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Abstract
The aim of the present work is the development of a computational tool to ease the numerical
simulation of cavitating flows in domains of complex topology or with arbitrary moving bound-
aries. Within the framework of Computational Fluid Dynamics (CFD), an Immersed Boundary
(IB) Method has been developed. According to the IB methodology, the grid that discretises
the computational domain does not need to conform to the geometry and the solid boundaries
are modelled on a fixed canonical grid by alternations of the governing equations in their vicin-
ity. This modelling strategy is beneficial in terms of both computational cost and numerical
solution. The grid generation, which is a complex and time consuming process, is simplified
as a regular canonical grid, non-conformal to the boundaries, can be used. In addition, when
moving boundaries are present, a conformal grid would need to adapt or deform following the
motion of boundaries, which would increase the computational cost of the simulations in the
first case and affect the solution in the latter case; the use of IB method alleviates these issues.
The developed method follows the direct-forcing approach, which simply adds to the governing
equations a source term to account for the body force acting on the fluid. The simplicity of
the method makes it suitable for complex flow regimes, including phase change, strong shocks
and compressibility effects, as well as Fluid Structure Interaction (FSI). Since cavitation dy-
namics regard a wide range of applications of engineering interest, from hydraulic machines
to novel therapeutic techniques, the method is designed to be applicable in a wide range of
flow regimes. Turbulent modelling and flow induced motion has been taken into account. The
method has been successfully applied to cavitating and incompressible cases where conventional
techniques are not easily or at all applicable. The shock-wave interaction with material inter-
faces is studied via the high-speed impact of a solid projectile on a water jet, which has been
studied only experimentally before and only qualitative observations existed. The numerical
investigation with the proposed methodology unveiled rich information regarding the physics
of the impact, the resulting shock formation, cavitation development and interface instabil-
ities initiation. Moreover, the methodology was applied on the thoroughly studied pulsatile
flow through a bi-leaflet Mechanical Heart Valve, to provide additional information regarding
shear stress development. The methodology aids an experimental campaign employing novel
shear stress measuring techniques, carried out by our collaborators. The research work and
the developed method described in the present Thesis, intend to set the foundations for more
elaborate numerical investigations of highly complex problems of Fluid Dynamics.
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Project’s Contribution
The novelty of the present research work, is outlined by the attributes of the developed method
and the problems that where addressed:

Simplicity of formulation The forcing method chosen benefits from the simple formulation
and minimum changes of the solver. The calculation of the source term is a straightfor-
ward procedure, that avoids the complexities and the computational cost of other method-
ologies that involve multiple interpolation steps, adaptation of the computational stencil
or geometrical alternation of the computational cells. Moreover, it is a highly ”portable”
numerical tool that can be coupled with different numerical flow solvers.

Range of Applicability The method is designed to address a wide range of applications.
Special care is given on turbulence modelling within RANS framework. Also, apart from
the prescribed movement, flow induced motion of the immersed boundary is taken into
account. The method can be applied on flows of complex geometry, turbulent cavitating
flows, as well as biological pulsatile flows of transition Reynolds number. When all the
individual modelling features are put together, the method is able to deal with turbulent
cavitating flows with Fluid Structure Interaction.

Cases studies With the developed method the simulation of problems which is prohibited
with conventional CFD tools was made possible. The numerical investigation of the
high-speed impact of a solid projectile on a water jet is made possible with the use of the
proposed Immersed Boundary Method. Unprecedented detailed quantitative information
about the physics of the impact, the developed shocks and cavitation, that where only
captured qualitatively by experiments is provided. In addition, the method is applied
on the wall shear stress study for the biological pulsatile flow through a bi-leaflet Me-
chanical Heart Valve. Although Immersed Boundary Methods is the standard approach
in modelling prosthetic heart valves, the study aims to shed light in the shear stress
distribution and to support the findings of a novel measurement technique developed by
our collaborators.
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1.1 Background and Motivation
As Immersed Boundary methods are characterised those methods that lead to flow simulations
on Cartesian grids, non-conformal to domain geometry. The term was first introduced to
describe the method developed by Peskin [181], who studied the blood flow inside a heart on
a simple non-conformal to the heart geometry Cartesian grid by simulating the effect of the
immersed to the flow boundaries using external forces applied to the fluid.

Since then, this methodology has been studied thoroughly by many researchers and many
alternations and improvements have been proposed, because it tackles the important issue of
grid generation for complex geometries and facilitates the simulations with moving boundaries.
Using this methodology, one does not generate a complex grid that conforms to the boundaries
of the problem domain, but rather simulate the presence of these boundaries in the flow through
modifications in the equations solved.

These methods provide simpler grid generation and easier complex geometry manipulation,
resulting in smoother grids and therefore lowering the computational cost related to grid qual-
ity and transformations. The advantages of these methods over conformal grid approach, is
becoming more clear when moving boundaries are present in the problem under consideration.
In that case, following the conventional approach, the grid should adapt in every step to the
modified domain, thus grid generation should take place in every step and as well as interpola-
tion of the problem’s variables from older to newer grids. Using immersed boundary method,
the domain can be modified without change in the grid, thus the computational cost would
drop significantly.

These exact advantages of immersed boundary methods in problems of moving geometries,
act as the motivation for this study, where this approach is adopted to ease the simulations of
demanding flows with moving boundaries, including solid to liquid impacts, cavitating flows
through diesel injector during closing needle motion or bi-leaflet mechanical heart valve (MHV)
operation.

The conventional strategy of generation of boundary-conforming grids for such problems,
may become demanding and time consuming. When the numerical simulation involves moving
parts with large displacements, common conformal grid strategies result in re-meshing of the
entire domain in every time-step [97], or deforming the grid and adding or removing cell-layers
when a desired cell size is reached [112]. In the case of marine propellers, to accommodate their
rotational motion, either the entire computational domain would be rotated accordingly [11],
or a multi-region mesh would be used, which lets the part of the grid that conforms with the
propeller blades to slide with regards to the global domain [139]. Another approach of over-
set grids [224] (also known as Chimera grids), employs multiple overlapping grids, each one
handling a separate geometrical feature, and relies on interpolating the solution between them.
These techniques increase significantly the difficulty of the simulations and their computational
cost.

Using conventional approaches, Koukouvinis et al. in [112] simulated the opening phase
of the needle of a diesel injector, where the moving needle narrows the passages and the fluid
is highly accelerated and the subsequent static pressure drop leads to cavitation. In order
to simulate this motion, the mesh of the changing domain is adapted in every time step, by
inflating and adding cell layers near the needle surface. This procedure requires an extremely
complicated multi-block grid generation procedure as well as a sophisticated and computational
expensive re-meshing technique during the entire simulation. The use of immersed boundary
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method in the specific problem would result in a much simpler, static and more uniform mesh
and less expensive simulation.

The Chimera method proposed by Steger et al. [213], employs overset grids conforming to
the complex stationary, moving or deforming boundary. The governing equations are solved
in both meshes and the solution is interpolated back and forth between the grids to enforce
the coupling. Such methods have developed in close relation to aeronautic applications [38]
and can achieve high-order of accuracy [195]. Applications may extend to Internal Combustion
(IC) Engines [60] as well as to multiphase problems of free-surface in conjuction with Volume
of Fluid (VOF) method [254]. Using immersed boundary methodology instead of Chimera, not
only would simplify the mesh generation, but it would also avoid the grid-to-grid interpolation
procedure and spatial dicretisation adaptation and eliminate their influence to the solution.

The present study focuses in the development of an immersed boundary method, for cavi-
taing flows with rigid immersed moving boundaries, within the framework of the open source
OpenFOAM [68] toolbox. These flows are of demanding and complex nature, involving strong
compressibility effects, non-trivial vapour and turbulent structures interaction, as well as should
prove challenging for fluid structure coupling.

1.1.1 Applications of Cavitation
Cavitation is the phenomenon of vapour formation in liquids, due to pressure drop [69]. It is
relevant to many engineering applications, as it may occur during the operation of hydraulic
machines, ship propellers, injection systems of Internal Combustion Engines (ICE), as well as
advanced rocket propulsion systems. The flow in hydraulic turbines [58] or Diesel injector noz-
zles [73] is severely and rapidly accelerated, static pressure may drop locally below saturation
value and vapour cavities inception may be initiated, grow to a critical size and subsequently
collapse violently. In these cases, cavitation is a side effect and regarded to be the source of
erosion damage, noise or low efficiency of the mechanical devices. On the other hand, cavita-
tion may prove beneficial when employed in non-invasive medical procedures for therapeutic
purposes, like High Intensity Focused Ultrasound (HIFU) [94, 121, 143] used for lithotripsy.

Cavitation in engineering scales

Turbulent cavitating flows refer to various flow regimes encountered in industrial applications.
The range of the cavitation and cavitation erosion application is vast; it includes, but is not
limited to, marine propellers [11,139], steam turbines [65], water turbines [189,251], oil or fuel
gear pumps [144], Diesel injection systems [57, 73, 112, 114, 156, 167–170, 249], as well as the
high-speed flows of cryogenic fuels used in liquid rocket propulsion systems [230].

Modern and future emission standards demand increase of mixing and combustion process
efficiency, in order to reduce the harmful by-products. In Diesel engines, these goals may be
achieved by increasing the injection pressure. However, high compression ratios, above 15/1
and 20/1, may lead to severe acceleration of the fuel through injection nozzles risking cavitation
formation [57]. Significant advances in cavitation research have been performed regarding the
Diesel injection systems, via both experimental and numerical studies. Computational tech-
niques have also been advanced alongside, allowing for more complex configurations or flow
regimes to be studied. Giannadakis, Gavaises et Arcoumanis [73] performed simulations for
the cavitating flow in Diesel nozzles at stationary needle lift, assisted by experiments. Kouk-
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ouvinis et al. [112] conducted simulations including prescribed needle motion, which was set
according to the lift profile, while eccentricity was neglected. Örley et al. [168, 169] investi-
gated the primary break-up of the injected fuel in the combustion chamber revealing potential
air entrainment in the nozzle and also accounted for needle lift dynamics, capturing a more
realistic flow field. Naseri, Koukouvinis, Malgarinos et Gavaises [156] assessed the influence of
viscoelasticity (a property of Diesel fuel additives) onto cloud and string cavitation, two mech-
anisms found in injection nozzles; it is observed that viscoelasticity may suppress small-scale
features and stabilise cavities, reducing the intensity of cavitation cloud, however its effect
depends on the orientation of the cavitating vortices inside the flow.

In addition, the link between cavitation and erosion and their effect on industrial applica-
tions is of high importance. Regarding experiments, material samples are exposed to multiple
operating cycles, usually in extreme conditions, to evaluate erosion damage and material loss.
Correlation of erosion patterns with cavitation formation can be revealed by juxtaposition of
the experimental observations and of the detailed description of the flow field extracted from
simulations. Dular and Coutier-Delgosha [54] study numerically and experimentally cavitation
erosion on a metal hydrofoil, Gavaises, Koukouvinis et al. [70], investigate cloud cavitation for-
mation and collapse in an axisymmetric apparatus developed for surface erosion acceleration
tests, while Koukouvinis et al. [112] unveil cavitation and erosion patterns inside an Diesel
injector’s nozzle.

Liquid-to-solid Impacts

Liquid to solid impacts lead to shock wave release, which are reflected on material interfaces as
rarefaction waves causing cavitation induction, growth and collapse in the liquid volume, with
subsequent shock wave emission and potential erosion development on the solid.

Liquid impacts on solids regard physical problems of high engineering interest, as they are
linked to erosion development [65] and eventual damage of mechanical structures and machines.

Cavitation formation and induced erosion can be realised during the impact of liquid
droplets on steam-turbine blades [58], rain droplets impacting on airplanes [91] and wind-
turbine blades [2]. Shock-wave interaction with material interfaces has been extensively demon-
strated in e.g. underwater explosions [115] and spark/laser-generated bubbles [110], or the
excitation of pre-existing nuclei by acoustic pulses [122].

Many experimental works on the mechanisms and the dynamics of liquid-to-liquids im-
pacts [23,163] or liquid-to-solid impacts [64], where solid compliance [66], deformation [8,24,30]
or fracture [25] are also investigated, have established a solid understanding of the phe-
nomena taking place, pinpointing cavitation formation due to pressure waves as one of the
main causes of erosion. Moreover, shocks’ interaction with liquid-gas interfaces has been
thoroughly investigated and complex wave structures have been identified by numerous re-
searchers [84, 86, 90, 96, 160, 164].

Such interactions between waves and interfaces have also applications in the medical and
bioengineering fields [96]. For example, High Intensity Focused Ultrasound (HIFU) [94,121,143]
is a non-invasive technique which relies on the production of strong pressure waves that induce
the formation and collapse of cavities within tissues. The strong forced oscillations of such
cavities lead to extreme localized heating and malignant tissue destruction (histotripsy) or the
destruction of solid material, termed as stone (lithotripsy). Interactions of shock waves with soft
matter and bubbles occur also in brain injuries caused during mild domestic explosions [121,241]
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and common head concussion accidents [161, 162] happening in everyday life. There are even
animal species that have evolved to exploit the generation of shock waves through cavitation
to stun or kill prey (snapping and mantis shrimps [111, 177]).

Mechanical Heart Valve Cavitation

A review of studies related to cavitation in bio-engineering applications, either as a side-effect
or as a working functionality is presented by Brujan [29]. However, here we briefly mention
the potential of cavitation formation in artificial heart valves.

Numerous research studies have been devoted in to unveiling and understanding the blood
flow (hemodynamics) through prosthetic Mechanical Heart Valves (MHV), by means of both
experiments, either in vitro or in vivo, and numerical simulations. Yoganathan et al. [248] and
Sotiropoulos et Borazjani [208] present reviews of the state-of-the-art on MHV hemodynamics
research, focusing mainly on computational investigations. The main characteristic of these
flows, which serves as a motivation for the majority of studies, is the development of non-
physiological flow patterns. These patterns include transition to turbulence and high-speed
jetting, that encourage development of high shear stresses that can damage the blood cells.

Indications of potential cavitation induction during the operation of MHV have been pin-
pointed by Kini et, [109], Lo et al. [133] and Graf et al. [79], however actual proof remains an
open question. These studies have identified flow patterns favouring cavitation induction, dur-
ing the operation of MHV or have observed cavitation induction in MHV mimicking devices.
Cavitation in MHV not only leads to erosion of the metal surface but it may also be related
to hemolysis, a chemical alternation of blood that can lead to thrombosis, through generation
of severe shear stresses that can damage the blood cells.

The identified mechanisms that can initiate cavitation inception, according to Lo et al. [133],
are namely water hammer, squeeze flow, vortex and Venturi effects. Tension and compression
waves created on the closing phase of the valve, may lead to water hammer effect, as wall as
squeeze effect due to closing gap between the leaflets and high-speed leakage jets, known as
Venturi effect. However, the vortex effect is unclear whether is an important factor or not.

1.1.2 Applications of Immersed Boundary
Immersed Boundary IB methods, address a wide range of applications, regarding computational
domains with either complex geometries and topologies or moving boundaries. In addition,
they have been proven useful in various flow regimes and able to handle incompressible and
compressible flows, multiphase flows with contact interfaces, heat transfer and turbulence.
Finally, IB methods reportedly ease Fluid Structure Interaction (FSI) simulations [209], which
may be relevant to a broad range of studies, spanning from the flow around flying insects,
aquatic swimming, motion of humans, to cases of engineering interest like vortex induced
vibrations and wind turbine farm flows.

As it has been already stated, the concept of IB methods originated from the investigation of
incompressible blood flow within the contracting and expanding elastic boundaries of a model
heart by Peskin [181]. IB methods are widely used in the numerical studies of biological flows.

Gilmanov and Sotiropoulos [74, 75], Ge [47, 71, 72] and Borazjani [17, 19, 20, 22] have de-
veloped and utilised an ghost-cell IB method to study the incompressible blood flow through
a mechanical heart valve, with either prescribed or induced by the flow motion. Borazjani et
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al. [18] even combined the IB approach with a over-set methodology to account for the cardiac
chamber contraction as well. Cristallo et al. [45] performed preliminary computations of the
pulsatile flow through a static bi-leaflet heart valve, in semi-open position, in a axisymmetric
aorta-mimicking channel, using a direct forcing IB method. Yang and Balaras [7,245] also ap-
plied a direct forcing IB approach for Large Eddy Simulations (LES) computations of biological
flows and studied the pulsatile flow through a model of arterial stenosis [7], at Re = 1500, and
though a bi-leaflet mechanical heart valve in a axisymmetric aorta with prescribed motion [245],
at Re = 4000. De Tullio et al. [228] employed a direct forcing IB method to study the flow
through a bi-leaflet mechanical heart valve, with flow induced motion and a realistic aortic
root geometry, which included the Valsalva sinuses. Moreover, they investigated the influence
of the root geometry [49] on the flow, which is relevant to a surgical operation called Bentall
procedure that replaces not only the valve, but the root (the sinuses) and the ascending part
of the aorta as well.

Apart from the bio-engineering applications, the use of IB in particulate flows is a commonly
accepted approach, according the review study of Deen et al. [52]. Uhlmann [229] developed a
direct forcing IB method for incompressible particle flows, which is widely adopted. Municchi
and Radl [153, 154] used a hybrid of direct forcing and Fictitious Domain (FD) IB method in
momentum, heat and mass transfer studies of gas-particle suspensions (heterogeneous mixtures
of particles in gas). Various studies used FD [219, 220, 234] or direct forcing IB methods [63]
in problems of heat transfer in particulate flows .

Moreover, IB methodologies are utilised in cases of industrial interest, characterised by
developed or transitional turbulent regimes and complex topologies. Fadlun et al. [59] and
Cristallo and Verzicco [46] made use of direct forcing IB method to perform LES of the high
Reynolds flow in an Internal Combustion (IC) engine’s cylinder with a moving piston. Arienti
et al. [4] studied the incompressible flow through a Diesel injector nozzle, with the aid of
a level-set cut-cell Cartesian grid solver. Mochel et al. [149] performed Unsteady Reynolds
Averaged Navier Stokes (URANS) simulations of the compressible high-Reynolds flow over a
space launcher, adopting a direct forcing approach to account for complex geometrical details
and lift the burden of grid generation.

Regarding cavitating flows, Battistoni et al. [9], Zhao et al. [253] as well as Örley et al.
[167, 169, 170] employed a cut-cell IB methodology on the numerical prediction of cavitation
inception in a Diesel injector with a moving needle. Recently, investigations of the cavitating
flow around a moving underwater projectiles by Huang et al. [98] and Lee et al. [174], or around
blunt bodies by Xu et al. [242, 243], also made use of cut-cell approach. On the other hand,
a direct forcing method has been used by the authors’ group to study cavitation induction in
gear pumps by Mithun et al. [144] and during the closure of the claw of the pistol shrimp by
Koukouvinis et al. [111].

Kadoch et al. [106] proposed a penalization method, in the framework of a pseudo-spectral
solver, intended to be used for incompressible flows with scalar transport and mixing, which
may concern various flows of industrial interest as chemical reactors, ventilation systems or
atmospheric pollutant mixing. Cai et al. [35] studied wave energy harvesting using an IB
method to model the semi-submerged heaving cylinder.

The IB approach facilitates the numerical investigation of, non-trivial and rather special
problems of fluid dynamics. Gilmanov and Sotiropoulos [75], studied the flow induced by
flapping insect wings or swimming fish. Vincent et al. [232] investigated hydroplaning flows
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with the help of a FD method. These flows regard the loss of contact of automotive wheel
tires with wet road, when the water depth in front of the tire generates enough pressure
to overcome the vehicle’s weight. Regarding aerodynamics, Grimberg and Farhat [82] used
an Embedded Boundary method to simulate parachute inflation, relevant to state of the art
aerospace development.
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1.2 Computational Modelling of Cavitation
Multiphase Modelling Multiphase flow modelling regards a wide range of applications.
In depth analysis of modelling strategies and numerical methods for multiphase flows, can be
found in the books of Städtke [212] and Prosperetti [184].

In order to model gas and liquid two-phase flows, one can either consider the two-fluid
mixture as non-homogeneous or homogeneous. In the first case, the two fluids are described
by separate set of balance equations, which model the the mass, momentum and energy con-
servation equations and phase-to-phase interactions by appropriate source terms. In the latter
case, the two fluids are assumed to be in mechanical and thermal equilibrium, and can be
described by a single set of conservation equations of a ”pseudo-fluid” of average properties.
The non-homogeneous mixture is a more accurate approximation of the physics of two-phase
flow, as it stems from the large differences in state and transport properties between the gas
and the liquid and considers the finite rate of interfacial transfer processes. The two fluids are
described by a separate velocity, pressure and temperature fields; however the assumption of a
single pressure field may be valid and simplifies the modelling. The precise description of the
interface is required to correctly estimate the interfacial transfers; this is achieved by either
correlating empirically the interface with local flow conditions or by explicitly advecting or
tracking the interface. On the other hand, the homogeneous mixture approach relies on aver-
aged flow properties and no longer needs the interface coupling. The mechanical and thermal
equilibrium, means that the two fluids share the same velocity, pressure and temperature field.
However, the transfer processes between the phases can be conducted with either infinite or
finite rate.

Given that the interface can be described by a color or marker function, usually of a
Heaviside form, the methods can be classified into methods that advect directly the interface
function and those that advect point-markers from whom the interface function is constructed.
The latter class of methods is dubbed front-tracking, and the interface can be described by a
geometric surface shaped by the inter-connection of the marker points; the marker points are
advected, most likely like Lagrangian particles and may carry additional information regarding
the properties of the corresponding fluid or phase. The former category of methods, uses
a transport equation to advect a scalar field that represents the interface function on the
numerical background grid, where the equations of the single fluid are solved.

The Heaviside function (also known as step function) is well suited for distinguishing the
different fluids or phases, by simply receiving non-zero value only in the region occupied by a
specific fluid. The related interface would coincide with the sharp step of the Heaviside function
and could be identified by the location where the derivative of the step function, the delta δ
function, receives non-zero values. Therefore is a popular choice.

By simply advecting the interface function, through a transport equation within the frame-
work of Finite Volumes, the solution most probably will be affected by artificial diffusion; the
numerical solution of this transport equation is sensitive to the choice of numerical schemes. A
remedy is found by using Level-Set or Volume-Of-Fluid (VOF) methods. According to the VOF
method, the interface is reconstructed inside the computational cell, using Simple Line Interface
Calculation (SLIC), Piecewise Linear Interface Calculation (PLIC) or similar approach, where
the interface in the cell is approximated by a straight line of specific orientation with regards
the coordinate system or the flow direction. On the other hand, Level-Set method would assign
to the interface function the signed normal distance of each cell from the interface; the fluids
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would be distinguished by the positive or negative sign of the interface function, while the
interface would be recognised by the zero value. As a consequence, Level-set method would
provide a smooth and continuous field with a transitional zone between the fluids, while VOF
method would result in a sharp interface. The VOF method though, is based on the mass
conservation law and thus is more accurate that than the Level-set method.

Cavitation Modelling For simulations of cavitating flows, where liquid and gas-vapour
phases exist, both modelling approaches, two-fluid, employing interface-tracking, and single-
fluid, considering that the two phases compose a homogeneous mixture, can be used. However,
the interface-tracking approach poses computational constrains regarding topological changes
on the interface [184] and thus, it hardens the numerical modelling of phase change, as well
the evolution of the vapour cavities, which often follow the cycle of abrupt initiation, growth
and violent collapse. On the other hand, for a homogeneous mixture of liquid and vapour,
the transfer process may be considered to happen in finite rate, where information about the
interface is still need but can be implicitly extracted from the flow using a interface-capturing
approach, or the mixture can be considered additionally in thermodynamic equilibrium and
the rate of the transfer process infinite, following a Homogeneous Equilibrium Mixture (HEM)
approach. Therefore, single-fluid computations are widely used.

Wang et al. [235] present a review of numerical methods employed on studies of attached,
turbulent unsteady cavitating flows, where interface-tracking and homogeneous mixture models
are summarised.

The HEM models, consider as working fluid, the homogeneous mixture of liquid and vapour,
in mechanical, thermal and thermodynamic equilibrium, with varying density field; the mod-
elling strategies differ regarding the definition of the density field [235]. The continuity and
momentum equation may be coupled with a time-dependent differential equation linking pres-
sure with density, a water-vapour state law for compressible fluids or a barotropic equation.
For homogeneous mixture methods the Rayleigh-Plesset equation or a transport equation for
vapour volume fraction may close the system of mass and momentum conservation equations.

Phase change is triggered when the static pressure is falling bellow vapour saturation pres-
sure (for given conditions), taking into account the isentropic character of cavitating flows.
However, a more ”realistic” criterion would consider the principal stresses and therefore would
be of differential form [235].

Recently, the need of multi-level cavitating modelling has arisen [235]. The accurate solution
of bubble dynamics in microscopic scales should feed through filtering and probabilistic models
a macro-scale flow solver with averaged quantities, for better capturing the physics of the
cavitating flows.

The selection of numerical modelling strategy is dictated mainly by the application, the flow
regime and the primary focus of the study. Since cavitation formation regards a wide range
of applications and different types of cavitation have been identified for various flow regimes,
numerous methodologies have been developed. For instance, in studies of cavitation formation
over marine propellers incompressible solvers employing a homogeneous mixture approach with
finite-rate mass transfer model can be used [11]. On the other hand, for Diesel injection
applications, where effects of compressibility and wave-dynamics are important, compressible
solvers employing HEM coupled with barotropic Equation of State seem more suitable [57].

Even for a single application, when the focus is shifted to specific aspects of the flow,
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different models may be required. Leroux et al. [124], study the turbulent cavitating flow over
a stationary hydrofoil, using a barotropic approach, while Ducoin et al. [53] and Huang et al. [97]
use mass-transfer models, for the same hydrofoil, either stationary or in motion. According to
rationale of the latter, cavitation and vortex dynamics are closely correlated and the baroclinic
torque, which results from the miss-alignment of the pressure and density gradients, plays and
important role. Barotropic models impose an alignment of these gradients, thus mass-transfer
models are favoured for this application.

The most commonly used mass transfer models, are those of Kunz [117], Kubota [116],
Singhal [207] and Merkle [142]. According to these models, an additional advection equation is
solved for the vapour phase, in which sink/source terms are used to account for phase change.
In their work, Ducoin et al. [53], present a comparative computational study between the latter
three models, assisted by experiments. The turbulent cavitating flow over a stationary NACA66
hydrofoil is simulated, for two distinctively different flow regimes, or quasi-steady sheet and
unsteady sheet/cloud cavitation dynamics, and the performance of the models is assessed. The
Merkle model was found to provide closer results to the experimental observations in both
cases. Exploiting the findings of this study, Huang et al. [97] extend the research work to
investigate the turbulent cavitating flow over a pitching NACA 66 hydrofoil, using the Merkle
model. The motion of the hydrofoil increases the complexity of the numerical computation,
because the angle of attack reaches values past stall point and separation induced turbulent
transition has to be account for. In addition, Koukouvinis et al. [112,113] utilise a generalisation
of the Zwart-Gerber-Belamri [258] mass transfer model to investigate cavitation and erosion
correlation for the flow through Diesel injector nozzles. Since an advection equation is solved for
one phase, the location of the interface between the phases is known at every instant and thus,
reconstruction may be applied to keep it sharp. Roohi et al. [188] employed a VOF approach
to capture and reconstruct the liquid-vapour interface, coupled with different mass transfer
models, to study cavitation regimes over a hydrofoil, and the results were in good agreement
with experimental observations. However, it has to be noted that the aforementioned models
involve empirical constants and therefore their applicability depends on correct tuning and
thus, their performance might be situational.

On the other hand, the use of barotropic approach to link pressure and density fields and
predict phase change, can lead to parameter-free formulations. According to this approach,
thermodynamic closure for the governing equations can be achieved by neglecting thermal ef-
fects, not solving the energy equation but rather employing a piecewise with two or three sub-
domains Equation of State (EOS). Usually, the pure liquid phase is governed by Tait equation
and the liquid-vapour mixture by a linearised EOS based on the speed of sound. In addition,
pure vapour phase can either obey the linearised EOS of the liquid-vapour mixture or be treated
as perfect gas, while possibly co-existing non-condesable gas is modelled by the ideal gas EOS.
The liquid-vapour interface predicted by these methodologies is diffused, but this ensures a
continuous variation of speed of sound between the two phases. Dular et Coutier-Delgosha [54]
conduct a joint experimental and computational investigation of the turbulent cavitating flow
over a circular leading edge symmetric hydrofoil, with special interest in erosion patterns; for
the numerical simulations a barotropic cavitation model has been used successfully. More-
over, considering the cavitating flows through Diesel injector nozzles, Koukouvinis, Naseri et
Gavaises [114] assess the performance of barotropic and mass-transfer models; non-significant
discrepancies were found in the predictions of the two methodologies. Similar approach is
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followed by Örley et al. [167–170], who study the cavitation inside injector nozzle, including
needle motion, as well as they extend the single-fluid formulation into a two-phase method to
account for non-condensable gas along with the liquid-vapour mixture and investigate cavita-
tion in injection nozzles in conjunction with primary jet break-up. Although these methods
do not capture a sharp interface, Ogloblina et al. [165] employ a barotropic cavitating model
in the simulations of the collapse of bubble clusters; because of the fine spatial resolution this
approach is able to resolve the interface implicitly.

The aforementioned studies, employing mass transfer and barotropic methodologies, regard
computations on the Eulerian frame of reference. However, cavitating flows may be modelled
in a Eulerian-Lagrangian formulation. Giannadakis, Gavaises et Arcoumanis [73] as well as
Gavaises, Koukouvinis et al. [70] follow this approach. The liquid phase is solved on the con-
tinuous Eulerian reference frame while cavitation is considered as a discrete phase, comprised
of dispersed gas/vapour bubbles, tracked on the Lagrangian frame of reference. Instead of
resolving the kinematics and the dynamics of each individual bubble, the dispersed vapour
phase is composed by parcels of identical bubbles, advected by the flow. A stochastic statis-
tical approximation is employed to determine properties of the representative bubble parcels,
while all bubbles one parcel evolve simultaneously according to single-bubble dynamics. The
method is used to perform RANS simulations for the cavitating flow in Diesel nozzles [73],
as well as RANS and LES simulations of the cloud cavitation formation and collapse in an
axisymmetric apparatus developed for surface erosion acceleration tests [70]. Recently, Sou et
al. [210] also presented a numerical investigation of cavitating flow over a step nozzle where
cavitation bubbles were tracked in a Lagrangian way, however the trajectory and the dynamics
of each bubble were calculated individually.

Turbulence Modelling for Cavitating Flows Because cavitation induction regards a wide
range of industrial applications and flows of engineering scales, the selection of strategy for the
treatment of turbulence in the simulations is of high importance. The preferred approach is
to solve for the mean flow and model small-scale spatial or temporal turbulent features by
conducting Reynolds Averaged Navier Stokes (RANS) simulations. However, with the increase
of computational resources, advanced numerical computations become more affordable and
thus, Large Eddy Simulations (LES), which resolve the entire range of turbulent scales, become
an attractive and realistic alternative.

In their review, Wang et al. [235] apart from the physics of the attached turbulent cav-
itating flows and the alternative multiphase modelling methodologies, turbulence modelling
is thoroughly discussed. Within the framework of RANS, the default eddy-viscosity models
(EVMs), suitable and widely used in engineering applications, seem to lack in capturing the
dynamics of turbulent cavitating flows. These models, compared to Reynold stress models
(RSMs), exhibit less sensitive connection between turbulent stresses and streamline curvature,
body forces and strong transport effects. Moreover, characteristics of the cavitating flows like
the non-linear behaviour of the pressure-strain relation, the breakdown of turbulence scales in
the liquid-vapour mixing region, as well as compressibility effects and reduced speed-of-sound
values in the vapour regions, conflict with the turbulence modelling principles. The empirical
constants present in EVNs, such as the popular two-equation k − ω and k − ε models, need
adjustment for non-equilibrium conditions found in such transient flows with swirl, adverse
pressure gradients and recirculation.
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From numerical tests on sheet cavitation, it is observed that standard EVMs underestimate
the cavity length and give poor agreement with experiments regarding velocities and void-ratio
within the cavity [44]. The standard models tend to generally over-predict the turbulent
eddy viscosity inside the vapour region. Especially for sheet cavitation the high viscosity
values towards the rear end of the cavity yield higher stresses that restrict the re-entrant jet
[44,53,67,124,185]. The re-entrant jet is the principal mechanism of unsteady cavitation, that
initiates from the downstream end of the cavity, develops underneath it and moves upstream to
break the cavity cycle. The failure of the standard EVMs to capture the physics of the attached
turbulent cavitating flows becomes more clear by the numerical work of Reboud et al. [185],
which demonstrated that inviscid simulations give results closer to experimental findings than
viscous computations employing standard k−ε or k−ε RNG models. To counteract this over-
prediction, Reboud et al. [185] and Coutier-Delgosha, Patella et Reboud [67] proposed the
introduction of a scaling function that takes in to account the compressibility of the mixture
and reduces the turbulent viscosity in the mixture region. The Reboud correction is thereafter
widely adopted and applied to the well-known two-equation models, k− ε, k− ε RNG, k− ω,
k − ωSST [43, 53, 54, 97, 124, 134].

On the other hand, LES computations applied to cavitating flows do not encounter similar
modelling issues because even the small scale features are resolved. Koukouvinis, Naseri et
Gavaises [114] perform a thorough assessment of turbulence modelling for the prediction of in-
cipient and developed cavitation for flows inside Diesel injector nozzles. They consider RANS
simulations, using RNG k−ε, Realizable k−ε and k−ω SST , linear pressure-strain Reynolds
Stress Model (RSM), as well as LES computations with WALE model. The Reboud correction
was also considered. It is found that either EVMs or RSM may not capture cavitation inception
as they do not resolve low pressure existing in vortex cores, while prediction of unsteady cavita-
tion leads to unphysically stable cavities and proves highly dependent on configuration. On the
contrary, the LES computations predict correct flow field, vortical and vaporous structures,
proper cavity shedding and associated instabilities. Following a slightly different approach,
instead the traditional explicit subgrid-scales (SGS) model based LES, Egerer et al. [57], Ör-
ley et al. [167–170] propose the use of implicit LES to simulate the turbulent cavitating flow
in Diesel injection systems. Implicit LES introduces turbulence modelling directly to the nu-
merical discretisation of the conservation equations. Adaptive Local Deconvolution (ALDM)
is used, which is a non-linear Finite Volume Method, capable of capturing pressure shocks
and allowing pressure waves and turbulence to be propagated without numerical dissipation.
However, these findings cannot reduce the significance and relevance of RANS computations
to industrial applications; although the predictions may be found less accurate than those of
LES, they consist of reliable and efficient numerical tools for engineers.
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1.3 Immersed Boundary Methods
The Immersed Boundary Methods were first introduced by Peskin [181], who studied the
incompressible blood flow inside the heart, by solving the flow equations on a Cartesian non-
conformal mesh and adding a force term in the momentum equations representing the elastic
boundaries of the heart, immersed in the global computational domain. According to studies of
Mittal and Iaccarino [147] and Iaccarino and Verzicco [100], the Immersed Boundaries Methods
can be classified into indirect boundary condition imposition by continuous, discrete forcing
or penalization methods and direct boundary condition imposition by ghost-cell or cut-cell
methods. A similar classification is followed by Sotiropoulos and Yang [209] who review the
Immersed Boundary methods and applications in the context of Fluid Structure Interaction
(FSI). The methods are divided into diffused interface, corresponding to indirect methods, and
sharp interface, corresponding to direct methods.

In the indirect methods, the no-slip boundary condition (b.c.) at the immersed body is
imposed not by directly assigning the boundary value but rather by introducing a forcing term
in the momentum equation that drives the solution to the desired value. According to the
continuous approach, the forcing term is added in to the continuous form of the equations
and therefore depends on the discretisation procedure, whereas for the discrete approach, the
term is introduced after the discretisation. The method developed by Peskin [181] falls in the
continuous approach and was targeted to problems with elastic boundaries. In the case of rigid
boundaries however, the continuous forcing approach may result in stiff numerical schemes or
lead to stability problems for highly unsteady flows [147], as it would require very large values
of elastic modulus [119] or an iterative feedback forcing technique with high values of damping
coefficients [77]. On the other hand, the discrete forcing approach, overcomes these issues for
rigid bodies, by usually employing an initial prediction step where the momentum equations
are solved neglecting the forcing term and the velocity estimation is used to evaluate the forcing
term [15, 149, 229]. In these methods, the interface between the fluid and the solid region is
diffused and occupies few computational cells in the vicinity of the surface of the immersed
body.

