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Abstract 

With the increasing integration of electric vehicles and renewable energy sources in 

electricity networks, key opportunities in terms of a cleaner environment and a sustainable 

energy portfolio are unlocked. However, the widespread deployment of these two 

technologies, can  entail significant challenges for the electricity grid and in a larger context 

for the society, when they are not optimally integrated. In this context, smart charging of 

electric vehicles and vehicle-to-grid technologies are being proposed as crucial solutions to 

achieve economic, technical and environmental benefits in future smart grids. The 

implementation of these technologies involves a number of key stakeholders, namely, the 

end-electricity user, the electric vehicle owner, the system operators and policy makers. For a 

wider and efficient implementation of the smart grid vision, these stakeholders must be 

engaged and their aims must be fulfilled. However, the financial, technical and environmental 

objectives of these stakeholders are often conflicting, which leads to an intricate paradigm 

requiring efficient and fair policies. With this focus in mind, the present research work 

develops multi-objective optimisation algorithms to control the charging and discharging 

process of electric vehicles. Decentralised, hybrid and real-time optimisation algorithms are 

proposed, modelled, simulated and validated. End user energy cost, battery degradation, grid 

interaction and CO2 emissions are optimised in this work and their trade-offs are highlighted. 

Multi-criteria-decision-making approaches and game theoretical frameworks are developed to 

conciliate the interests of the involved stakeholders. The results, in the form of optimal 

electric vehicle charging/discharging schedules, show improvements along all the objectives 

while complying with the user requirements. The outcome of the present research work 

serves as a benchmark for informing system operators and policy makers on the necessary 

measures to ensure an efficient and sustainable implementation of electro-mobility as a 

fundamental part of current and future smart grids.  
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Chapter 1 Introduction 

1.1 Background 

In recent years, a significant deployment of Electric Vehicles (EVs), such as cars (including 

taxis), vans and buses, is witnessed around the world. In most of the mature, industrialized 

and a range of developing countries, measures to facilitate the penetration of EVs in the car 

and van market are undertaken. Different countries have set ambitious targets concerning the 

share of EVs in their national fleets, although new registrations and penetration levels remain 

comparatively low.  

The main drive for wide EV adoption comes from both environmental and public health 

concerns related to urban pollution, although energy security and geopolitics of energy 

sources can also be some of the motivations. According to the European Environment 

Agency [1], the major environmental impacts of internal combustion engine (ICE) vehicles 

include greenhouse gas (GHG), air pollution, and noise pollution (as well as land 

consumption for the transportation infrastructure). While GHG emissions from all other 

major economic sectors have fallen in recent decades, those from transport have increased. In 

the EU, road transport's GHG emissions are today around 17% above 1990 levels, while the 

contribution of road transport to total EU, GHG emissions has increased by around half — 

from 13% of the total in 1990 to almost 20% in 2014 [2]. By the substitution of ICEs (fuelled 

by benzene petrol or diesel), the aforementioned tailpipe emissions can be completely 

avoided using full battery EVs. 

Furthermore, EVs can be a central enabling feature of smart grids and distributed energy use 

[3]. To this end, Vehicle-to-Grid (V2G) technologies have been considered as the most 
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advanced solution in terms of EV integration in the future electricity system [4]. As the 

penetration of EVs in the national car stocks of many countries is increasing at a relatively 

high pace [5], albeit from a very low base, with projections showing that this trend will 

continue, EVs must be integrated in the electricity network in an efficient way, as otherwise 

there will be stress on the electricity infrastructure. By 2040, 33% of the global light duty 

vehicle fleet (530 million by 2040) will be composed by EVs [5]. As a consequence, the 

electricity demand for EV charging will increase on a yearly basis, and this will require 

additional energy demand, which is estimated to be 1,800TWh by 2040 [5]. This will be a 

central issue to be addressed by the various national decision makers, balancing the needs of 

different stakeholders. In this context, a smart grid is argued to be one route to defer grid 

reinforcements [3]. 

In the near future, those countries where the EV uptake is growing, will have to meet the EV 

charging power demand requirement with additional generation assets. V2G technologies 

promise to alleviate this additional electricity demand, by changing the way in which EVs are 

perceived, from mere loads to smart storages for the grid [6].  In this context, EVs could be 

exploited as storage for the grid, to integrate a higher share of intermittent renewable energy 

sources (RES), such as solar photovoltaic (PV) and wind. The EVs and RESs will behave as 

part of an agglomeration of generation and storage assets, to provide network services for the 

grid. 

In the V2G concept, EVs establish bidirectional energy exchange with the grid. They not only 

absorb energy but can also supply part of the stored energy. In the ideal case, EVs will absorb 

more energy than what is required for transportation requirement, in periods where the 

electricity is cheap or where the grid is underutilized. Conversely, when the electricity from 

the grid is costly or the grid is under stress at peak times, a suitable share of that energy will 

be supplied to the grid. 

However, the V2G concept presents some barriers: The charging and discharging process 

implies an energy loss for the full charge/discharge cycle; with current round-trip (charging 

and discharging) efficiencies being in the range of 80-90%, the energy lost reduces the profit 
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margin for the prospective providers. Moreover, the ability to provide V2G services requires 

additional and more advanced charging infrastructure as compared to the current status, smart 

communication links with central management systems (and back-office) and the grid aided 

by a metering system [7]. Hence, the usefulness and profitability of such practice must be 

carefully assessed with a techno-economic analysis.  

To employ V2G, some upgrades in the EV is required; for example, differently designed on-

board power electronics for V2G and a real-time control system that allows the stakeholders 

demanding EV power to access the storage when needed. These additions to the basic EV 

charging setting translates into additional investment costs.  

In addition, in order to participate in V2G services, EVs need to be idle (i.e. parked) and 

plugged-in at charging stations for periods that vary depending on the service that is opted 

for. During that time, those EVs will not be used for transportation, and this is in line with the 

usage patterns of most EVs, which are parked on average for 90-96% of the time on a daily 

basis according to several studies [8][9][10]. Strategic optimisation models covering a variety 

EV usage patterns will need to be developed to effectively exploit the whole set of potentially 

feasible V2G services. 

Lithium-Ion batteries are the most popular solution for EVs [5]. However, despite their 

superior energy efficiency when compared with other batteries (for instance, above 90% [11] 

against 25-45% of the compressed air energy storage [12]), they have inherent shortcomings. 

The performance of Li-Ion batteries depends on the temperature, they are prone to self-

discharge and crucially their performance degrades with usage [13]. Hence, when EVs are 

also exploited as storage solutions, their batteries incur extra utilization implied by the 

additional charging/discharging cycles. This results in a higher depreciation of the battery in 

time [14]. A range of services with suitable operating conditions [9] should be approached 

and the operation of the battery should always be optimised in order to minimise degradation. 

As can be seen, EVs bring the remarkable opportunity for integrating the transportation and 

energy systems, but the question of how they should be managed/operated is in no way 

trivial. Optimal EV utilisation is a task that connects multiple areas, among which power 
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system operation, economics, energy and environmental sciences, chemical engineering and 

social sciences are the most essential ones. As the integration of EVs in the electricity 

network brings together a range of disciplines, multiple stakeholders will have to interact in 

this ecosystem. Understanding and analysing their behaviour and modelling their priorities is 

therefore of pivotal importance in a time where EVs have attracted the interest of different 

communities of users. While cooperation among different stakeholders can bring benefits, 

sometimes there will be inherent conflicts due to the very nature of the topic, which does not 

have a unique solution. An immediate example is the conflict that may arise between 

electricity system operators and EV users, each aiming to achieve divergent objectives. The 

system operator will pursue technically and economically optimal grid operation whereas the 

EV user will want to prioritise their transportation requirement while prolonging as much as 

possible the life of their asset; that is, the EV. The prerogatives of these two stakeholders 

cannot be simultaneously optimised as the system operator will expect the EV to be available 

for as long as possible, which may hinder the timing of the trips and the battery will undergo 

additional utilisation which will most probably lead to extra degradation. Conversely, if the 

EV user follows their own objectives, the grid may suffer due to the non-optimal operation.  

This glimpse into this paradigm, which will be discussed in this thesis, accurately depicts a 

major challenge that future energy systems will need to resolve. Multiple conflicting 

objectives from different groups of stakeholders involved in future smart grids will need to be 

simultaneously optimised to ensure societal benefits. The need of finding a solution to this 

complex, yet exquisite, multi-faceted problem has motivated the undertaking of the present 

work. 

To this end, multi-objective optimisation (MOO) is a topic that has recently gained 

considerable interest in the research community. Researchers and scholars have applied MOO 

in a variety of fields, ranging from economics, finance, engineering to water resource 

management among others. In this field, the trade-off among several conflicting objectives is 

mathematically depicted, and a set of optimal solutions is found.  

EVs represent a large sector including several categories. There are several definitions around 

the types of EVs. However, the designation adopted throughout this thesis allows a clear 
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differentiation between plug-in and non-plug-in vehicles. Hereafter, plug-in electric vehicles 

(PEV) refer to those that allow grid connection to charge the on-board battery. This category 

includes battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), with 

the latter being also supplied by an auxiliary ICE. Given the two types of energy (electricity 

and fuel) supply, the capacity of the battery of a PHEV is considerably smaller compared to 

that of a BEV. Outside the group of PEVs, hybrid electric vehicles (HEVs) are also available 

in the market (these cannot be plugged into the grid and only use regenerative breaking). The 

initial EV market was mainly composed by HEVs allowing regenerative breaking. However 

later on, PHEVs and BEVs rapidly took over. It is envisaged that the future EV market (2040 

and 2050) will be primarily composed by BEVs as PHEVs are seen as a transition technology 

[15]. This perspective reinforces the idea of considering only BEVs for this research since it 

is a cleaner technology (for BEVs, the only power source is the grid electricity, which, in 

many countries, is cleaner than fossil fuels and offsets CO2 emitted during battery 

manufacturing [5]) and more suitable for grid integration, due to the higher battery capacity.  

As EVs become more popular, the market for EV charging system has also developed, with 

several protocols being adopted by the automotive original equipment manufacturers (OEM). 

The different charging systems can be classified according to the charging power, location of 

power electronic converter (on-board or off-board), type (AC or DC), and level of protection. 

Table 1.1-1 and Table 1.1-2 provide a useful classification of the different charging ratings 

and modes, respectively [16]. 

Table 1.1-1 Different charging rating in Europe [16] 

Charge power Connection Power (kW) Max current (A) Location 

Slow charging 
1-phase AC 

connection 
3.7 10-16 Domestic 

Semi-fast 

charging 

1-phase or 3-phase 

AC connection 
3.7 - 22 16 - 32 Semi-public 

Fast charging 
3-phase AC or DC 

connection 
>22 >32 Public 
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Table 1.1-2 Different charging modes available in the market [16] 

Mode 1 (AC) Slow charging from a standard household-type socket supplying up to 16 

A (1-phase). There is a residual current device. 

Mode 2 (AC) Slow charging from a standard household-type socket (1 or 3-phase) up to 

32 A per phase. An in-cable control box including restriction of the 

charging current and protection device is provided. 

Mode 3 (AC) Semi fast charging with dedicated 1 or 3-phase AC socket or EV 

connector with up to 70 A or 63 A per phase. Continuous protective earth 

conductor and continuity checking are provided and control of charging 

current is allowed. 

Mode 4 (DC) Fast DC charging from off-board electric vehicle supply equipment 

(EVSE). The charging cable is fixed and the charging post has inbuilt 

protection and control devices. Charging powers up to 120-170 kW. 

As can be seen from Table 1.1-2, AC charging relies upon on-board charging equipment, and 

only provides the grid connection. In this category, two charging levels are available, from 

the standard domestic plug (level 1) to a maximum 7 kW connection (level 2). DC charging 

systems convert electricity from AC with off-board equipment and are usually characterised 

by high power.  

1.2 Electric vehicle deployment 

Major industrial powers as well as developing countries have identified EVs as essential 

assets to reduce the carbon footprint of national and global transportation systems, and pave 

the way for a more sustainable energy landscape. Fostered by the supporting policy, EV 

uptake soared globally with China, USA, Norway, the Netherlands, Japan and the UK leading 

the scene [5]. The EV phenomenon has started to take form around 2010, with uptake seeing 

an exponential growth. Evidence of this can be found in Figure 1.2-1, where the national EV 

stock is depicted for the UK, the Netherlands, Norway, Germany and Sweden [5]. 



 

29 

 

 

Figure 1.2-1 National EV stock [5] 

As for this work, BEVs are more relevant, for the reasons mentioned earlier.  Figure 1.2-2 

shows the national stock for BEVs in the North Sea region (NSR) countries. 

 

Figure 1.2-2 BEV national stock [5] 

As of 2018, BEVs still represented only a fraction of the national EV fleet. This indicates that 

PHEVs still constitute a big part of the EV stock. However, the preference towards BEVs has 

already been manifested; the UK and the Netherlands have reduced the economic support 

towards PHEVs [5]. On the other hand, the number of BEVs has prospered as evidenced by 

Figure 1.2-3 which shows the new registration of BEVs in the NSR countries of the EU. 
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Figure 1.2-3 New national BEV registrations [5] 

BEVs have experienced a higher growth than PHEVs since 2013: in 2016 BEVs increased by 

62% in the NSR while PHEVs only by 59%. These promising numbers are still relatively 

modest when compared with the total national fleets of the respective countries. However, 

there is a global drive to promote BEVs as the ideal transportation solution for the future. 

Proof of this can be found in the future scenarios developed by several institutions. Some 

noteworthy research is reported herewith.   

The International Energy Agency [5] presented two EV deployment scenarios for 2030; the 

former depicts the future market based on efforts to meet the goal of reducing the global 

average temperature increase to below 2°C above preindustrial level and ensuring efforts to 

limit the temperature increase to 1.5°C above preindustrial level (2DS), while the latter aims 

at reducing the temperature increase beyond 2°C (B2DS). A reference scenario based on the 

Paris Agreement on Climate Change is also presented for comparison, as illustrated in Figure 

1.2-4. 
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Figure 1.2-4 Deployment scenarios for global EV stock for 2030 [5] 

As predicted, the higher is the targeted global warming reduction (see 2DS and B2DS), the 

higher the number of EVs deployed to meet the goal. Even in the reference scenario in Figure 

1.2-4, which is more conservative than the 2DS and the B2DS scenarios, foresees 56 million 

EVs globally by 2030.  

In the UK, National Grid’s Future Energy Scenarios 2017 [15] reported that in all the 

scenarios they developed, there would be between 1.9 and 9.3 million EVs on the UK roads 

by 2030.  Figure 1.2-5 shows the expected numbers of EVs in the UK for every decade until 

2050 for four scenarios, each having different rates of development of low-carbon technology 

and associated user adoption. BEVs are referred to as PEVs in their report. 

 

Figure 1.2-5 EV numbers in the UK for the four scenarios [15] 
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Figure 1.2-5 above reaffirms the two conceptions that have been stressed hitherto: PHEV is a 

transition technology; therefore, it will be systematically phased out or will play a 

progressively smaller part in the future national fleet. BEVs are the key EV technology, as 

only the most pessimistic scenario (Steady State in Figure 1.2-5) shows little increase in their 

numbers. Following this framing, we will designate BEVs as EVs henceforth and we will set 

aside PHEVs. 

The phenomenon of large-scale EV deployment that has been only briefly highlighted here 

will certainly bring a number of opportunities, but it will also entail challenges that may 

radically change the electricity grid as we know it. The very large numbers projected thus far 

underline an equally massive demand of energy, or even more crucially power. Even with a 

simple calculation, by taking an average EV battery capacity of 30kWh and an assumed UK 

EV fleet of 2 million (see the Steady State scenario in Figure 1.2-5), the resulting energy 

demand amounts to 60 GWh. What may bring a significant challenge is that if nearly all the 

60 GWh of charging energy is demanded in the same hour, on average, it would exceed the 

current daily national peak demand (48.8 GW in 2019 [17]).  Under this simplistic 

assessment, the current generation, transmission and distribution infrastructure would have to 

be doubled to cope with such power demand. This basic estimate does not account for the 

power quality concerns, such as voltage profiles and stability of supply. This will be covered 

in detail in Chapter 3, where the challenges awaiting for the current electricity network will 

be extensively modelled. 

Crucially, some positive prospects may be offered by the concurrent deployment of RES, or - 

more importantly for the sake of the current work - distributed energy resources (DER). The 

next few Sections will present the global status on RES deployment and will highlight the 

complementarities with EVs. 

1.3 Renewable energy sources deployment 

In the past decades, the world has become increasingly accustomed to RES, which currently 

constitute a major proportion of the energy mix of several countries among the 169 that have 
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adopted this technology, with the total installed capacity of 2,378 GW as of 2018 [18]. Out of 

this capacity, hydropower, wind and solar are leading the sector, followed by bio-power, 

geothermal, concentrated solar-thermal power (CSP) and tidal. At the end of 2018, RES 

contribute to 26.2% of the global electricity generation, with wind and solar providing 5.5% 

and 2.4%, respectively. Figure 1.3-1 shows the globally installed power generation capacities. 

 

Figure 1.3-1 Global installed power capacity [18] 

 

Especially in the UK, wind is a strong contributor, with a share of 17%, while solar provides 

4%. Among the available technologies, PV offers the highest versatility in terms of 

scalability, as both large plants and distributed systems are installed. In fact, 150 million of 

people in Africa and Asia make use of off-grid PV systems, with Bangladesh in the lead of 

the countries with the highest access to off-grid PV. 

The installation of PV technology was driven by the generous economic support provided by  

different governments around the world. Among a number of measures designed to promote 

PV, Feed-in-tariff (FIT) and Net metering (NM) are the most widely adopted, with the former 

being implemented in 111 countries, while the latter was adopted in 66 countries, by the end 

of 2018 [18]. Concurrently, the price of PV energy has fallen in the last decade as the 

technology becomes more cost efficient. This has led to a decrease in the corresponding 
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support, as PV systems become more competitive. As an example, Figure 1.3-2 depicts the 

decline in FIT in the UK along with a similar behaviour of the cost of PV installation 

[19][20][21]. 

 

Figure 1.3-2 UK FIT rate for PV systems up to 10kW [19][20][21] 

If on one hand these measures encourage improvements in the efficiency of the PV 

technology (technologies much improve their performance in a competitive market), it may 

also have the adverse effect of discouraging new installations. As a consequence, yearly 

installations in 2016 were four times lower compared to the previous year, [22] and the 

situation is about to become worse. In fact, the UK government has abolished the FIT scheme 

for new installations from April 2019 [23]. 

As the investment in distributed PV becomes more challenging, the concept of self-

consumption (SC) and self-sufficiency (SS) assume paramount importance. SC refers to 

processes that allow consumers to generate and utilise their own energy [24], whereas SS 

means that a certain proportion of the electricity demand is satisfied by the local generation. 

This demonstrates that EVs and PV systems can mutually benefit each other. EVs could 

achieve a near zero-carbon footprint by charging primarily from PV and both SC and SS of 

the PV-EV system could be increased by storing the excess PV energy in the EV battery. To 

this end, one specific technology, the lithium-ion battery, is currently dominating the scene as 

0.00E+00

1.00E+03

2.00E+03

3.00E+03

4.00E+03

5.00E+03

6.00E+03

0

10

20

30

40

50

07/2009 11/2010 04/2012 08/2013 12/2014 05/2016 09/2017 02/2019

P
V

 c
o

st
 (

£
/k

W
p

)

FI
T 

ra
te

 (
p

/k
W

h
)

export tariff (left)

generation tariff for new build/std solar PV of 0-4kW (left)

generation tariff for new build/std solar PV of 4-10kW (left)

PV installation cost (right)



 

35 

 

the preferred solution for EV batteries. Therefore, it is worth spending some efforts 

discussing the advantages, drawbacks brought by the different chemistries within li-ion 

batteries and future trends. 

1.4 Lithium-ion batteries for EVs  

EVs consume the energy solely provided by a battery to supply their powertrains, while 

PHEVs can make use of an auxiliary ICE to travel long distances. Hence, the battery is the 

most vital part of an EV, because it provides the energy for transportation. To this end, 

lithium-ion batteries are dominating the market for both transportation as well as the already 

well-established home electronics and hand-held devices industry. Lithium-ion batteries are 

complex electrochemical devices that make use of certain chemical reactions to be able to be 

charged and discharged. More details will be provided in Chapter 4, while this Section 

reflects on the current lithium-ion battery market and the future trends. 

The most promising lithium-ion battery chemistries are lithium-iron phosphate (LFP), 

lithium-nickel-cobalt-aluminium (NCA), lithium-nickel-manganese-cobalt (NMC), lithium-

manganese oxide spinel (LMO) and lithium-titanate (LTO). The performance of these battery 

types can be compared according to five criteria, which are: 

▪ Lifespan; this is the maximum number of charging/discharging cycles. 

▪ Specific energy; this is the energy contained per unit mass of a certain substance (J/kg). 

▪ Specific power; this is the power contained per unit mass of a certain substance (W/kg). 

▪ Cost. 

▪ Safety; this is intended as the temperature performance of a substance when subject to high 

utilisation. 

Figure 1.4-1 depicts the performance of the different chemistries along these six dimensions.  
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Figure 1.4-1 Dimensions of Li-Ion battery performance [13] 

It can be seen that there is no one type that excels along all these dimensions. NMC, LFP and 

LTO are commonly are adopted in EVs due to their superior performance. More detailed 

explanation is provided for the different factors: 

- Lifespan: we refer to Chapter 4 for details regarding this aspect. 

- Specific power: EVs have superior power performance, which are comparable and even 

higher than ICE vehicles [13]. 

- Specific energy: this refers the amount of energy per kg in a battery. In Figure 1.4-2, the 

technical characteristics of common lithium-ion technologies are listed. 

 

Figure 1.4-2 Technical specifications of common Lithium-Ion batteries [25] 
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Moreover, the energy density, or specific energy, for BEV batteries is reported to have 

reached near 300Wh/l in 2015 [5]. 

- Cost: the value chain of automotive batteries consists of the production operations carried 

out on the components such as raw materials for production of the cells, module 

production into the battery packs, battery-vehicle integration and usage in the lifetime and 

disposal. Figure 1.4-3 shows a cost breakdown of the different components of a battery 

pack 

 

Figure 1.4-3 Breakdown of the costs for the components of a battery pack [13] 

The cost of the raw materials is only some 12% of the total cost of the battery pack [13]. 

Owing to the developments in battery technology, manufacturing costs of EV batteries 

have fallen significantly in recent years. Figure 1.4-4 depicts the situation of battery costs 

in USD (United States Dollar) up to 2016. As can be seen, EV battery manufacturing costs 

have dropped from 1000 USD/kWh in 2008 to below 300 USD/kWh in 2016 for PHEVs, 

according to US Department of Energy, while for BEVs the cost is even lower. This is 

because, larger pack size, as it is the case for BEVs compared to PHEVs, leads to reduced 

cost per kWh [5]. Moreover, original equipment manufacturers (OEMs) like Tesla, 

Panasonic, GM and LG Chem have announced prices that are in the range of 180-

200$/kWh which are significantly lower than the figures previously mentioned. This is 
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consistent with the values shown in Figure 1.4-4 which shows battery pack prices well 

below $300/kWh. 

 

Figure 1.4-4: Li-ion battery cost history 2011-2016 [26] 

- Safety: this is related to preventing thermal runaway with a possible ensuing fire. High 

discharging rates, overcharging or short circuits, favoured by a positive feedback loop, can 

cause chemical reactions that release heat and may cause a fire. This is why a cooling 

system is a fundamental component of any automotive battery pack to ensure a controlled 

and safe energy release and avoid thermal runaway. There is usually a compromise 

between the high energy density and inherent battery safety. 

Looking at the future, battery pack prices projections indicate a future price below $190/kWh 

by 2020 and below 100$/kWh by 2030 [27]. Cost reduction is expected from improved 

production processes and larger scale production. According to [5], battery prices decreased 

by 35% in 2015 and they predict that by 2040 long-range electric cars will have an EV 

battery cost that is below $220. Figure 1.4-5 illustrates these considerations. 
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Figure 1.4-5: Li-ion battery cost trends and estimates [28] 

Currently, lithium-ion are the most efficient and economic battery types but there are other 

emerging technologies that show promising performances. Advanced stationary storage 

solutions are listed in Figure 1.4-6, which gives a detailed insight into their characteristics. 

 

Figure 1.4-6 Technical characteristics of the most advanced battery technologies for stationary storage purpose 

[25] 

As can be seen, there is not one type that satisfies all the ideal requirements: for instance, 

sodium-sulphur batteries have safety issues but display a considerable discharge rate.  
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1.5 Scope of research 

The main focus of this work is to employ multi-objective optimisation to tackle the problem 

of optimal electric vehicle charging scheduling. Multi-objective optimisation may not be 

conceptually hard to grasp, however proposing a workable framework that can be adapted to 

the problem of optimal electric vehicle charging scheduling is not trivial. In effect, it presents 

a multi-dimensional problem, where individuals and organisations from different 

backgrounds, with different behaviours and objectives interact with each other in what could 

be described, not erroneously, as a game. In fact, it will be shown later in this work that 

multi-objective optimisation can also be formulated, with appropriate assumptions, as a game 

among competitive players. Before the implementation phase, the participants of this 

framework must be accurately modelled and the rules that regulate their interaction must be 

defined. Moreover, the metrics that evaluate the effectiveness of the proposed framework 

should be rigorously defined. With this aim in sight, the introduction chapter provided a 

complete overview of the topic covering electric vehicle integration with its associated 

opportunities and challenges. In this work, the United Kingdom (UK) will be often 

considered as a model and working ground for the future wide adoption of EVs. This 

selection is motivated by the recent position of the UK regarding EV adoption in relation to 

climate change, as well as urban air pollution. The UK government has announced a ban on 

new sales of internal combustion engine (ICE) vehicles by 2040 [29]. The immediate 

consequence of this move is the urgent need for smart solutions to sustainably integrate EVs 

in the electricity network. This further reinforces the motivation behind this work.  

In this research, simulations and control methods have been implemented using the Matlab 

software. Matlab is an environment for mathematical computation that is widely utilised in 

the scientific community because it offers a comprehensive suite for science, technology, 

engineering and mathematics disciplines. It includes up to date software and algorithms for a 

wide range of mathematical problems including, optimisation, machine learning, control 

theory, real-time control, parallel and graphics processing unit (GPU) computation. Apart 

from simulating the developed models, due to the seamless interfacing capability with 
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external hardware that MATLAB offers, ultimately the real-time charging/discharging 

controller will also be developed and implemented in a laboratory setup with the MATLAB 

Support Package for Arduino Hardware [30].  

1.6 Aims and objectives of the research work  

 The aim of the present work is to establish an operational framework for the optimal EV 

charging, considering the major stakeholders involved in the implementation of smart grids.  

Objectives of the research 

The objectives of the research are to: 

• Develop a mathematical optimisation model applied to the optimal EV charging 

problem by modelling current and future smart grids. 

• Model the crucial objectives including technical, economic and environmental 

aspects. 

• Assessment of the economic feasibility of smart charging and V2G, by varying 

multiple technical and economic parameters. 

• Develop an adaptive, dynamic matematical model to analyse and control degradation 

of lithium-ion batteries. 

• Develop real-time optimisation techniques to optimise the operation of battery 

chargers, using multi-objective control. 

• Provide a practical solution that can help to build the foundation for the sustainable 

integration of EVs in current and future electricity networks. 

1.7 Original contributions  

The key contributions of this thesis are summarised as follows: 
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− Simultaneous optimisation of electricity cost, battery degradation, grid net exchange and 

CO2 emissions has been performed.  

− A dynamic battery model (using empirical data), depicting the impact of three key stress-

factors, has been implemented in order to minimize cycle degradation as a key objective. 

− An algorithm to adapt a mathematical degradation model with real-life data influx has 

been proposed 

− The use of EV batteries to provide ancillary services to the grid has been considered as 

an additional objective and its implications on other objectives has been investigated. 

− The conflict of interest among the end electricity user, the EV owner and the system 

operator has been highlighted and addressed using analytical hierarchy process (AHP) 

and utility function. 

− A game theoretical framework, performing a hybrid control on a micro-grid, to enable 

energy trading among prosumers and EV users while complying with grid constraints has 

been proposed. 

− Real-time multi-objective optimisation based on a dynamic programming approach has 

been demonstrated as an efficient way to control EV charging in a decentralised manner. 

1.8 Outline of the thesis 

The remainder of the thesis is organised as follows: 

- In Chapter 2, the most recent advances in the area of EV and RES integration with 

vehicle-to-grid technology are presented. Subsequently, the research works, that are 

available in literature, addressing optimal EV charging scheduling aimed at different 

objectives are reviewed, highlighting the research gaps identified in the current literature. 

Accordingly, the main contributions of this work are laid out. 

- Chapter 3 focuses on the modelling of the key elements of a smart grid, starting from the 

EV - which is the main focus of this thesis - by looking at travelling patterns. Next 

residential electricity demand and PV generation profiles are modelled based on the UK 

data. The methods for quantifying the impact of EV charging in distribution networks 
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and CO2 emission quantification methodology are presented next. The provision of 

ancillary services is then modelled based on the UK data. 

- Chapter 4 deals with lithium-ion battery modelling by presenting a behavioural 

equivalent-circuit-based model and a degradation model. In this chapter, the 

methodology for developing an empirical battery degradation model, the approaches to 

make it dynamic and adapt to different batteries and operating conditions are presented. 

- In Chapter 5, mathematical optimisation techniques are introduced, elaborating on both 

single-objective and multi-objective optimisation. Classic and metaheuristic methods for 

both convex and non-convex problems are presented. 

- Chapter 6 presents the two key case studies, defined as decentralised and hybrid 

optimisation frameworks. In the former, MOO and multi-criteria-decision-making 

(MCDM) techniques are adopted, while the latter implements a game-theoretical energy-

trading model for prosumers and EV users. 

- Chapter 7 develops a real-time MOO framework and applies it to a small-scale 

laboratory setup. The results of three operation cases are presented. 

- Finally Chapter 8 looks back at the core objectives of the thesis, the methodologies 

applied and results obtained, in order to draw meaningful conclusions. This chapter also 

elaborates on the future implementability scope.  
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Chapter 2 Assessment of the State-of-the-Art on 

economic feasibility of V2G and Smart Charging 

2.1 Introduction  

In this chapter, a review of the published research works on energy and ancillary service 

provision with EVs is presented. This is to establish the state-of-the-art in terms of EV 

integration, as well as to survey the major trends in optimisation. Several works have dealt 

with EV and RES integration by looking at technical, economic and environmental aspects. 

However, researchers have encountered a number of hurdles while trying to quantify the 

profitability of V2G, evidenced by the wide span of results, ranging from very promising 

figures to some that depict V2G as unprofitable. The reason for such variable outcomes is due 

to the fact that a considerable number of factors come into play to decide the profitability of 

V2G, among which the most important ones are: 

• technical aspects - i.e. technology status and constraints and 

• economic parameters - i.e. tariffs, costs and payments, policy implications, 

supporting regulation. 

The environmental benefits of EVs have already been discussed in Chapter 1 and will be 

briefly touched upon in this review. The previous works on V2G are reviewed, by 

highlighting both the strengths but also the shortcomings of these studies to identify major 

gaps in knowledge. Subsequently, the most advanced research works on optimal EV charging 

scheduling are analysed separating  the research on single-objective optimisation from those 
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related to multi-objective optimisation. A few useful definitions are provided hereby to set 

the context of this review. 

Definition 1. Vehicle to Grid (V2G) is defined as “a system in which there is capability of 

controllable-bidirectional electrical energy flow between a vehicle and the electrical grid” 

[31].  

 

Definition 2. When the energy flow is established between the vehicle and different 

archetypes, i.e. single household or a building, this service is called Vehicle to everything 

(V2X) charging/discharging.  

Definition 3. Arbitrage is the “… purchase of a commodity or derivative in one market and 

the sale of the same, or similar, commodity or derivative in another market in order to exploit 

price differentials” [32].  

2.2 Literature review motivations and structure  

The motivations, the structure and the elements of the literature review are presented 

herewith. When dealing with any technology that seeks commercialisation, two fundamental 

aspects are always examined: technical feasibility and economic viability. These two features 

represent the core of any successful and sustainable product. In this thesis, the technology in 

question is the EV, with a focus on advanced charging strategy, hence their technical and 

economic features must be inspected. As there is both societal and political drive behind the 

development of EVs, environmental aspects are also taken into account, however, it is 

undeniable that eco-friendly, but unrealiable and unproductive tehcnologies are short-lived. 

Hence, a techno-economic feasibility assessment of EV charging strategies is of pivotal 

importance, and constitutes the motivation behind this review.  

EV charging strategies can be classified in uncontrolled (“dumb” or “dump”) charging, smart 

(or “controlled”) charging and V2G. The feasibility and benefits of smart charging compared 

to uncontrolled charging represent common knowledge among researchers and practitioners 

and include cost savings, grid relief [3], [33] and improvement of battery life. On the other 
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hand, the benefits of V2G are still today subject of heated debate, as will be evident from the 

results surveyed in this review. In fact, neither the level of prospective benefits that V2G can 

bring nor the elements that influence such level have been clearly reported yet. Consequently, 

individuals, user associations, industry, academia and policy makers are doubtful of the 

utility of V2G which constitutes the greatest barrier for its wide implementation. There is an 

evident gap between the results achieved by academic research and industrial pilots and the 

final verdict on V2G, and this review aims at bringing clarity on the topic. Consequently, 

more a more in depth analysis is required for V2G rather than for smart charging. 

Evidence of the public perplexity on V2G is effectively raised in [34], where 611 German 

drivers, including conventional ICE and EV drivers, were surveyed on their willingness to 

participate to V2G services. Although the survey was conducted in 2013, the findings were 

published in 2018, and the majority of concerns and viewpoints still stand today. The topics 

covered by the survey were awareness of different EV types, elements that can enhance or 

limit willingness to participate to V2G, awareness of V2G and concerns and incentives to 

participate in V2G. They analysed the impact of several aspects characterising V2G services 

on participation and these were, plug-in restriction, minimum required range, possibility of 

indicating beginning and end of trips, different levels of monthly payments or one-off 

payments. The responses showed that most drivers were unaware of V2G, with only 1% 

declaring of knowing about it and that willingness to use a bidirectional charger was 

significantly less than that of using a unidirectional or even uncontrolled charger.  This 

underwhelming response was due to the main concerns to V2G related to the prospective 

shortening of battery life, travelling pattern not being compatible to V2G services and that 

there will be third-party access to the vehicle which cannot be controlled, in order of 

importance. Enablers of V2G were overwhelmingly dominated by cost related aspects, i.e. 

cheaper charging compared to uncontrolled charging, discounts on purchasing an EV or a 

charging station and an annual bonus. By applying ordinal regression, the authors found the 

impact of the combinations of these factors:  the results indicated that drivers expected high 

payments (compared to conventional electricity tariffs) to reduce their minimum driving 

range requirements and allowing an on-board computer.  
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Addressing a different category of stakeholders, in [35], 227 experts were queried on the 

benefits of EVs and V2G. Participants from 200 institutions in Denmark, Finland, Iceland, 

Norway and Sweden, the likes of national and government ministries, universities and 

research institutions, electricity transmission and distribution utilities, car manufacturers, 

private companies and industry groups and associations, were interviewed. They gathered the 

opinions of important names in different fields, such as BMW, Volkswagen, Nissan, E.ON, 

Tesla Club and pioneers in the field of smart charging and V2G, such as Fortum and Nuvve. 

Unsurprisingly, the experts perceived the environmental benefits of EVs as major drivers: 

reduced emissions, followed by reduced noise, better performance and only then economic 

savings and more integration with renewables were mentioned. Mirroring the outcome of 

[34], the overall knowledge on V2G was more limited, with only 66% of the experts 

discussing the benefits of V2G. The majority of the experts identified the possibility of 

integrating with intermitter renewable energy as a key benefit. Moreover, V2G was 

comparatively more often linked with domestic solar than wind, with experts saying it is a 

more intuitive connection. Smart (controlled) charging was seen as the second most popular 

advantage being also defined as a steppingstone for V2G. Those that were aware of the 

economic benefits of V2G, agreed on similar levels of earning of around 120 euro/month 

(107 £/month).  

Comparing the findings of the two studies, they surveyed the two sides of the debate, users 

and specialists. One common aspect is the relatively limited awareness of the V2G concept; 

even though the material from [34] are based on the situation in 2013, the currently limited 

number of V2G implementations indicates that awareness did not much improve from then. 

Understandably, users were mainly concerned about factors that directly relate to them, such 

as travelling patterns, battery life and cost reduction. Experts were more informed about 

wider objectives, such as reducing intermittence of RES. In addition, a rather good estimate 

of potential profits was brought forward. From this brief, yet illuminating scrutiny, two 

research questions are raised: 

- Is V2G currently profitable? 

- What are the factors that influence the profitability of V2G and what is their impact? 
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2.3 Literature review on economic feasibility of V2G  

With the aim of responding to the research questions defined in Chapter 2.2, 45 papers have 

been collected and reviewed. These have been retrieved from the Google Scholar search 

engine as it collects research papers from the major publishers including IEEE, Elsevier, 

Nature, Francis and Taylor, Wiley, MDPI among others. The collection research works spans 

over a period of 13 years, from 2007 to 2019, to provide a chronological roundup of the 

advancements in this field. A few rules are established for a coherent and rational 

investigation, for this review and throughout the thesis: 

- Some pioneering research works are referred to regardless of the year of publication; this 

is because such works were the first in initiating the research in that area and they serve 

as references for the most updated research. 

- As indicated in the introduction of this chapter, this review and the thesis will deal with 

technical and economic aspects in the area of EV charging strategies. While cost factors 

are heavily influenced by the time of publication, as the economic parameters, policies 

and market status can change significantly in a matter of few years, technical 

performance is a does not change significantly in a matter of few years. For instance, if 

EVs are optimally scheduled to reduce peak electricity demand by 10 kW, the magnitude 

of this reduction will not change across some decades. On the other hand, economic 

benefits change as the influencing factors vary in time. We therefore provide a 

chronological roundup of the works that dealt with economic aspects related to smart 

charging and V2G, while for technical achievements, i.e. peak shaving, voltage 

balancing, the time dimension is not a concern.  

- Cost values were all converted to British pounds to allow comparative analysis. 

Literature [9], [34]-[49], provided some insights on the economic dimension of V2G, while 

literature [50]-[63] dealt with technical aspects. References [64]-[77] are reviewed on the 

adopted optimisation strategies. Table 2.3-1 summarises the settings considered in [9], [34]-

[49] in chronological order. The factors that are highlighted have been categorised based on 

criteria set hereby: 
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- Technological and market considerations 

▪ Time; as technology advances ad reaches mass production, cost comes down, 

markets saturates, all leading to different implications on prospective benefits 

through years. 

▪ Country, market and service; different countries will have different policies in place 

and different market structures designed for the various V2G services. 

- Case-study setup 

▪ EV battery capacity; EVs of different categories, with diverse battery capacities can 

be utilised to provide V2G services, and since service payments are often 

proportional to the energy exchanged, this factor is crucial in determining potential 

remunerations. 

▪ Charger rating; several services, including frequency regulation provide payments 

that are proportional to the committed power and EV chargers, in combination with 

on-board power electronics, decide the feasible power level. 

- Cost-benefit considerations 

▪ Battery investment cost; this is one of the most critical factor in determining the 

prospective benefits. In fact, as increased utilisation from V2G is known to lead to 

battery wear, the undelying battery cost discerns the economically feasible services. 

▪ Charger cost; the cost of a V2G charger is a cryptic information and it is a fixed cost 

that can weigh on the cost-benefit calculation. 

▪ Electricity tariff and service payment; depending on the type of service, V2G can be 

employed to reduce electricity bills or provide ancillary services. In the former case, 

the (avoided) electricity tariff constitute the main revenue stream while in the latter, 

it is the service payment.  

- Considerations on a realistic assessment 

▪ Battery degradation model; model simulations provide estimates of the real-life 

operation. By using battery degradation models, a more accurate account of the real 

cost-benefits can be given.  

▪ EV availability: as EVs are primarily used for transportation, their unavailability as 

parked and plugged-in assets will definitely affect the achievable profits.  
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In Table 2.3-1, shaded boxes indicate that the associated information was not 

provided/considered in the study. It should be noted that many of the considered features 

coincide with the main points indicated by [34] (battery cost and degradation, EV 

availability, cost consideration etc.) and [35] It can be seen from the same table that the 

chronological roundup starts from [9], where the foundations of V2G implementation for 

ancillary services were first layed. The V2G concept was first academically introduced in 

2005 by Professor Willet Kempton based at the University of Delaware, USA. His team 

defined the basic setting for the economic viability assessment for EV fleets providing 

network services. They simulated frequency regulation provision in the Pennsylvania-Jersey-

Maryland (PJM) market for a fleet of 250 vehicles, and calculated revenues in the range of 

USD 427-3,555 per vehicle. It was argued that the wide spectrum of profits is determined by 

three factors: the rating of the charger, the energy stored in the battery  (if the battery of an 

EV is either empty or full, then it cannot provide the entire regulation up and down service) 

and the number of available EVs. The upper bound of their calculated profits is 

comparatively high, when compared with more recent studies, as can be seen from Table 2.3-

1 and  Figure 2.3-1, where whenever required, profit ranges have been used to report the 

results. 

 

Figure 2.3-1 Profits from V2G provision in chronological order 
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Only [41] provided a profit higher than [9], which however is due to the high battery capacity 

of the considered buses (80-108 kWh) and committeed power (chargers rated 70 kW). Even 

[36], which assessed the economic feasibility of frequency regulation provision in the same 

market by assuming 24 h EV availability, reported lower profits than [9]. It can be seen from 

Table 2.3-1 that both works used similar capacity payments but the latter showed much lower 

profits, despite the very optimistic availability assumption. This is due to the more realistic 

assumption on battery cost, which was the second highest in [36]; high battery cost weighed 

heavily on the achievable profits. Interestingly, the highest battery cost was adopted in [37], 

which also assessed frequency regulation provision and was conducted in the same year as 

[36], indicating that these values of battery cost represented the most sensible levels at the 

time. Considering that [9] was published five years earlier than [36] and [37], it can be 

concluded that the former assumed a rather unrealistic value of battery cost (as well known, 

manufacturing costs decrease in time driven by increased scale of production). More recent 

works, for instance from 2016 onwards, exhibit a sharp decline in profits. Comparing the 

results achieved in [36] and [37] with those from more recent studies, the closest one is [44], 

published four years later. However, they reported higher profits than the studies in 2012. 

This may be due to the fact that they did not consider battery degradation in their 

calculations; considering the same battery investment cost and total V2G cycles as [43], 

published one year earlier (therefore battery cost should not be much different), namely 474 

£/kWh and 4000 cycles respectively, the cost of degradation comes at 0.11 £/kWh, which is 

more than threefold the service payment they considered, making the service not profitable. 

In fact [43] resulted as a profitable business case because they employed both higher service 

payment, battery capacity and committed power. This may indicate that in some USA 

markets the payments can be less favourable to EV fleets providing frequency regulation now 

compared to 2012.  

In addition, the striking popularity of frequency regulation is evident, with two thirds of the 

works investigating its profitability. Almost equivalent is the recurrence of the USA in the list 

of countries (eight times out of fifteen); in fact, all the works that dealt with markets based in 

the USA chose frequency regulation as prospective service. This highlights the effect that 
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supporting regulatory and policy frameworks can have on the adoption of technologies. In 

fact, as stated in [40], the PJM provided two types of signals: the conventional regulation 

signal, denoted as RegA, for conventional power plants and performance-based regulation 

signal, denoted as RegD, for assets with fast response capability. The latter provided a 

capacity payment, that is proportional to the committed time, and a performance payment, 

proportional to the ratio between the variability of the RegD signal and the variability of the 

RegA signal. This is particularly favourable towards batteries, which are inherently 

characterised by superior response capability. In contrast, as stated in [47], in 2018 a 

frequency regulation market was not yet available in Japan, which contributed to the nil 

profits stated in the same study. The only other country where frequency regulation has been 

considered is Singapore, with [39] and [42], both reporting lower profits than works that 

focused on the USA market. This is due to the comparatively lower payment for ancillary 

services  (especially in [42]). 

Figure 2.3-2 represents the battery investment cost utilised in [9], [34]-[49].  

