares would occur during the minimum of the rotational

modulation when the spot/active region producing the minimum is most visible. If this is

not the case, what mechanisms are responsible and what is causing the generation of flares

in these active stars? In this chapter, a sample of M dwarf stars is investigated which have

been observed in short cadence by K2. For details of the data preparation refer to §2.2.1. By

analysing the flare and stellar properties of this group of stars I aim to address some of the

questions concerning the phase distribution of the flares.

4.2 The K2 Late Dwarf Sample

To create the sample of stars, all the sources observed in short cadence with K2 in Fields 1–9

were taken (observations made between May 2014 and Jul 2016) and cross referenced with

SIMBAD1(astronomical database), removing all stars which were not of spectral type M0 or

later. In addition, those stars classed as BY Dra stars (variable late type stars) were removed

from the sample since many of them are in binaries or triples and are therefore, not conducive

to investigating stellar activity on single stars before and after the M4 spectral sub-type. The

remaining stars were then cross referenced with the EPIC catalogue (Huber et al., 2016) and

those which showed characteristics of a giant (e.g. have a radii >1R�) were also removed.

Stars which were too faint to show a clear detection in the K2 thumb print image were also

removed from the sample.

This left us with a sample of late dwarf stars observed with K2 in short cadence mode, consisting

of 33 M dwarfs and one L dwarf. Of this sample of stars, 32 percent were classed as known
1http://simbad.u-strasbg.fr/simbad

http://simbad.u-strasbg.fr/simbad
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flare stars in the SIMBAD catalogue. They range in spectral type and mass from M0 to L1

and 0.58 M� to 0.08 M�. Each target has been observed for ∼70 – 80 days producing a

near continuous lightcurve over this period. The significance of short cadence data is it allows

flares with a duration of a few minutes to be detected, giving a more comprehensive and robust

overview of stellar activity. In addition, the wide range of spectral types provides a broader

insight into how magnetic activity can vary in M dwarfs as a whole. The properties of the

stars in the sample, including spectral type, previously known rotation period, mass, distance

and magnitude are shown in Table 4.1.
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Table 4.1: The properties of the M stars which are included in the survey where all data comes from the K2 EPIC Catalog (Huber et al., 2016),
with the exception of the following. References for spectra: [1] (Hawley et al., 1996), [2] (Reid et al., 2008), [3] (Reid et al., 2004); [4] (Lépine and
Gaidos, 2011); [5] (Kraus and Hillenbrand, 2007), [6] (Schmidt et al., 2010), [7] (Gray et al., 2003); [8] (Davison et al., 2015); [9] (Lépine et al.,
2013); [10] (Kirkpatrick et al., 1991); [11] (Faherty et al., 2009); [12] (Pesch, 1968); [13] (Alonso-Floriano et al., 2015); [14] (Stephenson, 1986a);
[15] (Cruz and Reid, 2002); [16] (Shkolnik et al., 2009).

Name EPIC K2 RA DEC SpT P M R Teff log(g)

ID Field (J2000) (J2000) d M� R� (K) (cgs)

LHS 2420 201611969 1 11:31:32.845 +02:13:42.86 M2.5V [9] 0.319 0.301 3740 4.977

LP 804-27 205204563 2 16:12:41.781 –18:52:31.83 M3V [7] 0.445 0.391 3930 4.86

GJ 3954 205467732 2 16:26:48.160 –17:23:33.6 M4.5V 0.304 0.286 3772 4.995

IL Aqr 206019387 3 22:53:16.7 –14:15:49.3 M4V [1] 95 0.21 0.22 3472 5.07

LP 760-3 206050032 3 22:28:54.401 –13:25:17.86 M6.5V [10] 0.09 0.113 2617 5.271

2MASSI J2214-1319 206053352 3 22:14:50.707 –13:19:59.080 M7.5 [11] 0.078 0.098 2211 5.349

Wolf 1561 A 206262336 3 22:17:18.9 –08:48:12.5 M4V+M5V [1] 0.22 0.23 3495 5.06

HG 7-26 210317378 4 3:52:34.340 +11:15:38.807 M1 [12] 0.192 0.396 0.358 3788 4.917

NLTT 12593 210434433 4 4:07:54.80 +14:13:00.7 M2.5V [13] 1.073 0.424 0.382 3844 4.896

G 6-33 210460280 4 3:45:54.83 +14:42:52.1 M1.5 [9] 0.511 0.454 4028 4.821

LP 415-363 210489654 4 4:20:47.988 +15:14:09.073 M4V [13] 82.6 0.391 0.351 3751 4.917

MCC 428 210579749 4 3:43:45.247 +16:40:02.166 M0V [14] 0.504 0.449 3898 4.836

Continued on next page
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Table 4.1 – continued from previous page

Name EPIC K2 RA DEC SpT P M R Teff log(g)

ID Field (J2000) (J2000) d M� R� (K) (cgs)

GJ 3225 210758829 4 03:26:45.0 +19:14:40.1 M4.5V [1] 0.454 0.13 0.15 3027 5.19

2MASS J0326+1919 210764183 4 03:26:44.5 +19:19:31.0 M8.5V [2] 0.08 0.10 2192 5.34

LP 414-108 210811310 4 04:10:38.1 +20:02:23.5 M0.5V+M0.5V [3] 0.43 0.37 3971 4.89

LP 357-206 210894955 4 3:55:36.90 +21:18:48.30 M5 [15] 7.916 0.240 0.248 3550 5.014

2MASSJ0335+2342 211046195 4 3:35:02.087 +23:42:35.61 M8.5V [16] 0.472 0.084 0.106 2432 5.310

LT Tau 211069418 4 03:42:56.5 +24:04:58.1 M3.5V [4] 0.32 0.30 3675 4.97

V497 Tau 211077349 4 03:42:02.9 +24:12:36.3 M3V [4] 0.44 0.40 3876 4.87

V692 Tau 211082433 4 03:56:30.4 +24:17:18.8 M4-5V [4] 0.26 0.26 3567 5.03

V631 Tau 211112686 4 03:44:24.8 +24:46:06.3 M1V [4] 3.27 0.37 0.34 3700 4.93

V* MY Tau 211117230 4 3:44:27.293 +24:50:38.26 M0 [16] 0.4 0.427 0.381 3811 4.894

2MASS J0831+1025 211329075 5 08:31:56.0 +10:25:41.7 M9V [2] 0.08 0.10 2209 5.34

GJ 3508 211642294 5 8:37:07.961 +15:07:45.5257 M3V [9] 0.427 0.385 3861 4.892

LP 426-35 211945363 5 08:57:15.4 +19:24:17.7 M5V [5] 0.35 0.32 3738 4.96

2MASS J0909+1940 211963497 5 09:09:48.2 +19:40:42.9 L1 [6] 0.08 0.10 2098 5.36

AX Cnc 211970427 5 08:39:09.9 +19:46:58.9 M2 [5] 4.854 0.45 0.41 3881 4.87

Continued on next page



CH
APTER

4.
RO

TATIO
N

AL
PH

ASE
O

F
STELLAR

FLARES
O

N
M

D
W

ARFS
69

Table 4.1 – continued from previous page

Name EPIC K2 RA DEC SpT P M R Teff log(g)

ID Field (J2000) (J2000) d M� R� (K) (cgs)

2MASS J0831+2024 212009427 5 08:31:29.9 +20:24:37.5 M0V [5] 1.55 0.58 0.51 4116 4.78

2MASS J0839+2044 212029094 5 08:39:18.1 +20:44:21.3 M1V [5] 0.34 0.32 3785 4.96

L 762-51 212285603 6 13:45:50.7 –17:58:05.6 M3.5V [1] 0.31 0.30 3646 4.99

LP 737-14 212518629 6 13:16:45.47 –12:20:20.4 M3.5V [13] 0.281 0.273 3577 5.005

BD-05 3740 212776174 6 13:38:58.7 –06:14:12.5 M0.5V [7] 0.45 0.40 3847 4.88

2MASSI J1332-0441 212826600 6 13:32:24.427 –4:41:12.690 M7.5 [6] 0.079 0.101 2264 5.328

GJ 1224 228162462 9 18:07:32.927 –15:57:46.46 M4V [8] 0.14
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4.3 Data Analysis

4.3.1 Rotation Period

From the sample of 32 stars, only five have rotation periods previously recorded in the literature,

see Table 4.1. The two most important factors in determining the level of activity in a low

mass star are age and rotation period. The rotation period can be determined from low mass

stars if they have starspots whose rotation can produce a change in brightness as the starspots

are expected to be darker than the photosphere (in the same way as sunspots).

The first objective is to determine or constrain the rotation period from the K2 data. The

method used to determine the rotation is initially through the Lomb-Scargle periodogram

producing a power spectrum of the lightcurve of the source, followed by a fine tuning iterative

process involving phase folding. The value of the rotation obtained via the power spectrum

is used in the phase folding of segments of the lightcurve originating from the start, middle

and end of the K2 data. Phase zero is first obtained by eye and through an iteration of phase

folding the three segments of data, a best fit for the rotation period, Prot, and phase zero, t0,

is obtained. The phase folding of segments is used due to the changing nature of the lightcurve

over the observation period iterating until all sections have phase zero at the minimum. These

values can be used to produce a mean folded lightcurve and will be used during the analysis

of flaring activity on the targets.

The uncertainty on the rotation period is estimated by determining the Full Width at Half

Max (FWHM) of the corresponding peak on the power spectrum. The FWHM is estimated

through a Gaussian fit onto the peak and the following relationship:

FWHM = 2
√

2ln(2)σ (4.1)

where σ is the FWHM of the Gaussian. Through Gaussian error propagation the error on the

period can be calculated using Equation 4.2 and the values are shown in Table 4.2.

δP = P 2 × FWHM (4.2)
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As described in §2.2.1, data which had been corrected by the EVEREST pipeline was utilised

which corrects for instrumental effects that are present in K2 data. As a result, for each

photometric point there are parameters including time, raw and corrected flux, counts and a

quality flag (as noted in §2.2.1). Our first goal is to search for and identify the stellar rotation

period which is much longer than the duration of any stellar flare. Therefore, any photometric

point which did not possess a quality flag of zero was removed (i.e. QUALITY 6= 0).

The stellar rotation period derived for the sample using K2 data are shown in Table 4.2: they

range from 0.34 days to greater than 70 days. There are six stars in the sample where the

rotational modulation was incomplete (i.e. only a portion of the rotation was observed) so, it

is only possible for us to say the rotation period is greater than the observation length itself

i.e. greater than 70 days. There is no correlation between rotation period and spectral type.

For instance, stars with a rotation period less than 1 day have spectral types in the range

M0–M8.5. Other examples of rapid rotation in late type active stars include the M7 dwarf

2MASS J0335+23 (Gizis et al., 2017) which has a very rapid rotation period of 0.22 days,

which is presumably due to its young age (24 Myr). Gizis et al. (2017) find 22 flares in the

K2 lightcurve of 2MASS J0335+23 showing it is active.

Taking a sample of ∼12,000 main sequence stars observed using Kepler, Nielsen et al. (2013)

found M dwarfs had a median period of 15.4 days, although with a considerable spread in

the overall distribution. Out of all of the stars only a handful show rotation periods which

are not in agreement with the literature (compare column 7 in Table 4.1 with column 2 in

Table 4.2). For some objects, the difference can be substantial, for example, HG 7-26 (EPIC

210317378) had a reported period of 0.192 days (Newton et al., 2016) compared to 24.5

days as derived from the K2 data. However, this source was classed as a ‘Non detection or

undetermined detection’ in the catalogue of Newton et al. (2016), which indicates that they

could not positively identify a periodic modulation within their data. This underlines the need

for a continuous sequence of photometric measurements, such as provided by K2, to reliably

determine rotation periods.
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4.3.2 Flare Identification

The flare identification process was completed using Flares By EYE (FBEYE), a suite of IDL

programs created by J.R.A. Davenport (Davenport et al., 2014). FBEYE scans each lightcurve

and flags up any point which is over a 2.5σ threshold, identifying potential flares which consist

of 2 or more consecutive flagged points. Within the flare finding algorithm, potential flares are

required to consist of two or more consecutive flagged points; It is important to note here all of

the flares within this sample (and subsequent samples) are composed of many more points and

2 is simply the minimum requirement. In addition, users can manually classify flares present in

the lightcurve via an interactive display. Once complete, this produces a comprehensive list of

flares per star along with properties for each flare such as start and stop time, flux peak and

equivalent duration. The lightcurves which are used for this process were complete, meaning

all photometric points were used regardless of their quality flag due to potential flaring events

having quality flags which are not zero. The EVEREST quality flags and FBEYE flare list were

then compared directly to assess the likelihood of the flare being a real event.

Any photometric point with quality flags which were a result of thruster firing or known

instrumental effects were removed from further analysis. Any point which had a flag of EVEREST

bits 23 and 25 (which may have been due to cosmic rays or a real stellar flare) were kept.

Events which consisted of only one photometric point were removed and events which did not

have profiles consistent with being a likely stellar flare (i.e. sharp rise and exponential decay)

were also removed.

The data for each star was analysed in a consistent manner and for each the number of flares,

the range in the duration and amplitude of the flares are shown in Table 4.2. In addition,

the normalised flare number which represents the number of flares expected on each star if

the observation duration was 78.3 days is included. The duration of each flare was calculated

from the start and stop times and the amplitude represents the flux peak of each flare all

of which were obtained from the output of FBEYE. Sources 2MASS J0831+1025, 2MASS

J0909+1940 and L 762-51 did not show any flares and were omitted from Table 4.2 – these

sources did also not show complete rotational cycles and so the rotational periods could not

be determined.
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Figure 4.1: A sample of flares of varying magnitude from the flare star GJ 3225 (EPIC
210758829) a M4.5 star with a rotation period of 0.45 days. The upper left plot shows a
small section of the lightcurve of the star demonstrating the frequency of the flares and also
the range in magnitude. Far right is the largest flare seen in the K2 lightcurve of this star with
a peak normalised flux of 4.32. The bottom two plots show smaller amplitude, short duration
flares which dominate the lightcurve.

Examples of some flares from GJ 3225 (EPIC 210758829) are shown in Figure 4.1. Of particular

interest is the largest flare from this star with a normalised flux peak of 4.32 (∼ 1.6 mag),

where a rapid rise (approximately 1 min) and clear slow decay (approximately 10 min) can be

seen which is similar to a classical stellar flare profile.

It is expected that stars with shorter rotation periods will display greater levels of flaring activity.

This is the case with this particular sample of M dwarfs (Figure 4.2), however, the star with

the most flares does not have the fastest rotation. After a rotation period of approximately

10 days there is a drop off in the number of flares seen on the star, which is consistent with

the findings of Stelzer et al. (2016). In order to create a complete picture of this sample of M

dwarfs the ages of the stars would need to be determined, as although the activity of the stars

depends on rotation, this in turn depends on age.
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Figure 4.2: The number of flares as a function of the rotation period for all stars showing
flaring activity. As other studies have found, stars with rotation periods longer than ∼10 d are
less active. The most active star is GJ 1224, Prot =3.9 days.

Work similar to this has been carried out on long and short cadence Kepler data of various

known flare stars, for example Hawley et al. (2014) studied 5 M dwarf stars with spectral types

from M1 - M5. They found three of the stars with spectral types of M1 - M3 showed very

little activity with flare numbers between 2 and 12 and rotation periods in the order of days.

Of the three stars remaining with spectral types of M4 and M5, they showed high levels of

flaring activity with flares in the order of hundreds and rotation periods less than a day. In

particular GJ 1243, a well studied M4 flare star, showed 833 flares and a rotation period of

0.6 days during the 2 month of short 1 minute cadence Kepler data. Ramsay et al. (2013)

also looked at this star using short cadence Kepler data from Q14 observing a small number

of large amplitude flares and a great number of low amplitude short duration flares.

4.3.3 Flare Energies

To determine the energy of the stellar flares, the quiescent luminosity of the star, L∗, must

be calculated in the Kepler band-pass. To construct a template spectral energy distribution
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for each star PanStarrs magnitudes g, r, i and z are used (see Table 4.A.1). The PanStarrs

magnitudes (Chambers et al., 2016) represent the mean quiescent magnitude of the star

calculated over an average of multiple measurements. This ensures the effects of flares or

rotation has been removed from the magnitudes. A polynomial was fitted to the Panstarrs data

and determined the flux in the Kepler band-pass in the same manner as Kowalski et al. (2013).

The quiescent luminosity is then computed by multiplying the flux by 4πd2, where the distance

(d) is determined by inverting the parallax from the Gaia Data 2 release (Gaia Collaboration,

2016, 2018), (see Table 4.B.1). Additionally, the Bayesian analysis approach was used as

described by Astraatmadja and Bailer-Jones (2016) and implemented in the STILTS suite of

software (Taylor, 2006), and find that, as expected for sources within 200 pc, the distances

determined using the inversion and the Bayesian approach are entirely consistent.

The energy of the flares, Eflare, can then be determined by the multiplication of the luminosity

of the star, L∗, in erg/s and the equivalent duration, t, in seconds. The equivalent duration

(Gershberg, 1972) is defined as the area under the flare lightcurve in units of seconds, which is

different to the flare duration, and is obtained through the FBEYE suite of programs. FBEYE

uses a Trapezoidal summation of the area under the flare lightcurve which is converted into

seconds.

A wide range of flare energies are seen in the 31 flaring M dwarfs. The most energetic flare is

observed in V497 Tau at∼ 5.9×1034 erg and the flare with the lowest energy at∼ 1.3×1029 erg

is seen in IL Aqr. The range of energies seen in the sample are comparable to energies seen in

other work similar to this. Using Kepler data, Hawley et al. (2014) showed flares with energies

in the range of ∼ 2 × 1028 − 2 × 1033 erg on the M dwarf GJ 1243. Other stars in their

sample were consistent with this but less extreme. In addition, Lurie et al. (2015) investigated

the M5 binary system GJ 1245 also using 9 months of short cadence Kepler data, finding a

total of 1288 flares on both stars with an energy range of ∼ 1 × 1030 − 1 × 1033 erg. For

comparison, these large scale flares of order of 1034 erg are the equivalent to extremely large

X1000 class flares, in terms of the solar flare GOES classification. Zeeman-Doppler imaging

was also completed for GJ 1245A and B finding two different magnetic field topologies (see

Gastine et al., 2013, for further details). GJ 1245 A possesses a strong dipole dominated field

where GJ 1245 B has a weaker multipolar field. However,
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Table 4.2: For the stars in the survey which show flaring activity their properties including their observed rotation period; the number of flares
together with their duration, amplitude and energy are indicated. Since the length of each observation differs by a small amount, the normalised
flare number which is the number of flares expected on each star if the observation duration was 78.3 d has been included.
Note For a handful of sources the apparent modulation period is longer than the observation length meaning only an lower limit to the rotation
period could be determined. For stars with no evidence for a modulation no rotation period could be determined.

EPIC ID Rotation Period (Prot) No. of Normalised Duration Range Amplitude Range log(EKp)

days flares Flare No. minutes Flux ergs

201611969 > 70 15 14.33 11.8 – 35.3 0.0009 – 0.0095 31.17 – 32.18

205204563 42: 5 4.72 8.83 – 20.6 0.0003 – 0.0030 29.12 – 31.05

205467732 1.321 ± 0.021 221 205.35 8.83 – 91.2 0.0003 - 1.3694 30.60 – 33.49

206019387 > 70 47 39.27 10.8 – 81.4 0.0004 – 0.0151 30.01 – 31.77

206050032 > 70 17 14.21 10.8 – 32.4 0.0274 – 0.6937 31.25 – 32.52

206053352 – 8 6.78 11.8 – 30.4 0.2254 – 6.7031 31.19 – 32.27

206262336 9.6 ± 1.2 237 194.73 8.78 – 46.1 0.0018 – 1.2462 29.45 – 33.06

210317378 24.5: 7 6.06 12.8 – 21.6 0.0069 – 0.0582 31.39 – 32.28

210434433 47: 4 3.49 14.7 – 24.5 0.0041 – 0.0207 31.02 – 32.11

210460280 45: 1 0.87 29.42 0.0024 31.47

210489654 > 80 24 20.90 10.8 – 39.2 0.0037 – 0.0632 31.06 – 32.28

210579749 23: 4 3.43 12.8 – 42.2 0.0014 – 0.0027 31.37 – 31.95

Continued on next page
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Table 4.2 – continued from previous page

EPIC ID Rotation Period (Prot) No. of Normalised Duration Range Amplitude Range log(EKp)

days flares Flare No. minutes Flux ergs

210758829 0.4539 ± 0.0027 197 170.68 8.78 – 106 0.0023 – 4.3192 30.09 – 33.46

210764183 0.966 ± 0.011 10 8.77 8.78 – 45.9 0.2365 – 5.1922 31.95 –

210811310 33: 2 1.75 10.8 0.0013 – 0.0028 30.88 – 31.16

210894955 0.726 ± 0.006 18 15.81 10.8 – 30.4 0.0455 – 2.3884 30.65 – 32.58

211046195 0.2185 ± 0.0006 16 14.02 0.98 – 2888 0.0437 – 4.5665 31.15 – 34.57

211069418 0.8177 ± 0.0086 104 90.48 8.78 – 63.8 0.0101 – 0.4138 31.65 – 33.81

211077349 0.6992 ± 0.0061 64 55.75 8.78 – 75.6 0.0142 – 3.8455 31.69 – 34.77

211082433 0.3447 ± 0.0015 123 107.23 8.78 – 71.6 0.0097 – 0.4683 31.17 – 33.51

211112686 0.7639 ± 0.0073 53 46.34 8.78 – 94.0 0.0103 – 0.4311 31.99 – 34.24

211117230 0.398 ± 0.002 38 32.72 8.83 – 76.5 0.0045 – 0.2136 32.08 – 34.28

211642294 52: 5 4.49 20.6 – 103 0.0023 – 0.0196 31.15 – 34.42

211945363 > 70 8 7.39 10.8 – 31.2 0.0025 – 0.0231 31.19 – 31.98

211970427 4.38 ± 0.24 51 47.31 8.78 – 64.8 0.0101 – 0.3572 32.04 – 34.09

212009427 1.556 ± 0.029 75 69.34 8.78 – 76.5 0.0068 – 0.0967 32.14 – 34.29

212029094 20.22 ± 5.03 3 2.78 14.7 – 22.5 0.0019 – 0.0087 31.19 – 31.66

Continued on next page
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Table 4.2 – continued from previous page

EPIC ID Rotation Period (Prot) No. of Normalised Duration Range Amplitude Range log(EKp)

days flares Flare No. minutes Flux ergs

212518629 80: 1 0.96 27.46 0.0106 31.46

212776174 18.35 ± 5.03 7 6.58 10.8 – 20.6 0.0007 – 0.0038 31.21 – 31.99

212826600 – 7 6.79 12.8 – 41.2 0.0015 – 0.8707 32.15 – 33.31

228162462 3.9 ± 0.2 424 355.31 8.78 – 165 0.0015 – 0.8707 29.32 – 32.74
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Figure 4.3: A cumulative frequency plot as a function of energy for all flares on the star GJ
3225. Key features are noted on this plot as an example of the information it can display.

despite these differences in magnetic field topology, both stars show similar flare number overall

in their lightcurve and in flares per day.

4.3.4 Flare Frequency

Some of the stars in the sample show flares of incredibly high energies and so, it is important

to understand how often these large events are seen and which stars show these large scale

events. This is done by calculating a cumulative Flare Frequency Distribution (FFD) of the

flares with respect to their energy.

Figure 4.3 shows this relationship for GJ 3225, pointing out some key features of the plot. All

of the flares are binned by energy and then the cumulative frequency is calculated for each bin

increasing as the energy decreases. This shows that higher energy flares are a lot less frequent

than lower energy flares and this is universal for all stars in the sample. Another useful feature

is the ability to predict how often you will see flares of particular energies on the star. Some

examples are shown in Figure 4.3, such as flares of energies greater than 1033 erg will be seen

approximately every 36.6 days on GJ 3225.



CHAPTER 4. ROTATIONAL PHASE OF STELLAR FLARES ON M DWARFS 80

30 31 32 33 34
Log(E) (ergs)

6.5

6.0

5.5

5.0

4.5

4.0

Lo
g(

N/
T)

M0 - M3.5
M4 - M8.5

V497 Tau

2MASS J0831+1025

MCC 428

2MASS J0326+1919

LP 760-3

Figure 4.4: The cumulative FFD in minutes for a small selection of the M dwarf sample
with various spectral type, rotation and flare number. This indicates the flare rate does not
exclusively depend on the spectral type.

The cumulative frequency can be calculated for flares of all energies on all stars and plotted

similarly to the previous figure. Figure 4.4 shows the FFD of all energies for a selection of

6 M dwarfs from the sample, including: LP 760-3, MCC 428, 2MASS J0326+1919, V497

Tau, 2MASS J0831+2024 and GJ 1224. For example V497 Tau will emit a flare of energy

> 1034 erg every 36.6 days and similarly GJ 1224 will emit a flare of 1030 erg every 0.14 days.

The two stars showing the highest energy flares have a much faster rotation period of less than

a couple of days than the other stars and are both M0-M3.5 stars.

The less active stars with only a handful of flares are a mixture of spectral types and posses

rotation periods of days. Overall, this tells us the flare rate of these stars does not depend on

the spectral type. A flattening trend is noticed in Figure 4.4 at various energies depending on

the star. This has been mentioned in previous work suggesting higher and lower energy flares

follow a different power law slope. Therefore, in SC data it is not due to a detection limit

but is in fact a real feature. Despite attempts to find correlations between the slope of the

power law and stellar parameters no significant correlation was found. The stellar parameters

investigated included the mass, rotation period and spectral type, however, none of these
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showed any potential trends indicating a correlation.

4.4 Rotational Phase

Stars with starspots can show a periodic change in brightness as the star rotates due to the

starspots being cooler than the surrounding photosphere. If stellar flares originate from the

starspot, one might naively expect more flares would be seen at rotation minimum where the

starspot is most visible. However, if a star has a low rotation angle (i.e. one of its rotation

poles is close to being face on), spots near the pole would be visible at all phases, and flares

would be seen at all rotation phases. To investigate this further, the rotation phase of the

flares which were identified in the previous section are determined and analysed.

For this analysis, stars with rotation periods shorter than the observation length were selected.

Due to this, eight of the sources are omitted from this analysis and any further investigations

due to the K2 lightcurve showing incomplete modulation which led to the rotation period being

unable to be confirmed. The lightcurves are phase folded and binned using the rotation period

shown in Table 4.2 and the phase zero calculated previously, yielding rotation cycles covering

all of the K2 lightcurve showing a minimum at φ=0.0. The resulting phase folded and binned

lightcurves are shown in Figure 4.5. Flares are present at practically all rotational phases for

all stars. In many cases there are high energy flares present at rotation maximum, where you

would expect the starspot to be least visible. Many of the lightcurves show a roughly sinusoidal

modulation suggesting the presence of one prominent starspot, although several sources, such

as Wolf 1561 A (which is in a triple system) show evidence for a second starspot. The fact

that all the stars shown in Figure 4.5 show a clear modulation suggests they are not observed

at low rotation angles.

In order to determine whether the phase distribution of the flares is random the χ2
ν statistic

is used. Here χ2
ν is used as a variance test, measuring how far a set of random numbers are

spread from the average value. The rotational phase is split into 10 bins and so, the number

of flares observed on each star is used to determine the average number of flares you would

expect to see in each phase bin if they are randomly distributed. If there is a preference for a

phase bin then there will be a higher number of flares
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Figure 4.5: The top panels show the phased and binned lightcurves on the rotation period such that there
are 50 bins per rotation phase. The bottom panels show the phase of the flares with the energy. The data is
plotted twice so they cover rotation phase 0.0–2.0 where 1.0–2.0 is a repeat of 0.0–1.0. The star in panel (a)
shows three rotation cycles with a long term trend.
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Figure 4.5: Continued
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Table 4.3: For the stars shown in Figure 4.5 (with the exception of EPIC 210460280 which
has only one flare) the χ2

ν values are shown for whether each rotation phase bin (split into ten)
had flares which were randomly distributed by phase. The flares are split into low and high
energy where the cut off is determined by the median energy of all the flares for each star.
None of the stars in the sample show a preference for flares at a certain rotational phase.

EPIC ID median energy Reduced Chi-Squared
(erg) low high all

205204563 9.5 ×1030 0.78 2.00 1.00
205467732 2.3 ×1031 1.17 1.17 0.55
206262336 6.5 ×1030 0.92 1.13 0.61
210317378 6.2 ×1031 0.78 1.22 0.97
210434433 4.9 ×1031 0.89 0.89 1.22
210579749 3.9 ×1031 0.89 0.89 0.67
210758829 6.7 ×1030 1.14 0.30 0.62
210764183 2.3 ×1031 1.44 1.00 1.11
210811310 1.1 ×1031 1.00 1.00 2.00
210894955 1.9 ×1031 1.10 1.35 0.47
211046195 3.7 ×1032 0.33 0.78 0.78
211069418 1.8 ×1032 0.93 1.33 0.65
211077349 3.1 ×1032 0.82 0.82 1.15
211082433 1.2 ×1032 1.11 0.39 0.72
211112686 4.8 ×1032 0.58 1.21 1.18
211117230 1.9 ×1033 0.87 0.99 0.69
211642294 8.6 ×1031 0.78 0.89 1.00
211970427 5.5 ×1032 0.82 0.82 1.24
212009427 7.8 ×1032 0.54 0.81 0.33
212029094 2.5 ×1031 1.00 0.89 1.52
212776174 4.3 ×1031 1.22 0.78 0.97
228162462 4.6 ×1030 0.83 0.48 0.94

present within the bin in comparison to the average flare number. Therefore, χ2
ν will be much

greater than one as there is a smaller spread in the flares within the phase bins.