In the direct methods, the desired wall boundary conditions for the immersed body are
imposed by alternations in the numerical stencil on the computational cells in the vicinity of
the immersed body interface. According the ghost-cell approach [19,72,136,218], the boundary
conditions are imposed on cell faces and nodes outside but in the immediate vicinity of the
immersed body. The boundary condition values are calculated by means of interpolation
between the b.c. point and its projection on the immersed body interface, with the use of
artificial mirror and ghost points. On the contrary, the cut-cell methods [88,102,138,170,175,
198, 199] reconstruct the immersed boundary by altering the geometry and topology of the
computational cells cut by the immersed body interface. The computational cells are divided
into fluid and solid sub-cells by the intersecting immersed surface, which creates a new cell face
upon which the boundary conditions are applied. The computational cells’ topology therefore
is altered, so that a regular hexahedral may become generic polyhedral, and the equations’
dicretization is modified. These methods are considered to provide the most mathematically
and geometrically accurate representation of the immersed body, as well as correct boundary
condition imposition. In contrast to the indirect or diffused interface methods, they offer a
sharp representation of the interface between the fluid and the solid.

The forcing methods usually involve a Lagrangian-Eulerian transformation [77,119,181,229]
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because the forcing term is evaluated on the Lagrangian points that represent the immersed
boundary and then spread on the neighbouring Eulerian computational cells using a Dirac
Delta function. The Lagrangian-Eulerian and the inverse transformations could become the
bottle-neck of the numerical solution of the governing equations. Discrete forcing Immersed
Boundary methods [15, 149] that evaluate the forcing term in the Eulerian frame and apply
it to all the cells of the immersed body region, by-pass this issue. Moreover, in the ghost-cell
or the forcing methodologies, the projection of the immersed boundary on the background
mesh may result in a stair-case representation of the body as the partially covered cells are
not considered as immersed boundary cells, which, in the case of moving immersed bodies, can
lead to spurious oscillations that degrade the quality of the solution. This issue is overcome by
simply considering even the partially covered cells in the forcing methods [15] or by employing
the more complex, yet more accurate, cut-cell methods [199].

1.3.1 Indirect b.c. Imposition Methods
In order to present a comprehensive summary of the indirect boundary condition (b. c.)
imposition Immersed boundary methods, let us consider the viscous incompressible momentum
equation in the following vector form:

∂u
∂t

=

rhs︷ ︸︸ ︷
−u · ∇u + ν∇2u − 1

ρ
∇p+S + fb (1.1)

where u is the velocity vector, p is the pressure, ν, ρ are the kinematic viscosity and density of
the fluid, fb is the vector of body forces acted on the fluid and S is the vector of any additional
momentum sources present in the domain.

Hereafter, and in the entirety of this text, the vectors in the equations are represented by
bold fond. In addition, herein, the lower case letters refer to Eulerian frame of reference, while
upper case refer to Lagrangian frame of reference (e.g. xi the coordinates of ith Eulerian grid
point and Xk of the kth Lagrangian point), unless explicitly otherwise stated.

The indirect b. c. Immersed Boundary methods presented herein, conclude in alternative
formulations of the body forces fb = fIb(x,u, t), to account for the presence of the immersed
body.

Continuous Forcing Methods

Peskin introduced the immersed boundary technique, to simulate the blood flow through a
model heart, by calculating a force acting on the fluid by the elastic walls of the heart and
adding it to the momentum equation. In his work [181], the flow is considered incompressible
and solved on a Cartesian grid, while the immersed boundary is represented by a set of fibres
tracked in a Lagrangian way. The force is calculated on the Lagrangian points Xk, using an
analogy to the spring force of Hooke’s law. The force on the kth Lagrangian point is calculated
with respect to its equilibrium position Xe

k as:

Fk(t) = K · (Xk(t)− Xe
k) (1.2)

Then, the forcing is spread from the immersed boundary Lagrangian points to the computa-
tional Eulerian grid (Xk 7→ x). The Dirac δ(x) function is employed in the Lagrangian-Eulerian
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(LL7→E) transformation, in order to be localised in the vicinity of the immersed boundary points.
The same interpolation function is used on the inverse (L−1

L7→E) transformation, to estimate the
velocity Vk of the immersed boundary points, from the fluid velocity field, and calculate their
displacement. The LL7→E and L−1

L7→E transformations are expressed by the relations of 1.3a and
1.3b respectively.

fm(x, t) =
∑
k

Fk(t) · δ(|x − Xk|) (1.3a)

∂Xk

∂t
= Vk =

∫
Ωf

u(x, t) · δ(x − xk)gV (1.3b)

This approach was adopted in the work of Lai and Peskin [119] and Griffith and Peskin
[81] [80] and proved suitable for elastic boundaries. However, when used in case with rigid
boundaries, it leads to stiff systems and stability constraints, therefore Goldstein et al. [78]
proposed a feedback forcing method, to reduce oscillations and improve stability and boundary
condition imposition. The source term they proposed for the momentum equation, has a form
equivalent to the linear two-mode controller, popular in control system theory, using as error
input signal the velocity Vk of the immersed boundary points Xk, and consists of two parts,
one integral and one linear part:

Fk(t) = α ·
∫ t

0

Vk(t
′)dt′ + β · Vk(t) (1.4)

This approach can also be interpreted with the spring-damper system analogy, where the
velocity oscillations are smoothed out and convergence is achieved much more quickly than
with simple spring force, as shown in figure 1.1. More source terms could be added to simulate
effects of turbulent drag as well as spacial and temporal derivatives. Saiki et Biringen [190],
adopted the method of Goldstein and coupled with high-order Finite Different scheme to en-
hance the results’ quality. Zhong et al. [255] also followed this feedback forcing approach for
Fluid Structure Interaction problems of vortex induced vibrations.
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Figure 1.1: Time response of velocity u re-plotted from data presented in Goldstein et al. [77]. Apart
from the dependence on the gain values α, β, the results are sensitive on the cell-level Reynolds ReC ,
which measures influence of viscous forces and the cell size.

A similar continuous forcing methodology was proposed by Lima E Silva et al. [205], called
Physical Virtual Model (PVM). According to this method, a forcing term F(X) is calculated
on the Lagrangian IB points explicitly from the flow variables of the previous time-step, using
the interpolated Navier-Stokes equations (f(x) → F(X)), accounting for acceleration, inertial,
viscous and pressure forces, as in 1.5.

F(Xk) = Fa(Xk) + Fi(Xk) + Fv(Xk) + Fp(Xk) (1.5)

where

Fa(Xk) = ρ
∂u
∂t

(xk), Fi(Xk) = ρ(u · ∇)u(xk), Fv(Xk) = −µ∇2u(xk), Fa(Xk) = ∇p(xk)

The forcing is then distributed on the Eulerian grid via the Dirac δ(x) function, added to
the momentum equation and discretised along with the other terms, using a finite differences
scheme.

In any of the aforementioned methodologies, the forcing term is introduced in the equations
and discretised along them. However, the exact Dirac Delta function can not be used in the
numerical computations; rather it is approximated by a smoothing distribution δ(|xi − xs|),
which tends to diffuse the immersed boundary interface. The choice of the distribution function
is essential to these methods as it affects greatly the order of accuracy, and many alternatives
have been proposed by researchers [13,80,81,119,127,181,190]. Indicatively, the discrete Delta
function δ(|xi − xs|) = δ(r), was formulated as in relation 1.6a by Peskin [181], while Saiki
et Biringen [190] proposed the approximation of 1.6b and Beyer et LeVeque [13] introduced
the form of 1.6c. Moreover, the technique of distributing the forcing term using a discrete
Delta function, may be used in direct forcing methodologies as well; as such, the method of
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Pinelli, Favier et al. [182] employed the Delta function given by 1.6d. In the aforementioned
relations, r measures the distance between Eulerian grid point xi and Lagrangian IB point xs

and h defines the radius of the interpolation stencil. Figure 1.2 visualises these distributions,
for h = dx.

δP (r) =
1

h

{
(1 + cos(πr/2h))/4, r ≤ 2h,

0, otherwise
(1.6a)

δS(r) =
1

h

{
(2h+ r)/4h2, r ≤ 2h,

0, otherwise
(1.6b)

δB(r) =
1

h


1− (r/h)2, r ≤ h,

2− 3r/h+ (r/h)2, h < r ≤ 2h,

0, otherwise
(1.6c)

δF (r) =
1

h



(
1 +

√
−3
( r
h

)2
+ 1

)
/3, |r| ≤ 0.5h(

5− 3
∣∣∣ r
h

∣∣∣−√−3
(
1−

∣∣∣ r
h

∣∣∣)2 + 1

)
/6, 0.5h < |r| ≤ 1.5h

0, otherwise

(1.6d)

Figure 1.2: Plot of different discrete Delta functions δ(x), proposed by Peskin [181], Saiki et Biringen
[190] and Beyer et LeVeque [13], as well as Pinelli et al. [182], for the Lagrangian-Eulerian and Eulerian-
Lagrangian transformations.
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Penalization and Fictitious Domain Methods

In this category fall the methods that are based in the idea that the immersed to the flow solid
body can be seen as a porous medium with permeability tending to zero. Thus, the Navier-
Stokes/Brinkman equations are considered, where the body force term of 1.1, is calculated
as:

fIb = − 1

ηu
(χu) (1.7)

with ηu being the permeability, sufficiently small for the solid region, and χ the color function
that defines the solid region and localises the penalty imposition. Characteristic examples are
the methods developed by Khadra et al. [107], Kadoch et al. [106] and Wachs et al. [234].

Khadra et al. [107] presented a finite volume Fictitious Domain (FD) / Penalization method
for incompressible and viscous flows.A Darcy drag-like term is added in the momentum equa-
tions to account for porous or solid media, according to their permeability. Also the boundary
conditions in their generalised form (as in 1.8) are linked with the governing equations through
the addition of volumetric source terms. The final dimensionless form of the body force term
of the equations 1.1, may be given by 1.9.

−∂ϕ
∂n = αϕ(ϕ− ϕ∞) + ϕg, ϕg: desired b.c. value (1.8)

fIb = − u
ReDaK

− βu(u + u∞)− ϕu (1.9)

where Da = K0/L
2
0 is the Darcy number, defined as the ratio of reference permeability over

the square of the length scale, βu = αu/ϵ, with ϵ = O(h) the characteristic length of the order
of the grid step size h, and K the permeability of the medium. For the fluid it is Kf → +∞
and Ks → 0+ for the solid. For Dirichlet b.c. αu → +∞ ⇒ βu → +∞

However, in this approach, if the center point of a cell lies in the domain occupied by
the immersed boundary, the solid body permeability is assigned to the cell and therefore the
interphase between the fluid and the solid coincides with the interface of the computational
cells. That would lead to the stair-case representation of the immersed boundary, which in
their study, Khadra et al. [107] counterbalanced by the use of local mesh refinement.

Kadoch et al. [106] developed a penalization method for a pseudo-spectral solver, intended
to be used for incompressible flows with scalar transport and mixing. Therefore apart from
the equations governing the fluid motion 1.1, in their penalised form, an additional scalar
transport equation is considered. For the transport of a passive scalar θ, let be temperature or
concentration, with κ annotating the diffusivity, the penalised advection-diffusion equation is
given by 1.10. This flux-based volume penalization method can be used not only for Dirichlet,
but for Neumann and Robin boundary conditions as well and was further generalised by Sakurai
et al. [191] to account for inhomogeneous Neumann boundary conditions too.

∂θ

∂t
+ ((1− χ)u) · ∇θ = ∇ ((κ(1− χ) + ηθχ)∇θ) (1.10)

With regards to multiphase flows, Vincent et al. [232] applied a penalizing fictitious domain
(FD) approach on two-phase flows with moving solids. The solid is also treated as a separate
phase, thus the domain is divided in phase specific subdomains according to phase functions
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ci(x, t) ∈ [0, 1], i = s, l, g for each phase (s: solid, l: liquid, g: gas).The incompressible Navier-
Stokes equations are solved for the fluid domain, accounting for surface tension, along with a
advection equation for the phase function ci. In addition, an augmented Lagrangian method
is used to deal with high density and viscosity ratio on the free-surface and avoid spurious and
parasitic currents, by penalizing the advection terms of the momentum equation.

In order to achieve a more accurate representation of the solid interface, Wachs et al. [234]
developed a finite volume (FV) Distributed Lagrange Multiplier/Fictitious Domain (DLM/FD)
method with a second order accurate reconstruction of the boundary, using cubic quadratic
basis functions, widely used in finite element methods. The quadratic interpolation functions
however, require a large interpolation stencil of 9 points in two dimensional and 27 in three
dimensional simulations. The forcing density function is calculated explicitly and in order to
avoid any instabilities a smoothing operation is carried out.

Penalty method are developed within the framework of finite-elements formulation by
Glowinski et al. [76], Joly et al. [105], Burman et al. [31], Zhou [256], whereas Shirokoff et
al. [204] implement a penalizing finite-differences scheme. Another alternative is presented by
Pepona and Favier [180], who couple a penalizing Immersed Boundary method, treating the
body as a porous medium, with a Lattice Boltzmann method for moving bodies.

Direct Forcing Methods

The basis of Direct Forcing IB methods is often attributed to the works of Mohd-Yusof [150,151]
and Fadlun et al. [59]. However, the work of Uhlmann [229] represents a milestone in the
development of these methodologies. Mohd-Yusof [150, 151] proposed a IB method, in the
framework of a Spectral solver, where the forcing term added in the momentum equations 1.1
is calculated as the sum of the Right Hand Side (RHS) terms, explicitly from velocity and
pressure values of the previous time step, as in relation 1.11.

f n+1
b =

ud − un

∆t
− rhsn =

ud − un

∆t
+ (un · ∇)un +∇pn − ν∇2un (1.11)

Fadlun et al. [59], developed a finite differences solver based on the direct forcing approach
of Mohd-Yusof and tested against feedback forcing. Fadlun considered three different recon-
structions of the interface between solid and fluid region, because the governing equations
were discretised on a staggered grid and it was not guaranteed that the definition position
of the components of the forcing and the velocity vectors would coincide. According to the
first approach the immersed boundary is represented in a stair-case manner and the forcing
term would be defined on the position of the velocity components, resulting in applying three
different b.c. on three different points. According to the second approach, the forcing would
be applied to the points closest to the boundary and a weighting factor, estimated as the solid
volume fraction, would be applied to it. According to the third approach, a linear interpolation
is used to calculate the target velocity ud on the points near the boundary, therefore imposing
a specific velocity profile over the boundary. The latter approach is found the most accurate,
although it may require explicit grid refinement near the boundary to achieve high spatial
density. Moreover, the treatment of the internal cells (i.e. the grid cells entirely covered by
the IB), is discussed. Although the external flow solution is found independent of the inter-
nal flow field, when using the direct forcing approach, three different treatments are assessed.
According to the first, the forcing is applied without smoothing on the internal cells as well,
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imposing a constant velocity distribution which adapts the pressure accordingly. According to
the second treatment, the internal cells receive no forcing and the flow develops freely. Finally,
according the third approach, which is essential for spectral codes, the velocity on the internal
cells adjacent to the boundary is reversed by continuing the linear profile from the exterior
region.

The method proposed by Fadlun et al. [59] is widely adopted and applied on complicated
flow simulations. It facilitates the demanding Large Eddy Simulations (LES) or Direct Numeri-
cal Simulations (DNS) computations of turbulent or transitioning flows performed by Cristallo
and Verzicco [45, 46], Balaras [6, 7, 245] with either static or moving boundaries, as well as
within the FSI framework by De Tullio et al. [49, 228].

Uhlmann [229] proposed a fractional step direct forcing Immersed Boundary Method for
incompressible flows, with application on particle flows. The method is integrated in a 3-step
Runge-Kutta solver, which employs pressure-velocity coupling through the Poisson pressure
correction equation. The forcing term is evaluated using the intermediate velocity field and the
convective, pressure and viscous terms extracted from a first momentum prediction step, which
ignores the IB forcing. In other words, from the incompressible laminar momentum equations
1.1, the RHS terms of the momentum equation are used to extract an preliminary estimation of
the velocity 1.12, which is then used to evaluate the forcing term 2.24. The forcing term and the
preliminary velocity are then used to correct the velocity through a Helmholtz equation 1.14
and then estimate the pseudo-pressure 1.15 which advances the velocity and pressure in time.
However, this methodology requires LL7→E transformations, using the discretised Dirac Delta
function 1.6a proposed by Peskin [181]. The forcing term is first evaluated on the Lagrangian
points representing the IB particle and then spread on the background Eulerian grid.

ũ = uk−1 + rhsk−1/2 ·∆t, at iter. k in time-step tn+1 (1.12)

f k
Ib = LL7→E

{(
Ud − Ũ

∆t

)}
, with Ũ = L−1

L7→E{ũ} (1.13)

∇2u∗ − u∗

αkν∆t
= − 1

αkν

(
ũ
∆t

+ f k
Ib

)
+∇2uk−1 (1.14)

∇2ϕk =
∇ · u∗

2αk∆t
(1.15)

The method proposed by Uhlmann [229] is widely adopted by researchers. Feng and
Michaelides [63] also employed a similar to Uhlmann’s [229] direct-forcing IB approach on
Direct Numerical Simulations (DNS) of heat transfer in particulate flows. The forcing term
is applied on the interface cells in order to enforce the non-slip condition, as well as on the
internal cells of the particles, to impose rigidity constraint. In addition to the source term
for the momentum equations, a source term is formulated in a similar manner, explicitly from
the values of the previous step, for the energy transfer equation, to impose the temperature
of the particle as a boundary condition. In addition, Pinelli, Favier et al. [182], Cai, Favier et
al. [32–34] and Cai et al. [35] adopted a direct forcing method that follows the same rationale
as Uhlmann’s approach [229], with a fractional-step calculation of the forcing term. However,
a different approximation of the Dirac function, with three-steps presented in 1.6d, is employed
to handle the Euler-Langrange transformations. Constant, Favier et al. [42] implemented the
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method of Pinelli, Favier et al. [182] within the framework of finite volume methods and inte-
grate it within the PISO algorithm, developing a new solver within OpenFOAM. Favier, Pinelli et
al. [62] coupled the forcing IB approach proposed for Navier-Stokes equations by Pinelli, Favier
et al. [182] with a Lattice Boltzmann method, for Fluid Structure Interaction simulations of
slender bodies.

Riahi, Favier et al. [186] extended the previous works of fractional step forcing [32–35,
42, 182, 229] on compressible flows. Apart from determining a source term for the momentum
equation to impose Dirichlet b.c. on the velocity field, an additional source term may be derived
to impose the Neumann boundary condition on the pressure field over the IB interface. It is
demonstrated that by taking into account that the pressure gradient can be decomposed on
the normal and the tangential to the IB surface components, as in 1.16, and that on the normal
to the IB surface direction should be zero, ∇P d · enIb = 0, a pressure correction term can be
formulated manipulating the RHS terms of the momentum equation. Following the fractional-
step approach and by considering −ϕ n+1/2 +∇p n+1/2 · etIb ≈ −αs(ρLu)∗, an alternative forcing
term can be formulated 1.17. As the source terms are defined on the Lagrangian IB points, a
three-step discrete Delta function 1.6d is then used to distribute the forcing on the Eulerian
grid.

∇P n+1/2 = ∇P n+1/2 · enIb +∇P n+1/2 · etIb (1.16)

f n+1/2
Ib = αs(ρLu)d − rhs

⇒ f n+1/2
Ib = αs(ρLu)d − ϕn+1/2 +∇pn+1/2

⇒ f n+1/2
Ib = αs

(
(ρLu)d − (ρLu)∗

)
−
(
∇pd −∇pn+1/2

)
· enIb

(1.17)

Blais et al. [15] developed a methodology for incompressible flows, inspired by the penal-
ization methods, where the a forcing term is coupled with pressure-correction PISO algorithm.
The forcing term evolves in every new time-step from the value of the previous, throughput
the iterative process using under-relaxation. The forcing term fIb is calculated by 1.18, us-
ing the under-relaxation factor α ∈ [0, 1] and is applied on every cell in the region covered
or intersected by the body using the solid fraction β. The solid fraction is calculated as the
boolean sum of the cell points (vertices and center) in the solid region 1.19. This methodology
adopts the stair-case approach and does not follow a Eulerian-Lagrangian representation or
calculation of the forcing term and thus avoids the cumbersome interpolation steps. By using
the stair-case approach, the projected volume of the IB on the background Eulerian mesh does
not coincide with the actual volume of the determined by the closed surface mesh, and thus
a volume correction is applied to the halo-layer. In every time-step m, a prediction step is
carried out for the momentum equation, including the forcing term, and an velocity estimate
um∗ is extracted. Then, the PISO loop commences with a Rhie-Chow interpolation that is
applied (neglecting pressure gradient and IB forcing) to get a corrected value of the velocity
um∗∗. Then, the pressure correction equation is solved using um∗∗ and f m∗

Ib , and finally the
velocity and then IB forcing term are updated (um∗∗∗ and um∗∗∗) and the algorithm continues
to the next PISO iteration.

f m∗∗∗
Ib = f m∗

Ib +
αβ

∆t
(um

Ib − um∗∗∗) , for every time-step m (1.18)
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βi =
N in

v,i +N in
c,i ·N tot

v,i

2N tot
v,i

, for every grid cell i (1.19)

Based on the work of Blais et al. [15] and Wachs [234], Municchi and Radl [153, 154]
presented a combined Immersed Boundary and Fictitious Domain method, for application
on gas-particle suspension flows. In the framework of CFD-DEM (CFD-Discrete Elements
Method), where the particle kinematics are tracked and resolved, an Eulerian-Lagrangian ap-
proach is followed and for cases where the the particle sizes are smaller than the grid cell
size, the governing equations contain unclosed terms and the approach is labelled as Particle-
Unresolved Euler-Lagrange approach (PU-EL). In their work, Municchi and Radl employed
a multi-scale IB-FD approach that derives the needed closures for the fully resolved equa-
tions, from Particle-Resolved Euler-Lagrange (PR-EL) simulations or Particle-Resolved Direct
Numerical Simulation (PR-DNS), if no turbulence model is used. They developed a hybrid
method were a forcing term is added on the dimensionless momentum and energy transport
equations. The forcing term for the momentum equation is calculated throughout the PISO-IB
loop as in the work of Blais [15], and is acting on the computational grid cells cut by the IB
surface (surface cells). An additional correction term acting on the computational grid cells
covered by the IB solid particle, is added to ensure that no flow occurs inside the IB region.
Moreover, a boundary layer reconstruction procedure is carried out in order to evaluate the
values to be imposed on the surface cells. A source term is also used in the energy equation,
which is calculated explicitly from the previous step. The imposed values are calculated by
interpolation between the IB surface value and the neighbour grid cell values, as in the work of
Wachs [234]. The order of the interpolation depends on the radius of the interpolation stencil,
which tends to zero order when the stencil becomes so narrow to include only the IB surface
point and results in a penalty function, as the regular fictitious domain methods.

Mochel et al. [149] employed a fractional step direct forcing IB approach as well, in con-
junction with the compressible Unsteady Reynolds Averaged Navier Stokes (URANS) equations
for high-Reynolds turbulent flows. Apart from the momentum equation, the turbulent model’s
equation are adapted by introducing a similar source term to impose the desired b.c. on the
turbulent viscosity.

1.3.2 Direct b.c. Imposition Methods
Ghost-cell Methods

The ghost-cell methodologies impose boundary conditions (b.c.) on cell faces and nodes outside
but in the immediate vicinity of the immersed body. The boundary values are calculated
by means of interpolation between the b.c. point and its projection on the immersed body
interface, with the use of artificial mirror ghost points. In the case of a linear interpolation
function, the values of the ghost points are calculated by 1.20, where d∗ represent distances.

ugc = up −
dp + dgc
dp

(up − uIb) (1.20)

Gilmanov and Sotiropoulos [74] proposed initially a ghost-cell method for a finite differences
scheme on staggered grid and a linear interpolation scheme to reconstruct the solution near the
body. The method was then improved into a hybrid Cartesian/Immersed Boundary Method
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[75] by discretising the equations on a hybrid staggered/non-staggered grid and incorporating
a quadratic interpolation scheme. The nodes of the Cartesian background grid are categorised
in to fluid, IB and solid nodes, regarding their position with respect to the triangulated surface
tri-surface representing the IB body. As IB are labelled the nodes that lay outside but in the
immediate vicinity of the IB tri-surface. The governing equations are solved on the fluid nodes,
with boundary conditions imposed on the IB nodes and the solid nodes completely blanked
out. The boundary conditions on the IB nodes are determined using interpolation. For both
velocity and pressure, Dirichlet boundary conditions are determined on the IB nodes, as a
linear interpolation between the surface value and the fluid value, on the line defined by the IB
node and the nearest point of the tri-surface. The standard Neumann boundary condition for
the spatial gradient ∇xp of the pressure field, is transformed into Dirichlet boundary condition
for its normal to the IB surface component. The method is capable of treating immersed bodies
defined by convex closed surfaces, thick or thin, as well as completely open surfaces, because
of the way the boundary condition are defined on the grid point near the solid interface. This
highlights an important advantage of the ghost-cell over the forcing methods.

The method was adopted and further enhanced to accommodate prescribed solid motion
by Ge [71, 72] and Dasi [47]. Borazjani, Sotiropoulos et al. [10, 17, 19–22] applied the method
on FSI simulations, with both non-deformable and deformable solids, and also combined it
with an over-set approach [18] to perform computations on more complicated domains with
multiple moving boundaries.

Takahashi et al. [218] employed a ghost-cell approach to study the compressible turbulent
supersonic flow over 2D cylinders, where shocks (discontinuities) are present. A signed dis-
tance of the cells from the immersed boundary is used as a level-set function to categorize the
computational cells as fluid cells, ghost-cells or solid cells. Ghost cells are considered those for
which 0 ≥ dgc ≥ −2

√
2δx, with δx being the spatial resolution. Therefore the b.c. values are

imposed on the cell centres of the cells inside the solid region but in the immediate vicinity
to the interface. To estimate the b.c. values of the primitive variables on the ghost cells, an
image point is used in fluid region, on the edge of a probe that extends from the ghost cell
through the immersed boundary along the normal to the IB interface. The length of the probe
is chosen dp = 1.75δx and the values of the variable on the image point are calculated by
bilinear interpolation from the surrounding fluid cells. To impose the Dirichlet b.c. for the
velocity, the velocity on the ghost cell is calculated by linear extrapolation 1.20 and to impose
the Neumann b.c. for the pressure and density fields, the ghost cell values are assumed equal
to the values of the image point.

Luo et al. [136] used a ghost-cell IB method, for problems of heat transfer in compressible
flows, within a sixth-order finite-difference framework. To maintain the same order of accuracy,
three layers of ghost points are used and the rest of the grid points laying in the solid region
are disregard. A bilinear for 2D, or tri-linear for 3D, interpolation scheme is used to calculate
the fluid properties on the mirror points from the neighbouring fluid points. The boundary
condition for a variable ϕ can be expressed in the generic form of 1.21, involving the normal to
the wall gradient ∂ϕ/∂n. Apart from the usual Dirichlet (α = 0, β = 1) and Neumann (α =
1, β = 0) boundary conditions, the use of the ghost-cell approach facilitates the formulation of
Robin (mixed, α, β ̸= 0) boundary conditions as well. The ghost-points value ϕG for Dirichlet
and Neumann b.c. are calculated with respect to IB surface and mirror points values by 1.22
and 1.23 (using 2 mirror points) respectively; for Dirichlet b.c. the boundary value of the field
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is known and for Neumann b.c. the value of the gradient of the field is known on the boundary,
while for Robin b.c. both values are needed to get estimations on the ghost-points from 1.21
using two mirror points.

α
∂ϕ

∂n + βϕ = ϕG, ϕG: desired b.c. value (1.21)

ϕG = 2ϕIb − ϕM (1.22)

ϕG =
(ϕM1 + ϕM2)

2
− (dM1,Ib + dG,Ib)

2

(
∂ϕ

∂n

)
Ib

+
(dM2,Ib + dG,Ib)

2(dM2,Ib − dM1,Ib)
(ϕ1 − ϕ2) (1.23)

Cut-Cell Methods

According the cut-cell methods, the background computational mesh, which is usually a canon-
ical Cartesian grid, is directly cut by the surface representing the immersed boundary. The
computational cells intersected by the IB representation are split into live and dead parts;
the control volume is altered to take into account only the live fluid part into the solution,
while the dead solid part is disregarded. Berger [12] presents a comprehensive but generic
summary of cut-cell methodologies; the motivation and the advantages of this class of methods
are discussed.

The main feature of cut-cell methods is the alternation of governing equations’ integration
procedure in the new control volume of the cut-cells and the computation of the fluxes on the
segmented IB surface face. Moreover, the main, well known, issue of these methods is the small
cell stability problem. When cut-cell method is employed, arbitrary small cells may appear
during the numerical solution, that impose strict time-step constrains. When, in addition, the
immersed body is moving, spurious oscillations appear in the pressure field [138,198,199], that
deteriorate the quality of the simulations.

Seo et Mittal [199] attributed the noise in the flow solution, and the spurious oscillations
of pressure field, to the spatial discontinuity of pressure over the IB interface and the temporal
discontinuity of velocity field; in forcing methodologies, spreading and smoothing the source
term diminishes these problems. Meinke et al. [138] confirmed this observation and successfully
treated spurious oscillations by introducing smooth transition functions to the discretisation
near the IB boundary.

To tackle the small cell stability issue, either cell-merging and cell-linking or flux redistri-
bution can be performed. According the first approach, used by [88, 199], if the volume of the
cut-cell is smaller than a certain threshold, it is merged with the neighbour cell; this approach
is useful when the boundary is moving, however it may cause further instabilities. According
to the second approach, employed in [138, 198], the flux difference for a small cell is scaled by
its ”volume-fraction”, which represents the fluid part of the cell, and then the rest of the flux is
distributed to the neighbouring cells. The redistribution is usually done via volume-weighting
or density-weighting. A hybrid technique, that couples these two approaches is also found in
the work of Örley et al. [170].

The representation of the immersed surface on the computational grid and the approxima-
tion of the intersection of the cutting surface with the cut-cell and the subsequent new cell face,
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is another important aspect of the method. Schneiders et al. [198] and Meinke et al. [138] used
a level-set singed distance function ϕs(x) to ”implicitly” determine the solid boundary: ϕs < 0
denotes the solid area, ϕs > 0 the fluid area and the solid boundary is the isosurface of ϕs = 0.
A piecewise linear approximation of the solid boundary is constructed by the level-set function
values stored on the cell centers. The location of the cut is estimated linearly by the interpo-
lated level-set values on the cell vertices. A level-set function is also used by Pasquariello et
al. [175], Castiglioni et al. [37], Thari, Pasquariello et al. [221]. Hartman et al. [88], James et
al. [102], employed a piecewise linear representation of the boundary surfaces, as well. On the
contrary, Seo and Mittal [199] and Örley et al. [170], represented the immersed boundary with
a triangulated mesh. The precise edge and face cuts are determined and the segmented solid
surfaces are reconstructed by triangulation. This approach ensures more accurate definition of
the the new volume of the cut-cell and improves the quality of the results.

In addition, different approaches have been proposed for the calculation of the derivatives
of the flow variables on the centres of the cut-cells. Hartman et al. [88] employed a linear least-
squares method to compute the derivatives in the cut-cells. Johnson et al. [104] made use of
spline functions to represent the variables within the cell volumes; in this way, the derivatives
of the variables are continuous throughout the entire domain and on cut-cells the variables are
well defined on cut-faces.

For viscous flows, where boundary layers are present, and the cell size should follow a
progressive expansion over the wall or, more generally, the cell size is a function of the normal
distance from the wall, few methodologies propose the geometric alternation of the cell nodes
near the boundary and the cancellation of cut-cells. However, wall functions have been proposed
in conjunction with cut-cell approach by Capizzano [36].

1.3.3 IB methods for Multiphase Flows
Many studies can be found in literature regarding multi-phase simulations with immersed
boundary techniques, with applications especially on incompressible flows. Two-phase problems
may regard droplets and bubble dynamics, free surface and wave interaction with structures and
obstacles and may concern naval, micro fluids, internal combustion and biological applications.

For a scalar field α, representing temperature or concentration of a component in a mixture,
the generic form of the transport equation governing its distribution in space and evolution
along with the flow, taking into account advection, diffusion and any sources, is given by 1.24a.
In the case of two-phase flows of immiscible fluids, the diffusion is not accounted for and the
transport equation for the volume fraction of the secondary fluid takes the form of 1.24b.

∂ρα

∂t
+∇ · (uρα)−∇ · (Dρ∇α) = S (1.24a)

∂α

∂t
+∇ · (uα) = 0 (1.24b)

On solid wall boundaries, for conformal grids, Neumann boundary conditions are set for the
volume fraction in the transport equation, to impose the gradient value across the interface.
Usually, the value of this gradient is set to zero, which physically corresponds to a contact
angle of 90o; however advanced modelling alternatives considering contact line or triple point
(gas-liquid-solid) dynamics, set different values. On the other hand, fluxes, that directly affect
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the advection of the volume fraction, are governed by the momentum equation, where zero
normal and tangential velocities value are imposed on walls, in the form of Dirichlet boundary
conditions. On Immersed Boundaries, where velocities are set or driven by direct forcing,
special care must be taken for the volume fraction field. Numerous approaches can be found
in the literature.

Shen and Chan [201–203] implemented a direct forcing IB method, where the IB force is
calculated as a difference of the velocity field from the body velocity in the area enclosed by
the immersed surface, but no special treatment for the liquid volume fraction is applied in the
transport equation and only fully submerged structures that do not interact with free-surface
are considered. Sanders [194] and Peng [179] also developed direct forcing IB methodologies
where no special treatment for the VOF transport equation is presented and no free-surface
problems are considered. Liu, Wu et al. [132] used a penalized momentum equation with an
additional volumetric source term coupled with a unmodified VOF transport equation for the
secondary phase. Lin, San-Yih et al [131] implemented a direct forcing immersed boundary
method with no special treatment for the VOF transport equation and the volume fraction
field which they apply on free-surface and particle interaction problems (particle crossing free-
surface).

Sun and Sakai [215] applied a direct forcing IB approach and consider the contact angle
on the walls nϕ · (−nIb) = cosθ, where θ = π/2 is usually set. This condition corresponds to
a zero-gradient b.c. for the volume fraction ϕ: ∇Ibϕ = 0. The advection of the interface in
performed in the entire computational domain, but then a dilation or extension step is carried
out. According to the former, a 3× 3 stencil is used to update the ϕ values as a mean average
of the neighbours for all fluid cells. According to the latter, a additional transport equation
is solved iteratively for the solid cells, with the use of a pseudo-time step dtext = dx and a
pseudo-velocity uext = −nB. However, both approaches lead to slight mass errors as the VOF
advection is no longer conservative. As a remedy, Sun and Sakai periodically reset volume
fractions by subtracting mean error in the interface cells.

Zhang [252] used a similar direct forcing approach for the source term in the momentum
equation, but used a solid volume fraction function to mark the immersed boundary region,
which plays an active role in the liquid transport equation, as after performing the advection
step, the solid volume fraction is subtracted from the liquid volume fraction. That way, the
free-surface is ensured to coincide with the solid interface. Malvandi [137] employed a simpler
approach, as the solid density is taken into account both for the momentum forcing source
term and the density balance. No special treatment for the volume fractions is needed as the
liquid advection is controlled by the density spacial distribution.