 

Figure 2.3-2 Battery investment costs considered in different studies in chronological order 
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In the above figure, a general decreasing trend is seen for the costs, in line with the data 

reported and forecasts shown in Figure 1.4-4 and Figure 1.4-5; in particular, the trend seems 

almost retrace that of Figure 1.4-5: the battery cost starts at nearly 1000 £/kWh in the yearly 

2010’s, going down to under 400-300 £/kWh at the end of the decade. This easy comparison 

further evidences the irregularly low battery degradation cost utilised in [9]. 

Figure 2.3-3 shows the service payments employed in [9], [34]-[49].  

 

Figure 2.3-3 Service payments considered in research works in chronological order 

It may seem from the figure above that there is an increase in the service payments, however, 

this is mainly due to the fact that the studies from 2017 either focused on other services 

(reserve, bill reduction, PV integration) or different countries (UK, Japan, Australia), or 

alternatively frequency regulation resulted not profitable. Due to the diversity of services, 

costs and model assumptions, [9], [34]-[49] were clustered to find similarities in their 

analysis according to the procedure outlined below: 

− A total of 11 features were identified for the 15 studies ([9], [34]-[49]). All features 

are sequentially combined to determine a characteristic signature for each work. 

− Each feature is normalised to the maximum value achieved by the research works 

along that feature. Therefore, the maximum value that a feature can achieve is 1. 
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− Reference [41] has been removed due to the its unnaturally high profits, which was 

due to the high energy and power committed. As it was an isolate case it has been 

removed. 

− Year of publication starts at 0 for 2007, [9] to 1 for 2019. 

− Countries are identified as [0.143,0.288,0.429,0.571,0.714,0.857,1] representing 

{China,Singapore,Japan,UK,Germany,Australia,USA} respectively. 

− Services are identified as [0.333, 0.666 1] representing {Energy arbitrage,Demand 

provision,Ancillary services} respectively. 

− Battery degradation consideration has been categorised as [0 0.333 0.666 1] 

representing studies that did not consider battery degradation, studies that considered 

a fixed number of charging/discharging cycles, models that considered one impacting 

parameter and models that considered more than one impacting parameters, 

respectively. 

− EV availability consideration has been categorised as [0 0.5 1] representing studies 

that considered EVs as always available for V2G services, studies that considered a 

fixed availability pattern and finally studies that considered real-life patterns based on 

data. 

Six clusters were chosen as a right trade-off between diversity and number of studies per 

cluster. The results are presented in Figure 2.3-4, where the lead author and the year of 

publication are reported for each study. The following discussion is structured based on four 

points: 

▪ Effect of time – as technologies mature and reach mass production level, the associated 

costs decrease, making those technologies more profitable. This has been the case for 

battery degradation: in fact, all the clusters, with the exception of cluster 4 (blue curves) 

contain studies from a similar period of time and by comparing clusters 1, 2, 3, 4 and 6 a 

decreasing trend of battery degradation is seen. In addition, with time, as certain services 

become popular, the associated markets tend to saturate, leading to lower payments. That 

has been the case for frequency regulation in the USA; in fact, [44] compared to [9] 

reports a lower upper bound for the capacity payment. 
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Figure 2.3-4 Clusters of the research works according to different parameters 

▪ Influence of the market – the different market options in place, along with their regulations 

are crucial in promoting or discouraging the adoption of a certain technology. Again, that 

has been the case for requency regulation, which has been very popular in the USA and 

EVs were encouraged to participate. In fact, unsurprisingly most of the works that 

addressed frequency regulation dealt with the USA markets. However, as investigated in 

[43], various markets will provide different payments, and when the market is not made 

available, the service results unprofitable, as was the case for [47]. Another example is 

[46], which evaluated different ancillary services in the UK. Different services require 

different participation requirements: from few calls per year, i.e. reserve markets and 

capacity market, to several calls per day, i.e. frequency regulation. Participation 
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requirements, along with the level of payment provided for power (i.e. capacity) and 

energy will determine the feasibility of a service. In fact, in [46], energy arbitrage was not 

enough to provide a successful business model; capacity market or triad avoidance, both 

providing relatively high capacity (power) payment were necessary to improve the 

benefits. 

▪ Impact of battery degradation – this is the main variable cost for V2G service provision. 

As already discussed, the cost of lithium-ion batteries has reduced over time, with current 

prices in the range of £/kWh 150-400. However, as demonstrated in current literature [38], 

[39], [42], [48], battery cycling inevitably leads to battery degradation. Any cost-benefit 

analysis aimed at assessing the feasibility of V2G services, needs to appropriately model 

and estimate prospective battery degradation incurring from service provision. To this end, 

some only [38] and [42] modelled battery degradation with two or more impacting 

parameters, i.e. DOD, SOC, charging rate, [37], [47] considered only one parameter, while 

the remaining works considered only the number of cycles as impacting factor or did not 

include battery degradation in their model. It can be seen that as accuracy of battery 

degradation increases, the corresponding profits decrease: compare for example [38] and 

[42] with [39], all in the same cluster (number 2, green curves in Figure 2.3-4). In fact, 

[39] and [42] provide the same service in the same country (Singapore), but the latter 

reported much lower profits due to a more accurate battery degradation estimation. Based 

on the results achieved in the available literature and depending on the magnitude of the 

impacting parameters mentioned above, we estimate a battery degradation cost in the 

range of £/kWh 0.075-0.3 

▪ Impact of EV availability model – as storage operation is only a secondary function that 

EVs can serve, the impact of different transportation, consequently availability, models 

need to be considered in economic assessments of V2G services. However, very much like 

battery degradation, it was at times neglected [36], [47], or fixed availability was assumed 

[9], [37], [40], [43], [45], [46]. Only [38], [42], [44], [48] and [49] simulated the actual 

travelling pattern of EVs based on historical data. With the only exception of [44], which 

did not consider battery degradation, the remaining studies ([38], [42], [48] and [49]) 
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reported low profits from V2G. Realistically, when considering the impact of all the 

factors highlighted in this review, V2G can bring £/vehicle/year 13-207. 

2.4 Review of the impact of smart charging and V2G on 

distribution networks  

Smart charging and V2G can help to mitigate the impact of bulk and uncontrolled EV 

charging, and consequently can help to accommodate a higher share of electric vehicles in the 

national vehicle fleet interacting with the electricity grid. More generally, smart and V2G 

charging from EVs could help to achieve an efficient utilization of the grid by addressing 

peak demands, integrating more intermittent renewable energy power and filling in the load 

curve in hours characterized by low power consumption. This can potentially lead to grid 

investment deferral. Following this idea, [50] evaluated the potential benefits for the DSO 

from investments in V2G services and compared them with the underlying grid investments. 

The authors inferred that there is a certain potential of peak electricity demand reduction 

resulting from a number of EVs providing peak shaving service. This in turn affects the 

duration curve of the network which depends on the electricity demand profiles. Ultimately, a 

balance is struck between the number of operational hours of storage, which determines 

battery degradation cost, and the avoided network investments. With 250 EVs, they showed 

that there was the potential of reducing the peak demand by 900 kW, by using 3.6 kW 

chargers. By considering a degradation cost of £/kWh 0.18 (resulting from a battery 

investment cost of £/kWh 267-623), they showed that below an annual energy throughput of 

135 MWh/year, the avoided grid investments achieved by V2G were higher than the incurred 

battery degradation. However, they argued that with an average spot electricity price of 

euro/kWh 0.027-0.062 provided in North European countries, the economics of V2G did not 

make sense, as energy could have been bought from the wholesale market in order to satisfy 

the peak. However, as discussed in Section 2.3, the cost of lithium-ion batteries is currently in 

the range of £/kWh 150-300, and the associated battery degradation cost is £/kWh 0.075-0.3. 

Hence, peak power provision can become a profitable service in the near future. It should be 
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noted that [50] did not consider the travelling patterns of EVs, which would reduce the 

potential peak demand reduction with V2G, nor the cost of V2G chargers. Hence, an 

economic analysis of peak shaving, and the associated benefits that DSOs can reap, must be 

conducted. EVs can also be charged by imposing network constraints as was demonstrated in 

[51]. They tested the operation of a multi-agent system in a laboratory setup, where one EV 

was emulated by hardware in loop and 60 EVs were simulated. The emulated EV complied 

with network constraints. 

[10], [52], [53], [54] and [55] further investigated the potential peak reduction capability of 

EV fleets equipped with V2G. In [10], the effect of smart charging on the electricity demand 

profile of a distribution network was analysed. The EVs were connected through a level 2 

charging, either at home or in public areas, where renewable energy from PV and wind was 

available. 50,000 EVs performing smart charging enabled a peak demand reduction of 87 

MW.  

The location where information is stored, and hierarchy of computation can influence the 

potential achievable grid relief. In fact, measurements for an entire distribution network can 

be collected and utilised in a central server, or the decision-making privilege can be shared 

among multiple agents, distributed in the network. [10] and [55] evaluated the difference in 

these two strategies by exploiting intelligent EV charging to perform peak shaving and 

reduce the variability of the load profile in a local distribution grid. Local and global control 

strategies were performed and compared to a business-as-usual scenario with uncontrolled 

charging. Future scenarios with different PHEV penetration level were simulated and these 

are 15%, 45% and 75%. Given the nominal voltage level of 230±10%, uncontrolled charging 

led to more voltage deviation. Scenarios simulating a 10%, 30% and 60% of PHEV 

penetration rate were considered. The local control strategy let to improvements in peak 

demand in the order of 8-38% compared to the BAU case, while the global strategy achieved 

8-42% of improvement. Both the local and global energy control strategies improved the 

flatness of the load profile, but the global energy control strategy resulted in the most optimal 

load profile. Although global control strategies provided the highest improvements in peak 

demand, it should be noted that the implementation cost of a centralised control strategy is 
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disproportionately higher than that of a decentralised system, due to the onerous 

communication infrastructure. The additional grid relief given by a centralised architecture 

must be compared against the incurring costs when choosing between the two strategies. It 

was further evidenced by [10] and [55] and confirmed by [54] and [56] that the penetration 

rate of EVs brings an additional dimension when evaluating grid benefits. The authors of [54] 

evaluated the provision of peak load support as well as voltage unbalance mitigation in a 

cluster of three feeders of a distribution network in Australia. They showed that above a rate 

of 40% EVs being available for those network services, there are beneficial effects in terms 

of voltage rise mitigation. In [56], for 25% and 50% EV penetration levels in a distribution 

network (corresponding to 31,250 and 62,500 EVs) it was shown that uncontrolled charging 

increased the peak demand by 36% and 74%, respectively. However, the benefits also scaled 

up proportionally as smart charging achieved peak levels that were 13% and 27% lower than 

those caused by uncontrolled charging. 

As reported in [50], the category of the electricity demand profiles will have a substantial 

influence on the potential peak demand reduction achievable by EVs. For instance, if the load 

duration curve of a network exhibits a substantially high peak compared to its base demand, 

then EVs have to provide V2G support for a limited number of hours per year and targeted to 

critical moments. Conversely, if the load duration curve is flatter, than the EVs must be 

available for longer periods in order to achieve some peak demand reduction. This aspect was 

investigated by [53] where three case studies, namely high-rise residential buildings, office 

buildings and commercial buildings were analysed to quantify the benefits of peak shaving. 

15 EVs achieved a peak demand reduction of 9.34-10.62%, 27.21% and 15.25%, 

respectively.  

Few works evaluated the benefits of V2G for behind-the-meter services [57], [58]. In 

particular, in [57], the possibility of integrating EV charging with the energy generated by PV 

systems and a backup solution in case of emergency conditions were analysed. They applied 

their energy management strategy to a commercial building with 220 office-working stations, 

a 341.6 kWp PV installation, a 60kWh stationary storage and 48 EVs. The results showed 

that V2G can optimally integrate with PV by charging during periods of excessive generation 
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and supplying the evening demand. They also validated backup provision in emergency 

conditions. Similarly, in [58], a model for grid stabilisation with 250 EVs 

residential/commercial buildings in Brazil was developed. A three-level tariff was considered 

for the case of peak demand reduction, while the variability of the net power exchange was 

minimized to improve grid stability. However, they found that optimising grid stability does 

not lead to the maximum profit for users, which further emphasises the need for MOO 

strategies, as those implemented in this research. 

2.5 Transportation compatibility for V2G implementation 

From the works reviewed so far, it is clear that the economic potential of V2G depends on 

several factors, which have been discussed individually in Section 2.3. Crucially, the 

underlying influence of both driving requirements and EV charging behaviour impose strict 

constraints, as in order to be available to provide V2G services the EV needs to be both 

parked and plugged in. Due to the usage of the EV for transportation, and the associated 

charging or battery state of charge requirements, it is not always possible to provide grid 

supporting services. As already emerged from analysing the literature in Section 2.3, accurate 

prediction of EV travelling patterns is pivotal in accurately estimate V2G profitability and 

develop profitable business models. In fact, [38], [46] and [53] evaluated the availability of 

EVs for providing certain V2G services and found that some service provisions are limited by 

the characteristics of the users’ driving pattern. To this end, the research works analysed thus 

far have addressed this requirement with different methods: by considering EVs parked for 

24 h, by considering a fixed availability period or by simulating realistic travelling patterns 

from historical data.  

Full availability. Studies such as [36], [47] and [50], assumed that EVs were always available 

for V2G services. While this can provide the maximum achievable profits/benefits, it is not 

an accurate representation of the results achievable in real-life conditions.  

Fixed availability. Several studies, [9], [37], [40], [41], [43], [45], [46], [54] and [58] 

considered certain availability periods where all simulated EVs were made available for V2G 
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services. Although this model is better than the previous strategy, in real-life operation, 

unless contracted, not all EVs will comply with set availability period. In fact, there is always 

diversity in EV patterns, where different plug-in/plug-out times and energy requirements 

must be simulated. 

Random availability. As discussed in Section 2.3, [38], [42], [44], [48] and [49] randomly 

generated diverse EV travelling patterns, with associated plugging-in/out times and charging 

requirements. In addition, [55] simulated EV availability based on random plug-in and out 

times normally distributed around 17:30 and 6:30 respectively with a standard deviation of 45 

minutes. [52] adopted a forecasting model for the energy required by EVs based on US 

driving patterns. In particular, the work done in [53] was effective in modelling the impact of 

different driving patterns. For instance, EVs were not available at residential buildings during 

the office hours. For office buildings, the EV availability patterns were opposite to that of 

residential buildings. Differently from the previous two cases, in the case of commercial 

buildings, the travelling patterns can be considered known ahead as they depend on the tasks 

that need to be carried out, i.e. for postal delivery.  

Five notable works accurately estimated EV availability patterns using probabilistic methods. 

In [59] the operation of different size of EV fleets was analysed in order to both satisfy the 

EV charging requirements and to provide frequency regulation. The distribution of the 

driving schedules was randomly sampled from real-life EV usage data and information n the 

daily driving routine. They estimated that the probability of having a high availability of EV 

battery capacity was high during the night, in the early morning and at late evening. These 

profiles were compared against the frequency regulation capacity requirements; as a result, 

the probability to meet a certain grid-facing bid requirement and to bid the optimal grantable 

capacity taken up and paid for by the grid were calculated. This represented an exemplary 

approach in considering EV availability for V2G purpose. Similarly, in [60] the potential EV 

power capacity to provide frequency regulation was estimated. Different factors including 

probability of EVs arriving at the parking spot at certain states of battery charge, in terms of 

initial SOC and required SOC, time of arrival and planned departure time, and a queuing 

system for different services were considered. EVs were assigned to the types of grid services 
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depending on their availability and the capacity available for that service was estimated. In 

[61], a Markov Chain Monte Carlo (MCMC) method was employed to extract the trip and 

idling time information from real-life vehicle driving data. This study found that EVs are 

driving, parked at home, parked at workplace and parked at other places 5.2%, 59.6% 33.6% 

and 1.6% of the time respectively. In [61], due to the high probability of the EV being parked 

at home or workplace, the authors considered these as charging locations. The simulated 

synthetic driving pattern then fed into a V2G scheduling, aimed at household peak shaving. 

An equally effective estimation model based on a queuing system was employed by [63]. The 

charging requirement of the vehicles was modelled with a queuing system based on a random 

probability distribution for each vehicle. Then the stochastic net demand for the parking lot 

was calculated from such probabilities. Random availability models allow an accurate 

estimation of the influence of EV travelling constraints on V2G benefits; in fact, as was 

shown in Section 2.3, and emphasised by [42], whenever randomised travelling patterns were 

considered, the associated benefits from V2G were reduced from excessively optimistic 

figures to realistic levels. 

2.6 Optimisation strategies applied to charging scheduling  

In the previous sections, a selection of notable literature addressing the topics of the  benefits 

of V2G services and the influence of the transportation requirements as well as EV charging 

behaviours were reviewed. As evidenced by the results presented, the benefits and drawbacks 

of V2G can be expressed as a range of figures, depending on the setting, conditions and 

boundaries of the case study. The model adopted to depict the stochastic nature of EV 

utilisation has a strong influence on the results. This diversity in the available results in the 

literature indicates that this topic should be addressed by a mathematical optimisation 

problem, which attempts to model the real-life implementation as closely as possible. 

Several studies have addressed optimal charging scheduling for single objectives and 

multiple objectives. The grid impact has been widely addressed as a critical objective.  In 

[52] the power flow in a distribution network RES was optimally controlled by scheduling 
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EV charging. In [54] voltage deviation caused by excessive PV generation was successfully 

mitigated by discharging the batteries of EV fleets. In [57] the electricity demand of a 

residential building was satisfied with a combination of PV system and EVs. The availability 

of EVs and their capacity to provide demand peak shaving was investigated in [53]. In the 

framework proposed in [64], by making use of electricity demand and PV generations 

forecasts, an aggregator and several EV agents performed load levelling. A decentralised 

optimisation process for EV charging scheduling was proposed in [65]. Although their work 

did not consider RES, the proposed method effectively performed load levelling with a fleet 

of EVs. A decentralised approach was also proposed in [66] to optimally charge EVs in order 

to reduce demand peak and variance. Power imbalance reduction was addressed in an 

optimisation process performed in [67]. Their proposed method reduced the mismatch 

between PV generation and electricity demand. A number of studies also have aimed at 

minimizing the EV charging cost [38] as well as energy arbitrage [58]. In [68], EV 

charging/discharging was controlled to implement optimal energy management in a micro-

grid with availability of wind generation. Their method reduced the energy cost of the 

building. Provision of frequency regulation was explored in [52]. However, a major lack of 

research on battery degradation minimization has been identified, as none of the 

aforementioned studies addressed this issue. Indeed, few research included battery 

degradation in their economic analysis but only as a constant parameter, based on estimated 

cycle life and unaffected by the charging schedule. Moreover, apart from [69] other studies 

did not minimise CO2 emissions.   

Only a number of studies in recent literature have applied MOO in the context of smart grids 

and EVs. In [70] grid load variance was minimised while providing voltage control by 

scheduling grid-connected EVs with a centralised approach. However, the objective functions 

were sequentially optimised and, since the results of the top layer fed the lower layer, the 

objectives did not conflict with each other. [71] optimally deployed EV charging 

infrastructure to minimise annual investment cost and maximise annual captured traffic flow 

(number of EVs charging at the EVSE), by performing a centralised decision plan. In [72], 

EV battery swapping stations were simulated in a distribution network in order to minimize 
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battery charging cost, power loss cost, to flatten the network voltage profile and release 

network capacity. [73] optimally scheduled energy storage systems by minimising both 

battery calendar degradation (as will be defined in chapter 4.3 this is time-dependent 

degradation) and energy costs. However, in their proposed methodology, the two objectives 

were linearly combined. In [69], a notable approach of scheduling EV charging to minimize 

cost and emission was proposed, but a comprehensive framework addressing all the relevant 

objectives was not proposed. In [74] an improved optimal power flow in a distribution 

network with EVs, wind energy and PV was implemented to address CO2 emission and 

operational cost. The uncertainty regarding RES generation and EV availability considered 

with a Monte Carlo simulation and multi-objective genetic algorithm was implemented to 

address the two objectives. This study was able to highlight the trade-off between the two 

objectives; however, as the authors themselves point out, their centralised approach suffers 

from high computational expense, at the point that parallel computation was proposed as a 

solution to reduce this burden. Furthermore, battery degradation was not addressed in their 

work. Fuel consumption and battery degradation and were linearly combined for optimal 

drive-train energy management strategy in [75]. Although the approach proposed in the paper 

is effective in optimising the two objectives, the interaction with the grid was not investigated 

since no charging scheduling was implemented. Load variance and charging cost were 

minimised with a weighted sum method in [76] with a decentralised approach. Although 

some measures to reduce battery degradation were mentioned, i.e. reduce the maximum SOC 

level, it was not optimised as a separate objective. Similarly, no mention was made on the 

environmental footprint of the charging process, and the weighted sum method may not find 

Pareto solutions if the final objective function is not convex; in general, ε-constraint (an 

optimisation strategy which consists of setting multiple constraints related to the objectives in 

order to define the Pareto frontier) is superior as it overcomes such problem. 

Game theory based approaches have also been implemented to energy management (see 

[77]), where different players with different strategies seek a Nash equilibrium. However, a 

framework and methods to adapt game-theoretical approaches to multi-objective optimisation 

have not been proposed yet. 
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2.7 Conclusions 

This chapter presented the recent trends on V2G technologies in terms of their profitability 

and the most advanced optimisation techniques to integrate EVs and RES by achieving 

different objectives. Based on the analysis of the results from the presented studies and real-

life demonstration projects a number of key conclusions can be drawn: 

• Smart charging and V2G services provide benefits both from an economic and a grid 

operation point of view. Additionally, Smart charging and V2G reduce the impact of 

EV charging on the optimal grid operation.  

• The availability of EVSE and their rating are other major influencing factors that 

decide the economic viability of V2G services.  

• Aggregators will play a primary role as intermediary between V2G service providers 

at different scales and stakeholders that demand such services.  

• EV batteries are the storage assets for V2G services and their capacity should be 

dimensioned adequately.  

• To allow V2G profitability, EV batteries must become more economically 

competitive and they should currently be exploited as power sources, i.e. high powers 

and low energies actually provided.  

The main research gaps can be summarised as: 

− Lack of a holistic solution to simultaneously optimize the critical objectives of energy 

cost, battery degradation, grid net exchange and CO2 emissions. None of the studies has 

addressed the trade-off between these objectives. Indeed, only a subset of the 

aforementioned objectives has been optimised. 

− There is an evident lack of studies addressing battery degradation minimisation as an 

optimisation process.  

− CO2 emission has been seldom addressed as an objective, and its conflict with other 

objectives has not been satisfactorily highlighted. 
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− The trade-off between ancillary service provision and other energy services has not been 

explicated in the literature. 

− A decision making process tailored to key smart grid stakeholders, namely end electricity 

user, EV owner and electricity system operator has not been proposed in previous works. 

− None of the reviewed studies proposes the concept of dynamic battery degradation 

model, and no mention to an adaptive algorithm is made in literature. 

− Real-time charging scheduling is being explored as a key research objective however, 

this is not developed in a multi-objective framework. 

− Game theoretical models do not take into account grid constraints and focus mainly on 

the payoff maximisation. 

As stated in Chapter 1, the aim of this research is to fill the aforementioned gaps by: 

− Optimising end-user electricity cost, EV battery degradation, grid net exchange and CO2 

emissions.  

− Developing an adaptive dynamic battery model with three key stress-factors, which is 

used to minimize cycle degradation. 

− Simulating ancillary service provision and highlighting the trade-off with other 

objectives. 

− Developing a decision-making process in order to control EV charging, which involves 

the end electricity user, the EV owner and the system operator. 

− Implementing real-time multi-objective optimisation based on dynamic programming, to 

control the charging/discharging process of a commercial battery in a laboratory setup. 

− Proposing a game theoretical framework, that enables energy trading among prosumers 

and EV users while complying with grid constraint. 

In this chapter, a literature review of research works that addressed EV charging scheduling 

to provide energy services was carried out. The next chapter focuses on the development of 

mathematical models that depict various utility functions representing the interests of the 

stakeholders involved in smart grids. 
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Chapter 3 Modelling of a synergetic EV-RES 

integration framework 

3.1 Introduction  

As stated in Chapter 1, the aim of this research is to develop strategies to optimally schedule 

EV charging in order to achieve technical, economic and environmental objectives. For this 

purpose, mathematical optimisation algorithms have been applied to control EV charging. 

Hence, the objectives to be achieved have to be described with mathematical models. It is 

worth noting that these objectives should be modelled based on the behaviour and interests of 

a number of stakeholders. Hereafter, the word “stakeholder” will be used to address those 

individuals or groups - which could be persons, organisations or institutions - that can obtain 

benefits by interacting with RES and EVs. As both RES and EVs are connected to the 

electricity system, we define as stakeholders those individuals or groups that interact with the 

electricity system. The latter is categorised into three main levels: 

− Transmission system; characterised by high voltage (HV), 400kV-132kV; 

− Distribution system; characterised by medium (MV) to low voltage (LV), 66kV- 0.4V; 

− Behind the meter; it is primarily installed at low voltage and depending upon the power 

rating, could be single phase (230V) or three phase (400V). 

As RES and EVs are mainly connected at medium voltage level, the distribution system will 

constitute a crucial field upon which a number of strategies proposed in this research are 

based. However, as the three levels are interconnected, actions undertaken at one level will 
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have effects at the other levels. For instance, frequency regulation services control the 

electrical frequency mainly at a transmission level, but their effect are felt all the other levels. 

From transmission level to behind the meter, the stakeholders include: 

- Energy producers connected at HV; 

- Transmission system operator (TSO); 

- Distribution system operator (DSO); 

- Energy producers connected at medium voltage; 

- End-electricity-users connected at MV; 

- End-electricity-users connected at LV; 

- EV owners (which could also be at the same time the users). 

Other stakeholders that cannot be categorised according to their physical interconnections but 

are more of business stakeholders are automotive OEMs, charging operators (companies that 

buy and dispatch energy for charging EVs in streets and car parks), EV charger dealers (can 

be different from operators, they sell charging equipment), EV battery manufacturers, the 

electricity wholesale market and ancillary service market regulator, utility companies in 

charge of the distribution of electricity to the end-users, local authorities and policy makers.  

Figure 3.1-1 describes the physical connections and business relationships among the 

aforementioned stakeholders. 

DSO

Energy producer MV

End-electricity-user 
MV

End-electricity-user 
LV

EV user

Energy producer HV

TSO

Automotive OEM

Battery OEMCharger dealer

Charger operator
Wholesale and 

ancillary market 
regulator

Utility company

City councils

Policy makers

Transmission system Distribution system Behind the meter

EVChargerElectricity supplyPolicy

c

 

Figure 3.1-1 Stakeholders involved in the electricity system with physical connection (grey), business (green 

dashed) and policy (blue dashed) relationships 
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Following from the discussion above, the stakeholders involved in the electricity system have 

been first categorised in two layers, namely the physical layer and the business & policy 

layer. In the first layer a further allocation has been made according to the voltage level of the 

electricity connection, from the transmission level to behind the meter; only stakeholders that 

are physically connected to the electricity system are included in this layer.  In the business 

and policy layer, the stakeholders have been differentiated in four categories according to the 

economic/policy area that they operate within. Stakeholders that engage with the electricity 

networks are electricity retailers/utility companies and market regulators. EV manufacturers 

(OEM) and battery manufacturers are involved from the automotive industry. The providers 

of EV charging equipment and the operators also cover important roles for optimal EV 

integration. Finally, policy makers and practicing organisations set the regulation with which 

the other stakeholders should interact and influence the implementation of the EV 

technology. The stakeholders on the second layer establish business and policy relationships 

with the stakeholders at the physical layer. In particular, the interaction with the stakeholders 

from the policy area are based on regulation that supports (or potentially hinders) the 

integration of EVs and RES. In this chapter, a framework modelling the interaction of a 

subset of these stakeholders will be developed, with a focus on the distribution system. 

Therefore, the structure of Figure 3.1-1 will be modified as in Figure 3.1-2. 

DSO
End-electricity-user/

prosumers LV

EV user

TSO

Charger operatorPolicy makers

Transmission system Distribution system Behind the meter

ChargerPolicy

Wholesale and 
ancillary market 

regulator

Utility company

Electricity supply

Aggregator

Smart grid operator  

Figure 3.1-2 Stakeholders involved in the framework of multi-objective optimisation of EV charging 
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Stakeholders involved in the manufacturing industry, i.e. EV and battery OEMs, are not 

considered within the boundary of this research since at the current market status there is 

limited scope for their involvement. Although, there have been efforts to involve more OEMs 

from the point of view of new services (charging schemes, insurances) and interoperability, 

more business focused strategies should be modelled which are beyond the scope of this 

research. Similarly, the energy producers from conventional sources (coal, gas, hydro and 

nuclear) are not modelled and only their environmental impact is considered in the CO2 

emission calculation. In fact, in this research, only energy produced from PV systems 

connected to the LV network will be modelled; the reason for such preference lies in the 

distributional dimension of such systems and their flexibility. This is in line with a global 

interest in promoting small-scale distributed generation as a way forward towards a smart 

grid. For this reason, utility scale PV systems will not be modelled, although the methods 

proposed in this work can also be extended to this category. The most evident difference from 

the more generalised structure presented in  

Figure 3.1-1, is perhaps the idea of a new stakeholder which plays a crucial role in modern 

electricity systems; an aggregator. The aggregator is an agent who manages EVs in order to 

provide charging services to the EV users [78] and energy services to other stakeholders (i.e. 

electricity system operators). In this work, an aggregator is defined as a rational agent, which 

controls a group of generation and storage assets, to provide energy services to grid 

users/operators with the aim of improving societal benefits. As can be seen in  

Figure 3.1-2, the importance of the aggregator is immediately noticeable from the fact that it 

interacts with all the stakeholder groups. In this sense, the aggregator is seen as a player, 

which links together the key stakeholders involved in the smart grid at transmission and 

distribution level. 

In this chapter, different parts of a smart grid will be modelled along with the behaviours of 

the aforementioned stakeholders, to ultimately develop an optimisation framework for 

effective integration of EVs and RES. The architecture of this framework is presented in 

Figure 3.1-3.  
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Figure 3.1-3 Multi-objective EV-RES integration model 

In order to implement optimal EV charging, the main elements of the system such as EVs, 

PV generation, distribution network, electricity and ancillary markets are modelled in this 

chapter. A more detailed and dedicated modelling approach is implemented in Chapter 4 to 

describe li-ion battery degradation, as it is the main storage asset utilised for the energy 

services. Multi-objective optimisation methods are developed to control EVs and stationary 

energy storage systems to improve societal benefits and fulfil the interests of the involved 

stakeholders. Real-time optimal control strategies are then developed and implemented in a 

laboratory experimental setup. It should be noticed, that the present research proposed a 

number of MOO frameworks, based on the considered scale. In fact, the scale or boundaries 

of the implementation setup will decide the involved users/players/stakeholders, the 

underlying power network and the data and communication network. When decentralised 

optimisation is implemented (see Section 6.2), virtual agents process measurement data 

locally and no information is shared with any entity outside their boundaries. On the other 

hand, when a hybrid optimisation is implemented, as in Section 6.3, at least the actions of all 

the involved players and the grid status must be known. This is because the more extended 

boundary now includes the whole micro-grid and a mix of local and global information feed 

the optimisation process. However, as large-scale validation was not possible, a scaled-down 
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residential “micro-grid” setup was tested and the results are presented in Chapter 7; again, 

since the interactions with other players could not be generated, a decentralised real-time 

optimisation algorithm was tested. 

3.2 Modelling EV utilisation pattern 

In this research, a framework for the utilisation of EVs as a short-time storage for various 

energy services is proposed. However, the main function of an EV is transportation. When 

EVs are travelling, they cannot serve as storage as there is no electrical connection with the 

grid. Inductive charging is beyond the scope of this work. Therefore, EV transportation 

patterns and requirements should be taken as a constraint for energy optimisation purposes. 

This means that the energy required by the EV user for transportation is always supplied with 

the maximum priority. In fact, the methods proposed in this work can be implemented in a 

consensus based scheme, where the EV users authorizes third parties, i.e. aggregators, to 

manage the charging/discharging process of their vehicles for a short period of time, with the 

guarantee that sufficient energy will be supplied on time before the next departure. Although 

research works addressing travelling behavioure changes due to smart charging/V2G services 

are available, this aspect is not within the scope of this research. This is because, as shown in 

Chapter 1, the EVs are only being deployed from 2010, and there are several barriers related 

to range anxiety, and because EVs require uses to be more invested in the planning of the 

journeys, as public charging infrastructure are only currently being scaled up. Since the 

technology has not reached a level of penetration that is sufficient to propose models that ask 

users to sacrifice on their travel, these approaches are not proposed in this research. To this 

end, the travelling requirements of the user will always be given the highest priority and some 

capacity margin will always be left in the EV in case of emergency. In order to quantify the 

EV charging requirement in an average scenario, the distribution of daily driven miles is 

considered. The UK government conducts National Travel Survey (NTS) on a yearly basis, 

which provides valuable data that supports modelling the behaviour of the average EV user 

[79]. These statistics refer to the national car fleet, which mainly comprises ICE vehicles, 

however, as EVs are increasingly adopted, they will be used under the same travelling 
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patterns as ICE vehicles. Therefore, it can be assumed that this model applies to EVs. Figure 

3.2-1 shows the distribution of daily driven mileage and the cumulative distribution for 

different ranges, which is taken from the NTS data. 

 

Figure 3.2-1 Distribution of daily driven mileage for ten years 2009-2018 (light to dark) [79] 

 

As can be seen, the behaviour in the past ten years stayed practically unchanged. 

Furthermore, the average EV in the UK travels for short distances on a daily basis, as the 

cumulative probability for mileages below 20 miles is 90%. With the current average EV 

ranges being well above 100 mi, this indicates that the rest of the EV capacity is potentially 

available for energy services. Another important parameter, which determines the availability 

of EVs for energy services, is the start times of trips. To this end, Figure 3.2-2 presents the 
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distribution of daily trip start times for weekdays and weekend days as an average of the past 

five years. 

 

Figure 3.2-2 Distribution of trip start time throughout an average week from 2014-2018 in the UK [79] 

 

A clear difference between the pattern in the weekdays and those in the weekend days is 

evident. In fact, the weekend profile shows to peaks corresponding to the business hours, 9am 

to 5pm. On the other hand, the weekend profiles show one surge of trips located in the middle 

of the day, as drivers use their cars for other activities than professional jobs. This is further 

confirmed by a classification of the trip start times according to different purposes, as shown 

in Figure 3.2-3. 
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Figure 3.2-3 Distribution of trip start time for an average week for 2014-2018 for different purposes in the UK 

[79]  

The distributions for the five different purposes are radically different; travelling patterns for 

education (school/university drop off), commuting and business show the typical double 

peaks located before and after the business hours. In contrast, trips for activities such as 

shopping and other entertainments are mainly focused on the daily hours, with the highest 

probability in the middle of the day. By comparing Figure 3.2-3 with Figure 3.2-2, it is clear 

that during the weekdays, the activities are mainly dominated by professional and education 

purposes with a comparably smaller extent of shopping and entertainment. In contrast, 

weekend days are mainly devoted to shopping and entertainment. In accordance with the 

findings presented this far, the probability distribution of charging initiation times, 
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categorised according to different locations, match the travelling patterns of EVs as shown in 

Figure 3.2-4. 

 

Figure 3.2-4 Distribution of charge start time for different locations in European cities [80] 

High probability of charging initiation in households is observed around the evening peak 

time, i.e. 6 – 9pm, while office parking matches the business hours. An unusually high 

probability of office charging is noticed at around 22:00 hrs which may be due to utility 

vehicles that plug-in for the night. A more regular pattern is found in public and street 

parking, with lower probability during the night compared with the daily hours. It should be 

noted that this data was collected for EVs in several European cities with the exception of the 

UK; therefore, the pattern observed in the continent may not necessarily apply to the island. 

However, this data is only used as a verification of the behaviour of the EV users who initiate 

charging events as soon as a destination is reached. A further convention adopted hereafter is 

that departures and arrivals always refer to the households as main idling location; when 
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relevant, other locations will be explicitly named in the text. Figure 3.2-5 presents the 

probability distribution of measured SOCs upon plugging-in for EVs in European cities. 

 

Figure 3.2-5 Distribution of SOC upon plugging-in for European cities [81] 

It can be observed that the mid SOC range is particularly prevalent, confirming the relatively 

short distance travelled which leaves nearly half of the battery capacity intact. It implies that 

not all EVs will be charged on a daily basis, with only those plugging-in at low SOC 

requiring a charge. 

In this research, the EV transportation model is defined by three parameters: 

1) Daily departure and arrival times for trips 

2) Daily driven miles 

3) Initial SOC upon plugging-in. 

It should be noted that when an EV drives more than once per day, the driven mileage has 

been spread for each trip proportionately to the travelling time (times when the EV is 

unavailable at home). Further, in this work, a framework where the EV users themselves 

input this information for the optimisation is proposed. However in absence of such an 
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interface, it is essential to model the probability distributions of these variables. To this end, 

in [61], a model that determined the probability distributions of EVs being in various states, 

i.e. parked and plugged-in, driving, etc. for weekdays and weekends based on data extracted 

TOU surveys was proposed. Their results match with the data presented above where the 

probability of being plugged-in at home is low during the day than the evening hours, with 

the probability being higher in weekend days. The different probabilities of plugging-in/out 

and daily travelling miles are now fitted to probability distributions. The data is taken from 

[79] and [80] while the expressions are basic tools of statistical analysis. The probability 

distributions of these parameters are captured with statistical distribution functions, i.e. 

normal or Gaussian  [82] and Weibull distributions [83], which mathematical representations 

are provided by the following equations: 
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where the two parameters depicting the trend of a normal distribution are the average value 𝜇 

and the standard deviation 𝜎. A Weibul distribution is also represented by two parameters; 

namely the shape parameter 𝑘 and the scale parameter 𝜆.  

In particular, the departure and arrival times from trips, based on the data presented in Figure 

3.2-2 are described by:  
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(3.3) 

where, argmin stands for the mathematical process of finding the arguments, namely 

𝜇𝑑 , 𝜎𝑑 , 𝜇𝑎, 𝜎𝑎 , 𝜅𝑑 and 𝜅𝑎 that minimise the function in brackets. More details regarding 

mathematical optimisation is provided in Chapter 5. Here, a parameter fitting process is 

utilised where the sum of the squared error between the actual probability data, 𝑦(𝑡) and the 

parametrised statistical model is minimised. Two normal distributions are used to model the 
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probabilities of the different plug-in SOCs from the data depicted in Figure 3.2-5 and 

expressed as:  

argmin
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As the daily driven mileage probability presents one unique peak around 2 – 5 miles, one 

normal distribution is used to model the probability of daily mileages, as described by 

argmin
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(3.5) 

The results of the parameter fitting process are presented in Table 3.2-1. 

Table 3.2-1 Results of probability distribution parameter fitting 

Parameter Statistical distribution parameters Fitting error 

Departure 

and arrival 

times 

Week-day 
{
𝜇𝑑 =  7.9, 𝜎𝑑 = 1.54, 𝜅𝑑 = 0.32
𝜇𝑎 = 15.8 , 𝜎𝑎 = 3.31, 𝜅𝑎 = 0.7

  
𝑒𝑓𝑖𝑡 = 1.7 × 10−3  

Saturday 
{
𝜇𝑎 = 13.3 , 𝜎𝑎 = 5.41, 𝜅𝑎 = 0.54
𝜇𝑎 = 13.3 , 𝜎𝑎 = 5.41, 𝜅𝑎 = 0.54

 
𝑒𝑓𝑖𝑡 = 7.5 × 10−3  

Sunday 
{
𝜇𝑎 = 13.3 , 𝜎𝑎 = 5.41, 𝜅𝑎 = 0.54
𝜇𝑎 = 13.3 , 𝜎𝑎 = 5.41, 𝜅𝑎 = 0.54

 
𝑒𝑓𝑖𝑡 = 7.5 × 10−3  

 Plug-in SOC 
{
𝜇𝑠1 = 47.5 , 𝜎𝑠1 = 18.7, 𝜅𝑠1 = 8.18
𝜇𝑠2 = 0.47 , 𝜎𝑠2 = 5.16, 𝜅𝑠2 = 2      

 
𝑒𝑓𝑖𝑡 = 11 × 10−3  

Daily driven mileage 𝜇𝑝 = 1.8 , 𝜎𝑝 = 2.41, 𝜅𝑝 = 1.45 𝑒𝑓𝑖𝑡 = 6.9 × 10−3  

It should be pointed out that in this research, the level of charge in EVs is always kept above 

20% of the full capacity as a precaution against unexpected trips. Furthermore, as will be 

discussed in Chapter 4, keeping SOCs near the lower extreme can damage the health of the 

battery. Hence, although Figure 3.2-5 shows a high probability in the range 15-20% of SOC, 

the operational SOC range considered in the current work is 20-90%. It can be seen that the 

distribution of trip initiation times matches well with that shown in Figure 3.2-3 for education 

and commuting purposes, with the peak of departures being located at 8:00 hrs and arrivals at 

nearly 16:00 hrs. Figure 3.2-6 provides a graphical example of the fitted probability 
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distribution of arrival and departure against the real travel data, as for Figure 3.2-2, for 

weekdays, Saturdays and Sundays. It can be seen that two the two distributions manage to 

replicate the real data on weekdays, while both on Saturday and Sunday, departure and arrival 

have the same probability distribution spread across the whole day. For the latter two, the 

fitting error is undoubtedly higher than that of weekdays, but still below 1%. By randomly 

generating arrival and departure times from these distributions, it will be ensured that arrivals 

always occur after departures. 

 

Figure 3.2-6 Parameter fitting of departure and arrival probabilities for (a) weekdays, (b) Saturday and (c) 

Sunday 

Figure 3.2-7 the fitting results for the distribution of daily travelled miles. 
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Figure 3.2-7 Parameter fitting for daily travelled miles 

3.3 Modelling electricity demand and PV generation 

EVs are seen as a suitable solution to minimise the mismatch between electricity demand and 

local renewable generation, bringing more economic and environmental benefits. This is 

because both these dimensions are variable, with renewables being also intermittent. Hence, 

understanding and modelling this uncertain behaviour is a key task in order to ensure a 

seamless integration of EVs and renewables. In this research, the only form of renewable that 

will be considered and modelled will be small-scale residential rooftop PV systems. This 

choice is motivated by the advantage that small scales can bring in terms of a more local 

generation. Ideally, PV systems could be fitted on any household roof without major building 

work required. Similarly, only domestic electricity demand will be modelled, although some 

comparisons with commercial demand profiles will help in identifying different utilisation 

patterns. 
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3.3.1 Modelling of electricity demand 

Electricity demand in households originates from daily necessities, hence in order to estimate 

the probability of certain demand levels, i.e. peak demand or low demand, the probabilities 

that certain activities are initiated should be studied. It follows that, potentially each 

household will have its own pattern, which will be dictated by the habits of the inhabitants. 

Modelling the behaviour of electricity users is beyond the scope of this research, as a 

dedicated investigation is required to accurately model the probability of occurrence of 

electricity demand, especially at such a small scale. It should be noted that at a higher scale, 

i.e. neighbourhood, district or city level, the demand profile is much smoother; hence more 

suitable to forecasts [84]. However, if that profile is to be adopted, the information of the 

individual will be lost, and the optimisation should be applied to the aggregation of 

households rather than a single archetype. Figure 3.3-1 shows typical electricity demand 

profiles for the four seasons, from winter to autumn, weekdays and weekends extracted from 

the data made available by Ofgem [85]. These profiles have been averaged across several 

user profiles, hence the smooth behaviour. It can be seen that, especially the winter season is 

characterised by high demand, with weekdays, Saturdays and Sundays having the highest 

evening peaks from 18:00 to 19:00 hrs. The winter weekday profile shows two peaks, one 

located in the morning at 8 and the other at 18:00 to 19:00 hrs evening, while electricity 

consumption decreases in the middle of the day. After winter, autumn is the season with the 

highest evening peak, followed by spring and summer. Furthermore, Sundays show high 

electricity consumption during the day hours, especially between 12:00 to 14:00 hrs. 