Flares were split up into high and low energy with a cut-off determined by the median energy

of all flares from each star. In addition, the rotational phase was split into 10 bins and χ2
ν

was determined for each star in the low, high and all energy categories, where the degrees of

freedom, ν, is 9. Table 4.3 shows the results for both high and low energy flares and also

all flares in each star overall. Regarding low, high and all flare categories, none of the stars

show a preference for rotational phase even at a 2σ confidence level. Therefore, there is no

evidence for the flares having any preference for rotational phase, which surprisingly indicates

many flares may not originate from the large starspot. I now go on to investigate possible

causes for this.
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4.5 Discussion

I have analysed flaring activity from a sample of 31 M dwarfs covering a range of spectral types

using K2 short cadence data. Overall, the rotation periods have been derived (or placed lower

limits on) for 29 of these stars using the K2 lightcurves, many for the first time. In addition

to this the flare characteristics (energy, duration and phase of the rotation cycle) are used to

compute a statistical analysis of flares of this sample.

It is known, from previous studies (e.g. Mohanty and Basri, 2003; McLean et al., 2012),

that faster rotating stars show greater flaring activity. Moreover, activity drops for stars with

rotation periods > 10 days (Stelzer et al., 2016). Our findings are consistent with these

results. However, the work has identified an area which has not previously been studied in

great detail. If flares originate from the same starspot which causes the rotational modulation,

one would expect to observe a clear correlation of flares with rotational phases: this is not what

is observed here. None of the stars in the sample show evidence for flares being preferentially

seen at certain rotation phases. This result is unexpected and seems to point to the conclusion

that the majority of flares do not originate from the prominent starspot.

Where do flares originate on these active stars and how are they generated? Three possible

scenarios are considered to explain this finding. Firstly, there is the potential of magnetic

interaction with a second star in a binary system. It is possible for interactions between the

M dwarf and a binary companion causing increased magnetic activity between the stars and

in turn the generation of flares at locations other than a dominant starspot/active region. As

summarised by Kouwenhoven et al. (2009), 30–40 % of M dwarfs are members of a binary

system. For late M dwarfs and brown dwarfs this drops to 10 - 30 %. This suggests less

than a dozen of the sample will be in a binary system and hence binarity is unlikely to play a

prominent role in resolving this question.

Our second scenario is that magnetic interaction could occur with a planet orbiting the M

dwarf. Dressing and Charbonneau (2015) present an updated occurrence rate for planets

orbiting early M dwarfs as 2.5 planets per M dwarf star. Depending on the number of planets

orbiting the host star (and the mass, radius and magnetic field of the planet), it could be
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induced magnetic activity between the star-planet system which causes the increased flaring

activity. However, both the first and second scenario would depend on a small separation

between the orbiting star or planet to allow for any magnetic interaction.

Now the likely separation between the photosphere of the M dwarf and the magnetic interaction

region is considered. In the multi-scale field scenario of Yadav et al. (2015), only the large

scale field (lower order multiple) would interact with any orbiting planets and the location

of any ‘null points’ (where the global topology of the magnetic field changes) would be in

a transitional region where the long range dipole field becomes weaker than the quadrupole

(higher order) field. As the null point induced by the planet is also associated with the dipole

field it cannot be too close to the stellar surface. Moreover, this kind of null point would not be

associated with the dominant stellar spot (which is not created by the dipole field component).

Furthermore, the reconnection region would not easily be eclipsed by the star so, it is natural

that no correlation with the phases and the flares is found.

A third possibility is the presence of polar spots on the M dwarf. Depending on the viewing

geometry and the relative inclination of the rotational and magnetic moment axes of the star,

polar spots could be seen at all phases, interacting with emerging active regions and spot

free regions as the star rotates, causing continuously visible flaring activity. Through solar

observations we know the Sun does not posses polar spots, so the presence of polar spots on

M dwarfs would support the view that the generation of the magnetic field in these stars differs

from than of the Sun.

Despite the absence of polar spots on the Sun, Schrijver and Title (2001) model the formation

of polar spots on rapidly rotating (6 d) Sun-like stars due to the poleward migration of the

magnetic field. Their models predicted very active stars possessing polar caps with topologies

of one polarity encircling another. This magnetic configuration could generate very large

filaments, flares and Coronal Mass Ejections. Despite the differences between rapidly rotating

Sun-like stars and fully convective low mass stars, the work of Schrijver and Title (2001)

highlighted that a global poloidal field and a shear underneath/next to it in a perpendicular

direction, a local dynamo can occur. Hence, this could lead to flare activity.

Next, the formation of polar spots on fully convective low mass stars is considered as another
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possible scenario. Yadav et al. (2015) investigated the conditions necessary for formation of

polar spots in convection driven dynamos. This directly applies to many stars in the sample

as they are fully convective, and a magnetic field driven by the α2 dynamo mechanism. As a

result of their parameter study, they determine three key features for large spot formation in

fully convective stars: i) rotation driven convection, ii) many scale heights in the convection

zone, iii) a dynamo producing an axial-dipole field. All of the stars posses these properties

and so, could this be the solution to the key problem noticed in the rotational phase of the

flares?

Yadav et al. (2015) also show a self-consistent distributed dynamo can spontaneously generate

high-latitude dark spots when a large-scale magnetic field, generated in the bulk of the convec-

tion zone, interacts with and locally quenches flow near the surface. This is similar to findings

reported by Schrijver and Title (2001), who explored the migration of surface magnetic fields

towards the poles. Rapid rotation is vital for the formation of such dark polar spots. However,

if there is a global poloidal field and a shear underneath/next to it in a perpendicular direction,

a local dynamo can occur.

Such flare activity from the polar regions could be caused by large-scale 2D vortices within

the poloidal fields which thread through the temperature inversion layer (in the polar regions)

acting in a similar way to charged particles when they experience a force across the field lines

perpendicular to their motion. When such 2D vortices are formed they may wind up the

field line with them and when these eddies encounter the rim of the polar cap (whose axis is

not aligned with the rotation axis of the star) magnetic reconnection may occur generating

flares.

There has been much work completed on the magnetic structures of M dwarfs including the

study of their surface magnetic fields. Zeeman Doppler Imaging (ZDI: Semel, 1989) is a

technique which can be used to map the large-scale magnetic topologies of stars. Overall,

studies such as Donati et al. (2008) and Morin et al. (2010) have found a broad variety

of magnetic field topologies including complex magnetic field structures. Therefore, there

are a multitude of possibilities within the magnetic field conditions of these stars which are

producing the flaring activity observed. In addition, the dynamo mechanism of the star also

plays an important role as this is how these varying magnetic field geometries can be explained.
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Overall, I have outlined three scenarios to explain the lack of rotational phase preference for

flares in the M dwarf sample. In order to test the theories further I would need to compare

results from stars with low and high inclination. Davenport et al. (2015) and Silverberg et al.

(2016) reported observations of GJ 1243 which has a high rotation inclination and a high

latitude spot. With many thousands of flares being detected, no correlation with its 0.59 day

rotational period was found. A sample of stars with well defined inclination values is the next

step in allowing us to distinguish between the three scenarios to explain the main result.

4.6 Conclusion

Previous observations of activity levels in fast and slow rotators suggest a rotation-dependent

transition in the magnetic properties of the atmosphere of M dwarfs, where the transition

corresponds to approximately 10 days. Using K2 SC observations of a sample of 34 M dwarfs,

an interesting result has been found. There is no correlation between the rotation phase and

the number of flares. Given these stars all show significant rotational modulation amplitude

due to a starspot, this is a surprise.

New wide field surveys which are red sensitive will be suited to exploring these issues in greater

detail and with larger sample sizes. For instance, the New Generation Transit Survey (NGTS)

(Wheatley et al., 2017) has a field of view of 96 square degree and is red sensitive. Although

its prime goal is the detection of Neptune and super-Earth size exo-planets it will obtain long

duration lightcurves of many red dwarfs.

The Transiting Exoplanet Survey Satellite (TESS) (Ricker et al., 2015) was launched on the

18th April 2018. TESS will be sensitive to stars brighter than V ∼12 and will have 27 day

observation blocks covering 24◦ × 96◦ of sky with a cadence of 1 min for many objects. In

the next chapter I look further into the starspot/stellar flare relationship using SC data from

TESS on a sample of 149 M dwarfs.



Appendix

4.A PanStarrs Magnitudes

Table 4.A.1: For all the stars in the sample here presents the corresponding PanStarrs magni-
tudes (Chambers et al., 2016) in the g, r i, and z bands with errors which are also taken from
the PanStarrs catalogue. These magnitudes are used to create a template spectrum of each
star and used in the calculation of the quiescent Kepler luminosity.

Name EPIC ID g r i z
LHS 2420 201611969 13.0682 ± 0.0010 11.7446 ± 0.0010 10.0773 10.6904 ± 0.1852
LP 804-27 205204563 12.2986 ± 0.0010 11.0668 ± 0.1391 9.8560 ± 0.1723 9.0415 ± 0.0378
GJ 3954 205467732 15.0310 ± 0.0034 13.7505 ± 0.0029 12.2592 ± 0.3998 11.1509 ± 0.0210
IL Aqr 206019387 11.0744 ± 0.0150 8.9746 ± 0.0692 8.4762 ± 0.0394 8.1422 ± 0.2303
LP 760-3 206050032 12.2150 11.5380 11.2720 11.1370
2MASSI J2214-1319 206053352 20.8604 ± 0.0406 19.4495 ± 0.0081 16.9408 ± 0.0041 15.7102 ± 0.0042
Wolf 1561 A 206262336 14.2094 ± 0.0001 13.5603 ± 0.0784 11.3962 ± 0.0352 10.4803 ± 0.0635
HG 7-26 210317378 14.3808 ± 0.0065 13.2037 ± 0.0107 12.1530 ± 0.0701 11.4553 ± 0.0371
NLTT 12593 210434433 13.6522 ± 0.0005 12.3198 ± 0.0010 11.9320 10.7620 ± 0.0397
G 6-33 210460280 12.5168 ± 0.0055 11.6516 ± 0.0404 12.2169 ± 0.0385 11.8217 ± 0.0991
LP 415-363 210489654 14.4373 ± 0.0057 13.3156 ± 0.0037 11.8085 ± 0.0385 13.3588 ± 0.0012
MCC 428 210579749 11.2964 ± 0.0520 10.0182 ± 0.0124 9.3745 ± 0.2068 8.5127 ± 0.0229
GJ 3225 210758829 15.5532 ± 0.0024 14.2847 ± 0.0037 12.5702 ± 0.0183 11.9246 ± 0.1065
2MASS J0326+1919 210764183 21.4785 ± 0.1072 19.7707 ± 0.0250 17.1323 ± 0.0032 15.7071 ± 0.0027
LP 414-108 210811310 13.7311 ± 0.0100 12.5716 ± 0.0599 12.3544 ± 0.1876 12.2010 ± 0.3246
LP 357-206 210894955 18.4372 ± 0.0077 17.1264 ± 0.0034 14.9935 ± 0.0013 14.0026 ± 0.0041
2MASS J0335+2342 211046195 19.5600 ± 0.0100 18.2366 ± 0.0054 15.6818 ± 0.0029 14.4760 ± 0.0047
LT Tau 211069418 16.8460 ± 0.0065 15.6460 ± 0.0035 14.2525 ± 0.0012 13.3161 ± 0.0017
V497 Tau 211077349 17.0385 ± 0.0053 15.7580 ± 0.0126 14.5928 ± 0.0049 14.0379 ± 0.0036
V692 Tau 211082433 16.7380 ± 0.0118 15.5423 ± 0.0052 13.8039 ± 0.0004 12.8970
V631 Tau 211112686 15.9072 ± 0.0060 14.7119 ± 0.0089 13.8246 ± 0.0100 13.3578 ± 0.0050
V* MY Tau 211117230 14.6712 ± 0.0068 13.5257 ± 0.0010 12.8800 12.4340
GJ 3508 211642294 12.3840 ± 0.0010 11.7487 ± 0.0461 10.0195 ± 0.0502 11.4547 ± 0.0000
LP 426-35 211945363 14.0742 ± 0.0024 13.3732 ± 0.4861 11.3541 ± 0.0010 11.9661 ± 0.0010
AX Cnc 211970427 16.6625 ± 0.0041 15.4590 ± 0.0008 14.2677 ± 0.0010 13.7382 ± 0.0034
2MASS J0831+2024 212009427 15.3423 ± 0.0041 14.1807 ± 0.0014 13.3870 13.0250 ± 0.0079
2MASS J0839+2044 212029094 17.0009 ± 0.0051 15.7975 ± 0.0017 14.7718 ± 0.0023 14.3082 ± 0.0030
LP 737-14 212518629 14.3029 ± 0.0051 13.0944 ± 0.0010 11.7148 ± 0.0400 12.1497 ± 0.0010
BD-05 3740 212776174 11.4172 ± 0.0406 9.2114 ± 0.0875 9.3707 ± 0.0523 9.1667 ± 0.0487
2MASSI J1332-0441 212826600 20.2436 ± 0.0221 18.7220 ± 0.0132 16.0798 ± 0.0023 14.7831 ± 0.0025
GJ 1224 228162462 14.1926 ± 0.0010 13.0493 ± 0.0098 11.1694 ± 0.0134 10.8942

89
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4.B Gaia Parallaxes

Table 4.B.1: Parallaxes along with their associated errors from Gaia Data release 2 (Gaia Col-
laboration, 2016, 2018) which are then inverted to calculate the distances to the stars in the
sample. The errors on the quiescent luminosity includes the error on the distance and the
PanStarrs magnitude. Three of the stars did not have parallaxes in the Gaia DR2 catalogue
and so these distances were taken from the EPIC Catalogue (Huber et al., 2016) and marked
with an asterisk.

Name Parallax Parallax Error Distance log(Lstar)
mas mas pc erg/s

201611969 35.48 0.06 28.18 ± 0.04 31.679 ± 0.006
205204563 68.78 0.12 14.54 ± 0.03 31.266 ± 0.007
205467732 – – 28.3* 30.88
206019387 213.87 0.08 4.676± 0.002 30.864 ± 0.001
206050032 91.89 0.09 10.88 ± 0.01 30.564 ± 0.004
206053352 25.3 0.2 39.47 ± 0.31 29.261 ± 0.032
206262336 89.20 0.13 11.21 ± 0.02 30.385 ± 0.006
210317378 28.59 0.06 34.97 ± 0.08 31.119 ± 0.009
210434433 32.36 0.06 30.90 ± 0.06 31.188 ± 0.008
210460280 27.61 0.04 36.22 ± 0.06 31.389 ± 0.006
210489654 34.72 0.15 28.80 ± 0.12 31.011 ± 0.016
210579749 58.01 0.05 17.24 ± 0.01 31.661 ± 0.003
210758829 55.20 0.09 18.12 ± 0.03 30.330 ± 0.007
210764183 34.12 0.42 29.31 ± 0.36 28.936 ± 0.049
210811310 19.07 0.04 52.45 ± 0.12 31.477 ± 0.009
210894955 34.69 0.13 28.83 ± 0.11 29.763 ± 0.015
211046195 19.53 0.15 51.21 ± 0.40 29.988 ± 0.032
211069418 8.13 0.65 122.9 ± 9.9 31.355 ± 0.321
211077349 7.34 0.07 136.3 ± 1.3 31.306 ± 0.038
211082433 12.62 0.17 79.24 ± 1.09 31.131 ± 0.055
211112686 7.47 0.05 133.9 ± 0.9 31.623 ± 0.028
211117230 7.58 0.05 131.9 ± 0.9 32.016 ± 0.027
211642294 56.10 0.06 17.82 ± 0.02 31.307 ± 0.004
211945363 – – 37.7* 31.41
211970427 5.28 0.15 189.3 ± 5.4 31.721 ± 0.113
212009427 5.43 0.04 184.2 ± 1.2 32.083 ± 0.026
212029094 5.39 0.06 185.3 ± 2.1 31.513 ± 0.045
212518629 45.5 1.2 21.98 ± 0.58 30.832 ± 0.105
212776174 41.31 0.05 24.21 ± 0.03 32.022 ± 0.005
212826600 – – 109* 30.49
228162462 125.59 0.07 7.962± 0.004 30.156 ± 0.002



5 Origins of Stellar Flares on M dwarfs with
TESS

The research outlined in this chapter has been published in the Monthly Notices of the Royal

Astronomical Society as Doyle et al., 2019, MNRAS, 489(1), 437-445.

5.1 Introduction

For over nine years, the Kepler mission provided a wealth of time variability information for

several hundreds of thousands of stars (Borucki et al., 2010). This data set has provided a wide

range of advances in stellar astrophysics and exoplanet research. With the loss of its second

reaction wheel in 2014, Kepler was re-purposed as K2 and began to take observations of fields

along the ecliptic for ∼70 - 80 days. However, in October 2018, it ran out of consumables and

NASA announced the retirement of the satellite, ending its mission. Fortunately, TESS had

been launched in April 2018 with short cadence 2-min data being available in early 2019.

As mentioned previously, the lightcurves of low mass M dwarfs can show periodic changes in

their brightness as the star rotates. This is widely thought to be the result of active regions

hosting spots which are cooler than their surroundings rotating in and out of view (McQuillan

et al., 2013). From observations of the Sun, it is known flares typically originate in active

regions which host spots so, it is natural to expect flares to originate also from the prominent

starspots in low mass M dwarfs . However, recent studies, such as Davenport et al. (2014),

(Lurie et al., 2015) and Doyle et al. (2018), have shown evidence seriously challenging this

view. There was no correlation found between the flare number and the rotational phase in

any of the M dwarfs observed using Kepler or K2, suggesting flares could occur without the

91
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association with a large, dominant starspot active region.

In the previous study (henceforth Chapter 4), K2 short cadence (1 min) data was used to

investigate the rotational phase of flares in a sample of 34 M dwarfs. Utilising a simple chi-

squared test, the phase distribution of the flares was investigated and deemed to be random.

Overall, it was concluded none of the stars in the sample showed any preference for rotational

phase. The result suggests flares on low mass M dwarfs maybe generated through a different

mechanism than present in our Sun.

In this chapter, TESS short cadence (2-minute) photometric data from a selection of M dwarfs

made in sectors 1 - 3 are used with a prime goal of investigating whether there is a preferential

rotational phase for flares from these low mass stars. This sample will be compared to the

previous K2 study, were I will discuss in greater detail the potential causes of the findings.

5.2 M dwarf Sample Selection

There are a number of strategies for identifying active low mass stars in TESS data. For

instance Günther et al. (2019) searched for flares in all of the 2-min cadence TESS data and

then used the temperature extracted from the TESS Input Catalog (Stassun et al., 2018) to

identify cool main sequence stars. Here, stars which have been observed in 2-min cadence

mode using TESS and have a MV spectral type in the SIMBAD catalogue1 are identified. By

considering the original publications which provided the spectral classifications in the SIMBAD

catalog, the stars in the sample have a spectral type accurate to within one spectral subclass.

The TESS Input Catalog was also used to remove stars which were likely giants and wrongly

classed in the SIMBAD catalogue using the luminosity and radii values.

Our target stars were also cross-referenced with the SkyMapper Southern Sky Survey (Wolf

et al., 2018). Those which did not possess Gaia DR2 (Gaia Collaboration, 2018) parallaxes or

SkyMapper data were not considered further. The SkyMapper multi-colour magnitudes were

converted to flux and then fitted using a polynomial producing a template spectrum which

was convolved with the TESS band-pass to derive the stars quiescent flux, similar to Chapter

4. The Gaia parallaxes were inverted to provide distances to each star which was used to
1http://simbad.u-strasbg.fr/simbad/

http://simbad.u-strasbg.fr/simbad/
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Figure 5.1: A histogram showing the spread of M dwarf spectral types within the TESS 2-min
cadence sample.

determine the quiescent stellar luminosity.

The final sample of low mass stars observed at 2-min cadence with TESS consists of 167 M

dwarfs. Each sector is observed for ∼ 27 days with 28 percent of the sample being observed in

more than one sector. The complete list of the low mass star TESS sample, including a range

of stellar properties, is provided in Table 5.1 and Figure 5.1 shows the spread of the spectral

types within the sample.

5.3 Tess Data

The data preparation for each TESS lightcurve is discussed in §2.2.2. Each lightcurve was

initially examined by eye to determine whether there was evidence for a rotational modulation

and any flare-like events. Some sources which showed complex lightcurves (such as BY Dra

variables) were not considered further. Additionally, the 18 stars which showed no modulation

but did show flares in their TESS lightcurve were not included as the rotational phase of the

flares could not be determined, see Table 5.A.1. This leaves a final sample of 149 M dwarfs
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Figure 5.2: A section of the TESS lightcurve for 2MASS J0030-6236 (TIC 231914259) from
sector 1 which covers ∼ 9 days. This star has a spectral type, M2V and rotation period, Prot,
of 1.43 days. The black points represent the TESS data points which have a cadence of 2-mins
and the red line is the Savitzky-Golay filtered, smoothed data and shows evidence of multiple
spots and flares of varying magnitudes. It is important to note the rotational modulation
within this particular star suggests the presence of multiple active regions/starspots on the
stellar disk.

stars remaining in the sample for this study.

5.4 Rotation Period

Large variations in brightness can be observed in the lightcurves of M dwarfs which are widely

explained by the presence of spots (Oláh et al., 1997). These large, dominant starspot(s),

hosted in active regions, come in and out of view as the star rotates producing quasi-sinusoidal

changes in brightness, see Figure 5.2. Observations with high enough cadence and length

present one way of determining a stars rotation period. Thousands of low mass stars now have

derived accurate rotation periods through Kepler and K2 observations (e.g. McQuillan et al.,

2014).

For each of the stars in the sample the rotational period, Prot, is determined using the same

process discussed in §4.3.1.The software package Period (Dhillon et al., 2001) package which

runs a Lomb-Scargle (LS) periodogram was used initially, followed by an iterative process

involving the phase folding of sections from the start and end of the lightcurve. Phase zero,

φ0, is also defined as the minimum of the flux of the rotational modulation which is initially
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Figure 5.3: A selection of flares of varying magnitudes and duration from the M2.2 dwarf
2MASS J0030-6236 (TIC 231914259). This star was observed in sectors 1 & 2 for a total
duration of ∼ 54 days, has a rotation period, Prot, of 1.43 days and a total flare number of
58. The far left panel shows the largest flare from this star which a normalised flux peak of ∼
1.27 and the remaining panels contain flares with lower energies.

determined by eye. The iterative process allows us to fine tune Prot and φ0 to fit the start and

end of the data which ultimately derives the best fit to the data as a whole. Error estimates

on the period are in the order of a few percent which ensures the phase of all the flares are

reliable.

Table 5.1 shows the stellar properties of the sample including Prot and φ0. The rotation periods

of the sample range from 0.1 to 17.4 days. This includes 9 ultra-fast rotators with Prot < 0.3

days and 53 with Prot < 1 day. For stars with other stars spatially nearby, there is a small

possibility in which the variability is due to the nearby star, this is discussed in more detail in

§2.2.2.
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Figure 5.4: Here the normalised number of flares per day for each star is shown as a function
of rotation period. The red represent the stars from Paper 1 using K2 short cadence data, and
the blue the 149 targets from this study using TESS 2-min cadence data.

5.5 Stellar Flares

For each star in the sample, the flares present in each lightcurve along with their energies in

the TESS band-pass need to be identified. The approach to identifying flares is the same as

Chapter 4 using FBEYE (Davenport et al., 2014). A selection of flares of varying magnitudes

can be seen in Figure 5.3 from the M2V dwarf 2MASS J0030-6236 (TIC 231914259) which

has a rotation period, Prot = 1.43 days. Overall, 1765 flares from the 149 flaring dwarf stars

are catalogued with a range of magnitudes and durations (see Table 5.1). For stars which

showed no modulation, 69 flares are catalogued and shown in Table 5.A.1.

Figure 5.4 shows the normalised flare number per day for each star in the sample according to

the stellar rotational period. Additionally, the M dwarfs from Chapter 4 are overplotted which

were observed using short cadence K2 data. Similar to Chapter 4, a drop in flare number for

stars with Prot > 10 days is found, however, the sample is limited in this respect due to the

observation length of TESS being 27 days for each sector. On average the flare rate of the

TESS stars is lower than that of the K2 stars which is attributed to its lower sensitivity, as
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discussed in §2.2.3.

The energies of the flares are determined as the equivalent duration of each flare multiplied

by the quiescent luminosity of the star. Amongst the sample of 149 M dwarfs, a wide range

in flaring energies are observed. The lowest energy flare is ∼ 6 × 1029 erg and is observed in

the M3 star PMJ 01538-149 (TIC 92993104) from sector 3 with Prot = 3 days. Similarly, the

highest energy flare is ∼ 2 × 1035 erg from an M3 star GSC 08494-00369 (TIC 201897406)

observed in sector 2 with Prot = 3.5 days. All of the properties including the luminosities of

the stars and range of flare energies can be found in Table 5.1.
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Table 5.1: The stellar properties of the first low mass stars observed by TESS detailing the number of flares, rotation periods, quiescent luminosity,
energy range and duration range of the flares. The apparent magnitude in the TESS band-pass, Tmag, is taken from the TESS Input Catalog (TIC)
along with the TIC ID (Stassun et al., 2018). The distances are derived from the Gaia Data Release 2 parallaxes (Gaia Collaboration, 2016, 2018)
and the spectral types are obtained from the SIMBAD catalogue. For the full table please refer to Appendix A.1.

Name TIC ID sector Ra Dec No. of SpT Tmag Parallax Distance Prot log(Lstar) log(Eflare) Duration
(deg) (deg) Flares (mas) (pc) (days) (erg/s) (erg) minutes

2MASS J2151-2807 053851254 1 327.8703 -28.1304 5 1.5 12.02 12.2990 81.3074 1.7537 31.74 32.98 – 34.55 14.0 – 172.00
2MASS J2114-4213 126945045 1 318.6401 -42.2318 9 3.9 13.11 15.1340 66.0764 0.4134 31.16 32.16 – 33.36 8.0 – 48.00
2MASS J2117-4444 139090254 1 319.3919 -44.7433 4 4.5 10.88 56.9728 17.5522 0.5308 30.82 31.47 – 31.95 14.0 – 20.00
2MASS J2150-5113 139984208 1 327.669 -51.2277 6 3.7 12.0 22.4897 44.4648 1.0513 31.26 32.20 – 32.87 18.0 – 38.00
FS2003 0345 150188736 1,3 93.7286 -60.6552 2 0.5 10.44 26.0053 38.4537 9.4832 31.75 33.78 – 34.06 102.0 – 168.00
GSC 08894-00426 150359500 3 96.4838 -60.0569 23 5.0 9.71 74.3690 13.4465 1.0331 31.11 31.57 – 33.20 12.0 – 130.00
Smethells 119 161356637 1 343.8646 -52.3032 2 0.5 9.56 42.0588 23.7762 17.425 31.68 31.93 – 32.73 14.0 – 40.00
WOH S 209 179038379 1,3 78.9968 -67.2733 7 0.0 12.62 16.1301 61.9959 11.616 31.28 32.44 – 33.91 16.0 – 134.00
BPM 45048 206327797 1 354.0652 -48.5836 4 3.5 9.67 40.0092 24.9943 0.1119 31.64 33.18 – 34.08 14.0 – 46.00
WT 2220 206537793 1 332.923 -20.7367 7 3.0 11.16 24.1987 41.3245 1.5203 30.70 31.55 – 32.33 12.0 – 48.00
UPM J0113-5939 206544316 1 18.4189 -59.6598 9 3.7 11.6 23.1900 43.1220 0.3227 31.39 32.36 – 34.93 8.0 – 180.00
UCAC4 265-194917 207082763 1 331.9728 -37.0737 22 3.0 10.75 29.7125 33.6559 0.8505 31.50 32.16 – 34.21 14.0 – 130.00
LEHPM 5245 215197039 1 343.2486 -39.3812 5 0.0 10.96 20.9295 47.7795 2.1316 31.74 32.61 – 33.77 12.0 – 108.00
WISE J0250-6545 220523369 1,2,3 42.5936 -65.7653 22 3.2 11.94 19.7575 50.6137 1.2892 31.41 32.07 – 34.58 12.0 – 180.00
GSC 08859-00633 220539110 1,2,3 43.447 -61.5878 34 3.0 9.93 24.1223 41.4554 0.773 31.98 32.08 – 34.49 8.0 – 106.00
2MASS J0256-6343 220556639 1,2,3 44.197 -63.7174 43 4.0 11.48 16.6797 59.9531 0.5947 31.74 32.04 – 34.68 6.0 – 148.00
UCAC4 110-129613 229807000 1 352.2412 -68.0431 27 2.5 10.74 21.7164 46.0481 0.3745 31.79 31.59 – 34.31 8.0 – 90.00
2MASS J2329-6749 229807051 1 352.324 -67.8336 6 3.5 12.48 21.7647 45.9460 1.0224 31.10 32.55 – 33.90 26.0 – 220.00
FS2003 1156 231267979 1 334.6657 -53.4444 17 2.5 10.66 21.9142 45.6325 2.0233 31.83 32.45 – 33.90 12.0 – 82.00
2MASS J2110-5811 231632372 1 317.5259 -58.1972 3 4.0 12.63 19.8774 50.3084 0.5896 31.12 32.54 – 32.85 20.0 – 22.00
Smethells 165 231867117 1 6.0384 -62.1848 8 0.0 9.56 22.6086 44.2310 1.7568 32.20 32.87 – 34.50 22.0 – 200.00
UPM J0027-6157 231910539 1,2 6.8898 -61.955 33 4.0 12.04 23.0563 43.3721 0.55 31.22 31.82 – 33.75 8.0 – 140.00
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5.6 Rotational Phase

For all stars in the sample, they display a clear rotational modulation which is attributed

as being due to the presence of a large dominant starspotflregion rotating into and out of

view. From studies of solar flares it is known numerous and more energetic flares of energies

(≥ 1032 erg) occur in active regions which possess complex sunspot configurations (Zirin and

Liggett, 1982; McIntosh, 1990). Therefore, you would expect to observe the same behaviour

from M dwarfs which host a large, dominant spot as part of a complex active region. In

Chapter 4, I investigated the preference for rotational phase for a small group of M dwarfs

observed in short cadence by K2 and found no correlation between flare number and rotational

phase, despite the clear presence of large dominant starspot(s)flregion. For this sample of M

dwarfs observed using TESS, the same analysis as Chapter 4 is used to determine if any of

the flares show a preference for certain rotational phases which coincide with the dominant

starspotflregion.