Pengzhi Lin [130] implemented a labelled as cut-cell approach, which consists of a penal-
ization procedure based on the cells’ openness, coupled with a volume-of-fluid (VOF) method
for free surface tracking. Instead of modifying the computational cells, a mask-solid volume
fraction function is used to distinguish the solid from the fluid areas and to multiply the mo-
mentum equation so as it is only solved in the fluid area; this method is dubbed Partial Cell
Treatment (PCT). Therefore fluxes are calculated only in the fluid unmasked area and in the
solid cells velocity is set to zero. A cut-off limit for the solid volume fraction function is used
to avoid instabilities. For moving solids, an additional source term is calculated and inserted
to the pressure Poisson equation. Regarding, treatment of the free-surface in the vicinity of
the immersed body, the VOF function is defined on the remaining open fluid volume after
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the penalization is performed Wu, Chu et al. [240] solved also a penalized momentum equa-
tion, following the PCT approach. Horgue [95] added a penalization term in the momentum
equation for the velocity and a pressure correction term to ensure no pressure jumps on the
solid interface. This approach has similarities to porous media penalization. For the secondary
phase transport equation, the volume fraction values are explicitly set to a prescribed value
inside the solid area. Kadoch [106] followed a penalizing approach for the momentum equation
that treats the solid as porous media with a very small permeability, and extended it to the
transport equation of the secondary fluid, by multiplying the advection and diffusion term with
the fluid volume fraction and adding an artificial diffusion term for the solid region scaled with
a permeability constant.

Yang [246] implemented a sharp interface IB/level-set method for wave structure interaction
problems. IB forcing term is added on nodes near the IB surface and a level-set function ϕ is
used to account for the two-phase flow, where the ϕ field represents the distance from the two-
phase interface. For the interaction of free-surface with the immersed solid, a contact angle b.c.
is formulated as nϕ ·nIb = −cosθ, where nIb is the outward normal direction to the IB surface,
nϕ the normal to the level-set function and θ the contact angle. From there, a Neumann b.c.
is derived for the level-set function ∂ϕ/∂t = −cosθ. This approach extends the fluid inside the
solid area. This explicit modification of ϕ leads to slightly changed volume fractions.

Patel [178] implemented a different IB approach, by directly changing the computational
stencil of the discretised momentum equation near and inside the solid, applying no-slip b.c.
This approach seems similar to ghost-cell methods. In addition, for the VOF transport equa-
tion, contact line dynamics are considered for the cells on the interface. A smoothing procedure
is used and the VOF field is extended into the IB region by solving an artificial transport equa-
tion.

Alternative approaches are also considered by researchers that do not use the conventional
VOF or Level-Set logic. Vire [233] implemented a continuous forcing term to represent im-
mersed boundaries but used a different set of flow equations for each phase and an advection
equation for the fluid concentration, while modelling free-surface as a boundary condition. An-
got [3] implemented a penalty-projection method for multiphase flows, according to which solid
boundaries are modelled using a fictitious domain approach, where viscosity tends to infinity
in the solid region. Li, Favier et al. [129] combined a Lattice Bolzmann method with an Im-
mersed Boundary representation for both single or multi fluid flows, where the flow equations
are solved in a Lagrangian framework and no transport equation is used to capture the inter-
face between the phases. Nishida [158], used a different approach where the transport equation
for the advected phase is not solved, but rather a phase-field equation instead. According this
approach, fluid free energy is minimized to find the equilibrium interface. Source terms are
inserted in the phase-field equations, applying a zero-gradient b.c. for the volume fraction on
the immersed boundaries.

1.3.4 Turbulence modelling for IB Methods
When modelling turbulence, the numerical tools for the turbulent variables may have to be
adjusted to take into account the presence of the IB body. Iaccarino and Verzicco [100] present
a comprehensive overview of applications of IB Methods on turbulent flows.

Fadlun et al. [59], Balaras [6] and Cristallo and Verzicco [46] are among the first to inves-
tigate the use of LES in conjunction with a direct forcing IB method, on flows of moderately
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high Reynolds number. Such computations may regard a wide range of applications, from
industrial to biological cases. Studies of incompressible flow inside a Internal Combustion (IC)
cylinder/piston assembly at Re = 2000 [46, 59], on the wake of road vehicle at Re = 20000
up to Re = 100000 [46], through a channel with wavy wall at Re = 6760 [6, 46], as well as
the pulsatile flow through a model of arterial stenosis at Re = 1500 [7] or through a bi-leaflet
mechanical heart valve at Re = 4000− 6000 [46, 245], are carried out using IB methodologies.

In most of these cases, a dynamic Smagorinsky model was used to estimate the stress
tensor, based on the filter length and a coefficient dynamically determined by the flow field.
As the Reynolds number increases, higher near-wall resolution is needed to resolve the flow
structures within LES, and modelling may be required. Since the grid is not conforming to
the IB boundary, the normal to the wall direction is uncertain and the modelling becomes
non-trivial.

Although Fadlun et al. [59] did not mention any particular treatment near the IB, Balaras [6]
assigned on the forcing nodes a boundary condition for turbulent viscosity νt, linearising it over
the interface in similar manner as the velocity. The assigned νt b.c. is just an approximation
of the proper value, but the error in the cases studied was estimated to be negligible. Cristallo
and Verzicco [46] presented a potential remedy, by solving a differential equation for the viscous
stresses on the external nodes adjacent to the IB, to create a ”layer” and provide boundary
conditions for LES.

More recently, Vincent et al. [232] applied a penalizing fictitious domain (FD) approach
on two-phase flows with moving solids. More precisely, they investigated hydroplaning of
vehicle tires on wet road. They employed an LES approach to account for turbulence, using
a combination of Smagorinsky and Turbulence Kinetic Energy (TKE) models. Although this
model is developed for single-phase flows and considers the sub-scale turbulent interaction of
water and air as negligible, it was thought sufficient of the specific application, as the interfacial
scales were large enough in the area of interest.

Although IB methods seem popular with LES and DNS computations, Cristallo and Verz-
icco [46] highlighted the implications arising the use of IB boundaries in cases of highly turbu-
lent flows. Despite the fact that IB methods seem well suited for LES computations involving
complicated geometries, their application is limited in flows of low and moderate Reynolds
numbers. Such flows may regard biological flows. In contrast, as the Reynolds number in-
creases the spatial resolution for capturing the smallest turbulent scales becomes drastically
demanding. The subsequent increasing computational cost, in conjunction with accuracy is-
sues arising from the lack of the ability to control the grid cell growth near to the immersed
boundary, makes the IB coupling with LES less appealing. For high-Reynolds flows of large
scales and industrial interest, like aeronautical applications, the Reynolds Averaged Navier
Stokes (RANS) approach, employing turbulence models, may be more favourable.

Mochel et al. [149] implemented a direct-forcing IB method for compressible turbulent flows
of high-Reynolds and use Spalart-Allmaras model in Unsteady RANS (URANS) and Detached
Eddy Simulation (DES) approach. Apart from altering the momentum equation to account for
the presence of the immersed body and impose no-slip condition on the boundary, they adapt
the turbulence model equations. Following the same approach as for the momentum equations,
where a volumetric IB forcing term is added, a source term is added in the transfer equation
of the turbulence viscosity to impose the respective boundary condition. Also Grimberg and
Farhat [82] used an Embedded Boundary method to simulate supersonic parachute inflation,
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within an FSI approach, using a URANS solver in conjunction with Spalart-Allmaras turbu-
lence model. Their work mainly focused on the solution algorithm of the Eikonal equation
which computes the wall distance; however the proposed approach was adjusted for non-body
conforming Eulerian grids, where the boundary condition for the Eikonal equation is enforced
in the region of the immersed surface. Recently, Abalakin et al. [1] have performed Improved
Delayed Detached Eddy Simulations (IDDES) for the turbulent flow around a cylinder at
Re = 3900, employing a penalization IB method, and found good agreement with conventional
body-fitted grid computations.
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1.4 Open Challenges
From the literature review presented in the previous sections, it is evident that numerous com-
putational methods have been developed to address a broad range of applications of multiphase
flows and fluid and solid interactions.

It is evident that Immersed Boundary Methods have been employed for computational
studies of various flow regimes and physical problems. However, the applications of IB methods
on cavitating flows is limited. Considering the complex industrial applications of those flows,
with moving geometries and potentially wide range of length scales that is difficult to be
accommodated by conformal grids, it could be anticipated that such methods would be widely
used. The use of IB methods for simulations of fuel injection cycles with moving needle [9,
167, 169, 170, 253] or of the operation of fuel gear pumps [144], clearly showcase the practical
benefits of these methods.

The use of IB methods on cavitating flows widens the range of physical problems that can
be studied. Given the undeniable ease of FSI studies by IB methods [209], similar approach
could be employed in cavitating flows of industrial interest. Cavitation is a known source
of noise and vibrations; an FSI numerical investigation of the link between cavitation and
induced vibrations of rigid or deformable bodies could be achieved by modelling the bodies as
Immersed Boundaries. In this framework, the system of propeller and rudder could be studied.
In addition, as the interest of cavitating flows shifts to medical or bio-engineering applications,
IB methods could prove useful in the numerical investigation of drug delivery or tissue damage
by collapsing vapour bubbles. The IB methods are capable to handle complex geometries, large
boundary displacements and topology changes.

On the other hand, although numerous IB methods are proposed, each has specific ad-
vantages and disadvantages and it is not easy to conclude which is the best. The choice
of the method depends upon the application, in addition to the numerical complexity and
computational cost this choice entails. Although the cut-cell approach enforces strict mass,
momentum and energy conservation and thus, is considered the most accurate amongst the IB
methods [170], it can suffer form small cell instabilities and calls for cumbersome topological
manipulations. As an indication, the computational cost of computing intersections of a tri-
angulated IB surface, comprised by M elements, with the computational cells and finding or
creating the cut-cells, on a N×N×N Cartesian grid that follows a tree-based data structure, is
estimated at the order of O(N2 ·M · logM) [12]. On the contrary, ghost-cell approach requires
a large number of interpolations that can be a bottleneck for the computations [136, 154] and
its accuracy may depend on both the resolution of the IB representation and the background
grid. Moreover, in ghost-cell methodologies, the projection of the immersed boundary on the
background mesh may result in a stair-case representation of the body where the partially
covered cells are not considered, which would lead to spurious oscillations [199], in the case of
moving immersed bodies. Such numerical implications may be prohibiting for computations of
complex turbulent multiphase flows with violent phase change.

The use of a forcing IB approach, would alleviate the obstacles from the computationally
expensive manipulations related to cut-cells or ghost-cells methodologies. The use of a contin-
uous color function to localise the forcing, which accounts for the partially covered cells, would
also overpass the stair-case problem. Therefore, it becomes apparent that the use of direct
forcing Immersed Boundary approach for cavitating flows should be investigated.
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1.5 Objectives
The objective of the present research work is to develop an Immersed Boundary Method cavitat-
ing flows, suitable for addressing a wide range of applications, with main focus on computational
problems of engineering scales.

The developed method is following the direct forcing approach because of its simplicity in
implementation and robustness. The presence of solid boundary is modelled simply by the
addition of a source term in the momentum equations, which is straightforward and fast to
estimate. Complications arising from interpolations or special treatments of the computational
cells cut by the immersed surface should be avoided. In addition, the forcing approach should
provide a smoother solution, which may be important for cavitating flows with strong pressure
variations.

The developed tool is coupled with multiphase flow solvers, employing the barotropic Equa-
tion of State to account for phase change. This is done mainly because the barotropic solvers are
considered more suitable for the problems under consideration. In addition, using a interface-
tracking or interface-capturing approach would increase the complexity of the numerics and
would probably call for special treatment of the advection equation, the interface representation
or the phase-change mechanism in the IB region.

Moreover, special care is taken to address turbulence modelling, within the framework of
RANS. Well-known and widely used turbulence models should be adapted to account for the
presence of an immersed solid wall, as it has been demonstrated by the literature. This regards
applications of engineering interest, where turbulence modelling in an affordable computational
cost is of high importance.

The method aims to be employed in studies of turbulent cavitating flows. In this category
fall primarily flows of industrial interest including Diesel injection systems and gear pumps,
for which RANS simulations is the standard approach. On the other hand, lately the focus
is shifted towards bio-engineering applications of cavitation, such as heart valves, tissue dam-
age and drug delivery, where LES or DNS computations are more suitable. In addition, the
developed method may address cases of predominantly academic interest, involving complex
configurations or delicate laboratory experiments, where conventional techniques fail. Thus,
the proposed Immersed Boundary method is designed to deal with this wide range of appli-
cations and flow regimes and accommodate complicated physical processes, namely cavitation
development, turbulence development and large deformations of the computational domain, by
either prescribed or induced by the flow motion of the boundaries.

The tool is developed within the framework of the open source OpenFOAM [68] toolbox.
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1.6 Outline
The thesis is structured in five chapters.

First, the numerical method is presented and explained in detail. Then, three chapters
with computational works follow. Finally, the last chapter is dedicated to an assessment of the
findings and the conclusions of the present research work.

Regarding the computational studies, they are divided in three parts, each composing an in-
dividual chapter. The first part, comprising Chapter 3, offers an evaluation of the performance
of the developed method, and validates it against well known test cases; various flow regimes
are considered with increasing complexity to assess the different features of the method. The
second, presented in Chapter 4, illustrates most clearly the benefits of Immersed Boundary ap-
proach; an unprecedented numerical investigation delivers detailed information about the flow
dynamics of the high-speed impact of a solid onto a water jet, unveiling rich physics, including
shock structures, cavitation formation and interface instabilities. This problem has been only
studied experimentally before and simulations with conventional tools would be computation-
ally prohibited or even impossible. The last part, in Chapter 5, focuses on biological flows.
The flow through a model aorta, featuring a 180o bend and including Valsalva mimicking si-
nuses and three arterial bifurcations, to closer replicate the geometry of a natural aorta, is
studied. The focus is shed on wall shear stresses and the development of a non-physiological
flow through a bi-leaflet Mechanical Heart Valve. The herein developed Immersed Boundary
method is employed to model the valve, in a incompressible framework accounting for flow
induced leaflet motion.

Finally, additional information regarding the implementation of the method, as well as an
assessment of its performance in undeformable solid body Fluid Structure Interaction problems
can be found in the Appendices.

32



Chapter 2

Numerical Method

Contents
2.1 Governing Equations 34
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2.2 Turbulence Modelling 38
2.3 Immersed Boundary Forcing Term 40

2.3.1 IB Motion and Velocity 41
2.3.2 IB Mask Estimation 42
2.3.3 Wall Treatment for Turbulence Modelling 44

In the present Thesis, a direct forcing Immersed Boundary (IB) method is developed for the
Navier-Stokes equations, within the framework of the Finite Volume (FV) method. The direct
forcing approach is chosen as it provides a simple and straightforward implementation and
is applicable, with minimum modifications, in different flow regimes, namely incompressible,
compressible and multiphase, as presented in chapter 1.

The IB method is developed to be applied in turbulent cavitating flows with moving ge-
ometrical parts. The cavitating flows are characterised by highly compressible phenomena,
with large ratio of acoustic impedance between the liquid and the vapour phases and strong
shock waves generated by vapour cavities’ implosion. Moreover, flows where the immersed
body’s motion is induced by the flow field, in a Fluid Structure Interaction (FSI) concept
between fluid and un-deformable solid, are considered. The developed direct forcing Immersed
Boundary method is designed to handle these challenging flow conditions.

The method is implemented within the framework of OpenFOAM, an open source Finite
Volume Computational Fluid Dynamics (CFD) toolbox.

The objective of this chapter is to present the developed Immersed Boundary method.
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2.1 Governing Equations
In the present work, turbulent, multiphase, cavitating flows, of viscous Newtonian fluids, are
considered. Such flows are governed by the Navier-Stokes (NS) equations. The Navier-Stokes
equations, which express the momentum conservation 2.1a, along with the the continuity equa-
tion, which express the mass conservation 2.1b, and the energy equation, which expresses the
energy conservation 2.1c, define a system of differential equations that describe the motion of
the fluid. The Navier-Stokes equations can be seen as a direct application of Newton’s sec-
ond law into fluid mechanics and refer to forces equilibrium. Therefore, strictly speaking, the
Navier-Stokes equations are the momentum conservation equations. However often the term
is used to refer to the complete system of differential equations 2.1.

∂ρu
∂t

+∇ · (ρuu) = −∇p−∇ · τ̃ + S (2.1a)
∂ρ

∂t
+∇ · ρu = 0 (2.1b)

∂ρet
∂t

+∇ · (ρetu) = −∇pu +∇(τ̃u) +∇q + S · u (2.1c)

where

u is the velocity vector

ρ is the density of the fluid (or mixture of fluids)

p is the static pressure

τ̃ is the stress tensor

S regroups the source terms of the momentum eq. representing volumetric forces (e.g. gravity)

et is the total energy

q denotes the heat-fluxes

To close this system of differential equations, an Equation of State (EoS) 2.2 is used to link
the thermodynamic properties of the fluid, namely the density ρ with the pressure p and the
temperature θ.

ρ = f(p, θ) (2.2)
For the viscous Newtonian fluids, the stress tensor τ̃ is linear function of the strain rate

tensor s̃ and the dynamic viscosity µ, which in turn depends on the temperature. The strain
rate tensor is calculated by 2.3 and the stress tensor is evaluated by relation 2.4.

sij =
1

2

[
∂ui
∂xj

+
∂uj
∂xi

]
, i, j, k = 1, 2, 3 (2.3)

τij = 2µ(θ)

(
sij −

1

3
skkδij

)
, i, j, k = 1, 2, 3 (2.4)
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Substituting the expression of the strain rate 2.3 into the relation 2.4 for the stress tensor,
the final expression of the viscous stress tensor for the Newtonian fluids is yielded 2.5, which
in vector form reads as in 2.6.

τij = µ(θ)

((
∂ui
∂xj

∂uj
∂xi

)
− 2

3

∂uk
∂xk

δij

)
, i, j, k = 1, 2, 3 (2.5)

τ̃ = µ(θ)

((
∇u +∇uT

)
− 2

3
∇ · uĨ

)
(2.6)

where δij is the Kronecker delta:

δij =

{
0, if i ̸= j

1, if i = j

and Ĩ the identity matrix:

Iij = δij ⇔ Ĩ =

1 0 0
0 1 0
0 0 1


The governing system of equations can be simplified when the liquid is assumed incompress-

ible or isothermal, which often hold true for the case of liquids, including water and blood.
Moreover, for turbulent flows, turbulent fluctuations of the flow quantities should be modelled,
therefore alternations to the existing equations or addition of new equations to the system my
be required. Finally, when dealing with multiphase flows, additional considerations are needed
for the treatment of the different phases and the interactions between them. For cavitating
flows, phase-change has to be modelled, when the fluid can pass from liquid to gas phases and
back again, as an abrupt and rapid process.

The aforementioned considerations towards the derivation of the final form of the governing
equations are presented on the following subsections.

2.1.1 Incompressible NS
For an incompressible flow, the density is regarded constant and not depending on temperature
or pressure changes. The temporal derivative of the density field equals to zero, and the conti-
nuity equations is simplified into a relationship for the divergence of velocity field. In addition,
if the flow is regarded iso-thermal, there is no thermal energy transfer or temperature varia-
tions. Therefore the EoS and energy equation can be disregarded and the flow is determined
simply by solving only the continuity 2.1b and momentum 2.1a equations.

The incompressible NS correspond to the system of differential equations of 2.7.

∇u = 0 (2.7a)

ρ
∂u
∂t

+ ρ∇uu = −∇p−∇ · τ̃ + S (2.7b)
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Taking into account the continuity equation that imposes a divergent free velocity field, the
viscous stress tensor τ̃ results in the form of 2.8.

τ̃ = µ
(
∇u +∇uT

)
(2.8)

In the case of biological flows the working fluid is usually considered incompressible and
isothermal. More precisely, in hemodynamics, the study of blood flows, the working fluid
(blood) is treated as incompressible Newtonian fluid, which is acceptable when the flow in
large blood vessels is considered [226]. The temperature changes are also negligible and the
temperature effects on density can be assumed insignificant, which is often the case.

2.1.2 Reynolds-Averaged Navier-Stokes
In the present work, moderate or high Reynolds turbulent flows are considered. The use of
Direct Numerical Simulations (DNS) to resolve all the turbulent scales, is feasible for moderate
Reynolds numbers and is a common approach for biological flows. However it is not applicable
to cavitating flows of industrial applications at engineering scales. For simulating turbulent
flows, the Reynolds-Averaged Navier-Stokes (RANS) approach is employed.

According to this approach, the governing Navier-Stokes equations are time-averaged, so as
the flow at any given time-instant can be described by turbulent fluctuations over an average
flow field. In other words, the flow quantities (velocity, pressure, energy) can be decomposed
in to an average value (bar) and a fluctuation (prime):

ϕ(x, t) = ϕ̄(x, t) + ϕ′(x, t)

The time-averaged value, over a temporal window T, is computed as:

ϕ̄(x, t) = 1

T

t+T∫
t

ϕ(x, t)dt

Without loss of generality, referring to the case of incompressible flow for the sake of simplic-
ity, the Reynolds-Averaged Navier-Stokes equations are derived from 2.7, by first decomposing
the flow variables into mean and fluctuating parts, and then time-averaging the equations.
This process, following some algebraic operations, yields the unsteady RANS equations of 2.9.
For a step-by-step formulation, the reader is referred to Appendix ??.

∇ · ū = 0 (2.9a)

ρ
∂ū
∂t

+ ρ∇ · (ūū) = −∇p̄−∇ ·
(
τ̃ + τ̃R

)
+ S (2.9b)

where τ̃R = −ρu′u′ is the Reynolds stresses tensor, which is composed by the averaged product
of the fluctuating components of the velocity field. The values of this tensor introduce six
additional unknowns to the system of the equations and therefore cannot be determined by it.
The closure of the system is provided by modelling this tensor and estimating its components
using turbulent models. The turbulent models will be discussed in a following separate section.
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2.1.3 Cavitation Modelling
In order to model cavitating flows, a Homogeneous Equilibrium Mixture approach is followed.
The flow is considered as a mixture of two phases, the liquid and the vapour, which is treated
as a single fluid. The two phases are considered to be in mechanical and thermodynamic
equilibrium and are treated as a homogeneous mixture with single pressure and velocity fields.
The mixture composition, and therefore its properties, are function of the vapour volume
fraction αv. The density and viscosity of the mixture are estimated from the weighted average
of the equivalent liquid (l) and vapour (v) properties, as in 2.10a and 2.10b.

ρ = (1− αv)ρl,sat + αvρv,sat (2.10a)
µ = (1− αv)µl + αvµv (2.10b)

The flow is considered iso-thermal and governed by the barotropic law. Therefore the energy
equation 2.1c is disregarded and not solved. The density is linked to the pressure through the
barotropic Equation of State 2.11, using the compressibility of the mixture ψ.

From the different models available for the calculation of the ψ, the Wallis model is chosen,
which is expressed by the formula 2.12. The compressibility of each phase is calculated as the
inverse of the speed of sound squared 1/c2.

ρ = ψp+ (1− αv)ρL,0 − ((αvψv + (1− αv)ψl)− ψ) psat (2.11)

ψ = (αvρv,sat + (1− αv)ρl,sat) ·
(
αvψv

ρv,sat
+

(1− αv)ψl

ρl,sat

)
(2.12)

The vapour volume fraction, at any given time instant is calculated by relation 2.13 and
an additional volume fraction transport equation is not required, as in many multiphase algo-
rithms employing a Volume of Fluid (VOF) approach.

αv =
ρ− ρv,sat

ρl,sat − ρv,sat
(2.13)

2.1.4 Velocity-Pressure Coupling Algorithm
Within the framework of OpenFOAM [68], pressure-based solvers, both incompressible and com-
pressible, widely use an iterative pressure-correction algorithm called PIMPLE [93].

The PIMPLE algorithm is a combination of the Pressure Implicit with Splitting of Operators
(PISO) [101] and the Semi-Implicit Method for Pressure Linked Equations (SIMPLE) [176]
algorithms. It can be seen as an iterative PISO algorithm, which searches for a steady-state
solution in each time step using under-relaxation, and therefore allows the use of larger time-
steps than PISO. PIMPLE also achieves better and faster convergence compared to PISO,
which is an important advantage for highly transient flows and will be exploited in cases
involving moving geometries.

For incompressible flows the PIMPLE algorithm is implemented by pimpleFoam solver. The
momentum equation 2.7b is first solved and then the PISO loop is called of a predefined number
of iterations, where the pressure correction equation 2.14 is solved. Intermediate pressure and
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velocity values are relaxed and the procedure is repeated until convergence criteria are satisfied
or the maximum outer iterations are reached. If the maximum outer iterations are set to 1,
the algorithm is operating in PISO mode.

∆p = ∆uu (2.14)

For cavitating cases, the cavitatingFoam solver is used, which is a compressible pressure-
based solver, employing the (HEM) approach and following a PIMPLE based iterative pressure
correction algorithm.

Introducing the barotropic EOS 2.11 into the continuity equation 2.1b, the pressure-correction
equation 2.15 is extracted. The algorithm, in every (outer) iteration, solves the momentum
equation 2.1b, then performs pressure-correction via 2.15 in the PISO loop and then updates
ρ, αv and ψ by 2.11, 2.13 and 2.12 respectively, until convergence is reached.

∂ψp

∂t
− (ρl,0 + (ψl − ψv)psat)

∂αv

∂t
− ∂ψ

∂t
psat +∇ · ρu = 0 (2.15)

The cavitatingFoam sovler has been used by Akira Sou et al. [14] for the case of a cavitating
flow over a step nozzle and the results were compared to experimental measurements. The good
agreement between the numerical and experimental data serves as a good validation case for
the solver.

For the advancement in time, when using implicit pressure-correction algorithms 1rst order
accurate Euler or 2nd order Crank-Nicolson time schemes have been employed; the latter is
more appropriate for highly transient turbulent or cavitating cases. The time-step in the simu-
lations is controlled by the Courant-Friedrichs-Lewy (CFL) condition, expressed by 2.16, which
adjusts the time-step according to the maximum velocity in the computational domain. The
PISO algorithm ensures accurate results with Comax ≤ 1, while with the PIMPLE algorithm
even higher values can be reached without deteriorating the quality of the results or negative
consequences on convergence.

Co=max (∆t · Σfaces|ϕi|/2V ) ≤ Comax (2.16)

For cavitating flows, an additional constraint is added, due to the variation of the Mach
number between the liquid and vapour phases, which is expressed by the acoustic Courant
number, defined by relation 2.17 using the compressibility. The maximum value may be in the
order of 2 or 5, while even a value of 10 can be used in some cases. This constraint further
decreases the time-step.

Coac = max
(
∆t/

(
2V
√
ψ
))

≤ Coacmax (2.17)

2.2 Turbulence Modelling
Within the framework of RANS simulations, the treatment of turbulent flows reduces to the
computation of the Reynolds stresses tensor τ̃R in the NS. This tensor is holds six additional
unknowns that cannot be solved for by the NS equations and therefore is modelled.

Herein, the Reynolds stresses are modelled using the Boussinesq assumption 2.18, which
relates the velocity fluctuations’ stresses u′u′ with the velocity gradients ∇u, the turbulent eddy
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viscosity µturb and the turbulent kinetic energy k. The turbulent viscosity µturb is estimated by
the turbulent model and the turbulent kinetic energy is evaluated as k = u′u′/2. The relation
of the Boussinesq assumption for incompressible flows reduces to 2.19.

τ̃R = −ρ · u′u′ = µturb ·
(
∇u +∇uT

)
− 2

3
(ρk + µturb∇ · u) Ĩ (2.18)

τR = −ρ · u′u′ = µturb ·
(
∇u +∇uT

)
− 2

3
ρkI (2.19)

The turbulent eddy viscosity is calculated based on an estimation of a turbulent velocity
scale U and a turbulent length scale L, as µturb ∝ U · L. These scales are estimated by the
turbulence models.

In the present work, the low-Re k − ω SST [141] has been mainly employed, but the use
of Spallar-Allmaras [211] has been also assessed. Both have been modified for multiphase
flows, incorporating the Reboud correction [67, 185], to account for variation in density and
viscosity. This approach is a common practise in simulations of cavitating flows using the two-
equations k − ε and k − ω family of models [43, 53, 67]. On the contrary, the single-equation
Spallar-Allmaras model, which is very popular for external aerodynamic flows, is not widely
used in multiphase and cavitating flows. In addition, the applicability of the four-equation
k − ω SSTLM model, for capturing turbulent transition phenomena, proposed by Menter et
al. [140], within the framework of the IB method has also been assessed.

The low-Re k− ω SST , which is widely used in numerous application of engineering scale,
solves two additional transport equations for the turbulent kinetic energy k, eq. 2.20a, and the
specific dissipation rate ω, eq. 2.20b, and uses them to provide an estimation of the turbulent
viscosity νturb by 2.20c.

∂ρk

∂t
+∇ · (ρuk) = ∇ · ((µ+ σkµturb)∇k) +

Sk︷ ︸︸ ︷
Pk − β∗ρkω (2.20a)

∂ρω

∂t
+∇ · (ρuω) = ∇ · ((µ+ σkµturb)∇ω) +

γω

k
Pk − β∗ρω2 + 2(1− F1)σω,2

ρ

ω
∇k∇ω︸ ︷︷ ︸

Sω

(2.20b)

νturb =
α1k

max
(
α1ω,

√
2StF2

) (2.20c)

The k − ω SSTLM model, solves two additional to the aforementioned k and ω transport
equations, in order to capture regions where the flow transitions to turbulent regime. The
intermittency γ, which triggers the turbulent kinetic energy production, and the momentum
thickness Reynolds number Reθt, which controls the onset transition, are introduced. They are
estimated by 2.21a and 2.21b respectively.

∂ργ

∂t
+∇ · (ρuγ) = ∇ ·

(
(µ+

µturb

σγ
)∇γ

) Sγ︷ ︸︸ ︷
+Pγ − Eγ (2.21a)

∂ρR̂eθt
∂t

+∇ ·
(
ρuR̂eθt

)
= ∇ ·

(
σθt(µ+ µturb)∇R̂eθt

)
+ Pθt︸︷︷︸

Sθt

(2.21b)
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The terms highlighted as S∗ are treated as source terms. The models introduce a lot of
parameters and empirical constants, to make it suitable for treatment of near wall regions
(low-Re). For expressions and the values of these parameters, which escape the scope of the
current work, the reader is referred to the original journal articles of Menter [141] and Menter
et al. [140], as well as the on-line Turbulent Modelling resource of NASA [155].

Finally, the one-equation Spalart-Allmaras model, solves the single transport equation 2.22a
for the pseudo-viscosity ν̃ and estimates the turbulent dynamic viscosity νturb from 2.22b.

∂ν̃

∂t
+ u∇ν̃ =

1

σ

[
∇ · ((ν + ν̃)∇ν̃) + cb2 (∇ν̃)2

] Sν̃︷ ︸︸ ︷
+cb1(1− ft2)S̃ν̃ −

[
cw1fw − cb1

κ2
ft2

]( ν̃
d

)2

(2.22a)

νturb = fν1ν̃ =
χ3

χ3 + c3ν1
ν̃, where: χ =

ν̃

ν
(2.22b)

Similarly, the values and the expressions of the parameters can be found in the journal paper
of and Spalart and Allmaras [211], the on-line Turbulent Modelling resource of NASA [155],
as well as in the theoretical CFD manuals [152].

According to the Reboud correction, turbulent models provide an estimate for the turbulent
dynamic viscosity νturb and then the turbulent eddy viscosity is computed as µturb = f(ρ) ·νturb,
where the density function f(ρ) is given by 2.23 and takes into account the spatial variation of
the mixture’s density.

f(ρ) = ρv +

(
ρv − ρ

ρv − ρl

)n

· (ρl − ρv), n = 10 (2.23)

In the implemented algorithms the turbulent transport equations are solved at the end of
the time-step, after the pressure-correction iterations.

2.3 Immersed Boundary Forcing Term
The immersed solid boundary is represented by a surface mesh and a continuous color function,
dubbed as the IB mask, is used to indicate the region of the computational domain enclosed
by this surface. The color function (IB mask) receives values between 0 for fluid cells and 1
for solid cells. The modelling of the immersed solid boundary on the computational domain
is achieved by the addition of a forcing term, a volumetric source term, in the momentum
equations.

The forcing source term, seen in 2.24, is computed as the difference of the fluid velocity
ufluid from the IB solid velocity uIb, divided by the time-step. It is designed to drive the
solution of the momentum equation to the desired velocity value in the IB region, imposing a
no-slip condition. To localise the application of the source term on the computational cells in
the IB region, the forcing term is multiplied by the IB mask αIB,.

fIB = αIB · uIb − ufluid

∆t
, αIB ∈ [0, 1] (2.24)
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In various direct forcing IB method reported in the literature, the forcing is applied only on
the interface cells. Moreover, the forcing is first computed on the Lagrangian points defining the
IB interface, and then is interpolated in the nearby cells. In contrast, in the herein proposed
methodology, as the IB mask receives values in the (continuous) range [0, 1], the forcing is
applied on the interface as well as the internal to the solid area computational cells. In addition,
the forcing is directly computed on the computational cells, where the solid velocity uIb is
defined, and therefore the cumbersome interpolation procedure is avoided. The definition of
the solid velocity uIb is discussed on the next section.

If this forcing term is formulated explicitly, using the velocity value of the previous time-
step or iteration, can receive large values, which can lead to very stiff equations. This holds
true especially for the cavitating flows, when the time-step tends to reach values of 10−8s,
limited by high velocities or large deviation of the Mach number between the liquid and vapour
phases. In order to tackle this difficulty, the IB source term can be treated implicitly by being
linearised [16, 152], following Taylor expansion, as:

fIb,k(uk)
t = fIb,k(uk)

t−1 +
∂fIb,k
∂uk

· (utk − ut−1
k ), k = x, y, z

with regards to the time step t. Alternative approaches could employ fractional step split-
ting algorithms [126, 223], where the splits the homogeneous and inhomogeneous parts of the
differential equations, or upwinding techniques [187].

As the IB methodology is combined with a pressure-correction algorithm, the forcing term
should be updated in every pressure-correction iteration. Therefore for every intermediate step
n within each time step t, the forcing term is calculated by 2.25.

fIb,k(uk)
n = fIb,k(uk)

t−1 +
∂fIb,k
∂uk

·
(
unk − ut−1

k

)
, k = x, y, z (2.25)

2.3.1 IB Motion and Velocity
The solid velocity uIb, which constitutes the desired boundary condition and is used in 2.24
for the computation of the forcing term, is defined directly for the computational cells. The
computational cells in the IB region are considered as part of the solid body and their solid
velocity is evaluated with respect to the velocity of the center of gravity GIb of the immersed
boundary.

The immersed boundary is regarded as undeformable rigid body. Therefore, all the points
of the solid have the same translational velocity, the velocity of the center of gravity GIb of the
IB. On the other hand the angular velocity of each point of the solid depends on its position
relative to the GIb. A geometric representation is given in figure 2.1. As a result, for each grid
cell Cj in the solid region, the (imposed) solid velocity is given with respect to the position
vector rj =

−−−→
GIbCj by 2.26.

uIb,j = uG + rj × ωG (2.26)

The motion of the immersed boundary can be pre-described but also be induced by the
flow, making our method capable of with Fluid-Structure Interaction (FSI) simulations.
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r⃗
j

u⃗G

u⃗G r⃗j × ω⃗G

u⃗Ib,j

GIb

Cj

Cj+1

Fluid

Solid

Figure 2.1: Solid body velocity estimation for cells in the Immersed Boundary region.

For FSI computations, an ODE solver is used to solve the M-C-K dynamic system 2.27,
which defines the motion of a rigid body with six degrees of freedom (6 d.o.f.), three translations
x = (x, y, z) and three rotations θ = (θx, θy, θz).

m · ∂
2x
∂t2

+ c · ∂x
∂t

+ k · x = Fext (2.27a)

ĨR · ∂
2θ

∂t2
= Mext (2.27b)

with

m the mass of the body

ζ = c/m the structural damping ratio

k the spring coefficient

ĨR the moment of inertia matrix with respect to the center of rotation R

Fext and Mext the vectors of the external forces and moments

The solid motion solver, receives as an input from the fluid solver the forces acting on the
immersed body, and returns the displacement of the center of gravity of the immersed boundary.
However a loose coupling approach is followed, because the ODE is not solved simultaneously
with the Navier-Stokes equations, but at the beginning of each time step, using the forces of
the previous time step.