Although these profiles are useful to understand the seasonal effects on the electricity 

demand, since they are averaged over a large number of users, an overall smoothing effect is 

obtained. Hence, these profiles do not represent the behaviour of a single conventional 

residential demand.  
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Figure 3.3-1 Average UK electricity demand profiles for four seasons, weekdays and weekends [85] 

Year-long data from one of the SEEV4-City project pilots was available, which can be used 

to study the electricity demand of a typical household.  

Figure 3.3-2 shows a typical electricity demand profile; as can be seen, when analysing the 

behaviour with high-resolution data (5min period) there are several peaks, caused by the 

starting of household appliances, such as kettle and electric shower. 

 

Figure 3.3-2 Typical single household electricity demand profile 
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Validated electricity demand models for single households are available in literature [86] and 

these will be used when suitable. Here, a basic approach for predicting future electricity 

demands of a single household is presented. A variety of methods can be utilised to predict 

electricity demand in a household, the main ones being: 

1) Regression 

2) Artificial Neural Network 

3) Clustering 

However, due to the high randomeness of the electricity demand at single household scale, 

which is dominated by the householders behaviours, the clustering method is the most 

sensible approach, and it has been used in this research. This is because, historical electricity 

demand data is categorised in clusers and future demands can be associated to a certain 

cluster, rather than, for instance, trying to find the relationship between demand and weather 

parameters. 

3.3.2 Partitioning of electricity demand data using k-means clustering 

Following above remark, in this work, clustering methods have been implemented to partition 

the electricity demand data in few typical characteristic profiles that along with their 

occurrence probability can provide a sufficiently comprehensive demand model.   

The k-means clustering algorithm [90] aims at categorising a set of 𝑚 measurement data in 𝑛 

partitions 𝑷 = {𝑃1, 𝑃2, … , 𝑃𝑛} in order to minimise the variance in each partition. The 

following equation  

argmin
𝑷

∑ ∑ ‖𝑥 − 𝜇𝑖‖
2

𝑥∈𝑃𝑖

𝑛
𝑖=1   (3.6) 

formalises this concept, where the variance in each partition is minimised for a range of 

partitions. It presents the sum of dissimilarities/variance in all the partitions for an increasing 

number of partitions; as can be seen in Figure 3.3-3, quite evidently the variance will tend to 

zero with increasing number of partitions, but concurrently, the number of profiles in each 
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cluster will also reduce, making the whole clustering process meaningless. The aim is to find 

a right trade-off between homogeneity and crowding in each partition. 

 

Figure 3.3-3 Average variation within clusters for increasing number of clusters 

 

It has been observed after several tentatives that 10 partitions sufficiently satisfy the above 

reasoning. Figure 3.3-4 presents the classification of the daily electricity demand profiles in 

ten clusters. 
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Figure 3.3-4 Partition of daily electricity demand in ten clusters 

As can be seen, the ten clusters are sufficiently populated and there is a degree of similarity 

among the profiles in one cluster. For instance, comparing the profiles in cluster four, an 

evident high consumption in early morning is noticeable, which is not present in cluster nine. 

It should be pointed out that this approach will have to be applied to each house under 

consideration, since from the analysis presented thus far, it is clear that the individual 
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behaviour and preference of the inhabitants will ultimately decide the electricity demand of 

each household. With the ongoing installation and progressive operation of smart meters, 

residential users will become accustomed to this process and demand models tailored to each 

user profile will become increasingly established.   

3.3.3 Modelling of PV generation 

Capitalising from the previous Section, some of the approaches adopted for modelling 

electricity demand can also be suitably applied for PV generation forecast. For the purpose of 

this research, a suitable PV prediction model should: 

a) Take weather information for a future time period as input; 

b) Provide a prediction of the power generated for the future time period. 

Data driven methods have been widely adopted in predicting future PV generation as they are 

effective in considering multiple parameters and provide a unique prediction as an output. 

They represent black-box models that rely on data and are not limited by physics based 

relationships [91], the latter coming with inherent approximations. Therefore, in this research, 

a data driven approach is adopted, where historical information is utilised to train an ANN 

and predict future PV power output; as will be shown in the next section, this method 

provided accurate forecasting of PV generated power.  

3.3.4 Prediction of PV power output using ANN 

The input data utilised for training the algorithm is listed in Table 3.3-1; this data format has 

provided the best accuracy after a number of tentatives. 

Table 3.3-1 Input data for ANN training [92] 

Parameter Resolution 

Global horizontal irradiation Hourly 

Air temperature Hourly 

Seasonal effect function 𝑓𝑠𝑒𝑎𝑠 = sin (𝑑 ×
2𝜋

365
−

𝜋

2
) + 1 Single value 

Output Generated power [kW] 
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The final configuration of the ANN was a feed-forward network, with 2 layers and 12 

neurons, which was trained with the backpropagation algorithm. The training performance is 

displayed in  

Figure 3.3-5. The algorithm finds good correlation between the input data and the measured 

output and with minimal error (the correlation coefficient, [93] defined as the ratio of the 

covariance between inputs and outputs and the product of their standard deviations resulted 

𝑅 = 0.96). The weather data used to train the network is collected by weather stations 

located all over the UK and is itself a result of some forecasting. The disadvantage of this 

approach is the reliance on datasets that are indispensable for training the network. Naturally, 

any error in the original dataset will inevitably translate in prediction errors. Furthermore, 

datasets regarding specific locations may not be available. This major issue will need to be 

addressed in a world that is becoming increasingly reliant on data. 

 

Figure 3.3-5 Training results of an ANN for PV generation forecast 
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3.4 Modelling of grid impact in distribution networks 

The electricity network is the foundation of a smart grid and its efficient operation provides 

societal benefits to all the users and therefore should be the major objective for any optimal 

energy control strategy. The electricity network is mainly divided in transmission and 

distribution network (DN), with the latter providing both medium and low voltage users. 

Since RES and EVs are almost only connected to the DN, in this Section, we model DNs and 

the impact of PV and EVs on the operation of the grid. Figure 3.4-1 represents a typical 

electricity system, comprising of the transmission and distribution system, along with its 

components. 

 

Figure 3.4-1 Illustration of a typical electricity system 

The key elements of an electricity system are generation, demand sources and the network 

connecting them. Electricity can be generated by conventional power plants (coal, nuclear, 

hydro) and distributed sources, i.e PV and wind. Electricity demand is characterised by 
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different user profiles, such as industrial, commercial and residential. As EVs are 

increasingly deployed, they also demand electric power and domestic electricity consumers 

can become prosumers by installing rooftop PV systems. As aforementioned, the electricity 

network is divided in transmission and distribution, which are represented in Figure 3.4-1 

with red and blue colors respectively. Furthermore, as DN covers both medium and low 

voltage, the latter is represented by the yellow connections. As can be seen from the figure 

above, transformers, buses and feeders/lines are the main constituent elements of any 

electricity network, connecting the electricity generation and consumption elements. In this 

work, the DN will be abstracted as a black-box where ℎ generation buses and 𝑛 − ℎ load (or 

demand) buses are connected. This block will contain the models of all the other elements, 

such as feeders, transformers and active components, such as any capacitor bank. This is 

done because changes/upgrades of the network are carried out by the system (network) 

operators and aggregators and users cannot unilaterally influence their decision (often, users 

do not have information on the network, only local measurements are available). On the other 

hand, users can change the way they interface with the electricity network in order to 

optimise its operation. For the purpose of this study, one bus in the electricity network is 

allocated to a single domestic user and the power injected or demanded from the bus is that of 

the associated user. Figure 3.4-2 provides a conceptual representation of the proposed block 

network model. 

Scholars have modelled the electricity network with the bus admittance matrix [94], 𝒀, which 

depends on the topology of a DN. The bus admittance matrix assigns admittances to each 

component of the DN and allows calculating the powers flowing in the network. The 

necessary definitions for modelling distribution networks and the power flow calculation 

methodology is provided in appendix A1. The methods presented in this Section have been 

used to develop [P6]. 
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Figure 3.4-2 Block model of the distribution network with generation and load buses 

In this research, the Newton-Raphson method has been implemented to determine the impact 

of EV energy management strategies on DNs. However, as the impact of multi-objective EV 

charging strategies on the DN will be directly considered in the optimisation process in 

Chapter 6.2, the power flow equations [95] presented in equations equations A.6.a and A.6.b 

are reintroduced here to better suit the optimisation process in equations 3.8.a and 3.8.b. Let 

L be the set of all feeders in the DN, S the set of all buses that are located at the beginning of 

the feeders and E the set of all buses that are located at the end of the feeders. 

𝑃𝑙
𝑖𝑗

= 𝐸2
𝑠,𝑖 𝐺𝑙

𝑖𝑖 + 𝐸𝑠,𝑖 𝐸𝑒,𝑗  (𝐺𝑙
𝑖𝑗

 cos 𝛿𝑙 + 𝐵𝑙
𝑖𝑗

 sin 𝛿𝑙), ∀𝑙 ∈ L, ∀𝑖 ∈ S, ∀𝑗 ∈ E  (3.7.a) 

 𝑄𝑙
𝑖𝑗

= −𝐸2
𝑠,𝑖 𝐵𝑙

𝑖𝑖 − 𝐸𝑠,𝑖 𝐸𝑒,𝑗 (𝐵𝑙
𝑖𝑗

 cos 𝛿𝑙 − 𝐺𝑙
𝑖𝑗

 sin 𝛿𝑙), ∀𝑙 ∈ L, ∀𝑖 ∈ S, ∀𝑗 ∈ E   (3.7.b) 

Where 𝑃𝑙
𝑖𝑗

 and 𝑄𝑙
𝑖𝑗

 are the active and reactive powers flowing in the feeder 𝑙 from bus 𝑖 to 

bus 𝑗,  𝐸𝑠,𝑖  and 𝐸𝑒,𝑗 are the voltages of bus 𝑖 and bus 𝑗 respectively, 𝐺𝑙
𝑖𝑖 and 𝐵𝑙

𝑖𝑖 are the self-

conductance and self-susceptance (defined in appendix A1) of bus 𝑖 and finally 𝐺𝑙
𝑖𝑗

 and 𝐵𝑙
𝑖𝑗

 

are the mutual-conductance and mutual-susceptance between bus 𝑖 and bus 𝑗. The latter 

parameters can be determined by the bus-admittance matrix. 𝛿𝑙 = 휃𝑙
𝑖 − 휃𝑙

𝑗
 is the phase 

difference along the feeder 𝑙 between the phase angle of voltage at bus 𝑖 and at bus 𝑗. It 

should be noted that power flows from bus 𝑗 to bus 𝑖 are also considered and defined as 𝑃𝑙
𝑗𝑖

 

and 𝑄𝑙
𝑗𝑖

. 
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Finally, the active power losses in the DN can be expressed as 

𝐸𝑡
𝑙𝑜𝑠𝑠 = ∑ (𝑃𝑙

𝑖𝑗
+ 𝑃𝑙

𝑗𝑖
)𝑙∈L, 𝑖∈S, 𝑗∈E   (3.8) 

The relationship between powers at the buses and powers in the feeders is explicated by the 

Kirchhoff law for currents (in this case for powers) expressed as 

𝑃𝑖
𝑑 − 𝑃𝑖

𝑔
= 𝑃𝑙

𝑖𝑗
− 𝑃𝑙

𝑗𝑖
, ∀𝑙 ∈ L, ∀𝑖 ∈ S, ∀𝑗 ∈ E  (3.9.a) 

𝑄𝑖
𝑑 − 𝑄𝑖

𝑔
= 𝑄𝑙

𝑖𝑗
− 𝑄𝑙

𝑗𝑖
, ∀𝑙 ∈ L, ∀𝑖 ∈ S, ∀𝑗 ∈ E  (3.9.a) 

Where 𝑃𝑖
𝑑 and 𝑄𝑖

𝑑 are the active and reactive powers demanded at bus 𝑖 and 𝑃𝑖
𝑔

 and 𝑄𝑖
𝑔

 are 

the active and reactive powers generated at bus 𝑖. 𝑃𝑙
𝑖𝑗

 is the active power flowing in the 

feeder 𝑙 that starts in bus 𝑖 and ends in bus 𝑗 and 𝑃𝑙
𝑗𝑖

 the power flowing in the feeder 𝑙 in the 

opposite direction. While optimising the energy exchanged in a DN and the power flows, the 

following constraints on the voltage magnitude and phase angles respectively should always 

be respected, as detailed in the following equations  

𝐸 ≤ 𝐸𝑖 ≤ 𝐸, ∀i  (3.10) 

휃 ≤ 휃𝑖 ≤ 휃, ∀I  (3.11) 

where 𝐸, 𝐸 are the minimum and maximum statutory limit for voltage magnitudes and 휃, 휃 

are the minimum and maximum limits for the voltage phase angles for every bus 𝑖.  

3.5 Modelling CO2 emissions 

Arguably, the main driver for promoting EVs as the prime solution for clean transportation 

must lie on their comparatively low carbon footprint. In fact, EVs do not cause tail-pipe 

emissions, which limits CO2 emissions and slashes particulate. The overall carbon footprint 

of EVs, including manufacturing, usage, maintenance and decommissioning, is lower than 

the average ICE vehicle and this Section aims to formulate a methodology to calculate and 

optimise CO2 emissions of EVs and households. To allow a fair saving calculation, the whole 



 

96 

 

lifecycle for both ICE vehicles and EVs should be taken into account; however, the operation 

of the vehicle is the only controllable part within the scope of this research. This is because, 

emissions during manufacturing, maintenance and decommissioning are dictated by current 

and future industrial processes and technological advancement, which are beyond the scope 

of the present work. Therefore, in this work, CO2 emissions are calculated from the emissions 

during usage and emissions during manufacturing, maintenance and decommissioning are not 

considered. 

The CO2 emissions due to the EV utilisation will depend on the national energy mix, which 

changes during the day, week and season. Therefore, there are periods of low gCO2/kWh, 

which usually happen in off-peak periods (when low-carbon power plants are operated), as 

opposed to periods with high gCO2/kWh, which usually happen in peak times (when CO2 

intensive power plants are deployed). An example of this is given in Figure 3.5-1, which 

shows the UK energy mix based CO2 emission for 09/11/2017 (winter day). These figures 

have been obtained considering the lifetime CO2 emission values for the various generation 

types listed in Table 3.5-1. This demonstrate that the equivalent CO2 emission per kWh 

imported from the grid varies significantly. 

 

Figure 3.5-1 CO2 emission caused by the UK national energy mix [99] 
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Table 3.5-1 Average CO2 emission for different generation types [99] 

Generation type Lifetime CO2 emission [g/kWh] 

Wind 11 

Nuclear 16 

Hydro 20 

PV 40 

CCGT 487 

OCGT 487 

Oil 650 

Coal 870 

Therefore, CO2 emission caused by EV operation can be reduced by implementing smart 

energy management and charging of EVs. Scheduling BEV charging to occur during off-peak 

low-carbon periods and peak local PV generation will reduce overall CO2 emissions, 

maximize the energy autonomy and at the same time smooth the overall grid demand profile. 

The CO2 emitted for satisfying the electricity demand of a household or charging an EV can 

be defined as  

𝔼𝐶𝑂2 = ∑ 𝑒𝑡
𝐶𝑂2 𝑃𝑡

𝑎𝑟𝑐ℎ+𝑇
𝑡=1 ∆𝑡  (3.12) 

Where 𝑡 = 1,… , 𝑇 is the time-period in consideration for the analysis (hour, day, week etc.), 

𝑒𝑡
𝐶𝑂2 is the CO2 emission factor at time t and ∆𝑡 is the length of the simulation time-step. In 

the equation above, 𝑃𝑡
𝑎𝑟𝑐ℎ+ is the power absorbed by the archetype (household or EV) and the 

+ sign indicates that only power consumption contributes towards CO2 emissions. In fact, 

although an archetype may also inject power to the grid, especially during PV generation 

periods, and this may be consumed locally by other users resulting ultimately in CO2 savings, 

negative CO2 emissions are not considered in this work. Carbon savings are considered only 

as reduction of positive CO2 emissions. 

The emission factor 𝑒𝑡
𝐶𝑂2 considered in (3.13) can be modelled differently according to the 

assumptions adopted. To this end, both average CO2 emissions and marginal CO2 emissions 

may be considered. The former considers the specific CO2 emission in kgCO2/kWh at 
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different hours in a day, by assuming that the national energy mix is largely unaffected by the 

local energy management. As such, the CO2 intensities of the different generations sources 

are weighted according to their outputs as proportion of the national demand. The following 

equation is employed for this purpose: 

〈𝑒𝑡
𝐶𝑂2〉 =

𝑒𝑓𝐶𝑜𝑎𝑙 𝑃𝑡
𝐶𝑜𝑎𝑙,𝑔

+ … +𝑒𝑓𝑊𝑖𝑛𝑑 𝑃𝑡
𝑊𝑖𝑛𝑑,𝑔

𝑃𝑡
𝑛𝑎𝑡,𝑑   

(3.13) 

where, 〈𝑒𝑡
𝐶𝑂2〉 is the average CO2 emission factor, 𝑃𝑡

𝑛𝑎𝑡,𝑑
 is the national electricity demand at 

time 𝑡, 𝑃𝑡
𝐶𝑜𝑎𝑙,𝑔

, … , 𝑃𝑡
𝑊𝑖𝑛𝑑,𝑔

 are the power generated by the different generation sources at 

time 𝑡 and 𝑒𝑓𝐶𝑜𝑎𝑙, … , 𝑒𝑓𝑊𝑖𝑛𝑑 are the CO2 intensities of the generations sources as presented 

in Table 3.5-1. 

The concept of marginal CO2 emission factor considers a national energy mix that responds 

to variation caused by the local energy management. Marginal CO2 emission factors consider 

the incremental amount of CO2 emitted for providing one additional kWh. For this purpose, 

the merit order considered in the optimal economic dispatch of the different power plants is 

profoundly relevant. In fact, generation volumes from different types of power plants are 

dispatched according to their variable (marginal) costs, which itself is not within the scope of 

this research. However, it should be considered that if one additional kWh was consumed, 

this would be provided by different types of power plants, according to the consumption 

hour, as the merit order will decide which plants provide the spare capacity to satisfy the 

unforeseen demand. Decisions regarding the merit order are entirely dependent upon the 

wholesale market rules, and therefore cannot be known in advance. However, by studying the 

variation of the output of the different generation sources, an idea of the daily/seasonal merit 

order can be made. Figure 3.5-2 shows the output variation of different generation sources in 

correspondence to the national electricity demand for January 2019. 
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Figure 3.5-2 Power generation variation for (a) Coal, (b) Nuclear, (c) CCGT, (d) Wind, (e) Pumped-hydro, (f) 

Hydro, (g) Biomass and (h) OCGT [99] 

It can be seen that Combined Cycle Gas Turbines (CCGT), coal, nuclear and wind provide 

most of the UK national electricity demand, with the latter being inflexible due to variable 

wind speed. Moreover, RES such as PV and wind are given a prioritised injection to the 

network in order to meet environmental targets. On the other hand, nuclear production is 

quite stable, whereas it is CCGT that ramps up covering the full range of electricity demand 

and supplies up to half of the overall consumption (more than 27 GW out of a peak demand 
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of 48.8 GW). Pumped-hydro, hydro, biomass and Open Cycle Gas Turbines (OCGT) have 

limited capacity, with the former ramping up only in correspondence of peak demand and the 

latter being seldom activated. 

Following from the above considerations, a marginal generation analysis can be conducted: 

for each period in consideration (ideally every month), the ramping rate of each generation 

sources can be estimated for each demand cluster: 

- Divide the whole electricity demand range in 𝑛 clusteters {∆𝐷1, … , ∆𝐷𝑛}; 

- For each cluster 𝑛, quantify 
𝜕𝑃(G)

𝜕𝐷𝑛
≈

∆𝑃(G)

∆𝐷𝑛
 ∀G; where G is a generation source; 

- Calculate the marginal CO2 emission 𝑚𝑒∆𝐷𝑛 = 〈
∆𝑃(G)

∆𝐷𝑛
 𝑒𝑓G〉 as the contribution of the 

different sources weighted according to their emission factor 𝑒𝑓G to the overall marginal 

emission factor, for every demand cluster. 

- For every hour, measure the national electricity demand, which will be categorised in one 

of the predefined demand clusters and correspondingly will be assigned a certain marginal 

emission factor 𝑚𝑒𝑡. 

Although this methodology rigorously models savings in CO2 emissions, (it quantifies the 

emission for an additional kWh or one kWh less), as currently electro mobility is far from 

being prominent, it could be argued that variations of EV charging demand will not cause 

measurable variations in the overall national emission factor. Hence, under this assumption, 

the average CO2 emission factor will be employed in the remainder of this research. 

However, it should be pointed out that the methodology developed in this research can be 

generalised to include marginal emission factors (as will be seen, only the hourly based 

emission factor will change in the objective function), which will be particularly relevant at 

future EV penetration rates.  
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3.6 Modelling ancillary service provision 

Ancillary services are “Those services necessary to support the transmission of electric power 

from seller to purchaser, given the obligations of control areas and transmitting utilities 

within those control areas, to maintain reliable operations of the interconnected transmission 

system.” [32]. The aforementioned services include, load following, frequency regulation, 

reactive power regulation, reserve among others. These services vary in technical 

requirement and economic remuneration, therefore the profitability for each of them ought to 

be evaluated case-by-case. A stack of multiple services can also be provided by the same 

asset if these services are not mutually conflicting. Among these, frequency regulation (FR) 

has been widely considered as one of the most viable ancillary services for EV fleets [9], 

[36]-[48]. Such service requires provision/absorption of power in correspondence to 

frequency deviations. Electricity demand can also be controlled to respond to frequency. 

Hence, in this work, FR will be modelled and analysed in terms of the prospective revenues, 

technical constraints and overall feasibility. 

However, due to the country specific regulation and the dynamic national regulatory 

landscape, other services than FR should also be at least referenced. Therefore, in the next 

paragraphs, we elaborate upon the range of ancillary services that can be provided by EV 

fleets, and focus on modelling of frequency regulation provision by EVs and how this can be 

implemented in coordination with other objectives. 

Reserve services consist of provision of additional power, or demand reduction, in response 

to unforeseen increases in demand or unavailability of generation units. Depending on the 

minimum capacity and response requirements, reserve services can provide different options 

to EV fleets as suitable revenue streams; the types of reserve service are detailed in Table 

3.6-1. 
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Table 3.6-1 Range of available reserve services in the UK [100] 

Type of Reserve Capacity Requirement Response time Payment 

Fast Reserve 50 MW 

Minimum 

service time of 

15 minutes 

Availability 

fee (£/h) 

Nomination 

fee (£/h) 

Utilisation fee 

(£/MWh) 

Short Time Operating 

Reserve (STOR) 
3 MW  

240 minutes, 

for 2 hours 

Availability 

fee (£/h) 

Utilisation fee 

(£/MWh) 

Demand turn-up 1 MW 
In terms of 

hours 

Availability 

fee (£/h) 

Utilisation fee 

(£/MWh) 

Black start 

Accept instantaneous loading 

or demand blocks of 35-50 

MW 

Ability to 

provide at least 

three 

sequential 

black starts 

Availability 

fee (£/h) 

Exercise price 

(£/MWh) 

As can be seen, services such as Fast reserve and Black start require significant capacity, 

which may take up to thousand vehicles to be available in order to be qualified for service 

provision. On the other hand, STOR and Demand turn-up are more manageable as with 

minimum capacity requirements set as 3 and 1 MW respectively, these services can be 

provided with less than hundred EVs. 

Along with reserve services, reactive power provision is a fundamental service that ensures 

an efficient grid operation. Voltage levels in the electric power grid are influenced by reactive 

power flows. If the right amount of reactive power is provided, then the network voltage can 

be controlled. In the UK, the National Grid procures Obligatory and Enhanced reactive power 

services where the former is mandatory for large generators whose output exceeds 50 MW, 

and the latter can be provided by any other generator. It should be noted that in order to 
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control voltages through the provision of reactive power, the provider should be connected to 

the transmission network due to the relatively low resistance. Therefore, reactive power 

provision is not considered in this research. 

Finally, the different types of FR services are presented in Table 3.6-2. 

Table 3.6-2 Frequency regulation services in the UK [100]  

Type of Frequency 

Regulation service 

Capacity 

requirement 

Service time Payment 

Mandatory 

frequency 

Response (MFR) 

10-100 MW Continuous Holding payment 

(£/h)  

Response energy 

payment (£/MWh) 

Firm Frequency 

Response (FFR) 

1 MW Static or continuous Availability fee 

(£/h) 

Utilisation fee 

(£/MWh) 

  

It should be noted that, as the name suggests, MFR could be provided by only those 

generators that exceed certain capacity thresholds, while FFR is procured through tenders. 

Moreover, given also the relatively low minimum capacity requirement (this can be satisfied 

with up to 25 EVs); FFR is a more suitable service for EV fleets. Concluding this brief survey 

on the ancillary services available in the UK, the prospective payments for 2018/2019 of the 

most promising services are shown in Figure 3.6-1. 
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Figure 3.6-1 Average payment for UK ancillary services in 2018/2019 [100] 

Although FFR shows the lowest payment, due to the favourable operating conditions (little 

energy exchange and overall energy neutral as inferred in [9]) and due its requirement 

throughout a year (STOR is procured around certain periods) it is still the preferable option. 

In the following paragraphs, FFR provision is modelled as an additional scenario in the 

optimisation framework. 

Ancillary services such as FFR require the regulation of the output of the generation/demand 

asset according to the frequency deviation from the nominal value of 50Hz. Frequency 

regulation can be categorized in dynamic and static response. The former implies the 

automatic change of the active power output of the provider in response to a frequency 

change. This service is categorised in Primary Response, Secondary Response and High 

Frequency Response. In order to provide Primary Response , extra active power has to be 

supplied or the demand has to be reduced 10 s after requested and for a further 20 s. The 

Secondary Response needs the active power in 30 s and for a further 30 minutes whereas the 

High Frequency Response needs the provision in 10 s and for indefinite time. For static 

frequency regulation, a constant response, in terms of increased generation or reduced 

demand, must be provided after the frequency exceeds certain thresholds. Dynamic FR is 

carried out with the droop control approach, which determines the regulation power provided 

in correspondence of a certain frequency deviation.  
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When providing this service, EVs will have to follow the regulation signal, as defined by the 

following equations: 

 𝑟𝑒𝑔𝑡 = −𝑘𝑑 𝑓  𝑖𝑓 𝑓 ≤ 𝑓 ≤ 𝑓 (3.14) 

 𝑟𝑒𝑔𝑡 = −𝑃𝐸𝑉  𝑖𝑓 𝑓 ≤  𝑓 (3.15) 

 𝑟𝑒𝑔𝑡 = 𝑃𝐸𝑉  𝑓 ≥  𝑓 (3.16) 

Where 𝑘𝑑 =
𝑃𝐸𝑉

(𝑓−𝑓)
 is the droop coefficient of the frequency controller, 𝑓 is the electrical 

frequency, 𝑓 and 𝑓 are the upper and lower frequency limits of the droop-controller. Figure 

3.6-2 represents the relationship between the electrical frequency and the response of a droop 

controller for a maximum frequency deviation of ±0.2 Hz, ±0.5 Hz and ±0.8 Hz. 

 

Figure 3.6-2 Droop control for different frequency deviation ranges 

We assume the EV provides FFR from 23:00 to 7:00, which is the period that is deemed the 

most profitable for the UK National Grid ESO [101]. This means in that period the EV is not 

available for other energy services, such as peak shaving or energy arbitrage. It is implied 

that availability for FFR should be compatible with the driving pattern of the EVs. According 

to [9], frequency regulation does not lead to net change in battery charge. Therefore, we 

assume that the SOC of an EV at the end of the FFR provision window is the same as the 
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SOC at the beginning of that window. However, participation to FFR schemes implies battery 

utilisation, which leads to degradation. On the other hand, this service provides a 

remuneration. The interaction between this service provision and other optimisation strategies 

are modelled based on the principles outlined as follows: 

• The UK National Grid procures FFR for 8 hours on a daily basis. Providers can 

decide to provide or not to provide such service; to this end this decision is binary; 

• The provision period is fixed and cannot be optimally distributed throughout the day 

according to a mathematical computation; 

As a result of the above assumptions, the trade-off between FFR provision and other 

optimisation strategies is brought to a binary decision variable (𝐹𝐹𝑅 ∈ [0,1]ℕ) which governs 

the FFR provision, and limits the time steps available for other optimisation algorithms. 

Hence, we analyse two scenarios, with and without ancillary service provision. 

On the other hand, if static regulation services was provided, the full committed power must 

be provided when requested. The regulation signal can be therefore expressed by 

𝑟𝑒𝑔𝑡 = 𝑃𝐸𝑉  𝑖𝑓 𝑓 ≥  𝑓𝑠 (3.17) 

𝑟𝑒𝑔𝑡 = −𝑃𝐸𝑉  𝑖𝑓 𝑓 ≤  𝑓𝑠 (3.18) 

 𝑟𝑒𝑔𝑡 = 0  𝑖𝑓 𝑓𝑠 ≤ 𝑓 ≤ 𝑓𝑠 (3.19) 

where 𝑓𝑠 and 𝑓𝑠 are the upper and lower frequency limits for the static response. 

Arguably, frequency regulation can be provided also with unidirectional controllable 

chargers, i.e. smart charging. This would minimise the underlying battery degradation as the 

EVs are only charged for their transportation and not discharged, which reduces their cycling. 

However there can be instances where smart charging would not be as effective as 

bidirectional charging and we motivate this assertion in the rest of this subsection. For sake of 

example, let us consider the situation depicted in Figure 3.6-3. 
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Figure 3.6-3 Example of frequency regulation provision with smart charging and bidirectional charging 

The figure above depicts a potential regulation signal provided by the TSO and the evolution 

of the SOCs of a fleet of EVs under smart charging and with bidirectional charging. It should 

be noted that in this case the regulation signal is entirely positive, which implies that 

regulation down (charging) is requested. It can be seen that when regulation is carried out 

with smart charging, the EVs are charged until their batteries are full (SOC=1) and further 

regulation is not carried out. On the other hand, when bidirectional charging is available, the 

EVs are discharged and then charged again by following the regulation signal. It is evident 

that smart charging does not allow the same flexibility of bidirectional charging because it is 

limited by the maximum battery capacity of the EVs. Therefore, if only smart charging was 

available, after the EV batteries are fully charged, they cannot continue providing regulation 

services. Nevertheless, as discussed above smart charging causes little battery wear, hence it 

can be bring considerable value. For these reasons, in this research regulation will only be 

provided with bidirectional charging. 
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3.7 Conclusions  

In this chapter, mathematical models of the core elements of a multi-objective EV charging 

optimisation framework have been developed. As will be seen in Chapter 6, these models 

along with key objectives, will contribute in defining the stakeholders involved in a smart 

grid. The typical household has been selected as the main environment for this research due 

to the long EV availability and decentralisation of renewable generation. In this context, the 

first and the central stakeholder modelled in this work is the EV owner whose behaviour has 

been studied in terms of daily travelled distance, home-parking times and available SOC 

upon plugging-in. It has been shown that their behaviour can be represented with probability 

distributions, from which diverse but coherent EV utilisation profiles will be generated to 

feed the optimisation process. Next, residential electricity demand and PV generation have 

been modelled: the former is largely dependent on the user’s behaviour while the latter is 

weather reliant. Due to the highly sporadic nature of small-scale electricity consumption, 

clustering of historical data and a probabilistic approach are the most suitable methods, while 

the rest are unable to capture demand peaks. However, ANN showed a good performance in 

depicting PV generation as the dependence on weather is more evident. Distribution networks 

have been modelled by means of bus-admittance matrices. Furthermore, the principles for 

including network parameters in the optimisation process, through the AC power flow 

equations and suitable constraints, have also been briefly outlined; further details will be 

provided in Chapter 6 when this method will be applied in an energy trading system for EV 

owners and prosumers. The environmental impact of electricity consumption, both household 

and EV charging demand, has been modelled with the average CO2 emission factor. 

Although marginal emission factor is perhaps a more accurate depiction of the carbon 

footprint, it is only relevant to larger EV penetration rates where EV charging management 

can have implications on the marginal generation plant. After presenting the most promising 

ancillary services available in the UK, FFR has been modelled and chosen as the most 

suitable for EV fleets, in terms of the prospective payment and more importantly, the 

operating conditions that will cause less battery degradation as will be seen in the next 

chapter. 
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Chapter 4 Modelling Degradation in Lithium-Ion 

batteries 

4.1 Introduction 

Lithium-Ion batteries are currently the leading battery technology due to their large 

application in electronics and the automotive industry. Electric energy is stored through the 

movement of lithium ions backwards between low and high potential energy states, which 

happens because of a number of electrochemical reactions, [102]. When lithium ions are in 

the positive electrode (cathode), their energy state is low whereas they have the highest 

energy when they are in the negative electrode (anode). An external voltage difference (over-

potential) forces lithium ions to move from the cathode to the anode, where they intercalate, a 

process denoted as charging, during which an external current flows inside the battery. In this 

process, the ions absorb electrons from the charge collector (made of copper). While 

discharging, ions naturally move (decalate) from the anode to the cathode, giving up their 

electrons and supplying a useful current outside the battery. A pictorial representation of the 

charging/discharging process is provided in Figure 4.1-1. The cathode and anode have a 

porous meshed structure that enables intercalation and decalation. Metal conductors attached 

to the anode and cathode allow the electron absorption and release to provide current flow to 

a load. An organic electrolyte is placed between the two electrodes to allow movement of 

ions. It is kept apart by a porous separator to prevent a short circuit of the electrodes. The 

electrolyte employed is typically a combination of lithium salts, such as LiPF6, LiBF4, or 

LiClO4, in an organic solvent. 
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Figure 4.1-1 Lithium-ion charging/discharging process [103] 

Lithium has the highest electrode potential per unit mass of any metal, so a lithium ion cell 

theoretically has the highest specific energy of any configuration. When fully lithiated, the 

maximum theoretical capacity per gram of active lithium is 372 mAh g-1 

In recent years, lithium-ion batteries have been widely adopted in many applications, ranging 

from mobiles phones to electric vehicles and aerospace applications. The anode is commonly 

made of graphite, while the cathode can be made of lithium cobalt oxide LiCoO2 (LCO), 

lithium iron phosphate LiFePO4 (LFP), lithium manganese oxide LiMn2O4 (LMO), lithium 

nickel manganese cobalt oxide LiNiMnCoO2 (NMC), lithium nickel cobalt aluminium oxide 

LiNiCoAlO2 (NCA) and lithium titanate Li4Ti5O12 (LTO) [13]. The main features of lithium-

ion batteries are their high energy and power density, compared to other types of batteries of 

similar size, and their low self-discharge rate. However, they do have some shortcomings 

such as their high cost, poor performance in low temperature and propensity to degradation. 

In this chapter, battery degradation is mathematically modelled based on experimental results 

and such models are later utilised as part of an optimisation process, which will control the 

factors that cause battery degradation. For the customary utilisation of and EV, the battery is 
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charged using chargers, and then discharged during driving. Both of these processes cause 

degradation. As the focus of this research is on optimising the charging process of EVs, the 

degradation caused by driving will not be modelled although the model developed in the 

current work can be (and is) applied to real-life driving profiles to quantify the overall 

degradation. Any battery degradation caused by charging is modelled. 

In this context, as the battery is utilised, the phenomenon known as degradation, affects the 

performance of the battery, both by reducing its useful capacity and increasing its internal 

resistance. To this end, state of health (SOH) of the battery is a crucial parameter to be 

monitored, which can be adapted to both capacity fade and resistance increase according to 

the following equation 

𝑆𝑂𝐻 = 𝑚𝑖𝑛 (
𝑪𝒕

𝑪𝟎
,
𝑹𝟎

𝒊

𝑹𝒕
𝒊)  

(4.1) 

where 𝐶𝑡 is the battery capacity at time 𝑡, 𝐶0 is the initial capacity of the battery when it is 

new, 𝑅𝑡
𝑖 is the internal resistance of the battery at time 𝑡 and 𝑅0

𝑖  is the internal resistance 

when the battery was new. In equation 4.1, the minimum symbol indicates that SOH is the 

minimum between the two parameters, as these two phenomena happen in different 

timeframes throughout the life of the battery and in a way that is dictated by the battery 

chemistry. The two terms presented in equation 4.1 are often denoted as capacity fade and 

power fade respectively. Both contribute to a reduction in the performance of the battery. The 

occurrence of these two phenomena are associated to chemical reactions that happen inside 

the battery. To this end, a useful classification is determined by the battery state: if the battery 

is charged or discharged, it is said to be cycling, whilst when no charging/discharging event 

happens the battery is considered idle or in storage conditions.  

The most critical reactions along with the trigging parameters that cause degradation are 

listed in Figure 4.1-2, from red to blue indicating the severity of their influence. It should be 

noted that the order adopted in this study cannot be generalised to all lithium-ion chemistries, 

as different types will exhibit different dependencies.  
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Figure 4.1-2 Lithium-ion battery degradation reactions [104] 

However, according to the current literature [105]-[109] the main reactions that have the 

highest impact on battery degradation are: 

▪ Lithium deposition 

▪ Solid electrolyte formation (SEI) 

▪ Crack propagation 

▪ Loss of active material 

The reasons for the occurrence of capacity and power degradation are for the resistance 

increase: SEI formation, electrolyte degradation, isolation or fracture of active material, 

reduction in the number of electrical conduction paths in the electrode, while isolation, 

chemical degradation, fracture of active material and loss of cyclable active material are the 

reasons given for capacity loss [105]. 

As can be seen from Figure 4.1-2, a number of physical parameters will activate and/or 

accelerate these reactions leading to an increased degradation. It is widely recognised in the 

current state of the art [14], [105]-[111], [109]  that the main impacting parameters are: 
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▪ Battery cell temperature, which is also dependent on the ambient temperature. It is 

suggested that a cell is operated around a temperature of about 20 °C to attain the 

minimum degradation [112], [113]. Operation at higher cell temperatures than 20 °C 

tends to reduce battery lifetime due to unwanted side reactions damaging the cell [114]. 

Very low temperatures reduce performance and lifetime due to an increase in the internal 

cell resistance [115]. Temperature accelerates all chemical reactions, including those that 

are unwanted and lead to degradation, and increases stress. The dependence of battery 

degradation upon cell temperature is modelled with the Arrhenius law, which models an 

exponential behaviour. 

▪ State of Charge (SOC); literature suggest that low average SOC, help in lowering battery 

degradation [116]. High SOC increases degradation with a linear or even exponential 

dependence [105]. Average SOC changes with cycling schedule. If a certain amount of 

charge is to be applied to the battery within a 24-hour period, then the time and duration 

of charging can be altered to change the average SOC. For example, leaving the EV 

battery at a low SOC with subsequent delayed recharging can yield a lower average SOC 

over a 24-hour period than early charging with the battery then remaining at a high SOC 

for some hours.  

▪ Depth of Discharge (DOD)/amount of charge transferred; the more charge transferred 

during cycling i.e. the greater the DOD per cycle and the greater the number of cycles, 

the greater the degradation [117]. High DOD causes continuous stripping and depositing 

of solid electrodes. Some studies infer that DOD can have a higher impact than SOC 

[105], while others do not find a clear dependence upon DOD [118].  

▪ Current rate (C-rate); C-rate is defined as the charging power as a percentage of the 

battery’s maximum capacity. Therefore, for a battery with a maximum capacity of 24 

kWh, a charger rated 24 kW achieves 1C charging. Increased charge rates accelerate 

degradation, with a factor that is linear at rates under 1C [119]. Domestic chargers 

provide power at either 3 kW or 7 kW (i.e. under 1C for passenger EVs). Faster 

discharge due to high driving speeds and/or hard acceleration has similar effects on 

degradation due to an increased battery discharge rate. High C-rates are known to 
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increase internal resistance [105], with the effect being amplified when combined with 

the other parameters. 

Scholars worldwide have put a considerable effort, in order to capture the behaviour of 

battery degradation with mathematical models. The battery models present in current 

literature can be categorized in two major groups [105]:  

▪ physics or electrochemistry based [106]-[109] 

▪ Empirical [14], [110] [111]. 

Although other classifications are also possible, for the scope of this research this 

differentiation is sufficient in highlighting the advantages and drawbacks of the two 

approaches and choosing the one that is more suitable for the current work. When referring to 

electrochemistry based models, we mean models that represent electrochemical processes but 

validated with experiments, and we ignore other models i.e. single particle models etc. This is 

because, as will be seen in the next paragraphs, there is a constant trade-off between accuracy 

of such models and practical implementability, and the models referred to in the current work 

can be fitted with experimental data. 

In [109] an electrochemical degradation model that captured the impact of loss of active 

material and side reactions, such as SEI formation and lithium plating, at different C-rates 

and temperatures was proposed. They fit the parameters of such models with cycling data on 

2.6 Ah 18650 NCA batteries, cycled two different discharge rates, namely 2C and 4C, and at 

45 °C. They observe that high ambient temperature led to accelerated SEI formation but on 

the other hand, low temperatures caused lithium plating. High currents caused loss of active 

material, which is the dominant phenomena at high C-rates. However, the authors did not 

model the effect of the combination of these two parameters and no mention to SOC was 

made. 

In [108] an electrochemical model that accounted for lithium-ion diffusion and kinetics, fitted 

using experimental data was developed. The main drawback of the approach adopted by the 

authors lies in the fact that the model consisted of non-trivial partial differential equations, 
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which are unsuitable for being included in a mathematical optimisation process; in fact, the 

authors themselves comment on the computational burden for implementing such model and 

propose utilising external servers. Another shortcoming is the absence of any relationship 

with external physical parameters, i.e. temperature or C-rate.  

An electrochemical model to represent SEI formation at the anode and iron dissolution in 

lithium iron phosphate batteries was proposed in [107]. Here, a distinction between storage 

and cycling conditions is made: storage SOC and temperature are the most impacting 

parameters in storage conditions and C-rate, temperature and overall energy throughput 

influence capacity fade during cycling. An ordinary differential equation based model is 

constructed and fitted using experimental results with commercial LFP batteries at different 

temperatures (20, 40 and 60 °C), SOCs (10, 50 and 100%) and discharging rates (0.1, 0.5, 1 

and 2C). The results showed that temperature is a major impacting factor influencing both 

storage and cycling. Batteries stored at high SOCs exhibited higher degradation than those at 

low SOCs and the magnitude of the discharging current showed a clear impact on the 

capacity fade during cycling. Although this work succeeds in capturing the impact of three 

major impacting parameters on capacity fade, the proposed model is complex (we believe it 

is unsuitable for state of the art optimisation methods) and does not represent the combination 

of such parameters.  

In [106], a mechanistic model that depicted different degradation mechanisms, namely, loss 

of lithium inventory, loss of active material and ohmic resistance increase was developed. 

With a more empirical approach then the works discussed above, the authors have performed 

cycling tests on three types of battery, LFP, LMO and NMC, at 1/3C charging and 1.5C 

discharging at two different temperatures, namely 5 and 45 °C to depict the summer and 

winter variation. The results showed that the three batteries exhibit different propensity to the 

aforementioned reactions: resistance increase and loss of lithium inventory happened in all 

three batteries while loss of active material was not noticed in the LFP battery. They continue 

by defining a mathematical model based on the Arrhenius equation to link the effect of C-rate 

and temperature. Their model was successful in simulating the behaviour of real batteries 

when tested under dynamic conditions, but no mention to SOC was made. 
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A similar approach was adopted in [110] in modelling loss of active lithium and SEI layer 

formation based on accelerated degradation testing performed at different discharging rates 

(0.2, 0.5, 1 and 2C). Despite an exponential model linked the impact of C-rate and 

temperature, the authors assumed constant temperature, hence this dimension is not 

developed in their work. 

Rather different from the previous literature, two notable research works, [14] and [111], 

employed empirical modelling to depict the influence of the impacting parameters on 

capacity fade and resistance increase. Both studies tested commercial NCA batteries, by 

separating storage and cycling conditions and seemingly reached completely opposite 

conclusions. While the authors of [111] argued that under certain conditions V2G could in 

fact improve battery life (by discharging the battery to keep it at low SOC), the work 

conducted in [14] deemed V2G an unavoidable cause of battery wear. Aside from their 

conclusions however, their approach in modelling battery degradation is to our best 

understading the simplest yet effective as the impact of each parameter and their interactions 

are quantified based on testing results, without focusing on chemical reactions. This method 

is in our view the best as the only manageable parameters are the external physical ones and 

the measured results are both capacity fade and resistance increase, which are the inputs and 

outputs of the latter two studies. 