The χ2
ν statistic is utilised as a means of assessing the rotational phase distribution of the

flares. In order to do this the sample is split depending on the number of flares present in

the lightcurves of each star using the overall mean number of flares as an indicator. Any star

which possessed > 12 flares in its TESS lightcurve was considered to be an active M dwarf

and remaining sources are grouped together for the rotational phase analysis of the flares.

Additionally, the flares from all 149 low mass dwarf stars as a whole is also investigated and

these results discussed individually.

5.6.1 Individual Cases

From the sample, 45 stars show 13 or more flares in their lightcurves so, the phase distribution

of these flares can be tested individually. Out of this 45, ten have a star which was up to

1.5 mag fainter and within 42′′ of the target. For each of these stars, their lightcurves are

phase folded and binned using rotation periods and phase zeros obtained previously. The flares

are then split into low and high energy, where the cut-off was determined from a histogram

distribution of all flares which levelled off at 1033.5 erg. This information can be displayed
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Figure 5.5: The rotational phase distribution for 2MASS J0030-6236 (TIC 231914259) ob-
served in sectors 1 & 2 (where the rotational phase coverage φ = 1.0− 2.0 is a repeat). The
upper panel shows the phase folded, binned lightcurve where phase zero is defined as flux
minimum and Prot = 1.43 days. The lower panel shows the phase distribution of the flares as
a function of energy where triangle symbols represent flares of energies > 3.16× 1033 erg and
circles < 3.16× 1033 erg.

in plots similar to Figure 5.5 which show the rotational phase distribution of the flares as a

function of energy. In this particular example, 2MASS J0030-6236 (TIC 231914259) shows a

total of 58 flares, 17 of which are considered to be high energy, which are spread across all

rotational phases.

A simple χ2
ν test is used to assess the randomness within the rotational phase distribution

of the flares. The rotational phase, φ, is split into 10 bins (degrees of freedom is 9) of 0.1

between φ = 0.0 − 1.0 and χ2
ν is calculated for high energy, low energy and all flares. As an

example, 2MASS J0030-6236 (Figure 5.5) has χ2
ν of 1.31, 1.32 and 1.48 for high, low and all

flares: none are significant. For full details of this method please refer to §4.4. Overall, out of

the 45 M dwarfs none show flares which have a preference for rotational phase indicating the

flares are not associated with a large, dominant starspotflregion.

5.6.2 The Remaining Sources

The 104 remaining M dwarfs in the sample which show ≤ 12 or less flares in their lightcurves,

are grouped together to asses the rotational phase distribution of the flares as a whole. Phase

zero, φ0, is defined for each star to be the minimum of the rotational modulation, making a
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Figure 5.6: The rotational phase distribution for all stars which show < 12 flares in their TESS
lightcurves, where φ is defined as flux minimum 0.0 which represents rotational minimum.
The upper panel shows the rotational phase distribution as a function of energy where triangle
symbols represent flares of energies > 3.16 × 1033 erg and circles < 3.16 × 1033 erg. The
lower panel shows the histogram of the rotational phase distribution.

comparison of the flare phase distribution for varying stars possible. Figure 5.6 shows the flare

rotational phase distribution as a function of energy for all flares from the remaining 104 stars,

along with the histogram of the distribution where the rotational phase has been split into 10

bins of 0.1 between φ = 0.0−1.0. Flares were also split into low and high energy using the cut

off mentioned previously of 1033.5 erg. The χ2
ν test is applied to this sample of flares yeilding

values of 1.25, 0.57 and 0.57 for all, high and low flare groups respectively. Again, these χ2
ν

values for high and low energy flares indicate there is no correlation between rotational phase

and flare number amongst this group of flares from 104 stars.

This was repeated, splitting the stars into spectral type categories of < M4 and > M4 with no
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Figure 5.7: The rotational phase distribution for all 1776 flares from the sample of 149 stars.
The histogram of this distribution is shown using bins of φ = 0.1 where there is no evidence
of any correlation between flare number and rotational phase in high, low or all flares.

preference for flare rotational phase found in either of these groups. Similarly, the stars were

split by rotational period, for example 0 - 0.5 days, 0.5 - 1 days and so on, with no evidence of

any correlation being found using the χ2
ν test. In addition, using Gaia targets with nearby stars

were identified and are removed yeilding values of the χ2
ν test to be 1.13, 0.945 and 0.945 for

all, high and low flares respectively: the conclusions, therefore, are not affected.

To summarise, no evidence was found of any correlation between flare number and rotational

phase in the grouped remaining 104 M dwarfs which show ≤ 12 flares in their lightcurves.

When splitting this group up by spectral type or rotational period, again, no correlation was

found and the χ2
ν statistical test indicated the flares are randomly distributed.

5.6.3 The Sample as a Whole

Next, the rotational phase distribution of all 1765 flares from the sample of low mass stars is

analysed in its entirety to check for any correlations with flare number. As φ0 is defined at

flux minimum this comparison is possible. I do not find any correlation between flare number
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and rotational phase and the χ2
ν test indicates the flares are randomly distributed. Figure 5.7

shows the histogram distributions of the rotational phase for all flares which displays a uniform

spread amongst the phase bins of φ = 0.1. This was repeated for phase bins of φ = 0.2 and

φ = 0.01 and again no correlation was found.

In a similar analysis, Roettenbacher and Vida (2018) look at the number of flares occurring in

bins of phase φ = 0.01, for all stars in their sample of 119. They do find a correlation between

rotational phases which represent a visible starspot and flare number. This is observed as a

peak in the histogram distribution for flares of flux increases between 1% and 5% only and

not in higher energy flares of flux increases > 5%. However, their sample differs greatly from

this one as it consists of main sequence stars from late-F to mid-M observed in long cadence

(30-min) by Kepler.

Similarly, in Roettenbacher and Vida (2018) they only select stars for their sample which exhibit

one spot structure at a time in their lightcurve. From the sample of 149 M dwarfs which show

rotational modulation in their lightcurves, 77% show a clear sinusoidal pattern indicative of the

presence of one large starspot, where the remaining 23% have lightcurves which would have

arisen from multiple spots. To address this, all stars which showed any evidence for multiple

spots within their lightcurves were removed: the conclusions do not change.

5.7 Ultra-Fast Rotators

Rapidly rotating low mass stars are expected to produce increased levels of activity which

are strongly related to their dynamo mechanism (Hartmann and Noyes, 1987; Maggio et al.,

1987). Activity, including Hα, Ca II and X-ray emission, is observed to saturate in rapid

rotators where there is a decline in activity observed as rotation decreases, known as the

rotation-activity paradigm (Soderblom et al., 1993; Stauffer et al., 1997; Kiraga and Stepien,

2007; Yang et al., 2017). A further downward trend from the saturated plateau, known as

super-saturation, has also been observed in rapidly rotating stars (James et al., 2000). This

suggests a decline in activity despite their rapid rotation and goes against the rotation-activity

paradigm.

From Figure 5.4, I noticed a small group of nine stars which have rotation periods, Prot < 0.3
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Figure 5.8: The normalised flares per day of each star in the TESS sample as a function of
rotation rate.

days and spectral types in the range from M1 to M6 which produce a very low number of

flares. To investigate this further the rotational velocity, Ω, was determined for all stars in

the sample as Ω = 2πR/Prot which has units of km/s. R is the radius of the star derived

from the Stefan-Boltzmann Law using the temperature derived from Gaia DR2 and Prot is the

rotation period. Although there is some uncertainty in determining Ω, Figure 5.8 shows that

the stars with Prot < 0.3 days also have high rotational velocities. Upon calculating the break-

up velocity for the fastest two rotators in this group (TIC 206327797: Ω = 133 km/s and TIC

183596242: Ω = 94 km/s) it can be said these stars are both stable, rotating between 0.24

– 0.34 of the break-up velocity. Secondly, I am surprised to find that the flare rate decreases

with increasing rotational velocity. You would expect the stars with higher rotational velocity

to show greater flaring activity. At this point I am unable to explain this finding which will

therefore require further investigation, see §7.4.3 for more details.

I look to determine stellar ages for the small number of ultra-fast rotators as another indicator

to explain the lack of flaring activity. To do this Gyrochronology (Barnes, 2007) is used, which

utilises a relationship between the age, colour and rotation period of main sequence stars. For
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the purposes of this work, stardate (Morton, 2015; Angus, 2019) a python package, is used

which combines isochrone fitting with gyrochronology. For the nine ultra-fast rotators, the

ages are estimated to within the range of 3 Myr to 2 Gyr. If these are taken at face value it

raises serious questions for how such a rapid rotator could be as old as 2 Gyr, and conversely

how such a young fast rotator can show only few flares. However, although the uncertainties

in determining the ages of solar-type stars are reasonably well understood, the spread in period

against age for low mass stars is much higher. With this caveat in mind, it is concluded that

age may not be the primary cause for the lack of flaring activity in these stars. Rather, this

suggests it may be related to their magnetic field configuration.

Kochukhov and Lavail (2017) recently investigated the global and small-scale magnetic field

configuration of the nearby M dwarf binary GJ65 AB. Despite nearly identical masses and

rotation rates (Prot = 0.2432 days for GJ65 A and Prot = 0.2269 days for GJ65 B (Barnes

et al., 2017)), the secondary exhibits an axisymmetric, dipolar-like global field with an average

strength of 1.3 kG while the primary has a much weaker, more complex, and non-axisymmetric

0.3 kG field. Furthermore, GJ 65 B flares more frequently than GJ 65 A and is also an order of

magnitude brighter in its steady radio emission (Audard et al., 2003). Despite their rotation

rate both of these stars possess dramatically different magnetic field configurations along with

varying degrees of magnetic activity. This suggests the magnetic field configuration of the

stars plays an important role in their magnetic activity, more so than their rotation period or

age. However, it is likely that all three factors are connected.

An alternative explanation is that flares from these objects emit mostly in blue wavelengths.

A preliminary check has been made for a few known ultra-fast rotators (KIC 6752578, KIC

6791060 and KIC 9825598) from literature observed by Kepler and find they too show a low

number of flares. However, these sources have only been observed in long cadence (30-min),

compared to TESS short cadence at 2-min, which could be the reason for not observing the

short duration flares if they are present. Additional work is needed via checking the flare

activity on the same object as observed by Kepler and TESS, see §7.4.3 and Ramsay et al.

(2020) for further details.
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5.8 Discussion

I have analysed the magnetic activity of a sample of 149 low mass stars observed in 2-min

cadence by TESS. Rotation periods for 90 percent of stars were successfully derived for the

sample as a result of rotational modulation present in their lightcurves. In addition, the flare

characteristics (energy, duration, rotational phase, etc.) have been catalogued for each star

and this information used to compute a statistical analysis on the flaring activity. No evidence

of a correlation between rotational phase and flare number was found for any individual star in

the sample or collectively as the entire catalogue of 149 stars. Even when targets with nearby

stars were removed there is still no trend present with regards to rotational phase and flare

number. Furthermore, when the sample is restricted to only those which show evidence of

one starspot, still no evidence for a correlation between rotational phase and flare number was

found. This result is consistent with the findings in Chapter 4 and with a larger sample size

this solidifies the initial finding. In Chapter 4, three scenarios were proposed to explain the lack

of correlation between phase and flare number including binarity, presence of exo-planets and

polar spots. Here I will discuss these three scenarios in greater detail while also introducing a

number of others which have come to light since.

Firstly, there is the possibility of star-star and star-planet interactions being a cause of the

constant flaring activity at all rotational phases observed in the samples of M dwarfs from both

K2 and TESS. Fischer and Saur (2019) look to identify signatures of star-planet interaction

(SPI) in the K2 lightcurve of the TRAPPIST-1 system. They discuss four mechanisms which

cause temporal variability of SPI lightcurves, two by orbital positions of planets and two

due to the stellar magnetic field. Overall, their results hint at a possibility of a quasi-periodic

occurrence of flares with the orbiting planet TRAPPIST-1c. However, this result is inconclusive

due to various factors but is a promising potential find for further studies. Similarly, Route

(2019) used multi-wavelength observations to study the SPI in the HD 189733 system. The

star in this system is a very active BY Dra type variable with a Jupiter mass planet orbiting at a

distance of 0.031 AU. Through physical and statistical analysis, Route (2019) concludes there

is no existence of SPI within this system and stellar activity on HD 189733A is not correlated

at certain orbital phases.
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In earlier work, Doyle et al. (1992), Van den Oord et al. (1998) and Byrne et al. (1998) showed

that for a star with radius ∼0.3R�, a field strength of ∼2.5kG (typical values for an M dwarf),

the maximum amount of stored energy is ∼ 1037(l/R�) erg where l is the length of a filament

and R� is the solar radius. Thus for a filament whose length is ∼30% of the star’s radius

this equates to ∼ 1036 erg. This is more than sufficient to explain the large flare energies for

flares on M dwarfs. Regarding the possibility of a filament located between the star and a

nearby planet this allows a factor of (1.6a/R∗)2, where a is the binary separation and R∗ is

the star’s radius. However, despite these studies SPI is still a relatively new area of research

and is difficult to observe. Hopefully further observations with missions like TESS will provide

the observations needed to prove SPIs.

As mentioned previously, Roettenbacher and Vida (2018) conducted a similar study to inves-

tigate the connection between starspots and flares in main-sequence stars. They use a sample

of late-F to mid-M stars observed using long cadence (30-min) lightcurves over 4 years. From

their sample of 119 stars, 2447 flares were detected with only lower energy flares occurring

predominantly with the large starspot. They propose this could be a result of more energetic

flares being observed on disk and close to/over the limb, whereas less energetic flares would

not be strong enough to be seen over the limb. In the present data there is no difference in the

rotational phase versus either the large or small flares. Furthermore, Mariska and McTiernan

(1999) reported that in most instances, occulted solar limb flares were indistinguishable from

non-occulted limb flares, although the hard X-ray spectra averaged over the entire event had

a softer spectral index in the occulted limb flares thus indicating an occultation of the hard

X-rays. Kuhar et al. (2015) shows a good correlation between hard X-ray fluxes and the excess

white light flux. It is likely the white-light emission from occulted flares may not be observable,

hence this can be ruled out as an explanation for the lack of rotational modulation in the flare

occurrence.

An additional scenario includes the possibility of multiple spot locations across the disk of the

star. Fitting a lightcurve with a one or even two spot model does not produce the sinusoidal

pattern observed in many low mass stars from Kepler and TESS (Eaton et al., 1996). If the

rotation modulation was a result of one dominant, large starspot, you would almost always

observe flat-top lightcurves and this is not the case. Therefore, the sinusoidal pattern which
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is observed is not produced by a circular large starspot but in fact multiple active regions

which hosts more/larger spots across the disk. One active region will possess either a larger

spot or greater spot coverage and would be responsible for the peak and trough present in

the sinusoidal lightcurve. In theory, this active region should produce higher energy flares, see

McIntosh (1990). However, no correlations between low or high energy flares and the phases

corresponding to the minimum of rotational modulation is observed. This suggests there

are other magnetic features, such as polar spots, and/or magneto-kinetic/hydrodynamical

processes at play.

Finally, there is the potential for the presence of polar spots on these low mass stars (Strass-

meier, 1996). Unlike the Sun, where polar spots are not present as a result of its dynamo

mechanism, polar spots can be present in these low mass stars and depending on the viewing

geometry are not reflected in the lightcurve. In Chapter 4, the formation of polar spots was

discussed in more detail concluding they have the potential to play an important role in flare

generation. It is possible they could be interacting with multiple spot groups across the disk to

produce constant flaring activity at a range of energies and at all rotational phases. Similarly

Roettenbacher and Vida (2018) also suggest the presence of polar spots as an explanation for

the spread in stellar flares within their sample.

I have further discussed the three scenarios proposed in Chapter 4 to explain the lack of a

correlation between flare number and rotational phase. With the extended sample of 149 low

mass stars observed in 2-min cadence with TESS, the initial finding has been solidified and

two new scenarios proposed to explain its cause. However, it is likely the results obtained stem

from a combination of the five scenarios, in particular multiple spot locations and polar spots

will have a big role to play.

5.9 Conclusions

To summarise, a statistical analysis of stellar flares is conducted from a sample of 149 low

mass stars observed in 2-min cadence by TESS. In particular, the focus is on investigating the

correlation between the rotational phase and number of flares and ultimately find no evidence

of any such correlation. This is unexpected as you would expect a correlation in flare number to
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coincide with the minimum of rotational modulation when spot coverage is at its maximum.

Therefore, explanations for the finding are outlined including star-planet interactions, polar

spots and multiple spot locations.

In addition, a group of rapidly rotating stars is touched upon within the TESS sample which

have Prot < 0.3 days but very little flaring activity. The reasoning behind this is speculated

and it is concluded to most likely be a result of the magnetic field configurations of the star. In

order to investigate this further it would be necessary to obtain spectropolarimetry observations

to derive more information on the magnetic properties of the stars.

Overall, the lack of any correlation between starspots and flare number has been solidified with

a larger sample using TESS. This finding questions the magnetic properties which are at play

on these stars to produce the flares observed. The next chapter sees the continuation of this

study extending out into stellar flare analysis of solar-type stars. This includes looking not only

at the rotational phase distribution of the flares but flare occurrence and stellar variability. In

addition, historic GOES solar flare data is used as a benchmark to detail the close relationship

between solar flares and sunspots.



Appendix

5.A Non-Rotating M dwarf Flare Stars

In this Appendix the stellar properties for the non-rotating low mass stars are detailed. This

includes properties such as the number of observed TESS sectors, number of flares, quiescent

luminosity, energy range and duration of the flares for each star.

The number of flares is obtained from the FBEYE suite of programs which also provides the

start, stop and peak times of each flare in order to calculate the durations. The energies of

the flares are determined as the equivalent duration (area under the flare lightcurve which is

obtained from FBEYE) of each flare multiplied by the quiescent luminosity of the star. For full

details of how all the stellar and flare properties are obtained please refer to §5.5.
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Table 5.A.1: The stellar properties of a select few stars which showed no rotational modulation but processed flares within their lightcurves, detailing
the number of flares, quiescent luminosity, energy range and duration range of the flares. The apparent magnitude in the TESS band-pass, Tmag, is
taken from the TESS Input Catalog (TIC) along with the TIC ID (Stassun et al., 2018). The distances are derived from the Gaia Data Release 2
parallaxes (Gaia Collaboration, 2016, 2018) and the spectral types are obtained from the SIMBAD catalogue.

Name TIC ID sector No. of SpT Tmag Parallax Distance log(Lstar) log(Eflare) Duration
Flares mas pc erg/s erg minutes

2MASS J2148-4736 147421845 1 3 5.0 12.694 17.869± 0.064 55.9623± 0.2023 31.18 33.00 – 33.53 42.00 – 47.99
LP873-37 099566892 1 5 4.0 12.12 21.106± 0.076 47.3165± 0.1706 31.26 32.59 – 33.37 17.99 – 80.00
2MASS J2123-3908 207080123 1 4 3.5 10.879 41.090± 0.070 24.3365± 0.0418 31.26 32.51 – 33.95 45.99 – 125.99
2MASS J0119-6842 052242947 1 3 4.0 13.69 28.976± 0.085 34.4768± 0.1018 30.39 32.00 – 34.06 14.00 – 130.00
2MASS J2121-2433 302298728 1 3 5.0 12.986 34.466± 0.102 29.0141± 0.0860 30.51 32.15 – 32.69 25.99 – 32.69
2MASS J0028-6751 038820496 1 3 4.5 13.653 22.666± 0.059 44.1177± 0.1160 30.75 32.30 – 32.88 12.00 – 47.99
2MASSI J01231-6921 052256020 1 1 8.0 14.748 22.479± 0.189 44.4915± 0.3742 30.14 32.20 28.00
2MASS J0253-7959 394356010 1 7 5.5 13.652 57.101± 0.071 17.5128± 0.0218 29.87 31.11 – 33.24 11.99 – 221.99
LEHPM 4459 389051009 1 2 5.0 12.94 72.095± 0.081 13.8649± 0.0157 29.84 32.14 – 32.36 69.99 – 101.99
2XMM J2253-1721 188586529 2 10 4.0 12.948 24.485± 0.124 40.8420± 0.2068 30.82 32.29 – 33.36 17.99 – 63.99
2MASS J0219-7137 234307350 1&2 3 6.0 15.342 20.735± 0.135 48.2307± 0.3153 29.77 32.14 – 32.36 11.99 – 31.99
2MASS J2352-5229 201226029 1&2 4 4.6 13.506 23.372± 0.069 42.7853± 0.1264 30.62 32.24 – 34.02 8.00 – 317.99
WISE J0127-6032 237910557 1&2 7 4.2 12.824 19.770± 0.058 50.5845± 0.1501 31.05 31.91 – 32.90 12.00 – 54.00
2MASS J0413-5231 219229275 3 2 2.4 11.54 19.428± 0.036 51.4721± 0.0967 31.58 33.54 – 33.63 104.00 – 128.00
WISE J0202-3136 123336907 3 1 4.0 13.32 19.41± 0.515 51.5198± 1.3674 30.86 33.29 58.00
FBS 0014-091 037718790 3 4 5.0 12.15 17.969± 0.083 55.6504± 0.2589 31.38 32.52 – 34.14 17.99 – 131.99
PS 78191 011652986 3 5 3.5 11.58 29.532± 0.074 33.8608± 0.0857 31.19 32.21 – 33.20 8.00 – 37.99
2MASS J0137-4558 100100909 3 2 5.0 13.22 26.511± 0.706 37.7193± 1.0053 30.65 32.63 – 32.72 39.99 – 41.99



6 Superflares and variability in Solar-type Stars
with TESS

The research outlined in this chapter has been published in the Monthly Notices of the Royal

Astronomical Society as Doyle et al., 2020, MNRAS, 494(3), 3596-3610.

6.1 Introduction

Solar flares are powerful, eruptive events which are seen across the entire electromagnetic

spectrum. Overall, our Sun can show flares with energy outputs ranging from 1024 - 1032 erg

(Aschwanden et al., 2000). However, studies of solar-type stars using Kepler have revealed

flares with energies exceeding 1032 erg, with ‘superflares’ having energies up to 1038 erg

(Schaefer et al., 2000).

Maehara et al. (2012) conducted the first statistical study of flares on solar-type (G-type main

sequence) stars. They used Kepler long cadence (LC: 30-min) lightcurves and identified 365

superflares (flares with energies > 1033 erg) on 148 G-type stars. In addition, they fit the

occurrence distribution rate of the flares with a power law and find it is similar to solar flares

and flares on low mass stars. They also explore the proposed theory of hot Jupiters being

important in the generation of superflares (Rubenstein and Schaefer, 2000) and find none

have been discovered around their sample of solar-type stars indicating they are rare. Lastly,

using derived rotation periods for each star they conclude superflares occur more frequently

on young solar-type stars (younger than our Sun) as a result of faster rotation periods.

In Shibayama et al. (2013), they extend the work started by Maehara et al. (2012), searching

for superflares on solar-type stars (G-type dwarfs) with Kepler LC data over a longer period

112
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of 500 days. This resulted in identifying 1547 superflares on 279 solar-type stars, increasing

the sample of flares by a factor of four. Overall, they confirm the previous results, identifying

the distribution of occurrence rate as a function of energy to be similar to that of solar flares.

Interestingly, by monitoring the brightness variation of their sample they conclude the high

occurrence of superflares could be a result of extremely large starspots.

More recently, Notsu et al. (2019) presented a complete review of Kepler solar-type superflares

including updates on a new sample using the Apache Point Observatory (APO) and Gaia DR2.

The results from Gaia DR2 revealed the possibility of contamination of subgiant stars within

the classification of Kepler solar-type stars. This is due to previous classifications using Teff

and log(g) values from the Kepler Input Catalog (KIC: Brown et al. (2011)), where there are

large differences between real and catalogued values. One of the other key differences was their

ability to check the binarity of their new sources using APO spectroscopic observations, ruling

out stars which were members of binary systems. This, in turn, rules out the generation of flares

as a result of magnetic interaction between the binary system. They also investigate starspot

size, concluding the majority of superflares occur on stars with larger starspots, however, they

acknowledge there is some scatter. With regards to rotation period (Prot), they note maximum

spot size does not depend on Prot but maximum flare energy does continuously decrease with

slower rotation.

In solar physics, the relationship between flares and sunspots has been well established, with

these phenomena being closely linked. Multiple studies, such as Maehara et al. (2012); Notsu

et al. (2013); Maehara et al. (2017); Notsu et al. (2019), of solar-type stars report close

links between starspots and flaring activity concluding superflares are a result of stored mag-

netic energy near starspots. Despite this, the relationship between flare rotational phase and

starspots in solar-type stars has not been investigated in great detail. If superflares do occur

near starspots due to the storage of magnetic energy then you would expect to see a correlation

between starspots and flare occurrence.

In the previous studies outlined in Chapters 4 & 5, K2 & TESS SC photometric data was

used to investigate the rotational phase of flares in a sample of 183 M dwarfs. By using

simple statistical tests it was determined the phase distribution of the flares was random and

did not coincide with the large starspot producing the rotational modulation. This result was
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unexpected as it suggests the flares on these M dwarf stars are not correlated with the dominant

large starspotflregion present on the stellar disk. As a result, this indicates the magnetic field

and resulting activity on these stars may be more complex than what is observed on the

Sun.

In this study, TESS 2-min photometric lightcurves from a sample of solar-type stars are used

from observations in sectors 1 - 13 to conduct a statistical analysis of their flaring properties.

The short cadence 2-min TESS data is important for detecting low energy, short duration

flares. In addition to investigating the rotation periods, flare energies and flare frequency, the

rotational phase of the flares will be explored. This analysis aims to determine whether the

flares and starspots on these solar-type stars share the same strong correlation as solar flares

and sunspots on the Sun. Furthermore, historic GOES data of solar flares is also utilised to

investigate the relationship between solar flares and sunspots in greater detail.

6.2 Solar-Type star sample

In previous solar-type star studies, the sources were identified using their effective temperatures

(Teff ) and log(g) values from the KIC, or other associated catalogues. However, this process

led to a contamination of sub-giants within the sample which were incorrectly identified due to

differences between real (Gaia DR2) and catalogued values. Here solar-type stars are identified

as those with spectral types ranging from F7 - K2 according to the SIMBAD catalogue1, and

have been observed in 2-min cadence by TESS.

Now the various steps are discussed which were taken to eliminate any sources which were not

main sequence solar-type stars. Firstly, the sources were cross referenced with the SkyMapper

Southern Sky Survey (Wolf et al., 2018) and Gaia DR2 (Gaia Collaboration, 2018). Any

star which did not possess SkyMapper magnitudes or Gaia parallaxes was not considered any

further. Radii and luminosity values from Gaia DR2 were used to eliminate any which are likely

to be giants and hence wrongly classified within SIMBAD. Skymapper multi-colour magnitudes

and Gaia parallaxes were used to determine the quiescent luminosity of the stars in the TESS

bandpass. The magnitudes in the g, r, i and z bands are converted to flux and then fitted
1http://simbad.u-strasbg.fr/simbad/

http://simbad.u-strasbg.fr/simbad/
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Figure 6.1: A histogram showing the spread in spectral types within the solar-type star sample
observed in 2-min cadence by TESS.

by a polynomial to produce template spectra of each star. These are then convolved by the

TESS bandpass providing the quiescent flux of each star in the TESS bandpass. By inverting

the Gaia parallaxes the distances of the sample are determined and used to infer the quiescent

luminosity of each star. These values along with the stellar properties of each star are provided

in Table 6.1.