2.3.2 IB Mask Estimation
The immersed boundary is represented by a surface (IB surface), which is superimposed onto
the computational grid and devides it into fluid and solid regions, as illustrated in figure 2.2a.
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The color function (IB mask) representing the solid region, corresponds to the solid volume
fraction of the cells. The mask can be seen as the ratio of the cell volume covered by the IB
surface over the total cell volume and thus receives values between 0 for fluid cells and 1 for
solid cells. The same procedure is used by Koukouvinis et al. [111] and Mithun, Koukouvinis
et al. [144].

r⃗
(j,i,k)

n⃗k

Bk

Vj,i

Cj

Cj+1

Cj−1 Fluid

Solid

(a)

r⃗
(j,i,k)

Bk−1

n⃗k−1

d⃗
n

d⃗t

n⃗k

Bk

Vj,i

Cj

Cj−1

(b)

Figure 2.2: Representation of immersed boundary onto computational grid (left) and calculation of
vertex distance from IB surface’s nodes (right). The IB surface is represented by the solid red curve.

To estimate the cell volume enclosed in the solid region, for each vertex of the cell, the
distance from the IB surface is calculated. The distance dij of each vertex is computed as a
signed scalar, indicating whether the vertex lies inside (dij < 0) or outside (dij > 0) the area
enclosed by the IB surface. As a result, the the vertices laying in the fluid region can easily be
filtered out by keeping only the negative values (min(dij, 0)). The sum of the distance dij of
the vertices in the solid region is used as a measure of the enclosed cell volume. Therefore, for
each of the Nc cells of the domain with Nv vertices, the mask αj is calculated as the ratio of
the sum of the distance of the enclosed vertices over the the sum of the norms of the distances
of all vertices. The mask is given by the relation 2.28.

αj =

Nv∑
i=1

| min(dij, 0) |

Nv∑
i=1

| dij |
, j ∈ [1, Nc] (2.28)

For each vertex, the distance from the IB surface is estimated as the minimum of the
distance of the vertex from each of the points of the IB surface. More precisely, the distance
is calculated as the orthogonal projection of the distance vector rij,k between the vertex Vi, of
cell Cj, and the IB point Bk, on the normal nIb,k of the IB surface defined on the IB point.
The procedure is expressed by relation 2.29 and illustrated in figure 2.2b, where the distance
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vector rij,k is decomposed into a parallel and an orthogonal to the IB normal nIb,k component:
dt ⊥ n,dn ∥ n,⇒ dt ⊥ dn.

dij = min(dn) = min (rij,k · nIb,k) , rij,k =
−−−→
BkVij, i ∈ [1, Nc], j ∈ [1, Nv], k ∈ [1, NIb]

(2.29)
An indicative example is given in figure 2.3, where the triangulated surface mesh represent-

ing an immersed solid cylinder and the equivalent IB mask, calculated following the procedure
presented above, are shown.

(a) IB surface (STL) (b) IbMask

Figure 2.3: IB representation. The IB surface is read from an STL file (left), as a triangulated
surface, and is translated into a solid volume fraction field on the computational grid (right).

2.3.3 Wall Treatment for Turbulence Modelling
Regular turbulence models can be used in conjunction with the proposed Immersed Boundary
Method, with slight modifications.

Firstly, the wall distance y is altered to take into account the presence of the immersed
solid. The distance ywall,Ib of every cell center from the IB surface is calculated and then the
wall distance is estimated as the minimum between the ywall,Ib and the conventional ywall, in a
similar way presented by Mochel et al. [149]. This procedure is expressed by 2.30 and illustrated
in figure 2.4.

y′wall = min(ywall, ywall,Ib) (2.30)
Secondly, an additional term is added to the source terms S∗ of the transport equations

of the turbulent variables presented in section 2.2. This term is formulated with the same
reasoning and in an similar way as 2.24, in order to drive the solving variable to a constant
value inside the solid area, respecting the boundary conditions of the model in use.

In the case of k − ω SST , the boundary conditions for the turbulent kinetic energy and
the specific dissipation are set according to Wilcox [237] to kwall = 0 m2s−2 and ωwall → ∞,
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(a) Conformal wall distance (b) IB wall distance (c) Adapted wall distance

Figure 2.4: Adaptation of wall distance from the lower boundary of the computational domain, to
account for the cylinder near the wall, represented as an immersed boundary.

practically ωwall = 1015 s−1. In the case of Spalart-Allmaras model, the turbulent viscotisy
in the area of the body sould tend to zero, so the boundary condition of the pseudo-viscosity
ν̃wall = 0. The source terms are given by 2.31 and 2.32 respectively.

S ′
k = Sk +

kwall − k

∆t
, S ′

ω = Sω +
ωwall − ω

∆t
(2.31)

S ′
ν̃ = Sν̃ +

ν̃wall − ν̃

∆t
(2.32)

Therefore, taking the one-equation Spalart-Allmaras model as an indicative example, the
transport equation of pseudo-viscosity 2.22a, after the introduction of the altered source term,
will read as in 2.33.

∂ν̃

∂t
+u∇ν̃ =

1

σ

[
∇ · ((ν + ν̃)∇ν̃) + cb2 (∇ν̃)2

] S′
ν̃︷ ︸︸ ︷

+cb1(1− ft2)S̃ν̃ −
[
cw1fw − cb1

κ2
ft2

]( ν̃
d

)2

+
ν̃wall − ν̃

∆t
(2.33)

45



46



Chapter 3

Preliminary Computational Studies:
Validation of the Method

Contents
3.1 Incompressible Flows 48

3.1.1 Incompressible Flow over Cylinders 48
3.1.2 Incompressible Turbulent Flow over Backfacing Step 52

3.2 Cavitating Flows 56
3.2.1 Cavitation Induction by Rotating Cross 56
3.2.2 Cavitating Flow over a Stationary Hydrofoil in Channel 59
3.2.3 Cavitating Flow over a Pitching Hydrofoil 62

3.3 Concluding Remarks 70

This chapter is dedicated to the validation of the developed Immersed Boundary method
against well documented benchmark cases. The validation is performed against numerical and
experimental results extracted from the literature. The assessment of the method starts from
simple incompressible flows in low Reynolds and then builds up in complexity to finally treat
turbulent cavitating flows at high Reynolds. Initially, the method is employed on incompressible
laminar flows around stationary or moving cylinders, which are standard tests to demonstrate
the capabilities of similar methods. Then the turbulence modelling is tested on a well-known
example of turbulent flow over a back-facing step in a channel at moderate Reynolds number.
Finally the method is applied on the study of cavitating cases of rotating model propellers and
stationary or pitching hydrofoils. This long and diverse validation process aims to demonstrate
that the proposed method is capable of treating complex turbulent cavitating flows with moving
boundaries and can be used on applications of industrial interest.
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3.1 Incompressible Flows

3.1.1 Incompressible Flow over Cylinders
As an initial step for the validation of the herein proposed Immersed Boundary method, the
incompressible flows over stationary and moving cylinders, at a low Reynolds number of Re =
Umax ·D/ν = 100, are considered.

These well documented flows are characterised by the Karman vortex street that develops
on the wake of the cylinder, which depends on the Reynolds number of the flow and exhibits
a specific Strouhal number St = f ·D/U based on the vortex shedding frequency f .

Flow over Stationary Cylinder

The incompressible laminar flow, at Re = 100, past a circular cylinder, modelled by the herein
proposed IB method, is simulated. The working liquid was chosen to be air, with density
ρ = 1.22kg/m3 and kinematic viscosity ν = 1.57 · 10−5m2/s.

The case set-up, consists of a computational domain with dimensions Lx = 55D × Ly =
35D, which is discretised using a canonical orthogonal grid. Telescopic refinement is used in
order to control the resolution of the uniform grid in an area of −1.5D ≤ x ≤ 1.5D and
−1.5D ≤ y ≤ 1.5D around the cylinder. The three meshes achieve resolution of δx = δy =
5%D (coarse), δx = δy = 2.5%D (medium) and δx = δy = 1.25%D (fine), with respect to
the diameter of the cylinder D. The representation of the interface of the immersed boundary
on the background mesh is illustrated in figure 3.1, which shows the computed IB mask (solid
volume fraction) for the three different grids.

The inlet is placed on the left boundary of the domain, and fixed pressure outlet on the
right boundary of the domain. Zero gradient boundary conditions are applied for the velocity
on top and bottom boundaries. All simulations lasted for dimensionless time t = t · U/D =
360 and the time-step was adjusted so that the Courant-Friedrichs-Lewy (CFL) condition of
Comax = u∆t/∆x ≤ 0.5 was respected.

A visualisation of the flow is shown in figure 3.2, where the velocity and off-plane vorticity
contours are plotted. The vortex street is visible and the expected pattern of the two suc-
cessively shed counter-rotating vortices is well captured. Drag CD = 2fx/(ρDcylU

2) and lift
CL = 2fy/(ρDcylU

2) coefficients are also well estimated, with regards to values reported in the
literature, as seen in table 3.1.

CD CL St
Sun [216] 1.367± 0.01 ±0.348 1.64
Lima [205] 1.39 - 0.16
De Palma [171] 1.32 ±0.331 0.163
Present IB 5%D 1.45 ±0.2 0.1389
Present IB 2.5%D 1.39 ±0.275 0.1469
Present IB 1.25%D 1.35 ±0.3 0.1523
Present Conf. 1.3 ±0.25 0.1417

Table 3.1: Force coefficients and Strouhal number for flow past stationary cylinder at Re=100.

48



(a) Coarse (b) Medium (c) Fine

Figure 3.1: IbMask field for the representation of a immersed cylinder on three different canonical
grids. The cell edge for the coarse grid (a) is 5%Dcyl, for the medium grid (b) is 2.5%Dcyl and for the
fine grid (c) is 1.25%Dcyl.

(a) (b)

Figure 3.2: Velocity magnitude (a) and off-plane vorticity component (b) incompressible for flow
past stationary cylinder at Re=100.

Oscillating Cylinder in Fluid at Rest

The oscillation of a cylinder in a fluid at rest is simulated using the Immersed Boundary
method presented, in order to assess the method’s capability to handle moving boundaries.
Apart from the Reynolds number, this case is characterised also by the Keulegan–Carpenter
number KC = Umax/(f ·D), where Umax refers to the maximum velocity and f the frequency of
the oscillation of the cylinder. The motion of the cylinder is described by a harmonic function
x(t) = −Asin(2πft), with A = KC/2π the amplitude of the oscillation.
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The computations are carried out using air as the surrounding fluid and choosing Re = 100,
and KC = 5, resulting in a Strouhal number St = 0.2, to match the experimental data available
from Dütsch [56], which serve as reference for many researchers. The computation run for 8
oscillating periods and three different meshes are used to determine the mesh influence on the
results. In addition, the IB method results are compared to simulations applying an Over-Set
mesh technique, where the cylinder Over-Set mesh conforms to the solid cylinder boundary.

A 55Dcyl × 35Dcyl domain is discretised using canonical orthogonal grid; telescopic re-
finement is used in order to achieve the desired resolution in a square region [−3Dcyl, 3Dcyl],
centered on the equilibrium point of the cylinder’s oscillation. The three meshes yield a cell
edge of 5%Dcyl (coarse), 2.5%Dcyl (medium) and 1.25%Dcyl (fine), in the refined region near
the cylinder.

In figure 3.3, the velocity components are plotted for three different phases of the oscillation
and on four different cross sections along the oscillation path of the cylinder,for the three
meshes, in order to assess the influence of spatial discretisation on the numerical results. The
small deviation of the velocity profiles indicate that the immersed boundary method is mesh
independent.

Oscillating cylinder in fluid at rest KC = 5; Re = 100
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Figure 3.3: Mesh dependence of in-line (top) and cross (bottom) velocity for Immersed Boundary
simulations of cylinder oscillation in air at rest, at Re = 100 and KC = 5, at four different cross-
sections: coarse (− · −), medium (−−−), fine (continuous line).

In figure 3.4 the Immersed Boundary method is compared to the experimental data of
Dütsch [56], and to an Over-Set mesh methodology, available in OpenFoam+ [166]. According
to the Over-Set mesh approach, two grids are created, one background that does not take
into account the moving cylinder and one smaller around the cylinder, which conforms to the
geometry; an interpolation procedure is defined to communicate field values between the two
meshes. The medium mesh is used for both numerical simulations. The predicted velocity
profiles exhibit a good agreement for the two computational methods, as well as with the
experimental data, although some peak values are not captured.

Finally, the drag coefficient over the length of the cylinder, computed as CD = 2fx/(ρDcylU
2),

is plotted for the IB method, the Over-Set mesh and the experiments, in figure 3.5, where IB
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Oscillating cylinder in fluid at rest KC = 5; Re = 100
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Figure 3.4: Comparison of in-line (top) and cross (bottom) velocity profiles for Immersed Boundary
simulations (continuous line) of cylinder oscillation in air at rest, Re = 100 and KC = 5, to Over-Set
mesh computations (dashed line) and Dütsch et al. [56] experimental data (symbols), at four different
cross-sections.

simulations for the three different meshes are compared in 3.5a for dt = 0.5ms and for three
different time steps using the medium mesh in figure 3.5b. Both methods produce results that
coincide with experimental data. However, it can be observed that the Over-Set curve has
a lot of spikes, whereas the IB curves are smoother. If the Over-Set method was to be used
in the framework of a flow-induced motion for the cylinder, these spikes might result in non-
convergent simulation and highly unsteady motion. In contrast, the IB method seems more
suitable for such complicated fluid-structure interaction problems.

For the IB curve, the smoothness is influenced by the spacial and temporal resolution. A
coarser grid yields weak force spikes in some parts of the oscillation, probably because the
immersed body representation is not accurate enough. On the other hand, a larger time-step
provides a smoother curve. The time step and minimum cell size control the percentage of a
masked (solid) cell to be revealed and of an unmasked (fluid) cell to be covered by the immersed
body as it moves and therefore affects the unsteadiness of the forcing source term.

Flow past Oscillating Cylinder

The next benchmark case considered to assess the performance of the proposed Immersed
Boundary method is the case of an incompressible flow development over an in-line oscillating
cylinder. The current Finite Volume IB method simulation results are compared with the
numerical data of Hurlbut et al. [99], obtained using the Finite Difference approach.

The computations of Hurlbut et al. [99] were performed on a fixed grid, conforming to
the cylinder surface. The oscillating motion of the cylinder was taken into account using a
non-inertial coordinate transformation, where the velocity of the fluid is divided in to two
components: one relative to the moving cylinder (Uf) and one relative to the inertial frame
of reference (Ur). The latter is calculated as a function of time, representing the oscillation of
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Figure 3.5: Comparison of drag coefficient for Immersed Boundary simulations with the three
different meshes (a) and three different time steps (b), to the computation of the Over-Set mesh
technique (using the fine mesh) and the experimental data of Dütsch et al. [56].

the cylinder.
The cylinder is initially stationary, exposed in a flow of Re = 100, until a periodic vortex

shedding is achieved. Then, it starts to oscillate at a frequency twice as the Strouhal number
of the vortex shedding, which is calculated as Stq = fqUinf/Dcyl = 0.166, where fq the vortex
shedding frequency; this is in agreement with the literature [171,205,216]. According to Hurlbut
et al. [99], at such an oscillation frequency, phase locking is observed which increases the drag
and maximizes the lift coefficient.

As in the previous case, air is chosen as the medium and the velocity of the cylinder
is described by the equation uc(t) = 2πfcAcos(2πft), with the amplitude of the oscillation
subject to the constrain of KC = 5 and fc = 2fq, where fc the oscillation frequency of the
cylinder.

The computational domain is chosen to be L = 55Dcyl in length and H = 35Dcyl in height,
and discretised by an orthogonal Cartesian grid, which makes use of telescopic refinement near
the cylinder and along the vortex street, to yield square cells with edge length of δx = δy =
1%Dcyl.

Comparison of the drag (CD) and lift (CL) coefficient, extracted from the IB simulations,
against the conformal grid computational data of Hurlbut et al. [99], show excellent agreement,
as illustrated in figure 3.6. The current IB method provides accurate results and greatly
simplifies the computational procedure compared to the numerical setup of Hurlbut et al. [99]

3.1.2 Incompressible Turbulent Flow over Backfacing Step
In order to test and validate the treatment of turbulent modelling by the presented Immersed
Boundary method, a widely accepted benchmark case of the flow over a back-facing step
[5, 85, 108, 120], at a Reynolds number of Re = 69610, is studied. The present numerical
simulation results are compared to the experimental data provided by Kim [108].

The case consists of the incompressible flow of air (ρ = 1.88553 kg/m3, µ = 1.83698 ·
10−5 kg/ms) in a channel, over a back-facing step. The total height of the channel is HTotal =
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Figure 3.6: Flow over oscillating cylinder at Re = 100. Comparison of Lift (top) and Drag (bottom)
coefficient for Immersed Boundary simulations (lines) to conformal grid computational data of Hurlbut
et al. [99] (symbols). The cylinder oscillates at a frequency two times greater than the vortex shedding
frequency, fc = 2 · fq = Stq · Uinf/Dc.

3h, where h the height of the step. The step extends L1 = 4h downstream the inlet. The
outlet is placed L2 = 61.4h downstream the step. The domain, which can be seen in figure
3.7a, matches the configuration reported by [85], who simulated the same flow using curvilinear
grids. The step is represented as an Immersed Boundary, as seen in figure 3.7b.

in
le

t H = 3× h

h

L1 = 4× h L2 = 61.4× h

(a) Domain (b) Mesh

Figure 3.7: Computational domain (a) and mesh with IB surface (b) for back-facing step case.
Geometric expansion of the cell height is used to refine the canonical orthogonal mesh near the wall
and the top side of the step and achieve the desired y+ value.

Unsteady Reynolds-Averaged (URANS) computations are carried out and the k − ωSST
turbulent model is used. In addition to IB simulations, conformal grid simulations are also
performed. Thus the performance of the IB method is evaluated, with respect to the accuracy
of solver.

The conformal grid yielded y+ = 40 near the wall. For the IB simulations, two different
grids where used; a coarse achieving y+ = 40, similar to the conformal grid, and a fine reaching
y+ = 10. When using an Immersed Boundary, is not trivial to determine the height of the
first cell over the (immersed) wall, as the grid generally does not conform to the solid wall and
the normal to the boundary direction does not coincide with the cell height. Therefore the y+
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serves rather as an indication of the grid resolution than an absolute characteristic measure of
the turbulent modelling. In this particular case however, the computational cells are aligned
with the immersed wall, therefore the y+ retains its physical significance.

In figures 3.8 and 3.9, the profiles of turbulence kinetic energy (TKE) and in-line velocity
(Ux) respectively, along different vertical sections downstream of the step, are plotted. The
numerical results of the IB method are compared to the conformal grid results and the experi-
mental data from [108]. Good agreement is found between the two numerical methods and the
deviation of both from the experimental results is small. Moreover, the Immersed Boundary
computations’ results prove independent of the grid resolution over the step. However, both nu-
merical methods do not capture accurately the velocity profile in the recirculation region (first
four sections in figure 3.9), as well as they both underestimate the maxima of the curves. In
addition, small differences are observed in the distributions of turbulent kinetic energy between
the IB method and the conformal grid simulation, as the IB method overestimates turbulence
near to the step (first two sections in figure 3.8).

Finally, the pressure recuperation along the lower wall of the channel, downstream of the
step is presented in figure 3.10), where the pressure coefficient with respect to the minimum
value is plotted. Although until a distance of 3h away from the step the numerical results are
close to the experimental, they deviate significantly thereafter. However, the IB results are
close to those of the conformal grid.

This deviation may be linked to the two-dimensional setup of the computations, in contrast
to the three-dimensional nature of the flow, or to the limitations of RANS approach, as reported
by Sohn [118].

Flow over Backfacing Step Re = 69610; k − ωSST
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Figure 3.8: Flow over back-facing step. Turbulent Kinetic Energy vertical distribution on six
different positions along the channel. Immersed Boundary results for coarse (red line) and fine mesh
(dash orange line) compared to conformal grid computations (black line) and experimental data of
Kim et al. [108] (symbols).
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Flow over Backfacing Step Re = 69610; k − ωSST
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to conformal grid computations (black line) and experimental data of Kim et al. [108] (symbols).
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3.2 Cavitating Flows
Following the benchmark incompressible cases, with moving or stationary immersed bodies,
laminar or turbulent regimes, the present Immersed Boundary method is applied onto cavitat-
ing flows. At first the case of cavitation induced by a rotating cross immersed into stationary
water is simulated, which could be seen as a case of an idealised propeller. Then, the method
is used on fully turbulent cavitating flows past stationary or moving hydrofoils in a channel.

3.2.1 Cavitation Induction by Rotating Cross
As a first benchmark case, the cavitation induction by the rotation of a solid cross in water
is considered. The initially idle cross is placed in water at rest and at the beginning of the
simulation is instantaneously started to rotate at a constant angular velocity. The motion of
the solid accelerates the surrounding stationary liquid and induces cavitation.

This test case was studied by Örley et al. [170] to validate their cut cell immersed boundary
method against a simulation using a Arbitrary Lagrangian-Eulerian formulation (ALE)(with
conformal to the geometry grid). In the present study, an additional simulation with a con-
formal to the cross geometry grid, employing a sliding mesh approach using Arbitrary Mesh
Interface (AMI) [61] method, is carried out in order to compare with the developed Immersed
Boundary method.

The cross consists of a circular hub with diameter dhub = 0.2 m and two bars of the same
thickness wbar = 0.1 m but different length, l1 = 1.0 m and l2 = 0.5 m. The study is two-
dimensional. As computational domain is chosen a square with edge length Lsq = 600 l1 and is
discretised by a canonical Cartesian grid. Three different mesh resolutions are used, as in [170],
one with 10 cells (coarse mesh) along the thickness of the bars wbar, one with 20 cells (medium
mesh) and one with 40 cells (fine mesh). Several levels of telescopic refinement are used to
achieve the desired resolution in an area 2 l1 × 2 l1 around the center of the hub of the cross.

The initial ambient pressure is set to pinit = 1 bar, the liquid is initially at rest and the
angular velocity of the cross is ω = 20 rad/s around the axis perpendicular to the plane.
The density of the liquid water is ρL = 998.16 kg/m3 and for the saturated vapour ρV =
0.017312 kg/m3, while the saturation pressure is set pSAT = 2339 Pa. The Wallis formula is
used for the mixture’s compressibility calculation.

As the cross starts to move, the ambient liquid is abruptly accelerated, pressure drops along
the cross surface, small vapour structures are formed and strong pressure waves are emitted
radially away from the solid boundary, visible in figure 3.11. These waves get superimposed
while travelling away resulting in a complex pressure field. These initial vapour structures will
then collapse and as the velocity field is developed, cavitation will be induced on the path of
the cross, on the top of the long bars and near the convex surface of the hub. As these vapour
structures collapse, new strong pressure waves are emitted towards the far field, as it can be
seen in the sequence plots of figure 3.12.

Comparison of the vorticity contours for the different meshes and the AMI simulation, pre-
sented in figure 3.13, show that mesh resolution affects greatly the sharpness of the contours,
with different structures visible on the finer mesh, which leads also to different vapour struc-
tures. In addition, the conformal mesh simulation (AMI approach) exhibit different vorticity
and vapour structures than the IB computations, and capture weak vapour formation near the
convex surface of the hub.
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(a) 0.5ms (b) 1.0ms (c) 1.5ms

Figure 3.11: Pressure contours in logarithmic scale (common logarithm log10(·)), at the initial stages
of the rotation of the cross inside initially stationary water. The time instances are extracted for the
fine (40 cells) mesh. One complete rotation lasts 314ms. Vapour volume fraction of 1% iso-line is
plotted with red.

(a) 261ms (b) 263ms (c) 263ms (d) 264ms

Figure 3.12: Pressure contours in logarithmic scale (common logarithm log10(·)), at the later stages
of the rotation of the cross inside initially stationary water. The time instances are extracted for the
medium (20 cells) mesh. One complete rotation lasts 314ms. Vapour volume fraction of 1% iso-line
is plotted with red.

The total amount of vapour created during one full rotation of the cross is plotted in figure
3.14, for the different grids, the AMI approach as well as the cut cell (for the three meshes) and
the ALE simulations (for an equivalent to the medium mesh) reported by Örley et al. [170].
It can be seen that the current IB method, for the medium grid, although it results in a curve
that follows closely the respective medium grid computation with cut cells of [170] but reaches
a larger maximum, predicts greater vapour creation, than all the other computations. Finer
grid resolution enhances the vapour creation, as expected. In addition, it can be observed that
the conformal grid simulations give different predictions, which might be linked to the different
solvers or barotropic models used.

The velocity magnitude contours, plotted in figure 3.15 for three phases of the oscillation,
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for the computation with the medium grid, differ slightly from the AMI simulation, whereas
the vapour structures show greater deviation. The difference becomes more apparent for the
360o degrees, where the velocity contous, the vapour distribution, and therefore the velocity
streamlines, show significant differences.

Although differences can be noted between the IB and the AMI simulations, the current
immersed boundary method proves adequate and suitable for treating cavitating flows with
moving boundaries. The physics is captured, including pressure waves and vapour creation,
growth and collapse.

(a) IB coarse (b) IB medium (c) IB fine (d) AMI medium

Figure 3.13: Vorticity contours for rotating cross in water at rest, at 240o. Current direct forcing
Immersed Boundary method simulations for coarse (a), medium (b) and fine mesh (c) are compared
to sliding mesh computations (d) using AMI technique. Vapour volume fraction of 1% iso-line is
plotted with red.
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Figure 3.14: Integral vapour volume fraction’s time evolution for rotating cross in water at rest.
Mesh convergence comparison between current direct forcing IB method (IB) and cut-cell method
(CutC) from [170], on the left. In addition, a comparison of different computational approaches is
presented on the right, between the current IB method and the cut-cell calculations, conformal sliding
mesh simulations performed using AMI approach and ALE results reported in [170].
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(a) I.B. 120o (b) I.B. 240o (c) I.B. 360o

(d) AMI 120o (e) AMI 240o (f) AMI 360o

Figure 3.15: Velocity magnitude contours along with streamlines for I.B. (top) and AMI (bottom)
simulations for rotating cross in water at rest, at three different rotation angles, for the medium mesh
(20 cells along wbar). Vapour volume fraction of 1% iso-line is plotted with red.

3.2.2 Cavitating Flow over a Stationary Hydrofoil in Channel
Another benchmark case of cavitating flow is the flow over the circular leading edge (CLE)
symmetric hydrofoil, studied experimentally and numerically by Dular et al. [54]. The com-
plexity of the unsteady cavitating flow poses an important challenge to the presented modelling
approach and the available experimental data offer an excellent opportunity to validate the
performance of the method.

In the experiment [54], a symmetric hydrofoil, 107.9mm long and 16mm thick, is placed in
a 500mm long and 100mm high cavitation tunnel, at a 5o incidence angle. Both the hydrofoil
and the tunnel are 50mm wide, but the simulations presented hereafter are two-dimensional
for simplicity, as the numerical study of [54]. The computational domain and grid used in
the current study can be seen in figure 3.16. A constant velocity Uin is imposed as boundary
condition at the inlet on the left side of the domain and a constant pressure pout is set as an
outlet boundary condition on the right side. The value of pressure on the outlet is derived
from the desired cavitation number of the flow σ = (p∞ − pvap)/(

1
2
ρU2

∞). On the upper and
lower side are considered no-slip walls.

The computational domain is discretised by a hexahedral orthogonal grid with additional
refinement on the interface of the hydrofoil. On the side walls, the cell height reaches values
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of y+ = 30, whereas near the hydrofoil the cell size is equivalent of y+ = 20. The final grid is
composed by 100k hexahedral cells.

(a) Domain

(b) Mesh

Figure 3.16: Computational domain (a) and mesh with telescopic refinement (b) for CLE hydrofoil
in channel. A closer look on the leading-edge of the hydrofoil is shown at the left of frame (b).

The density and kinematic viscosity for water are set to ρl = 998.16 kg/m3 and νl =
10−6 m2/s, and for the saturated vapour ρv = 0.017312 kg/m3 and νv = 5.12 · 10−4 m2/s. The
saturation pressure is pSAT = 2339 Pa.

From the test-cases presented in [54], the current study focuses on Test 1, with Uin =
13m/s and σ = 2, for which experimental time-averaged velocity measurements are reported
on different sections over the suction side of the hydrofoil, seen in figure 3.17. The resulting
Reynolds number of the flow is Re = 1.4 · 106.

In the current study, a modified k−ω SST turbulent model, employing the Reboud correc-
tion for the turbulent viscosity, is used. The simulations is run for few shedding cycles, with
the time-step being limited by the acoustic Courant Number to be under 2. This yields time-
steps of the order of 10−6s. The velocity is sampled on the same sections as the experiments
every 0.5 · 10−4s, and then time-averaged to produce velocity profiles to be compared with the
experimental data of [54]. The comparison of the velocity profiles is presented in figure 3.18,
for the in-line (3.18a) and cross direction (3.18b) components.

The comparison yields almost perfect match between the numerical and experimental pro-
files for the Ux velocity component, while for the Uy component a slight deviation is observed
that weakens towards the upper wall. The measured Uy velocity at section y = 0mm re-
ceives strictly negative values after x = 50mm while the current computation predicts almost
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(a) (b)

Figure 3.17: Sections where velocity is sampled for the flow over CLE hydrofoil according to [54].
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Figure 3.18: Time-averaged velocity profiles along stream and cross-stream directions for cavitating
flow over CLE hydrofoil. Numerical results with the current IB method, plotted with continuous
lines, are compared against experimental data from Dular et al. [54], presented with symbols.

Uy = 0m/s from 20mm to 60mm and start to decrease slowly. This small deviation on the
cross-stream direction indicates that the proposed IB method produces a thicker boundary
layer or longer cavity on average, as recirculation is pushed further towards the trailing edge.

Overall the numerical results of the current numerical approach show good agreement with
the experimental measurements. This demonstrates the ability of the method to deal with
complicated turbulent cavitating flows.
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3.2.3 Cavitating Flow over a Pitching Hydrofoil
An indicative case, demonstrating the ability of the proposed Immersed Boundary Method to
deal with complex cavitating turbulent flows, is the flow over a pitching NACA0066 hydrofoil
at Re = 750000 studied numerically and experimentally by Huang et al. [97].

In the aforementioned study, a NACA0066, with chord length c = 0.15m, is put in a
hydraulic channel, where water flows at U∞ = 5m/s and set to rotate changing the angle-of-
attack of the flow from αO,min = 0o to αO,max = 15o and back, for two different cavitating
regimes (cavitating σ = 3, subcavitating σ = 8), at two different angular velocities α̇∗ = 0.18
and α̇∗ = 1.89, where the nondimensional rate is calculated as α̇∗ = α̇ · c/U∞. The current
study focuses only on the cavitating case with the fast pitching rate; the rotation angle is
prescribed and follows the curve reported in [97], which is shown in figure 3.20 and passed to
the code as tabulated data.
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Figure 3.19: The NACA0066mod cambered hydrofoil’s profile used in the study, extracted from [123].
Maximum thickness 12% of the chord.
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Figure 3.20: The prescribed rotation angle evolution through time as extracted from [97].

The computational domain is chosen 16c long and 1.28c high, in accordance with the
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computations of Huang et al. [97]. As boundary conditions, the far-field velocity U∞ is imposed
at the inlet at the left of the domain, the value of pressure p∞ is kept constant at the outlet in
order to satisfy the condition of the cavitation number σ = (p∞−pvap)/(12ρU

2
∞) = 3. Moreover,

following the reference study, at the top and bottom sides a symmetry boundary condition is
set. The domain is discretised by an orthogonal hexahedral grid and telescopic refinement is
used in order to increase the mesh density around the hydrofoil and its wake. Both the domain
and mesh can be seen in figure 3.21.

(a) Domain

(b) Mesh

Figure 3.21: Computational domain (a) and mesh with telescopic refinement (b) for NACA0066.
A closer look on the leading-edge of the hydrofoil is shown at the left of frame (b). The cells at the
finest region, in the vicinity of the hydrofoil, have a height equivalent of y+ = 20.

Using telescopic box refinement, the finest cell size reached, in an area around the NACA, is
0.47mm×0.12mm, which, if the mesh was conforming to the hydrofoil’s wall, would correspond
to y+ = 20. In order to always have a fine grid at the interface of the immersed body, while the
hydrofoil is moving, the cell size has to be kept constant in a broad area covering the path of
the immersed body motion. An alternative practice would be to use a technique of automatic
mesh refinement at the interface or the area of the immersed boundary, but it is out of the
scope of the current study.

When using an Immersed Boundary approach, it is not trivial to determine the height of
the first cell over the (immersed) wall, as the grid does not conform to the solid wall and
the normal to the boundary direction does not coincide with the cell edges. Therefore the y+
servers rather as an indication of the grid resolution than an absolute characteristic measure
of the turbulent modelling.

In their numerical computations, Huang et al [97], use a tetrahedral grid with additional

63



hexahedral layers over the hydrofoil’s wall to capture the boundary layer. The layers ensure
a mesh resolution of y+ = 1 on the wall to accommodate the turbulent modelling. The
computational domain is re-meshed in every time-step, to adapt to the new position of the
hydrofoil. This approach of re-generation of the computational grid to deal with moving
boundaries, may increase the computational cost, especially for complex geometries, and serves
as a motivation for alternative techniques as the proposed Immersed Boundary.

Because of the severe transient nature of the flow, with the hydrofoil pitching past its stall-
point, at an angle of αo,stall = 13o, laminar to turbulent separation is expected to occur. For
that reason, Huang et al. [97] make use of the k − ω SSTLM turbulence model, which is
a combination of the transition model γ − Reθ and the well-known low-Reynold k − ω SST
model. They employ the Reboud correction for multiphase flows, which reduces the turbulent
viscosity according to the local vapour volume fraction; they follow the modifications of Ducoin
et al. [53] and set the value of the exponent n equal to 3 instead of 10 that was recommended
by Coutier-Delgosha et al. [67]. When using the γ −Reθ model in order to accurately capture
the laminar to turbulent transition, the grid cell size should yield y+ ≃ 1, while for y+ > 5
the transition location would be erroneously determined and moved upstream, according to
Menter et al. [140]. For this reason, in the computations of Huang et al. [97], the mesh
resolution ensures y+ = 1 over the hydrofoil wall.

In the present study however, achieving y+ = 1 near the Immersed Boundary is computa-
tionally prohibiting because a wide are would require such a fine resolution, as explained in the
previous paragraphs. Therefore, different turbulence models have been employed in an attempt
to alleviate the uncertainties related to fully resolving the boundary layer over the immersed
wall and capturing the laminar to turbulent transition. Apart from the k−ω SSTLM model,
the one-equation Spalart Allmaras and the low-Reynolds k − ω SST models have been used.
The first model solves two additional, compared to the k−ω SST , equations for the intermit-
tency γ and the transition momentum thickness Reynolds number Reθ to estimate the position
of the turbulent transition; it is used because it is chosen for the numerical study of Huang
et al. [97]. The second model, Spalart Allmaras, is widely used in external aerodynamic flows
over airfoils and solves for a single turbulent variable, the turbulent viscosity νt; it is chosen for
its simplicity. Finally, the k−ω SST is also used, because it is one of the most widely applied
model on problems of engineering interest. All the models incorporate the Reboud correction,
to account for mixture effects on the turbulent viscosity.

Figure 3.22 presents the off-plane vorticity field for the three different turbulence models,
at various indicative angles along the pitching cycle. The differences between the predicted
vorticity is evident. The 50% vapour volume fraction iso-line is also plotted to indicate the
cavitation regions. The close relation between vorticity and cavitation is visible. Cavities are
initiated, grown and carried away by vortical structures generated on the leading and trailing
edges of the hydrofoil. The interaction between leading edge cavities and trailing edge vortices,
highlighted in [97], is captured by all the models. The vortical structures initiated at the
trailing edge, grow until they interact with vapour structures shed over the hydrofoil from the
leading edge and then they are separated from the hydrofoil and carried away in the wake.
This interaction also brakes down the leading edge cavities.
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(a) 9o(+) (b) 9o(+) (c) 9o(+)

(d) 12o(+) (e) 12o(+) (f) 12o(+)

(g) 15o (h) 15o (i) 15o

(j) 14o(−) (k) 14o(−) (l) 14o(−)

(m) 13o(−) (n) 13o(−) (o) 13o(−)

(p) 12o(−) (q) 12o(−) (r) 12o(−)

Figure 3.22: Vorticity field for pitching NACA0066, on different angles of attack along the motion,
for the three different turbulence models. Spalart-Allmaras on the left, k − ωSST on the middle,
k − ωSSTLM on the right. The red line in the figures represents the 50% vapour volume fraction
iso-contour.