More specifically, in [14], storage testing at three temperatures (-27, 20 and 55 °C) and SOCs 

(0, 50 and 100%) was performed and a double quadratic model was used to depict the 

interaction between these two parameters. As for cycling tests, different utilisation patterns 

were tested by combining driving cycles, charging and discharging sessions. Similarly, in 

[111], storage testing at 10, 25 and 45 °C and 20, 50 and 90% SOC was performed and the 

Arrhenius law was employed to depict calendar degradation. Two different discharge rates, 

namely 0.4 and 1.2C were utilised for the cycling tests and quite unexpectedly and in 

disagreement with the above literature the results showed that capacity fade was independent 

from the discharging rate and more influenced by the overall energy throughput. 
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Thus far, the major research gaps identified in the current literature can be summarised as: 

▪ The majority of the research works consider a subset of the impacting parameters; 

some of them are neglected with assumptions on the working conditions; 

▪ The combinations of these parameters are often neglected; 

▪ In no case, more than two impact parameters have been considered together.  

▪ A lack of studies on non-accelerated analysis has been noticed because most of the 

time a constant current profile is adopted instead on realistic load profiles; 

▪ The available models have been developed based on tests conducted on specific 

battery chemistries and no mention to an adaptive battery degradation model is made. 

An adaptive battery model is defined as a mathematical representation of the 

degradation of the battery that is updated in order to improve its accuracy with 

measurements as they become available during the life of the battery. 

Following these considerations, the present work develops an adaptive behavioural and 

capacity fade model that brings the following contributions to knowledge: 

▪ Development of a comprehensive degradation model that captures the impact of the 

main physical parameters which can be manipulated by optimisation algorithms; 

▪ Modelling the interaction between such parameters which has been often overlooked 

in current literature; 

▪ Dynamic modelling, to simulate the impact of real-life operating conditions; 

▪ Adaptive modelling to accurately fit the degradation behaviour of diverse battery 

types. 

Thus, the proposed adaptive battery model is depicted in Figure 4.1-3. 
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Figure 4.1-3 Adaptive battery degradation model functional diagram 

At first dynamic capacity, fade and equivalent circuit models are developed based on 

measurements collected from accelerated tests. The capacity fade model adjust the maximum 

battery capacity 𝐶𝑏 as an input to the equivalent circuit model. Then, using real-life 

utilisation patterns, i.e. diverse voltage, currents and temperature profiles, namely �̃�, 𝑖̃ and �̃�, 

the models are validated and recurrently fitted to adapt the model to the specific battery.  

The remainder of this chapter is organised as follows: in Section 4.2, the concept of 

equivalent circuit model is discussed and a predictive model is developed. Section 4.3 models 

the impact of the main influencing parameters on battery degradation and develops an 

adaptive degradation model that addresses the diverse behaviour of different lithium-ion 

battery types.  

4.2 Development of an equivalent circuit model 

In order to operate a lithium-ion battery within an optimisation framework, a number of 

parameters need to be modelled before addressing the degradation process. This is because 

lithium-ion batteries are characterised by a non-linear behaviour, hence a suitable model that 

depicts their dynamics. To this end, the equivalent circuit model (ECM) is a simple yet 

effective method for representing the internal reactions on lithium-ion batteries. This 

modelling approach has been developed in [P5]. The main components of and ECM are 

shown in Figure 4.2-1. 
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Figure 4.2-1 ECM of Lithium-ion battery 

The main components of the ECM model are the DC internal resistance 𝑅0 representing the 

polarisation of the battery, a controlled voltage source 𝑣𝑂𝐶(𝑡), representing the open circuit 

voltage (OCV) and various RC pairs, which provide time constants representing different 

internal reactions, such as charge transfer and diffusion among others [111]. 𝑣𝑏(𝑡) and 𝑖𝑏(𝑡) 

are the voltage and current of the battery and these are the only parameters that are 

measurable from outside (an overall impedance can be measured but the in order to separate 

the different impedance components, complex measurement systems must be employed, i.e. 

electrochemical impedance spectroscopy). The OCV is dependent on the state of charge 

(SOC) of the battery; the relationship between OCV and SOC can be modelled by a function; 

more details will be provided in the next paragraphs. The number of RC pairs should be 

conveniently chosen based on the trade-off between the accuracy required by the design 

experiment and the computational complexity. A right balance between accuracy and 

computation effort is given by the one-time constant model, shown in Figure 4.2-2, which 

will be referred to hereafter. 
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Figure 4.2-2 One-time constant ECM model 

According to industrial standards, the charging/discharging process of lithium-ion batteries is 

governed by the so-called constant-current and constant-voltage charging process (CC-CV). 

Figure 4.2-3 shows the behaviour of the battery voltage and current during the CC-CV 

process. 

 

Figure 4.2-3 CC-CV charging process  

Under CC mode as the name suggests, the battery is charged with a constant current while the 

battery voltage increases from the minimum limit (if the battery was fully discharged) to the 
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maximum limit. When the battery voltage reaches the maximum value, the supplied current 

decreases exponentially, while the voltage is kept constant; the CV phase ends when the 

supplied current is reduced below a certain cut-off current. Since when the battery reaches the 

maximum voltage the first time, the battery does not reach full SOC, further charging is 

carried out in the CV phase. As current is progressively reduced, the CV phase takes longer 

than the CC charging process and requires less power. 

Next, referring to the single RC pair model in Figure 4.2-2, the dynamic behaviour of the 

battery charging process is modelled. First, CC process is modelled, where the battery is 

supplied with a constant current 𝐼𝑏0, as depicted by  

 �̇�𝑐𝑝(𝑡) = −
1

𝑅𝑝𝐶𝑝
𝑣𝑐𝑝(𝑡) +

1

𝐶𝑝
 𝐼𝑏0  (4.2) 

𝑣𝑏(𝑡) = 𝑣𝑂𝐶(𝑡) + 𝑣𝑐𝑝(𝑡) + 𝑅0 𝐼
𝑏0  (4.3) 

where �̇�𝑐𝑝 is the derivative of the voltage at the capacitor’s terminals and the battery voltage 

𝑣𝑏 is provided by Kirchoff law for voltages in an electrical circuit. Lower case letters are 

used to represent dynamic variables that change with respect to time. 

In literature, the relationship between the open-circuit voltage 𝑣𝑂𝐶 and the SOC of the battery 

has been modelled with a linear relationship [120], as shown below 

𝑣𝑂𝐶(𝑡) = 𝑚 𝑆𝑂𝐶(𝑡) + 𝑏  (4.4) 

Figure 4.2-4 shows the relationship between OCV and battery capacity (or SOC). A 3.2 Ah 

li-ion battery was charged for 20 steps of 10 minutes and was allowed to rest for 60 minutes 

in between. The rest period allowed eliminating any capacitive effect and provided the true 

OCV. In Figure 4.2-4, the data points related to the charging process have been removed and 

only those associated with the rest time have been shown. The linear fit provided 𝑚 = 0.8 

and 𝑚 = 3.32. 



 

122 

 

 

Figure 4.2-4 Variation of open-circuit voltage with respect to battery capacity 

The solution of the first-order differential equation in 4.2 provides the behaviour of the 

voltage across the capacitor as  

𝑣𝑐𝑝(𝑡) = 𝑅𝑝𝐼𝑏0 − 𝑒
−𝑡+𝐾1
𝑅𝑝𝐶𝑝

 
  

(4.5) 

where, since the capacitor is initially discharged (𝑣𝑐𝑝(0) = 0), the integration constant 𝐾1 

can be determined with simple steps. 

𝑣𝑐𝑝(0) = 0 = 𝑅𝑝𝐼𝑏0 − 𝑒
𝐾1

𝑅𝑝𝐶𝑝
 
  

(4.6.a) 

ln(𝑅𝑝𝐼𝑏0) =
𝐾1

𝑅𝑝𝐶𝑝
  (4.6.b) 

𝐾1 = 𝑅𝑝𝐶𝑝 ln(𝑅𝑝𝐼𝑏0)  (4.6.c) 

𝑣𝑐𝑝(𝑡) = 𝑅𝑝𝐼𝑏0 − 𝑒
−𝑡

𝜏1
 
𝑒

𝐾1
𝜏1 = 𝑅𝑝𝐼𝑏0 − 𝑒

−
𝑡

𝜏1     𝑒
𝜏1 ln(𝑅𝑝𝐼𝑏0)

𝜏1   
(4.6.d) 
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             = 𝑅𝑝𝐼𝑏0 (1 − 𝑒
−

𝑡

𝜏1)  

 Therefore, inputting (4.4) and (4.6.d) in (4.3), the overall battery voltage can be represented 

as: 

𝑣𝑏(𝑡) = 𝑘 𝑆𝑂𝐶(𝑡) + 𝑏 + 𝑅𝑝𝐼𝑏0 (1 − 𝑒
−

𝑡

𝜏1) + 𝑅0 𝐼
𝑏0  

(4.7) 

where 𝜏1 = 𝑅𝑝𝐶𝑝 is the time constant associated with the RC pair. Since battries connected to 

the grid are controlled in terms of the power consumed/supplied, the expression of the power 

absorbed during CC mode is given by 

𝑝𝑏(𝑡) = 𝑣𝑏(𝑡) 𝐼𝑏0 = 𝑚 𝑆𝑂𝐶(𝑡) 𝐼𝑏0 + 𝑏 𝐼𝑏0 + 𝑅𝑝𝐼𝑏02
(1 − 𝑒

−
𝑡

𝜏1) + 𝑅0 𝐼
𝑏02

  
(4.8) 

As can be seen from the expression above, given a constant current supplied to the battery, 

the actual power exchanged is not constant, as the battery voltage increases. Furthermore, as 

evidenced by 4.7, the components of the ECM will also determine the magnitude and 

dynamic of the power exchanged with the battery. Consequently, any variation of the ECM 

components will also affect the overall power exchanged. Given that as the battery is utilised, 

the resistive components increase, this will ultimately result in a reduction of the power 

performance of the battery, otherwise known as power fade. 

Under CV mode, the battery is subject to a constant external voltage 𝑉𝑏0, and the current is 

progressively decreased. The overall dynamics of the battery under CV mode can be 

represented as  

�̇�𝑐𝑝(𝑡) = −𝑣𝑐𝑝(𝑡) (
1

𝑅𝑝𝐶𝑝
+

1

𝑅0𝐶𝑝
) +

1

𝑅0𝐶𝑝
(𝑉𝑏0 − 𝑣𝑂𝐶(𝑡))  

(4.9) 

𝑖𝑏(𝑡) =
1

𝑅0
(𝑉𝑏0 − 𝑣𝑐𝑝(𝑡) − 𝑣𝑂𝐶(𝑡))  (4.10) 

The solution of the first order differential equation in (4.9) along with (4.10) provides the 

behaviour of the current in the battery during the CV charging process  



 

124 

 

𝑣𝑐𝑝(𝑡) =
𝐾2 𝑒

−
(𝑅0+𝑅𝑝)𝑡

𝜏1𝜏2

𝑅0+𝑅𝑝
+

𝜏1(𝑉𝑏0−𝑣𝑂𝐶(𝑡))

𝑅0+𝑅𝑝
  

(4.11) 

where 𝜏2 = 𝑅0𝐶𝑝. Since after the CC phase, 𝑣𝑐𝑝(𝑡𝑠) = 𝑅𝑝𝐼𝑏0, where 𝑡𝑠 is the time when the 

switch between CC and CV happens. Hence: 

𝐾2 = (𝑅0 + 𝑅𝑝)𝑣𝑐𝑝(𝑡𝑠) − 𝜏1(𝑉
𝑏0 − 𝑅𝑝𝐼𝑏0)  (4.12.a) 

𝑣𝑐𝑝(𝑡) =
((𝑅0+𝑅𝑝)𝑅𝑝𝐼𝑏0−𝜏1(𝑉𝑏0−𝑅𝑝𝐼𝑏0)) 𝑒

−
(𝑅0+𝑅𝑝)𝑡

𝜏1𝜏2

𝑅0+𝑅𝑝
+

𝜏1(𝑉𝑏0−𝑣𝑂𝐶(𝑡))

𝑅0+𝑅𝑝
  

(4.12.b) 

𝑖𝑏(𝑡) =
1

𝑅0

(

 𝑉𝑏0 −
((𝑅0+𝑅𝑝)𝑅𝑝𝐼𝑏0−𝜏1(𝑉𝑏0−𝑅𝑝𝐼𝑏0)) 𝑒

−
(𝑅0+𝑅𝑝)𝑡

𝜏1𝜏2

𝑅0+𝑅𝑝
+

𝜏1(𝑉𝑏0−𝑣𝑂𝐶(𝑡))

𝑅0+𝑅𝑝
− 𝑣𝑂𝐶(𝑡)

)

                                                                                          

(4.12.c) 

From the above expression, the power exchanged with the battery during the CV mode can be 

determined by  

𝑝𝑏(𝑡) = 𝑉𝑏0𝑖𝑏(𝑡) =
1

𝑅0

(

 𝑉𝑏02
−

𝑉𝑏0 ((𝑅0+𝑅𝑝)𝑅𝑝𝐼𝑏0−𝜏1(𝑉𝑏0−𝑅𝑝𝐼𝑏0)) 𝑒
−

(𝑅0+𝑅𝑝)𝑡

𝜏1𝜏2

𝑅0+𝑅𝑝
+

𝑉𝑏0 𝜏1(𝑉𝑏0−𝑣𝑂𝐶(𝑡))

𝑅0+𝑅𝑝
− 𝑉𝑏0𝑣𝑂𝐶(𝑡)

)

   

                                                                                                                                        (4.13) 

 

From the mathematical formulation presented thus far, it can be concluded that the overall 

power exchanged with the battery can be modelled as a expressed hereby:  

𝑝𝑏(𝑡) = {
𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (4.8) 𝑖𝑓 𝑣𝑏(𝑡) < �̅�𝑏 

𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (4.13) 𝑖𝑓 𝑣𝑏(𝑡) = �̅�𝑏   
(4.14) 

The output of the model is presented in Figure 4.2-5, where the behaviours of the battery 

voltage, current and SOC are depicted. One charging session, including CC at 1.3A and CV 

phases, is presented. 
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Figure 4.2-5 Output of the ECM model 

It can be seen from Figure 4.2-5, that the battery is not fully charged at the end of the CV 

mode, as the SOC reaches only 80%. This is because, since the current is exponentially 

reduced, significant time will be required to fully charge the battery. Hence, a cut-off current 

of 0.01 A is utilised to end the CV phase. 

4.2.1 Development of a self-adaptive ECM model 

Based on the analysis carried out in this Section, a self-adaptive ECM model is developed, 

which will track any variation of the battery internal parameters due to degradation. Figure 

4.2-6 presents the measurement of internal resistance for a battery with 2.6 Ah, that was 

cycled at 0.5C (i.e. 1.3 A) and 80% depth of discharge (DOD) at a constant ambient 

temperature of 25 °C (by means of an environmental chamber). This data was received from 

previous experiments [P7].The battery was cycled for 890 cycles, comprising of charging and 

discharging and the measurement is automatically carried out by the Arbin battery charger 

(which has 16 channels with a maximum current output of ±10A). 
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Figure 4.2-6 Internal resistance increase due to battery cycling 

It can be seen from Figure 4.3-7, that the internal resistance increases by a 20% compared to 

its initial value, and right before reaching 900 cycles, a sudden increase is noticed. These kind 

of variations are common in li-ion batteries, which are particularly susceptible to 

environmental conditions. Furthermore, due to the long testing duration, sometimes the 

charging equipment and the environmental chamber may need to be stopped for maintenance. 

When battery cycling was reinitiated, a variation of the impedance and capacity was noticed. 

However, the overall behaviour throughout the life of the battery shows an increasing trend, 

which should be captured for an accurate ECM model. 

Motivated by this phenomenon, a self-adaptive ECM model is proposed where the values of 

the components are adjusted based on the real measurements. As the only parameters that can 

be measured externally are the battery voltage and current, only these are inputted in the 

ECM model, and the error between the real measurement and the output of the model is 

minimised by adjusting the ECM parameters. For this purpose, only the CC phase is 

sufficient. A functional diagram of the proposed approach is presented in Figure 4.2-7, where 

𝑣𝑏 and 𝑖𝑏 are the measurements of the battery voltage and current respectively, 𝑣𝑏∗ is the 

output of the model and 𝑅0
∗ , 𝑅𝑝

∗  and 𝐶𝑝
∗ are the adjusted ECM parameters. 
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Figure 4.2-7 Functional diagram for the self-adaptive ECM model 

The ECM parameters are adjusted by minimising the error between the output of the model 

and the measured battery voltage as 

argmin
𝑅0

∗ ,𝑅𝑝
∗ ,𝐶𝑝

∗
∑ [𝑣𝑡

𝑏 − (𝑘 𝑆𝑂𝐶𝑡 + 𝑏+, 𝑅𝑝
∗ 𝑖𝑡

𝑏 (1 − 𝑒
−

𝑡

𝑅𝑝
∗  𝐶𝑝

∗
) + 𝑅0

∗ 𝑖𝑡
𝑏)]𝑇𝐶𝐶

𝑡=1

2

  
(4.15) 

where, 𝑣𝑡
𝑏 and 𝑖𝑡

𝑏 are the battery voltage and current measured at time step 𝑡 and 𝑇𝐶𝐶 is the 

number of time steps that determine the duration of the CC phase. It should be noted that, as 

the battery degrades 𝑇𝐶𝐶 will reduce since due to the resistance increase, the voltage of the 

battery reaches its maximum value sooner than when the battery is new. Figure 4.2-8 shows a 

comparison between the output of the adaptive model and the real voltage measurement for 

one period of CC charging, and Table 4.2-1 provides the fitted ECM parameters with the 

associated fitting error. This method was implemented for all the cycles in the life of the 

battery presented in Figure 4.2-6, and the results are shown in Figure 4.2-9. It can be seen 

from the results that the resistive factors, namely 𝑅0 and 𝑅𝑝, increase as the battery is utilised, 

in line with the measurements presented in Figure 4.2-6. The value of the capacitance 𝐶𝑝 

however, seems unchanged with the utilisation of the battery. This implies that, as the battery 

is utilised, for the same current  𝑖𝑏, the voltage drops 𝑅0 𝑖
𝑏 and 𝑅𝑝 𝑖𝑏 will increase, reducing 

the duration of the CC phase since the maximum voltage is reached earlier. Consequently, the 

CV phase will last longer, but as concurrently, the battery capacity is also fading (as will be 

shown in the next Section), the overall performance of the battery is reduced. Similarly, by 

referring to equation 4.7, for the same power provided to the overall battery, as 𝑅0 and 𝑅𝑝 
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increase, the actual power that increment the SOC, namely  (𝑚 𝑆𝑂𝐶(𝑡) + 𝑏) 𝑖𝑏, decreases, 

because the two loss terms, i.e. 𝑅0 𝑖
𝑏2

 and 𝑅𝑝 𝑖𝑏
2
 increase. 

 

Figure 4.2-8 Adaptive ECM model output against real voltage measurement 

Table 4.2-1 ECM parameters for one period of CC charging 

𝑅0 𝑅𝑝 𝐶𝑝 Error 

60 mΩ 59 mΩ 0.196 F 0.133% 

 

Figure 4.2-9 Fitted ECM parameter increase throughout the life of a battery 
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4.3 Development of a dynamic empirical capacity fade model for 

Lithium-Ion batteries 

In this Section, a dynamic capacity fade model is developed from cycling tests performed on 

LFP and and other lithium-ion batteries. As discussed in the introduction, this approach has 

been adopted by the likes of [111] and [14], and their research groups which are among the 

most prominent scholars in this field. The reason for the selection of this method must lie in 

the flexibility of this modelling approach, that is not limited by the nature of the chemical 

reactions, which may or may not manifest in the battery under testing (see Ouyang et al. 

[106]), but connects with the external parameters that are always measurable in any 

charging/discharging cycle. Furthermore, the inherent constitutional diversity among 

different lithium-ion chemistries is addressed with an adaptive fitting approach, which makes 

use of real-life utilisation measurements to fine-tune the model. The present research builds 

upon and extends the work carried out in [121] as it provided a suitable base for the 

development of a dynamic battery degradation model. The contribution of presented in this 

thesis are: 

- improvements of the cycling degradation model by adding average SOC as an 

impacting parameter and additional testing on automotive batteries; 

- validation of the model based on historical data; 

- development of an adaptive degradation model using operational data. 

In [121], both calendar and cycling tests were conducted on a variety of lithium-ion batteries 

including LFP and lithium polymer. In agreement with the current literature, they found that: 

▪ Under storage conditions, temperature and storage SOC influence calendar 

degradation; the interaction of these two parameters are multiplicative in the sense 

that they augment each other. 

▪ Under cycling conditions, C-rate, temperature and average SOC have the most 

impact; the authors did not find any clear dependence upon DOD. 
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In a similar direction, the present work proposes a calendar-cycling model based on the 

following assumptions, which follow from the knowledge of current literature and 

experimental tests: 

▪ Under storage conditions (i.e. |𝑖| = 0), calendar degradation occurs, and ambient 

temperature and storage SOC are the impacting factors. This type of capacity 

degradation is quantified in the unit of time, i.e. 𝑠,𝑚𝑖𝑛 or ℎ. 

▪ When cycling (i.e. |𝑖| ≠ 0), C-rate, cell temperature and average cycling SOC are the 

impacting factor. Cycling degradation is quantified in the units of energy throughput, 

i.e. 𝑊ℎ or 𝑘𝑊ℎ. Time related degradation, i.e. calendar effect, still occurs but the 

cycling effect is dominant and overshadows the calendar effect. This assumption is 

reasonable and in line with previous works [14] [111] considering that the two forms 

of degradation manifest at different scales, i.e. calendar ageing in time and cycling 

ageing in throughput, and that calendar ageing occurs across long time-scales, e.g. 

weeks, months or years, while cycling is performed at least on a daily basis. 

▪ Optimisation processed cannot influence ambient temperature (discussed below). 

average SOC is changed and its impact is considered in the cycling degradation 

model. 

▪ A thermal model that represents the impact of a charging/discharging current on the 

cell temperature is not considered, as below 1C current, the temperature increase is 

negligible. 

In accordance with [121], which shows that for slow charging rates the increase in 

temperature is negligible, a simple thermal model is considered in equation 

𝑄 = 𝑅 𝐼2 = 𝐶𝐻  ∆𝑇 →  ∆𝑇 =  
𝑅 𝐼2

𝐶𝐻
  (4.16) 

where 𝑄 is the heat exchange, 𝑅 is the battery internal resistance, 𝐼 is the 

charging/discharging current, 𝐶𝐻 is the heat capacity of the cell and ∆𝑇 is the temperature 

variation caused by the current. The internal resistance of a Nissan Leaf cell has been 

measured as 6 mΩ. As it has been shown in Section 4.2, this resistance increases as the 
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battery degrades, hence the impact of the current will increase. However, the measured 

resistance increase is only 20%, therefore the conclusions reached here are still applicable 

when the battery reaches end of life. The specific heat capacity of the cell is considered as 

795 
𝐽

𝑘𝑔 𝐾
 [122] and the mass of a cell is 0.914 kg [123]. The corresponding heat capacity of a 

cell results 727 
𝐽

𝐾
. By supplying the battery with a 3 kW charger, the 360 V battery pack is 

subject to 8.3 A, while the cell takes 4.16 A.  

∆𝑇 =  
6×10−3 4.162 3600

727
= 0.51 

°C

ℎ
  (4.17) 

Based on the above assumptions, the capacity fade model is developed. As calendar effects 

due manifest across long time, these tests are often time consuming. Considering that these 

will not affect the optimisation process, the proposed model is fitted with the information 

provided in [14]. In agreement with [105], [111], [121] and [14] calendar degradation has 

been defined in the following equations  

𝐶(𝑡) =  𝐶𝑜 − 𝛼𝑠𝑡0.5  (4.18) 

𝛼𝑠 = 𝑓(𝑇𝑎𝑚𝑏 , 𝑆𝑂𝐶𝑠) = (휁1𝑒
(𝜃2 𝑇𝑎𝑚𝑏) + 휁2 𝑒(−𝜃4 𝑇𝑎𝑚𝑏)) (휁3 𝑆𝑂𝐶𝑠 + 휁4)  (4.19) 

where 𝐶(𝑡) is the battery capacity at any time 𝑡 > 0, 𝛼𝑠 is the storage degradation coefficient 

and the relationship with time is defined with an exponent 0.5 [14] [111]. From the 

considerations above, the storage degradation coefficient depends on the ambient temperature 

𝑇𝑎𝑚𝑏 and the storage SOC, 𝑆𝑂𝐶𝑠; here a similar relationship as the Arrhenius law has been 

used with two exponentials, aimed at capturing the impact of both high and low storage 

temperatures. The multiplication between the two terms ensures that the combinations of 

temperature and SOC causes degradation. It follows that, with one parameter kept constant, 

increase along the other parameter will inevitably lead to higher degradation. In addition, the 

highest degradation can be seen at both high storage temperature and SOC. These 

considerations can be ascertained in  Figure 4.3-1, where at constant 𝑇𝑎𝑚𝑏, calendar 

degradation increases linearly with 𝑆𝑂𝐶𝑠, while at constant SOC, the exponential term is 

noticeable.  
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Figure 4.3-1 Storage degradation coefficient as a function of temperature and SOC 

The square root of the battery calendar age is used because it has been observed that when the 

battery is new, depending on the storage conditions, the battery degrades faster and after 

some time, this effect is less pronounced.  

As evidenced by the survey of the available literature on battery degradation modelling, a 

dynamic model that accounts for a distribution of the impacting factor is seldom considered. 

In the majority of the cases, accelerated testing serve to fit the model but the authors do not 

elaborate on the necessary steps to extend the model to an equivalent dynamic one. In the 

present work, the above a dynamic battery model is developed with a simple memory based 

multi-path (MMP) approach. A simple example is provided here to clarify this approach. 

Let us consider three possible battery storage states S𝑠
as below 

S𝑛
𝑠

= (
𝑇𝑛

𝑎𝑚𝑏

𝑆𝑂𝐶𝑛
𝑠) = {(

22
0.49

) , (
16

0.01
) , (

16
0.19

)}  
(4.20) 
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As depicted by Figure 4.3-2, at each of these storage conditions, corresponds an equivalent 

accelerated degradation curve of the type specified by 4.18. 

 

Figure 4.3-2 Equivalent accelerated battery degradation curves for different storage states 

Each of these curves indicate capacity fade due to storage and the severity of degradation is 

decided by the storage coefficient, which in turn depends on three battery states. Assuming 

that the battery is stored at these three different states in the three consecutive days (one day 

is chosen as an adequate unit of time for calendar degradation, which manifests over weeks, 

months and years) then equivalently, the degradation path will be sequentially defined by the 

blue curve, than red and finally yellow. The battery will be one day at the blue curve (at state 

1) and will be subject to certain degradation dictated by the associated curve, where 𝐶1
𝑠 is the 

capacity of the battery after day 1 (stored in the memory). After the first day, the storage state 

has changed, and now the capacity point is projected onto the red curve which is the relevant 

one for the day and an equivalent point 𝐶1
𝑠,𝑒

 is obtained; the battery will then be on the red 

curve for one day and will degrade according to that curve; from𝐶1
𝑠, the next capacity point 

will be 𝐶2
𝑠 (stored in the memory) and the process will continue for the next storage stages. 
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The method proposed in this research is aligned with what was discussed in [124]. The 

simple pseudo-code for the MMP approach is presented hereby. 

MMP dynamic algorithm 

 Input: Battery initial capacity 𝐶0
𝑠 and the set of daily storage states S

𝑠
= {S1

𝑠
,S2

𝑠
, … , S𝑛

𝑠
}    

1: for 𝑖 ← 1 to (𝑛) do 

2:      Calculate daily capacity from (4.18) and (4.19) with 𝐶𝑜 = 𝐶𝑖−1
𝑠 , 𝑡 = 𝑖 and S𝑖

𝑠 

3:      Update memory with current capacity 𝐶𝑖
𝑠 

4: end for 

Under the present work, cycling degradation can be controlled with optimisation techniques, 

and an accurate model can ensure improvements in battery life from V2G services. Following 

from the assumptions outlined at the beginning of the current Section, when the battery is 

utilised, cycling degradation is dominant, with calendar degradation being prominent 

otherwise as shown in , Figure 4.3-3, which shows a typical EV battery utilisation pattern. 

 

Figure 4.3-3 Example of a daily EV battery utilisation pattern 
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In agreement with current literature [105], [111], [118], capacity fade due to cycling 

degradation can be represented as  

𝐶(𝑊ℎ) =  𝐶𝑜 − 𝛼𝑐𝑊ℎ  (4.21) 

𝛼𝑐 = 𝑓(𝑇𝑏 , 〈𝑆𝑂𝐶〉, 𝐶𝑟) = 𝛾1 (𝛾2𝑇
𝑏3

+ 𝛾3𝑇
𝑏2

+ 𝛾4𝑇
𝑏 + 𝛾5) ×  

                                             ×  (𝛾6〈𝑆𝑂𝐶〉 + 𝛾7) × (𝛾8𝐶
𝑟 + 𝛾9)  

(4.22) 

where, 𝑊ℎ is the energy throughput, 𝛼𝑐 is the cycling degradation coefficient which depends 

on the battery temperature 𝑇𝑏, average SOC 〈𝑆𝑂𝐶〉, and the charging/discharging rate 𝐶𝑟 . 

Few points to be noted are that the effect of charging and discharging has been considered the 

same, as in [110] and DOD has not been considered as an impacting factor as evidenced by 

[121], thus all the cells have been cycled at the same DOD. A series of cycling tests have 

been conducted on two different batteries as detailed in Table 4.3-1. 

Table 4.3-1 Battery type and specifications 

Cell Type Chemistry Specifications 

Type A Commercial Panasonic 18650B 

Lithium-ion  

Maximum voltage: 4.2 V 

Minimum voltage: 3 V 

Capacity: 3.2 Ah 

Type B Automotive LFP Maximum voltage: 4.2 V 

Minimum voltage: 3.2 V 

Capacity: 33 Ah 

Other equipment 

Battery charger 1 Arbin, 16 channels, maximum ±10 A, maximum voltage 10 V 

Battery charger 2 Neware, 2 channels, maximum ±300 A, maximum voltage 10 V 

Temperature 

chamber 

CM, testing temperature 25̊ 

The testing conditions for the two battery types are presented in Table 4.3-2. 
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Table 4.3-2 Battery testing conditions 

Cell Type Battery temperature Average SOC C-rate 

Type A 25 °C 

40 °C 

0.3 0.3C 

0.7 1.2C 

Type B 25 °C 0.5 

 

0.1C 

0.3C 

1C 

It should be noted that the information regarding the chemistry of battery A was not 

available. The test setting has been set taking into account a number of factors: 

1) Limited availability of automotive cells, which were physically inseparable from one 

another. This implies that they were always subject to the same environmental conditions, 

i.e. temperature.  

2) Limited number of 18650 cells, which limited the number of test that could be performed, 

also to account for the diverse performance among the cells in a batch. 

3) Failure of some cells, which again limited the number of available cells (hence tests) and 

lengthened the testing period. 

The testing equipment is shown in Figure 4.3-4, where the software, the two types of batteries 

and two battery charger and the environmental chamber are shown.  

The results from the cycling tests for type A cells are shown in Figure 4.3-5. The data on the 

experiments on cell A and B is the result of extensive testing carried out throughout this 

research. To ensure good readability of the results a specific colour, line-type and marker 

scheme has been used: 

− The difference in temperature is indicated by the solid (25 °C) and dashed (40 °C) lines; 

− The difference in average SOC is indicated by the circle (35%) and asterisk (70%) 

markers; 

− The difference in C-rate is indicated by the black (0.3C) and red (1.2C) colours. 
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Figure 4.3-4 Experimental setup for battery testing: (a) environmental chamber, (b) Neware charger, (c) Arbin 

charger, (d) battery typed B, (e) battery type A, (f) sample of cycling data and (g) testing software 
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Figure 4.3-5 Cycling degradation tests for type A cells 

The results exhibit the following trends: 

▪ By comparing the solid lines with the dashed ones, the effect of the temperature can be 

seen; in all the four cases, the relative capacity given by the dashed line, representing the 

tests performed at 40 °C, are for the majority of the time lower than their solid 

counterparts, representing the corresponding tests performed at 25 °C. This indicates that 

increased temperatures negatively affect battery cycle life. 

▪ By comparing the two solid black lines and two solid red lines in pairs, the impact of 

average SOC can be seen; for these pairs, the only variant is the average SOC, and the first 

pair does not exhibit significant difference, whereas the difference in battery life is evident 

in the second pair. This is because, the impact of average SOC on battery life is 

augmented by the combination with the other parameters; in fact, in the second pair, the C-

rate is 1.2C, which increases the negative impact of average SOC. This is further 

evidenced by the corresponding dashed lines, which indicate a higher temperature of 40 
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°C. In fact, the difference between the two red dashed lines and the two black ones is 

evident: the circle markers are always above the corresponding asterisk markers. Again, 

this is due to the amplification effect that the temperature has on the negative impact of 

average SOC. 

▪ The impact of charging rate is not significant in the type B cells as when the black lines 

are compared with the corresponding red lines, their difference does not follow any 

pattern. 

Figure 4.3-6 shows the results of the tests performed on type B batteries for different charging 

rates. 

 

Figure 4.3-6 Cycling degradation tests for type B cells at different charging rates 

In this second case, there is a significant difference between the cell cycled at 0.3C and the 

one at 1C, however, an abnormal behaviour is shown by the cell cycled at 0.1C. In fact, this 

particular cell degraded faster than even the cell cycled at 1C. The reason for this must lie on 

the initial conditions of these cells. The automotive cells have higher capacity compared to 

the 18650 cells, hence they require high current. Due to the number of channels of the 
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Neware high current cycling machine being limited to two, only the first and the second cells 

(1C and 0.3C) were cycled with that machine. Cell three was cycled with an Arbin machine 

with a lower rating but the results were not satisfactory. Hence, once the first cell (at 1C) 

reached end of life, the spare channel was then assigned to the third cell. Meanwhile since the 

third cell could not be separated from the rest, it was subject to some calendar degradation. 

Therefore, when the tests were finally restarted, the performance of the cell degraded. 

Evidence of this can be seen in Figure 4.3-7, where the internal resistance of the three cells 

are presented. 

 

Figure 4.3-7 Internal resistance for the three type B cells 

 As can be seen from above, the internal resistance of cell three is consistently higher than all 

the other cells and an abnormal trend is seen. A plausible explanation is provided: the 

automotive cells come in a module of four cells sticked together. The cells were not 

separated, to avoid accidental damage. Hence, all the cells were subject to the same 

temperature. In addition, cell 3 was cycled with an Arbin machine with limited current output 

per channel (max 10 A), which was not able to handle such large cells; hence several 
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channels broke down, leading to erratic cycling results. In order to be able to cycle cell 3 

properly, we waited until cell 1 reached end of life and only then cycled cell 3 with the 

Neware (more powerful) machine. However, during this period cell 3 stayed at 25 °C, 

because they could not be separated from the other cells, and have suffered calendar 

degradation. This may give a plausible explanation of the erratic data. Hence, the results for 

these tests cannot be considered reliable and we only use the results of the first two cells. Due 

to the limited time available and the long time required for a full testing period required by 

such large cells, further tests could not be conducted. 

Figure 4.3-8 presents the behaviour of the cycling degradation coefficient 𝛼𝑐 defined in 

equation. The black surface represents the degradation coefficient when the batteries are 

cycled at 0.3C while the red surface provides the degradation at 1.2C. 

 

Figure 4.3-8 Behaviour of cycling degradation coefficient with respect to the impacting parameters 
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As discussed, from the figure above, the impact of temperature and average SOC is evident 

and how it is the combination of different parameters that influence degradation, while the 

cells seem unaffected by high charging rates.  

The parameters of a modified version of the model in equation 4.22 has been fitted using a 

particle swarm optimisation (PSO) approach; more details regarding the algorithm will be 

given in the next chapter. The modified model incorporates only a linear relationship of the 

degradation with respect to the parameter temperature, to truly reflect the actual setting of the 

experiment, which did not test more than two temperature conditions. 

Hence, the results of the fitting of the modified model, expressed in the following equation, 

are presented in Table 4.3-3. 

𝛼𝑐 = 𝑓(𝑇𝑏 , 〈𝑆𝑂𝐶〉, 𝐶𝑟) = 𝛾1(𝛾2𝑇
𝑏 + 𝛾3) (𝛾4〈𝑆𝑂𝐶〉 + 𝛾5)(𝛾6𝐶

𝑟 + 𝛾7)  (4.23) 

Table 4.3-3 Fitted parameters for the type A battery degradation model 

𝛾1 𝛾2 𝛾3 𝛾4 𝛾5 𝛾6 𝛾7 

−2.54 10−8 4.98 -94.33 42.02 39.26 0.27 -3.52 

As discussed before, the impact of charging rate is negligible compared to the other 

parameters (at least one order). The results of the tests performed on type B batteries have 

been fitted: as only the impact of charging rate was investigated, only the last term of 

equation 4.22 was used. The resulting model is shown in the equation below 

𝛼𝑐 = 𝑓(𝐶𝑟) = ( 13 × 𝐶𝑟 + 6.1) × 10−5  (4.24) 

As for the type B batteries other parameters were not tested, a model including the impact of 

SOC and temperature can still be attained, by scaling 4.24. As the only common charging rate 

that was tested for the two battery types is 0.3C, equation 4.24 must be scaled in a way that 

its output is unitary when the charging rate is 0.3C. Consequently, for any charging rate 

above 0.3C, the effect of this term will be that of an amplification of the effect (compared 

with the effect of 0.3C) of the other parameters, whereas if the charging rate is below 0.3C, 

the impact of the other parameters will be attenuated (compared with the effect of 0.3C). 
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Therefore, to obtain the battery degradation model for type B batteries, 4.22 and 4.23 are 

modified as 

𝛼𝑐 = −2.54 10−8 × (4.98 𝑇𝑏 − 94.33) × (42.02 𝑆𝑂𝐶̅̅ ̅̅ ̅̅ + 39.26) × (1.29 𝐶𝑟 + 0.61)  (4.25) 

It should be noted that the underlying working assumption is that the automotive battery will 

behave as same as the 18650 cell with respect to temperatures and SOC, which should be 

ensured with more tests. However, due to both time and hardware limitations, this constitutes 

a future work.  

The cycling degradation model differs from the calendar degradation model in the sense that, 

under the assumptions stated at the beginning of this chapter, cycling degradation is directly 

influenced by the operation of the battery, while calendar degradation is not. Hence, an 

economic value must be attributed to cycling degradation, as it must be compared against the 

incurred benefits from providing energy services with said battery. To this end, an approach 

similar to [9] is proposed, where the cost incurred by exchanging 1 kWh with the battery is 

expressed as  

𝑐𝑑 =
𝑐𝐵

𝐸𝐿  (4.26) 

where 𝑐𝑑 is the cost associated with the exchange of 1 kWh of energy, 𝑐𝐵 is the investment 

cost of the battery per kWh and 𝐸𝐿 is the prospective lifetime energy throughput under 

certain charging condition. The lifetime of an EV battery is often measured as the number of 

complete charging/discharging cycles before the capacity of the battery falls below 80% of its 

original value. Consequently, the lifetime energy throughput is the energy that the battery 

exchanged until it reaches end of life, as shown in Figure 4.3-9. 
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Figure 4.3-9 Graphical representation of lifetime energy throughput 

As can be seen above, a certain number of equivalent cycles can be attained before the 

battery reaches end of life (red circled), deciding the lifetime energy throughput, which is the 

area underneath the capacity degradation curve (in yellow). The lifetime energy throughput 

can be defined accordingly as  

𝐸𝐿 =  2  × 𝑛𝐸𝑂𝐿 𝐸𝐸𝑉 𝐷𝑂𝐷  (4.27) 

where 𝑛𝐸𝑂𝐿 is the number of full cycles before the battery reaches the End of automotive life 

(EOL), 𝐸𝐸𝑉 is the maximum energy of the EV battery, 𝐷𝑂𝐷 is the depth of discharge adopted 

in the tests (90%), and a cycle is defined as an equivalent charging-discharging sequence 

[hence the 2 is employed in (4.27) ]. 𝑛𝐸𝑂𝐿  can be defined as  

 𝑛𝐸𝑂𝐿  =
0.2

𝛼𝑐  (4.28) 

where 𝛼𝑐 is the cycling degradation coefficient provided by the battery degradation model.  

Finally, the overall battery degradation model was validated using real-life EV battery 

utilisation data, including temperatures, SOC and current. The associated SOH has been 

obtained as the ratio 
∆𝑆𝑂𝐶

𝐴ℎ
, which is the current throughput to change the battery SOC of 1%. 

This can be considered as an indication of SOH since when the battery degrades, less current 

will be required to change the SOC. The daily average temperatures and SOCs of the EV 

under monitoring is shown for the period May 2015-May 2016 in Figure 4.3-10. It should be 

Depends on the degradation coefficient 
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pointed out that the daily average battery temperature (measured by internal sensors) is 

represented, as ambient temperature measurements were not available. 

 

Figure 4.3-10 Average daily temperature and SOC 

Figure 4.3-11 presents the exchanged currents for the same period and minute based 

temperatures and SOC, for the calculation of cycling degradation. The reason for averaging 

temperatures and SOCs on a daily basis for calendar degradation calculation, and taking 

higher resolution data for cycling degradation lies again in the different timeframes in which 

these two phenomena manifest. Calendar degradation is a tedious process hence the chosen 

time unit is a day, while cycling degradation happens for every cycle.  
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Figure 4.3-11 Minute based current, temperatures and SOCs 

The incurred variation of SOH as a result of calendar degradation is shown in  

Figure 4.3-12 and the capacity degradation due to cycling degradation is shown in Figure 

4.3-13. 

 

Figure 4.3-12 Calendar degradation model output 
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Figure 4.3-13 Cycling degradation model output 

It could be seen that calendar degradation follows the behaviour dictated by the square root of 

time, while cycling degradation is linearly dependent to the utilisation. In fact, as in the 

period January – April 2016 the EV was used more (see the current in Figure 4.3-11), the 

battery degraded faster. Finally, Figure 4.3-14 compares the model output against SOH 

measurements from 
∆𝑆𝑂𝐶

𝐴ℎ
 variations. 

Figure 4.3-14 Comparison between measured SOH and model output 
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It could be seen that a significant variation is seen in the measured data, as the measurement 

will depend on the operating conditions at that time (temperature affects the cyclable 

capacity), but the overall trend shows a decrease. In addition, the best linear fit indicated that 

the beginning capacity was 5% higher than the nominal; hence the model output has been 

shifted upwards. A good agreement between the model output and the measured data is seen, 

especially in the period until September 2015 and from March to May 2016. 

4.3.1 Extension to a self-adaptive capacity fade model 

As discussed in the introduction of this chapter, the empirical battery degradation models 

available in current literature are primarily based on accelerated testing and seldom support 

dynamic operation of the battery. Furthermore, they are based on a few chemistries of 

lithium-ion batteries. This aspect is especially limiting since as it has been shown in the 

previous Section, different chemistries exhibit radically different behaviours (note that in the 

research, type A batteries did not show any dependency on the charging rate while in type B 

batteries, this effect was self-evident). To overcome such limitation, an ad-hoc battery model 

should be developed for each individual battery, as the chemistry, manufacturer (hence 

processes), batches and even transportation conditions are different, all influencing the 

batteries’ behaviour. It is clear that an accelerated testing framework accommodating such 

diversity is prohibitive in time and cost dimensions hence another way must be found. 

Fortunately, the EV on-board measurement systems are constantly being improved and 

concurrently, communication protocols, such as the open charge point protocol (OCPP) and 

open smart charging protocol (OSCP) are advancing at high pace [125]. These technologies 

enable real-time measurement and control ultimately improving the management of the 

valuable battery data. This operational data can be used to optimise the utilisation of the 

battery. Similarly to Section 4.2.1, an adaptive fitting model is proposed to customise the 

battery model proposed in Chapter 4.3 for any type of EV battery. The operating principles 

for a self-adaptive battery degradation model is hereby described. 