In this chapter, photometric TESS lightcurves of solar-type stars are used from sectors 1 - 13

made between 25th July 2018 - 18th July 2019. The data processing of the lightcurves is

discussed in §2.2.2. Overall, 158 solar-type stars in the sample (76%) were observed in only

one sector with the remaining 58 (24%) targets being observed in multiple sectors.

The TESS 2-min lightcurves of the remaining sources were visually inspected by eye individu-

ally to determine those which showed any signs of rotational modulation. Some sources which

showed complex lightcurves or no evidence of rotational modulation were not considered fur-

ther. Only a handful of these sources which did not possess rotational modulation showed any

evidence of flaring activity and were omitted as the rotational period is a key aspect of the
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analysis. Finally, all lightcurves were then run through a flare finding algorithm and any which

did not show any flaring activity were omitted from further analysis.This process resulted in a

final sample of 209 solar-type stars observed in 2-min cadence by TESS. The spread of spectral

types within this sample is shown in Figure 6.1. Additionally, it is important to note three

of the stars within the sample show evidence of belonging to an eclipsing binary in the TESS

lightcurves. This will be discussed further near the end of the chapter in §6.8.

Due to the nature of the selection of targets for our solar-type sample there are some selection

biases which should be highlighted. Firstly, only stars which had spectral types recorded in

SIMBAD were initially selected: we are therefore biased towards stars which had a spectral type

recorded. Secondly only those stars which display rotational modulation are selected, as it is

critical for our analysis. However, this results in a bias towards active solar-type stars in our

sample meaning a complete picture is not achieved. Additionally, there is a bias towards later

type (G8 - K2) solar-type stars, see Figure 6.1. Finally, targets had to possess SkyMapper and

Gaia data which resulted in some targets being omitted from this study which potentially could

have shown rotational modulation and/or flares. Despite these selection biases, we consider

that our final sample of 209 solar-type stars with spectral types between F7 and K2 (for the

full stellar properties see Table 6.1) is large enough for determining the rate of super-flares

from solar-type stars and whether they show any rotational phase dependence.

6.3 Stellar and Flare Properties

This section looks at both the stellar and flare properties of each star, including determining

the rotation period, identifying the flares and calculating their energies. In addition, a small

group of ultra-fast rotators identified within the solar-type sample is also discussed.

6.3.1 Rotation Period

The rotation periods are determined for all 209 solar-type stars in the sample using the rota-

tional modulation observed in the lightcurve. This rotational modulation occurs as a result of

large, dominant starspot(s)flregion which move in and out of view as the star rotates, changing
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Figure 6.2: Here three examples of lightcurves are shown from the solar-type stars CD-52
10232 (top), HD 221224 (middle) and BD-19 3018 (bottom). These have spectral types K0,
G5 and K0 and rotation periods 4.25 days, 1.58 days and 4.07 days respectively. As well as
clear modulation within these lightcurves as a result of starspots, flares can also be seen in all
three stars.

the brightness of the star periodically. Examples of this phenomenon can be seen in Figure 6.2

of several solar-type stars ranging in rotation period and spectral type.

To determine the rotation periods, Prot, a Lomb-Scargle (LS) periodogram is utilised from the

software package vartools (Hartman and Bakos, 2016). This provides an initial estimation of

Prot, and by phase folding and binning the lightcurve through an iterative process a final value

is verified. Along with Prot phase zero, φ0, is also determined and represents the minimum

of the flux of the rotational modulation. Overall, this process allows for the determination

of both Prot and φ0 which is used in subsequent analysis of the magnetic activity. Errors

on Prot are estimated to be within a few percent. It is important to note that occasionally

the LS periodogram detects half of the true period. However, as each lightcurve was visually

inspected instances where this has occurred are identified and the period modified accordingly.

Therefore, this does not affect the majority of stars in the sample.

The stellar properties of the sample can be seen in Table 6.1 including both Prot and φ0.

Within the solar-type sample rotation periods range from 0.24 - 11.16 days. It is difficult to

detect stars with Prot > 10 days (the Sun has Prot ∼ 27 days), due to the observation length
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of TESS at ∼ 27 days per sector although, for stars with more than one sector of data it

is possible to obtain longer periods. However, despite this, it is still possible to conduct an

analysis on this sample in comparison to the Sun as the comparison is done with regards to

the relationship between flares and starspots.



CH
APTER

6.
VARIABILITY

IN
SO

LAR-TYPE
STARS

119

Table 6.1: The stellar properties of the first stars in the survey observed by TESS detailing the rotation periods, quiescent luminosity, energy range
and duration range of the flares. The apparent magnitude in the TESS band-pass, Tmag, is taken from the TESS Input Catalog (TIC) along with the
TIC ID (Stassun et al., 2018). The distances are derived from the Gaia Data Release 2 parallaxes (Gaia Collaboration, 2016, 2018) and the spectral
types are obtained from the SIMBAD catalogue. For the full table please refer to Appendix A.2.

Name TIC ID sector Ra Dec No. of SpT Tmag Parallax Distance Prot log(Lstar) log(Eflare) Duration
(deg) (deg) Flares (mas) (pc) (days) (erg/s) (erg) (minutes)

CD-5210232 161172848 1 339.8765 -52.0882 2 K0 10.03 9.4283 106.063 4.25170 32.82 33.80 – 34.26 34.00 – 70.00
HD205297 403121294 1 324.3149 -65.0393 11 G6 8.27 13.642 73.3003 1.52470 33.05 33.09 – 34.44 12.00 – 102.00
HD49855 176873028 1,2,4 100.9428 -71.9762 12 G6 8.39 17.989 55.5871 3.85670 32.78 31.73 – 34.10 8.00 – 52.00
HD42270 261236136 1,12,13 88.3725 -81.9478 19 K0 8.28 16.965 58.9431 1.88070 32.82 32.82 – 35.06 8.00 – 232.00
HD47875 167344043 all minus 11 98.6712 -69.8849 179 G4 8.50 13.893 71.9756 2.99380 33.00 32.74 – 34.74 8.00 – 184.00
HD987 266997586 1,13 3.4725 -74.6886 10 G8 8.07 21.811 45.8470 3.60860 32.70 32.74 – 33.98 14.00 – 96.00
V*VZHor 220536421 1,2,3 42.9723 -61.6173 48 K1 7.89 24.921 40.1263 2.57500 32.48 32.33 – 34.65 12.00 – 174.00
V*CSGru 278634010 1 333.8974 -39.0143 20 K0 8.43 18.595 53.7770 3.35710 32.82 32.79 – 35.00 14.00 – 284.00
HD32195 319289907 1 72.0231 -80.7790 7 F7 7.85 15.927 62.7857 1.23136 33.02 32.80 – 33.81 12.00 – 42.00
HD46920 167247077 1,5,7 97.6388 -67.6025 11 G3 8.50 13.893 71.9756 3.66670 33.02 33.13 – 34.02 14.00 – 54.00
HD202917 079403675 1 320.2084 -53.0347 9 G7 7.99 21.345 46.8489 3.38290 32.56 32.94 – 34.61 24.00 – 275.99
HD211862 270356871 1 335.1712 -28.2328 4 G1 8.54 7.0541 141.761 1.19460 33.61 34.53 – 35.59 58.00 – 168.00
CPD-571131 279614617 1 106.3013 -57.5706 2 G8 9.12 3.5490 281.769 7.37670 33.98 35.19 – 35.46 84.00 – 108.00
HD269406 179369970 1 79.9842 -71.4854 1 G5 8.90 3.9785 251.351 2.86130 33.98 35.15 64.00
CD-7776 050345701 1,13 32.3507 -76.6876 11 K1 8.99 11.405 87.6755 5.27750 33.06 33.38 – 34.95 18.00 – 160.00
HD39150 364588501 all 85.4033 -76.0723 207 G6 9.14 9.0342 110.690 2.28000 33.16 33.07 – 35.29 8.00 – 220.00
HD269921 404768019 1,2 84.6440 -68.8850 8 G7 9.50 10.653 93.8667 0.72162 32.89 33.26 – 35.17 12.00 – 174.00
CD4014901 214772274 1 341.6400 -39.4792 3 G5 8.81 13.198 75.7685 3.19250 32.97 33.89 – 34.29 50.00 – 98.00
CD-63408 309714906 1,10,11 126.0248 -63.5672 9 G5 9.19 10.027 99.7258 0.79029 33.06 33.52 – 34.67 22.00 – 96.00
HD223728 009708387 2 358.0430 -11.7210 4 G1 8.08 11.840 84.4552 2.36540 33.25 32.99 – 34.74 8.00 – 118.00
CD-3019800 012359079 2 0.8360 -29.8230 1 F8 10.76 4.2171 237.129 2.64560 33.23 34.37 38.00
V*VZRet 031850842 2 52.1536 -66.9201 2 G8 10.11 7.2042 138.807 2.31970 33.02 33.19 – 34.58 8.00 – 46.00
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6.3.2 Stellar Flares

The same methods as Chapters 4 & 5 were used to identify the flares present in each lightcurve

and calculate their energies in the TESS bandpass. This involves using FBEYE (Davenport

et al., 2014) and visually checking by eye to validate they are indeed flares. This requires them

to possess a classical flare shape with a sharp rise and exponential decay. Once complete, a

comprehensive list of stellar flares including their start and stop times, flux peak and equivalent

duration is produced for each star. Some examples of these flares can be seen in Figure 6.2

along with the rotational modulation.

The flare numbers for each star are normalised to give the number of flares per day as the

observation length of each star varies as a result of being observed in multiple sectors. In Figure

6.3 the normalised flare number is plotted alongside the rotational period which shows flare

number decreasing with increasing rotation period. Despite the lack of stars with Prot > 10

days, this is consistent with other studies such as Stelzer et al. (2016) but also with Chapters

4 & 5.

In addition, the rotation rate, Ω, is also plotted as a function of the normalised flare number,

see Figure 6.3. To do this, the relationship Ω = 2πR/Prot is used where R is the radius of the

star taken from the Gaia DR2 release and Prot is the rotation period derived earlier. This allows

for the identification of the fast rotators within the sample. In Chapter 5, a group of M dwarf

ultra-fast rotators (UFRs) was discovered with Prot < 0.3 days which surprisingly displayed a

low level of flaring activity. Determining ages for these stars did not provide any explanation

for their peculiar behaviour. In this sample four solar-type UFRs were identified with Prot <

0.4 days which also show low levels of flaring activity. At the moment, I do not have a clear

explanation for this phenomenon, however, I do believe it is related to the magnetic field

properties of the stars which is discussed more in §7.4.3. Since these objects are fast rotators,

they are probably young, hence it is possible that the flares have their maximum energy in

the blue, thus the TESS band-width only sees the more energetic events. Additionally, these

stars could be members of syncronised binary systems which could cause the observed rapid

rotation and suppress flaring activity.

Next the energies of the flares are determined within the TESS bandpass. These are calculated
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Figure 6.3: The normalised flares per day of each star in the sample as a function of rotation
period, Prot, (top panel) and rotation rate, Ω (lower panel). Each of the points are colour
coded according to the colour bar which represents the maximum flare energy from the star.
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Figure 6.4: The distribution of the energies of the 1980 flares for the sample of 210 solar-type
stars. This histogram was used to define the cut off between high and lower energy flares of
1034 erg which was used in subsequent analysis.

as the equivalent duration, area under the flare lightcurve obtained from FBEYE, multiplied

by the quiescent stellar luminosity. As mentioned previously, the quiescent stellar luminosity,

Lstar, was determined from both Skymapper magnitudes and Gaia parallaxes, full details in

§6.2. Within the solar-type sample a large variety of flare energies are seen ranging from

2.1×1031−1.8×1036 erg. Approximately 92% of the flare sample are classified as superflares

with energies greater than 1033 erg. It is important to note here the term ‘superflare’ was

defined according to the Carrington event which was a X45 class solar flare observed in 1859

and had an energy output of 4.5× 1032 erg (Cliver and Dietrich, 2013). Hence, the majority

of the flares exceed this energy range making them ‘superflares’. Similarly, only 1.6% of the

flare sample have energies less than 1032 erg, which is the range of solar flares, with no flares

less than 1031.5 erg. The highest energy flare of 1.8× 1036 erg was observed on the star HD

217344 (TIC 229066844) a G4 star with Prot of 1.62 days. All of the flare properties for each

star can be seen in Table 6.1, and the spread of flare energies can be seen in Figure 6.4.
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Figure 6.5: The logarithm of the cumulative flare frequency in seconds against the logarithm of
flare energies for a handful of solar-type stars in the sample. These stars have varying spectral
types in the ranges G1 - G4 (blue), G5 - G9 (red) and K0 - K2 (green) but each line represents
a single star. In addition, these stars have different rotation periods identified by the line style
where dashed represents fast rotating with Prot < 2.6 days and solid as slowly rotating with
Prot > 2.6 days.

6.3.3 Superflare Frequency

As well as calculating the flare energies, the frequency of the superflares need to be investigated.

Figure 6.5 shows the FFD for a handful of stars ranging in rotation period and spectral type.

The dashed line represents stars with rotation periods less than 2.6 days and a solid line greater

than 2.6 days, where 2.6 days represents the median. In addition, stars with varying spectral

types are displayed by colour with G1 – G4 blue, G5 – G9 red and K0 – K2 green, where each

line represents an individual star. These stars were selected as they possessed a reasonable

number of flares for each of the spectral sub-types and had varying rotational periods. Now

I will go into more detail about the various stars and the relationship between all six as a

whole.

Firstly, as an example, the dashed red line represents the G6 type star HD 39150 (TIC

364588501) which has a rotation period of 2.28 days and 207 flares. HD 39150 will produce



CHAPTER 6. VARIABILITY IN SOLAR-TYPE STARS 124

a flare of energy 1035 approximately every 49 days whereas a flare of 1033 will be produced

every 1.5 days. Overall, the higher the flare energy the less frequently it will be observed from

the star which is consistent with the mechanism known to generate solar flares on the Sun.

Prior to the flare energy release the magnetic field becomes stressed and twisted allowing for

the buildup of magnetic energy. The flare is then released as thermal energy, kinetic energy

and particle acceleration when the magnetic field reconfigures and simplifies through magnetic

reconnection (Fletcher et al., 2011, and references therein). Therefore, it should take longer

to build up and store the magnetic energy required for larger energy flares of 1035 erg and

greater, although see §4.5 on flare waiting times.

Looking at the slowly rotating stars as a whole, the G9 type star HD 31026 (TIC 077371445;

solid red line in Figure 6.5) which has a Prot = 4.8 days and a total of 23 flares, shows a

higher flare energy than the other slowly rotating stars. Oddly enough, this star was only

observed in two sectors in comparison to the other slowly rotating stars at six sectors. From

the FFD we can see it will take approximately 150 days for this star to produce another of

the highest energy flares which is approximately 5 TESS sectors of observations. Therefore, it

could be coincidence that TESS was observing this star at the right time to observe such a

large flare.

In terms of the fast rotating stars, HD 39150 (TIC 364588501) has the highest flare rate and

highest energy, however, it was observed in all 13 sectors. The remaining fast rotators both

have the same distribution where the difference in spectral type has no effect. As a whole, the

behaviour between the fast and slow rotators does change in each of the spectral type groups,

where fast rotators show flares more frequently. However, within the G1 – G4 spectral group

the flare frequency at lower energies is higher in the slowly rotating star.

Overall, this plot shows the spectral type of the stars does not affect the flare energies. How-

ever, it is apparent the rotation period does play a role with the faster rotating stars producing

flares of higher energies and flares more frequently. This is to be expected as faster rotat-

ing stars tend to produce high energy and overall flare more frequently (with exception of

the UFRs) in comparison to their slowly rotating counterparts (Hartmann and Noyes, 1987;

Maggio et al., 1987).
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6.3.4 Flare Effects on Habitability

The Sun can produce solar flares with energy outputs of up to 1032 erg. These explosive

events have effects which sweep through the entire solar system. Due to Mercury’s close

proximity with the Sun, it’s very thin exosphere is constantly being stripped away and then

replenished by particles from solar flares, Coronal Mass Ejections and the solar wind (Guinan

and Ribas, 2004, and references therein). On Earth, the magnetosphere protects the planet

from harmful radiation and fast moving particles which originate from the Sun. In the event of

a large X-class solar flare satellites can be disrupted and aurora can be seen at lower latitudes.

Gas giant planets such as Jupiter and Saturn have strong internal magnetic fields and large

magnetospheres so the effects of flaring activity can result in aurora and geomagnetic storms

(Engvold et al., 2018).

The sample of 209 solar-type stars was cross referenced with the NASA Exoplanet Archive 2 to

identify if any of the targets have known planets. Within the sample only one solar-type star,

HD 44627 (TIC 260351540), is a host to known exoplanets with a spectral type and rotation

period of K1 and 3.9 days. This particular planet is a wide orbiting giant with a semi-major

axis of 275AU and mass of 13.5 MJUP (Chauvin et al., 2005). This star produces flares with

energies between 6.1×1032 - 3.4×1035 erg flaring 48 times over a period of approximately 160

days. Jupiter is at a distance of approximately 5.5AU from the Sun, therefore, the distance

between the star and planet in the HD 44627 system would mean any stellar flares would have

a minimal effect. In addition, as the planet is a gas giant it will more than likely possess a

considerable magnetosphere similar to Jupiter.

However, there may be undiscovered exoplanets orbiting other solar-type stars in the sample.

Overall, the effects of superflares on orbiting planets will depend on many factors including the

star-planet separation, the energy of the flare and the composition of the planet. For example,

the flux deposited by a superflare of energy 1035 erg on a rocky planet at a distance of 1AU

will not cause any geophysical alterations. If this planet was icy, however, and if the flare

was in the range of 1038 erg, then it could cause melting which would result in flood plains

(Schaefer et al., 2000). Another key factor is the potential for the planet to have a magnetic
2https://exoplanetarchive.ipac.caltech.edu

https://exoplanetarchive.ipac.caltech.edu
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field strong enough to provide protection from harmful flare events. The radiation alone from

these events could cause planetary atmospheres to be constantly modified making it difficult

for hosting life (Vida et al., 2019, and references therein).

6.3.5 Flare Waiting Times

Hudson (2020) investigated the flare waiting times between successive solar flares from two

active regions AR 10930 (December 2006) and AR 7978 (June 1996). The purpose of this

study was to establish the build up/release processes which should be present as a correlation

between the waiting time and flare magnitude. Overall, Hudson (2020) does observe such a

correlation which solidifies the build up/release scenario for solar flares where solar flares result

from the build up of magnetic energy in the corona.

Similar work has been carried out in a stellar flare case, Hawley et al. (2014) study the flare

waiting times for the low mass M dwarf GJ 1243 using two months of Kepler data. They

observe a decline in the number of flares with greater waiting times between the range of 30

mins – 8 hours. As a result, they conclude GJ 1243 maintains a steady state of flaring activity

which is consistent to a scenario of a number of active regions on the disk. This means some

active regions are in the stages of release/decay while others are in the growth phase.

Here a similar analysis is conducted using the solar-type star HD 39150 (TIC 364588501)

which shows 207 flares within a year of TESS 2-min cadence observations. Overall, a similar

decline in waiting times (Figure 6.6(a)) is observed in comparison with Hawley et al. (2014),

however, the range in waiting times is much greater on a scale of days. According to Hudson

(2020), there should be a correlation with regards to waiting time and flare magnitude (i.e.

energy). However, while some flares with longer waiting times do show higher energies, there is

a wide spread amongst waiting time and energy as a whole, see Figure 6.6(b). Therefore, this

is consistent with HD 39150 possessing multiple active regions on the disk at various stages

in the build up/release of flaring activity. This is discussed in more detail in the subsequent

sections.
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Figure 6.6: The distribution of flare waiting times (top panel) for HD 39150 (TIC 364588501)
covering 207 flares during one year of TESS 2-min cadence data. Additionally, the flare waiting
times as a function of energy are also shown (bottom panel) detailing no strict correlation
between flare magnitude and waiting time.
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6.4 Stellar Variability

The continuous viewing zone is an area of the sky where each of the TESS sectors in the

southern and northern hemisphere overlap. This produces a region of sky with many stars

being observed for approximately one year. Within the sample of solar-type stars two have

been observed in the continuous viewing zone, HD 39150 (TIC 364588501) which was observed

in all 13 sectors and HD 47875 (TIC 167344043) which was observed in all 13 sectors minus

sector 11 where no data was collected. This provides lightcurves of these stars which span one

year allowing for the investigation of long-term levels of variability within these stars.

HD 39150 (TIC 364588501) which was observed for a total of 357 days. This G6 star has a

rotation period, Prot = 2.28 days and a total of 207 flares with energies reaching 1035 erg.

Figure 6.7 shows the lightcurve of this star spanning approximately 170 days, detailing the

changing nature of the rotational modulation. There is evidence of multiple spot groups

throughout the lightcurve sequence as the shape of the modulation changes. This could be

the result of two active regions possessing spots which are rotating with marginally different

periods, meaning they are slightly unsynchronised. The whole TESS lightcurve of this star

from all sectors can be folded to one rotation period and phase zero which also suggests this

scenario. In addition, the amplitude of the rotational modulation changes sector to sector

suggesting the active regions are growing and decaying as the star rotates or new regions are

developing/disappearing. To determine if some of the variability was due to instrumental effects

the lightcurves of spatially nearby stars were examined and found no variation between different

sectors. Therefore, it can be concluded the variability in HD 39150 (TIC 364588501) is intrinsic

to the star. With regards to flaring activity, there seems to be an increased level towards the end

of this section of lightcurve between days 125 and 155 where the flares appear more frequently

and with a greater energy. Tu et al. (2020) also discuss this target noting the increase in flaring

activity within sector 5, however, they do not offer any explanation regarding the reasoning

behind this. This star is discussed further in §6.6.2 providing a potential explanation for the

sudden increase in activity while also associating it with the rotational phase distribution of

the flares.

HD 47875 (TIC 167344043) is also present within the continuous viewing zone and was ob-
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Figure 6.7: The lightcurve for HD 39150 (TIC 364588501) covering approximately 170 days
detailing the magnetic variability of the star including changing spot structures and flaring.
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served for a total of 330 days. This star has a spectral type of G4, Prot of 2.99 days and

a total of 179 flares with energies in the 1034 erg range. The rotational modulation of this

star is constant throughout the year of observations possessing a clear sinusoidal pattern with

no evidence of multiple spots. However, the amplitude of this particular star also changes

producing a multiperiodic lightcurve. This would suggest there are potentially migrating spots

on the disk of the star which fall into differential rotation. As a result of this phenomenon,

large flares are observed as the migrating spot crosses the disk of the star.

Overall, there appears to be more variability observed within solar-type stars on timescales of

months, with regards to their spotted structures, as compared to low mass stars. It is known

active regions and spot structure observed on the Sun change over periods of weeks to months

with no sunspots lasting years. Therefore, it is not unexpected to observe this behaviour in

other stars of a similar spectral type. As TESS returns to the southern ecliptic in cycle 3, follow

ups of these stars would be valuable to continue to monitor the changing behaviour observed.

This will then lead into long term observations with the potential to determine stellar cycles

which is important in understanding the overall magnetic cycle on other stars.

6.5 Starspot Areas

Determining the areas of starspots is a non-trivial process and there are many ways to do

so including Zeeman Doppler Imaging (Rosén et al., 2015), Spectral Modelling (Fang et al.,

2016; Gully-Santiago et al., 2017) and Planet-Transit Spot Modelling (Morris et al., 2017).

In addition, it is possible to use the amplitude of the rotational modulation from lightcurves

to provide a rough indication of the approximate areas of starspots on the stellar disk (Rebull

et al., 2016a,b; Giles et al., 2017). However, this process underestimates for the presence of

polar spots, circumpolar spots, bands of spots, spots all over the disk and a pole-on star with

spot distributions. Despite this, there is still merit in determining starspot areas as it can

provide some insight into the conditions needed for these large energy superflares.

In order to determine the starspot area the method described by Notsu et al. (2019) is used.

Firstly the temperature of the spot must be determined which can be done by applying a

relation on the difference between the photosphere and the spot (see Berdyugina, 2005, for
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further details). The relationship is as follows:

Tstar − Tspot = 3.58× 10−5T 2
star + 0.249Tstar − 808 (6.1)

where Tstar is the effective photospheric temperature obtained from Gaia DR2 and Tspot is the

temperature of the spot. Next, Tspot is used to calculate the area of the starspot according to

the variations within the lightcurve. This relationship is based on the assumption that there

is a linear relationship between the amplitude of the modulation and the spot coverage, when

estimating the magnetic energy stored around the starspots as a function of the amplitude of

the modulation (see Shibata et al., 2013; Notsu et al., 2013, for further details). Therefore,

the total amplitude of the rotational modulation, normalised to the average star brightness,

can be expressed as:

∆F
F

=
[
1−

(
Tspot
Tstar

)4]Aspot
Astar

(6.2)

This then rearranges to give the starspot coverage, Aspot as:

Aspot = ∆F
F

Astar

[
1−

(
Tspot
Tstar

)4]−1
(6.3)

where ∆F/F is the amplitude of the normalised lightcurve, which was measured from the

phase folded and binned lightcurve and Astar is the area of the stellar disk calculated as 2πR2

(R is taken as the Gaia DR2 radius). As an example and benchmark starspot temperature

for the Sun, a G2 type solar star with a temperature of Tstar = 5800 K, were calculated

finding Tspot = 3960 K. This temperature is reasonable and aligns with the temperature range

for sunspots at 3500 – 4550 K (Solanki, 2003). Using these relationships, it is possible to

determine approximate spot areas for all 209 solar-type stars within the sample.

According to McIntosh (1990), larger more energetic solar flares occur from active regions
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Figure 6.8: Here the spot coverage of each star calculated from the amplitude modulation of
the TESS lightcurves is shown as a function of stellar rotation period (top panel), normalised
flares per day (middle panel) and maximum flare energy (bottom panel).
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which host larger spot coverages and complex spot structures. Therefore, you would expect to

see the same behaviour within other solar-type stars. In Figure 6.8, the stellar spot coverages

are looked at as a function of rotation period, flare number and flare energy to investigate

whether the predicted behaviour is in fact observed. With regards to rotation period, you

would expect a larger spot coverage to result from a faster rotation period. However, in the

sample there appears to be no relation and overall there is a large spread in both rotation and

spot coverage. This was tested further using the Pearson Correlation Coefficient (PCC) which

yielded a result of PCC = –0.13 also indicating the lack of any correlation. The PCC is a

statistical test which measures the linear relationship between two variables. A coefficient of

PCC = +1 indicates a direct positive linear correlation and PC = –1 a direct negative linear

correlation, with PCC = 0 indicating no correlation.

Next we look at the number of flares as a function of spot area. The expectation is that the

larger the spot coverage the more flares will be observed from the star. However, this is not

the case and we observe a peak in flare number at approximately 1017 m2 where afterwards,

there appears to be a drop in flare number for the larger spot coverages. Could this be because

these larger spot coverages are producing higher energy flares less frequently? Again, this was

tested with the PCC providing a value of PCC = –0.05 which indicates there is no linear

relationship present. This then brings us on to look at the energy of the flares as a function of

spot coverage. Although there appears to be some evidence for higher energy flares resulting

from larger spot coverages (Figure 6.8), the PCC provided a result of PCC = 0.38 indicating

there is a weak linear correlation present. Overall, none of the Pearson correlations for any of

the plots in Figure 6.8 indicate a strong linear correlation.

The solar-type star CPD-5711 31 (TIC 279614617) is a G8 type star which was observed

to have the largest starspot coverage despite only having a rotation period of 7.37 days. It

was observed in TESS sector 1 and produces two flares during this time. This is a relatively

low number considering it has the largest spot coverage of 3.8 × 1018 m2 (which equates

to 10% of the visible stellar disk) from the solar-type star sample. For context, sunspots

typicaly cover 0.01 – 0.1% of the solar surface, reaching a 1% coverage during solar maximum

(Strassmeier, 2009). However, it does produce two of the larger flares with energies in the

1035 erg range.
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A similar analysis was conducted by Howard et al. (2019) and Notsu et al. (2019) where they

also investigated the spot coverages of their stellar samples against various flare properties. In

Howard et al. (2019) they use photometric data from Evryscope (Law et al., 2015) lightcurves

of 113 cool stars to investigate rotation periods, starspot amplitudes and flare properties. They

did not find a relationship between the size of the spot coverage and the energy of the flares

produced but were able to constrain the minimum field strength of their late K to mid M

flare stars as 0.5kG. In Notsu et al. (2019) they conduct an investigation into the relationship

between superflares and rotation period, including an analysis on the spot coverages of their

sample of solar-type (G-type) stars. Overall, they do see a weak relationship between flare

energy and starspot coverage, concluding the superflare energy is in fact related to the starspot

coverage of the star. In our sample we see evidence of a weak relationship between flare energy

and starspot coverage, similar to the plots in Notsu et al. (2019). In addition, they also see

that superflares tend to occur from stars with shorter rotation periods and larger starspot

coverages.

6.6 Rotational Phase

One of the criteria for the solar-type sample was the presence of rotational modulation within

the TESS lightcurve. This rotational modulation is the result of starspots which are present

on the stellar disk and move in and out of view as the star rotates. In Chapters 4 & 5 I test

the distribution of flares in samples of M dwarfs using a simple statistical test. Our findings

show no evidence for any preference in rotational phase, indicating the flares are randomly

distributed. In solar physics there is a well-established relationship between sunspots and solar

flares. Therefore, it is surprising to find no such correlation amongst other flare stars.