Cavitation formation initiates around 8o − 9o during ascending phase on the leading edge.
After reaching peak angle at 15o and the descending commences, a trailing edge vortex is
formed that grows significant, enclosing large amounts of vapour, which then interacts with
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cavities and counter-rotating vortices from the leading edge and is shed on the wake. A striking
difference between the models is that for the Spalart Allmaras this structure grows larger than
for the other models, and its longer retained near the hydrofoil wall. On the other hand, for
the other two models, this cycle is repeated more frequently and at a weaker intensity than
for the Spalart Allmaras. Therefore, depending on the model, different cavity creation, growth
and shedding cycle can be identified.

The influence of the model on the vapour creation cycle is also illustrated quantitatively
by figure 3.23, which presents the integral vapour volume fraction evolution along the pitching
motion, for the three models. The different shedding cycles for the models can be distinguished.
Although all models seem to agree for the first cycle, between 9o ascending and 10o descending,
they subsequently deviate, with Spalart Allmaras predicting a strong and slow second cycle,
while the other two models demonstrate a faster cycle with over 50% reduced intensity from
the first cycle. The greater reduction of vapour volume per cycle is observed for the k−ω SST
model. Overall, the Spalart Allmaras model captures four vapour creation cycles along the
pitching motion, the k − ω SSTLM five and the k − ω SST six.
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Figure 3.23: Integral vapour volume fraction for pitching NACA0066; comparison of simulation
results with different turbulence models.

A straightforward quantitative measure of the performance of the herein proposed compu-
tational approach, would be the force coefficients’ evolution throughout the rotation cycle. In
figure 3.24, the lift, CL, and drag, CD, coefficients are presented for all three turbulent models
used. The curves exhibit severe oscillations along the cycle and frequent high amplitude spikes
around the peak angle and during descending phase, especially for the lift. In order to facilitate
the assessment of the results, the Centered Moving Average (CMA) trend-line is estimated; it
works as a filter that removes the high amplitude and high frequency noise and exposes the
trend of the curves, as seen in figure 3.25. In addition, the plots compare the current simula-
tions’ results to numerical results using conformal grid reported by Huang et al. [97], employing
k−ω SSTLM ; experimental values of the lift, measured for the subcavitating flow over a static
hydrofoil on indicative angles of attack are shown as well. It is apparent that, while ascending,
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the curves for all IB computations agree well with the referenced computations; some noise is
present in both drag and lift coefficients. On the other hand, during the descending phase,
although the IB results are extremely oscillatory, the averaged curves follow the conformal grid
results but indicate noticeable discrepancies. Capturing the correct dynamics during the angle
decrease is very challenging, due to the complex nature of the flow, the stall and the transition
to turbulence near the wall, which is sensitive to the numerics and is hard to accommodate
with the IB computations.
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Figure 3.24: Force coefficients for pitching NACA0066; comparison of simulation results with dif-
ferent turbulence models. Numerical and experimental results of Huang et al. [97] are also presented;
continuous black line refers to transient computations of cavitating pitching hydrofoil, while the black
symbols are static lift measurements for fixed subcavitating hydrofoil.
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Figure 3.25: Centered Moving Average (CMA) trend-lines of force coefficients for pitching
NACA0066; comparison of simulation results with different turbulence models. Numerical and ex-
perimental results of Huang et al. [97] are also presented; continuous black line refers to transient
computations of cavitating pitching hydrofoil, while the black symbols are static lift measurements
for fixed subcavitating hydrofoil.

It can be stated that, overall, the results of the IB and the conformal grid computations
are close, despite the oscillations of the former. At the initial part of the motion, lift exhibits
some oscillations, which are more likely caused by the abrupt acceleration from rest or the
initialization of the simulations. It is hard to conclude which turbulent model performs better,
as all three give similar results, with equivalent deviations from the referenced data at different
instances, which do not favour any of the models. High amplitude spurious spikes are present
in all curves at different time instances, however it can be safely argued that the k − ωSST
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exhibits the most high frequency noise, as seen in 3.24, and also the averaged curve captures
a strong increase of the loading of the hydrofoil close to peak angle, as seen in 3.25 (the shift
in time is relevant to the averaging window used). The CMA of the force coefficients reveal
that the larger deviations occur around 10o during descending phase, After that point, and
up until 4o, the k − ω SSTLM simulation seems to be closer to the referenced data for CL

and exhibits similar curvature for CD, while the Spalart Allmaras constantly overestimates the
coefficients. On the over hand, it has to be noted that the loss of lift and drag, at the beginning
of the descending phase is better captured by the Spalart Allmaras model, with regards to the
referenced data.

A qualitative assessment of the current computations is performed in figure 3.26, which
presents experimental photographs and numerical vapour and vorticity fields provided by [97],
along with the vorticity field and vapour iso-lines of the current numerical simulation with
k − ω SSTLM model. The referenced photographs indicate the vapour cavities over the
hydrofoil; good agreement among the computational and experimental results is found for
the ascending phase. At 14.8o descending, the referenced computational vapour field features
two intense large well organised cavities over the hydrofoil towards and adjacent to the trailing
edge, visible in frame 3.26g; these cavities are in the same position as two large counter-rotating
vortices, one originated from the leading edge and one generated on the trailing edge (Trailing
Edge Vortex - TEV). On the contrary, the current computations predict different vorticity
field and therefore smaller cavities, as seen in frame 3.26h; although the TEV is captured, it
is not grown as in the referenced figures and the vortical field over the hydrofoil is shattered
and features small elongated structures, separated from the solid wall and filled with vapour.
These discrepancies could be attributed to the coarser grid used in the current IB calculations.
Finally, on later stages of the descending phase, the referenced flow field is smoother than the
result of the current simulations.
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(a) 5.5o(+) Huang (b) 5.5o(+) IB

(c) 9o(+) Huang (d) 9o(+) IB

(e) 14.6o(+) Huang (f) 14.6o(+) IB

(g) 14.8o(−) Huang (h) 14.8o(−) IB

(i) 5o(−) Huang (j) 5o(−) IB

Figure 3.26: Vorticity field and vapour volume fraction for pitching NACA0066 calculated by the
current IB methodology (right), compared against computational plots and experimental photographs
of Huang et al. [97] (left). For the referenced figures of [97], experimental photographs, vapour volume
fraction and vorticity field are presented from left to right respectively. On the numerical results of
IB simulations (right column), the vapour volume fraction is represented by means of 50% iso-contour
by the red line. On the referenced figure, the vapour volume fraction is presented on gray scale, with
values ranging from 0 (black) to 0.8 (white), while vorticity is presented on reverse gray scale, from
−500 (white) to +500 (black).

3.3 Concluding Remarks
A thorough validation of the herein proposed Immersed Boundary Method is presented, for
a wide range of benchmark or well documented test cases extracted from the literature. The
reason for this meticulous assessment of the tool over different flow regimes, is that each case
tests a different aspect of the method.

The method is designed to address problems of caviting flows, with moving boundaries, for
applications of micro and engineering scales. The complexity of the test cases increases from
incompressible laminar flows, to incompressible turbulent and finally to highly compressible
cavitating flows.

For the incompressible cases, excellent agreement is found between the current computations
and the literature; first the flow over a stationary cylinder is simulated, then oscillating cylinders
are considered, initially in stationary fluid and then in free stream. Then the incompressible
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turbulent flow over a back-facing step, modelled as immersed boundary, is solved; the simple
configuration of this case, which does not include moving solids, makes it easy to carry out
conformal grid simulations as well. Thus, the IB results are compared against conformal grid
as well as experimental data from literature and found in good agreement.

Finally, cavitating cases are tackled. Initially the cavitation induction for a moving cross
in stationary water is computed. The results of the current method are compared to results
of simulations with conformal grid employing sliding interfaces to accommodate the rotation,
as well as cut-cell IB simulations from literature; the performance of the method is judged
satisfactory. Then, the highly tubrulent cavitating flow over a stationary hydrofoil is addressed
and time-averaged sampled velocity profiles are compared to experimental measurement from
the literature and found in good agreement.

At the end, the complicated turbulent cavitating flow over a pitching hydrofoil is solved.
The complexity of this case arises from the high Reynolds number and the pitching motion,
which leads to laminar to tubrulent transition over the hydrofoil at a certain point during the
computation. The results are compared against partial experimental and thorough conformal-
grid computational results from literature; the physics of the problem is captured, however
some limitations of the method are highlighted. The current simulations were unable to reach
the level of spatial discretisation of the conformal-grid simulations, thus let the turbulence
models accurately capture the boundary layer dynamics. Moreover, force coefficients exhibit
strong oscillations, although they follow closely the referenced data. Better spatial resolution
could improve the results. Achieving resolution of y+ = 1 over a moving immersed boundary is
computationally inefficient with homogeneous Cartesian grids, as very small cells should cover
a wide area. To alleviate this drawback automatic mesh refinement could be used over the
moving IB interface, which is not considered herein. The implicit treatment of the source term
would be also beneficial. It is worth mentioning that the referenced computations employ auto-
matic remeshing of the complete computational domain in each time-step; the IB methodology
proposed herein tries to become an alternative to such computationally expensive strategies.
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Chapter 4

Computational Study of Three-Phase
Flow: Projectile Impact on Water Jet
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Following the validation of the method presented in the previous chapter, the proposed
Immersed Boundary method is applied on a challenging multiphase flow computation. The IB
method is coupled with a two-phase flow compressible flow to study the high-velocity impact
of a solid projectile on a flowing water column and investigate the shock-wave formation, struc-
tures and the cavitation induction. This case has been recently studied only experimentally
by Field et al. [65]. The numerical simulation of this impact case poses significant challenges
regarding the motion of the solid body, as well as the complex interface phenomena. Con-
ventional deformable grid techniques could not accommodate the large displacement of the
immersed solid boundary and re-meshing strategies seem not suitable for the high-velocity
motion as they would be computationally very expensive. The use of IB method tackles this
issue and makes it possible to model the moving body on a relatively simple stationary grid
and study computationally the dynamics of this high-velocity solid-to-liquid impact.

The work presented on this chapter has resulted in a publication of Stavropoulos- Vasilakis
E. et al. [231].
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4.1 Scope of the Study
Wave interaction with material interfaces may regard physical problems of wave reflection
on solid or liquid-gas interfaces, as well as shock dynamics resulting from liquid-to-solid or
liquid-to-liquid impacts.

Such interactions have a wide range of applications of industrial [2, 58, 65, 91, 110, 115,
122] and medical or bioengineering [94, 96, 121, 143, 161, 162, 241] interest; they may refer to
underwater explosions, laser-generated bubbles’ dynamics, cavitation erosion of mechanical
structures or machines and non-invasive medical procedures such as HIFU or injuries and head
concussion accidents.

The solid understanding of the interaction of shock-waves with liquid-gas interfaces in fast-
slow configurations (i.e. shock initially travelling in a liquid), has been established through
computational studies, assisted by experiments such as those reported by Grove et Menikoff [84]
and Nourgaliev et al. [160]. These studies demonstrate that compression waves are always
reflected as expansion waves upon impacting the interface [160], which may lead to cavitation
formation. The link between the reflected wave type and the acoustic impedance ratio is clearly
illustrated by Davison [48], in the form of two asymptotic scenarios. According to this study,
the first scenario involves a wave travelling in a material and interacting with a perfectly rigid
wall (infinite acoustic impedance); in that case the wave is reflected back at the same amplitude.
The second case involves interaction of the wave with perfect vacuum (acoustic impedance of
zero); in that case the wave is reflected back with opposite amplitude.

In addition, many experimental works have extensively studied the mechanisms and the
dynamics of liquid-to-liquids impacts [23, 163] or liquid-to-solid impacts [8, 24, 25, 30, 64, 66],
have unveiled the phenomena taking place and highlighted cavitation induction, growth and
collapse due to pressure waves, which in turn leads to erosion development. A comprehensive
summary of the experimental findings on liquid to liquid or solid impacts can been found in
the work of Field et al. [65]; the study, highlights the complicated wave structures interacting
with free-surfaces and the potential of cavitation erosion development.

The theoretical study of LeVeque [125], has analytically examined the liquid drop impacts
on solid surfaces, while the experiments reported of Field et al. [65] for liquid droplets impacting
on a solid surface, reveal the strong effects of compressibility that occur locally in the liquid
bulk near the impact region. A peak in pressure can be observed and a complicated shock
wave structure develops, while high-speed jetting may occur at the impact location; at the
same time, rarefaction waves form that may create enough tensile stress to induce cavitation
within the liquid. The high-speed jetting characteristics have been investigated experimentally
by Thoroddsen et al. [222] using free-falling spheres that impact on a liquid pool; the authors
tried to link the Reynolds number with the jets’ velocity and the shape of the lamella formed
during splashing. Fractures of solid surfaces by liquid or solid impacts and shock-waves have
been studied by Bowden et al [25].

On the modelling side, droplet impact on solid surfaces has been investigated numerically
by many researchers using various numerical algorithms to account for the different phases,
such as marker-and-cell (MAC) finite differences [87], front tracking approach [86], Volume
of Fluid [89], multicomponent Euler solver [193] or two-fluid model for Euler equations [159],
to name a few. Sanada et al. [193] studied the impact of a liquid droplet on a solid surface,
the shock-wave structures, interfaces dynamics and jetting as well as solid surface compliance.
Harvie et al [89] modelled the drop impact on hot solid surfaces, focusing both on dynamics of
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the impact as well as the heat transfer. Haller et al. [86] presented a detailed numerical work
on shock-wave formation upon the impact of a droplet on rigid wall, where the complex shock
structure of the multiple overlapping waves that interact with the free surface and the moving
contact line between the wall and the droplet have been unveiled. Moreover, the investigation
of Obreschkow et al. [164] has focused on the shock confinement inside isolated liquid volumes
and proposed a new model for erosion based on cavitation caused by trapped shocks. However,
cavitation is not modelled in the aforementioned works, although the potential vapour regions
may be identified as in the work of Niu et Wang [159] Cavitation induction during droplet
impact on wall is studied by the author’s research group in the work of Kyriazis et al. [157],
where numerical results are compared to experimental findings from literature and found in
good agreement.

Despite the importance of the underlying physical phenomena, from the above literature
is concluded that limited information exists on quantifying the phenomena following liquid-
to-solid impact that lead to cavitation, while there are no studies so far that simulate the
combined motion of impinging solid objects onto liquids together with the induced cavitation.

The herein presented study aims to fill this gap in the existing literature. More specifically,
it focuses on the simulation of a high-velocity impact of a solid projectile on a water-jet and
investigates the shock-wave formation, structures and the cavitation induction. The experiment
under consideration refers to an impact where the water target is wider than the solid surface.
This comes to a contrast with the usual liquid-to-solid impact configuration, which is comprised
by a small water droplet and a very wide solid wall, studied by numerous researchers [64, 65,
193,257]. This difference in the blockage of the flow is expected to affect greatly the physics of
the impact, as the water target being wider than the projectile, lets more room to the liquid
to expand. Thoroddsen et al. [222] studied experimentally impacts with low-blockage ratio,
where a solid sphere drops into a liquid pool, focused on the relationship of the impact jetting
with Reynolds number and observed differences with high-blockage cases of drop impacts on
wall [64,125]. Field, Lesser et Dear [64] and Lesser [125] studied impacts at lower velocities and
did not investigated cavitation initiation or shock structures. The current study tries to shed
light in low-blockage impact phenomena at high velocities and assess similarities to the high-
blockage impacts regarding shock, vapour and jetting structures. Moreover, the case examined
herein has been studied only experimentally [65] until now and the relevant simulations are
presented herein for the first time.

A three-dimensional computational study is performed and numerical data are extracted
that are qualitatively compared to the experimental observations, but also provide a more
detailed insight on the vapour generation, growth and collapse upon the impact. In addition,
a series of two-dimensional simulations is performed to investigate the shock and rarefaction
waves structures, along with the high-speed jetting, in more detail, as well as to assess the
influence of the flow blockage.

4.2 Test case description

4.2.1 3-D configuration
Both 3-D and 2-D cases have been simulated. The 3-D test case simulated can be seen in
Figure 4.1. A projectile, with a diameter of 9 mm is traveling at a speed of 210m/s towards
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the still water-jet target of 25 mm diameter; the water falls vertically down under the influence
of gravity, at a velocity of approximately 1m/s. The computational domain is chosen to be a
cylinder with 4×Djet diameter and 3.6×Djet height, where Djet the diameter of the water-jet
(figure 4.1a). The domain is discretised with 128 equally spaced cells along the jet diameter
(figure 4.1b). The same cell width is maintained in the vicinity of the water-jet and then a cell
expansion ratio of 1.2 is applied towards the cylindrical far-field. This discretisation results in
2.9 million cells and ensures approximately equal sized cells in the water region, where all the
phenomena of interest occur.

U⃗prj

⊘djet

⊘4djet

3.6djet

xz

y

∇U⃗ = 0, ∇p = 0

∇U⃗ = 0, p = patm

U⃗ = (0, vjet, 0), Ygas = 0, ρ = ρwater

(a) (b)

Figure 4.1: The three-dimensional computational domain (a) and the cylindrical mesh on the hori-
zontal section (b), used in the three-dimensional simulation of projectile impact on vertical water-jet.
Constant atmospheric pressure boundary condition is assigned on the periphery of the cylindrical do-
main and Neumann boundary conditions for both pressure and velocity are imposed on the top and
bottom patches. Constant velocity, gas mass fraction and density values are placed on the water-jet
inlet. The horizontal (red) and vertical (blue) mid-planes, where the results are presented on the
following sections, are also shown.

The flowing water-jet is placed in the middle of the domain. The projectile commences to
move instantaneously and impacts the jet after approximately 34 µs. A non-dimensional time
scale is introduced, using the diameter of the jet Djet = 25 mm and the speed of sound in the
liquid Cwater = 1482.35 m/s, with respect to the time of impact: τ̄ = (t− timpact) ·Cwater/Djet.

The ambient air is initially stationary. The pressure of the domain is considered equal to
1 bar and the reference temperature set to 300 K. The Mach number with respect to the
surrounding air is 0.6 and with respect to the impacted water 0.14.

4.2.2 2-D configurations
Since the resolution required for a full 3-D simulation limits the model predictions to scales
that do not allow high resolution of the liquid-gas interface in affordable CPU times, two-
dimensional simulations have been also performed. In these cases, the projectile is impacting
a static water planar section of the jet. This set-up corresponds to the horizontal symmetry
plane of the projectile of the three-dimensional set-up. A rectangular area 6.4Djet × 3.6Djet is
chosen as the computational domain, where Djet is the jet diameter.

A grid dependence study has been performed to assess the dependence of the simulation
on the spatial discretisation. The domain is initially discretised by 160× 90 cells, resulting in
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a constant complete hexahedral grid with 1 mm cell edge size.
Four grids are created, using telescopic box refinement in a region around the jet. First,

a mesh with 2 levels of refinement (2lvl) is used, resulting in a canonical mesh with cells of
0.25 mm edge size near the jet, corresponding to 100 cells on the jet diameter and 36 on the
projectile diameter. This mesh has a resolution equivalent to the mesh used in the three-
dimensioned set-up. Then, three finer grids are developed, one with 3 levels of refinement
(3lvl), yielding 200 cells on jet diameter, one with 4 levels of refinement (4lvl), yielding 400
cells on jet diameter and finally one with 5 levels of refinement (5lvl), yielding 800 cells on jet
diameter and a cell edge of 0.03125 mm.

The jet is placed in the center of the domain. The water-jet and the surrounding air are
initially at rest and the pressure is 1 bar. At the beginning of simulation, the bullet starts
instantaneously to travel from left to right, at 210 m/s, and hits the jet after approximately
34 µs.

4.2.3 Numerical Tool
The herein proposed forcing IB method is coupled with an explicit density-based in-house
compressible multiphase solver developed in the author’s research group by Kyriazis et al. [157].

The solver accounts for a gaseous phase and a liquid-vapour mixture, where the gas is
considered as non-condensable and immiscible media, whereas phase-change is considered be-
tween the liquid and vapour phases by utilising a barotropic model. It follows a density-based
approach, since cavitating flows have a large variation over the speed of sound, with a Mach
number ranging from 1 up to 100 (in the liquid/vapour mixture region) [26, 69].

Whereas more common pressure-based solvers can handle such flows, the large variability
in the speed of sound in the transition from liquid to liquid/vapour mixture make convergence
difficult, since the speed of sound is used for the density correction corresponding to the pressure
correction. Thus, the proposed density-based methodology offers robustness and fast, explicit
time marching. Moreover, a hybrid numerical flux is proposed that makes the solver suitable
for a wide range of Mach numbers, even low-Mach flows where usually the density-based
yield issues. It is highlighted that such solvers are not available in the open literature, since
multiphase flows are commonly treated with pressure-based methodologies.

The solver is aimed to be used on problems where surface tension does not play an impor-
tant role compared to inertial or compressibility phenomena, such as high-speed solid-to-liquid
impacts studied here. Therefore, surface tension is neglected.

4.3 Numerical Results
In this section, the numerical results obtained are presented. These are divided into two groups.
Initially, 3-D results are presented, followed by high resolution 2-D simulations allowing to
capture scales that cannot be resolved in 3-D.

4.3.1 3-D Simulations
In figure 4.2 pressure and vapour structures evolution upon the impact are presented for the
3-D simulation, and then in figure 4.3 the numerical Schlieren [200] is compared against the
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experimental shadowgraphy images in different time-steps and is accompanied by the respective
velocity and pressure fields. The numerical results are plotted on the vertical and horizontal
middle-planes, annotated in figure 4.1.

When the projectile impacts the water-jet, a shock-wave is released that starts to travel
inside the water volume and to expand radially away from the impact point. When the shock
reaches and interacts with the deforming interface, it gets reflected as a rarefaction (4.2a), which
is in accordance with the observations of numerous studies [84, 96, 160, 164]. This rarefaction
interacts with the shock front, weakens it near the interface and finally splits the high-pressure
envelope in two parts (4.2b), one attached on the solid front and another that propagates
towards the opposite free-surface. This shock reflection pattern appears to be similar to the
anomalous reflection [84, 96, 160].

While the initial shock travels along the convex interface, the incidence angle between the
shock front and the interface changes continuously and after a specific point, the reflected
rarefactions become more intense and pressure values fall under the saturation threshold and
vapour is formed on the periphery of the jet (4.2b). As the expansion waves cover the region
next to the opposite to the entry point free-surface, the cavity expands mainly vertically (4.2c)
and then collapses, emitting pressure waves that travel in the water volume and get reflected
on the front free-surface of the jet, again as expansion waves that produce new small vapour
cavities (4.2d).

In figure 4.3n it can be seen that the two initially symmetrical vapour cavities, visible in
figure 4.2b, expand mainly on the periphery of the water-jet, following the rarefaction waves,
and concentrate in the catacaustic region [164] into one main cavity. The main cavity expands
vertically and shrinks horizontally (4.3o) and finally breaks up into two cavities (4.3p), which
then collapse and vanish.

These results are in qualitative agreement with the experimental data of Field et al. [65],
where the reflection of the initial impact shock-wave on the free-surface of the jet, creates mul-
tiple vapour cavities that act as reflective surfaces for upcoming waves. Comparison between
the side view experimental shadowgraphy images and the magnitude of the density’s gradient
from the simulation, plotted on the vertical and horizontal middle plane (figure 4.3), indicates
that the shock and the cavitation regions (dark regions in experiments and blue iso-surface on
simulations) are predicted correctly, as well as the bulk dynamics of the deformation of the
free-surface.

In the work of Obreschkow et al. [164] on cavitation induction by confined shocks in spherical
droplets, the region of higher cavitation bubble density was identified as the catacaustic region
of shock reflection concentration, near the opposite free-surface. The current numerical results
agree with this observation (4.3n); however, cavitation appears near the opposite free-surface
as a later stage of the vapour growth, which is initiated symmetrically on the periphery of the
jet (4.2b). In addition, the vapour cavities do not form or collapse in great proximity to the
solid surface, as reported in the experimental data of Field et al. [65] or suggested for impacts
of velocities higher than 100 m/s by Obreschkow et al. [164].

The main characteristics of liquid-to-solid impacts, have been identified by numerous studies
[64,65,86,125,193], and include high-speed jetting, strong shock-waves, with pressures exceeding
water-hammer value, generation and reflection upon interaction with free-surfaces, rarefactions
and potential cavitation induction. Most of these studies regard either spherical or planar
droplet impact on solid wall.
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(a) τ̄ = 0.77 (b) τ̄ = 1.01 (c) τ̄ = 2.43 (d) τ̄ = 5.81

Figure 4.2: Pressure contours in logarithmic scale, (common logarithm log10(·)), and vapour volume
fraction iso-surface of 0.1% in different time steps are presented for projectile impact on water-jet,
at Uprj = 210 m/s. 50% iso-line for liquid volume fraction is plotted with black on the vertical and
horizontal middle-plane, along with the 0.1% vapour volume fraction with red.

The experiment of Field et al. [65] with the projectile impact on the water-jet tries to
expand the knowledge basis of liquid-to-solid impacts on cases of higher velocities. However,
the qualitative differences are apparent, as in this case, a projectile of 9 mm diameter is
impacting a water-jet of 25 mm diameter and can be fully immersed in to the water volume.
Because the solid can be completely immersed in to the water the shock-wave would propagate
radially from the solid front, while in the case of a droplet hitting an infinite wall, a broader
wave front would be generated. Moreover, the contact-edge dynamics would be different as the
liquid would have less room to expand in the latter case.

4.3.2 2-D Simulations
Although the numerical results presented in the previous section are in agreement with the
experimental findings and provide a qualitative insight, the mesh used was not dense enough
to capture the detailed jetting phenomena and to provide sharp description of the shocks.
Two-dimensional computations were carried out and are presented in this section; this gives
the opportunity to achieve high spatial resolution that is computationally impossible to reach
with three-dimensional simulations. Moreover, the projectile impact simulation is compared to
a case where an infinite flat wall impacts on the water-jet, in order to assess the influence of
the corresponding flow blockage which in turn affects the shock-wave emission.

Figure 4.4 presents the velocity, pressure and density gradient contours, for the four different
2-D grids, at τ̄ = 1.60, along with the 50% iso-lines of gas mass and volume fraction, indicating
the interface between the water-jet and the ambient air, and the 0.1% isoline of vapour volume
fraction, indicating the cavitation region. These results can be compared against results on the
vertical mid-plane of the 3-D simulation, as seen in figure 4.2 and 4.3i-4.3p.

The results obtained for the 2-D cases show similar pressure and vapour structures to the
three-dimensional configuration. Following the impact, a high-pressure envelope is detached
from the contact region and moves towards the opposite free surface. Two low-pressure re-
gions form near the interface of the jet, due to shock reflection as rarefaction, vapour cavities
are induced that expand mainly along the periphery of the jet following the reflections and
concentrate in the catacaustic region [164].
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(a) τ̄ = 0.24

(b) τ̄ = 1.36

(c) τ̄ = 2.43

(d) τ̄ = 3.56

Experiments

(e) τ̄ = 0.24

(f) τ̄ = 1.36

(g) τ̄ = 2.43

(h) τ̄ = 3.56

CFD side

(i) τ̄ = 0.24

(j) τ̄ = 1.36

(k) τ̄ = 2.43

(l) τ̄ = 3.56

CFD top

(m) τ̄ = 0.24

(n) τ̄ = 1.36

(o) τ̄ = 2.43

(p) τ̄ = 3.56

CFD 3D

Figure 4.3: Experimental data (a-d) and numerical results (e-p) for the impact of projectile on
water-jet, with Uprj = 210 m/s. For the CFD results, the numerical Schlieren [200], computed as the
logarithm of the gradient of density, is plotted on the side (e-h) and top (i-l) middle-plane on grey-
scale and pressure (vertical plane) and longitudinal velocity component (horizontal plane) contours
on the same middle planes (m-p). The vapour is represented by the 0.1% of volume fraction contours,
with the blue iso-surface and red iso-lines on the planes on frames (e-l), and the grey iso-surface on
frames (m-p). The common logarithm log10(·) is used in for the density and pressure fields.

However, in these cases, due to the higher grid density, high-speed jets are easily captured
along the solid surface at the entry point. The water, following the violent compression upon
the impact, jets out parallel to the solid surface with velocities even 16 times greater than
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the impact velocity (for the finest grid used), reaching Mach 2.2 with regards to the sonic
velocity of the liquid. This is closer to what is observed in experiments on similar impacts [64]
and although jetting has been reported in the experiment [65], it was not captured by the
three-dimensional simulation.

Comparison of the velocity, pressure and density gradient contours for the four different
grids, in figure 4.4, shows clearly that higher spatial resolution enhances jetting capturing, as
well as sharpens the shocks. Moreover, from figure 4.5, where the instantaneous maximum
values of pressure and velocity magnitude, as well as the vapour volume evolution are plotted,
it is evident that pressure values converge with mesh refinement, in contrast with velocity and
vapour volume. The higher spacial resolution, finer details of the flow are captured and that
is depicted on the diagrams of velocity and vapour.

Refining the computational grid enables to capture finer details of the flow that have strong
transient nature, such as the high-speed jetting initiation upon the impact. The coarser grid
do not capture the jetting at all, as seen in frame 4.4a, whereas with additional refinement
the jetting becomes first visible (4.4b), and then less diffused and stronger, as seen in frames
4.4c and 4.4d. Moreover, figure 4.5b, where the maximum velocity magnitude time evolution
is plotted for the four grids, shows that for the two finer grids (4lvl, 5lvl) supersonic velocities
with respect to the liquid are captured, which correspond to the high-speed jets.

Moreover, although mesh density affects the vapour formation intensity, as seen in 4.5c,
similar structure is captured by all grids, with the vapour cavity to be initiated on the periphery
and finally concentrate on the catacaustic region [164]. In contrast, although pressure maxima
seem uninfluenced by the mesh refinement, a sharper and more detailed description of the
shocks is provided by the denser meshes (4lvl in 4.4c, 5lvl in 4.4d), including pressure waves
related to the jets that where absent in the coarsest grid simulation (2lvl, 4.4a).

4.3.3 Richtmyer-Meshkov Instability
In addition to the induced shock structures, flow patterns and vapour formation, in the results
of the finest mesh (5lvl), some perturbations are observed on the liquid-gas interface, that may
be related to Richtmyer-Meshkov instability [27].

Richtmyer-Meshkov instability (RMI) arises when a shock-wave accelerates impulsively a
density interface. It manifests itself with the formation of wave structures that grow over
time, forming mushroom-like protrusions at the interface [27, 92]. It mainly concerns a shock-
wave impacting on the interface between gases with different densities [39, 92, 135], but is also
observed on liquid-gas interfaces in numerical works [135,192,217] and experiments [197]. The
main mechanism of this instability is the misalignment of the density and pressure gradient,
as the shock reflects on the interface, that produces baroclinic torque.

The RMI finds various applications in combustion systems and mixing [27], scramjet engines
[247], Magnetized Target Fusion [192], as well as dissemination of chemical agents [39].

In figure 4.6, the gradient of the density, along with the vorticity, the baroclinic torque and
an estimation of the viscous stresses are presented. This baroclinic torque causes high velocity
jetting (figure 4.4d), first near the entry point (figure 4.6a), that then spreads on the entire
periphery of the liquid (figure 4.6e) and results in a wavy interface. The dominance of the
baroclinic torque in the generation of vorticity and creation of RMI, over the viscous stresses,
becomes more clear in frames 4.6c,4.6d,4.6g,4.6h, where it can be seen that these two sources
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.4: Comparison of velocity magnitude (a-d), normalized with the impact velocity Uimpact =
210 m/s, at τ̄ = 1.60, pressure (upper half) and the numerical Schlieren [200] (lower half) contours
in logarithmic scale (e-h) (common logarithm log10(·)), for solid projectile impact on two-dimensional
planar water-jet, for the four different meshes: (a,e) 2lvl - 100 cells/Djet, (b,f) 3lvl - 200 cells/Djet,
(c,g) 4lvl - 400 cells/Djet, (d,h) 5lvl - 800 cells/Djet. The isolines of 50% gas mass fraction is plotted
with orange color and 50% gas volume fraction contour with white to represent the interface between
ambient air and water-jet. The 0.1% iso-line of vapour volume fraction is visible with green.

of vorticity differ by two orders of magnitude. This fact justifies the option to neglect viscosity
in the current simulations as well.

Interface roughness plays a role in RMI initiation, where small perturbations of the inter-
face will cause pressure-density gradient misalignment as the shock passes over and will get
amplified leading to mashroom shaped spikes. However, as it has been demonstrated by Saurel
et al. [197], RMI can be initiated by a shock passing over a simple curved sharp interface, with-
out perturbations. Similar conclusion can be extracted by the current study, where surface
roughness on the water-jet interface, present in the experiment, are not considered and RMI
occurs on a sharp circular interface.

4.3.4 Influence of Flow Blockage
In order to assess the influence of flow blockage on the pressure peaks and high-speed jetting
during the solid to jet impact, a two-dimensional planar simulation of a wall impacting a jet
is performed and compared to the projectile impact on the jet. This configuration is closer to
the geometries reported relevant studies [64, 65, 193, 257].

Comparing the two two-dimensional planar simulations in figure 4.7, it is apparent that
although shock reflection and vapour structures follow similar patterns and jetting is captured
in both cases, for the case of the wall, a more homogeneous distribution of higher pressure
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Figure 4.5: Comparison of different 2D meshes for projectile impact on jet: (a) Maximum pressure
normalized with water hammer pressure (PWH = 398.7 MPa) (b) Maximum Velocity magnitude
normalized with impact velocity Uimp = 210 m/s, (c) Vapour Volume (VV PR) normalized with the
initial volume of the water-jet (VDinit). The equivalent results from the wall impact on the jet (using
the 4lvl mesh) are also plotted (purple line) for demonstration of the influence of the blockage.

values is reported, and vapour cavities are initiated further from the solid surface. From the
diagram 4.5a, it can be seen that instantaneous maximum pressure values are higher for the
impacting wall rather than the projectile. The high-speed jetting is initially more intense in
the case of the projectile, as it can be seen in 4.7a, 4.7b, 4.7c, but the instantaneous maximum
velocity reaches higher values for the case of the wall as seen in graph 4.5b. Finally the vapour
production is lower for the impacting wall (4.5c). These observations confirm that higher
blockage, or wider solid surface, compresses more the liquid and yields higher pressure values
and lower blockage intensifies the liquid expansion.

83



(a) τ̄ = 1.60 (b) τ̄ = 1.60 (c) τ̄ = 1.60 (d) τ̄ = 1.60

(e) τ̄ = 3.38 (f) τ̄ = 3.38 (g) τ̄ = 3.38 (h) τ̄ = 3.38

Figure 4.6: Evidence of Richtmyer-Meshkov instability [27] for solid projectile impact on two-
dimensional planar water-jet. From left to right: numerical Schlieren [200] contours in logarithmic
scale (common logarithm log10(·)), vorticity contours (ωz [1/s]), baroclinic torque (∇ρ×∇p/ρ2 [1/s2]),
viscous shear stresses (∇× (∇τ/ρ) [1/s2]). For the estimation of viscous stresses, which are neglected
in the simulation, dynamic viscosity is given by µ = (1 − αgas) · µliquid + αgas · µgas, based on
gas volume fraction, with µliquid = (1 − αvapour) · µwater + αvapour · µvapour and µwater = 9.99 ×
10−4 Ns/m2, µvapour = 9.99 × 10−6 Ns/m2, µgas = 1.84 × 10−5 Ns/m2. Results of the simulation
using the 5lvl mesh (800 cells/Djet). The isolines of 50% gas volume fraction contour, which represents
the interface between ambient air and water-jet, is plotted with blue and of 0.1% vapour volume
fraction with red.
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(a) τ̄ = 1.01 (b) τ̄ = 1.13 (c) τ̄ = 1.25

(d) τ̄ = 1.01 (e) τ̄ = 1.13 (f) τ̄ = 1.25

(g) τ̄ = 1.01 (h) τ̄ = 1.13 (i) τ̄ = 1.25

Figure 4.7: Contours of velocity magnitude normalized with the impact velocity Uimpact = 210 m/s
(a-c), pressure in logarithmic scale (d-f) and the numerical Schlieren [200] in logarithmic scale (g-i)
for solid projectile (upper half) and solid wall (lower half) impact on two-dimensional planar water-
jet. The IB body (black region of left) moves from left to right. 50% gas mass fraction is plotted
with orange color and 50% gas volume fraction contour with white to represent the interface between
ambient air and water-jet. The 0.1% isoline of vapour volume fraction is visible with green. The 4lvl
mesh is used in both cases. The common logarithm log10(·) is used in for the density and pressure
fields.
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4.4 Concluding Remarks
The herein proposed Immersed Boundary method, enables us to study the high-velocity impact
of solid projectile on a flowing water column, so far only qualitatively studied by the experiments
of Field et al. [65].