− The proposed model makes use of temperature, current and capacity measurements 

M𝑖 = {𝑻𝑖
𝑏 , 𝑰𝑖, 𝑆𝑂𝐻𝑖} to fit a capacity fade model in an automated manner (note: the bold 
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letters indicate that these are measurement vectors; average SOC can be measured from 

the current). 

− As capacity measurements require one full charge-discharge cycle of the battery, and this 

cannot be performed daily (the EV will be charged fully only when the user needs to 

travel; as per chapter 3.2 daily driven mileage in the UK can be satisfied by a fraction of 

the total EV battery capacity, hence the EV will not be fully charged on a daily basis), a 

periodic adjustment cycle (to adjust the model), is programmed. 

− After each adjustment cycle, the model is fitted with the whole set of measurements 

available at the time. 

− The previous model parameters are taken as initial values to fit the model by minimising 

the error expressed in the following equation 

argmin
𝛾1,…,𝛾7

∑ [𝑆𝑂𝐻𝑖 − [𝛾1(𝛾2𝑻𝑖
𝑏 + 𝛾3) (𝛾4〈𝑺𝑶𝑪〉𝑖 + 𝛾5)(𝛾6𝑰𝑖 + 𝛾7)]]

𝑛
𝑖=1

2

  
(4.29) 

The algorithm for a self-adaptive capacity model is hereby presented, where a PSO 

optimisation algorithm has been used to minimise the fitting error. 

Self-adaptive capacity fade model 

 Input: Set of measurements M1,𝑛 until current adjustment cycle 𝑛, current model γ
𝑛−1

=

{𝛾1, … , 𝛾7} 

1: for 𝑖 ← 1 to (𝑛) do 

2:        Fit the model by minimising 4.26 with initial values γ
𝑛−1

 

3: end for 

 

The model has been tested with the real-life utilisation data for the period May 2015 – May 

2016: a full year has been divided in 18 Sections, each including one adjustment cycle (it 

means that the SOH is known only in these 18 time points). Once the model was fitted in a 

certain adjustment cycle, it was then used to predict the capacity fade for the rest of the year 

and the error is presented in Figure 4.3-15.  
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Figure 4.3-15 Prediction error of the self-adaptive capacity fade model 

4.4 Conclusions 

In this chapter, a framework for modelling EV battery degradation has been presented. There 

are several chemical processes that cause battery degradation and the most rigorous approach 

is to model these reactions. However, as it has been discussed, such approach is not suitable 

for models that will have to be considered in an optimisation process. The main reason is that 

these models only predict battery degradation, but the latter is not linked to the operational 

parameters, such as voltage, currents and temperature. Hence, empirical models are more 

suitable for developing an optimisation-friendly degradation model. First, a one-time-

constant ECM model has been developed, in order to control the power exchanged with the 

battery. The model has been extended in its adaptive form, by utilising operational data. 

Then, an empirical capacity fade model has been developed based on accelerated degradation 

tests. Two types of batteries, automotive and commercial 18650, have been tested and they 

have shown different behaviour with respect to the impacting parameters. In particular, the 
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18650 batteries were insensitive to different charging rates while the automotive cells showed 

some dependency. Once the models were adjusted, they have been validated using real-life 

EV battery utilisation data and the model showed good agreement with measurements. As in 

real-life a large range of batteries will be employed for transportation, an adaptive capacity 

fade model, based on periodic fitting, was proposed, and it is seen that after 160 days the 

model can predict battery degradation efficiently. This is due to the dynamic nature of EV 

utilisation and variable seasonal conditions, where for instance, some temperatures may not 

be reached at some time of the year, hence the model will not know how the battery could 

behave in those situations. Overall, lithium-ion battery degradation is a complex process that 

is highly dependent on a multitude of factors, i.e. battery type, manufacturing method, 

operating conditions etc. and it is non-linear. As it will be seen in the next chapter, this will 

decide the algorithms that can be employed for a multi-objective optimisation framework that 

also accounts for battery degradation.  
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Chapter 5 Development of an optimisation 

framework for smart EV charging scheduling 

5.1 Introduction 

In this chapter, the main principle for mathematical/numerical optimisation are provided. The 

past two chapters have been dedicated to the development of mathematical models that 

describe physical systems. The adopted formulation allows an automatic controller/decision 

maker to govern the physical system by controlling the variables that have been defined. For 

instance, one of the most widely implemented optimisation is that of the energy cost of an 

archetype (household, commercial building etc.), which can be controlled by manipulating 

the power/energy exchanges between the said archetype and the local electricity grid based 

on a price function. As will be shown in this chapter, the aim is to find the values of the 

governing variables that minimise or maximise certain functions. Set as the main aim of this 

research, multi-objective optimisation will deal with the simultaneous 

minimisation/maximisation of a set of functions, which will result, in some cases, in 

conflicts. The key contribution of this work is to propose an optimisation framework that 

deals with multiple objectives, highlights their inherent conflictual interrelationships and 

introduces a Pareto based approach to provide a range of optimal solutions. Subsequently, a 

decisional framework is proposed, based on MCDM rules, where the involved decision 

makers are engaged in showing their preference. As will be discussed, multi-objective-

optimisation (MOO) applied to EV charging scheduling is still an emerging research area and 

rules for the real-life implementation of such framework are yet to be defined. Therefore, we 

believe the contribution to knowledge that this work brings is to pave the way for future 
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implementation of MOO for EV charging. In this chapter, a generic optimisation framework 

for single objective is first defined along with basic definitions regarding mathematical 

optimisation. Then MOO is formally introduced along with suitable MCDM rules. 

5.2 Single-objective optimisation 

In this section, basic definitions required for mathematical/numerical optimisation are 

provided, along with algorithms for non-linear optimisation. The reason for such 

classification is simple: the majority of the mathematical models defined in Chapter 3 and 4 

are non-linear. As will be shown, this decision adds considerable complexity in the 

optimisation algorithms adopted in this research, which is directly translated into 

computational time. If linear programming approaches could be adopted, the computational 

effort may be drastically reduced. Another aspect afflicting non-linear optimisation is the 

scale issue: due to the complexity associated with non-linearity, the available algorithms are 

sensitive to the scale of the problem in terms of number of variables and constraints. These 

types of problems do not scale well with increasing number of decision makers/agents as 

computational time is at the very least directly proportional (as will be seen in MOO 

quadratic) to this number. Therefore, whenever possible, linearization techniques should be 

adopted to simplify the nature of the problem. However, as the aim of this research is to 

provide an operational optimisation framework, linearization techniques are beyond the set 

scope, hence they constitute a relevant but future work. In addition, the work conducted in 

this research is on deterministic optimisation, hence stochastic processes and robust 

optimisation are not within the scope of this research. The definition of a mathematical 

optimisation problem can be found in appendix A2. 

5.2.1 Solution of a mathematical optimisation problem 

Given a generic non-linear optimisation problem 

min
𝑥∈ℝ𝑛

𝑓(𝑥)  s.t. (5.1.a) 
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ℎ𝑘(𝑥) = 0,𝑘 = 1,2,… , 𝑝  (5.1.b) 

𝑔𝑗
(𝑥) ≥ 𝑏𝑗, 𝑗 = 𝑝 + 1,… ,𝑚  (5.1.c) 

where 5.1.b and 5.1.c are the equality and inequality constraints, respectively. The above 

optimisation problem can also be transformed in standard form by considering slack 

variables: 𝑔𝑗
(𝑥) − 𝑠𝑗 ≥ 𝑏𝑗 and 𝑠𝑗 ≥ 0 (now the vector 𝑥 will also include the 𝑠𝑗). 

min
𝑥∈ℝ𝑛

𝑓(𝑥)  s.t. (5.2.a) 

𝑐𝑖(𝑥) = 𝑏𝑖, 𝑖 = 1,2,… ,𝑚  (5.2.b) 

𝑥 ≥ 0  (5.2.c) 

In this research, the interior point algorithm (IP) is implemented for the non-linear convex 

optimisation problems as it is an efficient and widely adopted method [127]. Under this 

approach, a class of penalty function methods are then used which transform the constrained 

convex optimisation problem in a sequence of unconstrained minimisation problems. There 

are two classes: exterior point penalty and interior point penalty. The former calculates 

iteratively a series of infeasible points and reaches an end when it generates a feasible point. 

The latter, generates a series of feasible points, which are then converted in optimal descent 

points. As an example, let us consider  

𝑐𝑖(𝑥) = 0  (5.2.d) 

If a solution 𝑥1 ∈ ℝ𝑛
 is infeasible, that is 𝑐𝑖(𝑥1) ≠ 0 at least for one 𝑖, then there is the 

incurrence of a penalty in the form µ𝑖𝑐𝑖
2(𝑥1), where µ𝑖 ≥ 0. 

There are other more suitable penalty functions that can be utilised, normally called barrier 

functions of the following form: 

i) Inverse barrier function 

𝛽𝑖 = −
1

𝑐𝑖(𝑥)
  (5.3) 

ii) Logarithmic barrier function   
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𝛽𝑖 = log[𝑐𝑖(𝑥)]  (5.4) 

Consequently, the minimisation problem defined in (5.2) is transformed in a new augmented 

version defined in (5.5). The aim is to obtain the optimal solution as the penalty terms 

become nil: → 0 ⇒ 𝑥𝑘
∗ → 𝑥∗, where 𝑘 is the number of iterations. 

min
𝑥∈ℝ𝑛 

𝑓(𝑥) +∑ µ𝑖𝛽𝑖 
𝑚
𝑖=1   (5.5) 

The above optimisation problem is solved by defining a Lagrangian function and a system of 

equations that satisfies the Karush-Kuhn Tucker (KKT) optimality conditions [128] as 

defined by the following equations.  

𝑐𝑖(𝒙
∗) − 𝑏𝑖 = 0 , ∀𝑖   (5.6) 

∇𝒇(𝒙∗) − ∑ 𝜆𝑖
∗ ∇𝑐𝑖(𝒙

∗)𝑚
𝑖=1 − 𝜇𝑖 ∑

1

𝑥𝑖

𝑚
𝑖=1 = 0  (5.7) 

𝜆𝑖
∗
(𝑐𝑖(𝒙

∗) − 𝑏𝑖) = 0,∀𝑖   (5.8) 

𝜆𝑖
∗ ≥ 0,∀𝑖  (5.9) 

Where (5.6) is the feasibility condition, (5.7) is the optimality condition, (5.8) represents the 

complementarity slackness (only if there are inequality constraints) consideration:= and (5.9) 

impose positive Lagrange multipliers. 

The method for solving the system of non-linear equations may be the Newton-Raphson 

method presented in Chapter 3, which is not repeated here. The algorithm for IP is outlined in 

the Appendix A3 Algorithms for mathematical optimisation  

The above single-objective optimisation method was applied in [P2] for an optimal stationary 

energy storage and EV charging scheduling, with the latter including battery degradation. As 

it was previously hinted, the computational burden of such solution algorithm lies in the 

iterative process. This is because, the optimal solution is iteratively approximated since the 

system of equations is non-linear. 

As some objective functions may be not convex (concave), for them, the IP algorithm will 

only find local minima (maxima). In the recent decades a class of algorithms has overcome 
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this limitation, as they do not require any gradient calculations, hence are not trapped in local 

minima.  

5.2.1.1 Metaheuristic algorithms - particle swarm optimisation 

Metaheuristic algorithms make use of population behaviour to search the global optimum 

point in the feasible region. Among metaheuristic algorithms evolutionary algorithms and 

swarm-based algorithms are among the most popular and have been adopted in a wide variety 

of applications, including MOO. Evolutionary algorithms are inspired by the Darwin’s theory 

of survival of the fittest, where only the strongest genes in a population can reproduce. On the 

other hand, swarm based methods make use of a population that moves in the feasible space 

searching for the optimum point and the direction of the swarm members is updated 

according to the best candidate solution. Due to the intuitivity and flexibility of the latter, 

particle swarm optimisation (PSO) has been adopted in this research for the minimisation 

(maximisation) of convex (concave) functions [129]. Given the optimisation problem:  

min
𝑥∈ℝ𝑛

𝑓(𝑥)  s.t. (5.10.a) 

ℎ𝑘(𝑥) = 0,𝑘 = 1,2,… , 𝑝  (5.10.b) 

𝑔𝑗
(𝑥) ≥ 𝑏𝑗, 𝑗 = 𝑝 + 1,… ,𝑚  (5.10.c) 

where The PSO algorithm is generally based upon few iterative steps as listed below: 

− Generation of a random population of candidate solutions, within the feasible region, 

P𝑝 = {𝑥 ∈ ℝ𝑛|ℎ(𝑥) = 0⋂𝑔(𝑥) ≥ 0}, where 𝑝 is the number of particles.  

− Evaluation of a fitness (objective) function on the population 𝑓(P𝑝) 

− Find the best member (solution) for the swarm 𝑔𝑑,𝑘 and the personal best position for each 

particle in all the iterations thus far, 𝑝𝑖,𝑑,𝑘, where 𝑖 is the index of the particle, 𝑑 indicates 

the dimension and 𝑘 is the iteration step. 

− Define velocities of the members based on the following equation 
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𝑣𝑖,𝑑,𝑘+1 = 𝜔 𝑣𝑖,𝑑,𝑘 + 𝜑𝑝,𝑘 𝜉𝑝(𝑝𝑖,𝑑,𝑘 − 𝑥𝑖,𝑑,𝑘) + 𝜑𝑔,𝑘 𝜉𝑔(𝑔𝑑,𝑘 − 𝑥𝑖,𝑑,𝑘)  (5.11) 

where, 𝜑𝑝,𝑘 and 𝜑𝑔,𝑘 are the damping coefficients for the personal best and global best 

directions, respectively, and 𝜉𝑝 and 𝜉𝑔 are randomly generated numbers, with 

𝜉𝑝, 𝜉𝑔~𝑈(0,1). 

− Update the positions of the members as defined by the expression below 

𝑥𝑖,𝑑,𝑘+1 = 𝑥𝑖,𝑑,𝑘 + 𝑣𝑖,𝑑,𝑘+1 (5.12) 

− Check convergence criteria; if met, finish, otherwise repeat from the second step. 

It should be noted that the above description accounts for the constraints only at the first step, 

while in the latter computations, only optimality is checked. To this end, the original 

objective function can be updated with the already discussed barrier functions that penalise 

violations of the constraints and ensures convergence to an optimal and feasible point. Based 

on the above description, the steps for implementing PSO is presented in Appendix A3 

Algorithms for mathematical optimisation. 

5.3 Multi-objective optimisation 

The previous section was dedicated to the solution of single objective optimisation problems, 

where a decision variable is controlled in order to minimise (maximise) one objective 

function. However, societies of individuals in real-life, i.e. electricity user, EV user, DSO 

etc., generally pursue several objectives at the same time. When these objectives are 

equivalent, or in other terms, optimisation of one objective provides also the optimum point 

of the other objectives, then a single-objective optimisation is sufficient. On the other hand, 

when conflicts arise from two or more objectives, then MOO is the only rigorous method to 

find the multiple optimum solutions of the problem. We illustrate the conflict between two 

objectives with the aid of Figure 5.3-1. 
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Figure 5.3-1 Conflicts between two objective functions 

In the figure above, two objective functions are represented, namely:  

𝑓1(𝑥) = 𝑥 + 1, 𝑥 ∈ [−1,1]  (5.13) 

𝑓2(𝑥) = 𝑥2, 𝑥 ∈ [−1,1]  (5.14) 

The feasible region is limited by the shaded area. As can be seen, the two functions attain 

their minimum values for two different values of x: 

argmin
𝑥∈[−1,1]

𝑓1(𝑥) = −1    (5.15) 

argmin
𝑥∈[−1,1]

𝑓2(𝑥) = 0    (5.16) 

In fact, if 𝑥 = −1, 𝑓1 finds its minimum value in the feasible region, but 𝑓2 is at its maximum 

value. Conversely, if 𝑥 = 0, 𝑓2 achieves its minimum value while 𝑓1 does not (but it is not at 

its maximum value). A trade-off between these two conflicting objective functions is seen: 

improvements along one objective lead inevitably to a worse performance along the other 

objective. This trade-off is often represented by a Pareto frontier, named after the economist 
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Vilfredo Pareto who first proposed it. An example of the convex Pareto frontier for the above 

two functions is shown in Figure 5.3-2. 

 

Figure 5.3-2 Convex Pareto frontier for two objectives 

As already discussed, as 𝑓1 tends to zero, 𝑓2 tends to 1, its maximum value. Note how there 

are multiple optima and not a single one as each of these solutions is not better than the rest: 

one solution may have a lower performance along one objective but it will perform better 

along the other. To this end, the concept of Pareto dominance, as will be now introduces is of 

considerable relevance. Some definitions are presented hereby to facilitate the formulation of 

the MOO problem [130]. 

Definition 9. Given a MOO problem expressed as follows: 

 min𝑭(𝒙): 𝑋 → ℝ𝑘 =  

 𝑘 ≥ 2 

 

(5.17) 
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{
𝑓1(𝒙): 𝑋 → ℝ

…
𝑓𝑘(𝒙): 𝑋 → ℝ

  

where 𝑋 ⊂  ℝ𝑛 is the feasible region, defined by the imposed constraints and 𝑓1, … , 𝑓𝑘 is the 

set of objectives  

• A solution 𝒙′ is said to Pareto dominate another solution 𝒙  and is indicated as 𝒙 ≺ 𝒙′ if  

 𝑓𝑖(𝒙′) ≤ 𝑓𝑖(𝒙)   ∀𝑖 = 1, … , 𝑘 (5.18) 

 𝑓𝑗(𝒙′) < 𝑓𝑗(𝒙)   𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑗 = 1, … , 𝑘 

• A solution 𝒙′ is Pareto optimal/efficient/non-dominated if there is no other solution 

dominates it. The Pareto front is the set of all the Pareto optimal solutions.  

In other words, Pareto optimal solutions are those that cannot be improved along one 

objectives without deteriorating the performance along another objective. The aim is to 

produce all the Pareto optimal solutions in order to enable decision-making.  

Among strategies aimed at obtaining the full Pareto front, the augmented ε-constraint method 

is widely implemented [69], [131], [132], [133], for fast and reliable MOO. With this 

approach, one objective is optimised while the others are converted into constraints. By 

varying the strictness of such constraints, a subset of the Pareto front can be obtained. It 

should be noted that the constrained single-objective optimisations can be performed with 

any of the two methods presented in Section 5.2.2, depending on the objective functions. At 

the beginning of this algorithm, lexicographic ordering is applied to define the range of the 

objective values, from their maxima to the minima. Under lexicographic ordering, the 

objectives are given priorities and are sequentially optimised; the values from the 

optimisations at higher priorities are used as constraints for the optimisations at lower levels. 

We subsequently apply non-dominated sorting to ensure that all the solutions are Pareto 

efficient. Non-dominated sorting compares all the solutions obtained from the Augmented ε-

Constraint (ANEC) Algorithm.  against each other, and only keeps those that are non-

dominated.  
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5.3.1.1 The ANEC algorithm 

The following pseudo-code outlines the augmented non-dominated ε-constraint method  

Augmented non-dominated ε-constraint method 

 Input: MOO problem with 𝑭𝒎 set of 𝑚 objectives, 𝜞 defined by p constraints and 𝑛𝑚𝑎𝑥 divisions 

of the solution space 

1: Initialisation: Lexicographic ordering 

2: for k ← 1 to (m) do 

3:      𝜻𝒎×𝒎
𝒍𝒆𝒙 ← 𝒍𝒆𝒙𝐦𝐢𝐧

𝒙,𝑓𝑘
𝑭𝒎    (21) 

4: end for 

5: Define Nadir point 𝜳𝑚×1 = max (𝜻𝒍𝒆𝒙) and optimal point 𝝍𝑚×1 =  min (𝜻𝒍𝒆𝒙)  

6: Arbitrarily select objective 𝑓𝑖 to be optimised 

7: for j ← 1 to (𝑛𝑚𝑎𝑥 + 1) do 

8:     for l ← 1 to (𝑛𝑚𝑎𝑥 + 1) do 

9:                   𝐪𝑚×1 = [𝒋, 𝒍, … ] 

10:                   𝛆𝑚×1 ← 𝜳 − 𝒒 ×
(𝜳− 𝝍)

𝑛𝑚𝑎𝑥    

11:                   𝛔 ← argmin
𝒙∈𝜞,𝑭\{𝑓𝑖}= 𝜺+𝑺

(𝑓𝑖(𝒙)) −  𝛾 ∑𝑺   

12:                   if infeasible  

13:                           Exit current for loop and continue the loop above 

14:                   end if 

15:      end for 

16:  end for 

17: for o ← 1 to (𝑠𝑖𝑧𝑒(𝝈)) do 

18:      for p ← 1 to (𝑠𝑖𝑧𝑒(𝛔)) do 

19:             Check 𝝓𝑜 ≺ 𝝓𝑜 

20:      end for 

21: end for 

 

where 𝑓𝑘 is the prioritised objective during Lexicographic ordering, 𝒒 is the index vector for 

the nested for loops,  𝛆 is a vector representing the constraints for the objective functions that 

are not minimised. There will be as many nested for loops as 𝑛𝑓𝑜𝑟 = 𝑚 − 1. 𝑺 =
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[𝑠1, … , 𝑠𝑚−1] are the slack-variables adopted for the augmented-ε constraint and 𝛾 is an 

arbitrary constant value. As the Pareto optimal solutions are progressively calculated, the 

values of 𝜺 vary from the maxima of the single objective functions to the minima. 𝝓𝑜 and 𝝓𝑝 

are solutions of the ε-constraint method. It should be noted that 𝑛𝑚𝑎𝑥 is the number of 

divisions of the range of each objective values. As the ε constraint for one objective is varied 

within the for loop, the constraints of the other objectives are kept constant. In the for loops at 

higher levels, the ε constraints of the other objectives are varied. It is evident, that a number 

of computations will be infeasible; this is because as the objectives are conflicting and the 

objective values are constrained from their maxima to the minima, two conflicting objectives 

cannot simultaneously reach their minimum values. To avoid unnecessary computations, 

once an infeasible computation is found, the current for loop is ended and the loop at the 

higher level is continued.     

5.3.2 Multi-criteria-decision-making with analytical hierarchy process 

Once the full Pareto front is obtained, a decision needs to be taken to choose the preferred 

solution. If no preference is shown, the Pareto front represents the set of solutions that are 

equally optimal and therefore equivalent. MCDM techniques can help on choosing one 

solution from the Pareto front. In this research, the Analytical Hierarchy Process (AHP) [134] 

is employed.  

AHP evaluates the performance of n alternative solutions along a set of m objectives. The 

decision maker prioritizes the different objectives with a relative comparison matrix 𝑨𝑚×𝑚. 

The priority of each objective is quantified with relations 𝑎𝑖𝑗. 𝑎𝑖𝑖 = 1, ∀𝑖 as an objective has 

the same priority as itself. The relative comparison of two different objectives is outlined as 

follows: if 𝑖 is more important than 𝑗, then:  

 {
𝑎𝑖𝑗 = 𝑘,

𝑎𝑗𝑖 =
1

𝑘
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where 𝑘 ∈ [1,9] determines the relative priority of 𝑗 compared to 𝑖; 𝑎𝑖𝑗 = 1 indicates that 𝑖 

and 𝑗 have the same importance while 𝑎𝑖𝑗 = 9 indicates that 𝑗 is extremely important 

compared to 𝑖. An example of a pair-wise comparison matrix is shown hereby. 

 𝑶𝒃𝟏 𝑶𝒃𝟐 𝑶𝒃𝟑 

𝑶𝒃𝟏 1    5   9  

𝑶𝒃𝟐 1

5
  

1 2  

𝑶𝒃𝟑 1

9
  

1

2
  

1 

 

With the pairwise comparison matrix with 𝑚 objectives, where 𝑖 denotes the columns, 𝑗 

denotes the rows and 𝑎𝑖,𝑗 is the pairwise comparison weight between the objectives 𝑖 and 𝑗, a 

normalised form is obtained as expressed by the following equation: 

𝑎𝑖,𝑗
𝑛 =

𝑎𝑖,𝑗

∑ 𝑎𝑖,𝑗𝑗
 , 𝑖 = 1,… ,𝑚   (5.19) 

where 𝑎𝑖,𝑗
𝑛  is the normalised pairwise comparison weight between the objectives 𝑖 and 𝑗, 

obtained by dividing 𝑎𝑖,𝑗 by the sum of the weights in the respective column 𝑖. Next, an 

Eigenvector (or priority vector), which define the relative priorities between each 

criterion/objective, is calculated by averaging the rows of the normalised pairwise 

comparison matrix as defined hereby: 

𝑤𝑗 =
∑ 𝑎𝑖,𝑗

𝑛
𝑖

𝑚
 , 𝑗 = 1,… ,𝑚   

(5.20) 

where 𝑤𝑗 is the relative weight of the objective 𝑗 compared to the overall benefit, the 

elements of the eigenvector all add up to one. 

To ensure consistency of the decision making process a further check should be performed. 

For instance, if any stakeholders declares that financial benefits are more important than 

technical ones and the latter are more important than the environmental ones, an 
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inconsistency would arise if it were affirmed that environmental objectives are more 

important than the financial ones. The method consists of calculating the maximum 

eigenvalue 𝜆𝑚𝑎𝑥 as showed in the following equation 

𝜆𝑚𝑎𝑥 = 𝑊′ 𝐴𝑗 = ∑ 𝑤𝑗 (∑ 𝑎𝑖,𝑗𝑗 )𝑗   (5.21) 

where 𝑊′ is the eigenvector (transposed in a row) and 𝐴𝑗 contains the sum of the columns of 

the original pairwise comparison matrix. The consistency index is defined as in the 

expression below 

𝐶𝐼 =
𝜆𝑚𝑎𝑥−𝑚

𝑚−1
  (5.22) 

To ensure consistency, the ratio between 𝐶𝐼 and a random consistency index, 𝑅𝐼, must be 

checked, as shown in the following equation 

𝐶𝑅 =
𝐶𝑅

𝑅𝐼
  (5.23) 

where 𝐶𝑅 is called consistency rate and for the decision making process to be consistent it 

must be lower than 0.1. The random consistency index depends on the number of objectives 

as shown in Table 5.3-1. 

Table 5.3-1 Random consistency index for different number of criteria 

𝒎 1 2 3 4 5 6 7 8 9 10 

𝑹𝑰 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 

 

Once the Pareto solutions are determined, they are multiplied by the elements of the 

eigenvector (there may be different eigenvectors if there are multiple stakeholders that hold 

different opinions) and an overall score is obtained for all the Pareto solutions. The solution 

having the highest score shall be chosen as the preferred solution.  
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5.4 Conclusions 

In this chapter, the principles of mathematical optimisation have been defined with a focus on 

non-linear optimisation. Under single-objective optimisation, if the objective function is 

convex (concave) within the feasible space, then a classic algorithm such as the interior point 

method can be implemented, since the existence of a global minimum (maximum) is 

guaranteed. If the function is not convex (concave) in the feasible region, then there are 

multiple local minima (maxima) and the algorithm can be trapped in one of those. In that 

case, metaheuristic methods, such as evolutionary algorithms or swarm-based methods can 

find a global minimum (maximum). PSO is presented as an intuitive yet powerful algorithm 

to find a global minimum (maximum) efficiently. Once the optimisation problem starts 

considering more than one objective, some conflicts may arise, as it has been shown with two 

standard objective functions. Under such circumstances, Pareto analysis is of significant 

relevance as it highlights the trade-off among different conflicting objectives and fully inform 

the decision makers with the range of optimal solutions. The ANEC method is an efficient 

way of calculating a Pareto front. The AHP method has been used in order to take a decision 

by taking into account the priorities of the involved decision makers. The consistency of the 

decision making process must always be ensured. The chapter presented analytical tools to 

solve single-objective and multi-objective optimisation problems, which will be implemented 

in the case studies presented in the next chapter. 



 

166 

 

Chapter 6 Application of Multi-objective 

optimisation to electric vehicles in distribution 

networks 

6.1 Introduction 

In this chapter, a comprehensive multi-objective optimisation framework for controlling the 

charging/discharging process of EVs in distribution networks is proposed and tested. The 

modelling principles presented in Chapters 3 and 4 have been utilised to depict diverse 

households and EVs in a distribution network. The optimisation processes introduced in 

Chapter 5 have been implemented to manage EV charging in an efficient manner. This 

chapter is divided in two main Sections. In the first case study, a decentralised MOO 

framework is tested where individual EVs optimise their charging/discharging behaviour in 

order to attain certain objectives. As different stakeholders are involved in a distribution 

network, these charging schedule have consequences on the interests of all stakeholders. It is 

shown how the optimal solution for one stakeholder may not necessarily correspond to the 

preferred solution of other stakeholders, in fact some conflicts often arise. MOO and MCDM 

techniques are applied to solve these conflicts and it is shown how the involved stakeholders 

should share their benefits in order to reach a mutual consensus.  

Secondly, a game-theoretical energy trading system is developed where different 

stakeholders/players engage in a local market in order to obtain the maximum benefits. As 

will be shown, all the players are price makers, hence the economic setup in the local market 
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depends on several factors, among which the availability of PV generation and network 

losses are the most important ones. It is shown how the decisions/strategies of the different 

players must reach an equilibrium. The conclusions then reflect upon the learnings and 

challenges encountered from the implementation of these two different, yet aligned 

frameworks. 

6.2 Decentralised Multi-Objective optimisation 

Nomenclature  

Sets and indices 

 𝑡 Current time step 

 ∆𝑡 Time interval, 15 min. 

 𝑁𝑠 Total number of simulated time steps 

 𝑁𝑎 Total number of steps from arrival to 

departure 

  

Constants 

 휂 Efficiency of the EV charger 

 𝐸𝐸𝑉 EV Battery capacity (kWh) 

 𝐸𝐸𝑉 Minimum EV battery capacity limit 

(kWh) 

 𝑓 Upper frequency limit of droop-

controller (Hz) 

 𝑓 Lower frequency limit of the droop-

controller (Hz) 

 𝑃𝐸𝑉 Maximum charging/discharging rate of 

the EV charger (kW) 

  

Parameters 

 𝜋𝑡 Real-time price signal at time t (£/kWh) 

 𝑃𝑡
𝑑 Electricity demand at time t (kW) 

 𝑃𝑡
𝑃𝑉  PV generation at time t (kW) 

 𝑒𝑡
𝑘𝑊ℎ Specific CO2 emission (kgCO2/kWh) 

 𝐶𝐵 Cost of the battery (£/kWh) 

 𝑇𝐵 Temperature of the battery (°) 

 𝛽1→8 Fitting parameters of the battery 
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degradation model 

 𝑟𝑒𝑔𝑡  Regulation signal for FFR (kW) 

 𝑓 Electrical frequency (Hz) 

 𝑘𝑑 Droop coefficient (kW/Hz) 

 𝑡𝑎 Arrival time of the EV 

 𝑡𝑑 Departure time of the EV 

 𝐴𝑡
𝐸𝑉 Availability of the EV at time t 

 𝐸𝐸𝑉,𝑎 Energy of the EV upon arrival (kWh) 

 𝐸𝑡𝑟𝑖𝑝 Energy required for the next trip (kWh) 

  

Functions 

 ℂ𝑒 Energy cost of a H-MG (£/kWh) 

 ℂ𝑑 Battery degradation cost (£/kWh) 

 ℙ𝐺  Grid net exchange (kWh) 

 𝔼𝐶𝑂2 CO2 emissions of the H-MG (kgCO2) 

 𝐸𝑡
𝐸𝑉 Energy of the EV at time t (kWh) 

 𝐸𝑡
𝐿 Lifetime energy throughput under a 

certain charging condition (kWh) 

 𝑛𝐸𝑂𝐿  Number of cycles before battery EOL 

 𝛼𝑐 Battery degradation coefficient  

  

Decision variables 

𝑃𝑡
𝐸𝑉+, 𝑃𝑡

𝐸𝑉− Charging/discharging of EV (kW) 

 

The implementation of smart grids brings together several stakeholders at different scales. 

From the consumer-facing level to higher ones the relevant stakeholders are the EV owner, 

the end electricity user (also owning the PV system and the household electricity appliances), 

aggregators, distribution system operator (DSO), transmission system operator (TSO) and 

regulatory bodies - the latter enforcing environmental targets. Consequently, a variety of 

stakeholders, which otherwise would not collaborate, are brought together and each of them 

have their own aims/objectives. Some of these are equivalent while in some cases the 

objectives from the different stakeholders involved may be in conflict. 
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In this section, we propose a decentralised optimisation framework for day-ahead EV 

charging/discharging scheduling, where the information is gathered locally and processed by 

the individual agents that are in charge of the single home micro grids (H-MG). This choice 

is motivated by the onerous communication network, data privacy and safety issues entailed 

by a centralised approach [135]. Furthermore, the proposed approach facilitates the 

scalability of the optimisation algorithm with high EV penetration, where the computational 

burden is shared and not concentrated as in centralised management frameworks. 

We define EV charging/discharging strategies and services, to benefit a variety of 

stakeholders including smart charging, V2X (vehicle to archetype), smart grid services, such 

as energy arbitrage and ancillary services (e.g. frequency response). The services that we 

consider ranging from the transmission level, to services behind the meter are ancillary 

services (involving the TSO), peak shaving, (involving the DSO), energy bill reduction and 

energy-autonomy maximisation, both involving the end-electricity user and the policy-maker 

(since increased energy autonomy achieves emission reduction). 

As EV batteries are costly, utilizing them for the aforementioned services may cause 

additional battery wear. We safeguard the EV owner by minimizing battery degradation with 

the dynamic empirical model developed in Chapter 4. The aforementioned services are 

provided by considering transportation as the main purpose for EVs; therefore, this is taken 

as a constraint in the EV model. The proposed framework prioritises the inviolable EV 

travelling requirements, hence the charging scheduling are always compatible with the EV 

owner’s need. From the end user to the DSO, the objectives modelled in this work are: 

• 𝑂𝑏𝑗1 is the energy cost of the dwelling, which is modelled based on a real-time price 

and taking into account the local PV generation. 

• 𝑂𝑏𝑗2 is the battery degradation incurred for EV charging/discharging for both 

transportation requirement and energy services (EVs are charged both for energy 

services and to have sufficient energy for transportation, whereas they are discharged 

for energy services. Discharge during driving has not been modelled as per Chapter 

4.3). 
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• 𝑂𝑏𝑗3 is the grid net exchange, which account for the interaction of the power 

absorbed/injected by the dwelling from/to the grid. 

• 𝑂𝑏𝑗4 is the CO2 emission caused by absorbing energy from the grid. 

Another critical stakeholder is the TSO, who procures ancillary services to ensure stable 

operation of the transmission network. As transmission and distribution networks are 

connected, the TSO is also considered here as a stakeholder. Therefore, ancillary service 

provision is modelled in the current work as an additional scenario, based on Section 6 in 

Chapter 3. 

We then propose a multi-objective techno-economic-environmental optimisation (MOTEEO) 

framework and apply it to three case studies with two scenarios to provide the stakeholders 

with a comprehensive assessment of the prospective benefits. This framework has been 

presented in [P1]. Table 6.2-1 outlines the case studies and the scenarios simulated in the 

current Section. 

Table 6.2-1 case study and scenarios for MOTEEO 

 Scenario i) without ancillary 

service 

Scenario ii) with ancillary 

service 

Case study 1: home-micro-

grid (H-MG) 

Bidirectional home charging Bidirectional home charging 

Case study 2: distribution grid a) Uncontrolled charging e) Bidirectional home 

charging 
b) Smart charging 

c) Bidirectional home charging 

d) Bidirectional home and 

work charging 

Case 3: utility function in 

home-micro-grid 

Bidirectional home charging 

 

In the first case study, we highlight the conflicts among the objectives of the stakeholders 

(and ancillary service), and implement MOTEEO to a single dwelling with one EV. We 

evaluate two scenarios, aiming to show the additional benefits of ancillary service provision. 
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To quantify the benefits on a higher level, i.e. for the DSO, we then apply MOTEEO to an 

electricity distribution system with multiple dwellings and EVs. Smart charging and 

bidirectional charging strategies are applied in home and workplaces. In the case 2d, the EV 

can be charged at the workplace where we assume a PV system is present. Finally, we 

consider case study 3, where the utility function can be applied to combine the energy cost, 

battery degradation and peak demand in one objective to show the trade-off between these 

three objectives. We do this to highlight the importance of a joint-decision making process 

where benefits must be shared to satisfy all involved stakeholders.  

The framework of MOTEEO for case study 1, a H-MG is presented in Figure 6.2-1. Different 

stakeholders have business relationships (dashed link) with various participants of a smart 

grid (i.e. the EV owner, EV-O, owns the EVs and pays the DSO, who is in charge of the 

distribution system for the use of the grid, the policy maker P-M enforces environmental 

targets etc.). It should be noted that the proposed framework is a general one, with a view to 

the future where car leasing and sharing will become mainstream; in that context, the EV-O 

will not be the householder, as is the case nowadays, but will still charge the EV at home. 

The components of the smart grid are modelled based on Chapter 3 and 4, and these models 

are integrated within MOTEEO. In particular, EVs communicate their charging requirements, 

arrival and next departure times; these set the constraint of the optimisation. Within 

MOTEEO, a range of services/objectives is modelled according the necessities of the 

involved stakeholders. The decision variables that optimize the objectives are the EV 

charging scheduling. MOO is applied to provide the full range of available solutions. The 

stakeholders then participate in MCDM and the EV charging/discharging scheduling are 

decided. 
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Figure 6.2-1 MOTEEO framework for single H-MG 

The decentralised MOTEEO proposed in this research is then applied to multiple EVs and 

dwellings in a real distribution network as depicted in Figure 6.2-2. The business relationship 

links have not been depicted in favour of a clear illustration. Each EV applies MOTEEO, 

considering the objectives of the aforementioned stakeholders and the overall benefits are 

quantified. This case study is useful for the stakeholders at a higher level, i.e. DSO and policy 

maker, who can then quantify the prospective benefits at a higher scale than the single H-

MG. These benefits are the reduction in the overall grid-peak demand and total CO2 

emissions. Finally, in case study 3, a utility function combining energy cost, battery 

degradation and grid net exchange is defined and optimised. This approach highlights the 

trade-off between the objectives and establishes the necessity of collaborative decision-

making. It is worth pointing out that the proposed MOTEEO framework is a consensus-based 

approach where EV users authorise the use of their EV batteries for energy services for a 

specific period and within certain energy levels; the algorithm ensures that the energy 

required by the EV user for the next trip is made available at the next departure. 
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Figure 6.2-2 MOTEEO framework for a distribution network 

6.2.1 Assumptions for the mathematical model 

For the purpose of this research, a number of assumptions have been made while defining the 

mathematical mode. These apply to all the cases and scenarios. 

▪ EVs have the same driving patterns as conventional internal combustion engine (ICE) 

vehicles. 

▪ EV driving requirements are taken as constraints, and plug-in and plug-off times are 

approximated to the nearest quarter of an hour. 

▪ The real-time electricity price provided to the consumer follows the same behaviour of 

the wholesale market price with distribution and transmission charges. This is not altered 

by EV charging. 

▪ Upon arrival at home, the SOC of the EV battery, departure time for the next trip and the 

required energy (distance to drive) are known. 
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▪ The daily dwelling electricity demand and PV generation profiles are known. It is 

assumed that prediction techniques can provide such information to the deterministic 

optimisation performed in this study. 

▪ The utility company or an aggregator is responsible for providing electricity supply to 

the final customers, and provides real-time pricing. 

▪ An aggregator is responsible for the procurement of sufficient assets to meet the 

minimum requirement of EVs for frequency regulation. It is assumed that the aggregator 

is the DSO, so the revenue stream is directly passed from the DSO to the frequency 

regulation service providers. 

▪ Under smart charging and bidirectional charging, EV chargers can regulate the output 

power continuously. 

▪ Houses are symmetrically distributed across the three phases of a 400 V feeder, therefore 

we analyse one phase.  

▪ All charging events follow a constant current profile (refer to Figure 4.2-5). Although 

real-life charging profiles also include constant-voltage charging (refer to chapter 4.2, in 

particular Figure 4.2-3 for more details), this simplification does not diminish the quality 

of the modelled results as during constant-voltage charging less energy is exchanged 

compared to constant-current charging. 

The above assumptions are aligned with the current market structures and state of the art; in 

fact, short-term forecasting techniques achieve reasonable accuracy [136], hence demand 

profiles can be known day-ahead, although not at individual house level. Therefore, 

clusteting techniques, as implemented in section 3.3.2 can be used. There are examples of 

utility companies providing V2G services, where the EV user specifies the departure time and 

the required level of charge [137]. Companies with a portfolio of distributed energy providers 

are being developed with Nuvve being one of the major players [139]; they aggregate EV 

fleets to provide energy services and remunerate the EV owners. A DSO in the UK [140], is 

involved in major V2G projects with the aim of reducing grid reinforcement costs. This 
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highlights the interest of the system operators procuring V2G services by managing EV 

fleets.  

6.2.2 Analytical formulation 

The involved stakeholders pursue their objectives, which can be economic, 

technical/operational and environmental. Figure 6.2-3 presents the flowchart for the proposed 

MOTEEO framework. In the present work, three different case studies, representing different 

scales and operating conditions are implemented. The four objectives, and one scenario 

introduced earlier, are mathematically formulated from Sections 6.2.3 to 6.2.6. The EV 

energy constraints, travelling requirements and limitations of the charging equipment are 

modelled in Section 6.2.7. and the ANEC method is applied along with AHP to quantify 

multiple optimal EV charging scheduling.  
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Figure 6.2-3 Flowchart of the proposed MOTEEO framework 
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6.2.3 Energy cost minimisation 

From the point of view of the end electricity user, the operational cost of the archetype 

represents a fundamental objective that has to be minimised in order to receive a return from 

the assets.  Investments in energy efficiency and RES are made with the main aim of 

minimizing operational costs. For this study, a function representing the energy cost of the H-

MG, ℂ𝑒, is expressed by the following equation:   

 𝑎𝑟𝑔𝑚𝑖𝑛
𝑃𝑡

𝐸𝑉+,𝑃𝑡
𝐸𝑉− 

ℂ𝑒 = ∑ [(𝑃𝑡
𝑑 − 𝑃𝑡

𝑃𝑉 + 𝑃𝑡
𝐸𝑉+ − 𝑃𝑡

𝐸𝑉−) 𝛥𝑡 𝜋𝑡]
𝑁𝑠

𝑡=1  (6.1) 

where 𝜋𝑡 is the price signal, 𝑃𝑡
𝑑  is the electricity demand at time t, 𝑃𝑡

𝑃𝑉 is the PV generation 

at time t, 𝑃𝑡
𝐸𝑉+ is the power charged to the EV at time t and  𝑃𝑡

𝐸𝑉− is the power discharged 

from the EV at time t.  𝛥𝑡 takes into account the energy exchanged in the time-step and 𝑇𝑠 is 

the total number of time steps considered in the scheduling. Here the decision variables are 

𝑃𝑡
𝐸𝑉+ and 𝑃𝑡

𝐸𝑉−: by iteratively manipulating their values, a minimum of the cost function for 

each time step can be reached. 

6.2.4 Battery degradation minimisation 

Battery degradation in EV batteries has been modelled in Chapter 4. The developed model 

presented in (4.21) to (4.28), are used here as an objective in the ANEC method.  

6.2.5 Grid net exchange minimisation 

Storage solutions can minimize the time mismatch between RES generation and electricity 

demand, by charging in periods of RES excess and discharging in periods of high demand. In 

this way, the net power exchange profile with the grid is flattened which allows an optimised 

generation dispatch and stable grid operation. It is therefore in the DSOs’ interest to allow 

energy storage implementation, both stationary and mobile (EV). The aim of the optimisation 

is to minimize the variation of the net power exchange with the grid. This is because both 

excessive electricity demand (represented as positive power) and generation (represented as 
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negative power) lead to currents (hence losses) and voltage deviation (from 1 pu), which are 

adverse for the reliable operation of the grid. If any variation from nil power exchange can be 

minimised, losses and voltage deviations will also be minimised. The objective function 

representing the grid net exchange ℙ𝐺  , can be described as follows: 

 𝑎𝑟𝑔𝑚𝑖𝑛
𝑃𝑡

𝐸𝑉+,𝑃𝑡
𝐸𝑉− 

ℙ𝐺  =  √∑ (𝑃𝑡
𝑑 − 𝑃𝑡

𝑃𝑉 + 𝑃𝑡
𝐸𝑉+ − 𝑃𝑡

𝐸𝑉−)
2𝑁𝑠

𝑡=1  
(6.2) 

where 𝑃𝑡
𝑑, 𝑃𝑡

𝑃𝑉, 𝑃𝑡
𝐸𝑉+ and 𝑃𝑡

𝐸𝑉− assume the same meaning as in Equation 1. This objective 

function is calculated as the variation of the net power exchanged with the grid. In fact, both 

positive and negative net powers are penalised and the root-square use used to have the same 

units as the powers (not kW2). 