In this study, I will use the same simple χ2
ν test to assess the phase distribution of the flares.

I will look at the flares from all 209 solar-type stars as well as several stars which possess the

highest flare rate. In addition, stars which possess no evidence of multiple spots within their

lightcurve will be extracted and a separate analysis will be carried out on these stars. All of

this will allow a thorough analysis on the rotational phase of the flares, determining whether

in solar-type stars there is a starspot/flare relationship similar to the Sun.
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Figure 6.9: A histogram of the rotational phase distribution for all 1980 flares from the sample
of 209 solar-type stars. The bin size is φ = 0.1 and the spread shows no preference for any
rotational phase. The cut-off for low and high energy flares was determined as 1034 erg.

6.6.1 The Overall Flare Sample

Taking all 209 solar-type stars in the sample with a total flare number of 1980, I can test

for any preference in rotational phase. For all of the stars phase zero, φ = 0.0, is defined as

flux minimum of the rotational modulation allowing for this comparison. Utilising a simple

χ2
ν test (see §4.4 for full details), no correlations between flare number and rotational phase

was found. The values of the χ2
ν test are 1.22, 1.04 and 1.04 for all, low and high energy

respectively, where the cut-off was determined as 1034 erg according to the distribution of flare

energies in Figure 6.4. This indicates the flares are randomly distributed and do not coincide

when the starspot is most visible. Figure 6.9 shows the histogram distributions for the flares

with phase bins of φ = 0.1, where a consistent spread of flares is present amongst all, high

and low energies.

In Roettenbacher and Vida (2018) they conduct a similar analysis for a group of 119 main

sequence stars from late-F to mid-M. However, they do find a correlation between rotational

phase and flare number which is presented as a peak in their histogram plot similar to Figure
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6.9. This correlation is only present in flares which have flux increases between 1% and 5%

and so is not present in higher energy flares. Their sample consists of mid-M type stars, while

the sample here does not, furthermore they use Kepler long cadence (30-min) observations

whereas I have used TESS short cadence (2-min) lightcurves. These differences along with

the addition of omitting stars which show any evidence for multiple spot structures in their

analysis could be why the results differ.

As mentioned previously there is a large variation in the rotational modulation of the TESS

lightcurves within the solar-type sample caused by the presence of multiple spots. In the

sample ∼ 40% show a clear sinusoidal pattern as a result of one starspot structure present

on the disk of the star. The remaining 60% show evidence of multiple spot structures which

could potentially cause problems within the rotational phase findings of all flares from all stars.

To address this all stars are removed which show any potential evidence for multiple spot

structures and conduct the test on the remaining sample. This consists of 83 solar-type stars

with a total of 886 flares. Our results, again, show no preference for rotational phase in the

χ2
ν test, therefore, this strengthens the conclusion that the flares do not originate from the

dominant spot/active region but are randomly distribution in rotational phase.

6.6.2 Individual Case Studies

Two solar-type stars were selected from the sample which have the highest flare rate and

therefore, are ideal candidates to investigate the relationship between rotational phase and

flare number. Both of these stars are present in the continuous viewing zone of the TESS

mission and their stellar variability was discussed in §6.4. However, in this section I will only be

focusing on the distribution of flares within their lightcurves as a function of rotational phase.

These stars are HD 47875 (TIC 167344043) and HD 39150 (TIC 364588501) with spectral

types G4 and G6, flare numbers of 179 and 207 and rotation periods, Prot, of 2.99 and 2.28

days, respectively. The same simple χ2
ν test was utilised as discussed previously obtaining

values for all low and high as of 1.55, 1.41 and 1.11 for HD 47875 and 0.75, 0.89 and 0.76 for

HD 39150. As a result, no significant evidence of any correlations between rotational phase

and flare number were found.
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 (a) (b)

Figure 6.10: Here phase folded and binned lightcurves (upper panel) are shown along with the
rotational phase distribution of the flares vs. their energy (middle panels). The top energy
plot represents higher energy flares with Eflare > 1034 erg and the bottom Eflare < 1034 erg.
In addition, a histogram distribution of the flares as a function of rotational phase is also
shown for completeness. The rotational phase coverage φ = 1.0 − 2.0 is simply a repeat of
φ = 0.0− 1.0. (a) HD 47875 (TIC 167344043) is a G4 star with Prot = 2.99 days and a total
number of 179 flares observed over 12 TESS sectors. (b) HD 39150 (TIC 364588501) is a G6
star with Prot = 2.28 days and 207 flares observed over 13 TESS sectors.

In Figure 6.10 the distribution of the flares as a function of their energy is shown along with

the phase folded and binned lightcurves. From these plots, it is easier to see there are flares

present at all rotational phases in both high and low energy. In addition, the flares are randomly

distributed and there is no preference for any rotational phase even during rotational minimum

when the dominant starspotflregion is most visible. Although, there is a hint of increasing high

energy (> 1034 erg) flares at phase 0.25 and 0.75.

Due to the length of the TESS observations for HD 39150 the analysis of flares and rotational

phase is approached in a different manner than any previous studies. From Figure 6.7 it

can be seen that within a few days (e.g. from day 137 to day 140), a large change in the

spot structure appears. At day ∼145, there is the presence of a large dominantflregion spot

structure while a few days earlier there is the emergence of multiple spots and plage activity



CHAPTER 6. VARIABILITY IN SOLAR-TYPE STARS 138

which reduces the spot contrast. However, the most interesting aspect is the intense flare

activity from day 127 to day 138 which clearly indicates a strong link between emerging spots

and flare activity. After this point the star returns to a less active state similar to what is

observed at the beginning of the lightcurve. Chandra et al. (2010) showed that the triggering

mechanism for intense flare activity was a combination of flux emergence, shearing between

the magnetic polarities of the two flux systems (emerging and pre-existing) plus the interaction

of the new emerging bi-poles with pre-existing field. With the spot structure for HD 39150

(TIC 364588501) changing rapidly on a daily basis, intense flare activity is expected.

As a result of this the χ2
ν test was computed on the sectors of TESS data for HD 39150 on an

individual basis and focused on the period in sectors 5 and 6 which showed the intense flaring

activity. However, the values for the χ2
ν test show no preference for rotational phase. This is

to be expected as by looking at the lightcurve in Figure 6.7 during this active period there are

flares present at all rotational phases. Despite this, the flares are present as a result of the

emergence of multiple spots and plage activity which does suggest the link between spots and

flares. However, the spot structures on these stars are more complex than a simple one spot

model and so this would be the main reason behind a lack in any clear correlation.

6.7 The Solar Analogue

With the Sun being the nearest star, astronomers and physicists have been collecting detailed

spatial observations to study its phenomena for nearly 150 years. Similarly, there is a wealth of

historic data including sunspot number and flare properties dating back to the 1930s. Overall,

these data sources provide a deep knowledge of the closest star aiding in the understanding

of multiple solar phenomena and its effects on the Earth and Solar System. In this section

I utilise historic X-ray data of solar flares from the GOES archive and sunspot numbers from

the Sunspot Index and Long-term Solar Observations (SILSO) database to detail the close

relationship between solar flares and sunspots.

The relationship between flares and sunspots is well-established and it is generally accepted

these phenomena are closely related. Figure 6.11(a) sums up this close relationship where the

sunspot number (red line) and flare number (blue histogram) are observed to be correlated with
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Figure 6.11: Here two plots are shown detailing the historic data of solar flares and sunspots.
Plot (a) shows the sunspot number in the red solid line and the flare number as the blue
histogram. These have both been normalised to 1 to allow a comparison of the data revealing
the close relationship between sunspots and solar flares. Plot (b) shows the varying sub-classes
of solar flares within revealing an anti-correlation between the lower A & B-class solar flares
to the higher energy X, M and C-class solar flares. The data of the solar flares was obtained
from the GOES for the sunspots from the SILSO database and all the data has been binned
per year.
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each other over the solar cycle. However, despite this, the relationship between sunspots and

flares is more complicated than initially believed. In Gao and Zhong (2016) they investigated

the temporal behaviour of varying classes of solar flares. Their findings show the lower B-class

solar flares to be in anti-phase with all other C, M and X-class solar flares in terms of the solar

cycle (see Table 6.2 for details of the various solar class flares and their respective energies).

To investigate this strange behaviour, the solar sub-classes are plotted as a histogram in Figure

6.11(b) which also displays an anti-correlation amongst the A & B-class solar flares. Even more

interestingly, the A & B-class flares are also out of synchronisation with the sunspot number.

As suggested by Gao and Zhong (2016) this anti-correlation within low class flares could

potentially be linked to the negative correlation between small and large sunspots (Nagovitsyn

et al., 2012). Note, this result could also be bias due to the systematic effect of non-detection

of weak flares when the Sun is bright.

This then brings us back to the lack of a correlation between stellar flares and starspots amongst

the solar-type sample. The evidence of an anti-correlation between low and higher energy solar

flares with regards to the solar cycle could be an explanation for the observation of stellar flares

at all rotational phases. These lower energy (< 1029 erg) solar flares are present when the

Sun is in a solar minimum and is considered not very active. Therefore, these flares could be

originating from plage regions or areas where local dynamos are at play. The higher energy

(> 1029 erg) solar flares are then clearly correlated with sunspots and both appear during

solar maximum when the Sun is at its most active.

Applying these scenarios to our solar-type star sample could aid in explaining the lack of a

correlation between rotational phase and flare number. Lower energy flares are present at all

rotational phases (see Figure 6.10) which could result from plage, filaments or local dynamo

regions not associated with spots which are present across the stellar disk. This is similar to

what is observed on the Sun where the lower energy flares are predominately present when the

Sun is less active and producing a lower number of spotted regions. The lower energy A &

B class solar flares are a few orders of magnitude less energetic than those observed on the

solar-type sample. However, it is possible to observe flares of energies 1029 erg in solar-type

stars, for example using Kepler, see Maehara et al. (2012). Therefore, these lower energy flares

could be present but not observable with TESS since it is less sensitive to lower energy flares



CHAPTER 6. VARIABILITY IN SOLAR-TYPE STARS 141

(see Section 2.2.3). As a result we note our flare sample does not contain any flares with

energies less than 1030 erg which equates to a C-class solar flare (see Table 6.2), however, in

our solar-type sample a lower energy flare is considered to be < 1034 erg according to Figure

6.4.

Overall, the lower energy (< 1034 erg) stellar flares from the solar-type sample could originate

from plage, filaments or local dynamo regions on the stellar disk not associated with starspots.

This is similar to the lower energy A & B class solar flares which are also not associated with

sunspots. Therefore, the stellar flares observed at all rotational phases could be resulting from

a mixture of spotted and non spotted regions resulting in no correlation between rotational

phase and flare number. Alongside this, the larger energy flares are more present when there is

spot activity present on the disk. This is particularly clear in the star HD 39150 in Figure 6.7

where emerging spot and plage regions cause increased flaring activity as a result of shearing

between varying magnetic polarities.

All of the discussions so far centre around the relationship between solar flares and sunspots

on a cycle basis. The TESS observations are far too short to investigate cycle periods on our

sample, even the ones observed in all sectors. It will take a few years for TESS to build up

longer term observations of stars as it returns to sectors. Therefore, can we correlate the solar

flare numbers within an activity cycle to the solar rotation period? The above work regarding

solar flares discusses X-ray data while with TESS we deal with flare observations in the optical.

What is required for the Sun is a discussion on whether there is a relationship between solar

flares and sunspots on the rotational period basis. Unfortunately, catalogues of solar White

Light Flares (WLFs) are very much incomplete: for example Matthews et al. (2003) lists 28

flares over a one year period detected with Yohkoh, a Japanese Solar mission. The catalogue

from Kuhar et al. (2015) contains 43 M and X class flares which occurred from 2011 to 2015

and were observed by both SDO/HMI and RHESSI and Namekata et al. (2017) expanded

on this adding another 11 observed in 2015. Overall, this data is not sufficient for a proper

analysis of the above question. Moreover, obtaining the rotation period of the Sun as an

effective lightcurve in time is a difficult process and despite irradiance measurements of the

solar disk being taken this is not something which is well studied in solar physics.
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Flare Classification Energy Range (ergs)
X10 > 1032

X 1031 - 1032

M 1030 - 1031

C 1029 - 1030

B 1028 - 1029

A < 1028

Table 6.2: The energy range for each of the solar flare classifications, making comparisons
between the stellar and solar flares easier (obtained from Notsu et al., 2019).

.

6.8 Discussion

In Chapters 4 & 5, no evidence was found for a correlation between rotational phase and flare

number within a sample of 183 M dwarf flare stars. This chapter represents a similar study for

a sample of 209 solar-type (F7 - K2) stars observed in 2-min cadence by TESS in sectors 1 - 13.

Rotation periods were determined using an LS periodogram, 1980 flares were identified and

classified within the sample and their energies calculated between 1031 - 1036 erg. Similar to

Chapters 4 & 5, no evidence of any correlation between rotational phase and flare number was

found, indicating the flares are randomly distributed and do not occur alongside the dominant

starspotflregion which is responsible for the rotational modulation. However, it was noted

that increased levels of activity were observed in the star HD 39150 (TIC 364588501) when

evidence of emerging starspot and plage regions were observed in the rotational modulation

of the lightcurve. This finding does then suggest there is a relationship between flares and

starspots and agrees with the mechanism for flare generation as discussed by Chandra et al.

(2010).

In Chapters 4 & 5, four possible scenarios to explain the lack of a correlation were identified

including star-planet interactions, binarity, polar spots and multiple spot locations. Here I

discuss these further while also bringing in other possible explanations. Firstly, there is the

potential for star-planet interactions (SPI’s) and interactions between two stars within a binary

system. Only one of the solar-type stars in the sample, HD 44627 (TIC 260351540), has a

known exoplanet. In this instance the planet is orbiting at much too great a distance (a =

275AU) to cause any SPI’s with its host star. However, this does not rule out any of the other

stars having undiscovered exoplanets which could cause SPI’s.
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Additionally, the stars in the sample could be in binary systems which could cause induced

magnetic activity producing flares. Within the sample there are three stars whose TESS

lightcurves show they are eclipsing binaries. These solar-type stars are CD-78 516, AF Cru

and HD 120395 (TIC 357911163, Porb = 1.63 days; TIC 309528896, Porb = 1.89 days; and

TIC 243662768 Porb = 1.64 days respectively), which have rotation periods between 7.5 – 10

days, a spread in spectral types and show little flaring activity. The lack of flaring activity in

these stars indicates that the period is long enough that interactions between the stars do not

give rise to increased flaring activity.

Secondly, with the M dwarf samples in Chapters 4 & 5 I discuss the potential for polar spots

which could cause flaring activity at all phases if in the line of sight. It is important to note

here that after spectral type M4 (∼ 0.3M�) these stars become fully convective and so do

not possess a tachocline, therefore, generating their magnetic field through a different dynamo

mechanism in comparison to the Sun. However, polar spots or spots with high latitudes have

never been observed on the Sun, therefore, you would assume polar spots are not possible

on other solar-like stars. Despite this, in a study by Schrijver and Title (2001) they simulate

that polar spots could be possible on sun-like stars where a strong polar cap field leads to

suppression of convection and formation of starspots at high latitudes. As a result, there is

the possibility of polar spots being present on these solar-type stars which could be interacting

with active regions at lower latitudes to produce flaring activity.

This then brings us on to the theory of multiple spot locations. During solar maximum, the

Sun can be observed to possess many active regions which host spots including multiple spots

at one location. As a result, it is entirely possible for the solar-type stars to possess multiple

spot locations which could produce flaring at all rotational phases. Evidence of multiple spots

was observed in the one year lightcurve of HD 39150 (TIC 364588501) which was observed in

the continuous viewing zone. In the TESS lightcurve of this particular star the shape of the

rotational modulation is observed to change over time with the whole lightcurve being fold-able

on one rotation period and phase zero. This suggests multiple spots which are slightly out of

synchronisation producing the changes in the shape of the rotational modulation. As a result,

increased levels of flaring activity are observed which co-align with the changes in the rotational

modulation suggesting emergence of new spot regions and plage regions which interact with
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each other to produce the increased flaring activity. The large spot coverage of this and other

G stars suggest youth. This is consistent with a study of the solar spectral irradiance variability

over the last 4 billion years (Shapiro et al., 2020). The Total Solar Irradiance (TSI) variability

of the young 600 Myr old Sun was about 10 times larger than that of the present Sun with its

variability been spot-dominated, while by 2.8 Gyr it’s variability is faculae-dominated.

As the relationship between solar flares and sunspots is well-established I used historic X-ray

GOES flare data and SILSO sunspot data to investigate this relationship further. It is found

that sunspot and flare number are closely linked across the solar cycles where sunspot numbers

increase as the Sun approaches solar maximum, so does the flare activity increase. Similar to

Gao and Zhong (2016) I also discover the lower energy A & B class flares are anti-correlated

with the higher energy X, M & C class. This is interesting as the lower energy solar flares are

more prominent during solar minimum when the sunspot numbers are low. As a result, this

suggests these solar flares could be originating from plage or local dynamo regions and are not

associated or correlated with sunspots.

This leads us on to the earlier finding of starspots and stellar flares not being correlated on the

sample of solar-type stars. The anti-correlation between high and low energy solar flares and

the lack of a correlations between low energy flares and sunspots could aid in understanding

the lack of a spot/flare connections in the solar-type stars. There is the potential for the lower

energy flares, which are observed to occur at all rotational phases, to result from plage regions

or local dynamo regions as well. However, this does not explain the lack of a correlations

between higher energy flares and starspots, as they should occur together much like what is

observed on a cycle by cycle basis on the Sun.

An alternative idea is that it should not be attempted to correlate flare activity with spot

number as this is not the main driver of magnetic activity. In a series of papers by McIntosh

et al. (2014); McIntosh and Leamon (2014) and more recently, Srivastava et al. (2018) and

Dikpati et al. (2019, and references therein); these authors suggested that activity bands

belonging to the 22 year magnetic activity cycle is the main driver of solar activity, with these

bands interacting at the equator. The idea behind this is an ‘Extended Solar Cycle’ which

appeared to extend the activity butterfly back in time, about 11 years before the formation of

the sunspot pattern. Furthermore, these activity bands extend to much higher solar latitudes
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and would require a polar dynamo which is not a widely accepted idea. The observational

evidence for the extended solar cycle is based on the evolution of coronal bright points, although

the origin of this work dates back several years to Wilson et al. (1988). As noted by the

authors, many large solar flares do not occur at sunspot maxima (e.g. see Odenwald et al.,

2006). They suggest that the longer these activity bands spent at very low latitudes, the

higher the probability for large flares due to the formation of complex active regions. With

faster rotators, one may have several of these activity bands, thus a series of complex active

regions producing super flares.

6.9 Conclusions

In this Chapter an analysis into the statistics of superflares was conducted on a sample of 209

solar-type stars. Utilising 2-min cadence data from TESS, rotation periods were derived for

the sample and characterised 1980 flares. Two of the targets were observed in the continuous

viewing zone so, with one year of observations a short study was conducted into the variability

of these stars. Our findings showed evidence of spot emergence, plage regions and migrating

spots which were connected to increased levels of flaring activity. Overall, the focus was on the

relationship between rotational phase and flare number finding no correlation between the two.

Additionally, an analysis on historic solar flare and sunspot data was included to investigate

the relationship between flares and spots on the Sun, using the results to aid in understanding

the lack of a correlation in the solar-type star sample.

By June 2020, TESS will finish observing the northern hemisphere and will return to sectors

in the southern sky. Further observations of these stars will allow for follow up studies, in-

vestigating their changing behaviour a year later. This will provide insights into the extended

magnetic activity of these stars while also allowing for the search of activity cycles. Overall,

the continued study of flares and starspots can aid in understanding the dynamo mechanism of

other stars and how it relates to the Sun. All of this is extremely important when considering

potential habitable systems which may orbit these active host stars.

In the next chapter, both the solar and stellar studies are brought together and the solar-stellar

flare connection is discussed in more detail.



7 Conclusions & Future Work

Throughout this thesis I have outlined both solar and stellar flare observations providing in-

terpretations of flares through comparisons of the two. In this Chapter, I recap on the most

important results and bring together the studies on both solar and stellar flares exploring the

connection between them. Additionally, the research carried out has paved the way into other

avenues which are touched upon in this thesis.

7.1 The Solar-Stellar Flare Connection

Solar flares represent a sudden increase in radiation which results from a rapid reconfiguration

of the coronal magnetic field. These events are extremely powerful and are observed across

the entire electromagnetic spectrum, possessing energy outputs up to 1032 erg (Fletcher et al.,

2011). The magnetic energy released from solar flares can be observed as multiple phenom-

ena including flare ribbons, post-flare arcades and filament eruptions. Overall, the pre-flare

magnetic topology is responsible for determining which of these phenomena will manifest to

produce a solar flare.

In addition to solar flares, stellar flares have been observed on stars similar to the the Sun

and less massive stars over many decades, with energies exceeding 1033 erg (e.g. (Schaefer

et al., 2000). Known as ‘superflares’ these large outbursts can have severe consequences for

any orbiting planets atmosphere, therefore, understanding their frequency and origin is vital

for the existence of life. Solar-type stars have a similar interior structure to our Sun, radiative

core with a convective envelope, yet they possess stronger magnetic fields - producing higher

146
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Figure 7.1: To the left shows a solar flare from the Sun on the western limb which appears as
a brightening in 171Å taken by SDO/AIA. To the right is an artists impression of a flare on
an M dwarf star where a large spot is also seen covering a significant area of the visible stellar
disk. Images courtesy of NASA.

levels of activity and stronger flares (Maehara et al., 2012). The reasons behind this remain

unknown, however, it is believed it relates to the stars dynamo and age. In low-mass stars with

spectral types later than M4, their interiors are thought to be fully convective (Hawley et al.,

2014) so they posses no tachocline (the boundary between the radiative and convective zones)

and must generate their magnetic fields through a different dynamo mechanism. However,

despite this, these stars can also show increased levels of flaring activity with flares reaching

energies much greater than seen from our Sun.

As the Sun is our nearest star we are able to collect detailed spatial observations of its many

phenomena and records of solar observations have been kept for centuries. Along with all of

these observations comes a deep knowledge and understanding of the mechanisms which are

at play on our nearest star and how they can affect the Earth and Solar System. In stellar

physics, although the number of stars now observed by missions such as Kepler, TESS and Gaia

has exceeded the billions, the lack of detailed and long-term observations remains an issue.

The capabilities of our technology and the vast distances between us and our neighbouring

stars restricts our ability to produce observations which show details of the magnetic activity.

Therefore, we should be looking to use the knowledge gained from detailed solar observations

to illuminate our understanding of stellar flares. In this section, we look at the solar-stellar flare

connection through detailed observations of a confined solar flare event and use the results to

provide insights into large scale flare events observed on other stars.
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In summary, the studies of stellar flares reported in Chapters 4, 5 & 6 discuss the statistical

analysis of stellar flares on both low mass and solar-type stars using one and two-minute

photometric data from K2 and TESS. Utilising a simple statistical test, the distribution of the

flares was investigated and it was concluded that none of the stars in the samples showed any

preference for certain phase distributions. This was extremely unexpected, as it indicates other

stars do not behave like the Sun where the relationship between solar flares and sunspots is

well established. Here, using the 3D MHD simulation from Chapter 3, the conditions for large

scale stellar flares on both low mass and solar-type stars is explored.

7.1.1 Scale-up of the Solar 3D MHD Simulation

In Chapter 3, a study involving a confined solar flare was carried out using ground-and-space-

based observations from SST, SDO and GONG where the event was compared to a 3D MHD

simulation. These observations provide the evidence to validate the simulation which can be

applied to not only jets and CMEs but also confined eruptions and flares. Overall, this study

explores the finer details of solar flares and their associated eruptive phenomena, providing a

unique perspective when applying this knowledge to stellar flare scenarios. The simulation flare

energies (i.e. magnetic field strengths) are in good agreement with what one would expect

given the classification of flares observed on the Sun. Therefore, we could extrapolate the

simulation to much higher energy flares.

To compare the observations of stellar flares and solar flares the key lies within the 3D MHD

simulation. This simulation can be scaled up to see how it would produce flares of greater

energies like the ones observed in both low mass and solar-type stars. The result of this scale

up can be seen in Figure 7.2 which shows the conditions needed in both the magnetic strength

and size of the parasitic polarity in order to produce flares of greater energies. Overall, our

Sun can show flares with energy outputs ranging from 1024 - 1032 erg. However, studies like

Chapters 4,5 & 6 of low mass and solar-type stars have revealed flares with energies exceeding

1032 erg, with ‘superflares’ having energies up to 1036 erg.

From Figure 7.2, it can be seen that to produce a flare of energy 1034 erg would require a

parasitic polarity (area of strong negative field encircled by a positive field) of size 200 Mm and
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Figure 7.2: This plot represents a scale up of the solar 3D MHD simulation (see Chapter 3).
The x-axis represent the field strength of the parasitic polarity and the y-axis represent the size
of the parasitic polarity. The dashed lines then represent the differing energies of flares with
units in erg.

field strength 2 kG. For an M dwarf with spectral type M3/M4 this means the active region

hosting the parasitic polarity, which may or may not host spots, would indeed be half the size

of the visible stellar disk. In terms of the Sun, the field strength of 2kG would be possible as

sunspots tend to be in the region of 1kG - 4 kG, however a sunspot which is a third of the

stellar disk is extremely unlikely. Despite this, Jeffers et al. (2006) calculate the spot coverage

of the G2 star SV Cam using spectrophotometric data from the Hubble Space Telescope as

30%. Therefore, it may be possible for other solar-type stars to possess larger spot coverages.

On the other hand you could look at producing a flare of 1034 erg more feasibly with a parasitic

polarity of width 60 Mm, however, this would require a magnetic field strength of 10 kG. This

may be unlikely on a solar-type star but would depend on the age of the stars and the magnetic

configuration, however, on an M dwarf this could be entirely feasible. Shulyak et al. (2019)

use Zeeman splitting to determine the magnetic field strengths of 29 active M dwarfs finding

B ranging from 1 - 7 kG. These stars had rotation periods in the range of 0.1 - 10 days, with

the star possessing a field of 7 kG being an M5.5 and having Prot = 0.27 days. Therefore, a

magnetic field strength of 10 kG could be possible on M dwarfs.
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The flare model proposed by Aulanier et al. (2013) also fails to provide sufficient energy to

explain large flare on M dwarfs and solar-type stars. They scaled up their 3D MHD simulation

for eruptive flares calculating the parameters needed for larger energy flares on a solar-type

star. In their highly sheared bipole model, a flare of energy 1034 erg would require a bipole the

size of 100 Mm and field strength of 4 kG (which is similar to what we would expect with our

simulation scale up for such field strengths). Overall, they conclude that solar-type stars which

produce superflares with energies > 1033 erg would require a much stronger dynamo than the

Sun. However, with similar interior structures, masses and radii you would not expect other

solar-type stars to differ greatly from the Sun. Therefore, there must be other factors, such as

age (i.e. the stars are younger than we expect in order to have larger field strengths), which

need to be taken into account.

7.1.2 Can the Sun Produce Superflares?

One important question is: Would the Sun be able to produce superflares with energies >

1033 erg? In Shibata et al. (2013) they investigate this question using current ideas related

to the mechanisms of the solar dynamo. In their calculations the Sun would need to generate

a sunspot with magnetic flux of 2 × 1023 Mx to produce a 1034 erg flare. In order to do

this it would take the Sun 40 years to store this magnetic flux and at present there is no

known physical mechanism to make this possible. Overall, they conclude it is premature to

say whether a 1035 erg flare would even be possible on the Sun given the current dynamo

theories.

However, is it possible for the Sun to have produced superflares in the past? Figure 7.3 shows

a sunspot drawing made by John Worchester, an English monk and chronicler, on December

8th AD 1128. He was most known for the Chronicle of John of Worcester up until his passing

in AD 1140 which contains many accounts of celestial phenomena including eclipses, comets,

meteor showers and aurora. The sunspot drawing represents the earliest known drawing of

sunspots and it is believed Worcester observed this spot structure directly when the glare of

the Sun was reduced by haze. Sunspots have been recorded by Chinese astronomers since

28 BC, however, there are no Chinese drawings which exist until after AD 1400. In the text

surrounding Worcester’s drawing, he describes the event as ‘two black spheres against the Sun.’
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Figure 7.3: This drawing was made by John of Worcester, an English monk and chronicler, on
the 8th December 1128 AD of sunspots on the solar disk. It shows two distinct sunspots on
opposite side to each other where the top one is larger than the bottom. There are details of
umbra and penumbra structure and the surrounding edge of the solar disk represents the solar
limb. Image courtesy of Bray et al. (1995).

He then goes on to say ‘The first was in the upper part and large, the second in the lower

and small, and each was directly opposite the other as this diagram shows’ as translated by

Darlington and McGurk (1995). Planetary transits can be ruled out to explain the observed

spots as they were both on opposite sides of the Sun on 8th December 1128 AD and the spots

were seen together.