The underlying physical processes of the simulated case was found to be in qualitative
agreement with the relevant experimental observations of [65]. Pressure shock-waves, rarefac-
tion waves and cavitation formation, development and subsequent collapse, that follow the
impact are numerically captured. A detailed description of the vapour cavity was provided
that was in accordance with the analysis of the experimental data. High-speed jetting was also
observed in the simulations, although was found highly dependent on the grid resolution of
the jet interface, near the impact region, and therefore was captured on the two-dimensional
simulations, where the use of denser meshes was less CPU time demanding.

The influence of flow blockage on the dynamics of the impact was assessed by comparing
the case of the projectile to the case of a wall hitting the water target. The study showed
that in the case of the projectile, where the liquid is free to expand in the direction of the
projectile motion, the pressure and velocity peaks during the initial stage of the impact reach
lower values than in the case of the wall; in this case, the flow was found to decelerate faster,
whereas the vapour production was higher for the projectile case.

Finally, the importance of the use of the IB method is illustrated by the fact that the nu-
merical simulation of this case with conventional (deformable or adaptive) boundary-conformal
mesh techniques would be extremely complex and computationally expensive. This is appar-
ent from the level of detail unveiled in the two-dimensional simulations in comparison with
the three-dimensional one. Such fine spatial resolution, in conjunction with re-generation or
deformation of the mesh in every time-step, would be almost impossible to achieve because the
computational cost would be prohibiting.
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Chapter 5

Computational Studies of Biological
Flows
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This chapter is dedicated to flows of bio-engineering interest. More precisely, the pulsatile
incompressible flow through a model aorta with a 180o bend and arterial branches on the apex
is studied, with special focus on the developed wall shear stresses. A preliminary investigation
of the flow through a configuration without the Valsalva sinuses and without the a heart valve
is first carried out, to collect detailed information on the flow patterns and the on shear stresses
developed by the pulsatile flow. This preliminary study is supported by experimental findings,
provided by Mrs. Li and Prof. Bruecker of CITY, University of London. Then the developed
Immersed Boundary method is employed to simulate the flow through a bi-leaflet Mechanical
Heart Valve, in a configuration with the Valsalva sinuses.

Part of the work presented in the first section of this chapter, has been prepared for
publication as a joint work of numerical computations and experimental campaign of Li Q.,
Stavropoulos- Vasilakis E. et al. (see Appendix F).
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5.1 Scope of the Study
The field of CFD which specialises on blood flows, can be referred to as Computational Hemo-
dynamics (CHD) [226]. Studies of blood flows may prove challenging, as they are of pulstatile
nature, due to the cardiac pulses, are characterised by moderate Reynolds numbers, and in-
volve complex domains with non-smooth, and usually elastic, boundaries. CHD may be used
to research blood vessel diseases or investigate the influence of prosthetic medical devices and
aid in design or surgery.

Numerous studies have examined the flow through Mechanical Heart Valves (MHV), util-
ising IB approach [17–19, 21, 45, 47, 49, 71, 72, 228, 245]. Dasi et al. [47] analysed the vorticity
structures of the flow through a bi-leaflet MHV and Ge et al. [71] evaluated the importance of
Reynolds and Viscous forces in this flow; the numerical studies were assisted by experiments.
Yang et Balaras [245] performed LES computations on the bi-leaflet MHV flow, whereas Boraz-
jani et al. [19] and De Tullio et al. [228] studied the same flow in the context of FSI. Borazjani
et al. [20] assessed the validity of using idealised model aortas in simulations, by examining
the different patterns developed from the flow through a bi-leaflet MHV placed in an idealised
straight aorta and in an anatomic aorta model. The influence of the computational domain
was pronounced. A similar investigation was carried out by De Tullio et al. [49], with regards
to the root geometry; such a study, apart from the academic interest, is relevant to a surgical
operation called Bentall procedure, which replaces not only the valve, but also the Valsalva
sinuses of the root and the ascending part of the aorta. In addition, Borazjani et al. [17]
compared the flow generated by a bi-leaflet MHV against that of a bio-prosthetic heart valve
(BHV). Because the geometry of the BHV is by design closer to the natural valve, the flow
results in more physiological structures.

Apart from MHV studies, numerical simulations aid in the investigation of the flow through
a stenosed blood vessels [7, 146, 173, 245]. Mitall et al. [146] assessed the use of LES or DNS
approach for turbulence modelling of the pulsitile blood flow. Papadopoulos et al. [173] per-
formed simulations of flow throw stenosed coronary arteries to asses the risk of development of
Coronary Artery Disease (CAD) or Acute Coronary Syndromes (ACS); it was demonstrated
that computational results can be a valuable input to mathematical models for thrombin gen-
eration [172]. It has to be noted that while the blood flow in the circulatory system is driven by
pressure pulses, the accurate imposition of boundary conditions in the computational studies is
anything but trivial; Grinberg et Karniadakis [83] have developed a method to impose patient-
specific pressure boundary conditions, based on the impedance of the flow, relying on flow rate
and pressure measurements on multiple vessels, which is applicable to full-scale arterial trees.

In the aforementioned studies, the working fluid (blood) was often treated as incompressible
Newtonian (viscous) fluid. Normally, blood is a non-Newtonian fluid, therefore its mechanical
properties (viscosity) does not depend only on the temperature but is a function of the applied
strain as well. However, when the flow through the larger blood vessels is considered, it can be
safely assumed to behave as a Newtonian fluid with constant viscosity [227]. This practice is
followed in both computational, as well as experimental [28, 128] studies. In particular, when
conducting experiments in models mimicking blood vessels and parts of the cardiovascular
system, water solutions are used as working fluid, with calibrated properties to match the
density and viscosity of blood.

The developed pulsatile flow is characterised by the non-dimensional Womersley number
[239], which is calculated as the ratio of inertial and viscous forces, as in relation 5.1, and
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expresses the lag between the pressure pulse that generates the flow and the velocity profile.
During a pulse generated flow through a pipe, the velocity profile may deviate significantly from
the well-known parabolic profile of the Poiseuille flow [250]. The flow near the wall and in the
centre of the tube are in phase lag depending on the inertia of the fluid. For low Womersley
numbers, viscous forces dominate the flow and a parabolic velocity profile develops. For higher
values, the inertial forces dominate and the influence of viscosity is limited near the rigid walls;
therefore the parabolic velocity profile gets disturbed and flattens towards the core of the pipe.

Wn = R ·
√
ωρ

µ
=

√
2πfR2

ν
(5.1)

where:

R : a characteristic length for the flow, usually the radius or diameter of the tube

ω = 2πf : the angular frequency of the driving pressure pulse

ν = µ/ρ: the kinematic viscosity of the fluid

The transient nature of the pulsatile flow under consideration, along with the moderate
Reynolds, suggests that turbulence is not fully developed throughout the systolic cycle. Rather,
turbulence is expected to play an increasingly important role on the second part of the systolic
cycle, during the deceleration phase where backward flow develops. The transition to turbu-
lence depends on the driving pulse and it is reported that for Womersley numbers greater than
10, the flow becomes turbulent past the peak systole [214, 225, 244].

For pulsatile arterial flows, which usually reach Reynolds numbers ranging from 600 to
5000, and where the turbulent flow is not fully developed, conventional RANS modelling seems
not suitable [146]. Researchers tend to prefer either the laminar approach [226] or the more
accurate, yet more computationally demanding, LES [7, 146, 245] or DNS [17–19, 21, 47, 71, 72,
228] approach.

To assess the resolution of spatial and temporal discretisation, with regards to the accurate
capturing of the turbulence structures, the Kolmogorov scales should be considered. The spatial
and temporal Kolmogorov scales are estimated as ηk = (ν3/ε)1/4 and τk =

√
ν/ε respectively,

assuming the dissipation rate is estimated with regards to the peak velocity of the pulsatile
flow under examination, ε = U3

p/DA.
Different meshing approaches are being used in CHD, including hexahedral, tetrahedral or

polyhedral grids [226]. The mesh strategy depends mainly on the geometry of the domain,
whether it is a physiological artery model, obtained by means of Magnetic Resonance Imaging
(MRI) or Computerized Tomography (CT), or an idealised cylindrical pipe, and whether it is
comprised by a single branch or has bifurcations.

In numerical studies of pulsatile flows through Mechanical Heart Valves (MHV), in idealised
straight cylindrical aortas [19, 47, 71, 228] or accurate anatomic domains [17, 20], structured
hexahedral curvilinear grids, with mostly equally spaced cells on the azimuthal direction, are
used for DNS calculations. This practice results in large homogeneous grids, with few highly
skewed cells near the wall [226]. For these grids the cell sizes are close to 3 ∼ 4ηk. The
numerical data of [47] are directly compared to instantaneous and time-averaged experimental
fields and are found in good agreement.
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Herein, numerical simulations are carried out, in order to provide a detailed description of
the flow inside a model aortic arch, with 180o bend, which includes the triple Valsalva sinuses
on the root and three aortic branches on the apex of the turn.

The computational study is assisted by experiments performed by Prof. Bruecker and Mrs.
Li, of CITY, University of London. Their experimental campaigns focus on the influence of
the flow through MHV on the wall shear stress distributions on the aorta wall. In their recent
publication [128], they implemented specialised wall shear stress sensors, comprised by flexible
micro-pillars of 1mm length mounted on the aorta wall, and compared the stress distributions of
a bi-leaflet and a novel tri-leaflet MHV. These micro-pillars bend along the flow, and following
beam theory the load can be extracted from their deflection; thus the velocity and its gradient
can be estimated, which would eventually provide the shear rate.

In the current study, laminar flow simulations have been performed using the incompressible
Navier-Stokes equations 2.7, where the stress term τ̃ 2.8 is calculated and not modelled. This
approach is chosen considering the computational cost of the simulations and the discretisation
approach followed by aforementioned equivalent numerical works.

First, a preliminary study is performed, where the MHV is not mounted on the aorta arch
and the sinus region is covered by a convergent nozzle, to assess various characteristics of the
flow and compare numerical wall shear rate estimations to experimental measurements. Then,
a simulation with the MHV is performed, where the leaflets and the casing of the valve are
modelled with the Immersed Boundary Method proposed herein, in the complete model, that
include the sinuses.

Bi-leaflet Mechanical Heart Valve

The flow through bi-leaflet Mechanical Heart Valves (MHV), has been thoroughly investigated
by the works of Ge, Dasi, Borazjani et al. [17–20, 22, 47, 71, 72]. An indicative model can be
seen in the photograph of frame 5.1a.

Dasi and Ge et al. [47,71] conducted experiments on the pulsatile flow through a bi-leaflet
MHV mounted on a straight aorta, performed supplementary numerical simulations and anal-
ysed the induced vortical structures and shear stress distributions. While these computations
employed prescribed motion of the leaflet, Borazjani et al. [19] repeated them within the frame-
work of FSI, so that the motion is induced by the pulsatile flow.

Borazjani later extended the work in [19] which referred to bi-leaflet valve mounted on a
straight axisymmetric aorta, to investigate the same flow in an anatomic aorta-model [20],
which includes the Valsalva sinuses and is not axisymmetric, and furthermore to study the
influence of the orientation of the valve [22] inside the anatomic model. Finally, they compared
a bio-prosthetic heart valve (BHV), composed by three thin, membrane-like, semi-circle shaped
leaflets, to the bi-leaflet valve [17]; the study was carried out on the straight aorta of [19], under
the same conditions.

All these studies were focused on the shear stresses excessed on the blood; the flow developed
through a bi-leaflet valve exhibits non-physiological structures and vorticity patterns unalike
those generated by a natural valve. The two leaflets of the MHV open in the center of the flow
field, forming three orifices upstream the sinus region, which accelerate the flow, as qualitatively
depicted in frame 5.1b. On the contrary, the tri-leaflet bio-prosthetic valve, which resembles
more to the geometry of the actual heart valve illustrated in figure 5.1c, results in a flow
closer to the physiological, as the leaflets open towards the aorta walls, inside the sinus region,
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(a) (b) (c)

Figure 5.1: Bi-leaflet Mechanical Heart Valve and subsequent induced flow. A photo of a St. Jude
Regent 23mm bi-leaflet valve is presented on the left and a qualitative representation of the developed
velocity profiles through a similar MHV in the middle and a natural on the right. All frames are
reproduced from the work of Borazjani et al. [20].

creating a single orifice of similar to the aorta diameter.
As it can be seen in [17], during the opening phase the sinus region is isolated, the vortical

structures develop mainly downstream the sinuses and are washed away faster when the BHV
fully opens, while for the MHV, the organised large-scale vortical structures, which initiated
over the leaflets and the aorta wall into the sinuses, break down into chaotic small structures
that may remain in the flow field until the next cycle.

In addition, in [20] it is shown that the cylindrical symmetry of the computational domain is
a rather harsh simplification that deviates a lot from the actual physiological case; the anatomic
aorta is curved and features an offset from the vertical plane, that highly impact the flow and
make it three-dimensional. In the case of the anatomic aorta, the leaflets undergo significant
asymmetric motion, rebound when reaching both fully open and fully closed positions, as well as
open faster but close slower, after the reversal of the flow, than in the case of the axisymmetric
straight aorta. The delayed closure of the valve may have important negative consequences,
because if the leaflets are open during reversal of the flow, blood would flow back in to the
heart (regurgitation).

However, the late closure of the valve is not related only to the geometry of the aorta model,
but is an inherent attribute of the bi-leaflet MHV. Because of the formation of three orifices
upstream of the sinus region, visible in frame 5.1b, the pressure difference on the two sides of
each leaflets is not high enough to accelerate it away from the equilibrium and close it; rather,
is the reversal of the flow that drives the closing motion of the leaflets. This is dissimilar to the
operation of the natural valve, which opens inside the sinus region and creates a recirculation
area towards the sinus wall, on one side of the valve, while the blood flows through the single
large orifice, as seen in frame 5.1c. As a result, the pressure difference on the two sides of the
valve during deceleration phase is high enough to close it. Similar dynamics may be developed
from the flow through a BHV [17], which opens far inside the Valsalva region and forms a
single orifice, while novel designs of tri-leaflet MHV, also featuring a single orifice, close after
reversal of the flow [128] as they are not affected by recirculation inside the sinuses.
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5.2 Preliminary Investigation of Pulsatile Flow in a Model
Aorta

The simulations are performed on an aorta model with identical geometry with the one used
in the experiments, during the calibration of the measurement apparatus, which is presented
in figure 5.2. There is a difference in the orientation of the computational domain and the
experimental test-rig; the coordinate system Oxyz of the computational domain correspond to
the mirrored coordinate system O−xy−z of the experimental set-up.

The diameter of the aorta is DA = 25mm. A converging inlet nozzle, with initial diameter
DN = 40mm, has been placed before the aortic arch, with total length of L = 6DN and
Lup = 4DN before the converging part. Two cylindrical volumes where added at the outlets of
the aorta and the arterial branches to facilitate more accurate boundary condition assignment.

The working fluid has the same properties as the glycerine-water solution (58/42% by
mass) used in the experiments, with density ρ = 1140kg/m3 and kinematic viscosity ν =
4.386 ·10−6m2/s. The Reynolds number as estimated using the peak velocity, Upeak = 0.95m/s
, observed during the experiments just after the inlet nozzle, is Re = UpeakDA/ν = 5340. As
the flow under consideration is pulsatile, this corresponds to the maximum Reynolds number
during the systolic cycle, and the flow considered to be on a transitional turbulent regime.

The spatial and temporal Kolmogorov scales that characterize the pulsatile flow under
examination, yield ηk = (ν3/ε)1/4 = 39.6µm and τk =

√
ν/ε = 0.358ms respectively, as-

suming the dissipation rate is estimated with regards to the peak velocity as ε = U3
p/DA =

34.295m2/s3. These scales are considered for the spatial and temporal discretisation of the
governing equations.

(a) (b)

Figure 5.2: The computational domain of the aorta model. The inlet has a total length of 6DN

(4DN before the convergent part) to ensure the flow is fully developed before the aorta bend. Two
volumes have been put at the outlet of the aorta and the outlet of the arterial branches. The plane
AA’ corresponds to the side centre plane. The nozzle has a diameter of DN = 40mm and the aorta
DA = 25mm. It has to be noted that the orientation of the computational domain is the opposite
than the experiments.
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Shear stress measurements are provided by the micro-pillar sensors on the outer wall of the
aorta. Twelve micro-pillars are clammed on the wall, laying on the side centre plane AA’, on
the bend of the aorta, equally spaced between an angle of 10.5o and 49o.

5.2.1 Numerical Set-up
At the inlet, the time dependent volumetric flow rate, measured during experiments, visible in
figure 5.3, was assigned as boundary condition. The Womersley number of the flow and the
amplitude of the pulse are estimated as Wn = 16 and Ap = Up/Um = 5 respectively. These
numbers characterise the phase lag between the pulse and the oscillation of the velocity profile,
as well as the transition to turbulence, for the pulsatile flow. Studies [214, 225, 244] suggest
that transition to turbulence is delayed towards the deceleration phase for Wn > 10. Also,
analytic expressions of the velocity profile as function of the flow characteristics, expressed
by the Womersley number, have been derived by Sexl, Womersley, Uchida, McDonald and
Milnor [250].

However, in the present numerical study, the inlet velocity profile has been assigned as
uniform block profile along the diameter and the inlet nozzle was given such a length that the
flow would be developed before the converging part. By numerical test of the same pulsatile
flow on a long straight tube it has been found that after 4 diameters the flow can be safely
considered developed.
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Figure 5.3: The imposed pulsatile inlet flow rate condition, measured during experiments.

On the outlet volumes, zero-gradient velocity and fixed total pressure boundary condi-
tions have been assigned because the precise pressure value is not known at the outlet of the
aorta or of the arteries and assigning the ambient pressure on the outlets would constrain the
computation algorithm and would not correspond to the actual physics.

Because the domain consists of the aorta, as well as three arterial branches, an unstructured
tetrahedral mesh is used, with additional prismatic cells on the wall to better capture the
boundary layer.
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In order to assess the influence of spatial resolution on the numerical calculations of the
pulsatile flow under consideration and on the estimation of the wall shear stress, a mesh inde-
pendence study has been performed. Three different unstructured tetrahedral meshes, visible
in figure 5.4, have been used with total cell count of 2M (coarse), 8.6M (medium) and 11M
(fine) cells. Table 5.1 presents the details of the three different meshes.

All meshes have additional prism layers near the wall covering the pillars, which controls
better the cell height growth away from the wall and assists in better capturing the boundary
layer. For the coarse and medium meshes, 10 layers with first cell height y1 = 39µm and growth
factor γ = 1.2 are used, whereas for the fine mesh 15 layers with y1 = 20µm are used.

An implicit Crank-Nicolson scheme is chosen for the time integration, to ensure the ro-
bustness of the computation, and a linear scheme for the spatial interpolation, which is second
order accurate central differencing scheme. The time step is automatically adjusted for the
maximum calculated Courant number to always respect Courant-Friedrichs-Lewy (CFL) con-
dition Comax = ∆tΣfaces|ϕi|/2V ≤ 1, with regards to the magnitude of the fluxes ϕi on the
faces of the computational cells. Additionally, the maximum time-step is restricted to 0.1ms
which corresponds approximately to τk/3, in order to ensure that all the structures of the flow
are resolved.

(a) Coarse (b) Medium (c) Fine

(d) Medium Apex

Figure 5.4: A cross-section slice of the mesh on the beginning of the aorta bend (θ = 0), on top,
and a detail of the mesh at the apex of the arc on the AA’ plane. The three different grids shown
are used in the spatial resolution study. All three are unstructured tetrahedral grids, with additional
structured hexahedral layers in the near-wall region to better capture the boundary layer of the flow.
The coarse grid is composed by 2 million cells, the medium by 9 million cells and the fine by 11 million
cells.
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Mesh Ntot dls dln y1 Np dlt
Coarse 2M 15ηk 10ηk 1ηk 180 30ηk
Medium 9M 11ηk 6.5ηk 1ηk 248 14.25ηk
Fine 11M 8.25ηk 5.25ηk 0.5ηk 324 10ηk

Table 5.1: Characteristics of the three meshes used for the mesh independence study of pulsatile
flow through model aorta. Along with the total number of cells (Ntot), the table shows the cell length
along the streamwise direction (dls), the cell size normal to the wall above the layers (dln) and the
first cell height (y1), as well as the number of nodes on the perimeter of the aortic tube (Np) and
the resulting width of the cell along the wall (dlt). The lengths are reported with respect to the
Kolmogorov length scale estimated as ηk = 39.6µm.

5.2.2 Numerical Results
During the simulation, velocity data are sampled along the diameter of the aorta on the loca-
tions of the pillars, as well as wall shear stress is calculated on the wall of the whole model.
Except if otherwise stated, the results reported in the following paragraphs correspond to the
side view middle plane AA’, annotated in 5.2b, where the pillars also lay. Moreover, experi-
mental data from micro-pillar 4, located at 21o are referenced.

Grid Independence

A visualisation of the flow field for the three different computational grids, on peak systole
(t = 105ms) and indicative later time instance during deceleration phase (t = 210ms), is
shown in figure 5.5. Although the figure can mainly serve for the qualitative comparison of the
grid resolutions, it is evident that at peak systole the flow fields are almost identical, with the
exception of the branches near the outlet, where the mesh is of lower quality. All grids converge
on the prediction of the main recirculation area, on the apex of the bend and seem to agree on
the flow field in both the acceding and the descending part. In contrast, during deceleration,
significant differences are observed in the description of the recirculation area after the apex
and in the descending part; even between the fine and the medium mesh, discrepancies are
spotted.

However, assessment of the influence of the spatial resolution is performed by comparing
the simulations on the three different grids in terms of velocity profiles and wall shear rate
values. Streamwise velocity profiles along the aorta diameter are presented on figure 5.6, for
different time instances, and wall shear rate evolution over the systolic cycle is visible on figure
5.7. Both figures refer to the position of pillar 4. In addition, the shear stress distribution
along the inner and outer wall of the aorta, is plotted in figure 5.11, for the three different grids
on peak systole.

It can be seen in figure 5.6 that the velocity profiles converge for all three meshes. Weak
noise present on the profile of the coarse grid, diminishes for the medium grid and vanishes
completely at the fine grid. Moreover, the three simulations calculate the same shear rate
along the cycle, seen in figure 5.7, with perfect match during the acceleration phase, and slight
divergence near the half of the cycle, when the coarse mesh gives lower values. During peak
systole, the shear stress distribution for the three meshes is identical along the entire aortic
bend, not only in the area of the pillars as it is shown in figure 5.11.
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It can be safely argued that the medium mesh resolution (8.6M), with a resolution in the
normal to the wall direction of 1ηk next to the wall and 6.5ηk in the core, along with a resolution
of 11ηk in the streamwise direction was found adequate to capture the flow structures.

(a)

(b)

Figure 5.5: Comparison of vertical component of the velocity, for the three different meshes. The
contours are plotted on the AA’ plane. The coarse mesh (2M) is shown on the right, the medium
(8.6M) in the middle and the fine (11M) on the left.
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Ut profiles on pillar 4: Mesh Density Influence
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Figure 5.6: Profiles of the tangential velocity uθ(r) in the bend at the center plane AA’, at angle
θ = 21o, corresponding to the position of pillar 4. Results for the three different grids are shown,
where T is the period of the systolic cycle. The dotted line, at r = 24mm, indicates the location of
the tip of the pillar sensor.
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Figure 5.7: Evolution of wall shear rate over the systolic cycle on the outer wall at angle θ = 21o,
corresponding to the position of pillar 4, shown for the three different grids.
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Shear Stress along Aorta Wall: Mesh Density Influence
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Figure 5.8: Wall shear rate along the aorta bend at peak systole, t = 105ms, along the inner (left)
and outer (right) wall, on the center plane AA’. The numerical results are presented for the three
different grids. The gray shaded area corresponds to the angles of the sensor array, positioned on the
outer wall, and the hatched areas indicate the position of the three branches.

Discussion and comparison with experimental data

Figures 5.9 and 5.10 depict the velocity and vorticity contours, throughout the systolic cycle,
for the simulation on the medium mesh (8.6M). It can be seen that flow separation initiates on
the inner wall early during the systolic cycle, at a location right downstream of the apex, which
then develops and extends further downstream. On the other hand, the flow seems laminar and
no separation is detected on the outer wall, until later times, where a slender recirculation area
can be observed on the beginning of the bend. Most importantly, on the area where the sensors
are located, between 10.5o and 49o on the outer wall, no separation is detected for the largest
part of the simulation. This can be concluded from figure 5.6 as well, where the tangential to
the wall velocity profiles are plotted over the position of pillar 4, for different time instances.

By plotting the shear rate along the aorta walls on different time instances, during accelera-
tion, on peak systole and during deceleration, in figure 5.11, the exact positions of recirculation
can be identified by the change in sign. As expected, no reverse flow is detected during the
acceleration phase. On the inner wall, recirculation extends between 50 and 120 degrees at
peak systole and during deceleration the flow near the wall becomes chaotic. On the outer
wall, on the other hand, no recirculation is observed on these time instances, apart from an
interval of 20 degrees in the beginning of the bend during deceleration phase. This corresponds
to the are identified by the velocity and vorticity contours. However this plot suggests that the
measurement positions are within the recirculation bubble on the later stages of the systolic
cycle.

In order to provide a quantitative comparison between the simulations and the experiments,
the wall shear rate measurement on pillar 4 are considered. The velocity samples near the wall
are fitted by polynomials of first order, following the technique used for the experimental PIV
data. Only 10 points are used, which correspond to a total height of approximately 1mm,
covering the pillars. The shear rate is then calculated as the tangent of the fitted polynomials
at the wall (y = 0). The results for the medium mesh (8.6M) are plotted on figure 5.12, along
with the exact shear rate on the wall, extracted during the simulation, and the experimental
data.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.9: Vertical velocity component contours for the pulsatile flow through the model-aorta arc.
The results are presented on plane AA’ for the medium mesh (8M cells).

It can be seen that the shear rate calculated on the wall by the simulation exhibits peak
value two times higher than the experimental or the linear fit, as well a steeper descent and
slight negative values during the deceleration phase. However, the linear fit produces results
that match the measurements for pillar 4. The comparison between numerical and experimental
shear rate values suggests that the sensors exhibit 1st order accuracy. In addition, by using 3
sampling points, and considering the linear fit up to 0.3mm, the estimated shear rate values
increase towards the ”real” values extracted by the CFD on the wall.

A qualitative comparison between the numerical and experimental results is presented in
figure 5.13, for three indicative time instances from the peak systole and on. The path-lines of
the PIV particles, integrated over images recorded during experiments are compared with the
streamlines extracted from the simulation. Although a proper quantitative comparison can not
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.10: Off-plane vorticity contours for the pulsatile flow through the model-aorta arc. The
results are presented on plane AA’ for the medium mesh (8M cells).

be performed, the figure could provide valuable information regarding the recirculation areas.
It can be seen that the flow is mostly smooth and can be regarded as laminar during peak
systole. However, during deceleration, the hight of the recirculation area on the apex is shown
larger in the experiments and during the latest time, a second recirculation area is formed on
the outer wall near the beginning of the bend. This secondary recirculation, although predicted
by the simulations is much wider in the experiments.

100



Shear Stress along Aorta Wall: Medium Mesh
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Figure 5.11: Wall shear rate along the aorta bend, along the inner (left) and outer (right) wall,
on the center plane AA’. The numerical results are presented for the medium mesh (8.6M) for three
different time instances. The gray shaded area corresponds to the angles of the sensor array, positioned
on the outer wall, and the hatched areas indicate the position of the three branches.
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Figure 5.12: Evolution of wall-shear over the systolic cycle on the outer wall at angle θ = 21o,
corresponding to the position of pillar 4. Comparison of numerical results (on medium mesh with
8.6M cells), with experimental data provided by Mrs. Li and Prof. Bruecker. The numerical values
of shear rate presented are extracted directly on the wall or by linear reconstruction of the velocity
profile near the wall.
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(a) t = 105ms

(b) t = 175ms

(c) t = 245ms

Figure 5.13: Experimental flow field (right), provided by Mrs. Li and Prof. Bruecker, represented
by pathlines, compared to numerical flow field (left), represented by streamlines, for the pulsatile flow
through the model aorta arc. The numerical streamlines are plotted on the plane AA’ for the medium
mesh (8M cells). 102



5.3 Investigation of Pulsatile Flow through a bi-leaflet
Mechanical Valve

Following the study of the pulsative flow through the model aorta, presented in the previ-
ous section, the computational work is extended to study the flow through a model bi-leaflet
Mechanical Heart Valve.

A (approximate and not precise) model of St-Jude bi-leaflet MHV 5.14a, is used. It is
composed by a simplified version of the casing and the 1mm width leaflets. The geometric
simplifications are a result of limited information on the fine details of the valve design as
well as of a failed attempt to create an accurate 3D scan with the equipment of the Machining
Laboratory of the University, due to the reflective metal surface of the valve which would scatter
light and prohibit the scanner from mapping the object. In addition, the 1mm diameter hinges
are neglected, both from the leaflets and the casing, because the flow there would require a
very fine computational grid to be accurately resolved which would increase significantly the
computational cost.

A similar valve, but with different full-open angle, has been used by Li et Bruecker [128]
in the experimental study of wall shear stress measurements, where the performance of the
bi-leaflet vale is compared against the one of a novel tri-leaflet valve; the latter valve has the
advantage of generating more physiological flow patterns. An important characteristic of the
bi-leaflet valve, is that when fully open, it forms three orifices between the two leaflets and
the walls of the aorta, visible in figure 5.14b and 5.14c, where the blood flow is accelerated.
This configuration deviates a lot from the opening of the real valve and thus non-physiological
flow develops. Non-physiological levels of shear stress may be generated which could be related
to blood-cell damage and fatigue or tear of the blood-vessel walls. Moreover, the abrupt and
intense acceleration of the flow through the orifices or in the small gaps between the leaflets and
the casing, or the hinges, may cause high-speed jetting or leakage, which have been identified
by researchers as potential cavitation initiators.

The same model aorta is used as in the preliminary study, including the Valsalva Sinuses,
seen in figure 5.15, in accordance to the experiments reported in [128]. Under identical flow
conditions, regarding fluid properties, inflow rate and boundary conditions, the MHV is placed
at the end of the inlet nozzle, just before the entry to the sinus region, visible in subfigure 5.15c.
The casing has a smaller diameter than the diameter of the aorta, DA = 25mm, and therefore
is partially submerged in the fluid domain as well. The two leaflets, as well as the casing, are
represented by a triangulated surface mesh, in a stereolithography file format (STL), and are
modelled as immersed boundaries, employing the method proposed herein. The motion of the
leaflet is induced by the hemodynamic forces exerted on them by the flow.

Motion of the Leaflets

The motion of the leaflets is coupled with the flow through a FSI algorithm of loose cou-
pling. The solid leaflets are considered undeformable; their rotation around the hinges’ axes is
governed by the equation 2.27b, which is repeated here for sake of completeness:

ĨR · ∂
2θ

∂t2
= Mext (5.2)

The moment of inertia tensor is calculated with regards to the center CH of the rotation
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(a) (b) (c)

Figure 5.14: The model of the bi-leaflet Mechanical Heart Valve with the casing. A perspective
view with open leaflets at 40o (a), a top view with the leaflets in fully-open position of 53o (b) and a
side view of the valve placed before the sinus region of the model aorta (c). The casing restrains the
diameter of the aorta, as seen by the white-colored edges near the aorta walls in (c). In fully open
position of the leaflets, three orifices are formed (c). The casing and the leaflets are represented by a
triangulated surface mesh.

(hinge’s) axis for each leaflet, which is parallel to the Oz axis of the coordinate system:

ĨR = [Iij] ⇒ Iij =
N∑
k=1

dmk

(
|rk|2 · δij − xixj

)
, i, j = x, y, z

where dmk is the elementary mass of each element k of the solid leaflet, rk the distance vector
of each elementary mass from the center of rotation CH and δij the Kronecker delta:

δij =

{
1, i = j

0, i ̸= j

The MHV is considered to be composed by a Polycabronate material, similar to [19] where an
equivalent valve is used, with density 1750kg/m3 and the mass is uniformly distributed on the
solid IB surface.

The rotation angle θz is limited between θmin = 25o and θmax = 78o. All other rotations
and translations are constrained. Gravity is neglected, therefore the moment vector Mext is
composed only by the moments of the hemodynamic forces.

An assessment of the FSI algorithm for the proposed IB method is presented in Appendix B,
where the applicability of the method on Vortex Induced Vibrations is addressed. Furthermore,
in Appendix C, where the method is applied onto the simulation of pulsatile flow through a bi-
leaflet MHV in an axisymmetric straight aorta; the results are validated against computational
and experimental data from the literature and found in good agreement. The performance of
the methodology for such complicated flows is found satisfactory and thus, it is employed for
the herein presented study.
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(a) (b)

(c)

Figure 5.15: The computational domain of the aorta model with the bi-leaflet Mechanical Heart
Valve. The inlet has a total length of 6DN (4DN before the convergent part) to ensure the flow is
fully developed before the aorta bend. Two volumes have been put at the outlet of the aorta and the
outlet of the arterial branches. The plane AA’ corresponds to the side centre plane. The nozzle has a
diameter of DN = 40mm and the aorta DA = 25mm. It has to be noted that the domain follows the
orientation of the experiments (as reported in [128]), and differs from the simulations of section 5.2.

5.3.1 Numerical Set-up
A mesh of 2.3 million (2.3M) tetrahedral cells is used to discretise the computational domain.
The choice has been made after taking into consideration the findings of the preliminary study
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presented in the previous section regarding the grid independence of the numerical results and
the computational cost of the simulations. Indicative view of the mesh are presented in figure
5.16.

The focus is placed primarily on the flow development immediately after the MHV and
inside the region of the Valsalva Sinuses, as seen in sub-figure 5.16c, where the accelerated
through the orifices flow is expected to be transitioning to turbulence and chaotic vortical
structures to be forming. On the other hand, for the recirculation area beyond the apex, which
during the deacceleration phase moves upstream, as observed previously, will probably affect
the area of interest.

Layers of 6 canonical hexahedral cells cover a region of 1.9mm over the walls of the aorta,
with an expanding ratio γ = 1.2 and a first cell height y1 = 0.2mm = 5ηk < 5y+, in order
not to violate the spatial resolution constraints for the boundary layer development. The
maximum cell size along the aortic arch is set to 0.8mm, which expands towards the outlet
volumes. Special care is taken for the resolution of inside the Valsalva Sinuses and at the end
of the inlet nozzle, where the MHV is positioned; the maximum cell size is 0.3mm = 7.5ηk and
0.3− 0.8mm = 8− 20ηk respectively.

The time-step size is governed by the CFL condition Comax ≤ 0.5, and in addition it is fur-
ther constrained under one millisecond, so that it always remains smaller than the Kolmogorov
temporal scale, dt ≤ 10−4s≪ τk.

(a) (b) (c)

Figure 5.16: The computational mesh of the aorta model with the bi-leaflet Mechanical Heart Valve.
Two horizontal slices, perpendicular to the flow direction, at the sinus region (a) and the position of
the valve (b), as well as a view of the valve and sinus region on the vertical middle-plane AA’ (c),
are shown. A tetrahedral grid is used, refined near the valve’s casing and inside the sinus bulbs. In
addition, hexahedral cell layers have been added on the aorta wall, ensuring y+ < 5 on the wall.