6.2.6 CO2 emission minimisation 

EVs are seen as a major solution to reduce global CO2 emissions from the transportation 

sector. However, the environmental benefits of EVs depend on the carbon intensity of the 

national/local energy mix. This is because the energy mix that is used to charge the storage, 

and hence the CO2 emitted for energy provision, changes during the day, week and season. 

Therefore, there are periods of low specific kgCO2/kWh (off-peak), as opposed to periods 

with high specific kgCO2/kWh (peak). In this work, the emissions avoided by ICE 

substitution are not considered, because these cannot be controlled with intelligent charging 

strategies, which are the scope of this research.  

Therefore, the objective function that aims to maximise environmental benefits can be 

defined as follows: 

 𝑎𝑟𝑔𝑚𝑖𝑛
𝑃𝑡

𝐸𝑉+,𝑃𝑡
𝐸𝑉− 

𝔼𝐶𝑂2 = ∑ [
(𝑃𝑡

𝑑−𝑃𝑡
𝑃𝑉+𝑃𝑡

𝐸𝑉+−𝑃𝑡
𝐸𝑉−)+ (√(𝑃𝑡

𝑑−𝑃𝑡
𝑃𝑉+𝑃𝑡

𝐸𝑉+−𝑃𝑡
𝐸𝑉−)

2
)

2
 𝛥𝑡 𝑒𝑡

𝑘𝑊ℎ]   𝑁𝑠

𝑡=1  

 

(6.3) 

where 𝑒𝑡
𝑘𝑊ℎ is the time series of the average specific CO2 emission for each kWh absorbed 

from the grid, as proposed in Chapter 3.5. Equation 6.3 considers only the CO2 emissions 
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caused by electricity consumption (consumed power is deemed positive) and does not 

account for CO2 emissions saved by the power injected in the grid (supplied power is deemed 

negative). This is because the user does not have control on the power once this is injected in 

the grid, which could also be curtailed. To explain the formulation of equation 6.3, let us 

consider the generic set of mathematical functions depicted in Figure 6.2-4. The function 

𝑓(𝑡) (point marker in the figure) is the sine function, which has both positive and negative 

values in its domain. The function √𝑓(𝑡)2  (o marker in the figure) takes the absolute value 

of 𝑓(𝑡). By adding these two functions and halving the total (x marker in the figure), only 

positive values of 𝑓(𝑡) are kept. Therefore, equation 6.3 considers only positive values of 

(𝑃𝑡
𝑑 − 𝑃𝑡

𝑃𝑉 + 𝑃𝑡
𝐸𝑉+ − 𝑃𝑡

𝐸𝑉−) which is the net power exchange with the grid. 

 

Figure 6.2-4 Generic mathematical functions 

 At present, these CO2 saving mechanisms are not adopted in the electricity industry, but with 

the increasing concern on greenhouse gas emissions, this method represents a suitable 

approach for the future.  
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6.2.7 Constraints of the optimisation – EV model 

The constraints for the various objectives presented so far that define the boundaries of the 

feasible region are presented. These are defined based on technical restrictions, usage 

behaviour as well as practical approach. The aim of the optimisation is to define power 

exchange profiles of EVs for different objectives, subject to constraints. The following set of 

equations link the power exchange of an EV with the energy stored: 

 𝐸𝑡
𝐸𝑉 = 𝐸𝐸𝑉,𝑎  𝑖𝑓 𝑡 = 𝑡𝑎 (6.4) 

 𝐸𝑡
𝐸𝑉 = 𝐸𝑡−1

𝐸𝑉   i𝑓 𝐴𝑡
𝐸𝑉 = 0   (6.5) 

 𝐸𝑡
𝐸𝑉 = 𝐸𝑡−1

𝐸𝑉 − 𝐸𝑡𝑟𝑖𝑝  𝑖𝑓 𝑡 = 𝑡𝑑 + 1 (6.6) 

 𝐸𝑡
𝐸𝑉 = 𝐸𝑡−1

𝐸𝑉 + (휂 𝑃𝑡
𝐸𝑉+ −

𝑃𝑡
𝐸𝑉−

𝜂
) ∆𝑡  𝑖𝑓 𝐴𝑡

𝐸𝑉 = 1 (6.7) 

In (6.4), upon arrival of the EV, the energy stored in the battery is measured. In (6.5), if the 

EV is not available (𝐴𝑡
𝐸𝑉 ∈ [0,1]ℕ is a Boolean variable indicating the availability of the EV), 

then charging events cannot be initiated; hence, the energy state of the EV is unaltered. (6.6) 

takes into consideration the transportation constraint; in fact, at the departure time, the energy 

required for the next trip is deducted from the available capacity. If the EV is available, then 

in (6.7) the energy stored is modified by adding the energy charged and deducting the energy 

discharged by taking into consideration the efficiency of the EV charger 휂.  

The physical constraints in terms of storage size and power ratings as well as EV travelling 

requirement are presented in the set of equations below 

 0 ≤ 𝑃𝑡
𝐸𝑉+, 𝑃𝑡

𝐸𝑉− ≤ 𝑃𝐸𝑉  ∀t (6.8) 

 𝐸𝐸𝑉 ≤ 𝐸𝑡
𝐸𝑉 ≤ 𝐸𝐸𝑉  ∀t (6.9) 

 𝐸𝑡
𝐸𝑉 ≥ 𝐸𝑡𝑟𝑖𝑝+ 𝐸𝐸𝑉  𝑖𝑓 𝑡 = 𝑡𝑑𝑒𝑝,𝑛 (6.10) 

 𝑃𝑡
𝐸𝑉+ × 𝑃𝑡

𝐸𝑉− = 0  ∀t (6.11) 
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(6.8) and (6.9) are used to limit the power exchanged by the EV and the energy stored within 

the respective bounds. Here, a minimum limit of EV capacity of 𝐸𝐸𝑉 = 0.2 𝐸𝐸𝑉  has been set 

provide for unforeseen journeys. (6.10) is used to ensure that the energy stored in the EV 

meets the need of the user for the next trip. Finally, Equation 6.11 ensure that charging and 

discharging do not happen at the same time.  

6.2.8 Results and discussion 

The proposed MOTEEO framework is initially applied at a household level to demonstrate 

the effectiveness of proposed method to model and maximize the interests of the five 

stakeholders. Subsequently, the strategy is applied to a typical distribution network with 

realistic penetration level of PV systems and EVs. Three EV charging strategies are adopted: 

uncontrolled, smart and bidirectional charging. The three decision makers (DMs) who are 

involved in the decision-making process are the end electricity user, the EV owner and the 

DSO. Finally, an alternative utility function based MOTEEO is applied for a single-

household to show the importance of collaborative decisions where benefits are shared. 

Case study setting 

As introduced in Figure 6.2-1, a single-dwelling comprising of a 4 kW PV installation and a 

30 kWh EV is considered for case study 1 and 3 and the associated parameters are detailed in 

Table 6.2-2.   

Table 6.2-2 Setting for the case study 1 

Parameters  

Electricity demand Detached single-house, single-phase 

RES type Roof-top photovoltaic 

RES system rating 4kW 

 𝑪𝑩 150 £/kWh 

EV charger type Type 2 conventional/Smart/Bidirectional/ single-phase 

 𝑷𝑬𝑽 3kW 

 𝜼 90 (90) % 
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 ∆𝒕 15 min 

Pricing strategy Real-time pricing 

Optimisation strategy Day-ahead 

 𝑻𝑩 18 C 

 𝒕𝒂 17:00 

 𝒕𝒅 10:00 

 𝑬𝑬𝑽 30 kWh 

 

The optimisation is performed one day-ahead, with a real-time price derived from the 

wholesale spot price by adding network charges and taxes [141]. The chosen demand, PV 

generation and price profiles are those of a typical winter day. From the modelling 

implemented in Section 3.5, two scenarios, with and without ancillary service provision, are 

simulated. Figure 6.2-5 depicts the evolution of the real-time price, and EV availability for 

case study 1optimisation. It can be demonstrated that when PV generation is available, 

minimizing grid net exchange corresponds to minimize CO2 emissions. A practical 

demonstration is provided in the appendix, A.4. Consequently, we minimize Objective 1 – 

Energy cost, Objective 2 – EV battery degradation and Objective 3 – Grid net exchange. The 

mathematical optimisation process for case study 1 is hereby detailed. 

A) 휁𝑚×𝑚
𝑙𝑒𝑥 = 𝑙𝑒𝑥min

𝑥,𝑓𝑘
𝐹𝑚     k = 1, 2, 3 and m=3, where 𝑓𝑘 has the highest priority. 

B) We define:  

 𝛹𝑖 = max (휁𝑖
𝑙𝑒𝑥) Nadir point and 𝜓𝑖 = min (휁𝑖

𝑙𝑒𝑥) for i = 1, 2, 3. Where 휁𝑖
𝑙𝑒𝑥 are the 

results for objective 𝑖 from the Lexicographic ordering. 

C) for 𝑜 = 1,… , 𝑛𝑚𝑎𝑥 + 1 and  𝑝 = 1,… , 𝑛𝑚𝑎𝑥 + 1 We minimise: 

D)         𝑎𝑟𝑔𝑚𝑖𝑛
𝑃𝑡

𝐸𝑉+,𝑃𝑡
𝐸𝑉−, 𝑠2,𝑠3  

ℂ𝑒 = ∑ [(𝑃𝑡
𝑑 − 𝑃𝑡

𝑃𝑉 + 𝑃𝑡
𝐸𝑉+ − 𝑃𝑡

𝐸𝑉−) 𝛥𝑡 𝜋𝑡]
𝑁𝑠

𝑡=1 − 𝛾 (𝑠2 + 𝑠3) 

E)        Subject to (12) to (19) and  

F)        ℂ𝑑 = 휀2 + 𝑠2 

G)        ℙ𝐺 = 휀3 + 𝑠3 

       where 

H)        휀2 = 𝑜 ×
𝛹2−𝜓2

𝑛𝑚𝑎𝑥 
 , 휀3 = 𝑝 ×

𝛹3−𝜓3

𝑛𝑚𝑎𝑥 
 with 𝑛𝑚𝑎𝑥 = 6, 𝑠2 and  𝑠3 are slack variables 
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and 𝛾 is an arbitrary constant 

I)        If FFR is provided, 𝐴𝑡
𝐸𝑉 = 0  from 23 to 7. 

J) end for 

For case study 2, we apply the setting for case study 1 to all the EVs involved, in compliance 

with the associated electricity demand profiles (different for each house), PV generation and 

EV transportation requirements (generated randomly from National Time use Survey data). 

For case study 3, we adopt the same setting outlined in Table 6.2-2 but with the 

implementation of a utility function; we present hereby the mathematical process. 

A)  𝑎𝑟𝑔𝑚𝑖𝑛
𝑃𝑡

𝐸𝑉+,𝑃𝑡
𝐸𝑉− 

𝜆1 ℂ
𝑒 + 𝜆2 ℂ

𝑑 + 𝜆3  ℙ𝐺  

B) Subject to (12) to (19) 

 Where 𝜆1 = 1, 𝜆2 = 𝐶𝐵 = 150 and 𝜆3 depends on the grid utilisation fee set by the 

DSO 

All the simulations have been carried out on a computer with an Intel Core i7-6500U CPU 

2.5GHz processor and 16GB RAM. Time resolution for the optimisation in all case studies is 

15 min. Sequential quadratic programming algorithm in Matlab 2017a has been employed for 

the non-linear optimizations. 

 

Figure 6.2-5 EV availability and real-time price 
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As depicted in Figure 6.2-2, a typical UK distribution network (DN) [142], comprising a 

400V feeder, which provides electricity to 57 houses, is considered for case study 2. One 

phase of the 400V feeder is simulated assuming balanced three-phase load distribution 

therefore, 19 houses are individually simulated.  

To quantify the unbalance in a three-phase distribution system, the three phases should be 

individually simulated and the conclusions, which are rather network and location dependent, 

should be evaluated on a case-by-case basis.  

Eight days from four seasons, considering weekday and weekend, have been investigated. 

Different PV generation profiles, depicting the seasonal variations and different EV 

availability patterns have been considered in line with [61], and these are shown in appendix 

A.4. For case study 2, all the electricity demand profiles have been generated from the Centre 

for renewable energy systems technology (CREST) model [86].  

The configuration of the typical DN is based on the PV and EV penetrations levels predicted 

for 2040 [15]. This year represents a crucial landmark because of the ban of ICE vehicles 

announced by the UK government [29]. By considering the current penetration of domestic 

PV systems [143], [144] and using the prediction of the UK National Grid Future energy 

scenario [15], a penetration rate of 50% is projected. This implies that in one phase of the LV 

feeder, 10 houses will be equipped with a PV system. Since the UK average PV system size 

is 3.35 kW, a normal distribution around a mean value of 3 kW is assumed; PV installation 

sizes will be randomly sampled from this distribution. An EV penetration rate of 50% is 

expected for 2040 [15], among those that have access to at least one car [79] hence, 10 EVs 

are simulated.  

 

 

 

Table 6.2-3 lists the parameters adopted to produce the EV transportation model and other key 

assumptions for case study 2.  
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Table 6.2-3 Parameters of the case study 2 

Parameter Value 

EV  and PV penetration 

rate 

50% [15], [143] 

Average daily mileage 9 miles, [79] 

Average daily energy 

consumption 

1.74 kWh [79] 

Arrival and departure times for trips randomly selected from National Time use Survey 

data  

Average PV size 3.35 kWp, [143] 

 𝐸𝐸𝑉/ 𝑃𝐸𝑉 30 kWh/3 kW 

EV charger type Type 2 conventional/Smart/Bidirectional/ single-phase 

Frequency regulation 

prices 

From UK National Grid post-tender reports  

Results of case study 1 for single H-MG 

 To demonstrate the effectiveness of MOTEEO, highlighting the conflict of the different 

objectives, we apply the proposed methodology to a single dwelling with one EV.  

Single objective optimisation algorithm 

With reference to the cost signal in Figure 6.2-5, it can be seen that under objective 1 the EV 

is charged at the minimum price available. Furthermore, the transportation constraints are 
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satisfied, as the EV is charged before the next departure (at 10 the vehicle departs and for 

instance under battery degradation minimisation, represented by the green stems in Figure 

6.2-5, the vehicle is charged until then). It should be noted that one stem represents a constant 

power for the next 15 minutes, i.e. one stem at 9:45 represents a charge/discharge at constant 

power from 9:45:01 until 9:59:59. 

Figure 6.2-6 shows EV charging scheduling for objectives 1, 2 and 3, scheduled separately, 

without FFR provision. 

 

Figure 6.2-6 EV scheduling for single-objective optimisations without FFR 

When the EV is charged to minimize battery degradation under Objective 2, the charging 

happens only close to the next departure to minimize average SOC. In addition, the charging 

rate is gradually increased to minimize degradation. This is because from (4.22), the 

combination of high charging rate and high average SOC causes high degradation; charging 

the battery at a lower constant charging rate would have increased charging duration leading 

to a higher average SOC and therefore degradation. At the same time, the full charging rate (3 

kW) is not employed, as it would increase degradation; an optimum solution, which 

underlines a balance between the charging rate and the average SOC [their product is 

considered in (4.22)], is found.  Under objective 3 EV is used to minimize the grid net 
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exchange. As during the PV excess hours the EV is mostly absent, PV energy autonomy is 

not fully maximised. However, upon arrival, the EV exploits as much PV energy as possible 

and the peaks of electricity demands are also provided by discharging the EV. Here, the 

conflict between the different objectives are unveiled. In fact, the EV is charged with 

radically different scheduling under the three objectives and the scheduling according to one 

objective inevitably worsen the performance along the others.  

Figure 6.2-7 depicts EV charging scheduling for objectives 1, 2 and 3 with FFR provision. It 

should be noted that the EV does not initiate any charging event from midnight to 7:00 hrs 

and from 23:00 hrs to midnight, in accordance with FFR commitment.  

 

Figure 6.2-7 EV scheduling for single-objective optimisation with FFR 

As shown in Figure 6.2-7, under objective 1, the EV charging happens right before the FFR 

window starts (from Figure 6.2-5 between 22-23, which along with 17-17:15 provides the 

lowest prices in the available window). As for objective 2, since the availability window is 

reduced, the EV cannor be charged from 3 to 9:45 with an increasing charging rate as from 

23:00 to 7:00 is providing FFR. Consequently, the EV is charged from 7:00 to 9:45 at a 

higher rate (to meet the energy requirement), which leads to higher degradation. Under all 

objectives, the EV is charged before the FFR window, which keeps the EV at a higher SOC, 
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leading to a higher battery degradation compared to scenario i). In addition, the performance 

under objective 3 is worse as there is less availability of the EV to service/meet the electricity 

demand. Table 6.2-4 presents the results of the three single optimizations with and without 

FFR provision.  

Table 6.2-4 Results of the single-objective optimisations 

 Scenario i) (without FFR provision) 

 Energy 

cost (£) 

Battery 

degradation (£) 

Grid net 

exchange (kWh) 

Emissions 

(kgCO2) 

𝐦𝐢𝐧𝑶𝒃𝒋𝟏 -0.2360 -0.0768 27.0978 4.5169 

𝐦𝐢𝐧𝑶𝒃𝒋𝟐 -0.3971 -0.0247 13.2361 2.5341 

𝐦𝐢𝐧𝑶𝒃𝒋𝟑 -0.4089 -0.0265 13.0176 2.4577 

 Scenario ii) (with FFR provision) 

 Energy 

cost (£) 

Battery 

degradation (£) 

Grid net 

exchange (kWh) 

Emissions 

(kgCO2) 

𝐦𝐢𝐧𝑶𝒃𝒋𝟏 0.2667 0.1422 20.1150 3.7907 

𝐦𝐢𝐧𝑶𝒃𝒋𝟐 0.2275 0.1149 13.7651 2.6395 

𝐦𝐢𝐧𝑶𝒃𝒋𝟑 0.1513 0.1172 13.5437 2.7107 

Throughout this section, costs have been designated with negative sign while revenues 

assume positive sign. When FFR is provided, the energy cost is further reduced by the FFR 

profits (£0.637) and battery degradation increased (£0.0902), resulting in an overall profitable 

service. As for the fourth objective, the limitation of the available optimisation window due 

to FFR provision increases the CO2 emissions slightly. Once the conflict between the 

objectives have been highlighted MOO and MCDM techniques are applied to find the 

optimal solutions for all the three objectives.  

MOTEEO optimisation algorithm 

Figure 6.2-8 and Figure 6.2-9 depict the Pareto fronts obtained from the ANEC method for 

scenarios i) and ii). The performance along the three objectives have been normalised to their 

maximum values expressed in Table 6.2-4 to allow comparative analysis. 𝑛𝑚𝑎𝑥, the number 

of divisions, was set to 6, which leads to a maximum of 49 Pareto efficient solutions. 

However, as discussed in Chapter 5.3, due to the conflict among objectives, a number of 
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computations were infeasible, and this led to 42 and 35 Pareto efficient solutions for 

scenarios i) and ii), respectively. Some of the solutions overlap at certain points; this could be 

avoided by dividing the solutions space with a higher resolution; however, this would 

increase the computational cost [defined as 𝑂((𝑛𝑚𝑎𝑥 + 1)2]. In this study, a rightful 

combination of both enough granularity of the Pareto front to informatively take decisions 

and computational cost has been achieved. 

 

Figure 6.2-8 Pareto front with ANEC without FFR 
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Figure 6.2-9 Pareto front with ANEC method with FFR 

It could be observed in Figure 6.2-9 that in one part of the solutions space, minimising grid 

net exchange also leads to battery degradation minimisation. This is because when FFR is 

provided, in order to minimise energy cost, the algorithm schedules EV charging at 3kW 

during the minimum price period available (see Figure 6.2-7), which increases both battery 

degradation and grid net exchange (see Table 6.2-4). When battery degradation is forced to 

be reduced by the ε-constraint, the charging scheduling tends to the behaviour of EV Ob. 2 

(green stems in Figure 6.2-6) which is closer to the behaviour of EV Ob. 3 (blue stems Figure 

6.2-6), therefore reducing grid net exchange. However, when grid net exchange is forced to 

be reduced towards its minimum value, battery degradation is increased – this happens 

because in order to minimise grid net exchange, the EV must be charged when there is 

excessive PV generation and it has to be discharged when there is excessive electricity 

demand, both leading to battery degradation as the battery is cycled. AHP is applied to 

choose the optimal solutions among the Pareto members provided by the MOO, according to 

the different prioritisation of the stakeholders. Three stakeholders/decision makers (DM) 
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holding different priorities are considered. The decision matrix (following from Chapter 

5.3.1) for the three DMs is shown in Table 6.2-5. 

Table 6.2-5 Decision matrix for different DMs 

 𝑫𝑴𝟏 𝑫𝑴𝟐 𝑫𝑴𝟑 

Energy cost 0.7606 0.1577 0.0817 

Battery degradation 0.1577 0.7606 0.1577 

Grid net exchange 0.0817 0.0817 0.7606 

𝐷𝑀1 is the end-electricity user who wants to minimize the energy cost. 𝐷𝑀2 Is the EV owner 

who wants optimize the exploitation of the EV battery and 𝐷𝑀3 is represented by the DSO or 

the policy maker who wants to optimize grid utilisation and minimize CO2 emissions. The 

consistency ratio found for the three pairwise decision matrices, related to the three DMs, is 

lower than 0.1 which verifies the consistency of the decisions. It should be pointed out that 

multi-objective optimisation applied to EV charging scheduling has only recently gained 

interest in t he research community. Hence, there is a lack of studies addressing the 

prioritisation adopted by the different stake-holders, especially the EV user, for the different 

objectives. Thus, the priorities have been set based on suitable prioritisation rules and could 

be verified by surveying a heterogeneous sample of potential stakeholders. 

The results from the decision making process are shown in Table 6.2-6. It can be seen that 

MOO with MCDM finds the overall best option while still favouring the DM’s choice. This 

is because once the full Pareto set is available, there is more freedom on choosing the option 

that achieve the best performance along the objectives while complying with the inherent 

prioritisation of the stakeholder.  

Table 6.2-6 Results of the MOTEEO method with the application of AHP 

 Scenario i) (without FFR provision) 

 Energy 

cost (£) 

Battery 

degradation (£) 

Grid net 

exchange (kWh) 

Emissions 

(kgCO2) 

DM1 -0.2360 -0.0768 27.0978 4.5169 

DM2 -0.3512 -0.0259 13.1984 2.3859 

DM3 -0.4015 -0.0262 13.0123 2.4458 
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 Scenario ii) (with FFR provision) 

 Energy 

cost (£) 

Battery 

degradation (£) 

Grid net 

exchange (kWh) 

Emissions 

(kgCO2) 

DM1 0.2475 0.1173 13.9531 2.6680 

DM2 0.2282 0.1149 13.7651 2.6395 

DM3 0.1548 0.1171 13.5437 2.7107 

From the results, it can be seen that the stakeholders would choose the solution that naturally 

fits with their priorities, sacrificing the performance along other objectives. Comparing Table 

6.2-6 with Table 6.2-4, some differences can be noticed. When providing FFR, DM3 chose a 

solution that caused lower battery degradation and higher return for the end-user than with 

the single-objective optimisation. These differences compared to the single objective 

optimisation are due to fact that with MOTEEO the full Pareto front is considered when 

making the decision. In accordance with the weights presented in Table 6.2-5, the adopted 

solutions lead to higher overall benefits than the single objective optimisations. Consistent 

with the previous results, cost minimisation with FFR provision is particularly adverse for the 

battery as the combination of Vehicle-to-home (V2H), which implies that energy is echanged 

only between the EV and the household electricity network, and V2G leads to a higher 

utilisation. As previously mentioned a lower energy cost leads inevitably to a higher grid 

impact and vice versa, because the price signal is not dynamically updated by to grid operator 

to better reflect the grid status. In addition, under the optimal grid net exchange, CO2 

emissions are minimum. This effect will be particularly noticeable when the proposed 

methodology is applied to a real-life distribution system. 

Results of case study 2 for a distribution network 

MOTEEO optimisation algorithm 

The application of MOTEEO for a typical UK DN allows the quantification grid peak power 

and overall CO2 emissions at a higher scale compared to the single dwelling. Eight days have 

been simulated for the four seasons, including weekday and weekend. Four charging 

strategies, including uncontrolled charging (a), smart charging (b), bidirectional at home (c) 
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and work (d) are simulated with two scenarios related to the ancillary service provision. 

Under uncontrolled charging, upon arrival the EV is fully charged at the maximum power. 

Under smart charging, the EV charging is controlled but the EV is not discharged; hence, 

under this strategy FFR was not provided, as discussed at the end of chapter 3.6. Bidirectional 

charging enables EV discharging towards the H-MG or the grid. Figure 6.2-10 and Figure 

6.2-11 depict the MOTEEO scheduling for scenario 2c) in the eight days. The preferred 

solution for the three decision makers, end-energy user, EV owner and DSO are shown. 

Other scenarios are not illustrated here for conciseness.  

As can be seen in Figure 6.2-10 and Figure 6.2-11, diverse PV generation, due to seasonal 

effect, and EV availability, due to different travelling patterns on weekdays and weekends, 

have been simulated. As a general trend, EVs had higher availability for MOTEEO in the 

weekends. Higher availability and PV generation particularly benefitted grid net exchange 

minimisation under DM3, as can be seen in spring and summer weekends. Under DM2, to 

minimise battery degradation, the EVs are charged as close as possible to the respective 

departure times (it can be seen in Figure A.4- 6 and Figure A.4- 7, that EVs start leaving from 

07:00), while under DM1 price arbitrage is carried out. 
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Figure 6.2-10 MOTEEO scheduling for scenario 2c) winter (weekday and weekend) and spring (weekday and 

weekend) from top to bottom 
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Figure 6.2-11 MOTEEO scheduling for scenario 2c) summer (weekday and weekend) and autumn (weekday 

and weekend) from top to bottom 

Table 6.2-7 presents the results for case study 2. For all the scenarios, the MOTEEO 

framework calculated the Pareto fronts and the DMs chose the preferred solution based on the 
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MCDM criteria outlined in Chapter 5.3.2. The Pareto fronts for one day (summer weekend) 

are presented in the appendix A4, Decentralised MOO results.  

Table 6.2-7 Results of the MOTEEO method for eight days 

Case DM Energy 

cost (£) 

Battery 

degradation 

(£) 

Grid net 

exchange 

(kWh) 

Emissions 

(kgCO2) 

Uncontrolled 

charging 

 -105.74 -28.55 1917 489.88 

 

Smart charging 

DM1 -66.15 -9.97 178 334.48 

DM2 -72.08 -9.42 176.74 333.96 

DM3 -72.5 -10.2 170.53 322.30 

Bidirectional 

charging at home – 

no FFR 

DM1 -52.79 -50.01 299 481.91 

DM2 -71.40 -9.52 176.72 333.69 

DM3 -72.80 -20.39 174.07 322.65 

 

Bidirectional 

charging – home and 

work 

DM1 -52.73 -51.06 291.19 486.77 

DM2 -71.26 -9.48 176.72 333.82 

DM3 -72.57 -10.26 173.90 322.87 

 

Bidirectional 

charging at home – 

with FFR 

DM1 -12.38 -26.74 276.1 392.50 

DM2 -20.83 -13.59 176.32 342.03 

DM3 -22.18 -17.5 171.26 334 

 

Under uncontrolled charging, the EVs are charged at maximum power until 80% of SOC is 

reached. This produces the highest values for all the metrics in Table 6.2-7, indicating that it 

is the worst scenario under all the criteria. The three rows for each case shows the results of 

the solution chosen by the three DMs, namely, end-electricity user, EV owner and DSO 

(𝐷𝑀1, 𝐷𝑀2 and 𝐷𝑀3 respectively). With smart charging the battery degradation is kept to a 

minimum and there is little difference between the three DMs along this dimension.  

When bidirectional charging is employed, the improvements are higher; especially the energy 

cost can be further minimised as price arbitrage is performed. It should be pointed out that the 

performance along grid utilisation depends on the availability of PV generation (in colder 
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months the performance is worse than the warmer months) and EV availability pattern; the 

EVs may not be available or at high SOC, therefore it would be unable to charge from PV. 

The different interests of the stakeholders are again evident: with bidirectional charging at 

home without FFR, under the solution preferred by the DSO (𝐷𝑀3), the total utilisation is 

reduced from 291.19 kWh to 173.9 kWh (-40.28%) when compared with the solution chosen 

by the end-electricity. Conversely, this solution increases battery degradation compared to the 

solution chosen by the EV owner (increases degradation by 7.6%). CO2 emissions are always 

at their minimum under the scheduling preferred by 𝐷𝑀3 as it utilises more local PV 

generation. Depending on the electricity demand profile of the dwellings and EV travelling 

pattern, this may not necessarily lead to the best solution along the other directions; this is 

because the EV may be travelling when the peak demand (for that specific house, not 

necessarily the national peak demand) occurs.  

When FFR is provided, it leads to an increase of all the metrics a part from the cost, because 

the optimisation window is reduced. However, FFR proves to be an overall profitable service 

as profits (£54.53) are higher than the incurred battery degradation cost (£3.53). Although an 

early replacement of the EV battery may cause distress for the EV owner, this is taken into 

account by the battery degradation cost, which is offset by the prospective profits by a large 

margin (more than four times). As discussed in the introduction chapter, the cost of lithium-

ion batteries is expected to drop in future, providing a better economic case. The forecasts 

predict a range of scenarios, where the average trend shows a cost reduction of 33% 

compared to current values. Despite the uncertainty in the future battery cost, any cost 

reduction will proportionally reduce the cost of battery degradation (battery purchase cost is 

included in the model). The positive consequence is that, at the current state of the electricity 

market, the use of EV batteries for energy services will become more cost-effective, which 

will improve the profitability of V2X services for all the stakeholders.  

A clear trade-off between the objectives is seen; the involved stakeholders must 

collaboratively take decisions and share benefits. It implies that all stakeholders must be 

sufficiently informed and capable of making informed decisions. Furthermore, a societal 

discussion will be required to see who can reap most of the benefits, and who must shoulder 
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the burdens. To this end, the DSO is particularly suitable to manage this as a considerable 

improvement in grid utilisation is achieved which will defer grid investments. Therefore, it is 

in the DSO’s interest to share the profit with the electricity users (in the form of reduced 

electricity bills), who lose 27.34% under the case chosen by DM3, and EV owners 

(subsidising part of their batteries), who lose 7.6%, to stimulate participation to the MOTEEO 

program. If the profit is not shared, than end users and EV owners will not participate to 

energy services and no peak reduction will be achieved; in the worst case, uncontrolled 

charging will cause negative impacts with increased EV penetration, and hence costs to the 

DSO. 

6.2.9 Results of case study 3 for cross-case comparison 

Smart incentives and intelligent tariff structures are critical for an effective implementation of 

MOTEEO. Among the possible solutions, the implementation of peak demand charges from 

the DSO, subsidy for the EV batteries and dynamic pricing are noteworthy. As an example of 

a smart tariff scheme, the case of commercial users in Flanders, Belgium is presented. 

Commercial users can purchase energy from the wholesale market but are charged 

transmission and distribution tariffs based on the peak demand [145] [146]. We adapted this 

tariff to case 1 scenario i) (without FFR) to highlight the importance of intelligent tariff 

schemes by applying the utility function [147] to combine the objectives with the value/cost 

they bring. The energy cost, the battery degradation cost and the peak demand charge have 

been combined in one function.  Table 6.2-8 presents the result of case 3.  

Table 6.2-8 Results of the MOTEEO method with a utility function 

 Energy cost (£) Battery 

degradation (£) 

Grid net exchange 

(kWh) 

Emissions 

(kgCO2) 

Case 3 0.14 -0.0121 10.26 1.55 

By comparing Table 6.2-8 with the results of the single optimization in Table 6.2-4, a general 

improvement along all the dimensions can be seen. In fact, under this case, the peak demands 

are targeted, leading to a better performance along 𝑂𝑏𝑗3 and 𝑂𝑏𝑗4 but with a 28.1% reduction 

in battery degradation (£0.0121 instead of £0.0170) when compared to the single-objective 
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optimization of 𝑂𝑏𝑗3. Therefore, the effectiveness of the utility function, which requires the 

cooperation of the three main stakeholders, has been demonstrated. Unfortunately, it is not 

always possible to assign a utility weight to all the objectives. Especially for 𝑂𝑏𝑗3, the peak 

demand penalty should be decided by the DSO in relation to the incurred investments for grid 

reinforcement, which should be calculated on a case-by-case basis (as these are both network 

and location specific). In countries/regions where these types of tariffs are not available, a 

joint decision between the involved stakeholders is critical to satisfy all the criteria. 

6.3 Game-theoretical Multi-Objective optimisation in a local 

energy market 

Nomenclature 

Sets 

𝐼  Set of all prosumers 

J  Set of all retailers 

K  Set of all EV users 

L  Set of all feeders 

B  Set of all buses 

Constants 

𝜋𝑡
𝑤  Wholesale market price at time 𝑡 (£/kWh) 

휂𝑖  Charging/discharging efficiency of the storage in prosumer 𝑖 

휂𝑘  Charging/discharging efficiency of the EV 𝑘 

�̅�𝑖  Maximum charging/discharging rating for ESS 𝑖 

𝐸𝑖 , 𝐸𝑖  Maximum and minimum energy limit of the ESS of the prosumer 𝑖 (kWh) 

�̅�𝑘  Maximum charging/discharging rating for EV 𝑘 

𝐸𝑘 , 𝐸𝑘  Maximum and minimum energy limit of the EV 𝑘 (kWh) 

𝑅𝑙  Resistance of feeder 𝑙 (Ω) 
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𝑋𝑙  Reactance of feeder 𝑙 (Ω) 

𝐺𝑙
𝑎𝑎 , 𝐺𝑙

𝑎𝑏  Conductance elements related to buses 𝑎 and 𝑏 of the feeder 𝑙 of the network bus-

admittance matrix (S) 

𝐵𝑙
𝑎𝑎 , 𝐵𝑙

𝑎𝑏  Susceptance elements related to buses 𝑎 and 𝑏 of the feeder 𝑙 of the network bus-

admittance matrix (S) 

∆𝑡  Duration of a time step (h) 

𝛼1, … , 𝛼5  Fitting parameters of the battery degradation model 

𝑇𝑠  Simulation period 

𝑇𝑘
𝑎𝑣  Availability period of EV 𝑘 

Parameters and functions 

𝜅  Energy price of the local market (£/kWh) 

𝜆1  Energy price in the LM at the current time step (£/kWh) 

𝑢, 𝑣  Coefficients of the LM price (£/kWh) 

𝛬  Specific network losses in the system ( ) 

𝐿𝑡𝑜𝑡  Total network losses in the system (kWh) 

𝐸𝑡𝑜𝑡  Total energy traded in the market (kWh) 

𝑠𝑗  Market share of the retailer 𝑗 ( ) 

𝑃𝑙   Active power exchanged through feeder 𝑙 (kW) 

𝑄𝑙   Reactive power exchanged through feeder 𝑙 (kVar) 

𝑣𝑙
𝑆  Voltage of the bus at the start of feeder 𝑙 (V) 

𝑣𝑙
𝐸   Voltage of the bus at the end of feeder 𝑙 (V) 

휃𝑙  Phase difference in feeder 𝑙 (°) 

𝛿𝑙
𝑆, 𝛿𝑙

𝐸  Phase angle at the buses at the beginning and at the end of feeder 𝑙 (°) 

𝑢(𝐸𝑗)  Profit function of retailer 𝑗 (£) 

𝑃𝑙1
𝑏+  Active power flowing out of bus 𝑏, through feeder 𝑙1  

𝑃𝑙2
𝑏−  Active power flowing in bus 𝑏, through feeder 𝑙2  

𝑃𝑏
𝑔𝑒𝑛

, 𝑃𝑏
𝑑𝑒𝑚  Active power generated and demanded in bus 𝑏 
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𝐸𝑖,𝑡
𝑑   Electricity demand of prosumer 𝑖, at timestep 𝑡 (kWh) 

𝐸𝑖,𝑡
𝑃𝑉  PV generation of prosumer 𝑖, at timestep 𝑡 (kWh) 

𝐸𝑖,𝑡
𝐸𝑆𝑆  Energy stored in the ESS of prosumer 𝑖, at timestep 𝑡 (kWh) 

𝐸𝑘,𝑡
𝑑   Electricity demand in the archetype with an EV 𝑘, at timestep 𝑡 (kWh) 

𝐸𝑘,𝑡
𝑃𝑉  PV generation in the archetype with an EV 𝑘, at timestep 𝑡 (kWh) 

𝑆𝑂𝐶𝑘,𝑡  State of charge of the EV 𝑘 at timestep 𝑡 ( ) 

𝐸1
𝐸𝐷  Total energy exchanged in the energy district in the current time step (kWh) 

𝐸1
𝐸𝐷+  Total energy demand of the EV (kWh) 

𝐸𝑗,1
−   Energy supplied by the retailer 𝑗 at the current time step (kWh) 

𝑠𝑖,1, 𝑠𝑗,1, 𝑠𝑘,1  Market share of the prosumer 𝑖, retailer 𝑗 or EV user 𝑘 ( ) 

𝐴𝑘,𝑡  Availability of the EV 𝑘 at timestep 𝑡 

𝑐𝑘
𝑑𝑒𝑔

  Battery degradation cost of EV user 𝑘 (£/kWh) 

𝐿𝐶𝑂𝐸𝑖 , 𝐿𝐶𝑂𝐸𝑘    Levelised cost of energy for prosumer 𝑖 or an archetype with an EV 𝑘 (£/kWh) 

Cost functions 

ℂ𝑖  Cost function of retailer 𝑗 (£) 

ℂ𝑖  Cost function of prosumer 𝑖 (£) 

ℂ𝑘  Cost function of prosumer 𝑘 (£) 

Decision variables 

𝐸𝑖
𝑐ℎ , 𝐸𝑖

𝑑𝑖𝑠  Energy charged and discharged by the storage asset of prosumer 𝑖 (kWh) 

𝐸𝑘
𝑐ℎ , 𝐸𝑘

𝑑𝑖𝑠  Energy charged and discharged by the EV 𝑘 (kWh) 

 

In this Section, a hybrid optimisation model based on a game-theoretical energy-trading 

framework is proposed in order to achieve economic, technical and environmental objectives 

of different stakeholders. The approach adopted in this case study is different from the Pareto 

analysis performed in 6.2 from the very core of the optimisation setting which is a hybrid 

framework. The motivation behind this study rose from perhaps the only shortcoming of a 
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decentralised approach, which is the limited knowledge on the overall system’s status. In fact, 

under decentralised optimisation, each agent is responsible for their own archetype where 

measurements and information are exchanged only locally. If on one hand this approach 

prioritises data privacy and allows a distribution of the computational burden, as the system’s 

status is dependent on the decisions of all the agents/stakeholders, each agent is not aware of 

the global variables. On the other hand, with the method proposed in this Section, each agent 

has the ability to influence the system variables, and is aware of that. The overall 

optimisation is formulated as a game among the involved players/agents/stakeholders while 

taking into account the system is operating conditions.   

The framework of the energy-trading model is presented in Figure 6.3-1.  

 

 

Figure 6.3-1 Hybrid framework for the game-theoretical energy trading model 

In this study, different types of rational agents/players are modelled, each achieving different 

objectives and these are: 

▪ Retailers (RET) purchase energy from the wholesale market and sell energy in the local 

market. 

CPk
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▪ Prosumers (PR) employ PV systems and energy storage to trade energy in the local 

market after satisfying their own electricity demand. In case of surplus, the additional 

energy is offered in the market at a certain price; when their electricity demand is higher 

than the local generation, prosumers assume the role of consumers. Their aim is to 

minimise their cost (maximise their revenue) by trading energy in the market. Their 

actions, as those of the EV users, will affect the price of the local energy market, and 

they aim to strike a balance between satisfying their electricity demand and low prices. 

▪ EV users (EV) utilise EVs as storage to trade energy in the local market and satisfy 

electricity demand. As opposed to stationary storage, as is the case for PRs, EVs are not 

always available and must take into account the degradation of the battery caused by 

increased energy exchange. 

▪ Consumers (C) aim at satisfying their electricity demand by purchasing electricity from 

the local market. 

▪ Distribution system operator (DSO) is in charge of operating the local distribution 

network and balance the energy exchanged in the grid. This is done with a utility scale 

storage, which can be charged with excess energy that is not sold in the market, and then 

discharged to provide the outstanding demand. For simplicity, it is assumed that there is 

no power exchange with the transmission system. 

These players are connected to an energy district (ED) and interact/trade in a local market 

(LM). However, it should be pointed out that although modelled, for simplicity, retailers 

have not been simulated. 

6.3.1 Methodology 

In this Section, the objectives of the players are mathematically modelled along with the 

associated constraints and the game framework is defined. It should be noted that the DSO 

assumes the role of a LM regulator, ensuring energy balance in the ED and efficient grid 

operation.  

The objective function of the prosumers is presented in the following equation: 
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argmin
𝐸𝑖

𝑐ℎ,𝐸𝑖
𝑑𝑖𝑠

ℂ𝑖 = ∑ −𝜅 (𝐸𝑖,𝑡
𝑑 − 𝐸𝑖,𝑡

𝑃𝑉 + 𝐸𝑖,𝑡
𝑐ℎ − 𝐸𝑖,𝑡

𝑑𝑖𝑠)𝑇𝑠

𝑡=1 − 𝐿𝐶𝑂𝐸𝑖 (𝐸𝑖,𝑡
𝑑 − 𝐸𝑖,𝑡

𝑃𝑉 + 𝐸𝑖,𝑡
𝑐ℎ −

𝐸𝑖,𝑡
𝑑𝑖𝑠)

−
+ 𝜋1

𝑤  |𝐸𝑖,1
𝑑 − 𝐸𝑖,1

𝑃𝑉 + 𝐸𝑖,1
𝑐ℎ − 𝐸𝑖,1

𝑑𝑖𝑠| 𝛬𝑖 , ∀i ∈ I   

(6.12) 

where 𝜅 is the price of the energy in the LM, 𝐸𝑖,𝑡
𝑑  and 𝐸𝑖,𝑡

𝑃𝑉 are the electricity demand and 

generation within the prosumer’s household and 𝐸𝑖,𝑡
𝑐ℎ, 𝐸𝑖,𝑡

𝑑𝑖𝑠 are the charging and discharging 

schedules of the stationary energy storage, which are also the decision variables. 𝐿𝐶𝑂𝐸𝑖 

indicates the cost of energy for providing energy back to the grid, which is determined by the 

investment in the PV and storage system, as indicated by the equation below: 

𝐿𝐶𝑂𝐸𝑖 =
𝑐𝑖,𝑃𝑉+𝑐𝑖,𝐸𝑆𝑆

∑ 𝐸𝑛
𝑎𝑁

𝑛=1
   

(6.13) 

where 𝑐𝑖,𝑃𝑉 and 𝑐𝑖,𝐸𝑆𝑆 are the investment costs for the PV and energy storage system (ESS) 

respectively, 𝐸𝑛
𝑎 is the yearly PV generation at year 𝑛 and 𝑁 is the total number of years for 

the investment in renewable energy. The levelised cost of energy (LCOE) of a PV and ESS 

system will depend on the investment costs and annual irradiance, as well as national 

supporting policies. In equation 6.12, the  ( )− notation indicates the negative part of the 

overall energy as expressed in the expression below (energy consumption has been 

designated with positive sign while supplied energy is represented with a negative sign 

throughout this Section). 