This drawing suggests the Sun could have been capable of producing larger spots or spot

groups similar to what we see in the rotational modulation of the TESS lightcurves. Drawings

are known to be highly subjective and could be exaggerated by the artist to emphasise the

significance of the feature. Therefore, it is important to bear this in mind when discussing the

drawing by John Worcester and anything with regards to it is simply speculative at this point.

Overall, the drawing suggests it could have been possible for the Sun to produce superflares of

orders of magnitudes greater than what we observe today. Five days later, after the sunspot

drawing was made, the aurora borealis was observed and recorded by a Korean astronomer

almost 9,000 miles away on 13th December 1128 AD (Willis and Stephenson, 2001). This

suggests the sunspots observed by John Worcester were part of an active region which was
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Figure 7.4: A series of white light images taken by the Solar Flare Telescope showing the AR
12192 as it progressed across the solar disk in October 2014. This particular active region
hosted the largest sunspot observed in 24 years during solar cycle 24. Image courtesy of Solar
Observatory/NAOJ.

responsible for the solar eruptions to produce the observed aurora borealis. However, the exact

magnitudes of the flaring activity are unknown, from the size of the spots in Figure 7.3 and

the observations of aurora borealis at lower latitudes in Korea, suggests these eruptions were

substantial. The Sun has been known to produce large sunspots in the past, however, they

can be rare. In October 2014 the largest sunspot and active region (AR 12192: Sarkar et al.,

2017) was observed in 24 years with a size corresponding to 66 Earth cross sections, see Figure

7.4. The size of this active region was unexpected as Cycle 24 was a comparatively weak cycle

(Jiang et al., 2015), however, it shows the Sun is capable of displaying larger sunspots.

Overall, this would suggest the Sun was capable of producing larger spot coverages and greater

flaring activity earlier in its life. As a result, the increased flaring activity and spot coverages

from the solar-type stars in the sample of Chapter 6 suggest these stars are potentially younger

than the Sun. Therefore, their younger age means they are more active in comparison to

the Sun. Age estimates of solar-type stars and low mass stars is a rapidly developing field,
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especially in the era of Kepler and TESS were rotation periods are acquired from photometry

and can be used to derive age estimates through Gyrochronology (e.g. Barnes, 2007; Morton,

2015; Angus et al., 2019). While deriving rotation periods for M dwarfs remains uncertain,

there is a lot more certainty in ages determined for main sequence F, G and K stars (see Angus

et al., 2019). Recently, there has been a development in studies involving stellar ages and

magnetic activity. In Davenport et al. (2019) they look at the evolution of stellar flare activity

with a sample of low mass main sequence stars finding that flare activity decreases as a stars

rotation rate decreases, this is also linked to increasing age. In addition, Morris (2020) find

that spot coverage also decreases with increasing age within a sample of F, G and K stars.

This aligns with the discussions centring around the Sun, where the likelihood of it being more

active earlier in its life highly plausible.

7.2 Conclusions

Throughout this thesis many different observational sources, data analysis techniques and nu-

merical modelling have been used to investigate and discuss both solar and stellar flares. Firstly,

through using one and two minute cadence photometric data from K2 and TESS the rota-

tional phase of stellar flares on low mass and solar-type stars was investigated. Overall, it was

established there is no preference for rotational phase within any of the stellar samples despite

the presence of a large dominant spot (or group of spots) producing the observed rotational

modulation. This finding was unexpected as there is a well established solar flare/sunspot

connection on the Sun where these phenomena typically occur together.

Next, in a solar flare analysis, ground based SST data and space based SDO data were used

to analyse the kinematics of a solar flare associated with a filament eruption and jet. These

observations were qualitatively compared to a 3D MHD simulation which validated the mag-

netic configuration and subsequent eruption of the event. Overall, the magnetic configuration

can be applied not only to jets and CMEs but also confined eruptions and flares. In turn, this

simulation can be scaled up and applied to stellar scenarios replicating flare energies observed

on other stars. Through this process it was difficult to replicate the higher energies with a real-

istic magnetic field strength and spot size suggesting superflares would require a much stronger
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dynamo mechanism. Additionally, the possibility of increased spot coverage and greater flares

from the Sun in the past was discussed with the likelihood of superflares occurring on much

younger stars a strong possibility.

Overall, this thesis has explored the amalgamation of solar and stellar flare physics to explore

the flares on other stars in greater detail. As the Sun is our nearest star we should look to

using it as a benchmark for the phenomena observed on other stars. Therefore, throughout

this thesis there are references to solar research comparing what we have observed on other

stars to what has been studied on the Sun. In summary, there are not many astronomers who

are involved in both solar and stellar research and as a result each community is not exposed

enough to what the other is learning. Therefore, I hope this thesis serves as an example of the

kind of research which can be done when you bring both of the disciplines together.

7.3 Summary of Original Contributions to the Field

Now I take the opportunity to detail the original contributions to the field which result from

this thesis.

• Firstly, through multi-wavelength observations of a confined solar flare and helical jet

and comparison with a 3D MHD model, the suggested model provides an intuitive

mechanism for transferring twist/helicity in confined filament eruptions. Thus validating

the applicability of the breakout model not only to jets and coronal mass ejections but

also to confined eruptions and flares.

• Through multiple studies of stellar flares on both low mass and solar-type stars I discover

flares do not correlate with the dominant starspot/spot groups on the disk which produce

the observed rotational modulation. Overall, this suggests there are other mechanisms at

play where four scenarios including binarity, multiple spots and polar spots were proposed

as explanations for the finding.

• Amongst the stellar studies using TESS lightcurves I identified a group of ultra fast

rotating M dwarf and solar-type stars which display low levels of flaring activity. This

was unexpected as it is known in the field a faster rotating star is expected to be more
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active as a result of its dynamo mechanism.

• During the solar-type stellar flare study, two sources were observed in the TESS con-

tinuous viewing zone providing year long observations of the stars. In particular, one

star (TIC 364588501) showed evidence of increased flaring activity indicating a strong

link between emerging spots and flare activity. The changing shape of the rotational

modulation suggests flux emergence which would cause shearing between the magnetic

polarities and is a known mechanism for intense flaring activity. This short study into

magnetic variability showed the potential within the TESS data of continuous viewing

zone targets.

• Finally, the running theme throughout this thesis is the amalgamation of solar and stellar

flare research, using the Sun to aid in understanding the observed phenomena on other

stars. The final section of this thesis discusses the scale up of a solar model to stellar

flare energies showing it is difficult to replicate the conditions necessary to produce the

large scale events. There are very few studies like this and overall, I believe these are

important to both fields as it suggests we do not fully understand the mechanisms which

are at play on other active flare stars.

These findings have paved the way into other areas of research opening potential new projects.

I now go on to discuss these projects in greater detail, providing updates where work remains

ongoing.

7.4 Future Work

During the three years of my PhD I have investigated a very specific aspect of stellar flares on

low mass and solar-type stars. These studies have lead to many other avenues from magnetic

field generation in low mass fully convective stars to stellar variability. This section looks at

the potential future work which stems from the research carried out within this thesis, where

some projects are already underway.
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Figure 7.5: This is the first light image from the four metre Daniel K. Inouye Solar Telescope
showing the granular structure on the surface of the Sun. The image itself is the highest
resolution image of the Sun’s surface ever taken where features as small as 30 km in size are
seen for the first time. Image courtesy of NSO/NSF/AURA.

7.4.1 Magnetic Fields

Flares have been studied for over one hundred years, with the first record of a solar flare being

observed by Richard Carrington in 1859. Known as the Carrington event, this flare produced the

largest geomagnetic storm on record. It short circuited the new telegraph network worldwide

and the Northern Lights were observed as far south as Cuba. This marked the first recorded

space weather event, which, if repeated today would have drastic effects on communication

and GPS satellites, causing chaos and potentially devastation on Earth. Flares from the Sun

and other stars are commonly used as a proxy for magnetic activity. However, the question of

how a magnetic field is generated on stars with different masses and interiors is still unresolved.

This in turn highlights further questions, such as how do stars keep their magnetic fields and

how do their structures change over time?

The Daniel K. Inouye Solar Telescope (DKIST: Tritschler et al., 2015) is the worlds largest solar
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(a) 
(c) 
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) 

Figure 7.6: A selection of images showing the magnetic structure of spots. Panel (a) shows
a section of the Sun in white light detailing a complex sunspot structure and (b) the corre-
sponding magnetogram. Images courtesy of NASA. In (c) the magnetic field extrapolation of
a solar-type star from Gregory et al. (2010) is shown.

telescope with a aperture of four metres based at the Haleakala Observatory on the Hawaiian

island of Maui. The first light test images (see Figure 7.5) were released in January 2020

with science observations due to commence in July 2020. I have been active in developing

an observation program for DKIST which I expect to lead. This program aims to aid in

the understanding and modelling of the flare mechanism on low mass and solar-type stars by

monitoring complex active regions likely to produce high energy solar flares. It is generally

accepted that the more complex the active region and sunspot configurations, the increased

chance of flaring and the possibility of releasing a higher- energy flare (see McIntosh, 1990).

By monitoring active regions on the Sun and extracting their magnetic field properties we can

better understand the conditions needed for such high energy flares. Obtaining magnetograms

to probe the magnetic field in other stars is difficult. Therefore, we look to the Sun to provide

this information using solar observations to gain an insight into the detailed physics of the

flaring mechanisms on these stars.

Modelling software such as starry (Luger et al., 2019) can be used to map the potential

spot configurations matching the observed TESS lightcurves from a range of stellar spectral

types. This will allow for comparisons between the magnetograms from DKIST to determine

whether complex spot configurations are possible on other stars. With a model of the spot

configurations it is then possible to estimate what the overall field of the star would look like, if

the polarity of the field is known (i.e. from ZDI maps). Using extrapolation techniques similar

to those used on the Sun, magnetic maps can be created to visualise the overall field. These

maps will aid in understanding the dynamo mechanisms which are also at play, especially in
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low-mass stars which are fully convective.

7.4.2 Variability in Solar-Type Stars

The 11-year solar cycle is well studied in solar physics and is linked directly to sunspot number

where records have been kept for over 150 years. At solar minimum there are few sunspots and

overall the Sun is very quiet. However, by solar maximum there are multiple groups of spots

all interacting to produce increased flaring activity. While there are still unanswered questions

regarding the complexity of the solar cycle, overall it is still well understood and so far, has

been relatively predictable. In terms of stellar cycles this is a much different story. While there

are long-term observations of a handful of stars such as Barnard’s star (Toledo-Padrón et al.,

2019) and AU Mic (Ibañez Bustos et al., 2019), there is a general lack for this data amongst a

larger sample of solar-type stars. As TESS will observe stars multiple times during its extended

mission this will open many doors into the search for activity cycles much like our Sun.

In the first cycle of TESS observations covering the entire southern hemisphere, thousands

of solar-type stars were observed which we filtered down to 209 whose lightcurves showed

evidence of rotational modulation and flares. These stars formed the initial study into one of

the first analyses of superflares on solar-type stars with TESS as discussed in Chapter 6. TESS

will finish making observations of the northern hemisphere in April 2020 where it will then

observe the southern sky again for an extended mission. Calls for proposals were submitted in

early January 2020 and as a result I am looking to observe a larger sample of solar-type stars

a year later to investigate their magnetic activity including flares and starspots.

I submitted a TESS proposal to observe 437 solar-type stars which are present in or around

the TESS continuous viewing zone which were also observed in the first round of observations

in Cycle 1. The idea for this study stemmed from the two observations of solar-type stars

in the continuous viewing zone in Chapter 6, where the long term observations allowed for a

more detailed study into the observed magnetic activity of the stars. In addition to the 437

solar-type continuous viewing zone targets, the 209 stars from the initial study in Chapter 6

were also included in the the proposal as a follow up. With the data set there are several aims

and objectives which will be carried out:
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Figure 7.7: The lightcurve for TIC 364588501 covering data from Sectors 5 & 6 of Cycle 1
detailing the variability of the star including changing spot structures and increased flaring
activity.

• Firstly, the rotation periods of the sample will be determined comparing them to the

previous values obtained from the Cycle 1 lightcurves. Similarly, all flares will be identified

and catalogued for each star which includes determining the flare properties.

• As all of the targets have been observed in Cycle 1, follow up Cycle 3 observations can

be used to inform of any changes in magnetic activity. This includes using the stellar

and flare properties to investigate any changes in flare number, flare energy or starspot

changes observed in the rotational modulation along with any change in rotation period.

• Additionally, comparing the Cycle 3 observations with those from Cycle 1 will provide an

unrivalled resource with which to search for stellar activity cycles. As TESS returns to

sectors during its lifetime this resource will grow making the detection of stellar cycles

easier.

• There are 439 solar-type stars in the sample which are present in or around the TESS

continuous viewing zone. As a result, these targets will be observed for durations between

270 and 365 days. These observations will allow for a detailed analysis into the variability

of magnetic activity within these stars over a long term. An example of one of these

sources is shown in Figure 7.7 where an increase in flaring activity is observed as a result
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of emerging spots and plage regions.

• Finally, I am particularly interested in looking for stars which possess rotation periods

similar to the solar rotation period of ∼ 27 days. As this is the same as the TESS sector

observation length stars will have to be observed in multiple sectors. Overall, within

the sample, 489 solar-type stars have been observed in more than one sector with 439

being observed in more than 10 sectors including those in the continuous viewing zone.

These stars are of particular interest because they will allow a direct comparison of their

activity with that of the Sun.

7.4.3 Ultra Fast Rotating Low Mass Stars

In Chapter 5, a group of Ultra Fast Rotating (UFR) low mass stars with rotation periods

Prot < 0.3 days were identified which possessed a low number of flares within their TESS

lightcurves. A similar group of UFRs was also found amongst the solar-type sample in Chapter

6, possessing Prot < 0.4 days which also show low levels of flaring activity. These groups are

unusual as rapidly rotating stars are expected to produce increased levels of activity as this

is directly related to their dynamo mechanism (Hartmann and Noyes, 1987; Maggio et al.,

1987). The ages of these peculiar stars were estimated through Gyrochronology methods,

however, this did not yield any answers with regards to their lack of flaring activity. Therefore,

it was concluded the magnetic field configuration of the stars plays an important role in their

magnetic activity, more so than their rotation period or age.

In a recent short study (Ramsay et al., 2020) we explored the flaring activity within a much

larger sample of UFR low mass stars. Using data from Gaia DR2, we obtain a sample of over

13,000 stars close to the lower main sequence whittling these down to 609 stars which lie on

the lower main sequence and have a periodic modulation less than 1 day. Overall, 288 out

of 609 stars in the sample showed at least one flare and we find the fraction of stars which

show flaring activity declines at shorter periods, with a significant drop at periods less than

0.2 days. This finding solidifies our initial discovery in Chapter 5 and details the importance of

investigating the behaviour of these stars in greater detail. There are many potential reasons for

this finding including the possibility of the stars being members of unknown binary systems and
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the possibility of TESS being unable to detect lower energy flares which are present on these

stars. Therefore, more data will need to be gathered of these stars including spectroscopic data

to allow for a more detailed study into the magnetic activity of these peculiar UFR stars.

As a follow-up there is a proposal which has been submitted to obtain spectropolarimetry

observations of these stars. This will allow for the search of evidence of magnetic fields and

will be the first time a sample of UFRs have been systematically searched for evidence of

magnetic fields. In addition, spectroscopic observations of these stars will enable the detection

of chromospheric activity on these stars which is not delectable using TESS. In other studies

such as Newton et al. (2017, and references herein) they found activity in UFR stars was

saturated in emission such as Hα. This suggests these stars are in fact active, however,

they may not show large amounts of flaring activity but there are other magnetic phenomena

occurring on these stars. It is only with a full data set of observations in multiple wavelengths

we can begin to unravel the mystery of the magnetic activity on these UFR stars.



A The Stellar and Flare Properties of the Low
Mass and Solar-Type TESS Samples

In this Appendix the stellar properties for the full low mass sample (Table A.1) of Chapter 5

and solar-type sample (Table A.2) of Chapter 6 samples are detailed. This includes properties

such as the number of observed TESS sectors, number of flares, rotation period, quiescent

luminosity, energy range and duration of the flares for each star.

The apparent magnitude in the TESS band-pass, Tmag, is taken from the TESS Input Catalog

(TIC) along with the TIC ID (Stassun et al., 2018). The distances are derived from the Gaia

Data Release 2 parallaxes (Gaia Collaboration, 2016, 2018) by inverting them and the spectral

types are obtained from the SIMBAD catalogue. SkyMapper magnitudes were converted to

flux and then fitted using a polynomial to produce a template spectrum which was convolved

with the TESS band-pass to derive the stars quiescent flux. This was then converted to

quiescent luminosity using the distances determined from the Gaia parallaxes. The stellar

rotation periods, Prot, are obtained from the TESS lightcurves through a process involving a

Lomb-Scargle periodogram.

With regards to the flare properties, the number of flares is obtained from the FBEYE suite of

programs which also provides the start, stop and peak times of each flare in order to calculate

the durations. The energies of the flares are determined as the equivalent duration (area under

the flare lightcurve which is obtained from FBEYE) of each flare multiplied by the quiescent

luminosity of the star. For full details of how all the stellar and flare properties are obtained

please refer to Chapters 4, 5 & 6.
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Table A.1: The stellar properties of all low mass stars from the study in Chapter 5 detailing the number of flares, rotation periods, quiescent
luminosity, energy range and duration range of the flares.

Name TIC ID Sector Ra Dec No. of SpT Tmag Parallax Distance Prot log(Lstar) log(Eflare) Duration

(deg) (deg) flares (mas) (pc) (days) (erg/s) (erg) (minutes)

2MASS J2151-2807 053851254 1 327.8703 -28.1304 5 1.5 12.02 12.2990 81.3074 1.7537 31.74 32.98 – 34.55 14.0 – 172.00

2MASS J2114-4213 126945045 1 318.6401 -42.2318 9 3.9 13.11 15.1340 66.0764 0.4134 31.16 32.16 – 33.36 8.0 – 48.00

2MASS J2117-4444 139090254 1 319.3919 -44.7433 4 4.5 10.88 56.9728 17.5522 0.5308 30.82 31.47 – 31.95 14.0 – 20.00

2MASS J2150-5113 139984208 1 327.669 -51.2277 6 3.7 12.0 22.4897 44.4648 1.0513 31.26 32.20 – 32.87 18.0 – 38.00

FS2003 0345 150188736 1,3 93.7286 -60.6552 2 0.5 10.44 26.0053 38.4537 9.4832 31.75 33.78 – 34.06 102.0 – 168.00

GSC 08894-00426 150359500 3 96.4838 -60.0569 23 5.0 9.71 74.3690 13.4465 1.0331 31.11 31.57 – 33.20 12.0 – 130.00

Smethells 119 161356637 1 343.8646 -52.3032 2 0.5 9.56 42.0588 23.7762 17.425 31.68 31.93 – 32.73 14.0 – 40.00

WOH S 209 179038379 1,3 78.9968 -67.2733 7 0.0 12.62 16.1301 61.9959 11.616 31.28 32.44 – 33.91 16.0 – 134.00

BPM 45048 206327797 1 354.0652 -48.5836 4 3.5 9.67 40.0092 24.9943 0.1119 31.64 33.18 – 34.08 14.0 – 46.00

WT 2220 206537793 1 332.923 -20.7367 7 3.0 11.16 24.1987 41.3245 1.5203 30.70 31.55 – 32.33 12.0 – 48.00

UPM J0113-5939 206544316 1 18.4189 -59.6598 9 3.7 11.6 23.1900 43.1220 0.3227 31.39 32.36 – 34.93 8.0 – 180.00

UCAC4 265-194917 207082763 1 331.9728 -37.0737 22 3.0 10.75 29.7125 33.6559 0.8505 31.50 32.16 – 34.21 14.0 – 130.00

LEHPM 5245 215197039 1 343.2486 -39.3812 5 0.0 10.96 20.9295 47.7795 2.1316 31.74 32.61 – 33.77 12.0 – 108.00

WISE J0250-6545 220523369 1,2,3 42.5936 -65.7653 22 3.2 11.94 19.7575 50.6137 1.2892 31.41 32.07 – 34.58 12.0 – 180.00

GSC 08859-00633 220539110 1,2,3 43.447 -61.5878 34 3.0 9.93 24.1223 41.4554 0.773 31.98 32.08 – 34.49 8.0 – 106.00

2MASS J0256-6343 220556639 1,2,3 44.197 -63.7174 43 4.0 11.48 16.6797 59.9531 0.5947 31.74 32.04 – 34.68 6.0 – 148.00

UCAC4 110-129613 229807000 1 352.2412 -68.0431 27 2.5 10.74 21.7164 46.0481 0.3745 31.79 31.59 – 34.31 8.0 – 90.00

2MASS J2329-6749 229807051 1 352.324 -67.8336 6 3.5 12.48 21.7647 45.9460 1.0224 31.10 32.55 – 33.90 26.0 – 220.00

FS2003 1156 231267979 1 334.6657 -53.4444 17 2.5 10.66 21.9142 45.6325 2.0233 31.83 32.45 – 33.90 12.0 – 82.00

2MASS J2110-5811 231632372 1 317.5259 -58.1972 3 4.0 12.63 19.8774 50.3084 0.5896 31.12 32.54 – 32.85 20.0 – 22.00

Smethells 165 231867117 1 6.0384 -62.1848 8 0.0 9.56 22.6086 44.2310 1.7568 32.20 32.87 – 34.50 22.0 – 200.00

UPM J0027-6157 231910539 1,2 6.8898 -61.955 33 4.0 12.04 23.0563 43.3721 0.55 31.22 31.82 – 33.75 8.0 – 140.00

Continued on next page



APPEN
D

IX
A.

LO
W

M
ASS

AN
D

SO
LAR-TYPE

SAM
PLES

164

Table A.1 – continued from previous page

Name TIC ID Sector Ra Dec No. of SpT Tmag Parallax Distance Prot log(Lstar) log(Eflare) Duration

(deg) (deg) flares (mas) (pc) (days) (erg/s) (erg) (minutes)

UCAC4 137-000439 231914259 1,2 7.6082 -62.6007 58 2.2 9.91 22.2753 44.8928 1.4341 32.10 32.11 – 34.93 6.0 – 346.00

2MASS J0153-6833 232073492 1,2 28.3553 -68.5564 10 4.5 12.9 22.5066 44.4314 0.5975 30.90 31.72 – 32.83 12.0 – 58.00

WISE J0200-6614 232083054 1,2 30.0842 -66.2339 17 4.0 12.45 21.9544 45.5490 0.6265 31.11 31.73 – 33.33 8.0 – 58.00

UPM J2222-6303 234284556 1 335.6659 -63.0576 2 3.5 11.83 22.5260 44.3931 1.1068 31.32 32.51 – 33.76 24.0 – 98.00

UCAC2 1442145 234333175 1,2 36.1037 -70.5559 12 3.3 12.12 22.7270 44.0005 0.509 31.20 31.96 – 33.40 8.0 – 88.00

2MASS J0039-6224 234495456 1,2 9.9193 -62.4035 19 4.9 13.5 26.5779 37.6252 0.3806 30.64 31.49 – 33.04 8.0 – 52.00

2MASS J0048-6526 234506344 2 12.22 -65.4427 7 3.2 12.01 20.4607 48.8742 1.0028 31.34 32.20 – 33.09 12.0 – 60.00

UCAC3 53-1665 234506911 1,2 12.3997 -63.7951 28 1.7 10.71 21.7128 46.0558 4.9401 31.79 32.20 – 34.66 12.0 – 192.00

2MASS J0118-6258 237880881 1,2 19.5279 -62.9831 12 5.1 13.4 21.7070 46.0681 0.346 30.72 31.82 – 33.78 12.0 – 422.01

2MASS J0121-6117 237883772 2 20.305 -61.2913 5 4.1 13.05 20.1895 49.5307 0.4231 30.93 32.01 – 33.46 12.0 – 116.00

UPM J0122-6318 237885807 1,2 20.689 -63.3126 35 3.5 11.43 21.9152 45.6304 0.4574 31.51 31.91 – 33.47 8.0 – 108.00

2MASS J0345-7509 238194430 1,2 56.4207 -75.1532 11 4.0 12.5 17.4263 57.3845 0.7001 31.26 31.93 – 34.73 8.0 – 214.00

2MASS J2149-6413 238813187 1 327.2708 -64.2178 3 4.5 12.15 22.6823 44.0872 0.1757 31.19 32.30 – 33.17 14.0 – 72.00

UCAC4 073-002133 238876720 2 39.6373 -75.4685 5 4.1 13.54 18.1483 55.1016 0.6325 30.83 32.18 – 33.61 12.0 – 108.00

2MASS J2137-6036 259845346 1 324.2873 -60.602 11 3.0 11.18 22.3092 44.8246 1.9957 31.60 32.06 – 34.75 12.0 – 398.00

UCAC4 114-133248 260889990 1 350.197 -67.3898 12 5.0 11.38 24.3611 41.0490 1.0561 31.36 32.19 – 33.75 12.0 – 164.00

2MASS J2317-7432 261560580 1 349.2519 -74.5363 5 3.6 12.05 22.3958 44.6512 0.8303 31.24 32.16 – 33.52 14.0 – 106.00

2MASS J2314-5405 262818859 1 348.6295 -54.0924 2 5.0 13.37 22.8336 43.7951 0.9895 30.69 32.61 – 32.79 40.0 – 86.00

1SWASP J2033-2556 269829656 1 308.4069 -25.9482 4 4.5 11.59 23.0541 43.3762 0.7382 31.40 32.45 – 33.57 12.0 – 70.00

EM* StHA 182 269940990 1 310.9218 -24.5649 6 4.1 10.15 22.8120 43.8366 1.0002 31.92 32.56 – 34.06 14.0 – 152.00

2MASS J0732-7445 271900514 1,2,3 113.1181 -74.7646 24 0.5 11.62 10.7056 93.4091 0.9104 32.03 32.04 – 34.44 8.0 – 146.00

LEHPM 5031 273369281 1 340.4959 -75.008 4 5.5 12.38 80.4417 12.4314 0.6488 30.00 30.94 – 31.82 8.0 – 52.00

UCAC3 33-129092 273416539 1 341.6457 -73.8977 5 2.3 11.12 19.9106 50.2245 1.6487 31.72 32.33 – 33.62 12.0 – 62.00

Continued on next page
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Table A.1 – continued from previous page

Name TIC ID Sector Ra Dec No. of SpT Tmag Parallax Distance Prot log(Lstar) log(Eflare) Duration

(deg) (deg) flares (mas) (pc) (days) (erg/s) (erg) (minutes)

W60 A68 277298771 1,2,3 84.5682 -69.3917 35 0.5 10.24 18.8784 52.9706 1.1798 32.07 32.50 – 34.91 12.0 – 286.00

2MASS J0023-5531 281461138 2 5.9897 -55.5291 3 4.1 12.97 23.9958 41.6740 0.6511 30.81 31.99 – 32.79 12.0 – 28.00

2MASS J2110-2710 289840926 1 317.6294 -27.1813 7 5.0 13.25 24.8489 40.2432 0.6505 30.66 32.41 – 33.10 10.0 – 60.00

2MASS J2110-2710 289840928 1 317.6316 -27.1832 7 4.5 11.98 24.7683 40.3742 0.6505 31.13 32.37 – 33.09 12.0 – 66.00

HD 270712A 294750180 1 71.0442 -70.3239 14 1.5 9.02 47.5062 21.0499 0.5263 31.81 31.72 – 34.63 10.0 – 372.00

2MASS J2345-7126 325220989 1 356.3427 -71.4474 14 3.5 11.81 22.3825 44.6778 1.6379 31.35 31.34 – 34.50 8.0 – 128.00

TYC 8543-967-1 348839788 1,2,3 98.8426 -57.6261 8 1.0 9.22 42.7725 23.3795 6.8946 31.76 31.63 – 33.87 8.0 – 208.00

2MASS J0742-6243 350142099 1,3 115.5327 -62.7317 16 4.0 11.63 38.4304 26.0211 1.8427 30.93 31.36 – 33.26 8.0 – 64.00

2MASS J2342-6224 350215424 1 355.6815 -62.4161 6 4.3 13.16 22.8689 43.7275 0.5233 30.80 31.71 – 32.89 8.0 – 48.00

UCAC3 52-533 355766445 1,2 3.8656 -64.2488 18 1.8 10.74 20.9100 47.8240 3.684 31.82 32.32 – 34.47 12.0 – 390.01

2MASS J0015-6137 355767053 1,2 3.9822 -61.6313 11 3.0 12.15 18.2189 54.8881 2.633 31.39 32.36 – 33.97 18.0 – 132.00

2MASS J0017-7032 394136141 1 4.311 -70.534 14 0.5 10.26 14.3804 69.5391 0.699 32.33 32.13 – 34.08 6.0 – 132.00

BPS CS 22956-0074 403237836 1 330.7277 -64.6794 11 1.8 10.48 22.8807 43.7050 0.4268 31.85 32.55 – 33.86 8.0 – 60.00

2MASS J2116-6005 410421717 1 319.147 -60.0868 9 3.5 11.81 21.5397 46.4259 0.9848 31.38 32.21 – 33.67 16.0 – 88.00

UCAC3 60-548 425933644 1,2 3.6996 -60.0636 28 3.6 11.35 22.5637 44.3190 0.4868 31.51 32.33 – 33.79 8.0 – 82.00

UCAC3 53-724 425937691 1,2 5.3666 -63.8525 10 5.5 13.18 22.7942 43.8708 0.1003 30.80 32.15 – 33.54 10.0 – 60.00

2MASS J2136-2049 441024908 1 324.1044 -20.8213 2 3.0 12.07 18.0365 55.4431 5.664 31.42 32.85 – 32.99 32.0 – 34.00

2MASS J2353-1844 027955268 2 358.357 -18.7449 2 6.5 13.21 27.4909 36.3757 0.6165 30.60 32.01 – 32.26 20.0 – 22.00

WOH S 6 033864387 3 65.4137 -72.5654 6 2.5 11.36 18.5936 53.7819 4.6801 31.76 32.72 – 33.96 14.0 – 98.00

2MASS J0123-4113 041862041 3 20.8874 -41.22 7 4.2 12.53 25.0455 39.9273 0.7362 30.97 32.02 – 33.44 12.0 – 140.00

TYC 6967-699-1 047465993 2 342.3711 -26.1398 11 0.0 10.29 22.1291 45.1894 1.8783 31.95 31.85 – 34.32 12.0 – 197.99

2MASS J0407-6825 025118964 2 61.9331 -68.4196 10 3.2 11.99 16.3511 61.1580 1.0187 31.55 32.55 – 33.45 14.0 – 58.00

2MASS J0321-6816 031780319 2 50.2665 -68.2799 5 4.0 11.85 18.8695 52.9956 1.3105 31.42 32.49 – 33.39 14.0 – 70.00

Continued on next page
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Table A.1 – continued from previous page