5.3.2 Results
The evolution of the flow field along the systolic cycle, is presented in figure 5.17, in terms of
off-plane vorticity contours plotted on the side view middle plane AA’. The main characteristics
of the flow can be identified as the vortex shedding over the leaflets and over the aorta wall in
the Valsala sinuses, as well as the recirculation are formed at the apex of the turn.

Leading edge vortices start shedding from the lower side of each leaflet (the upstream or
wall-facing side) as the valve is opening and continue throughout the cycle. In addition, in
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the early opening stage of the valve, vortex rings are generated over the casing and after the
end of the sinus region into the root of the downstream part of the aorta, seen in frames 5.17a
and 5.17b. The vortex ring of the casing rolls up and grows into the bulbs of the sinus region
(frames 5.17b and 5.17c), forming constant, yet highly unsteady, recirculation areas (frames
5.17d-5.17l).

Near peak-systole, the leading edge vortices start to interact with the flow features induced
by the 180o turn of the aorta, visible on frame 5.17c; the shear layer on the outer wall at the
middle of the turn, where separation initiates, and the recirculation area on the inner wall of
the apex, which has thicken significantly. This interaction breaks the large vortical structures
into smaller and un-organised structures, as shown in frames 5.17d-5.17f. During later stages of
deceleration phase, visualised through frames 5.17g-5.17i, these vortical structures breakdown
even more and become chaotic along the entire aortic arch, however during back-flow they do
not get destroyed nor does the reverse flow from the branches wash them away, as shown in
frames 5.17j-5.17l.

A quantitative comparison of the numerical results against experimental data from Li et
Bruecker [128], can be performed regarding leaflet kinematics. The valve model used in the
current computational study differs from the model used in the experiments, in terms of final
opening angle and position of the hinges. These discrepancies between the geometries alter the
width of the orifices and the angle of attack of the leaflets. As a result, the velocity profiles
developed in the orifices would be different, especially with respect to the maximum velocity
value. The pressure field developed in the middle orifice can be different for the two models,
and therefore the hydrodynamic loading of the leaflets as well, which would lead to different
kinematics. In addition, in computations gravity is neglected, which could influence the motion
of the bodies.

As it can be seen in figure 5.18, in the numerical simulations the valve opens more rapidly
than the valve in the experiments, however the non-symmetrical closure of the leaflets is cap-
tured in both cases. More precisely, the left side leaflets, which is facing one of the thee sinus
bulbs, is closing faster than the right one, which faces the wall between the two other bulbs.
The closure of the right leaflet is the same for both simulation and experiment, while the left
leaflet starts to close earlier during experiments. Finally, a significant rebound is observed
after the closure of the valve in the numerical results.

in addition to predicting a more rapid opening, the CFD results exhibit a higher and
constant slope during opening, which indicates more abrupt motion and linear acceleration,
while during experiments the leaflets decelerate after reaching 80% of the final angle. During
closing phase, the motion of the right leaflet is very well captured by CFD, both in terms of
trajectory and slope, while the left leaflet closes later in CFD than the experiments, yet earlier
than the right leaflet, demonstrating a gradual increase of the rate of change, which is also
observed in the experiments, in a more pronounced manner though.

Leaflet rebound has been found in simulations of a similar bi-leaflet valve mounted on a
anatomic aorta model [20], which exhibits a high-angle turn downstream of the sinus region.
This instability of the closure of the valve may be related to the geometry of the aorta, since
in simulations and experiments with valves placed in a straight aortas is absent [19]; these
findings have been reproduced by the herein proposed method as well, as it can be seen in
Appendix C.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.17: Simulation of the pulsatile flow through the a bi-leaflet MHV mounted on a model-
aorta. Off-plane vorticity contours, presented on plane AA’. The non-dimensional values are presented,
estimated as ω′ = ω ·Do/Up, using the diameter Do on the inlet nozzle and the peak inlet velocity Up.
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(j) (k) (l)

Figure 5.17: Continued: Simulation of the pulsatile flow through the a bi-leaflet MHV mounted on
a model-aorta.
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Figure 5.18: Simulation of the pulsatile flow through the a bi-leaflet MHV mounted on a model-aorta.
Leaflet kinematics. The results of the simulations are compared to the experimental measurements
of the angular position of the leaflets of the similar flow from Li et Bruecker [128]. CFD and Exp.
results refer to valves with different final position. The non-dimensional angle is plotted, with regards
to the difference between fully open and fully closed position ∆θ = θopen − θclosed.

5.3.3 Discussion
Regarding the developed flow through the bi-leaflet MHV, the focus is shed on the the resulting
shear stresses. Following the rationale of the previous section, the wall shear stress is extracted
from the velocity profile over the outer wall of the aorta, on the location of the measuring
pillars, via means of linear fit. Figure 5.19 presents the wall shear rate evolution along the
systolic cycle for the current computation and compares it with the case without the valve (and
without the Valsalva sinuses) of the previous section. The computational results are compared
with experimental data available in [128]. The influence of the valve, in the resulting shear
stresses on the aorta wall is evident; higher shear stresses loading of the walls is observed during
deceleration phase, when the valve is used.
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However, although in the case without the valve, the numerical results matched the ex-
perimental measurements, in the case with the valve the simulations capture a quite different
behaviour. The CFD predict lower levels of shear rate, however the results exhibit much more
violent oscillations of larger amplitude. A significant difference is an abrupt decrease of shear
rate right after peak systole (0.2 t/T ) captured by the CFD; the experiments do not record
such a drop. This could be a result of the interaction of the vortex rings initiated from the
sinus region and the vortex street developed on the wake of the leaflets, visible in frame 5.17c.
The large amplitude of the oscillations, as well as the differences in maximum shear values,
prevent us from drawing safe conclusions.

Moreover, the differences between the curves with and without the valve, indicate the
influence of the MHV on the flow field, and in conjunction with the visualisation of the vorticity
field, seen in figure 5.17, the resulting chaotic flow structure. Although, the spatial resolution
influence is not studied here, is seems to affect the results. It has to be taken into account,
that the wall shear estimates of figure 5.19, demonstrate accuracy of first order. This would
be sufficient for the relatively simple flow studied in the previous section, which is mainly
characterised by the recirculation over the inner wall on the apex. For the case of the flow
through the bi-leaflet valve though, it could indicate that the spatial resolution is inadequate.
An question then arises, regarding whether the Reynolds number, which determines the spatial
resolution, is correctly estimated using the aorta diameter as a characteristic length scale or
should be the orifice width considered instead. In any case, the use of advanced simulation
strategies for the more accurate resolution of turbulence, such as LES computations, may
drastically improve the results.

−500

0

500

1000

1500

2000

0.0 0.2 0.4 0.6 0.8 1.0

γ
[1
/s
]

t/T

bMHV Wall Shear Rate: Linear fit
w/o MHV Exp.
MHV1 Exp.
w/o MHV CFD
MHV2 CFD

Figure 5.19: Evolution of wall-shear over the systolic cycle on the outer wall at angle θ = 21o,
corresponding to the position of pillar 4. Comparison of numerical results, for cases with and without
MHV, against experimental data from Li et Bruecker [128]. The numerical values of shear rate
presented are calculated by linear reconstruction of the velocity profile near the wall.

Regarding leaflet kinematics, the assessment of the numerical results is more complicated.
Although the differences of the leaflets’ motion curves between computations and experiments,
visible in figure 5.18, could be attributed to the geometrical differences of the models used or
the absence of gravity in the simulations, some comments should be made, especially in the
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slope of the motion curves, from which qualitative observations could arise.
The flow during the acceleration, before peak systole, is mostly regarded as laminar and

turbulence is not developed; therefore the numerical predictions of rapid and steady acceler-
ation motion for the leaflets seems valid. The deceleration of the leaflets measured during
experiments, which commences before the the deceleration of the inlet signal and well before
peak systole, could indicate that apart from the hydrodynamic loading, additional forces act
upon the leaflets. These forces could be a result of the hinge mechanism, such as friction, or a
result of gravitational acceleration.

Firstly, since the hinge mechanism is not considered, nor friction between the leaflets and
the casing or micro scale flow features in the structure’s gaps are taken into account. However,
this practice is followed in similar studies in the literature [17–22,45,47,49,71,72,228,245] and
it is found that the kinematics are not affected; the same assumption is made here as well, thus
the differences in kinematics should not be attributed to that.

Secondly, because the density ratio between the valve’s material (Polycabronate: ρp =
1750kg/m3) and the working fluid (water: ρ = 1140kg/m3) is not high, it is uncertain whether
the gravitational force would lead to more gradual opening and faster closing of the leaflets
or it would be counteracted by the hydrodynamic forces of the flow. It is known that such
MHV simulations are inherently unstable because of the materials’ density ratio and sensitive
to the added mass effects [19,20]. However, seems unlikely for the gravity to affect the leaflets’
kinematics a lot, since the moment arm of the gravitational force should reduce as the leaflet
rotates and tends to align with the direction of gravity; the gravity vector in the experimental
configuration is vertical, corresponding to a leaflet angle of 90o while the fully open position
corresponds to 85o.

In contrast, it seems more likely that the differences in the rate of change of the leaflets’
motion occur from the differences in the effective angle of attack; lower angles of the leaflet
with regards to the closed position corresponds to high angles of attack and vice versa for
angles near the full open position. Since the final angle of the leaflets, in full open position, is
larger in the experiments (θMHV 1,open = 85o in contrast to θMHV 2,open = 78o of the simulation),
different hydrodynamic loading would develop towards the end of the opening phase. As the
leaflets would approach the fully open position, the hydrodynamic lift would decrease, which
could probably explain the deceleration visible in the motion curves of figure 5.18. In addition,
differences in the width of the central orifice could lead to differences in the acceleration of the
flow on the sides of each leaflet and the resulting pressure ratio, affecting the leaflet kinematics.

Finally, the numerical method is of great importance. The resolution of the flow field, as
well as the strategy of the coupling algorithm, it is expected to influence the leaflet kinematics,
as it was shown in the work of Borazjani et al. [19]. Most importantly, the aforementioned
study reports that the strong-coupling of the flow and solid solvers, which dictates that the
solid motion and flow field are solved iteratively in each time-step until convergence, is a
necessity for the accurate computations. As it is demonstrated in Appendix C, the loose-
coupling employed herein, was adequate to replicate the numerical and experimental results
of [19] for an axisymetric aorta, in terms of leaflet kinematics. However, the influence of the
flow solution was also clear from the parametric two-dimensional studies. As the flow becomes
more complicated, because of the aortic bend, a strong-coupling algorithm may prove more
appropriate or even essential for correct simulations.

Overall, taking into account the geometrical differences of the valves, the simplifications
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applied on the model used in the simulations, as well as the absence of gravity, the compu-
tational results and the performance of the herein proposed methodology for fluid and solid
motion coupling are found satisfactory, although room for improvement exists.

5.3.4 On the potential of cavitation induction
Although the focus of this chapter is shed primarily on the shear stress development on the
aorta walls, few comments ought to be made on the cavitation induction potential during the
operation of bi-leaflet MHV.

As it has already been mentioned in the introduction of the Thesis, water hammer, squeeze
flow, vortex and Venturi effects have been pinpointed as possible causes of cavitation in the
vicinity of MHV leaflets or casing during late closure phase [79, 109, 133]. From the results of
the computational investigation presented herein, some quantitative observations can be made
with regards these factors.

Firstly, the velocity of the leaflets is easily accessible as the output of the motion solver, in
addition to their position; from figure 5.20a it can be seen that the maximum angular velocity
of the leaflets can reach 100 rad/s. Although the comparison between numerical predictions
of leaflet kinematics and experimental measurements, visible in figure 5.18, revealed more
abrupt opening in the simulations and better agreement during closure, especially for the right
leaflet, which is facing the aorta wall rather than a sinus bulb and its closure dynamics are
perfectly captured. Therefore, although the velocities of the opening-phase may deviate from
real values, the closing-phase values can be trusted, and more precisely the aforementioned
maximum value captured for the right leaflet. This value of angular velocity corresponds to
a ∼ 1.11 m/s velocity on the tip of the trailing edge of the leaflet, which impacts the casing
upon closure, and it is reached just before the impact. A conservative estimation of the water
hammer pressure related to this impact, is Pwh = umax · cw · ρ = 1.5MPa, calculated using the
formula for solid-to-liquid impacts [65] and approximating the speed of sound in the glycerine-
water solution with that of the the water. These values are far higher than the pressure
levels observed in the computational domain and the area of the valve casing or the averaged
pressure difference along the valve casing, presented in figure 5.20b, which reach values of
|∆pd|max = 6ρ = 6840 Pa, |∆pc|max = 4ρ = 4560 Pa and |∆p̄c| = 1.2ρ = 1368 Pa respectively.
Hence, the water hammer effect is not relevant to the current set-up and cannot contribute
towards cavitation initiation.

On the other hand, squeezed flow and high-speed jets are captured mainly in the contact
areas between the leaflets and the casing, during the later stages of closing-phase, as figure
5.21 shows. However, the sudden and short-lived acceleration of the flow in these areas, it is
not severe enough to lead to velocities higher than 0.5 m/s, a fact that, although the fluid
upstream the valve is almost stagnant with velocities ≤ 0.1 m/s, cannot create cavitation.
It has to be mentioned though, that the velocities of the observed jets may be influenced by
the spatial resolution and the frequency of the sampling. Similar but more intensive jetting,
probable due to the use of finer grid, have been captured also in the simulations of a bi-leaflet
MHV on an axisymmetric aorta presented in appendix C. These jets can roll up and form
vortices just upstream the valve casing, where a backward facing step is formed, where it is
possible to be considered as potential areas of pressure drop bellow saturation levels. However,
as it is visible in frames 5.21e to 5.21h, the pressure drop across the valve is never higher than
1.2ρ = 1368 Pa.
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Finally, all these comments are limited to the studied set-up. Different computational
representation of the aortic arch, preferably closer to the anatomic geometry, would have an
impact on the results [20], but more important would be the influence of the inflow-rate pulse.
The pulse utilised in the current study corresponds to a heart-beat rate of approximately
70 bpm [128]; pulses of higher rate or irregular form, that may correspond to non-rest condi-
tions or mimic common heart diseases, might provide conditions, qualitatively similar to but
quantitatively more severe from the ones observed herein, favouring cavitation formation.
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Figure 5.20: Simulation of the pulsatile flow through the a bi-leaflet MHV mounted on a model-
aorta. Investigation of water-hammer effect by means of computed leaflet velocities (a) and captured
pressure difference with respect to ambient conditions on the outlets (b).
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Figure 5.21: Simulation of the pulsatile flow through the a bi-leaflet MHV mounted on a model-
aorta. Visualisation of captured squeezed flow and high-speed jetting between leaflets and casing, on
top, and equivalent pressure difference along the casing, on bottom, next to the ring (Right, Left) and
in the middle, upon valve closure.
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5.4 Concluding Remarks
The pulsatile flow through models of the circulatory system is complicated nature, involving
transitional turbulent regimes in larger arteries and non-Newtonian physics in smaller vessels.
CFD tools can aid to unveil the flow dynamics and assist in-vitro experimental campaigns. Re-
garding diseases such as thrombosis or heart-valve failures, CFD can be used in understanding
the underlying mechanisms or design solutions, even for patient specific tailoring.

The blood flow through MHV and the subsequent development of non-physiological vortical
structures and shear stresses is of high importance. The herein IB method is employed to
investigate the wall shear stress developed by the pulsatile flow through a bi-leaflet MHV
mounted on a model aorta, featuring a 180o turn, as well as an approximation of the Valsalva
sinuses and three arterial bifurcations.

First, a case without the valve and with a simplified inlet nozzle geometry is considered,
where wall shear stress predictions are compared to experimental measurements using a spe-
cialised technique by Prof. Bruecker and Mrs. Li, of CITY, University of London, and have
been used to asses the performance of a standard bi-leaflet MHV and of a novel tri-leaflet
MHV [128]. The measurement technique employs flexible micro-pillars mounted on the aorta
wall, which bend along the flow and provide estimates of the shear stress. The CFD compu-
tations confirmed the measurements and validated that the technique achieves first order of
accuracy. It is also shown that smaller pillars would provide better results.

Then, a simulation of the flow through a bi-leaflet MHV mounted on the aorta model
is carried out. The performance of the herein proposed methodology is assessed and found
satisfactory. Detailed quantitative information about the developed flow field is provided.
However, the wall shear stress estimates for this case deviate from the equivalent measurements
of Li et Bruecker [128]. This demonstrates the complex nature of the flow under examination
and the sensitivity of the induced flow and leaflet dynamics to the numerical methods used.
The use of LES computations for the flow though MHV seems necessary to correctly predict
the flow field evolution.
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Chapter 6

Conclusions and Outlook

This thesis is concerned with the development of an Immersed Boundary Method, suitable
for simulations of complex cavitating and biological flows. Regarding the former, a complex
case of pronounced academic interest was investigated, while regarding the latter a thoroughly
studied flow was re-examined from another point of view.

The main motivation lies on applications of cavitation with industrial or bio-engineering
interest, involving complex topology or arbitrary moving boundaries. The use of Immersed
Boundary method minimises the complexity and cost of grid generation and alleviates the
difficulties arising from the use of conventional conformal grids, which demand continuous re-
construction and adaptation [11, 97, 112] or advanced complex techniques (over-set or sliding
grids) [61, 139, 224]. The herein proposed method follows the direct-forcing approach, accord-
ing to which the immersed body is modelled through addition of forcing source terms in the
governing equations. The volumetric source terms are localised on the region covered by the
Immersed Boundary, using a scalar field expressing the coverage of the computational cells
by the solid. This formulation, which falls into the category of indirect boundary condition
imposition Immersed Boundary methods, is preferred over ghost-cell or cut-cell approaches (di-
rect boundary condition imposition), because it avoids the complexities and the computational
burden of the latter. In addition, the forcing is applied not only on the cells intersected or
in the immediate vicinity of the solid interface, but in the entire solid region. In this way,
the sometimes cumbersome interpolation between Lagrangian and Eulerian frame of reference,
employed by other indirect imposition methods, is also avoided.

The simplicity of the method makes it suitable for complex flow regimes, including phase
change, strong shocks and compressibility effects, as well as Fluid Structure Interaction. A
thorough assessment of the method is carried out for a wide range of flow regimes, with in-
creasing complexity from laminar incompressible flows around stationary boundaries to highly
turbulent cavitating flows past moving bodies. The performance of the method was satisfac-
tory although some limitations of the method were identified, regarding spatial resolution and
smoothness of the forcing term. These observations regard complex highly transient turbulent
cavitating flows, are mainly driven by inadequate resolution for turbulent models to correctly
treat the near wall region, and are not discouraging. Therefore, the method has been further
applied on studies of complex cavitating and biological flows.

The high-speed impact of a solid projectile onto a flowing water jet was studied, so far
only experimentally investigated [65]. Inviscid computations of the multiphase flow, involving
liquid-vapour mixture and non-condensable gas were carried out; the phase interfaces were not
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reconstructed, resulting in a diffused representation. Conventional boundary conformal grid
simulations cannot accommodate the motion of the projectile, therefore it is the herein proposed
method that enables us to unveil the rich dynamics and physical processes involved in this case.
This study regards shock-wave interaction with material interfaces in a fast-slow configuration,
where shocks are travelling from the liquid, with higher speed of sound, to the gas phase, with
lower speed of sound, and the subsequent cavitation formation. The shocks released during
impact, travel inside the liquid, interact with the convex liquid-gas interface, get reflected as
rarefaction and generate cavitation. It is found that vapour cavities expand and collapse on
the periphery of the jet and not in the vicinity of the solid projectile. High speed jetting, as
a result of the impact, was also captured near the entry point. Finally, perturbations possibly
related to Richtmyer-Meshkov instability were observed on the liquid-gas interface. The main
mechanism of this instability is the miss-alignment of the density and pressure gradients during
shock interaction with the interface, that produces baroclinic torque.

Moreover, the herein proposed methodology was applied on the thoroughly studied in-
compressible pulsatile flow through a bi-leaflet Mechanical Heart Valve, in a Fluid Structure
Interaction framework, to provide additional information regarding shear stress development.
The blood flow inside a model aorta, featuring a 180o bend, as well as Valsalva mimicking
sinuses and three arterial bifurcations, which replicates the geometry of a natural aorta, was
studied. This configuration has been used in laboratory experiments, under physiological con-
ditions, to measure wall shear stress on the aorta along the systolic cycle, downstream of the
valve, via a novel technique of flexible micro-pillars attached to the wall [128]. Because tur-
bulence is not properly developed throughout the cycle, the flow was treated as laminar and
no turbulence modelling was used and the blood was considered as Newtonian fluid, which
are common practices for these flows. The simulations tried to provide detailed quantitative
information for the flow and the shear stresses on the aorta walls. For the calibration of the
measuring apparatus, experiments were run without the valve; the numerical and the exper-
imental results were found in excellent agreement. It is confirmed that the micro-pillars act
as first order filter of the near wall velocity gradient and their accuracy depends upon their
length. However, when the bi-leaflet valve is mounted on the aorta, the developed flow quickly
becomes chaotic; the vortex street generated on the wake of the leaflets interacts with the shear
layer on the root of the bend and with the growing recirculation area on the apex of the bend,
and the large well organised vortices are break-down into small scale structures. For this case,
the computational shear stress estimates deviate from the experimental measurements. The
delicate nature of the flow, with the transitional turbulent regime and the complex vortical
structures of wide range of length scales, prevent us from drawing safe conclusions, however
they indicate the need of more precise numerical investigation and thorough resolution of all
turbulent scales, which can be achieved by means Large Eddy Simulations.

The method has been successfully applied to the aforementioned cases where conventional
techniques are not easily or at all applicable, and provided useful insights on the flows un-
der examination. However, cavitating and biological flows have been studied separately. A
synthesis, where the proposed method is employed to investigate cavitation development in
bio-engineering applications, is yet to be performed.

Future applications of the method, could be oriented to bio-engineering flows. Advanced
computational techniques, like Large Eddy Simulations, should be employed to extend the
numerical investigation of the pulasatile flow through Mechanical Heart Valve on model aor-
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tas incorporating curvature and arterial bifurcations; novel tri-leaflet valves, additional to the
standard bi-leaflet, could be examined. Moreover, potential cavitation initiation in biologi-
cal flows should be addressed; the potential link of cavitation with hemolysis and thrombosis
should be investigated. Finally, a rather sophisticated extension, yet of high potential, of the
method towards Fluid Structure Interaction problems involving with structural deformation,
could could enable the investigation of highly complex physical problems including cavitation
interaction with vascular soft tissue or novel targeted drag delivery techniques.

Regarding the performance of the herein proposed method, although it has been successfully
employed on complex numerical studies, room for improvement exists. The pressure gradient
imposition across the fluid-solid interface via source terms, proposed for direct forcing methods
for compressible flows by Riahi et al. [186], could be easily incorporated in the methodology
and its influence on cases of cavitating flows could be investigated; with the current formula-
tion forcing is added to the momentum equation and no-slip condition is only applied inside
the solid region, while the flow is let to evolve naturally. In addition, the influence of the
implicit treatment of the forcing source term, via linearisation [16, 152], could be examined;
this could reduce the stiffness of the equations, alleviate force oscillations observed in highly
transient turbulent flows accelerate convergence and eventually improve the method. More-
over, regarding Fluid Structure Interaction, the sensitivity of the Runge-Kutta time-integrator
to solve solid body motion equations suggests consideration of more robust techniques, like
Lagrange-Hamilton formulations [103] and Verlet (leap-frog) algorithms [55]. Finally, the cou-
pling of the direct forcing Immersed Boundary method with an automatic mesh refinement
algorithm would ensure an adequate mesh resolution near the immersed solid wall to enhance
the performance of turbulent models and further improve the efficiency of the method.

The herein developed methodology and the current research work try to contribute to the
ongoing struggle to thoroughly investigate and deeply understand Fluid Dynamics. This Thesis
intends to provide the tools for more elaborate and complex numerical investigations.
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Appendix A

Derivation of URANS equations

According to the Reynolds-Averaged Navier-Stokes equations approach, the governing Navier-
Stokes equations are time-averaged, so as the flow at any given time-instant can be described by
turbulent fluctuations over an average flow field. In other words, the flow quantities (velocity,
pressure, energy) can be decomposed in to an average (mean) value (bar) and a fluctuation
(prime):

ϕ(x, t) = ϕ̄(x, t) + ϕ′(x, t)

The time-averaged value, over a temporal window T, is computed as:

ϕ̄(x, t) = 1

T

t+T∫
t

ϕ(x, t)dt

For the sake of simplicity, the incompressible Unsteady RANS (URANS) are derived here,
using the incompressible NS 2.7. First the flow variables are decomposed into mean and
fluctuating parts, and then the equations are time averaged, which yield the form of A.1.

∇ · (ū + u′) = 0

ρ
∂(ū + u′)

∂t
+ ρ∇ ((ū + u′)(ū + u′)) = −∇(p̄+ p′)− µ∇ · (∇(ū + u′) +∇(ū + u′)T ) + S

(A.1)
The process of averaging the equations, follows some rules:

ϕ′(x, t) = 0 ϕ̄(x, t)ψ(x, t) = ϕ̄(x, t)ψ̄(x, t)
ϕ̄(x, t) = ϕ̄(x, t) ϕ(x, t)ψ(x, t) = ϕ̄(x, t)ψ̄(x, t) + ϕ′(x, t)ψ′(x, t)

∇ϕ(x, t) = ∇ϕ̄(x, t) ϕ̄(x, t)ψ′(x, t) = 0

ϕ(x, t) + ψ(x, t) = ϕ̄(x, t) + ψ̄(x, t)

For the continuity equation, where only the decomposed velocity field appears, the deriva-
tion is straightforward:

∇ · (ū + u′) = 0 ⇒ ∇(ū + u′) = 0 ⇒ ∇ū = 0
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Similarly, for the momentum equation, it is:

ρ
∂(ū + u′)

∂t
+ ρ∇ ((ū + u′)(ū + u′)) = −∇(p̄+ p′)− µ∇ · (∇(ū + u′) +∇(ū + u′)T ) + S

⇒ ρ
∂ū
∂t

+ ρ∇ · (ūū + ūu′ + u′ū + u′u′) = −∇p̄− µ∇ ·
(
∇ū +∇ūT

)
+ S

⇒ ρ
∂ū
∂t

+ ρ∇ · (ūū + u′u′) = −∇p̄− µ∇ ·
(
∇ū +∇ūT

)
+ S

⇒ ρ
∂ū
∂t

+ ρ∇ · (ūū) = −∇p̄− µ∇ ·
(
∇ū +∇ūT

)︸ ︷︷ ︸
∇·τ̃ico

− ρ∇ · (u′u′)︸ ︷︷ ︸
∇·τ̃R

+S

Eventually, the final form of incompressible URANS is given by A.2. The Reynolds stresses
tensor τ̃R, introduces six new unknowns, which are not solved for but rather handled by tur-
bulence models. For the case of compressible flow, the derivation is performed in an analogous
manner.

∇ · ū = 0 (A.2a)

ρ
∂ū
∂t

+ ρ∇ · (ūū) = −∇p̄−∇ ·
(
τ̃ ico + τ̃R

)
+ S (A.2b)
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Appendix B

Vortex Induced Vibrations

Immersed boundary methods prove useful for Fluid Structure Interaction (FSI) problems, be-
cause the complexities of transforming body conformal meshes are diminished. Sotiropoulos
and Yang [209] report various FSI applications of IB methods, raging from mechanical struc-
tures, such as wind turbines, to biological flows, such as insect flight. The solid body may
be considered completely rigid, as in the work of Zhong et al. [255] on vibrating rigid bod-
ies due to vortex shedding or the study of flow through bi-leaflet Mechanical Heart Valve by
Borazjani [17], or fully deformable as in the work of Pasquariello et al. [175], where a cut-cell
finite-volume immersed boundary method is coupled with finite element solid solver.

Vortex induced vibrations (VIV) of structures submerged into a free-stream, is a benchmark
FSI problem [209,238]. VIV is the result of low Reynolds incompressible flow over an elastically
mounted rigid cylinder, which is let free to oscillate under the influence of the aerodynamic or
hydrodynamic forces. The oscillation of the cylinder, in its turn, influences the flow field. This
flow regime yields rich and complicated flow patterns with important characteristics, relevant
to many engineering applications.

The main characteristics of VIV, are the amplitude and the frequency of the structure’s
oscillation, as well as the mode and the frequency of the vortex shedding. A situation of high
importance is the lock-in or synchronization of the shedding with the vibrations. This state
is achieved when the shedding and the vibration frequencies match [206] or reach the natural
frequency of the dynamic system of the structure [238]. In the state of synchronization, the
maximum of the amplitude of the vibrations is observed.

The flow-structure system is very sensitive and small changes in the parameters may result
in completely different flow regimes. Hysteresis phenomena between the shedding and the
vibration may be observed close to the lock-in region. In the case of varying free-stream
velocity, hysteresis may be even observed in different conditions, depending whether the velocity
is increasing or decreasing. Moreover, depending on the flow regime, different vortex shedding
modes are observed. When two single vortices are shed on the wake of the cylinder per cycle,
the mode is dubbed 2S. When two pair of counter-rotating vortices are released per cycle,
the mode is dubbed 2P. A P+S pattern (one single and one pair of vortices per cycle) is also
reported, especially on controlled vibrations studies [238].

A comprehensive review study on the advances and the findings of the research on VIV,
can be found in the work of Williamson and Govardhan [238].

Hereafter, an indicative parametric study is presented, which aims to assess the performance
of the developed immersed boundary method in FSI problems.
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B.1 Numerical Set-up
The equations of motion for the center of gravity of the immersed solid body, in the case
of two-dimensional motion with two degrees of freedom (d.o.f.) (q = (x, y)), define M-C-K
(mass, damper and spring) dynamic system of B.1. Figure B.1 illustrates the two-dimensional
dynamic system for a cylinder immersed in a free stream.

q̈ +
c

m
q̇ +

k

m
q =

F
m

(B.1)

with ζ = c/m the structural damping ratio, k the spring coefficient. The dynamic system is
highly characterised by its natural frequency fn = ωn/2π =

√
k/m/2π. If a time evolving

external load F(t) is applied to the system with an oscillating frequency matching or approxi-
mating the system’s natural frequency, the displacement is synchronised with the loading and
may receive very large values. The damping can control the excitation of the system and
diminish the impact of synchronisation.

m

ky cy

kx

cx

U∞

Figure B.1: A two-dimensional M-C-K dynamic system, comprising from a mass m (cylinder), a
damper of coefficient c and a spring of elastic modulus k on each axis.

A common practice in FSI problems is to normalise the acceleration, velocity and displace-
ment (q̈, q̇,q), using the characteristic velocity and length of the flow, in order to highlight
the coupling. In this way, the coupling between the solid and the fluid is better illustrated, as
quantities that characterise the physical problem appear in the place of the coefficients or the
solving variables. Following Prasanth [183], using the upstream velocity U∞ and the diameter
D of the cylinder, we can define the normalised variables Qn = (Xn, Yn) as:

Qn = q/D
Q̇n = q̇/U∞

Q̈n = (q̈ ·D)/U2
∞

and derive from B.1 the following form for the motion equation:{
Ẍn + 4πFnẊn + (2πFn)

2Xn = 2CD/πm
∗

Ÿn + 4πFnẎn + (2πFn)
2Yn = 2CL/πm

∗ (B.2)
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with Fn = fnD/U∞ the reduced natural frequency, CD and CL the drug and lift coefficients,
m∗ = 4m/πρ∞D

2 the dimensionless mass of the cylinder, and finally U∗ = U∞/fnD = 1/Fn

the reduced velocity.
These newly introduced coefficients, better illuminate the coupling between the fluid and

the solid. The dimensionless mass expresses the mass ratio between the solid and the fluid
(occupying the same volume) and the reduced frequency can be seen as the relative velocity
between the two mediums. Although in the following analysis the aforementioned form of
B.2 is not adopted, the reduced velocity will be used as a basis for the comparison of the
computational results.

Within the framework of forcing Immersed Boundary approach, the force applied on the
cylinder is calculated as the integral of the source term over the volume of the domain:

F = −
∫
V

ρ · FIBdV (B.3)

Herein, the system of differential equations B.1 is solved, using an Runge-Kutta time ad-
vancing algorithm. An adaptive time-step technique is used to ensure the solution does not
diverge, by slowly advancing with multiple sub-steps, from the old to the new time-step. The
incompressible NS 2.7 are solved for the fluid, using an explicit Euler time-stepping and an
upwind interpolation scheme for the fluxes.

In order to numerically solve the motion equations B.1 for the position vector q, a common
practise is for the second order differential equation to be split into a first order differential
system of two equations. By taking into account the relation between position, velocity and
acceleration, ui = q̇i and q̈i = u̇i, for the ith d.o.f., the 2nd derivative of the position can be
replaced by the 1st derivative of the velocity in B.1, so that we get the system B.4.

u̇i = − c

m
ui −

k

m
qi +

Fi

m
(B.4a)

q̇i = ui (B.4b)

If the state vector wi = [ui, qi]
T is introduced, the system can take the compact form of

B.5, for each d.o.f. i, resulting into four first order differential equations that fully determine
the dynamic response of the solid into the excitation from the aerodynamic or hydrodynamic
forces.

[
1 0
0 1

] [
u̇i
q̇i

]
+

[
c/m k/m
−1 0

] [
ui
qi

]
=

[
Fi/m
0

]
(B.5a)

⇒ A · ẇi + B · wi = Si (B.5b)

The same set-up as for the incompressible flow past static cylinder, presented in chapter 3,
is used. Moreover, the aforementioned case used as initialisation, as it is preferable to have a
fully developed flow and vortex street before letting the cylinder free to oscillate.
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B.2 Results and Discussion
In the following, a parametric study is performed with varying the reduced velocity U∗. The
dynamic parameters m∗ = 10, ζ = 0 are chosen in order to observe oscillations of larger
amplitude. These, as well as the free-stream velocity, are kept constant, so that the spring
coefficient k of the system is determined solely by the value of U∗ and the Reynolds number is
fixed at Re = 100. However, usually in VIV studies both the reduced velocity (and therefore
frequency) and the Reynolds number vary. This is followed primarily in experiments as it is
far more practical to calibrate the inflow velocity than change the spring constant, but extends
to computational works which often take the experimental works as reference.

The results hereafter are assessed against the findings reported in the studies of Zhong et
al. [255], Chern et al. [40], Singh et al. [206]. However, the comparison is not always consistent
as not all type of parameters presented here are reported in all of the aforementioned works.

Zhong et al. [255] reports a lock-in region for 4.4 < U∗ < 7.7, whereas Prasanth [183]
reports the lock-in range at 4.6 < U∗ < 8.4. The present study, identifies a slightly wider lock-
in region, with the lower edge closed to the aforementioned works but the higher edge moved
to higher values than Prasanth; synchronisation occurs for values of the reduced velocity in the
interval [4.6, 9.0]. As seen in figure B.2, although good agreement is observed in the lower edge
of the lock-in region for the current and the reported numerical results of Singh et al. [206] and
Zhong [255], a definite deviation exists in the upper edge of the region.
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Figure B.2: Reduced frequency dependence on reduced velocity, for flow over Cylinder, with 2
degrees of freedom (d.o.f.), at Re = 100.

In figures B.3 and B.4 the aerodynamic load coefficients and the characteristic quantities of
the 2 d.o.f oscillations are presented. The results of the current computations are compared to
results from different sources of the literature and small deviations are easily spotted. Although
the overall trends are accurately captured by the current method, small hysteresis or complete
slight shift to larger values of reduced velocities are clear. In addition some maxima and
minima, with regards to R.M.S. value of the horizontal (in-line) oscillation’s amplitude Ax, are
not captured; these correspond to instabilities arising towards the end of the lock-in region.
The discrepancies amongst the reported data of Chern et al. [40] and Singh et al. [206], in
terms of lift coefficient and vertical oscillation amplitude Ay have to be noted as well.