(𝐸𝑖,𝑡
𝑑 − 𝐸𝑖,𝑡

𝑃𝑉 + 𝐸𝑖,𝑡
𝑐ℎ − 𝐸𝑖,𝑡

𝑑𝑖𝑠)
−

=
√(𝐸𝑖,𝑡

𝑑 −𝐸𝑖,𝑡
𝑃𝑉+𝐸𝑖,𝑡

𝑐ℎ−𝐸𝑖,𝑡
𝑑𝑖𝑠)

2
−(𝐸𝑖,𝑡

𝑑 −𝐸𝑖,𝑡
𝑃𝑉+𝐸𝑖,𝑡

𝑐ℎ−𝐸𝑖,𝑡
𝑑𝑖𝑠)

2
    

(6.14) 

In (6.12), 𝜋1
𝑤 is is the wholesale energy price at the current timestep and 𝛬𝑖 is the specific 

energy losses. More detailes will be provided in the next paragraphs. Equation 6.12 is 

formulated as an energy cost minimisation, which is subject to the constraints expressed by 

the following equations 

𝐸𝑖,𝑡 = 𝐸𝑖,𝑡
𝑑 − 𝐸𝑖,𝑡

𝑃𝑉 + 𝐸𝑖,𝑡
𝑐ℎ − 𝐸𝑖,𝑡

𝑑𝑖𝑠, ∀𝑖, ∀𝑡  (6.15) 

0 ≤ 𝐸𝑖,𝑡
𝑐ℎ, 𝐸𝑖,𝑡

𝑑𝑖𝑠 ≤ �̅�𝑖  ∆𝑡, ∀𝑖, ∀𝑡  (6.16) 
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𝐸𝑖,𝑡
𝐸𝑆𝑆 = 𝐸𝑖,𝑡−1

𝐸𝑆𝑆 + 휂𝑖 𝐸𝑖,𝑡
𝑐ℎ −

𝐸𝑖,𝑡
𝑑𝑖𝑠

𝜂𝑖 
, ∀𝑖, ∀𝑡    

(6.17) 

𝐸𝑖 ≤ 𝐸𝑖,𝑡
𝐸𝑆𝑆 ≤ 𝐸𝑖 , ∀𝑖, ∀𝑡   (6.18) 

𝐸𝑖,𝑡
𝑐ℎ × 𝐸𝑖,𝑡

𝑑𝑖𝑠 = 0, ∀𝑖, ∀𝑡   (6.19) 

(6.15) is employed as the energy balance equation in the household’s energy system, (6.16) is 

used to limit the charged and discharged energies within the rating of the inverter and (6.17) 

is utilised to define the energy stored in the ESS for each time step with respect to the energy 

exchanged and the charging/discharging efficiency. The energy stored in the ESS is limited to 

its capacity limits from (6.18) and (6.19) is used to ensure that charging and discharging do 

not happen simultaneously. 

Similarly, the objective function for the EV user is expressed hereby as 

argmin
𝐸𝑘

𝑐ℎ,𝐸𝑘
𝑑𝑖𝑠

 ℂ𝑘 = ∑ 𝜅 (𝐸𝑘,𝑡
𝑑 − 𝐸𝑘,𝑡

𝑃𝑉 + 𝐸𝑘,𝑡
𝑐ℎ − 𝐸𝑘,𝑡

𝑑𝑖𝑠)
𝑇𝑘

𝑎𝑣

𝑡=1 − 𝐿𝐶𝑂𝐸𝑘 (𝐸𝑘,𝑡
𝑑 − 𝐸𝑘,𝑡

𝑃𝑉 + 𝐸𝑘,𝑡
𝑐ℎ −

𝐸𝑘,𝑡
𝑑𝑖𝑠)

−
+ 𝜋1

𝑤|𝐸𝑘,1
𝑑 − 𝐸𝑘,1

𝑃𝑉 + 𝐸𝑘,1
𝑐ℎ − 𝐸𝑘,1

𝑑𝑖𝑠| 𝛬𝑘 − 𝑐𝑘
𝑑𝑒𝑔

, ∀𝑘 ∈ K    

(6.20) 

where all the symbols retain the meaning as in (6.12) aside from 𝑇𝑘
𝑎𝑣 which is the availability 

period (as parked at home and plugged-in) of the EV 𝑘, and 𝑐𝑘
𝑑𝑒𝑔

 is the cost of battery 

degradation incurred by the EV 𝑘 due to the charging/discharging schedule as expressed by 

the following equation: 

𝑐𝑘
𝑑𝑒𝑔

= ∑ 𝛼1 × [𝛼2(𝐸𝑘,𝑡
𝑐ℎ + 𝐸𝑘,𝑡

𝑑𝑖𝑠) + 𝛼3] ×
𝑇𝑘

𝑎𝑣

𝑡=1 [𝛼4𝑆𝑂𝐶𝑘,𝑡 + 𝛼5]  
(6.21) 

The above equation is obtained from Chapter 4.3 and 𝑆𝑂𝐶𝑘,𝑡 is defined in a matrix form in 

the equation below: 

𝑺𝑶𝑪𝑘,𝑡 =

[

1 0 ⋯
1 1 ⋯
⋮ ⋮ ⋯

    
0
0
0

1    1     ⋯    1

] [

𝐸𝑘,1
𝑐ℎ

⋮

𝐸
𝑘,𝑇𝑎𝑣
𝑐ℎ

] 𝜂𝑘−[

1 0 ⋯
1 1 ⋯
⋮ ⋮ ⋯

    
0
0
0

1    1     ⋯    1

] [

𝐸𝑘,1
𝑑𝑖𝑠

⋮

𝐸
𝑘,𝑇𝑎𝑣
𝑑𝑖𝑠

] (
1

𝜂𝑘
)

𝐸𝑘
  

(6.22) 
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The constraints for the energy cost minimisation formulated in (6.20) are expressed in the 

following set of equaitons in a similar manner as for the ESS. 

𝐸𝑘,𝑡 = 𝐸𝑘,𝑡
𝑑 − 𝐸𝑘,𝑡

𝑃𝑉 + 𝐸𝑘,𝑡
𝑐ℎ − 𝐸𝑘,𝑡

𝑑𝑖𝑠, ∀𝑘, ∀𝑡  (6.23) 

0 ≤ 𝐸𝑘,𝑡
𝑐ℎ , 𝐸𝑘,𝑡

𝑑𝑖𝑠 ≤ �̅�𝑘 ∆𝑡, ∀𝑘, ∀𝑡   (6.24) 

𝐸𝑘,𝑡
𝐸𝑆𝑆 = {

𝐸𝑘,𝑡−1
𝐸𝑆𝑆 + 휂𝑘 𝐸𝑘,𝑡

𝑐ℎ −
𝐸𝑘,𝑡

𝑑𝑖𝑠

𝜂𝑘 
, 𝑖𝑓 𝐴𝑘,𝑡 = 1

𝐸𝑘,𝑡−1
𝐸𝑆𝑆 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                               

, ∀𝑘, ∀𝑡  

(6.25) 

𝐸𝑘 ≤ 𝐸𝑘,𝑡
𝐸𝑆𝑆 ≤ 𝐸𝑘, ∀𝑘, ∀𝑡  (6.26) 

𝐸𝑘,𝑡
𝑐ℎ × 𝐸𝑘,𝑡

𝑑𝑖𝑠 = 0, ∀𝑘, ∀𝑡  (6.27) 

(6.25) is used to ensure that charging/discharging events are initiated only if the EV is 

available at the time step 𝑡. 

Both in (6.12) and (6.20), the specific system losses have been utilised, which is now defined 

as follows: 

 𝛬𝑘 =
𝐿𝑡𝑜𝑡

𝐸1
𝐸𝐷 (6.28) 

where 𝐿𝑡𝑜𝑡 are the total active losses and 𝐸1
𝐸𝐷 is the total energy exchanged in the ED at the 

current timestep. It should be noted that in the objective functions of both the prosumers 

(equation 6.12) and the EV users [equation (6.20)], the specific losses are multiplied by the 

total energy exchanged by their respective archetypes, and the ratio of the latter with respect 

to the overall ED’s energy exchange represents the share of the market held by the prosumer 

or EV user as shown in the equation below: 

|𝐸𝑘,1
𝑑 − 𝐸𝑘,1

𝑃𝑉 + 𝐸𝑘,1
𝑐ℎ − 𝐸𝑘,1

𝑑𝑖𝑠| 𝛬𝑘 = |𝐸𝑘,1
𝑑 − 𝐸𝑘,1

𝑃𝑉 + 𝐸𝑘,1
𝑐ℎ − 𝐸𝑘,1

𝑑𝑖𝑠|  
𝐿𝑡𝑜𝑡

𝐸1
𝐸𝐷 = 𝑠𝑘,1𝐿

𝑡𝑜𝑡  (6.29) 

where 𝑠𝑘,1 is the share of the market held by the prosumer 𝑘 at the current time step (this is 

also defined for EV users), which means that the prosumers and EV users pay a penalty that 
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is proportional to the overall losses and their market share. Hence, the only two ways to 

reduce this penalty is to either reduce their contribution to the losses or the market share. 

To compute the overall losses, the AC power flow equations must be computed as previously 

expressed in Chapter 3, by (3.7.a) and (3.7.b), with the overall losses expressed by (3.8) 

(𝐸𝑡
𝑙𝑜𝑠𝑠 is denoted here as 𝐿𝑡𝑜𝑡). Furthermore, the voltage magnitude and phase angle 

constraints expressed by (3.10) and (3.11) are enforced in the calculation of the power flows. 

With this framework, not only the players must comply with suitable grid constraints but also 

it is in their interests to minimise losses in order to improve their profit. Although for 

simplicity, retailers are not included in the energy trading system, the framework is generic 

enough to include them, and their objective function is expressed by the following equation: 

argmin
𝐸𝑗,1

−
 ℂ𝑗 = (𝜆1 − 𝜋1

𝑤) 𝐸𝑗,1
− − 𝜋1

𝑤𝐸𝑗,1
−  𝛬𝑘, ∀𝑗 ∈ 𝐽    (6.30) 

where, 𝐸𝑗,1
−  is the energy supplied by the retailer at the current timestep and 𝜆1 is the current 

energy price on the LM. It should be noted that the retailers only deal with the energy traded 

at the current time step and do not consider future transactions in their objective function. 

This is because, retailers do not have constraints to be complied with (their only objective is 

to maximise their profit). For future implementation, additional constraints can be introduced, 

i.e. capacity limitations.  

Finally, the energy price in the local market, 𝜅, is modelled: in the proposed framework, 𝜅 is 

a vector containing 𝑇𝑠 prices, with the first being 𝜆1, the LM price at the current timestep, 

and the rest is made by the wholesale market price for the future timesteps; in practice, the 

latter is known one day ahead. This is because, the market players, i.e. retailers, prosumers 

and EV users, can influence the market price at the current time step (they are price makers), 

whereas they do not have control on future prices. Indeed, prosumers and EV users consider 

future situations within their optimisation frameworks, but this is to make an optimal choice 

by taking into account their future states (availability of PV, energy required for driving). On 

the other hand, the LM price depends on the energy that is actually exchanged, which is only 
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realised in the current time step while for future time steps, the energy has not been 

exchanged yet. The following equation explicates the price structure. 

𝜅 = [𝜆1, 𝜋2
𝑤 , … , 𝜋𝑇𝑠

𝑤 ]  (6.31) 

Once the energy trades in the current time step have been agreed, the optimisation windows 

slides forward by one time step, a new LM price is then decided upon while the rest is made 

up by the wholesale market price, and this procedure is repeated iteratively. This method has 

been applied in [P3], and a visual representation of the above procedure is presented in Figure 

6.3-2. 

 

Figure 6.3-2 Depiction of the rolling window approach 

 The LM price has been set as an increasing monotonic function to promote competition 

between players as presented hereby: 

𝜆1 = 𝑢 𝐸1
𝐸𝐷+ + 𝑣  (6.32) 

where 𝑢 and 𝑣 are positive constants and 𝐸1
𝐸𝐷+ is the total energy demand of the ED. 

According to (6.32), the higher is the electricity demand in the ED the higher will the price be 

in the current time step. Conversely, in those time steps when PV generation is abundant, the 

price will be at the minimum, allowing the players to perform arbitrage by looking ahead in 

time (they can refer to the future wholesale market price as in equation 6.31). However, if 

stimulated by a low price the players increase their consumption; this will lead to an increase 

of the LM price. The key is therefore to find an equilibrium between energy conservation 

(low prices) and energy exploitation (high prices), a concept that will be further elaborated in 
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the next Section. This Section is concluded by highlighting the key objectives and constraints 

that ultimately make the proposed framework a MOO problem: 

▪ The objective functions of the PRs and EVs, aim at maximising their profit (economic), 

and by considering the battery degradation cost (refer to equation 6.20) also battery life 

is improved (battery); this is because the optimisation algorithm will weigh any 

charging/discharging action against the cause battery degradation cost, and will 

implement any action that offsets such cost. This implies that any action that does not 

provide enough revenue will not be undertaken, leading to less utilisation and therefore 

less battery degradation. 

▪ The constraints on the network operation and the consideration of the total losses in the 

objective function ensures an effective grid operation (grid utilisation); 

▪ The formulation of the energy price proposed in this work rewards the integration of PV 

generation (by lowering the market price) and achieves increased renewable energy 

integration (CO2 minimisation). 

6.3.2 Development of a non-cooperative game theoretical energy trading 

system 

In this work, the trading between the three types of stakeholders namely, PR and EV is 

modelled as a competitive and non-cooperative game. Under this framework, when one 

player strategically acts in order to maximise its own profit, inevitably, the benefits of the 

other players are affected. This is opposite to cooperative games where different players can 

benefit by forming coalitions among them, as their objective functions are aligned. 

In non-cooperative games, the idea of Nash equilibrium is of maximum importance. The 

following definitions help in formulating the game framework. 

Definition 10. Given the game {N, (𝑋𝑖)𝑖∈N, (𝛷𝑖)𝑖∈N }, with N = [1,… , 𝑛], 𝒙∗ = [𝑥1
∗, … , 𝑥𝑛

∗ ] 

is a Nash-equilibrium if 𝛷𝑖(𝒙
∗) ≤ 𝛷𝑖(𝑥𝑖) ∀𝑥𝑖 ∈ (𝑋𝑖)𝑖∈N 
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where N indicates the number of players, 𝑋𝑖 is the strategy set of the player 𝑖 and 𝛷𝑖 is the 

cost function of the player 𝑖. In other words, under Nash equilibrium, no player has incentive 

to change their strategy, given the strategy of the other players, because it would otherwise 

lead to a lower benefit. As the optimisation framework presented in the previous Section 

constrained the actions of the players, in particular with constraints (3.10) and (3.11) 

(network constraints), this game is a coupled constraints game and the implementation of a 

Nikaido-Isoda (NI) function is proposed in order to find the Nash equilibrium of this game 

[148], [149]. With this formulation, the equilibrium search problem is transformed into an 

optimisation problem as presented in the following expression:  

𝛹(𝒙, 𝒚) = ∑ [𝛷(𝒚𝒊|𝒙) − 𝛷(𝒙)]𝑛
𝑖=1   (6.33) 

Under the notation adopted in (6.33),  𝒚𝒊|𝒙 is a vector containing the strategies of all the 

players, where the ith agent plays 𝑦𝑖, while the remaining 1,… , 𝑖 − 1, 𝑖 + 1,… , 𝑛 agents keep 

playing 𝑥𝑗. If it was not obvious before, here it is reiterated that the different 𝑥𝑗 are also 

vectors containing the strategies of the player 𝑗 (for instance the charging/discharging 

schedule for all the hours). The NI function is the summation of the improvement in payoff 

(reduction of cost) for the ith agent when they play 𝑦𝑖, while the remaining players are still 

playing 𝑥𝑗 . As per the definition above, Nash equilibrium is reached when no player can 

unilaterally improve their payoff, which equivalently means when the NI function reaches a 

nil value, as also stated in the definition below. 

Definition 11. The optimum response of a game {N, (𝑋𝑖)𝑖∈N, (𝛷𝑖)𝑖∈N } where 6.33 holds is 

argmax
𝒚∈𝑋

𝛹(𝒙, 𝒚) 

This is because, near Nash equilibrium, the NI function is non-positive and the maximum 

value is zero, which corresponds to Nast equilibrium. In this work, a relaxation algorithm 

(NIRA) is used to find Nash equilibrium through the NI function as previously proposed by 

[149]. The pseudocode for the NIRA algorithm is provided hereby. 
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Nikaid-Isoda relaxation algorithm 

 Input: Non-cooperative game structure {N, (𝑋𝑖)𝑖∈N, (𝛷𝑖)𝑖∈N }, weight 𝛼𝑠 and 

convergence threshold 𝛿𝑐 

1: Initialisation: Set initial strategies of the players as 𝒙0 = ∅ 

2: 𝑠 ← 0  

3: while 𝛹(𝒙, 𝒚) > 𝛿𝑐 do 

4:        Calculate optimum response 𝑍(𝒙) = argmax
𝒚∈𝑋

𝛹(𝒙, 𝒚) 

5:        Calculate strategies at next step as 𝒙𝑠+1 = (1 − 𝛼𝑠) 𝒙𝑠 + 𝛼𝑠  𝑍(𝒙𝑠) 

6:        𝑠 ← 𝑠 + 1 

7: end while 

In the above implementation, the optimum response for all the 𝑛 players (the dimension of 

the action space can be different for each player) is obtained by maximising the NI function. 

The strategies are then updated using a weighted sum with weight 𝛼𝑠 between the strategy at 

the current iteration and the optimum response. This process is iteratively implemented until 

the distance between the NI function value and zero is within the set threshold. It should be 

noted that while calculating the NI function, each player updates their own strategy assuming 

that the strategy of all the other players are kept unchanged. To this end, each player only 

knows his or her own feasible set (defined by the constraints) and the strategy of the other 

players. Hence, sensitive information regarding demand profiles and utilisation behaviours 

are not exchanged among players. This is the reason for calling such method a hybrid 

strategy: although decisions are taken locally, overall system variables are controlled. In the 

next Section, the proposed game framework is applied to realistic case study in an ED. 

6.3.3 Results and discussion 

Case study setting 

In this section one full day of operation of a micro-grid has been simulated, implementing the 

proposed game-theoretical energy trading system. The simulated micro-grid is based on a real 

distribution network that is the same as the one adopted in Chapter 6.2. There are 19 
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households connected to one phase of the three-phase electricity network. The parameters of 

the case study are outlined in Table 6.3-1. 

Table 6.3-1 Game-theoretical energy trading case study setting 

Parameter Value 

Number of prosumers, 𝑖  2 

Number of retailers, 𝑗 0 

Number of EV users, 𝑘 5 
  

Average daily mileage and arrival 

and departure times for trips 

Randomly generated from National Time use 

Survey data 

Average PV size 3.35 kWp, [143] (actual PV sizes are randomly 

generated considering this as mean) 

𝐸𝑖 and �̅�𝑖 [2, 2] kWh and [1, 0.5] kW 

𝐸𝑘 and �̅�𝑘 [30, 30, 60, 30, 30] kWh and [3, 3, 7, 7, 3] kW 

EV charger type Type 2, Bidirectional, single-phase 

𝐿𝐶𝑂𝐸𝑖, 𝐿𝐶𝑂𝐸𝑘 0.053 £/kWh 

𝑢, 𝑣  1 × 10−4, 3 × 10−3 £/kWh 

As can be seen, a mix of slow and semi-fast charging points have been deployed (see Table 

1.1-1), and there is one long range EV. The capacities of the stationary storage systems have 

been chosen based on common industrial standards. All the households, ESSs and EVs have 

been randomly deployed in the distribution network, among which, only the household with 

EV 2 (connected at bus 3 of the distribution network in Figure 6.2-2) is not provided with a 

PV system. This is to show the difference between the decentralised optimisation and one 

where a local market is in place and players can trade energy among themselves. In fact, in 

the decentralised case, when the EV user does not have its own PV system, only the 
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household electricity demand will be considered in the optimisation. On the other hand, when 

a local energy trading system is available, excess PV energy will be offered in the market and 

all the users that can control their energy exchange will be able to access that energy.  

Figure 6.3-3 presents the charging and discharging schedule of the 5 ESS for 24 hours (96 

steps of 15 minutes each), with a comparison between a self-optimisation (where the 

agents/players choose their charging schedule purely based on the information on their 

archetype), which is represented by the bar plot, and the energy trading system in a local 

market, represented by the blue stems. 

 

Figure 6.3-3 Charging and discharging schedules of the 5 ESSs  

The difference between the two strategies that is immediately noticeable is that while looking 

at their own archetypes, the ESS are cycled only in selected periods (following the price 
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curve), whereas when a local market is in place, the utilisation of the ESSs is spread across 

the day, intervening when required in the overall system. Similarly, Figure 6.3-4 shows the 

schedules for the 5 EVs, with the bars representing a selfish optimisation process and stems 

showing their actions in the proposed energy trading system. 

 

Figure 6.3-4 Charging and discharging schedules of the 5 EVs 

It can be seen that contrary to the selfish optimisation process, charging and discharging 

powers of the EVs are reduced in the energy trading system. The reason for this is twofold: 

charging more power would increase the energy price in the local market (see figure Figure 

6.3-5) negatively affecting the benefit of the player; high power exchange will increase 

network losses. As both these aspects are captured in the payoff functions of the players, their 

actions are more precautionary towards the grid status. Figure 6.3-5 depicts the difference 
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between the wholesale market price and the local market price; a part from 9:00 hrs and 

17:00 hrs, the local market price is always below the wholesale market price, indicating an 

improved benefit for all the users (players and not players, the latter not having any form of 

storage, hence not able to change their demand).  

 

Figure 6.3-5 Wholesale market price (blue) and local market price (red) for one day of operation 

To confirm the benefit of the energy trading system, Figure 6.3-6, shows the total power 

exchanged with the ED, in the selfish optimisation case and with the local market approach. 

Overall, the net power exchange is not only flatter, but also reduced with the local market 

approach. This is further confirmed by the reduction in the incurred losses as shown in Table 

6.3-2, where a 38% reduction of the active power losses is achieved with the local market 

approach. Although this method has proved beneficial towards both the grid and the involved 

players, the downside lies in the computational efforts. Depending on the number of players 

and the simulated time steps, the optimisation process can require computational times that 

are larger than the simulated time steps. One solution to this issue is reducing the resolution 

of the optimisation process (one-hour time step instead of 15 minutes) and reducing the 

number of players. In addition, linearization of the objective function can also help. Finally, 
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evolutionary algorithms and swarm-based approaches can help in improving the performance 

of the optimisation process, as the calculation of the NI function is certainly non-convex. 

 

Figure 6.3-6 Total power exchange of the ED with selfish optimisation (a) and with the energy trading system 

(b) 

Table 6.3-2 Normalised losses with selfish optimisation and with the energy trading system 

 Initial schedule Game theoretical energy trading 

Normalised Losses (pu) 1 0.62 

6.4 Assesment of economic feasibility of V2G services 

In order to perform a sensitivity analysis, in this section, electricity self-consumption by V2G 

in a domestic setup will be investigated by varying key input parameter. The necessity of this 

assessment lies on the fact that the optimisation framework and its cost-benefit outputs are 

sensitive to the input parameters and serves and variation of the latter naturally lead to 

diverse results. Therefore, this analysis is carried out in order to demonstrate the coherence 

and robustness of the optimisation process. Ultimately, this section aims at answering a 
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fundamental research question that has motivated this research: is V2G currently profitable? 

For this purpose, a six V2G operation scenarios are modelled and compared with a business-

as-usual (BAU) case where V2G is not performed and the EV is charged in an uncontrolled 

manner, as soon as it is connected. Under V2G the EV is used to minimise the electricity cost 

of the householder while minimising battery degradation. Hence, the objective function for 

the optimisation constructed by combining equations 6.1 and 4.19-4.25. The system 

configuration for the two cases is presented in Table 6.4-1. 

Table 6.4-1 System components for two comparison cases 

Case Business-as-usual V2G cases 

Electricity demand Domestic 

PV System (kWp) 3  

EV (kWh) 30 30 

EV charger (kW) 3 3 (bidirectional) 

 

The system components are the same in both cases, apart from the EV charger, which is 

bidirectional in the V2G case. As aforementioned, six V2G scenarios with different  input 

parameters are simulated and their economic results are compared; the details of the scenarios 

are presented in Table 6.4-2. 

Table 6.4-2 Assessment parameter categories for assessing economic feasibility of V2G (shaded parameters 

represent the base scenario) 

Assessment parameter S1 S2 S3 S4 S5 S6 

Electricity tariff Fixed Economy 7 Fixed 

Battery cost (£/kWh) 150 150  +20%  -20%  

Tariff multiplier (£/kWh) Current  Current +20%  -20%  Current 

 

As can be seen, the parameters that constitute the base scenario (S1) are shaded in grey, and 

any variation of one parameter represents a different scenario. For instance, un der S2 the 

electricity tariff is an Economy 7 tariff [150], the battery unit investment cost is 150 £/kWh 

and the tariff is scaled to the current situation. Similarly, the other scenarios are modelled 
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based on the variation of one parameter. The economic parameters adopted for the scenarios 

are listed in Table 6.4-3. 

Table 6.4-3 Economic parameters for the scenario analysis [151][152][153] 

Parameter Value 

Fixed electricity tariff (£/kWh) 0.13 

Economy 7 (£/kWh) 0.14 (07:00 – 22:45) 

0.6 (23:00 – 06:45)  

Bidirectional charger cost (£) 6000 

Bidirectional charger investment life (years) 10 

Discount rate 4% 

The different scenarios will be compared against their underlying net present value (NPV) of 

the investment of the bidirectional charger, as defined in the equation below. 

𝑁𝑃𝑉𝑖 = ∑
𝐶𝐹𝑖,𝑛

(1+𝑑)𝑛
𝑁
𝑛=1   (6.34) 

Where, 𝑖 is the index that represents one V2G scenario, 𝑛 is the year within the investment’s 

lifetime, 𝑁 is the number of years in the lifetime of the investment, 𝐶𝐹𝑖,𝑛 is the annual cash-

flow for the year 𝑛 under scenario 𝑖 and 𝑑 is the discount rate.  

 

Figure 6.4-1 shows one day of scheduling out of a whole year simulation for the BAU case 

and the V2G case, for all scenarios. 
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Figure 6.4-1 Sample of one day of scheduling under BAU and V2G case for all scenarios 

It can be seen that with the BAU approach, the EV is charged upon arriving at home (at 

13:00) at the highest rate (3kW), which manages to capture some of the excess PV 

generation. However under the V2G scenarios, the charging rate is adjusted in otder to match 

the excessive PV generation. Furthermore, under Economy 7 tariff (S2), the EV is scheduled 

to provide all the electricity demand peaks before 23:00 (note that after 23:00 there are other 

demand peaks where however the EV is not discharged under S2). Conversely, when battery 

cost is increased from the current value, less charging/discharging is carried out. This is due 

to a proportionally greater battery degradation caused for the same scheduling. Figure 6.4-2 

presents a comparison of the annual costs under BAU and V2G cases for the six scenarios, by 

dissecting in electricity and battery degradation costs.  
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Figure 6.4-2 Cost comparison between BAU (bars with dashed lines) and V2G cases (bars with continuous 

lines) 

Table 6.4-4 provides a breakdown of the annual costs for the six V2G scenarios. It should be 

noted that the difference between the costs incurred under the BAU case and the costs 

provided in Table 6.4-4 represents the annual cash-flow 𝐶𝐹𝑖,𝑛 in equation 6.34. 

Table 6.4-4 Cost breakdown for six V2G scenarios 

Cost element S1 S2 S3 S4 S5 S6 

Electricity cost (£) 414.24 358.70 493.19 332.36 416.15 414.52 

Battery degradation cost (£) 92.90 90.84 93.61 90.22 108.64 75.11 

It can be seen that although the electricity price profile is changed between scenarios S1-S4, 

the incurred battery degradation does not vary significantly. This is because the objective 

function accounts for the proscpective battery degradation caused by the 

charging/discharging process and minimises it, while providing the service. One important 
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point to be noted is that Economy 7 tariff brought both low expense in terms of electricity 

cost and low battery degradation. In fact, both costs are lower only under scenario S4, where 

the electricity tariff is 20% lower compared to the current situation. Of course, when battery 

investment cost is lowered, the underlying degradation cost decreases proportionally, 

whereas, electricity cost is nearly the same as the base scenario; overall this results in lower 

annual costs.  Table 6.4-5 presents the NPV in 10 years for the six V2G scenarios. 

Table 6.4-5 NPV for six V2G scenarios 

 S1 S2 S3 S4 S5 S6 

NPV (£) 2,378 2,983 2,956  1,838  3,508 1,246 

NPV (only electricity cost) (£) -3,252 -2,662 -2,671 -3,810 -3,268 -3,255 

In the first row, the NPV considering the difference between the costs incurred under BAU 

case and V2G case is presented, while in the second row, only the difference in electricity 

cost is considered. As can be seen, without considering the benefit obtained by improving the 

utilisation of the battery (which is done in the approach presented in this research), the 

investment in a bidirectional charger is not profitable. On the other hand, when the benefit on 

reduced battery degradation is considered, V2G is overwhelmingly profitable across all the 

scenarios. In particular, the higher is the electricity cost or battery investment cost, the higher 

the NPV. This is because, if the electricity tariff or battery investment cost is high, then the 

negative impact of an uncontrolled charging/discharging process (as it is the case of the BAU 

case) is particularly severe. Furthermore, Economy 7 tariff also improves the NPV and it is 

particularly suitable for V2G (notice that it has the highest NPV among S1-S4) as end-

electricity-users can choose to defer consumption in off-peak hours and reduce consumption 

during peak hours. Overall, the optimisation process exhibits stable results, as the difference 

in NPV is proportional to the variation of the input parameters. 

6.5 Conclusions 

In the present work, the MOTEEO and the NIRA approaches are proposed and applied in 

three case studies and for different charging strategies in order to find the synergy of several 
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objectives. Mathematical models of the objectives and scenario are constructed to represent 

the interests of the associated stakeholders. The conflicting objectives of stakeholders are 

resolved by multi-objective optimization with multi-criteria-decision-making technique, and 

game theory. By implementing the proposed methodology to the case studies considered in 

this work, some noteworthy conclusions were drawn and are summarised as follows.  

Under MOTEEO, the end-electricity users can increase their benefits by 81% (compare 2e 

with 2b) by providing frequency regulations service and the DSO can improve the grid 

utilisation by 41.78%. However, these are the maximum achievable benefits along one 

objective and there needs to be cooperation between the stakeholders to increase the overall 

social benefits. This suggests that a larger (or new) regulatory role must be played to ensure 

that overall social benefits are obtained. The DSO must share the benefits achieved from 

improved grid utilisation (investment cost deferral) by ensuring a revenue to the end-

electricity user and the EV owner. The quantification of such revenue is case-dependent and 

each distribution network should be studied individually. Therefore, a collaborative decision 

process has been proposed. The implementation of a smart utility function under MOTEEO 

targets the peak demand by combining the objectives of the end-electricity user and the DSO 

achieving optimal grid operation while minimizing the damage to the battery (28.1% of 

reduction in battery degradation compared to the case without MOTEEO).  

The NIRA algorithm applied to the case of an energy trading system in a local market has 

been proved beneficial for both the grid and the users. In fact, the proposed method reduced 

the network losses by 38%, and improved the financial benefits of the involved players by 

providing them with a lower energy price. An overall flatter net power profile also ensures 

grid investment deferral as current peaks are reduced. However, as in MOTEEO, the 

computational effort of the NIRA algorithm depends on the required accuracy (in MOTEEO, 

the accuracy of the Pareto frontier and in NIRA the number of players and time resolution). 

Therefore, when possible, the optimisation problems should be simplified with linearization 

techniques or with evolutionary and swarm based algorithms. A sensitivity analysis has been 

performed by varying electricity tariff and battery investment costs and the results from six 

V2G scenarios have been compared against the business as usual approach of uncontrolled 
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charging. It has been shown that V2G can reduce battery degradation compared to 

uncontrolled charging and when this benefit is considered in the economic calculation, V2G 

scenarios provide positive return for the investment in a bidirectional charger. As the cost of 

V2G chargers and lithium-ion batteries decrease, V2G will be increasingly profitable. 
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Chapter 7 Implementation of real-time multi-

objective optimisation in a micro-grid 

7.1 Introduction 

In this research, strategies for optimal management of EV charging have been proposed at 

two levels, decentralised and centralised. This is motivated by the inherent trade-off between 

the advantages and drawbacks of the aforementioned strategies. It has been shown that at a 

decentralised level, the information is collected and processed locally, which distributes the 

computational burden among the different agents. Furthermore, with this approach, the 

privacy of the user is ensured as limited information is exchanged with third parties. 

However, as this strategy performs a local management, the status of the overall system, 

especially at a higher level, may be sub-optimal. This is because information is not 

exchanged among agents; hence, if a contingency event happens outside the boundary of an 

agent, this would not be taken into account while scheduling EV charging. Conversely, 

centralised management enables an optimal operation of the overall system since a central 

operator monitors the system’s status. This however comes at the expense of a higher 

computational burden and reduced privacy, as the central manager has access to local 

measurements. In addition, with this strategy, the risk of a system breakdown increases as 

there is a single control point, and the measurement and communication system is more 

onerous [135]. Hence, we proposed a hybrid management scheme, where the agents at the 

lower level and the central system operator interact in a market, managed by a market 

regulator.  
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In this chapter, multi-objective optimisation techniques are implemented in a practical setup. 

The aim is to control charging and discharging of storage assets in a micro-grid. This is done 

by developing an agent/controller that receives measurements from the elements of the 

micro-grid, and based on the status of the micro-grid, controls the storage. Since this 

framework was implemented in a laboratory setup without any commercial electric vehicles, 

stationary battery storage modules were used, and will be designated as EV hereafter. As the 

objective is to control hardware in a lab experiment, real-time or online, control algorithms 

will be developed. This approach differs from that of Chapter 6 where day-ahead scheduling 

was implemented. The approach was deterministic, where all the information was known 

ahead to time. In this new context, only measurements of the status of the system are 

available and future status unknown. Therefore, the forecasting techniques developed in 

Chapter 3 will provide additional information that will estimate the future state of the system. 

In addition, decisions on the optimal scheduling will have to be implemented within a fixed 

period as the optimisation window is discretised in fixed steps. A schematic illustration of the 

scheduling flow is provided in Figure 7.1-1.  

Task setting and 
submission

Initialisation Forecasting Optimisation

Monitoring

Implementation System update
System 

activation
System 
standby

 

Figure 7.1-1 Flow diagram for real-time scheduling of a micro-grid 

 

The real-time smart control system is initiated by the user as the proposed method is based on 

the consensus of the EV user. This is aligned with the approaches available in real-life [137], 

where upon arrival, the EV user plugs the car in the charger. Then they communicate the time 

for the next departure and the minimum level of energy they require. In this research this 

information is provided through a graphical user interface (GUI) developed with the 
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MATLAB 2018a software. The EV user also specifies their priorities for three objectives, 

namely, energy cost, battery degradation and grid impact. Based on the demands of the EV 

user a charging task is built and submitted to the system. The system is then initialised by 

measuring its initial status, which is made by the following information: 

- Battery minimum voltage 

- Battery maximum voltage 

- Battery initial voltage 

- Time at initiation 

- Wholesale electricity price (known one day ahead) 

- Electricity demand (forecasted with the method in chapter 3.3.2). 

The PV generation is then forecasted for the rest of the day based on an ANN, as described 

in Section 3.3.  The charging task and the associated predicted parameters are submitted to a 

real-time optimisation process aimed at controlling EV charging by calculating the trade-off 

between cost, degradation and grid impact and applying a prioritisation rule based on the 

decision made by the user; more details are provided in the next Section. The optimal 

charging schedule is communicated to the charging infrastructure, which then executes the 

charging task. Voltage, current, power and energy exchanged with the battery are constantly 

monitored throughout the whole task, and data is continuously logged to allow post 

processing. Once the charging deadline has been reached, the system goes in standby. A 

functional diagram describing the elements of the micro-grid, the information flow is 

presented in Figure 7.1-2. 

The experimental setup contains a number of hardware that together emulate a “micro-grid” 

(MG). An Arduino UNO board is used to communicate the optimal charging schedule to the 

battery charger, which then implements the charging/discharging command. Table 7.1-1 

provides a summary of the main specifications of the components in the experiment setup. 
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Figure 7.1-2 Real-time multi-objective optimisation implementation setup 

Voltage and current measurements (dashed lines in Figure 7.1-2) are taken to capture the 

battery’s status and sent to the Matlab code (wide communication bus). For voltage 

measurements, the Arduino measurement system was used while current measurements were 

taken with two N2774A current probes (shown in Figure 7.1-4). The online multi-objective 

dynamic programming (OMODP) algorithm is run in Matlab and the optimal schedule is 

communicated to the Arduino board, which transfers it to the charger. The battery charger 

(AC/DC converter in Figure 7.1-2) was developed by Doshisha University [138] and was 

lent to Northumbria University for testing. Two current probes have been used to measure 

positive and negative currents as they only capture currents in the positive direction. An 

image of the charger is shown in Figure 7.1-3. 
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Table 7.1-1 Main specifications of MG components 

Photovoltaic system 

Simulated 4kWp 

Battery system 

Parameter Value 

Technology Lithium-Ion 

Capacity 3.2 Ah 

Internal resistance 60 mΩ 

Maximum voltage 4.2 V 

Minimum voltage 3 V 

Battery charger 

Parameter Value 

Maximum power 27 W 

Maximum voltage 9 V 

Maximum current 3 A 

Measurements Voltage, current 

Desktop computer 

Parameter Value 

Processor AMD PRO A4-350B R5 3500MHz 

RAM 8 GB 

Software Matlab 2018a 

Communication Serial 

Arduino Uno R3 

Analog measurements 𝐴0 voltage, 𝐴1 charging current, 𝐴5 

discharging current and 𝐷5 control 

signal  

Measurements 

Current measurements 2xAgilent N2774A current probes 

 



 

228 

 

 

Figure 7.1-3 Bidirectional battery charger 

 

Figure 7.1-4 Agilent current measurement probe 
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Although the charger is bidirectional, it is not regenerative, which means that the discharged 

energy is not sent back to the grid but dissipated in the form of heat with the heat sinks, 

shown in Figure 7.1-3. For this reason, the objective of this chapter is to emulate a MG as 

often a real MG has a higher rating and is grid-connected. Nevertheless, the proposed 

algorithm can be easily coupled with a bidirectional regenerative charger, in a MG at any 

rating, which would then implement real V2G. Furthermore, the Arduino Uno board uses a 

pulse-width-modulation (PWM) signal to recreate an analogue output, which is not ideal as a 

regulation/control signal to command the charging/discharging current, as the actual current 

will oscillate between the maximum value (positive or negative) and zero. To extract only 

the analogue modulating signal from the PWM, a low pass filter has been employed, which 

schematic is shown in Figure 7.1-5. 

PWM input Analogue 
output

 

Figure 7.1-5 Low pass filter 

As aforementioned, a charging task is built with the information provided by the user 

through the desktop computer. The list of information required to process the charging task 

with real-time MOO is provided in Table 7.1-2. 

Table 7.1-2 Information provided by the user for MOO 

Time of availability Year-month-day hour:minute (yyyy-mm-dd 

HH:MM) 

Time of next departure Year-month-day hour:minute (yyyy-mm-dd 

HH:MM) 

Maximum battery energy Wh 

Required energy at departure Wh 

Efficiency of charging/discharging 

process 

% 

Priorities of three objectives Energy cost, battery degradation, grid 
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impact 

This information is then processed and is passed to the next steps, as described Figure 7.1-1. 

In this work, three main algorithms, fulfilling different tasks, are proposed to effectively 

control EV charging, and these are: 

1) Real-time multi-objective optimisation process based on online multi-objective dynamic 

programming (OMODP) 

2) Adaptive state-of-health estimation algorithm based on particle swarm optimisation 

3) Equivalent circuit estimation algorithm based on particle swarm optimisation. 

Among the three methods, OMODP performs the principal task of implementing an optimal 

charging/discharging scheduling, while the latter two modules, inform OMODP on the 

battery status, hence enabling a more effective scheduling process. It should be noted that 

this is a modular architecture, where the three modules can be enabled and disabled without 

compromising the operation of the overall system. This is a crucial feature, as these three 

algorithms require different computation time, with the latter two being slower than 

OMODP due to the PSO algorithm. Since the PSO algorithm is a meta-heuristic method its 

computational burden is significant, as discussed in chapter 5. An efficient parallel 

computation schedule should be developed to effectively allocate these different tasks, 

without hindering the operation of the system. In fact, optimal scheduling can be 

implemented in real-time without simultaneously estimating the battery parameters. In this 

chapter, the OMODP algorithm will be investigated and an algorithm will be proposed. The 

algorithms for battery state estimation have been presented in Chapters 4.2.1 and 4.3.1. 

Although these two modules can be implemented along with OMODP by implementing 

parallel computing techniques, the latter will require significant time invested purely to draft 

the code in the Matlab programming language. Due to time limitation, in this research, the 

validity of OMODP will be proved through experiments, while the battery state estimation 

algorithms will be validated as a future work. A comprehensive set of experiments 

implementing different scenarios will be implemented in the experimental setup to validate 

the effectiveness of OMODP. 
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7.2 Design of a real-time controller based on Multi-objective 

dynamic programming  

In this Section, the main algorithm for implementing real-time multi-objective optimal 

scheduling of EV charging/discharging will be discussed. Based on the method proposed in 

Chapter 6 one could implement the same algorithm with a moving horizon, which is also 

known as model predictive control (MPC) [154] (as has been implemented in Chapter 6.3.1). 

Under MPC, measurements of the state of the system under control are taken at the current 

time-step 𝑡, and prediction techniques are used to anticipate the next states within a limited 

time-horizon [𝑡, 𝑡 + 𝑇]. A cost-function is then minimised over the time-horizon to determine 

the optimal control strategy. Only the action from the current time-step of the control strategy 

is applied, the time horizon moves to [𝑡 + ∆𝑡, 𝑡 + ∆𝑡 + 𝑇] and measurement and calculations 

are repeated for the new horizon. The sampling rate adopted for the experiments is 15 

minutes based. The main drawback of this approach is the computational burden; for a time-

horizon composed by 𝑛 time-steps, the entire optimisation algorithm is run 𝑛 times. 

Consequently, if the state of the system at each time-step of the time horizon is represented 

by one variable, the optimisation algorithm will have 𝑛 decision variables (one variable for 

each time step), and it will be run 𝑛 times (to update the available information on electricity 

demand with new measurements). In the specific case of the ANEC algorithm, the 

computational cost and time depends on the desired resolution of the Pareto front. Having 

divided the range of values of two objective functions in 𝑙 and 𝑚 parts respectively, the 

optimisation framework is run 𝑙 × 𝑚 times, with constraints being systematically adjusted to 

limit the feasible space. Furthermore, as the feasible space is constrained towards the minima 

of the objective functions, the computational time for each calculation will increase. If the 

energy/power service to be provided requires fast response from the storage assets, then such 

handling techniques may hinder the normal operation.  

To overcome this practical barrier, we proposed a novel multi-objective optimisation 

algorithm based on dynamic programming (DP) [155]. DP is based on Bellman’s principle of 

optimality [156]. With this approach, the cost function over a time-horizon is divided in sub-
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cost-functions defined in each time step. In particular, with the forward induction approach, 

as the time-horizon advances, the cost function is calculated for each feasible current state 

and by taking into account the origin state from the previous time step. Ultimately, the 

optimal trajectory is built iteratively by considering the current and the previous time steps, 

from the initial state to the final one. 

This method can be adapted to the optimal EV charging scheduling task. Upon plugging-in, 

the initial SOC of the EV is measured (𝑆𝐴) and a desired SOC is considered as a target (𝑆𝐵). 

Let us define the state of the EV at each time step by the discrete SOC of the EV battery, 

𝑆𝑂𝐶𝑡
𝑛. The letter 𝑛 means that the range of SOCs, [0, … ,1] has been divided in 𝑛 steps, i.e. 

S
𝑛

= [𝑆𝑂𝐶1, … , 𝑆𝑂𝐶𝑛], hence, the SOC at each time-step can only assume one among these 𝑛 

values. At each time-step 𝑡, a set of feasible EV states will be considered by the algorithm, 

defined as F𝑡
𝑛

. Similarly, the set of all root states (states at the previous time step), is F𝑡−1
𝑛

. 