Name TIC ID Sector Ra Dec No. of SpT Tmag Parallax Distance Prot log(Lstar) log(Eflare) Duration

(deg) (deg) flares (mas) (pc) (days) (erg/s) (erg) (minutes)

G 267-34 070797900 2 1.9781 -29.9797 3 3.0 10.95 13.8030 72.4480 2.084 32.08 33.17 – 33.59 22.0 – 54.00

2MASS J0042-4252 080427281 2 10.5461 -42.882 7 2.2 11.09 18.9831 52.6784 3.7336 31.77 32.19 – 33.65 12.0 – 72.00

BPM 68724 089502706 2 356.8442 -23.2882 7 0.0 11.06 18.0639 55.3590 0.4795 31.82 32.04 – 33.62 8.0 – 46.00

CD-47 277 101936401 2 13.9852 -47.1496 7 0.0 9.48 23.8251 41.9725 6.1025 32.16 32.69 – 33.51 14.0 – 52.00

2MASS J0110-4600 102071750 2 17.7113 -46.0037 12 1.0 12.01 23.0435 43.3962 1.471 31.23 32.21 – 33.30 12.0 – 70.00

G 267-100 115242300 2 6.2696 -36.7713 21 2.5 10.12 49.9955 20.0018 12.578 31.31 31.05 – 33.40 8.0 – 124.00

2MASS J0039-3816 117874959 2 9.8998 -38.2832 13 1.4 10.18 24.8503 40.2410 6.3583 31.90 32.13 – 34.46 12.0 – 214.00

AL 442 141807839 2,3 92.8752 -72.2271 22 4.5 11.19 17.5656 56.9295 0.839 31.81 32.34 – 33.83 12.0 – 96.00

2MASS J0526-6022 149175965 2 81.6294 -60.3775 7 1.5 12.27 13.7927 72.5021 0.2237 31.58 32.92 – 34.77 12.0 – 76.00

2MASS J0033-5116 156002545 2 8.3524 -51.279 3 3.4 11.44 24.1357 41.4324 0.353 31.42 33.04 – 33.95 38.0 – 144.00

Smethells 173 156084049 2 11.3681 -51.6264 1 3.0 9.85 24.2950 41.1607 5.9834 32.04 33.78 86.0

UCAC4 204-001345 158596311 2 22.1269 -49.3528 1 4.1 12.26 23.0557 43.3732 0.1546 31.14 32.57 28.0

UPM J0234-5128 166787846 2,3 38.5786 -51.4796 20 4.3 12.38 23.1685 43.1621 0.4605 31.09 31.69 – 33.56 8.0 – 82.00

EXO 0235.2-5216 166808151 3 39.2163 -52.051 5 2.0 9.91 25.7423 38.8466 0.74 31.95 33.20 – 34.77 46.0 – 222.00

CD-39 325 183596242 3 18.3674 -38.3507 9 1.0 9.79 19.9467 50.1336 0.2228 32.20 32.33 – 33.58 8.0 – 32.00

UCAC4 172-003319 197829751 2,3 54.1984 -55.751 15 3.5 11.51 33.6599 29.7089 3.0005 31.12 32.06 – 33.77 16.0 – 244.00

2MASS J0315-5342 200740049 3 48.8485 -53.715 1 5.2 13.47 20.0661 49.8353 0.5687 30.87 33.78 98.0

2MASS J0212-5851 201753428 2,3 33.2434 -58.8551 29 2.1 10.73 20.8067 48.0614 1.5902 31.84 32.60 – 34.32 8.0 – 116.00

2MASS J0215-5627 201789285 2 33.8887 -56.4549 1 6.2 14.06 22.1146 45.2190 0.1599 30.47 32.44 28.0

UCAC4 159-002053 201795667 2,3 35.215 -58.3948 43 3.2 11.25 22.7158 44.0222 1.2818 31.55 31.00 – 34.22 6.0 – 132.00

2MASS J0232-5746 201861769 2 38.0806 -57.7699 2 4.1 12.82 21.8085 45.8537 0.8615 30.97 32.65 – 33.32 26.0 – 54.00

GSC 08494-00369 201897406 2 40.3297 -57.4217 10 3.0 11.45 11.3641 87.9964 3.5089 32.09 32.82 – 35.37 12.0 – 204.00

UCAC3 73-5378 201898220 2,3 40.5177 -53.9834 13 4.3 11.89 23.3932 42.7475 0.5676 31.27 32.02 – 33.29 10.0 – 26.00

Continued on next page
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Table A.1 – continued from previous page

Name TIC ID Sector Ra Dec No. of SpT Tmag Parallax Distance Prot log(Lstar) log(Eflare) Duration

(deg) (deg) flares (mas) (pc) (days) (erg/s) (erg) (minutes)

UCAC3 73-5376 201898222 2,3 40.5094 -53.9875 11 4.3 12.64 23.6594 42.2665 0.2228 30.96 31.84 – 33.26 8.0 – 102.00

2MASS J0247-5804 201938513 2,3 41.9442 -58.0743 14 1.8 10.77 22.3695 44.7037 9.9652 31.76 32.46 – 34.23 18.0 – 268.00

WISE J0255-5702 207138379 2,3 43.8833 -57.0479 17 4.3 12.91 21.9307 45.5982 0.4932 30.92 31.87 – 33.82 8.0 – 152.00

CD-56 1032B 220433364 2,3 73.3786 -55.8584 48 4.0 9.38 90.1653 11.0907 0.8543 31.10 31.58 – 34.12 8.0 – 142.00

CD-57 1054 220473309 2,3 75.1967 -57.2567 13 0.0 8.32 37.1736 26.9008 8.6742 32.21 32.43 – 34.64 22.0 – 210.00

2MASS J0259-6120 220558700 2 44.7624 -61.3333 2 3.9 13.31 13.2576 75.4284 0.966 31.20 32.73 – 32.97 20.0 – 36.00

2MASS J0145-5230 229141941 2,3 26.3791 -52.5052 19 3.5 12.17 22.8529 43.7581 1.6351 31.21 32.18 – 34.04 12.0 – 132.00

2MASS J0146-5339 229142295 2 26.6237 -53.6596 2 4.5 11.17 57.2911 17.4547 0.4471 30.79 31.56 – 32.69 12.0 – 88.00

GSC 08044-00859 229147927 2,3 27.1712 -48.5147 28 1.5 10.54 25.5403 39.1538 4.6058 31.73 32.02 – 34.66 10.0 – 228.00

L 173-39 231017428 2,3 27.1115 -56.9783 33 2.0 9.54 47.7678 20.9346 3.6153 31.53 31.77 – 33.60 12.0 – 142.00

2MASS J0150-5844 231020638 2,3 27.738 -58.7344 22 3.0 11.11 22.0573 45.3365 1.6675 31.64 32.28 – 34.11 14.0 – 192.00

2MASS J0150-5716 231020924 2,3 27.6902 -57.2804 2 5.5 14.2 22.4107 44.6215 0.7063 30.40 33.16 – 33.58 70.0 – 104.00

BPS CS 22882-0010 246854127 2 6.3749 -28.5739 11 0.5 11.12 11.1124 89.9896 0.4594 32.21 33.03 – 35.05 14.0 – 148.00

2MASS J0028-2733 246861224 2 7.2292 -27.5592 4 4.5 12.46 17.8506 56.0205 4.1471 31.28 32.95 – 34.04 38.0 – 276.00

TYC 6994-23-1 251828744 2 6.3228 -32.7077 5 0.0 9.54 23.9076 41.8277 1.7043 32.15 32.43 – 33.51 12.0 – 88.00

GJ 2006 A 251845153 2 6.9599 -32.5519 10 4.0 10.43 28.6591 34.8929 4.9024 31.69 32.49 – 34.85 12.0 – 190.00

GR* 9 251846450 2 7.0605 -32.4657 5 5.0 11.93 28.4686 35.1264 0.5216 31.06 31.92 – 33.39 12.0 – 104.00

2MASS J0436-7851 269797536 2 69.1381 -78.8504 7 4.0 12.65 14.3695 69.5918 0.8077 31.39 32.44 – 33.61 14.0 – 62.00

UPM J0042-5444 281670243 2 10.5429 -54.7456 5 2.9 11.38 22.6146 44.2192 1.7521 31.51 32.41 – 33.56 22.0 – 60.00

UCAC2 1093148 287584993 3 124.7472 -72.6653 2 0.0 10.96 12.3669 80.8610 6.6226 32.18 33.33 – 33.87 22.0 – 46.00

RBS 1877 326446019 2 339.3131 -26.3759 23 3.5 10.74 31.5620 31.6837 0.8022 31.47 32.04 – 33.81 10.0 – 183.99

2MASS J0305-5317 339607562 2 46.274 -53.2884 10 4.7 12.98 22.5427 44.3603 0.4444 30.88 31.62 – 33.24 8.0 – 82.00

2MASS J0144-4604 401838575 2,3 26.1337 -46.0757 8 5.5 13.96 25.8925 38.6212 0.3137 30.34 31.64 – 34.09 12.0 – 242.01

Continued on next page
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Table A.1 – continued from previous page

Name TIC ID Sector Ra Dec No. of SpT Tmag Parallax Distance Prot log(Lstar) log(Eflare) Duration

(deg) (deg) flares (mas) (pc) (days) (erg/s) (erg) (minutes)

GR* 239 434106919 2 354.4557 -12.8625 1 2.5 11.68 17.9161 55.8157 6.7665 31.58 33.03 32.0

LP 764-40 B 441056236 2 359.5583 -17.4097 34 1.0 9.7 29.9438 33.3959 0.4344 31.76 31.73 – 33.79 6.0 – 114.00

UCAC4 420-002082 010863087 3 25.9384 -6.0447 18 3.5 10.36 46.8488 21.3453 0.862 31.28 31.56 – 33.91 10.0 – 90.00

2MASS 0122-2439 b 011614485 3 20.7129 -24.6647 8 3.5 11.58 29.5326 33.8609 1.4925 31.2 31.93 – 33.67 12.0 – 108.00

Barta 161 12 029853348 3 23.8085 -7.2145 6 4.3 10.59 26.8241 37.2799 0.7033 31.64 32.43 – 33.80 18.0 – 90.00

G 271-110 029855342 3 24.2308 -6.7944 9 3.5 11.31 41.7150 23.9722 1.061 30.97 32.11 – 34.51 8.0 – 204.00

2MASS J0156-2615 033625362 3 29.0863 -26.2558 2 0.0 10.66 12.5913 79.4199 6.535 32.29 32.72 – 33.89 12.0 – 60.00

LP 705-28 040047077 3 6.463 -9.9619 5 3.0 11.34 30.7317 32.5397 0.8856 31.24 32.62 – 33.60 22.0 – 120.00

UCAC4 329-000876 043451426 3 11.3504 -24.288 6 3.0 13.85 29.1234 34.3367 1.6582 30.37 31.97 – 32.90 18.0 – 48.00

LP 768-113 054003038 3 23.4919 -17.641 2 3.5 10.38 67.9564 14.7153 5.079 30.93 31.80 – 33.21 26.0 – 114.00

2MASS 0219-3925 b 077111651 3 34.8421 -39.4229 2 6.0 13.49 24.9441 40.0896 1.6266 30.62 32.49 – 33.74 20.0 – 106.00

PM J01538-1459A 092993104 3 28.4626 -14.9977 39 3.0 9.45 29.5489 33.8422 2.977 31.87 29.78 – 34.03 6.0 – 156.00

WISE J0241-3049 122608433 3 40.364 -30.8209 5 4.3 12.88 22.2480 44.9479 0.5241 30.9 31.86 – 33.17 12.0 – 74.00

UCAC3 112-6119 122671519 3 42.2198 -34.0737 16 4.0 10.9 23.8067 42.0050 0.4523 31.66 32.35 – 33.87 12.0 – 96.00

G 269-153B 140478471 3 21.1168 -33.9195 14 4.3 10.67 39.7772 25.1400 0.7751 31.22 31.93 – 32.78 12.0 – 64.00

2MASS J0249-4416 146636926 3 42.3396 -44.268 11 3.0 11.43 31.4374 31.8092 2.3871 31.2 31.81 – 33.91 12.0 – 124.00

2MASS J0305-3725 165124012 3 46.2907 -37.4183 8 1.9 10.48 5.46590 182.952 2.988 32.9 33.49 – 34.68 12.0 – 78.00

WISE J0308-3844 165162811 3 47.1651 -38.7434 3 4.3 13.0 17.7221 56.4267 0.689 31.07 32.13 – 33.36 8.0 – 60.00

UCAC3 92-4597 165941376 3 31.7579 -44.1105 6 3.5 10.8 23.3925 42.7487 0.3928 31.71 32.16 – 33.39 12.0 – 76.00

LP 767-17 167457891 3 17.6234 -15.1686 8 4.0 11.54 22.9845 43.5076 4.6964 31.35 32.39 – 33.29 14.0 – 84.00

2MASS J0332-5139 200806186 3 53.0149 -51.6652 4 2.0 11.46 13.0328 76.7295 5.467 31.84 32.86 – 33.99 20.0 – 130.00

WISE J0351-5154 206478549 3 57.8459 -51.9162 5 4.0 12.38 17.4122 57.4310 0.4246 31.34 32.34 – 33.03 14.0 – 28.00

GSC 04683-02117 248354845 3 17.8474 -5.4273 33 3.5 11.08 27.2635 36.6791 0.5218 31.47 31.16 – 34.43 6.0 – 214.00

Continued on next page
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Table A.1 – continued from previous page

Name TIC ID Sector Ra Dec No. of SpT Tmag Parallax Distance Prot log(Lstar) log(Eflare) Duration

(deg) (deg) flares (mas) (pc) (days) (erg/s) (erg) (minutes)

LP 647-46 248945338 3 20.272 -4.0357 7 0.0 10.85 10.9178 91.5935 0.5785 32.34 33.20 – 33.92 18.0 – 64.00

2MASS J0447-5134 259542669 3 71.7522 -51.5778 7 1.9 11.52 17.0613 58.6122 6.1974 31.68 32.45 – 34.16 18.0 – 184.00

2MASS J0207-1810 268765554 3 31.7834 -18.1694 9 4.0 12.57 22.3261 44.7906 0.2387 31.09 31.93 – 34.61 8.0 – 172.00

UCAC4 334-002479 268862481 3 34.2287 -23.3704 6 3.5 11.13 13.7216 72.8778 1.5547 31.95 32.92 – 34.64 14.0 – 224.00

L 34-26 272232401 3 117.3005 -76.7028 26 3.0 8.92 91.8291 10.8898 2.833 31.18 31.31 – 33.26 12.0 – 168.00

2MASS J0129-0823 299178185 3 22.4279 -8.3998 7 5.0 12.63 27.2344 36.7183 0.3115 30.83 31.94 – 33.15 12.0 – 76.00

PS78 99 326104737 3 15.9748 -28.0978 2 4.5 13.22 18.9451 52.7841 1.381 30.88 32.95 – 33.04 26.0 – 50.00

2MASS J0516-5410 382043650 3 79.1914 -54.1712 2 3.0 11.91 13.6053 73.5008 6.1785 31.73 32.97 – 33.71 32.0 – 66.00

UCAC4 149-002104 382552502 3 35.6854 -60.38 12 4.0 10.59 35.4382 28.2181 1.1546 31.41 32.08 – 34.16 12.0 – 232.00

2MASS J0424-5512 396731889 3 66.0043 -55.2061 8 2.5 11.25 13.1037 76.3143 5.8911 32.04 32.63 – 34.07 12.0 – 84.00

LP 586-73 398569617 3 15.0924 -1.4021 2 2.0 11.77 11.3719 87.9361 3.0182 31.93 32.79 – 34.61 14.0 – 104.00

GaiaDR2 2417003566064655 406351523 3 5.1769 -14.1154 4 2.0 11.31 18.8535 53.0405 0.8583 31.65 32.63 – 33.08 12.0 – 52.00
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Table A.2: The stellar properties of all solar-type stars in the study from Chapter 6 detailing the rotation periods, quiescent luminosity, energy range
and duration range of the flares.

Name TIC ID Sector Ra Dec No. of SpT Tmag Parallax Distance Prot log(Lstar) log(Eflare) Duration

(deg) (deg) flares (mas) (pc) (days) (erg/s) (erg) (minutes)

CD-5210232 161172848 1 339.8765 -52.0882 2 K0 10.03 9.4283 106.063 4.25170 32.82 33.80 – 34.26 34.00 – 70.00

HD205297 403121294 1 324.3149 -65.0393 11 G6 8.27 13.642 73.3003 1.52470 33.05 33.09 – 34.44 12.00 – 102.00

HD49855 176873028 1,2,4 100.9428 -71.9762 12 G6 8.39 17.989 55.5871 3.85670 32.78 31.73 – 34.10 8.00 – 52.00

HD42270 261236136 1,12,13 88.3725 -81.9478 19 K0 8.28 16.965 58.9431 1.88070 32.82 32.82 – 35.06 8.00 – 232.00

HD47875 167344043 all minus 11 98.6712 -69.8849 179 G4 8.50 13.893 71.9756 2.99380 33.00 32.74 – 34.74 8.00 – 184.00

HD987 266997586 1,13 3.4725 -74.6886 10 G8 8.07 21.811 45.8470 3.60860 32.70 32.74 – 33.98 14.00 – 96.00

V*VZHor 220536421 1,2,3 42.9723 -61.6173 48 K1 7.89 24.921 40.1263 2.57500 32.48 32.33 – 34.65 12.00 – 174.00

V*CSGru 278634010 1 333.8974 -39.0143 20 K0 8.43 18.595 53.7770 3.35710 32.82 32.79 – 35.00 14.00 – 284.00

HD32195 319289907 1 72.0231 -80.7790 7 F7 7.85 15.927 62.7857 1.23136 33.02 32.80 – 33.81 12.00 – 42.00

HD46920 167247077 1,5,7 97.6388 -67.6025 11 G3 8.50 13.893 71.9756 3.66670 33.02 33.13 – 34.02 14.00 – 54.00

HD202917 079403675 1 320.2084 -53.0347 9 G7 7.99 21.345 46.8489 3.38290 32.56 32.94 – 34.61 24.00 – 275.99

HD211862 270356871 1 335.1712 -28.2328 4 G1 8.54 7.0541 141.761 1.19460 33.61 34.53 – 35.59 58.00 – 168.00

CPD-571131 279614617 1 106.3013 -57.5706 2 G8 9.12 3.5490 281.769 7.37670 33.98 35.19 – 35.46 84.00 – 108.00

HD269406 179369970 1 79.9842 -71.4854 1 G5 8.90 3.9785 251.351 2.86130 33.98 35.15 64.00

CD-7776 050345701 1,13 32.3507 -76.6876 11 K1 8.99 11.405 87.6755 5.27750 33.06 33.38 – 34.95 18.00 – 160.00

HD39150 364588501 all 85.4033 -76.0723 207 G6 9.14 9.0342 110.690 2.28000 33.16 33.07 – 35.29 8.00 – 220.00

HD269921 404768019 1,2 84.6440 -68.8850 8 G7 9.50 10.653 93.8667 0.72162 32.89 33.26 – 35.17 12.00 – 174.00

CD4014901 214772274 1 341.6400 -39.4792 3 G5 8.81 13.198 75.7685 3.19250 32.97 33.89 – 34.29 50.00 – 98.00

CD-63408 309714906 1,10,11 126.0248 -63.5672 9 G5 9.19 10.027 99.7258 0.79029 33.06 33.52 – 34.67 22.00 – 96.00

HD223728 009708387 2 358.0430 -11.7210 4 G1 8.08 11.840 84.4552 2.36540 33.25 32.99 – 34.74 8.00 – 118.00

CD-3019800 012359079 2 0.8360 -29.8230 1 F8 10.76 4.2171 237.129 2.64560 33.23 34.37 38.00

V*VZRet 031850842 2 52.1536 -66.9201 2 G8 10.11 7.2042 138.807 2.31970 33.02 33.19 – 34.58 8.00 – 46.00

Continued on next page
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Table A.2 – continued from previous page

Name TIC ID Sector Ra Dec No. of SpT Tmag Parallax Distance Prot log(Lstar) log(Eflare) Duration

(deg) (deg) flares (mas) (pc) (days) (erg/s) (erg) (minutes)

V*CCPhe 149248196 2 22.0371 -52.6389 16 K1 8.27 65.319 15.3093 0.51423 31.73 31.32 – 33.18 4.00 – 54.00

HD44920 150299548 2,4,5 95.0966 -61.5987 11 F7 8.84 9.2923 107.616 1.06210 33.25 32.91 – 34.77 8.00 – 90.00

V*CCPhe 158595208 2 22.0371 -52.6389 14 K1 8.27 25.098 39.8438 6.47300 32.56 32.43 – 34.85 12.00 – 216.00

HD218203 204322922 2 346.6068 -23.1674 2 G5 9.38 10.356 96.5605 5.29210 32.99 33.18 – 34.06 12.00 – 38.00

HD8558 206592394 2 20.8395 -57.4809 21 G7 7.86 22.068 45.3145 3.36480 32.64 32.35 – 34.27 10.00 – 96.00

BD-166129 240764987 2 340.1419 -15.7894 2 K2 10.21 4.7902 208.759 1.02727 33.32 34.29 – 35.63 18.00 – 86.00

CD-571654 294098955 2,3,13 107.7109 -57.6128 10 G2 9.94 6.9925 143.010 1.52820 33.10 33.53 – 34.66 14.00 – 90.00

HD217344 229066844 2 345.1177 -33.7459 3 G4 7.75 11.972 83.5240 1.62240 33.31 34.98 – 36.26 84.00 – 276.00

HD71864 307490251 2,9 126.1584 -70.1596 4 G2 8.86 10.298 97.1006 0.76700 33.16 33.73 – 34.78 32.00 – 88.00

CD-50245 322051377 2 13.8558 -49.9491 2 G9 9.37 12.935 77.3084 2.58333 32.78 33.40 – 34.39 26.00 – 124.00

GSC08912-01753 348898049 2 106.0602 -62.9025 7 K2 10.64 8.5281 117.259 1.00030 32.64 32.86 – 33.74 8.00 – 40.00

HD48189A 375034557 2 99.5010 -61.5330 7 G0 6.48 47.806 20.9177 3.26030 32.03 31.73 – 33.02 12.00 – 94.00

HD10922 401840741 2 26.5340 -46.9481 8 G9 8.58 12.892 77.5657 1.25680 32.97 32.74 – 34.98 8.00 – 136.00

HD215964 419010038 2 342.3162 -20.9784 4 G3 9.06 9.6872 103.229 2.95120 33.17 33.50 – 34.34 18.00 – 66.00

HD221224 434096244 2 352.5323 -17.2842 8 G5 9.59 10.941 91.3977 1.58730 32.86 33.31 – 35.41 18.00 – 174.00

HD224374 441054134 2 359.3468 -16.0956 2 G0 8.83 7.9618 125.599 3.99250 33.45 33.64 – 34.71 18.00 – 86.00

BD-12243 010802452 3 20.1351 -11.4684 3 G9 7.69 28.302 35.3321 5.96039 32.44 32.77 – 33.17 38.00 – 58.00

HD26864 152504097 3 63.1825 -47.5656 1 G3 8.11 16.478 60.6851 10.13283 32.90 33.48 52.00

CD-481289 152589104 3,5 64.8087 -47.8534 13 K0 9.53 12.776 78.2711 1.54700 32.71 32.82 – 34.64 14.00 – 122.00

CD-421064 153046829 3 49.1878 -42.5256 4 G7 8.58 12.512 79.9194 3.75288 33.14 33.40 – 34.20 18.00 – 84.00

CD-371123 175491080 3,4 45.1952 -37.1338 31 G9 9.77 10.184 98.1884 3.97364 32.84 32.82 – 35.09 6.00 – 168.00

TYC8511-2197-1 219389540 3,4,5,6,13 77.0287 -53.2711 28 G3 10.18 6.3930 156.421 1.54700 33.09 33.42 – 34.86 12.00 – 70.00

HD13183 219998026 3 31.8260 -53.1991 18 G7 8.00 20.187 49.5349 2.33540 32.82 32.44 – 34.90 8.00 – 174.00

Continued on next page
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Table A.2 – continued from previous page

Name TIC ID Sector Ra Dec No. of SpT Tmag Parallax Distance Prot log(Lstar) log(Eflare) Duration

(deg) (deg) flares (mas) (pc) (days) (erg/s) (erg) (minutes)

CD-601850 281582156 3,8,9,10,11,13 115.9286 -61.1213 41 K0 9.95 10.038 99.6165 2.30289 32.79 32.92 – 34.97 8.00 – 148.00

CD-55899 293166952 3,4,5,9 66.6895 -55.3708 14 K1 9.54 9.2338 108.297 3.75287 33.00 33.04 – 34.83 12.00 – 144.00

CD-571709 339668420 3,6,9,13 110.3488 -57.3435 22 K0 9.85 9.2531 108.071 4.60582 32.89 33.08 – 35.17 12.00 – 302.00

V*XZPic 350520348 3,10 86.3056 -59.9232 23 K0 8.37 20.889 47.8721 1.89370 32.65 32.38 – 34.39 6.00 – 130.00

HD15045 001114345 4 36.2987 -10.4737 4 G5 8.34 15.234 65.6392 6.48254 32.97 32.69 – 33.60 8.00 – 38.00

HD32372 013955147 4 75.2163 -41.0184 6 G5 8.71 12.825 77.9672 2.29540 32.96 32.71 – 33.87 12.00 – 54.00

GSC05289-01010 036828969 4 42.0924 -11.2867 3 G7 10.73 4.1612 240.315 1.00896 33.24 34.11 – 35.41 20.00 – 174.00

CD-261578 044797824 4 62.4543 -26.0221 4 K0 9.77 7.3229 136.557 1.49898 33.15 33.75 – 34.63 22.00 – 106.00

CD-27963 065416676 4 41.1103 -26.9978 1 G7 10.32 6.5182 153.416 0.63874 33.03 35.26 134.00

HD31026 077371445 4,5 72.6480 -41.0471 23 G9 8.14 19.675 50.8239 4.80332 32.75 32.57 – 35.31 12.00 – 358.00

CD-251599 089187590 4 57.5754 -24.8096 7 K0 10.06 8.6082 116.168 1.08959 32.86 33.18 – 34.51 12.00 – 66.00

HD22213 093122097 4 53.5685 -12.0689 7 G8 8.02 19.392 51.5671 1.39428 32.99 33.12 – 34.03 18.00 – 84.00

HD23208 121011020 4 55.6659 -20.5454 9 G8 8.39 17.606 56.7966 4.15212 32.92 32.83 – 35.02 12.00 – 90.00

CD-35926 122576779 4 40.3086 -35.4194 1 F8 9.73 6.0561 165.122 6.17415 33.32 34.36 40.00

CD-361309 142889317 4 52.0312 -35.9121 4 F8 8.81 9.5960 104.210 1.20055 33.17 34.10 – 34.46 58.00 – 108.00

CD-371224 159923666 4 49.0130 -37.4229 3 G8 9.29 10.091 99.0943 2.75869 33.02 33.27 – 34.87 14.00 – 82.00

HD24329 166791648 4 57.7131 -34.7995 3 G8 8.63 11.812 84.6568 5.08471 33.00 33.88 – 34.31 68.00 – 90.00

HD25156 166874846 4,5 59.6637 -31.5953 18 G0 8.77 15.294 65.3821 1.27745 32.84 32.71 – 34.64 8.00 – 142.00

CD-311688 168696027 4 61.4675 -31.6439 5 G6 9.33 8.2426 121.320 2.02595 33.16 33.47 – 35.11 22.00 – 148.00

HD17781 274000285 4 42.6701 -21.5519 2 G3 9.01 13.195 75.7857 5.08491 32.89 33.50 – 34.05 28.00 – 72.00

HD55279 278024057 4,7,10,11,12,13 105.1270 -79.6958 31 K2 9.10 15.674 63.7999 5.08462 32.66 32.70 – 34.64 10.00 – 154.00

HD19491 299886628 4 46.5230 -48.7968 2 F7 7.67 14.310 69.8768 2.48360 33.23 33.57 – 34.34 34.00 – 72.00

V*FQCet 302384263 4 33.0789 -13.5121 1 K1 9.64 12.228 81.7742 7.00811 32.73 34.33 34.00