Where:  

F𝑡
𝑛

= {𝑆𝑂𝐶𝑡
𝑖 ∈ S

𝑛
|  

|𝑆𝑂𝐶𝑡
𝑖−𝑆𝑂𝐶𝑡−1

𝑗
|

∆𝑡
≤ 𝑃𝐸𝑉   ∩   (

𝑆𝑂𝐶𝑡
𝑖 ≤ 𝑆𝐵 +

(𝑇−𝑡)𝑃𝐸𝑉

∆𝑡

𝑆𝑂𝐶𝑡
𝑖 ≥ 𝑆𝐵 −

(𝑇−𝑡)𝑃𝐸𝑉

∆𝑡

) , ∀𝑖, 𝑗} ⊆ S
𝑛
   

(7.1) 

is the set of feasible EV states at time-step 𝑡, such that the maximum SOC variation, from all 

possible root-SOCs and the desired SOC, is limited by the charger’s rating, 𝑃𝐸𝑉. 𝑇 is the 

number of time-steps from arrival to departure and 𝑆𝐵 is the desired SOC at departure.  

Figure 7.2-1 graphically illustrates provides a graphical explanation of the above concept. As 

time progresses, the set of feasible steps is updated based on the rating of the charger as well 

as the number of time steps to the next departure. When the next departure time comes, i.e. 

𝑇 = 𝑡, the feasible set only contains one possible state, 𝑆𝑂𝐶𝑡
𝑖 = 𝑆𝐵.  
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Figure 7.2-1 Illustration of SOC states and feasible set 

At each time-step t, the optimal SOC state is chosen in order to minimise the objective 

function in all the previous and current feasible states, as detailed in the following equation  

argmin
𝑆𝑂𝐶𝑡−1

𝑖 ∈F𝑡−1
𝑛

,𝑆𝑂𝐶𝑡
𝑗
∈F𝑡

𝑛
𝔽(𝑆𝑂𝐶𝑡

𝑖) + 𝔽(𝑆𝑂𝐶𝑡
𝑗
) , ∀𝑖, 𝑗  (7.2) 

As the basic DP strategy has intrinsic shortcomings (discussed below), we further adapt this 

approach to suit a multi-objective formulation. In fact, DP explores the full search space by 

comparing every possible combination of states, from the beginning state to the final state. 

This is a nearly exhaustive search (only the limitation of the feasible states given by the 

maximum power exchange, as shown in Figure 7.2-1 reduces the number of computations) 

and is notably demanding in computation effort. As in MOO a Pareto front must be found, 

which may contain several optimal solutions at each time-step, a pure DP approach would 

exacerbate the computation time required to evaluate all possible Pareto options. To 

overcome this obstacle we propose some improvements to the basic DP approach. It is worth 

pointing out that an effective solution to real-time MOO based on DP is yet to be proposed in 

literature. In fact, the methods proposed in literature are deterministic and cannot deal with 

the uncertain nature of many systems in real-life (as it is the case for PV generation) [157], 

[158]. In this work, we propose an OMODP approach, which makes use of predictions of PV 
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generation and electricity demand to schedule EV charging in real-time. Prediction of the 

electricity demand of a single household can be problematic but the method presented in 

chapter 3.3.2 can provide suitable predictions. The essential steps for OMODP are outlined 

hereby. 

A) Prediction of PV generation and electricity demand 

B) Prognostic optimisation for all the objectives using the current SOC state and the forecasts 

with a MPC approach to determine the SOC set-points for the next time step 

C) Determine the range of SOCs by calculating the maximum and minimum SOC set points 

D) Determine the feasible range of discretised SOCs by adjusting according to the desired 

final SOC 

E) Calculate the objective functions for all the SOCs in the feasible range and the SOCs at the 

previous time step 

F) Determine the new Pareto frontier. 

The pseudo-code of OMODP is presented hereby. 

OMODP 

 Input: predictions 𝑃2
𝑃𝑉, … , 𝑃𝑇

𝑃𝑉, 𝑃2
𝑑 , … , 𝑃𝑇

𝑑, measurements 𝑃1
𝑃𝑉, 𝑃1

𝑑, 𝑆𝑂𝐶𝑖𝑛 , 𝑡𝑑𝑒𝑝, 

𝑆𝑂𝐶𝑑𝑒𝑠, objectives 𝔽1, … , 𝔽𝑚 and user priorities 𝜋1, … , 𝜋𝑚 

1: for 𝑡 ← 1 to (𝑇) do 

2: 

      Initialisation: MPC optimisation {
argmin(𝔽1)

⋮
argmin(𝔽𝑚)

 to determine SOC𝑡
1
, … , SOC𝑡

𝑚
 

3:       Define SOC𝑡 = max (SOC𝑡
𝑘
) and SOC𝑡 = min(SOC𝑡

𝑘
) , 𝑘 ∈ [1,… ,𝑚] 

 

 

 

4: 

      Define feasible SOC range F𝑡
𝑛

= {𝑆𝑂𝐶𝑡
𝑖 | 𝑆𝑂𝐶𝑡

𝑖 ∈ [SOC𝑡, SOC𝑡]  ∩

  (
𝑆𝑂𝐶𝑡

𝑖 ≤ 𝑆𝐵 +
(𝑇−𝑡)𝑃𝐸𝑉

∆𝑡

𝑆𝑂𝐶𝑡
𝑖 ≥ 𝑆𝐵 −

(𝑇−𝑡)𝑃𝐸𝑉

∆𝑡

)} having divided the [SOC𝑡, SOC𝑡] region in 𝑛             
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steps 

5:       if  𝑡 = 1  

 

6:               Compute  {
𝔽1(𝑆𝑂𝐶𝑖𝑛, 𝑆𝑂𝐶𝑡

𝑖)

⋮
𝔽𝑚(𝑆𝑂𝐶𝑖𝑛, 𝑆𝑂𝐶𝑡

𝑖)
, ∀𝑆𝑂𝐶𝑡

𝑖 ∈ F𝑡
𝑛
  

7:        else 

 

8:                Compute {
𝔽1(𝑆𝑂𝐶𝑡−1

𝑗
, 𝑆𝑂𝐶𝑡

𝑖)

⋮

𝔽𝑚(𝑆𝑂𝐶𝑡−1
𝑗

, 𝑆𝑂𝐶𝑡
𝑖)

 , ∀𝑆𝑂𝐶𝑡
𝑖 ∈ F𝑡

𝑛
, ∀𝑆𝑂𝐶𝑡−1

𝑗
∈ P𝑡−1

𝑛
 

9:                Apply non-dominated sorting to determine the Pareto frontier at 𝑡, P𝑡
𝑛

 

10:         end if 

11:         Apply AHP with 𝜋1, … , 𝜋𝑚 to choose {𝑆𝑂𝐶𝑡−1
∗ , 𝑆𝑂𝐶𝑡

∗} 

12: 

       {
𝑃𝑡

𝐸𝑉 =
𝑆𝑂𝐶𝑡

∗−𝑆𝑂𝐶𝑡−1
∗

𝜂𝑐ℎ  𝐸
𝐸𝑉

                    , 𝒊𝒇 𝑆𝑂𝐶𝑡
∗ − 𝑆𝑂𝐶𝑡−1

∗ ≥ 0 

𝑃𝑡
𝐸𝑉 = 휂𝑑𝑖𝑠 (𝑆𝑂𝐶𝑡

∗ − 𝑆𝑂𝐶𝑡−1
∗ ) 𝐸

𝐸𝑉
, 𝒊𝒇 𝑆𝑂𝐶𝑡

∗ − 𝑆𝑂𝐶𝑡−1
∗ < 0

  

13:         Measure battery voltage 𝑉𝑡
𝐸𝑉 

14: 
        Calculate current set-point 𝐼𝑡

𝐸𝑉 =
𝑃𝑡

𝐸𝑉

𝑉𝑡
𝐸𝑉 

15:   end for 

The algorithm requires predictions for the future PV generation and electricity demand, 

current measurements of PV generation and demand, the objectives to be optimised as well as 

the requirements for the next departure and priorities of the objectives from the user. In 

accordance with the next departure, the number of optimisation time-steps is defined and 

initial predictive optimisations are carried out with MPC. Under this approach, the generation 

and demand measurements along with predictions over the time horizon are used to 

determine three SOC set points. The maximum and minimum of these set points constitute 

the boundaries to constrain the DP method. Once the feasible region has been defined with 

MPC, DP is implemented to calculate the values of the different objectives in correspondence 

to all the SOC states in the feasible region. Non-dominated sorting is then carried out to find 

the Pareto efficient solutions. As described in Section 5.3.1, AHP is implemented to choose a 

global optimal solution in line with the user priorities. The associated charging/discharging 

power is calculated by considering the efficiency of the charging/discharging process. 



 

236 

 

Finally, an optimal current set point is communicated to the bidirectional charger by dividing 

the power value by the measured battery voltage. 

This algorithm has been implemented for real-time control of EV charging, under three cases, 

representing three different priority choices as will be presented in Section 7.4. 

7.3 Graphical user interface 

The technique proposed in this chapter serves as a consensus based optimisation approach, 

where a virtual agent manages the energy/power exchanges in micro-grid in accordance with 

the user’s requirements. A graphical user interface (GUI), developed with the MATLAB 

2018a software is used to collect the information necessary to build a charging task. Figure 

7.3-1 provides an overview of the GUI. 

There are four Sections in the GUI, starting from the User input, where the user can set the 

charging requirement and the departure time as aforementioned. The scheduling info, such as 

the electricity demand profile (blue, solid curve), the PV generation (blue, dashed curve), the 

wholesale electricity price (red, dashed curve) and the current charging/discharging power 

(blue stems) is depicted in a graph, that is updated each time a new charging/discharging 

command is issued. Battery measurements, such as battery voltage (blue, diamond shaped 

scatter), current (blue, circle stems) and capacity (red bars), are taken every minute and 

displayed in a graph. Any message that informs the user of the status is printed in the 

dedicated Section of the GUI. 
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Scheduling 
info

Battery 
measurements

Messages, alarms, 
info

User input

 

Figure 7.3-1 Graphical user interface to control charging in real-time 

In this prototype, the plug-in time can be scheduled to any future time (compared to the task 

submission time) in accordance to user’s availability. Then, departure time, battery maximum 

energy and required energy must be provided. The charging and discharging efficiency of the 

battery charger is specified along with the priorities of three key objectives: energy cost, 

battery degradation and grid impact. The charging task is then submitted to the virtual agent 

(OMODP) which decides the optimal charging set point and communicates it to the Arduino 

board controlling the charger, which finally implements the charging task. 
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7.4 Functional demonstration experiments 

To test the validity and operability of the proposed algorithm three case studies have been 

performed in real-time. The main difference between the three cases are the priorities along 

the three objectives, the required charge specified by the user, and different demand, 

generation and price profiles. The details of the three case studies are shown in Table 7.4-1. 

Table 7.4-1 Details of the case studies 

Parameters Case study 1 Case study 2 Case study 3 

Objective priorities 

[cost, battery, grid] 

[7, 2, 1] [2, 7, 1] [1, 2, 7] 

Available time (yyyy-mm-dd 

HH:MM) 

2019-12-15 

15:15 

2019-12-16 

10:35 

2019-12-14 

13:00 

Departure time (yyyy-mm-dd 

HH:MM) 

2019-12-15 

21:15 

2019-12-16 

16:45 

2019-12-14 

19:00 

Desired capacity at departure 

(Ah) 

1.8 2.2 2.4 

 

Figure 7.4-1 to Figure 7.4-6 depict the charging schedules and associated Pareto frontiers for 

the three case studies. In the first case, minimising energy cost, it could be seen that the 

battery is charged in correspondence of the minimum prices, in the availability window (6 

hours, from 3 to 9) and during the period with high-energy price, no charging is initiated. 

However, it can be seen that the final capacity fell short of 0.2 Ah; this was due to the strict 

availability period (noticeable from the very limited number of Pareto efficient solutions in 

Figure 7.4-7.4-2), which meant that the EV left almost as soon as the price spike terminated, 

not leaving the algorithm enough time to catch the final schedule. This improvement 

constitutes future works. Also by looking at the Pareto frontiers in Figure 7.4-7.4-2, it could 

be seen that there was an overall agreement among the three objectives as in most of the time 

steps, the frontiers were only points. 
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By looking at the charging current in Figure 7.4-3, it can be seen that in order to minimise the 

average SOC, the battery is kept uncharged for as long as possible, with charging being 

initiated only after 2:30 pm. Looking at the Pareto frontiers in Figure 7.4-4, it could be seen 

that in accordance with the priorities specified, only the solutions characterised with the 

minimum battery degradation have been issued in the form of charging schedules.

 

Figure 7.4-1 Real-time charging profile for case study 1 
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Figure 7.4-7.4-2 Pareto frontiers and chosen solutions in case study 1 (filled dots are the chosen solutions for 

each time step, empty dots are the Pareto optimal solutions for each time step) 

 

Figure 7.4-3 Real-time charging profile for case study 2 



 

241 

 

 

Figure 7.4-4 Pareto frontiers and chosen solutions in case study 2 (filled dots are the chosen solutions for each 

time step, empty dots are the Pareto optimal solutions for each time step) 

 

Figure 7.4-5 Real-time charging profile for case study 3 



 

242 

 

As can be seen, EV charging is scheduled between 13:00 to 19:00 hrs in accordance with the 

availability specified by the user. At 13:30 hrs there is availability of excess PV generation, 

since the electricity demand is low, hence the EV is charged, while following the PV 

generation profile. Charging power is reduced after 3 as the battery exceeds the capacity 

requested by the user (2.44 Ah). After that moment, the battery is subject to shallow charge 

and discharge cycles, while following the shape of the electricity demand. After 18:00 hrs the 

electricity demand is higher than the available PV energy (which is almost negligible), 

therefore the battery is discharged to provide the demand making use of the additional energy 

that was charged when PV energy was abundant. Overall, the battery was made available for 

6 hours, which corresponds to 24 steps of 15 minutes each. OMODP generated a Pareto 

frontier for each of these time steps, which are shown in Figure 7.4-6 along with the chosen 

solutions (red dots). 

 

Figure 7.4-6 Pareto frontiers and chosen solutions in case study 3 (filled dots are the chosen solutions for each 

time step, empty dots are the Pareto optimal solutions for each time step) 

It can be seen that OMODP always choses the solution that gives the lowest grid net 

exchange, in accordance with the priorities set in Table 7.4-1. In addition, it can be noticed 
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that the Pareto frontiers do not contain the same number of efficient solutions. This is 

because, the predictive optimisations (see the OMODP algorithm in Section 7.2) and the 

constraint on requested energy bound the SOC swing allowed by the algorithm (the final 

steps have only few Pareto members because the algorithm is reaching the required SOC 

target). 

7.5 Comparison between OMODP and ANEC 

In this section, the ANEC algorithm and the OMODP method are compared for a generic 

real-time operation. As the ANEC algorithm is a day-ahead algorithm, it has been adapted to 

real-time operation with the rolling-window approach described in chapter 7.2. It should be 

noted that the tested system comprises of a signle household with one EV (30 kWh) and a PV 

system (4 kWp). The highest priority has been given to the energy cost factor, hence the 

algorithm that will achieve the lowest cost (highest revenue) in the least amount of time, will 

be the most suitable for real-time optimisation.  

Figure 7.5-1 and Table 7.5-1 present the results for case 4, where the OMODP algorithm has 

been tested against an established method, like ANEC. 
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Figure 7.5-1 Comparison between OMODP and ANEC profiles for a generic real-time operation case 

Table 7.5-1 Comparison between OMODP and ANEC’s performance along three objectives for case 4 

Case study 4 

Algorithm Energy cost (£) Battery degradation (£) Grid net exchange (kWh) 

ANEC -0.80 -0.041 67.49 

OMODP 0.88 -0.195 230.86 

It is evident from Figure 7.5-1 and Table 7.5-1 that the OMODP algorithm is more effective 

than ANEC in achieving the a lower energy cost, as it is the objective with the highest 

priority. In fact, OMODP is able to bring a revenue to the HMG owner. This comes at the 

expense of a higher battery degradation cost, which however is offset by the incurred 

revenues. It should also be pointed out that this was expected as the main priority was energy 

cost minimisation and a prioritisation rule that values battery degradation more can be easily 

set (see case 2). The ability of OMODP of achieving a lower energy cost lies in its capability 

of better exploring the search space than ANEC, as evidenced by Figure 7.5-2. 

 

Figure 7.5-2 Comparison between the normalised dynamic Pareto fronts achieved with OMODP (Pareto optimal 

solutions are scatters and red dots are the chosen solution) and ANEC (Pareto optimal solutions are the asterisks 

and blue squares are the chosen solutions) for 6 arbitrary time steps. 
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When assessing the quality of the Pareto frontiers, the major advantage of OMODP lies quite 

evidently the diversity and regularity of the Pareto optimal solutions, which on the other hand 

is not achieved by ANEC frontiers. OMODP would therefore allow more flexibility to the 

decision maker who would be able to make a more informed decision than with ANEC. 

Perhaps an even more compelling advantage of OMODP can be seen in Figure 7.5-3, where 

OMODP overwhelmingly outperforms ANEC in terms of computational time. In fact, in the 

beginning ANEC can take even more than 150 s to compute the Pareto front, while OMODP 

would always take less than 5 s. This was due to the inherent computational burden brought 

by the augmented ε-constraint algorithm implemented in ANEC, which exhibits a quadratic 

growth as the desired granularity of the Pareto frontier increases. OMODP on the other hand 

computes a more diverse Pareto front in a fraction of the time, because of the much simpler 

and more effective heuristic used in evaluating the three objectives for regular SOC steps. 

Figure 7.5-3 Comparison between the computational time of OMODP versus ANEC 
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7.6 Conclusions 

In this chapter, a methodology for implementing real-time MOO has been proposed and 

implemented in an experimental setup. An improved version of the DP approach has been 

implemented by using predictive optimisation steps. Three cases, characterised by different 

priorities have been tested and the algorithm has scheduled the charging/discharging process 

of a battery by satisfying the set priorities. It has been shown that when scheduled to 

minimise cost, the algorithm avoids charging the battery at peak times and delays charging to 

periods with lower prices. On the other hand, when scheduled to minimise battery 

degradation, charging is delayed as close as possible to the departure time, in order to 

minimise average SOC and consequently minimising battery degradation. When the 

scheduling is aimed at grid net exchange minimisation, the battery is charged throughout the 

availability period in order to increase PV generation utilisation and provide the demand 

peaks. The proposed algorithm has been applied with a 15 minutes resolution but it is fast 

enough to provide charging schedules every minute. This however comes at the cost of lower 

accuracy characterised by discrete SOC states that are considered in the algorithm. The 

performance of the OMODP algorithm has been tested against ANEC, presented in chapter 

5.3.1.1, and it has been demonstrated to be a superior method in terms of real-time operation 

and regularity of the Pareto frontier. The implementation of MOO in a practical experimental 

setup has been demonstrated, in order to optimise three objectives, energy cost, battery 

degradation and grid interaction. The results from the experiments demonstrated that the 

proposed framework can effectively optimise the aforementioned objectives while 

prioritising user requirements. 
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Chapter 8 Conclusions and future works 

 

In this thesis we have developed mathematical optimisation algorithms to define EV 

charging/discharging schedules fulfilling multiple objectives. This particular branch of 

optimisation, as emphasised in the introduction, has attracted the attention of the research 

community due to the advent of mainstream electro mobility. This is mainly because, when 

EVs are to be integrated with RESs and the electricity network in real-life practices, a number 

of problems/objectives of disparate nature arise/must be fulfilled. These include i) economic 

objectives,  such as energy cost minimisation; ii) technical objectives, i.e. optimal grid 

utilisation/operation and EV battery degradation minimisation; iii) environmental objectives, 

such as CO2 emission minimisation and objectives that have social impact, i.e. EV 

acceptance. In this thesis, these objectives have been mathematically modelled as close as 

possible to the real-life phenomena.  

In order to promote the adoption of electro mobility while ensuring their efficient integration, 

the users’ transportation requirements must always be fulfilled as a prime priority. It has been 

shown that in the UK, on average, drivers cover less than 10 miles a day. This leaves a major 

opportunity to use the EV battery for energy/grid services under the condition that the users’ 

requirements are not violated. To this end, a statistical model depicting vehicle utilisation 

patterns in the UK has been adopted. 

It has been shown that the uncertainty of electricity demand utilisation in households and PV 

generation constitute a crucial matter when aiming to optimise EV charging. As a result, 

solutions including regression models, clustering methods and ANNs have been proposed. 
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Solutions to quantify grid impact of EV charging have been identified. It has been discussed 

that EVs can help in reducing the overall CO2 emissions in households, by charging, when 

available, from PV, or charging in periods when the national electricity grid’s CO2 intensity 

is low. Ancillary service provision, i.e. frequency regulation, has been modelled as an 

additional source of income.  

As lithium-ion batteries constitute the only energy source in (B)EVs, their optimal utilisation 

is of pivotal importance. To this end, measures to minimise battery degradation have been 

proposed in this thesis. Two mathematical models, namely a behavioural and a degradation 

model have been developed. The former depicts the dynamic behaviour of the battery in 

terms of the charging voltage and currents with an ECM. The latter models capacity fade due 

to both calendar and cycling degradation. As only cycling degradation is affected by V2G 

services, it has been considered as a key objective in the optimisation problems. As in the 

lifetime of the EVs, they will be subject to diverse utilisation patterns and different lithium-

ion chemistries exhibit different behaviour, algorithms to extend these mathematical models 

in a dynamic and adaptive form have been proposed. These models achieve good accuracy 

when compared to laboratory and real-life measurements. 

A mathematical multi-objective optimisation framework has been developed and adapted to 

the problem of optimal EV charging. It has been discussed that, depending on the scale and 

setup of the optimisation problem, the methods will need to be different. In fact, optimisation 

is carried out in a decentralised manner, data privacy is preserved and the computational 

burden is shared among the involved agents. On the other hand, the agents have limited 

knowledge of the overall system variables (and in the worst case none). Furthermore, a 

distinction between day-ahead optimisation and real-time optimisation has been made as in 

the latter case, the decision intervals are much shorter compared to the former setup.  

To this end, the decentralised MOTEEO algorithm has been developed and implemented to 

three case studies and improvements along economic, technical and environmental objectives 

have been achieved when compared with single-objective optimisation. The critical aspect of 

benefit sharing has been highlighted: the stakeholder that is in charge of managing the 
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operational framework must ensure that the benefits (profits, cost savings) are fairly shared 

among the involved stakeholders to encourage participation in these practices. This is 

because the proposed methods are consensus based and the users’ willingness to participate is 

essential for a successful implementation.  

Addressing a wider perspective, a hybrid optimisation framework based on a game 

theoretical energy-trading system in a local market has been proposed in order to ensure 

profits/cost savings for the players and ensure optimal network operation. The NIRA 

algorithm has been implemented in a case study with 10 players (5 EVs and 5 ESSs) and the 

results demonstrate the capability of the proposed framework in achieving improved 

economic benefits and reduce network losses. However, as it has been discussed, the 

computational burden of this approach must be carefully dealt with, trying to simplify the 

optimisation problem whenever possible with linearization techniques or using meta-heuristic 

algorithms. Nevertheless, the proposed framework can be generalised to any other unit 

commitment problem, especially optimal EV charging scheduling. 

Finally, a novel real-time optimisation algorithm based on OMODP has been developed and 

tested in three experimental cases. The measurements show that the algorithm is able to 

regulate the charging/discharging process in order to achieve three objectives, namely energy 

cost reduction, battery life improvement and grid net exchange minimisation. 

In conclusion, this thesis has provided a range of mathematical models for representing smart 

grid elements and optimising their interactions in a multi-objective framework. To this end, it 

is recommended that the suitable approach should be based on the following criteria: 

− Scale: depending on the number of users, the maximum demand and generation 

requirements centralised or decentralised can be implemented. This thesis has mainly 

focused on the latter; an immediate trade-off of these approaches lie in the limited 

knowledge sharing capability of these frameworks where the agents are unaware of 

system variables. 
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− Type of operation: it can be day-ahead or real-time optimisation, where the former has 

more flexible time constraints compared to the latter where decisions must be taken 

within predefined time limit. 

− Accuracy of the models: depending on the required level of accuracy, the underlying 

mathematical models can be non-linear and non-convex. Especially battery degradation 

and game theoretical frameworks are highly complicated, as they model the interactions 

between several parameters/players, and if possible the mathematical models should be 

simplified as much as possible. 

− Available technology: some of the algorithms developed in this thesis require high 

computational power. Therefore, for an effective implementation, suitable back office 

systems, cloud based systems and charging stations should be in place. 

8.1 Future works 

The methods presented in this thesis can be applied to a wide range of problems and can be 

extended to include additional phenomena among which some noteworthy ones are listed 

below: 

Additional objectives such as grid stability, grid unbalance minimisation (in a three-phase 

unbalanced system), can be included in the optimisation framework. 

The computational time of the proposed algorithms could be compared with the conventional 

optimisation strategies, such as genetic algorithm, ant-colony optimisation and distributed 

algorithms. 

The interaction of the electrical system with CHP devices can be developed as an extension 

towards an integrated electrical and heating system. 
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Appendix A Appendix 

A.1 Distribution network modelling 

Let us consider the simple network outlined in Figure A.1-1; it has four buses, 𝑛 = 4, 

interconnected through 𝑛 − 1 = 3 feeders, represented by their admittances, 𝑌1→3. The 

paramters that decide the operational point of the network are the voltages and currents at 

each bus, namely 𝐸1→3 and 𝐼1→3, where the voltages are referred to one phase in a three phase 

system. Voltages, currents and admittances have been presented using the phasor 

representation, which implies these are complex dimensions. Although in this example and 

throughout this thesis only radial networks will be studied, as they are the common layout at 

low voltage, the methodology presented hereby can be also applied to meshed networks.  

 

Figure A.1-1 Four buses, three feeders radial network 

Next, the bus admittance matrix, or Y-matrix in short, is built, where a number of 

admittances are used to represent each bus and their interconnection. There are two classes of 
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admittances, self-admittances and mutual-admittances. Naturally, self-admittances explicate 

the relationship of one bus with respect to itself, while mutual-admittances model the 

connections between two buses. With reference to the network represented in Figure A.1-1, 

the self-admittances can be calculated as: 

𝒀11 = (
𝑰1

𝑬1
)
𝑬2,  𝑬3,𝑬4=0

= 𝒀1 + 𝒀2 + 𝒀3  
(A.1.a) 

𝒀22 = (
𝑰2

𝑬2
)
𝑬1,  𝑬3,𝑬4=0

= 𝒀1  
(A.1.b) 

𝒀33 = (
𝑰3

𝑬3
)
𝑬1,  𝑬2,𝑬4=0

= 𝒀2    (A.1.c) 

𝒀44 = (
𝑰4

𝑬4
)
𝑬1,  𝑬2,𝑬3=0

= 𝒀3    (A.1.d) 

In this syntax, 𝒀𝑖𝑖 is the self-admittance of the bus 𝑖 and is defined as the sum of the 

admittances of all the feeders that are connected to bus 𝑖. The mutual-admittances of the 

above network can be defined as: 

𝒀12 = (
𝑰1

𝑬2
)
𝑬1,  𝑬3,𝑬4=0

= −𝒀1   (A.2.a) 

𝒀13 = (
𝑰1

𝑬3
)
𝑬1,  𝑬2,𝑬4=0

= −𝒀2   (A.2.b) 

𝒀14 = (
𝑰1

𝑬4
)
𝑬1,  𝑬2,𝑬3=0

= −𝒀3     (A.2.c) 

𝒀23 = (
𝑰2

𝑬3
)
𝑬1,  𝑬2,𝑬4=0

= 𝒀24, 𝒀24, 𝒀34 = 0    (A.2.d) 

Where the mutual-admittance 𝒀𝑖𝑗 is the ratio between the current 𝑰𝑖 at bus 𝑖 and the voltage 

𝑬𝑗 at bus 𝑗 when all the other voltages in the circuit have been shorcircuited. This 

corresponds to the opposite of the admittance of the feeder that connects the two buses. If the 

two buses are not connected, than the associated mutual-admittance is nil. The complete bus-

admittance matrix for the sample network is therefore defined in the equation below: 
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𝒀  =  

[
 
 
 
 𝒀1 + 𝒀2 + 𝒀3

−𝒀1

−𝒀2

−𝒀3

     

−𝒀1

𝒀1

0
0

    

−𝒀2

0

𝒀2

0

    

−𝒀3

0
0

𝒀3 ]
 
 
 
 

 

 

(A.3) 

It can be seen that the self-admittances are the diagonal elements of the Y-matrix, whereas 

the mutual-admittances are the off-diagonal elements. Evidently, the Y-matrix for a radial 

network will be highly sparse, as the buses are sequentially connected. 

Once the Y-matrix is built, power flow analysis is implemented to depict the operation of the 

network, which will be influenced by the decisions made at the generation and consumption 

points. The main dimensions used to measure the efficiency of network operation are: 

▪ Bus voltages 

▪ Feeder currents 

▪ Active losses. 

In order to calculate these variables, different types of buses are defined, each having a 

number of variables that are pre-defined. There are three types of buses: 

▪ Generation buses are PV: the supplied powers and voltage magnitudes are fixed. 

𝑷2, … , 𝑷ℎ and |𝑬2|, … , |𝑬ℎ|; 

▪ Load buses are PQ: active and reactive powers are fixed. 𝑷ℎ+1, 𝑸ℎ+1, … , 𝑷𝑛, 𝑸𝑛; 

▪ One Slack bus, which is often chosen as the transformer connection point in radial 

networks: the voltage magnitude is fixed and phase is nil. |𝑬1|,  휃1 = 0. 

Finally, the 2𝑛 − ℎ − 1 unknown variables to be determined by the power flow analysis are: 

▪ 𝑛 − 1 voltage phases, 휃2, … , 휃𝑛 

▪ and 𝑛 − ℎ voltage magnitudes, |𝑬ℎ+1|, … , |𝑬𝑛|. 
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These unknown variables are determined through the resolution of the following system of 

equations, where at first the currents at each bus is expressed as functions of all bus voltages 

and the Y-matrix, as presented by 

{
𝑰1 = 𝒀11 𝑬1 + ⋯+ 𝒀1𝑛 𝑬𝑛

⋮

𝑰𝑛 = 𝒀𝑛1 𝑬1 + ⋯+ 𝒀𝑛𝑛 𝑬𝑛

  

 

(A.4) 

Then, the complex powers at each bus are expressed as follows 

𝑺𝑘 = 𝑬𝑘 𝑰𝑘
̇ = 𝑬𝑘 ∑ 𝒀𝑘𝑖

̇  𝑬𝑖
̇𝑛

𝑖=1 =

𝐸𝑘𝑒
𝑗𝜃𝑘 ∑ 𝑌𝑘𝑖

𝑛
𝑖=1 𝐸𝑖𝑒

𝑗(−𝛹𝑘𝑖−𝜃𝑖) =  𝐸𝑘 ∑ 𝑌𝑘𝑖
𝑛
𝑖=1 𝐸𝑖𝑒

𝑗(𝜃𝑘−𝛹𝑘𝑖−𝜃𝑖)  

 

(A.5) 

In the syntax adopted above, �̇� represents the complex conjugate of the phasor 𝑥, 𝛹𝑘𝑖 are the 

phase angles of the bus voltages. From equation 3.19, active and reactive powers at the buses 

are extracted as expressed in the following equations: 

 𝑃𝑘 = 𝐸𝑘 ∑ 𝑌𝑘𝑖
𝑛
𝑖=1 𝐸𝑖  cos(휃𝑘 − 𝛹𝑘𝑖 − 휃𝑖)  (A.6.a) 

𝑄𝑘 = 𝐸𝑘 ∑ 𝑌𝑘𝑖
𝑛
𝑖=1 𝐸𝑖 sin(휃𝑘 − 𝛹𝑘𝑖 − 휃𝑖)  (A.6.b) 

For PV buses there are ℎ − 1 equations of type (a), while for PQ buses there are 2(n − h) 

equations of type (a) and (b). Overall, there is a system of 2n − 2h + ℎ − 1 = 2𝑛 − ℎ − 1 

equations, which being as same as the number of unknown variables, has unique solution. 

A variety of numerical methods have been applied in literature for the power flow 

calculation, with the Newton-Raphson method being the most popular [97]. The steps of this 

algorithm are briefly outlined in the pseudo-code presented in Table A.1-1. 

Table A.1-1 Pseudo-code for Newton-Raphson power flow calculation method 

Newton-Raphson method 

 Input: Bus admittance matrix of the network 𝒀 , active powers and voltages of PV buses, 𝑷2, … , 𝑷ℎ 

and |𝑬2|, … , |𝑬ℎ|, active and reactive powers of PQ buses 𝑷ℎ+1, 𝑸ℎ+1, … , 𝑷𝑛, 𝑸𝑛, error tolerance 
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𝑡𝑜𝑙𝑙 

1: Initialisation: set 𝐸1 = 𝐸2 = ⋯ = 𝐸𝑛 = 1 and 휃1 = 휃2 = ⋯ = 휃𝑛 = 0 

2: while (∆𝑷, ∆𝑸) > 𝒕𝒐𝒍𝒍 

3:       Calculate (𝑷ℎ+1

∗
, 𝑸ℎ+1

∗
, … , 𝑷𝑛

∗
, 𝑸𝑛

∗
) from equations 3.20.a and 3.20.b 

 

4:       Determine errors  ∆𝑷 =  [
𝑷ℎ+1 − 𝑷ℎ+1

∗

⋮

𝑷𝑛 − 𝑷𝑛

∗
] and  ∆𝑸 = [

𝑸ℎ+1 − 𝑸ℎ+1

∗

⋮

𝑸𝑛 − 𝑸𝑛

∗
] 

 

5:          Calculate Jacobian 𝑱 = [

𝝏𝑷

𝝏𝑬

𝝏𝑷

𝝏𝜽
𝝏𝑸

𝝏𝑬

𝝏𝑸

𝝏𝜽

] 

6: 
       Determine voltage and phase angle adjustments as [

𝜟𝑬
𝜟𝜽

] = 𝑱−1 [
𝜟𝑷
𝜟𝑸

] 

7:        Adjust voltage amplitude and phases 𝑬 = 𝑬 + ∆𝑬 and 𝜽 = 𝜽 +  𝜟𝜽 

8: end while 

Under the Newton-Raphson method for the resolution of systems of non-linear equations, 

voltage magnitudes and phases are initialised to arbitrary values. Active and reactive powers 

are subsequently calculated using the equations defined above in order to determine an error 

function. The Jacobian matrix is then employed to calculate the voltage magnitude and phase 

angle adjustments from the error function. The process stops when the error is below a pre-

defined tolerance. 

A.2 Definition of a mathematical optimisation problem 

Let 𝑓 be a mathematical function of a variable 𝑥 defined by the following equation: 

𝑓(𝑥):ℝ → ℝ  (A.7) 

Where 𝑥 belongs to the set of real numbers. The above definition states that 𝑓 associates one 

real number to each and every real numbers. In this case the domain of 𝑓 is the whole set of 
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real numbers, but in general we will consider subsets 𝑋 ⊂ ℝ. Now, let us consider the 

definitions below: 

Definition 4.   

𝑥∗ 𝑖𝑠 𝑔𝑙𝑜𝑏𝑎𝑙 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑓 𝑓: X → ℝ  𝑖𝑓 ∀𝑥 ∈ 𝑋  𝑓(𝑥∗) ≤ 𝑓(𝑥)   (A.8) 

Similarly the definition of local minimum is provided hereby. 

Definition 5.  

𝑥∗ 𝑖𝑠 𝑙𝑜𝑐𝑎𝑙 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑓 𝑓: X → ℝ  𝑖𝑓 ∃휀 > 0 𝑠. 𝑡.  𝑓(𝑥∗) ≤ 𝑓(𝑥) ∀{𝑥 ∈ 𝑋} ∩

{|𝑥 − 𝑥∗| < 휀}   

(A.9) 

Hence, local minima are defined in a subregion of 𝑋. Now, more details on the function’s 

domain: in general X is an Eucledian space in ℝ𝑛 = ℝ × ℝ × …× ℝ 𝑛 𝑡𝑖𝑚𝑒𝑠; it is a finite n-

dimensional vector space where the inner product among n-dimensional vectors can be 

computed. Which now means that the variable 𝑥 is n-dimensional (it is a vector 𝑥 ∈ ℝ𝑛). X is 

often defined by a set of constraints, in the following forms: 

𝐴𝑖𝑥 ≤ 𝑏𝑖  (A.10) 

𝐴𝑒𝑥 = 𝑏𝑒  (A.11) 

The former is a set of 𝑚 inequality constraints and the latter is a set of 𝑚 equality constraints, 

defined by 𝑨𝑚×𝑛 matrices and 𝒃𝑚×1 vectors. If the above expressions are verified, we will 

say that 𝑥 ∈ 𝑋. Next, the definition of a continuous function:  

Given a function 𝑓: X → ℝ, 𝑓 is continuous in 𝑥0 ∈ 𝑋 if : 

∀휀 > 0 , ∃𝛿 > 0 𝑠. 𝑡. ∀{𝑥 ∈ 𝑋} ∩ {|𝑥 − 𝑥0| < 𝛿} ⟹ |𝑓(𝑥)  − 𝑓(𝑥0) | < 휀  (A.12) 

The above definition is important because of the following theorem 

Theorem1: Extreme value theorem (Weirstrass) 



A.2 Definition of a mathematical optimisation problem A-7 

 

A-7 

 

If 𝑓 is a real-valued function in a compact space 𝑋,then 𝑓 has at least a maximum and a 

minimum 

The proof of the above theorem is available in any calculus literature hence, it is not provided 

here. Also, considering that linear programming is widely adopted in mathematical 

optimisation but not proposed in this research, it is not defined here and instead convex 

optimisation is brought forward. 

Definition 5. 

 𝑋 ⊂ ℝ𝑛 is a Eucledian space and it is said to be a convex set if  

∀𝑥, 𝑦 ∈ 𝑋, ∀𝑡 ∈ [0, 1]  the following expression holds, (1 − 𝑡) 𝑥 + 𝑡 𝑦 ∈ 𝑋 (A.13) 

Subsequently: 

Definition 6. 

if 𝑋 ⊂ ℝ𝑛 is a convex set, 𝑓: X → ℝ is a convex function if 

∀𝑥, 𝑦 ∈ 𝑋, ∀𝑡 ∈ [0, 1]  the following expression holds,  

𝑓((1 − 𝑡) 𝑥 + 𝑡 𝑦) ≤ 𝑓(𝑥)(1 − 𝑡) + 𝑡 𝑓(𝑦)  

(A.14) 

The above definition, coupled with 5.2 and 5.3 are important because of the following 

corollary. 

Corollary 1. 

In an unconstrained optimisation problem, 𝑎𝑟𝑔𝑚𝑖𝑛
𝑥∈ℝ𝑛

𝑓(𝑥), where 𝑓 is convex and 

differentiable, any point 𝑥∗ that verifies 𝛻𝑓(𝑥∗) = 0 is a global minimum. 

The proof is presented in The proof is provided in [126]. 

Crucially, if the above is verified, from the Extreme value theorem, there exists a minimum, 

and it is global. Needles to say that this is a major conclusion that greatly improves the 



A-8 Appendix 

 

A-8 

 

chances of solving a non-linear optimisation problem. Few last definitions are the following 

ones: 

Definition 7. 

𝑎𝑟𝑔𝑚𝑖𝑛
𝑥∈ℝ𝑛

𝑓(𝑥) is the argument 𝑥∗ ∈ ℝ𝑛 that minimises 𝑓(𝑥)   

 

Definition 8. 

𝑚𝑖𝑛
𝑥∈ℝ𝑛

𝑓(𝑥)  is the minimum value of 𝑓 when 𝑥 ∈ ℝ𝑛 

𝑓(𝑥) is called objective function and 𝑥 is the decision variable 

Finally, a major concerning fact is that, if the convexity (concavity) conditions are not met, 

the existence of a global minimum (maximum) is not guaranteed. Therefore, convex 

optimisation algorithms will only find local minima, and meta-heuristic algorithms could be 

used to find global minima. 

A.3 Algorithms for mathematical optimisation 

Interior point algorithm 

 Input: Objective function 𝑓(𝑥) and set of constraints 𝑐𝑖(𝑥) = 𝑏𝑖, 𝑖 = 1,2,… ,𝑚 

1: Initialisation: Select feasible starting point 𝑥0 ∈ ℝ𝑛 𝑠. 𝑡. 𝑐𝑖(𝑥) = 𝑏𝑖 and convergence tolerance 

휀𝑡𝑜𝑙 

2: Set initial iteration 𝑘 = 0 and KKT values, defined by (5.13) – (5.16), as K = +∞ 

3: while  K𝑘 > 휀𝑡𝑜𝑙 do 

4:      𝑘 ← 𝑘 + 1 

5:      𝜇𝑘+1 ← 𝑐 𝜇𝑘 , 𝑐 < 1 

6:      Define augmented objective function from (5.12) 

7:   Define system of KKT conditions 

8:   Solve system on non-linear equations with Newton-Raphson and obtain K𝑘 

9: end while 
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Particle Swarm optimisation 

 Input: Objective function 𝑓(𝑥) and set of constraints 𝑐𝑖(𝑥) = 𝑏𝑖, 𝑖 = 1,2,… ,𝑚 

1: Initialisation: Generate random initial population P𝑝 = {𝑥 ∈ ℝ𝑛|ℎ(𝑥) = 0⋂𝑔(𝑥) ≥ 0}, 

iteration 𝑘 = 0 and set maximum number of iterations 𝑘𝑚𝑎𝑥. Initialise particles’ best personal 

positions as 𝑝𝑖,0 = 𝑓(𝑥𝑖,0) ∀𝑖 and swarm’s global best position as 𝑔0 

2: while  k  < 𝑘𝑚𝑎𝑥do 

3:      𝑘 = 𝑘 + 1 

4:      Update 𝜑𝑝,𝑘 = 0.99 𝜑𝑝,𝑘 and 𝜑𝑔,𝑘 = 0.99 𝜑𝑔,𝑘 and randomly generate 𝜉𝑝, 𝜉𝑔~𝑈(0,1) 

5      for 𝑖 ← 1 to (𝑝) do 

6:            Update particles’ velocity following (5.18) 

7:             Update particles’ position following (5.19) 

8:      end for 

9: end while 
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A.4 Setting for case study 2 

 

Figure A.4- 1 Electricity demand profiles for 19 houses in winter (weekday and weekend) and spring (weekday 

and weekend) 

 

Figure A.4- 2 Electricity demand profiles for 19 houses in summer (weekday and weekend) and autumn 

(weekday and weekend) 
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Figure A.4- 3 PV generation profiles for installation sizes 1, 2 and 3 kWp (larger installation provides higher 

power) in winter (weekday and weekend) and spring (weekday and weekend) 

 

Figure A.4- 4 PV generation profiles for installation sizes 1, 2 and 3 kWp (larger installation provides higher 

power) in summer (weekday and weekend) and autumn (weekday and weekend) 
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Figure A.4- 5 Electricity price profiles for eight days distributed accross one year 

 

Figure A.4- 6 Availability at home for 10 EVs in winter (weekday and weekend) and spring (weekday and 

weekend) 
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Figure A.4- 7 Availability at home for 10 EVs in summer (weekday and weekend) and autumn (weekday and 

weekend) 

A.5 Decentralised MOO results 

Considering the framework proposed in Chapter 6.2, if a PV installation is available, then 

assuming that the energy generation from the PV system cause zero-emission (life cycle CO2 

emissions are out of scope for this research) it follows that by minimizing grid net exchange 

CO2 emission is also minimised. If the PV installation is not available, then emissions are 

minimised if the EV discharges in periods with high specific CO2/kWh. In the present work, 

we assume that a PV system is available.  shows the result of the ANEC method minimizing 

both CO2 emission and grid net exchange. Given the negligible variation of the two objective 

functions among the 11 Pareto optimal solutions, we consider grid net exchange and CO2 

emission minimisation to be equivalent. 
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Figure A.5- 1 Bi-objective optimisaiton of CO2 emissions and grid net exchange 

 

Figure A.5- 2 Pareto fronts for 10 EVs, under scenario 2c) in Chapter 6.2 



 

 