Continued on next page
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Table A.2 – continued from previous page

Name TIC ID Sector Ra Dec No. of SpT Tmag Parallax Distance Prot log(Lstar) log(Eflare) Duration

(deg) (deg) flares (mas) (pc) (days) (erg/s) (erg) (minutes)

CD-371559 321100884 4 60.1266 -37.3824 2 F8 10.09 4.8887 204.553 1.07180 33.37 34.51 – 34.73 46.00 – 52.00

HD26980 007586485 5 63.5943 -38.3171 14 G3 8.49 12.542 79.7315 1.76509 33.13 33.12 – 34.48 14.00 – 110.00

HD30689 009293388 5 72.3599 -10.5925 1 F8 8.56 10.759 92.9446 5.64072 33.18 34.47 68.00

V*TYCol 020096356 5,6 89.4617 -38.0677 48 G6 8.89 13.882 72.0316 0.78629 32.97 32.78 – 35.18 8.00 – 286.01

CD-382198 021540586 5,6 86.3177 -38.6136 14 G9 10.24 5.8574 170.724 1.35144 33.13 33.84 – 35.75 22.00 – 188.00

HD39012 021626512 5 86.9560 -40.0633 3 G7 8.06 21.216 47.1333 4.18509 32.80 32.75 – 33.91 14.00 – 64.00

CD-292164 030946945 5 79.4708 -29.5753 3 K1 10.22 6.0715 164.703 1.78948 33.09 33.40 – 35.12 12.00 – 120.00

CD-332281 078055898 5,6 80.4462 -33.1345 19 K0 9.50 8.3331 120.003 4.11864 33.12 33.18 – 34.90 12.00 – 148.00

V*AGLep 092845906 5 82.5796 -19.2755 21 G5 8.92 8.8455 113.051 2.09255 33.32 33.51 – 35.11 20.00 – 114.00

HD34866 139396805 5 79.9056 -22.2495 3 G6 8.59 12.403 80.6257 2.47119 33.13 33.46 – 34.10 28.00 – 62.00

V*ATCol 144499196 5 84.2723 -39.5407 9 K1 8.67 12.818 78.0141 2.51917 33.02 33.29 – 34.89 20.00 – 164.00

HD27679 152370762 5 65.2932 -24.5393 5 G2 8.76 11.794 84.7853 1.30387 33.01 33.64 – 34.70 28.00 – 130.00

CD-441568 153797977 5 66.8357 -44.3442 3 K1 9.88 11.324 88.3033 3.99183 32.71 32.83 – 34.83 8.00 – 158.00

HD272836 259645014 5,6 73.2719 -48.7440 9 K2 9.66 11.849 84.3910 4.47363 32.76 33.12 – 34.23 14.00 – 126.00

HD44627 260351540 5,6,7,8,11,12 94.8040 -58.0541 48 K1 8.27 19.952 50.1200 3.87276 32.71 32.79 – 35.53 12.00 – 306.00

HD275012 290717316 5,6 84.3353 -48.5864 11 G5 10.54 7.5514 132.425 1.66329 32.79 33.37 – 35.12 14.00 – 190.00

BD-171085 442868242 5 79.8508 -17.7484 7 K0 8.59 16.709 59.8469 3.24345 32.78 32.69 – 34.02 12.00 – 82.00

HD274263 453856222 5 82.8350 -42.8454 4 G0 10.10 6.2087 161.064 2.10955 33.14 33.67 – 34.59 18.00 – 64.00

HD274576 007491381 6 82.2140 -46.4719 5 G6 9.92 7.6517 130.689 2.19919 33.01 33.90 – 34.81 22.00 – 174.00

CD-333188 052641430 6 101.1104 -33.9805 3 G2 8.94 9.0204 110.859 1.66202 33.27 33.83 – 34.32 22.00 – 48.00

HD295290 053417036 6 100.0932 -3.5333 16 G0 8.19 16.434 60.8472 1.56450 32.93 33.23 – 35.22 18.00 – 152.00

V*AlLep 093126844 6 85.0865 -19.6697 8 G2 8.44 13.672 73.1390 1.68774 33.03 33.36 – 34.72 26.00 – 152.00

CD-402458 119289797 6,7 96.5288 -41.0482 9 K0 9.28 10.082 99.1818 4.10799 33.04 33.48 – 35.13 20.00 – 158.00

Continued on next page
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Table A.2 – continued from previous page

Name TIC ID Sector Ra Dec No. of SpT Tmag Parallax Distance Prot log(Lstar) log(Eflare) Duration

(deg) (deg) flares (mas) (pc) (days) (erg/s) (erg) (minutes)

HD46670 141977935 6 96.3874 -76.4264 1 G5 9.52 9.0618 110.353 9.46622 33.07 33.82 38.00

TYC7066-1037-1 143141922 6 89.5492 -35.0137 5 G9 10.50 7.3448 136.150 2.44630 32.83 33.08 – 35.01 8.00 – 208.00

CD-37984 148002142 6 99.9449 -37.8361 8 K1 9.99 9.9577 100.424 4.14250 32.79 33.04 – 34.03 12.00 – 60.00

TYC7627-2190-1 148091129 6,7 100.3270 -38.3434 9 K2 10.39 8.5322 117.203 0.72818 32.77 33.32 – 34.83 16.00 – 124.00

CD-283484 173088921 6 102.4391 -28.9880 4 G7 9.86 7.0118 142.616 4.18702 33.12 33.60 – 35.45 16.00 – 186.00

CD-442217 235073057 6 86.0327 -44.7926 2 K1 10.70 3.8597 259.087 3.51162 33.31 34.27 – 34.61 38.00 – 48.00

CD-521641 319466859 6,12 100.3021 -52.1273 9 K0 9.88 9.7491 102.573 3.35240 32.82 32.82 – 34.66 8.00 – 54.00

HD37551 354571604 6 84.3039 -42.7155 9 G7 8.85 12.471 80.1815 4.35440 32.98 33.23 – 33.89 18.00 – 40.00

HD62237 094515514 7 115.6107 -16.2835 10 G6 8.93 8.0146 124.772 1.31474 33.36 33.44 – 34.56 12.00 – 66.00

HD51797 130297425 7 104.0981 -46.7818 4 K0 8.90 10.454 95.6489 4.52854 33.05 33.54 – 34.82 28.00 – 154.00

HD271037 140891597 7 76.7105 -72.3531 3 K0 10.12 6.9180 144.550 0.23559 33.06 34.02 – 35.72 12.00 – 82.00

HD47582 156920968 7 99.2843 -45.5908 6 G0 9.03 9.7585 102.474 2.22309 33.12 33.46 – 34.45 20.00 – 60.00

TYC8557-1251-1 260848905 7,8,9 118.8818 -54.6140 4 G9 10.62 7.9038 126.521 2.65811 32.72 34.07 – 34.77 34.00 – 132.00

CD-521363 270677813 7 87.7549 -52.6368 1 G9 9.79 7.4602 134.045 1.20462 33.12 35.69 184.00

TYC8549-141-1 279570232 7 105.9600 -58.4573 2 G9 10.95 4.6574 214.713 1.12176 33.06 34.28 – 35.60 48.00 – 122.00

CD-482844 355359026 7 109.4323 -48.4860 2 G0 9.56 6.8847 145.249 2.05498 33.29 34.27 – 34.29 40.00 – 46.00

BD-012318 078234015 8 148.6296 -1.7643 12 G0 9.03 7.6399 130.891 2.21649 33.30 33.52 – 35.56 12.00 – 160.00

CPD-541712 118541883 8,10 129.2956 -55.3028 12 G9 10.40 6.6159 151.150 2.61735 32.97 33.10 – 35.07 8.00 – 184.00

CD-423328 123029030 8 113.3382 -42.9284 5 K1 10.63 7.1379 140.097 0.94990 32.81 33.65 – 34.93 20.00 – 172.00

HD48139 142087340 8 98.4252 -74.7009 1 K1 9.23 11.165 89.5600 4.73137 32.95 33.97 32.00

BD-032892 143400356 8 154.8007 -4.0789 1 K2 8.94 14.258 70.1321 6.15083 32.92 34.00 64.00

CD-541693 294157702 8 108.0720 -54.7693 3 G8 9.77 10.093 99.0717 2.38861 32.86 33.21 – 34.36 14.00 – 64.00

TYC8570-1980-1 342169848 8,9 122.7889 -55.9322 14 G8 10.57 7.0611 141.620 2.46030 32.84 33.26 – 34.76 8.00 – 72.00
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Table A.2 – continued from previous page

Name TIC ID Sector Ra Dec No. of SpT Tmag Parallax Distance Prot log(Lstar) log(Eflare) Duration

(deg) (deg) flares (mas) (pc) (days) (erg/s) (erg) (minutes)

CPD-551885 383664368 8,9,10 135.0141 -55.6400 18 G5 10.13 7.1017 140.811 0.93549 33.03 33.23 – 35.44 8.00 – 156.00

HD77883 401683991 8,9 135.8518 -48.6880 8 G0 8.50 10.189 98.1374 2.27807 32.95 33.16 – 34.21 18.00 – 82.00

HD83988 409973553 8 145.3938 -17.8867 7 K0 8.22 12.880 77.6361 1.00832 33.01 33.17 – 34.86 16.00 – 110.00

CD-287670 022011809 9 147.6530 -29.5578 7 K2 10.42 8.2598 121.069 1.03950 32.80 33.03 – 33.97 8.00 – 74.00

BD-042994 047425894 9 164.9403 -5.3703 5 K1 9.72 10.845 92.2058 5.60462 32.82 33.17 – 34.23 12.00 – 58.00

HD297669 132965136 9 149.2058 -49.3719 7 G7 9.82 7.6077 131.445 0.74195 33.08 33.92 – 35.06 28.00 – 102.00

HD297762 138700126 9 151.3481 -48.9887 4 K0 9.57 12.026 83.1497 11.16298 32.78 33.15 – 33.89 18.00 – 70.00

CD-386968 151737954 9,10 167.4166 -39.1131 24 G3 9.33 8.3258 120.108 1.07342 33.21 33.04 – 34.67 8.00 – 66.00

CD-66395 167123841 9 96.3016 -66.4861 3 K0 10.08 7.3391 136.256 0.27057 33.02 34.26 – 35.09 26.00 – 72.00

CD-287948 168067848 9 152.5082 -29.0583 5 K2 9.10 12.014 83.2300 1.07184 32.98 33.12 – 35.35 12.00 – 160.00

BD-193018 294257082 9 156.9052 -20.4531 4 K0 9.20 15.800 63.2879 4.07436 32.70 33.20 – 35.09 20.00 – 156.00

BD-133153 296862547 9 158.5020 -13.9039 1 G6 10.07 8.5779 116.578 8.90320 32.89 34.22 46.00

CPD-522481 298690606 9,10 143.1086 -52.6276 29 G8 10.16 7.5620 132.240 1.91863 33.09 33.36 – 35.26 8.00 – 110.00

CPD-69912 307490261 9 126.7141 -70.1668 3 K0 9.90 9.8514 101.508 0.76819 32.83 34.36 – 35.52 54.00 – 136.00

CD-248341 315095307 9 145.2244 -24.9683 7 K0 9.99 10.525 95.0038 2.04374 32.75 33.02 – 34.82 8.00 – 124.00

HD309751 360709162 9,10 142.9363 -65.2479 5 G3 9.46 7.1288 140.276 2.70900 33.28 34.13 – 34.86 26.00 – 106.00

HD70614 364425576 9 69.5673 -72.3700 1 G0 9.13 8.6724 115.307 1.91327 33.25 34.80 70.00

TYC8590-1193-1 383134735 9,10 134.1312 -57.0112 11 K0 11.06 6.3409 157.707 4.51493 32.76 33.60 – 35.27 14.00 – 192.00

CD-494008 400598180 9 134.4671 -49.6973 4 G9 9.73 7.9022 126.547 2.02249 33.19 33.53 – 35.34 20.00 – 146.00

CD-427422 021827610 10 181.6368 -42.7975 15 K0 9.88 9.3091 107.421 2.01540 32.87 33.07 – 34.79 12.00 – 130.00

CD-426814 162091088 10 168.2007 -42.6871 10 G9 8.92 16.311 61.3083 0.55942 32.75 33.17 – 34.85 8.00 – 92.00

HD49078B 167524561 10 100.5282 -64.5246 3 K0 10.28 8.1150 123.228 0.41113 32.77 34.20 – 35.17 18.00 – 134.00

CD-407581 178725301 10 194.0509 -41.3722 1 K2 10.58 7.3079 136.838 4.63048 32.78 34.64 86.00
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Table A.2 – continued from previous page

Name TIC ID Sector Ra Dec No. of SpT Tmag Parallax Distance Prot log(Lstar) log(Eflare) Duration

(deg) (deg) flares (mas) (pc) (days) (erg/s) (erg) (minutes)

CPD-535235 273817886 10 189.2453 -54.2050 3 K0 9.51 8.5173 117.408 2.46519 33.09 33.11 – 34.88 8.00 – 154.00

2MASSJ0850-7554 282051790 10,11 132.5222 -75.9104 8 G9 9.86 9.7257 102.820 1.15305 32.86 33.46 – 34.93 14.00 – 110.00

TYC8984-2245-1 295777692 10,11 171.9802 -66.4346 6 K1 9.85 9.1115 109.751 2.76320 32.88 33.13 – 35.39 12.00 – 280.00

CPD-494947 334300225 10 183.0463 -49.8357 2 K2 10.34 7.7910 128.353 3.80981 32.83 33.87 – 34.78 32.00 – 110.00

CD-506815 334684206 10 183.6418 -51.1702 5 G9 9.53 8.4191 118.777 3.64417 33.05 33.98 – 35.56 32.00 – 214.00

CD-612010 355235442 10,11 130.5019 -62.3073 6 K0 10.10 7.8761 126.966 1.22680 32.94 32.48 – 35.46 14.00 – 164.00

V*V479Car 359740883 10 140.8954 -61.1932 4 K1 9.19 10.308 97.0111 3.88801 33.06 34.07 – 35.75 54.00 – 276.00

RXJ0523.2-5751 382157212 10 80.8149 -57.8495 1 K2 10.82 5.6694 176.385 0.84029 32.92 34.49 58.00

CD-542644 385626253 10 138.3202 -55.4842 3 G5 9.56 7.5765 131.987 0.75664 33.15 34.03 – 34.49 34.00 – 58.00

CD-554499 390229592 10 183.7176 -55.7844 1 G9 8.87 8.6815 115.187 1.69898 33.31 36.00 206.00

CD-69783 398085117 10,11 160.3454 -69.6786 12 G8 9.51 10.567 94.6333 1.66888 32.93 33.48 – 35.00 20.00 – 108.00

CPD-681388 399639698 10 164.4552 -69.2333 3 K1 9.31 8.5919 116.388 3.55809 33.16 34.10 – 35.30 48.00 – 190.00

CD-574328 433448211 10 182.8806 -58.2815 6 G9 9.37 9.1014 109.873 2.56581 33.12 33.67 – 35.12 20.00 – 204.00

HD110817 449355457 10,11 191.2779 -47.7162 5 K1 9.38 8.3654 119.540 3.16514 33.15 33.56 – 35.52 22.00 – 257.99

V*V570Car 465075473 10,11 162.4514 -64.7745 6 G9 10.77 6.5122 153.557 1.21373 32.80 33.86 – 35.13 26.00 – 178.00

2MASSJ1530-3022 054810190 11 232.6995 -30.3683 4 K2 10.36 8.7401 114.415 3.27936 32.70 33.68 – 34.94 20.00 – 90.00

V*LTLup 076652075 11 228.9389 -33.5334 2 K0 9.79 8.5707 116.676 2.27993 32.96 33.84 – 34.46 32.00 – 72.00

CD-469327 127089264 11 216.7730 -47.2395 5 G9 9.80 8.3031 120.436 4.07489 33.00 32.55 – 34.58 12.00 – 84.00

HD126670 127249954 11 217.0386 -44.2383 4 G8 9.03 8.3430 119.861 5.44068 33.29 33.34 – 35.20 20.00 – 168.00

CD-439198 128414141 11 219.3354 -44.1684 4 G8 9.17 11.353 88.0793 0.73208 32.99 33.19 – 35.05 12.00 – 142.00

V*LYLup 148158169 11 229.8165 -40.9356 4 K0 10.32 7.5000 133.333 2.81639 32.90 33.38 – 34.97 12.00 – 114.00

HD133938 160701354 11 227.1603 -44.0146 5 G6 9.62 6.0880 164.257 1.01438 33.34 33.97 – 35.11 26.00 – 84.00

HD125328 179951420 11 214.9650 -41.0501 2 G3 9.53 8.8325 113.218 1.37580 33.06 34.07 – 34.39 42.00 – 52.00
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Table A.2 – continued from previous page

Name TIC ID Sector Ra Dec No. of SpT Tmag Parallax Distance Prot log(Lstar) log(Eflare) Duration

(deg) (deg) flares (mas) (pc) (days) (erg/s) (erg) (minutes)

HD136122 225707690 11 229.9515 -28.7459 2 G2 9.16 11.548 86.5906 5.31983 32.90 33.97 – 34.32 58.00 – 60.00

CD-478710 241739877 11 208.6751 -48.3495 9 K2 10.05 8.8269 113.290 3.53553 32.84 33.48 – 35.33 18.00 – 232.00

HD120395 243662768 11 207.5315 -44.8513 1 G0 7.63 18.280 54.7037 1.63547 33.07 33.61 28.00

CD-517268 244882956 11 196.6669 -51.9942 10 K1 9.64 8.6378 115.770 7.28528 33.01 33.47 – 34.06 20.00 – 54.00

CD-458100 248129790 11 193.6307 -46.1268 3 G0 9.05 7.4902 133.507 1.04984 33.37 33.67 – 35.42 18.00 – 186.00

CD-517878 261389834 11 209.8074 -51.8776 3 G0 8.94 8.3318 120.022 4.07487 33.33 33.94 – 35.06 26.00 – 102.00

V*KNLup 272456799 11 229.9854 -30.1071 8 G0 8.40 9.7792 102.257 2.17630 33.29 33.61 – 34.95 22.00 – 120.00

V*AFCru 309528896 11 184.7782 -63.1650 5 G9 8.94 15.086 66.2853 1.89303 33.09 33.34 – 33.86 12.00 – 22.00

CD-498410 312617539 11 210.8953 -50.1780 3 K0 9.38 10.291 97.1647 4.14512 32.96 33.31 – 35.17 12.00 – 170.00

CD-691055 335376063 11,12 194.6060 -70.4804 12 K0 8.95 10.548 94.7984 2.00349 33.11 33.50 – 34.85 22.00 – 124.00

CPD-691926 343709282 11,12 206.7859 -70.3519 5 K0 9.90 10.980 91.0747 6.49783 32.72 33.48 – 34.91 26.00 – 158.00

CD-78516 357911163 11 192.8917 -79.0258 1 F8 9.67 6.3774 156.803 5.22653 33.30 34.54 40.00

CD-3012033 371122327 11 228.1852 -31.2802 2 K2 10.53 6.9606 143.665 3.10899 32.85 33.72 – 33.91 28.00 – 30.00

CPD-631286 375310963 11 151.7320 -63.8690 4 K0 10.09 7.3234 136.548 0.72632 32.98 33.87 – 34.67 26.00 – 72.00

CPD-632126 379329149 11 181.0596 -64.3143 10 G8 9.38 9.2469 108.144 1.41421 33.11 33.78 – 35.18 28.00 – 132.00

CD-8480 405077613 11,12,13 112.7469 -84.3240 2 G9 9.10 14.459 69.1596 5.00877 32.77 33.15 – 34.56 20.00 – 130.00

2MASSJ1245-5410 419778517 11 191.4532 -54.1829 3 K2 10.32 8.9603 111.603 1.46594 32.71 34.01 – 34.14 38.00 – 72.00

CD-545780 430829746 11 219.4591 -54.9616 2 K1 9.66 8.5428 117.057 3.33916 33.02 33.53 – 34.77 18.00 – 120.00

2MASSJ1410-2355 438863006 11 212.7066 -23.9249 3 K2 9.94 10.619 94.1655 2.06367 32.74 32.99 – 34.53 12.00 – 122.00

CPD-662366 448165364 11,12 208.5306 -67.5625 7 G6 10.15 7.3277 136.468 2.40420 32.98 33.82 – 34.97 18.00 – 78.00

HD307772 460765494 11 158.6244 -62.5992 6 G7 9.72 6.7652 147.815 0.31717 33.20 33.66 – 35.24 12.00 – 98.00

CD-5110295 022836043 12 248.4599 -51.3172 3 K2 9.67 9.9367 100.637 6.06104 32.99 34.50 – 35.31 64.00 – 174.00

HD144732 067822383 12 242.1095 -28.4305 7 G0 9.20 8.3941 119.131 1.06628 33.20 33.38 – 34.85 16.00 – 106.00
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Table A.2 – continued from previous page

Name TIC ID Sector Ra Dec No. of SpT Tmag Parallax Distance Prot log(Lstar) log(Eflare) Duration

(deg) (deg) flares (mas) (pc) (days) (erg/s) (erg) (minutes)

HD321958 079358659 12 251.6678 -38.1476 5 G9 10.12 5.7738 173.196 1.47641 33.28 33.86 – 35.72 24.00 – 180.00

HD143637 093700013 12 240.6838 -30.6672 5 G1 8.48 9.4977 105.288 1.14518 33.17 33.32 – 34.34 18.00 – 78.00

HD156097 152346470 12 259.2415 -31.1512 12 G5 8.83 8.5735 116.638 1.96856 33.48 33.83 – 35.52 20.00 – 158.00

CD-3510498 179051609 12 236.6716 -36.3133 2 K1 10.33 6.6890 149.499 1.42170 32.98 34.14 – 35.32 40.00 – 208.00

CD-3910162 179622269 12 236.9239 -40.3076 5 K1 10.17 7.5901 131.750 5.61745 32.91 33.40 – 34.38 14.00 – 66.00

TYC8696-1949-1 190372855 12 235.3795 -53.5084 4 K2 9.86 9.6009 104.156 1.51825 33.07 33.71 – 35.60 20.00 – 211.99

CD-3311099 210541258 12 244.9606 -33.9127 3 G6 9.44 7.2617 137.708 2.61724 33.21 33.83 – 34.75 28.00 – 140.00

CD-3410971 210845898 12 245.9068 -34.6729 5 G0 8.83 8.1376 122.886 1.11805 33.33 33.69 – 34.53 18.00 – 58.00

HD329929 270107026 12 236.7156 -49.3182 3 K0 9.50 7.8124 128.001 4.70033 33.04 33.45 – 34.64 18.00 – 98.00

CD-79137 293466528 12,13 50.3399 -79.2859 5 G5 9.67 6.4382 155.322 0.98023 33.29 33.94 – 35.43 12.00 – 120.00

V*MVLup 295911223 12 237.4966 -36.4994 2 K2 10.37 7.1809 139.258 5.23443 32.88 33.38 – 34.38 22.00 – 54.00

HD155915 304437284 12 259.5604 -60.4581 4 G8 8.61 16.779 59.5969 4.16963 32.71 32.88 – 33.96 18.00 – 72.00

CD-3510827 318035342 12 243.4916 -36.3039 6 K0 10.15 7.9771 125.358 2.15249 32.89 33.19 – 34.78 22.00 – 140.00

2MASSJ1314-6846 338248268 12 198.5044 -68.7774 4 G9 10.12 4.8027 208.216 2.61080 33.33 34.34 – 36.03 40.00 – 341.99

CPD-681894 339812943 12 200.5308 -69.6368 2 K1 9.19 10.115 98.8631 3.72475 33.03 34.18 – 34.38 54.00 – 66.00

CD-547336 360323842 12 262.4794 -54.2639 5 K1 8.69 14.758 67.7557 1.82592 32.77 33.62 – 34.90 62.00 – 162.00

HD177996 061275837 13 287.2105 -42.4288 17 K1 7.12 27.920 35.8155 6.16424 32.63 32.40 – 34.24 12.00 – 130.00

HD163029 076313563 13 269.3830 -57.6646 10 K0 7.90 23.734 42.1333 4.00502 32.71 32.68 – 33.82 22.00 – 110.00

HD180445 097914505 13 289.5533 -38.3851 14 G8 7.69 23.121 43.2500 2.54197 32.66 32.60 – 34.27 14.00 – 114.00

HD180524 097919620 13 289.6781 -41.7082 13 G8 9.69 9.7275 102.801 3.24435 32.89 33.31 – 34.34 14.00 – 58.00

HD170132 119676968 13 277.7483 -55.5485 13 K0 8.66 16.180 61.8047 6.46270 32.71 32.59 – 34.17 14.00 – 124.00

HD198610 318213519 13 314.8254 -78.1811 3 G0 8.45 10.822 92.4009 1.36713 33.32 33.40 – 34.36 18.00 – 54.00

HD183253 319904128 13 293.0046 -58.9164 6 G8 9.33 10.036 99.6373 0.82663 33.02 33.69 – 35.37 26.00 – 172.00
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Table A.2 – continued from previous page

Name TIC ID Sector Ra Dec No. of SpT Tmag Parallax Distance Prot log(Lstar) log(Eflare) Duration

(deg) (deg) flares (mas) (pc) (days) (erg/s) (erg) (minutes)

CPD-791037 346704136 13 296.7666 -78.9621 4 G8 10.59 6.8583 145.808 1.98853 32.88 33.34 – 34.41 12.00 – 78.00

CD-84117 369959289 13 173.5587 -85.1208 7 F8 8.97 8.9034 112.316 2.90160 33.31 33.59 – 34.51 18.00 – 96.00

HD157963 407575771 13 264.1054 -77.6012 2 G0 8.77 8.5680 116.713 0.75829 33.40 33.22 – 34.64 8.00 – 94.00



Abbreviations

AIA Atmospheric Imaging Assembly

APO Apache Point Observatory

AR Active Region

ARMS Adaptively Refined Magnetohydrodynamics

BBSO Big Bear Solar Observatory

BY Dra A late-type variable main sequence star

CCD Charge-Coupled Device

CHROMIS CHROMospheric Imaging Spectrometer

CME Coronal Mass Ejection

CR Circular Ribbon

CRISP CRisp Imaging SpectroPolimeter

DKIST Daniel K. Inouye Solar Telescope

EPIC Ecliptic Plane Input Catalog

EUV Extreme Ultraviolet

EVEREST EPIC Variability Extraction and Removal for Exoplanet Science Targets

EXOSAT European X-ray Observatory Satellite

FBEYE Flares By EYE

FDHA Full Disk H-alpha
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FFD Flare Frequency Distribution

FFI Full Frame Image

FOV Field Of View

FR Flare Ribbon

FWHM Full Width Half Maximum

GOES Geostationary Operational Environmental Satellite

GONG Global Oscillations Network Group

GPS Global Positioning System

GUI Graphical User Interface

Hα H-alpha

HMI Helioseismic and Magnetic Imager

HXR Hard X-Rays

IDL Interactive Data Language

KIC Kepler Input Catalog

LC Long Cadence

LS Lomb Scargle

MAST Mikulski Archive for Space Telescopes

MDI Michelson Doppler Imager

MHD MagnetoHydroDynamics

MOMFBD Multi-Object Multi-Frame Blind Deconvolution

NOAA National Oceanic and Atmospheric Administration

PCC Pearson Correlation Coefficient



Abbreviations 182

PIL Polarity Inversion Line

RHESSI Reuven Ramaty High Energy Solar Spectroscopic Imager

RR Remote Ribbon

SIMBAD An astronomical database for objects beyond the Solar System

SSWIDL Solar SoftWare Interactive Data Language

SC Short Cadence

SDO Solar Dynamics Observatory

SILSO Sunspot Index and Long-term Solar Observations

SOHO Solar and Heliospheric Observatory

SPI Star-Planet Interaction

SST Swedish Solar Telescope

SXR Soft X-Rays

TESS Transiting Exoplanet Survey Satellite

TIC TESS Input Catalog

TSI Total Solar Irradiance

UFR Ultra Fast Rotator

UV Ultraviolet

WLF White Light Flare

ZDI Zeeman Doppler Imaging



Symbols and Units

Prot Rotation Period

Teff Effective Temperature

Ω Rotational Velocity

χ2
ν Reduced Chi-Squared

φ0 Phase Zero

log(g) Surface Gravity

Å Angstrom: 1Å= 1010m

AU Astronomical Unit: 1AU = 1.49×1011m

Dec Declination

erg Unit of Energy: 1erg = 10−7J

G Gauss

K Kelvin

mas milliarcsecond

Mx Maxwell unit of Magnetic Flux: 1Mx = 1Gauss cm2

pc unit of length, parsec: 1pc = 3.0857×1016m

ppm Parts Per Million

Ra Right Ascension

rms Root Mean Square

SpT Spectral Type
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