To illustrate the influence of the reduced frequency U∗, and essentially of the spring coeffi-
cient k, over the induced vibrations of the cylinder, the oscillation of the body on the horizontal
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Figure B.3: Force coefficients dependence on reduced velocity for flow over Cylinder, with 2 degrees
of freedom (d.o.f.), at Re = 100.
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Figure B.4: Displacement characteristic estimates for flow over Cylinder, with 2 degrees of freedom
(d.o.f.), at Re = 100.

and vertical axes, for four indicative regimes (U∗ = 4.8, 5, 6.2, 8), are presented in figure B.5.
It is visible that apart from the case of U∗ = 6.2, a secondary oscillation is observed; for the
horizontal oscillation the equilibrium position is periodically displaced and for the vertical the
oscillating amplitude periodically changes. For U∗ = 4.8 these secondary oscillations are in
sync and yield a period of approximately 60 dimensionless time units, whereas for U∗ = 5 the
period exceeds 200. For the case of U∗ = 8 though, the response of oscillating cylinder changes
after t∗ = 180 and the equilibrium position for the horizontal vibrations on one hand, and
the amplitude of the vertical oscillations on the other, show a tendency to increase. The total
simulated time, of t∗total = 360, seem not enough to capture the full dynamics for the latter
case. Maybe if the computations have not been halted, the maximum Ay and mean Ax would
be different and plot in figure B.4 would compare better with the literature.

To illustrate the influence of the reduced frequency U∗ on the shedding patterns, the vor-
ticity contours for the for four aforementioned regimes are presented in figure B.6. Vortex
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Flow past 2DoF Cylinder Re=100, B=0.05
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Figure B.5: In-line (top) and cross-directional oscillation evolution through time, for four different
reduced velocities, for flow over Cylinder, with 2 degrees of freedom (d.o.f.), at Re = 100. (The
cross-directional oscillation is presented in two plots, each presenting only two of the four cases, for
sake of clarity.)

shedding of mode 2S can be observed for most cases of low or high U∗, with varying shedding
frequency, but for U∗ = 5, which is close to beginning of the lock-in region, vortex shedding
switches to type 2P. The difference in shedding frequency is nicely illustrated from the height
of the vortex street and the distance between the shed vortices.

The discrepancies between the results of the current simulations and those reported in the
aforementioned literature, [40,206,255], regarding either the prediction of wider lock-in region

126



Figure B.6: Off-plane vorticity contours, for four different reduced velocities for flow over Cylinder,
with 2 degrees of freedom (d.o.f.), at Re = 100.

or deviations in vibration amplitudes, might be caused by the loose coupling of the solid and
fluid solvers or the explicit evaluation of the IB forcing. Moreover, regarding the flow field,
higher-order time-advancing and interpolation schemes would definitely improve the solution
of the fluid which would enhance in turn the dynamics of the solid motion.

In addition, the use of the Runge-Kutta time-integrator to solve B.1 might be a source of
inaccuracies. It is a common practise to solve the motion equations in a Lagrange-Hamilton
form [103] and employ alternative time-integrator, such as a Verlet (leap-frog) algorithm which
promise more accurate and more robust results [55].

Finally, the convergence of the system in a ”stable” oscillatory regime is not trivial. Reach-
ing convergence might be a slow procedure of high computational cost; Chern et al. [40] report
their longest simulation, in order to reach t∗ = 1000, to last 20 days. In the present study
the total simulated time might have not been adequate to capture the full dynamics and reach
converged response for some flow regimes.

Taking into account these discrepancies, the possible causes as well as the complexity of the
problem, it can be concluded that the overall performance of the herein proposed IB method,
in the application on FSI problems, is found satisfactory.
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Appendix C

Flow through bi-leaflet Mechanical
Heart Valve in Axisymmetric Aorta

A preliminary study of the pulsatile flow through an idealised bi-leaflet Mechanical Heart Valve
(MHV) is presented herein. The leaflets of the valve are represented by a triangulated surface
mesh and are modelled as immersed boundaries, utilising the proposed method, whereas the
casing is considered as a conventional wall boundary. The leaflets are show in figure C.1 in
fully closed and fully open position, inside the valve casing represented by its inner wall. The
rotation of the leaflets is induced by the flow.

The case configuration and the geometries of both the computational domain and the valve
itself, are in accordance to the experimental work of Dasi et al. [47] and the computational
studies of Borazjani et al. [19]. Initially the flow was studied experimentally [47], providing
detailed information on the velocity profiles and off-plane vorticity structures through PIV
measurements, as well as leaflet kinematics. In addition, the experiments are supported by
numerical simulations employing a ghost-cell Immersed Boundary method, where the leaflet
rotation is prescribed by measured kinematics from the experiment. Later, the aforementioned
ghost-cell IB method was extended to accommodate Fluid-Structure Interaction computations
and the flow was studied in a FSI context [19]. Both the leaflet solid body kinematics and
the vorticity dynamics where validated against to the experimental findings and found in good
agreement.

The studies [19,47] refer to a St. Jude Regent 23 mm valve. Its geometry is drastically sim-
plified in the numerical simulations, so that the casing and the hinge mechanism are neglected
and the leaflets are represented by semicircle disks. The model used herein, presented in figure
C.1, is reproduced following the same philosophy, with geometric details extracted from [19].
However, the model used herein, may differ from the actual geometry or the one used in the
referenced works [19, 47].

The aim of this study is to validate the proposed IB method and assess its performance
on complicated flows of bio-engineering interest, including fluid-structure interaction, pulsatile
inflow conditions and transition to turbulence, as well as to investigate the influence of the tem-
poral and spatial discretisation and schemes on the numerical solution. Validation is performed
against experimental and computational data referenced in [19].
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(a) Fully Closed (b) Fully Open

Figure C.1: The idealised model of the bi-leaflet Mechanical Heart Valve, enclosed by the casing
inner surface. The two leaflets are represented by triangulated surfaces and are shown in fully closed
(a) and fully closed (b) position, at θ = 20o and θ = 73o, relative to the vertical plane Oyz, respectively.

Pulsatile In-Flow

The flow is driven by the unsteady flow rate show in figure C.2, assigned as an inlet bound-
ary condition. The total duration of the cardiac cycle is Tc = 860 ms, while the systolic
(acceleration and deceleration) phase lasts for Tsys ≈ 450 ms.
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Figure C.2: Axisymmetric bMHV simulation: The flow rate, extracted by [19], used in the simula-
tions. The cycle lasts Tc = 860 ms and the systolic phase Tsys ≈ 450 ms.

The developed pulsatile flow is characterised by the nondimensional Womersley number
[239], which is calculated as the ratio of inertial and viscous forces, as in relation 5.1, and
expresses the lag between the pressure pulse that generates the flow and the velocity profile.
During a pulse generated flow through a pipe, the velocity profile may deviate significantly
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from the well-known parabolic profile of the Poiseuille flow [250]. For low Womersley numbers,
viscous forces dominate the flow and a parabolic velocity profile develops. For higher values, the
inertial forces dominate and the influence of viscosity is limited near the rigid walls; therefore
the parabolic velocity profile gets disturbed and flattens towards the core of the pipe.

Although analytic expressions of the velocity profile as function of the flow Womersley
number have been derived by Sexl, Womersley, Uchida, McDonald and Milnor [250], in the
present studies a uniform velocity profile is assigned at the inlet; similar approach is followed
in the referenced studies [19, 47].

Motion of the Leaflets

The rigid solid leaflets are modelled as immersed boundaries and their motion is coupled with
the flow through a FSI approach of loose coupling for undeformable bodies. An assessment
of the FSI algorithm for the proposed IB method is presented in Appendix B, where the
applicability of the method on Vortex Induced Vibrations is addressed.

The rotation of the leaflets around the hinges’ axes is governed by the equation 2.27b, which
is repeated here for sake of completeness:

ĨR · ∂
2θ

∂t2
= Mext (C.1)

The moment of inertia tensor is calculated with regards to the center CH of the rotation
(hinge’s) axis for each leaflet, which is parallel to the Oz axis of the coordinate system:

ĨR = [Iij] ⇒ Iij =
N∑
k=1

dmk

(
|rk|2 · δij − xixj

)
, i, j = x, y, z

where dmk is the elementary mass of each element k of the solid leaflet, rk the distance vector
of each elementary mass from the center of rotation CH and δij the Kronecker delta:

δij =

{
1, i = j

0, i ̸= j

The MHV is composed by a polycabronate material [19] with density 1750kg/m3 and the mass
is uniformly distributed on the solid IB surface.

The rotation angle θz is limited between θmin = 0o and θmax = 53o [19, 47]. All other
rotations and translations are constrained, therefore the system possesses a single degree of
freedom. Gravity is neglected, as in [19], therefore the moment vector Mext is composed by
the moments of the hemodynamic forces only.

C.1 Numerical Set-up
The working fluid is assumed Newtonian, with density ρ = 1000 kg/s and kinematic viscosity
ν = 3.5e − 5 m2/s, as referenced in [19, 47]. This assumption is valid because although the
blood is not a Newtonian fluid, it can be safely regarded that it behaves as such in larger
vessels [226]. Based on the upstream pipe diameter and the peak bulk velocity, the Reynolds
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number is estimated around 5960 in the experiments [47], while in the FSI computations
is rounded up to 6000 [19]. Therefore the peak bulk velocity in the upstream pipe can be
calculated about Up = 0.8 m/s. The Womersley number is estimated using the period of the
systolic phase, f = 1/Tsys, at Wn = 9.8, a value that differs from the one reported in the
experiments [47]; the values of the variables used in the formula in [47] are not clearly stated
and a typographic error also exists. Finally, the experiments of [47], which act as a reference,
are reported in atmospheric ambient conditions.

The computational set-up is extracted from the literature [19, 47]. The computational
domain consists of a straight, axisymmetric model of an aorta, visible in figure C.3, which
includes a sinus region adjacent to the valve, to mimic the Valsalva Sinuses. The casing of
the valve is included in the computational domain, and thus it is taken into account by the
background conformal mesh.

The domain extends 4Do upstream the casing and ∼ 9Do downstream of the sinus region,
as seen in C.3a, where Do represents the diameter of the inlet and outlet pipes. The casing
constrains the flow domain because it has an internal diameter Dc, smaller than the inlet pipe,
therefore a forward facing step forms upstream of the valve leaflets. On the other hand, as the
valve is placed just upstream to the sinus region, which has a larger diameter Ds than both the
casing and the pipes, a backward facing step is formed on the exit of the casing as the domain
expands. The sinus diameter then transitions smoothly to the outlet pipe diameter Do. The
area of interest, including the valve casing and the sinus region, is shown in figure C.3b, where
the aforementioned diameters are annotated; they are Do = 25.4 mm, Dc = 21.3 mm and
Ds = 31.75 mm. A three-dimensional view of the area of interest, where the valve is mounted
is shown in figure C.4.

The domain is discretised by a non-uniform hexahedral mesh of 1.3M cells; a view of the
computational mesh on slices AA’ and BB’, parallel and perpendicular to the axis of the pipe
respectively, is presented in figure C.5. The grid cells are clustering from the inlet and outlet
towards the area of interest (MHV and Sinus bulbs), and near the rigid boundary walls to
capture the interaction of the mean flow with the boundary layers, yielding y+ < 5. In the
casing, the cells exhibit edge ratio near to unity. Additional telescopic refinement is applied in
an area enclosing the complete path of the valve leaflets, to secure the precise representation
of the IB bodies and better capture the initiation of vortex shedding over the leaflets.

Parametric Studies

To assess the influence of the different numerical parameters on the computational results, a
two-dimensional configuration is considered, the geometry of which corresponds to the mid-
plane slice AA’ of the three-dimensional domain. Although such a 2D configuration corre-
sponds a 3D planar channel flow and not to a 3D pipe flow, it facilitates the quicker and
computationally inexpensive test of numerical strategies.

Three different 2D hexahedral computational grids are used, shown in figure C.6. The
coarse mesh consists of 31k cells, the medium of 76k and the fine of 220k cells. They are
generated based on a reference hexahedral grid, with non-uniform distribution of the cells,
using one, two and three levels of telescopic refinement respectively. The reference grid created
using a blocking technique and has 81 cells along the diameter in the sinus region and the
upstream and downstream pipe and 45 in the casing. Along the axis of symmetry the cell
length increases from the area of interest towards the outlets. In addition, layering is employed
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(a)

(b)

Figure C.3: Axisymmetric bMHV simulation: The computational domain. The basic lengths are
presented. The entire domain is visible on the top, along with the position of the area of interest
(MHV casing and Sinus region) relative to the inlet and outlet of the domain. A close up view of the
area of interest, along with the characteristic diameters are shown on the bottom.

near the wall of the aorta, apart from inside the casing, to ensure again y+ < 5 and, therefore,
resolution of the boundary layers. During the telescopic refinement, each level divides the cells
into two new cells in each direction.

Regarding the temporal and spatial discretisation, different schemes have been considered.
For the advancement in time, either the first order Euler or the second order accurate Crank-
Nicolson have been used. In a similar way, the fluxes, which for the incompressible flow it is
expressed by the divergence of the velocity vector (∇U), are discretised with an Upwind or
Linear- Upwind schemes, achieving first or second order accuracy respectively.

To assess the influence of the different numerical parameters on the computational results,
two parametric studies are carried out on the two-dimensional configuration, one for the spa-
tial resolution and one for the numerical schemes. Combining different meshes, schemes and
time-step size, six different cases are run for the 2D configuration; table C.1 groups all the
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Figure C.4: Axisymmetric bMHV simulation: A close-up view of the area of interest, on three-
dimensional computational domain with the two leaflets positioned in the casing. The vertical mid-
plane AA’, along the axis of symmetry Ox, is used to present the results; it corresponds to the
two-dimensional domain as well.

(a) AA’ (b) BB’

Figure C.5: Axisymmetric bMHV simulation: The three-dimensional grid, presented on vertical
slices AA’ and BB’, visible in figure C.4.

computational configurations.
A mesh independence study is performed using the three different grids, Euler time ad-

vancement and Upwind discretisation for the fluxes; the time step is limited by the Courant-
Friedrichs-Lewy (CFL) condition Comax = ∆tΣfaces|ϕi|/2V ≤ 0.5. This study refers to the
configurations CEU0.5, MEU0.5, FEU0.5 of table C.1. On the other hand, the different
time and spatial schemes are evaluated by multiple simulations over the Medium mesh (76k);
namely, with regards the table C.1, MEU1.2 or MEU0.5 for Euler and Upwind schemes, with
fixed time-step dt = 0.33 ms, or fixed Comax ≤ 0.5 and MCL1.2 or MCL0.5 for Crank-Nicolson
and Linear-Upwind schemes, similarly with fixed time-step or Courant number. It has to be
noted that the value of the fixed time-step is chosen to be the same used in the computations
reported in the references [19, 47].
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(a) Coarse (b) Medium (c) Fine

Figure C.6: Axisymmetric bMHV simulation: The three different meshes for the two-dimensional
configuration: Coarse mesh with 31k cells (a), Medium mesh with 76k (b) and Fine mesh with 220k
(c). The different grids are created by successive telescopic refinement passes.

Finally, the simulation on the 3D configuration aims to higher accuracy and thus employs
second order accurate schemes (Crank-Nicolson, Linear-Upwind) and strict constraints of the
time-step (Comax ≤ 0.5).

Turbulent scales

During a cardiac cycle, the flow through the blood vessels ranges from low up to moderate
Reynolds numbers and therefore the transition to turbulence is not well established nor lasting.
Especially, the flow downstream the heart valve and inside the sinus bulbs, exhibits chaotic
behaviour. Turbulence modelling through RANS, with models tailored for flow of low Reynolds
numbers and developed boundary layers, does not seem appropriate for such pulsatile flows and
is generally avoided [146, 226]. On the other hand, DNS, LES, or even laminar, which neither
resolve nor model turbulence scales, computations are favoured by researchers [19,47,146,245].

In order to assess the required spatial resolution for the computational mesh to accurately
capture all the turbulent structures, an estimate of the Kolmogorov scales may be used. The
spatial ηk and temporal τk Kolmogorov scales can be calculated, based on the dissipation rate

Case ID Cells dt Scheme ∇U Scheme Comax dtmean[s]
2D configuration

CEU0.5 31k Euler Upwind 0.5 1.6 · 10−4

MCL1.2 76k C.-N. Lin.-Upwind 2. < 3.3 · 10−4

MCL0.5 76k C.-N. Lin.-Upwind 0.5 5.5 · 10−5

MEU1.2 76k Euler Upwind 1.4 3.3 · 10−4

MEU0.5 76k Euler Upwind 0.5 3.2 · 10−5

FEU0.5 220k Euler Upwind 0.5 1.4 · 10−5

3D configuration
3DCL0.5 1.3M C.-N. Lin.-Upwind 0.5 7.1 · 10−5

Table C.1: Computational details of the configurations used in the different numerical simulations
of the pulsatile flow through bi-leaflet MHV.
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ε as below:

ε =
U2
p

D
= 21.808 m2/s3 (C.2a)

ηk =

(
ν3

ε

)1/4

= 3.74 · 10−5 m (C.2b)

τk =

√
ν

ε
= 4. · 10−4 s (C.2c)

DNS calculations are reported in by Dasi et al. [47] and Borazjani et al. [19]. However
there is not a mention or any analysis regarding the resolution of the turbulence scales; for
the computational grid only the number of cells per direction is stated. The aforementioned
computational domain is discretised by 201×201×241 nodes, using 10 million hexahedral cells
in total. Considering that 201 equidistant nodes are placed along the diameter of the pipes, on
the upstream of the valve part the cell edge size is estimated at dy = 0.127mm, which yields
dy ≈ 3.5ηk.

In the herein presented three-dimensional simulation, the grid is has 74 cells along the
diameter of the pipes, 96 along the diameter of the casing and 100 along the diameter of the
sinus. The cells in the casing are uniformly spaced while in the pipes and sinus the cells cluster
towards the walls, yielding y+ < 5. In the area of interest, in the casing and the sinus bulbs,
the edge ratio of the cells ranges from 1.25 to 1.67 and with regards the Kolmogorov scales
dy = 4− 6ηk along the diameter.

Regarding the resolution of the temporal scales, the fixed time-step employed in [19, 47],
which are assessed herein in the two-dimensional cases as well, with value dt = 3.3 × 10−4 s,
respects the limit set by the temporal Kolmogorov scale. In the case where the time-step varies
based on the Courant-Friedrichs-Lewy condition, it is always ensured that dt≪ τk, because in
addition the maximum value of the time-step is limited at dt ≤ 10−4 s.

C.2 Results
2D parametric studies

The simulations’ results are primarily assessed based on the induced leaflets’ kinematics. Re-
garding the two-dimensional parametric studies, the influence of mesh resolution on the leaflets’
motion is presented in figure C.7 and the impact of the scheme choice and time-step size is
illustrated in figure C.8. The different numerical configurations are discussed in terms of flow
field with the aid of comparative figures C.9, C.10 and C.11, which present plots of the off-plane
vorticity contours for different grids and set-ups.

In figure C.7 it can be seen that the spatial resolution affects significantly the results; while
the estimations of the angular position of the leaflets from the medium and fine grids converge,
the values from the coarse grid clearly diverge. The same conclusion can be drawn for the
temporal resolution, because for both first (Euler, Upwind) and second order (Crank-Nicolson,
Linear Upwind) schemes, the results converge when the time-step size is limited by a Courant
number bellow 0.5, as seen in figure C.8. From the same plot, it can be extracted that the
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second order schemes (Crank-Nicolson, Linear Upwind) offer a more reliable solution as the
results exhibit more consistency compared to the results of alternative set-up.

In addition, it can be observed that according to all the aforementioned computations, the
motion of the leaflets is not symmetrical, as the one, usually the upper, is closing faster than
the other. Only in the cases when second order accurate schemes are used on the medium grid,
or when the finer grid is employed, the lower leaflet is the one that closes first. However in
the latter this asymmetry is almost negligible. Finally, only in one case (MCL0.5), the lower
leaflet bounces once when reaches the casing during the closing face, as it can be seen in figure
C.8. Since contact dynamics are neglected and therefore interaction of the IB leaflets with the
solid walls does not take place, this bouncing might be caused by a flow induced instability
captured by the higher order schemes.
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Figure C.7: Axisymmetric bMHV 2D simulation: Mesh influence on leaflet kinematics. The an-
gular position of the two leaflets of the MHV are presented for the three different two-dimensional
grids: Coarse (31k cells), Medium (76k cells), Fine (220k cells). The kinematics of upper leaflet are
represented by the continuous line and of the lower by the dash-dotted line. The angles are given
with respect to the initial, fully closed, position of the leaflets.

137



0

10

20

30

40

50

60

70

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

θ[
o
]

t[s]

bMHV Axisymmetric Aorta: Schemes Study, 76k Cells
MCL1.2 Lower
MCL1.2 Upper
MCL0.5 Lower
MCL0.5 Upper

MEU1.2 Lower
MEU1.2 Upper
MEU0.5 Lower
MEU0.5 Upper

Figure C.8: Axisymmetric bMHV 2D simulation: Time and Space discretisation schemes influence
on leaflet kinematics. The angular position of the two leaflets of the MHV are presented for the
Medium mesh (76k cells) for different case set-ups from table C.1. The kinematics of upper leaflet
are represented by the continuous line and of the lower by the dash-dotted line. The angles are given
with respect to the initial, fully closed, position of the leaflets.

The vorticity contour plots of figures C.9, C.10 and C.11 reveal the main characteristics of
the flow and shed light in the discrepancies of the leaflets’ dynamics between the numerical
set-ups. Two counter rotating vortices form over the backward facing step, as the domain
expands from the casing to the sinus region, which initially interact with the sinus walls, one
on each side. In addition, as the leaflets start to rotate and open, vortices are induced from
the tips (50-75 ms) and then a vortex street forms behind the fully opened leaflets until peak
systole (200 ms). The initial vortices are captured by all grids, however the coarser the grid,
the faster the vortex is diffused. On peak systole, seen in frames C.9d C.9j C.9p, the coarse
mesh provides a rather diffused vortex street. In the later stages of the cycle, it becomes more
clear that the flow is not symmetrical along the axis of the domain. This lack of symmetry
may explain the delay in closing times for the leaflets, as it can be seen in frame C.9k for
t = 395 ms, where the asynchronous motion of the two leaflets is visible. By examining the
vorticity plots at the same time instance, for the three different grids in frames C.9e C.9k C.9q,
it can be seen that while for the fine grid the leaflets are closed, for the medium they are closing
asymmetrically, while for the coarse they are still fully open; this illustrates the delay of the
closure as the grid coarsens, visible in figure C.7.

On the other hand, the influence of the temporal and spatial schemes is proven more
important, both on the opening phase, figure C.10, and the closing phase, figure C.11. The
second order schemes provide a sharper and significantly less diffusive representation of the
vortices of the opening leaflets, that are sustained for longer and travel further downstream.
Moreover, during the closing phase, the second order schemes yield a more chaotic vorticity
field, with numerous small structures of various shapes, which differs a lot from the diffused
elongated vorticity structures provided by the first order schemes. This may result in a delay
of the closure of the leaflets, with regards to the case of the first order schemes, as well as in
a more asynchronous motion of the two leaflets, which are also visible in the respective curves
of figure C.8.
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(a) 50 ms

(b) 75 ms

(c) 100 ms

(d) 200 ms

(e) 395 ms

(f) 405 ms

(g) 50 ms

(h) 75 ms

(i) 100 ms

(j) 200 ms

(k) 395 ms

(l) 405 ms

(m) 50 ms

(n) 75 ms

(o) 100 ms

(p) 200 ms

(q) 395 ms

(r) 405 ms

Figure C.9: Axisymmetric bMHV 2D simulation: Off-plane vorticity contours for the 2D Coarse
(left), Medium (middle) and Fine (right) mesh, using first order schemes. The plots correspond to
cases CEU0.5, MEU0.5 and FEU0.5 respectively. The non-dimensional vorticity is plotted, calculated
as ω′ = ω ·Do/Up with regards to the inlet tube diameter Do and inlet peak velocity Up.

139



(a) 50 ms (b) 100 ms (c) 125 ms

(d) 50 ms (e) 100 ms (f) 125 ms

Figure C.10: Axisymmetric bMHV 2D simulation: Off-plane vorticity contours for the 2D Medium
mesh, using first order (MEU0.5), on the top, and second order schemes (MCL0.5), at the bottom.
The non-dimensional vorticity is plotted, calculated as ω′ = ω ·Do/Up with regards to the inlet tube
diameter Do and inlet peak velocity Up. Valve opening.

(a) 350 ms (b) 405 ms (c) 425 ms

(d) 350 ms (e) 405 ms (f) 425 ms

Figure C.11: Axisymmetric bMHV 2D simulation: Off-plane vorticity contours for the 2D Medium
mesh, using first order (MEU0.5), on the top, and second order schemes (MCL0.5), at the bottom.
The non-dimensional vorticity is plotted, calculated as ω′ = ω ·Do/Up with regards to the inlet tube
diameter Do and inlet peak velocity Up. Valve closing.

3D computation

The plot of figure C.12 validates the numerical computations presented herein against data
extracted from the referenced literature and assesses the dimensionality of the problem. The
leaflets’ kinematics predicted by the 3D computation are found in almost perfect accordance
with the experimental measurements from [47] and the simulations of [19]. The predicted
motion of the two leaflets is symmetrical as in the references, however a slight deviation is
observed during the end of the opening phase. The herein predicted leaflets’ motion is more
abrupt and the leaflets open quicker, while the curvature of the referenced kinematics indicate
a modest deceleration close to the full-open position. In addition, for the sake of comparison,
2D results are also plotted.
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Figure C.12: Axisymmetric bMHV simulation: Leaflet kinematics comparison of the current com-
putational study against FSI numerical results of Borazjani et al. [19] and experimental data of Dasi
et al. [47]. The angular position of the two leaflets of the MHV are presented for the 2D Medium
mesh (76k cells) and 3D mesh (1.3M cells) with two different lines. The kinematics of upper leaflet
are represented by the continuous line and of the lower by the dash-dotted line. These correspond
to configurations MCL0.5 and 3DCL0.5 of table C.1. Numerical results of [19] and the experimental
measurements of [47] are presented with a single line for both leaflets, due to symmetry. The angles
are given with respect to the initial, fully closed, position of the leaflets.

Furthermore, figure C.13 visualises the vortical structures of the three-dimensional flow,
though the use of Q-criterion. According to Q-criterion, the quantity q is calculated by the
symmetric and antisymmetric elements of the velocity gradient (let them be S and Ω respec-
tively, see C.3), and denotes the regions where vortical structures appear; Q > 0 indicates
regions where the rotation rate dominates over the strain rate. The flow is characterised by
vortex rings generation over the backward step at the exit of the casing to the sinus region,
vortex shedding from the leaflets and chaotic vortical structures developing in the sinus region.
The vortical rings initiate on the aorta wall, at the areas of diameter reduction or expansion.
At the opening of the leaflets, a vortex ring is shed from the edge of the casing and interacts
with the sinus wall. This vortex ring is not axisymmetric, but follows the symmetry of the valve
design, which is symmetric with regards to the Oxz plane (figure C.4). In addition, vortices
are shed over the leaflets, on both sides. The flow inside the sinus is chaotic throughout the
cycle.

q =
1

2

(
∥Ω∥2 − ∥S∥2

)
(C.3)
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(a) 50 ms (b) 75 ms (c) 100 ms

(d) 150 ms (e) 200 ms (f) 300 ms

(g) 350 ms (h) 375 ms (i) 400 ms

Figure C.13: Axisymmetric bMHV 3D simulation: Vortical structures visualized in terms of iso-
surfaces of Q-criterion (Q = 2×104 [1/s2]) for different time instances during opening and acceleration
phase (a-d), peak systole (e), deceleration and closing phase (f-i).

On the other hand, figure C.14 presents the non-dimensional vorticity contours for the
three-dimensional simulation, plotted over the vertical mid-plane AA’, for the opening and
closing phase of the valve. These vorticity contours give an other point of view on the vortical
dynamics described by the Q-criterion in figure C.13. The symmetry of the flow is clearly
illustrated on the mid-plane; during the opening phase, visible in frames C.14a, C.14b and
C.14c, and up until peak systole, seen in frame C.14d, the vortical patterns are in perfect
symmetry with respect to the axis of the pipe. The complexity and the chaotic nature of the
flow is manifested by the absolute breakdown of this symmetry during the closing phase of the
valve, as show in frames C.14e and C.14f.

(a) 50 ms (b) 75 ms (c) 100 ms

(d) 200 ms (e) 395 ms (f) 405 ms

Figure C.14: Axisymmetric bMHV 3D simulation: Off-plane non-dimensional vorticity contours
for the 3D simulations. Contours plotted on the mid-plane AA’. The non-dimensional vorticity is
calculated as ω′ = ω ·Do/Up with regards to the inlet tube diameter Do and inlet peak velocity Up.
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Apart from the quantitative comparison of the leaflet kinematics, a qualitative comparison
against the referenced computational results and experimental observations of Borazjani et
al. [19] can be performed by the juxtaposition of figures C.15 and C.16.

Figure C.15 presents the calculated and the reconstructed from PIV measurements vorticity
contours, on the mid-plane AA’. Figure C.16 presents the vorticity contours on the same plane,
as calculated by the current 3D numerical simulation. In both figures the vorticity field is
represented in terms of non-dimensional vorticity and although the contours differ, the levels
are identical.

It can be seen that the physics is captured by the current simulation, but noticeable de-
viations are visible between all three data sets. Better agreement amongst all the cases is
observed in the early time instances (110 − 135 ms), seen in frames C.15a, C.15b and C.16a,
C.16b. Vortices shed over the aorta walls into the sinuses agree in terms of intensity and length;
vortex shedding over the leaflets is also similar for all cases, however for the current simulation
seems like the vortices detach faster, as two distinct vortices are visible in the sinuses instead
of one present in the referenced images. During the later instances (285 − 374 ms), the flow
predicted by the current computation is organised in larger and thicker vortical blobs than the
referenced flow field. At 285 ms, visible in frames C.15c and C.16c, the current simulations
exhibit more structured and more symmetrical flow than the referenced data, especially inside
the sinus region. At 374 ms, visible in frames C.15d and C.16d, the closure of the valve has al-
ready commenced and the vortical structures are broken down into random smaller structures,
which in the referenced images are more chaotic. However, in both the latter instances, the
breakdown in the experimental images is more prominent that both the referenced and cur-
rent simulations; the simulations predict some longer and more resistant vortical structures.
In addition, the FSI computations of Borazjani et al. [19] capture a slight asymmetry on the
vorticity field also present in the experimental data, which can be inferred by careful exami-
nation of the early times in frames C.15a and C.15b; slight asymmetric leaflet motion is also
reported, which is not detectable in the macro-scale of plot C.12. This is thought to be caused
by inherent instabilities and the three-dimensional nature of the flow. Such an asymmetry is
not captured by the current simulation.

These discrepancies between the herein predicted and the referenced results, may be related
to the level of spatial resolution. In the current configuration, the computational grid is refined
in an area enclosing the moving leaflets; a finer grid, or at least a constant grid size along the
entire sinus region, could improve the results.
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(a) ∼ 110 ms (b) ∼ 135 ms

(c) ∼ 285 ms (d) ∼ 374 ms

Figure C.15: Instantaneous off-plane (non-dimensional) vorticity contours, from IB FSI simulations
(left) and experiments (right), as reported in the work of Borazjani et al. [19]. Times were not
explicitly stated but rather reported on (and therefore extracted from) the flow rate pulse diagram.

(a) 110 ms (b) 135 ms

(c) 285 ms (d) 374 ms

Figure C.16: Instantaneous off-plane vorticity contours, for the 3D simulation, at the same time-
instances as reported in the work of Borazjani et al. [19].

Finally, an important feature of the flow, with particular interest to the assessment of
cavitation potential in such flows through bi-leaflet MHV, is the backward jetting that appears
during the closing of the leaflets. Figure C.17 collects four snapshots of the velocity field at
the closing moment of the leaflets. The flow is squeezed through the opening between the
two leaflets, as well as the gaps between the leaflets and the casing. At the moment that the
opening between the two leaflets closes, frame C.17b, a high-speed jet is emitted upstream,
which travels to the inlet pipe and gets diffused, frame C.17c and C.17d. The length of the jet
is comparable to the length scales of the flow, as it can be seen in the diagrams C.18, where
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the velocity profiles along the diameter of the domain are presented for two locations upstream
the leaflets. As it can be seen, the jet velocity may reach values over 1.25 m/s near the leaflets,
larger than the peak inlet velocity Up = 0.8 m/s, and retains its strength even upstream the
inlet of the casing, into the inlet pipe; at time t = 370 ms the jet has a velocity of 1.25 m/s
at a location 0.3 mm upstream the leaflets and ∼ 0.8 m/s at 0.7 mm upstream the leaflets,
which means that the jet at this instance is more than 7mm in length. In addition, smaller
and weaker jets develop near the points where the leaflets touch the casing, visible at frame
C.17c.

(a) (b)

(c) (d)

Figure C.17: Axisymmetric bMHV 3D simulation: Magnitude of velocity field in the valve casing,
for four different time instanced. Jetting during leaflets’ closure. Contours plotted on the mid-plane
AA’.
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Figure C.18: Axisymmetric bMHV 3D simulation: Velocity profiles on the center plane AA’, along
the diameter of the domain, at two locations upstream the leaflets, for the four different time-instances
of figure C.17. High speed jet at leaflets’ closure.
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Appendix D

Numerical Implementation Notes

The herein proposed Direct Forcing Immersed Boundary Method was implemented in the
platform of OpenFOAM [236].

OpenFOAM (Open Field Operation And Manipulation) is an open-source Finite Vol-
ume (FV) library, for Computational Fluid Dynamics (CFD), with its own programming
pseudo-language that facilitates equation declaration, discretisation and solution. It is written
in C++ and provides a rich library of models and functionalities, which ease the researcher or the
engineer to combine different components and develop novel numerical tools. Apart from the
model library and the functionalities, numerous solvers (executable programs) are available as
well, each one targeting a specific range from a wide spectrum of flow regimes and applications.
Since the source-code is open-source and available to anyone, the library and the solvers are
highly customisable.

The developed IB method is structured as a functionality library with focus on portability
and extensibility. Since C++ is a object-oriented programming language, the IB library defines a
new class object, the immersedBoundarySource class, with its private structure, properties and
functions, completely independent to the solution algorithm and the solver. The IB library is
coded as a standalone dynamic library, so that it can be linked to various solvers (executables).
It is comprised by standalone classes so that new functionalities can be added easily without
altering the main class of the library, which is linked and called by the solvers. After the update
and the new compilation, if the main class is not altered, the executables do not need to be
recompiled as well.

Few different versions of OpenFOAM exist, as anyone can adapt and reuse it. The main distri-
butions are the OpenFOAM from the OpenFOAM Foundation [68], the OpenFOAM+ from OpenCFD
[166] and community-contribution driven foam-extend [41]. In this work the OpenFOAM version
2.4.x of OpenFOAM Foundation is used.

Hereafter some technical details are presented.

D.1 The Immersed Boundary library
Following the methodology described in chapter 2, the immersedBoundarySource library is
designed to calculate a vector field for the volumetric forcing term fIB, that can be added to
the momentum equations as a source term.

The immersed solid is represented by a closed triangulated surface, with NIB faces and
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the surface normals strictly defined outwards, as illustrated in figure D.1. The IB surface is
provided as input to the code, in a stereolithography (STL) file format. OpenFOAM provides the
needed functionalities to input/output, modify (translate, rotate, scale) and analyse (determine
center of gravity, calculate moments of inertia) such data files.

The IB forcing field is evaluated on each of the Nc cells for the computational domain. The
forcing is localised on the area covered by the solid body, using the mask αIB. Thus, for each
cell j of the Nc cells of the domain, the IB forcing vector is calculated based on the velocity
vector uj and the target velocity ut

j (the imposing value) as:

fIb,j = αj

ut
j − uj

dt

The target velocity that the method is trying to impose in a cell, is determined for all the cells
of the domain, based on distance vector rj =

−−−→
CsCj between the IB body center Cs of gravity

and the the cell’s center Cj and the solid body translation and angular velocities, us and ωs

respectively:
ut
j = us + rj × ωs

The computational cost of calculating the forcing term for all the cells of the domain
or estimating the target velocity in cells outside the IB regions (e.i. in pure fluid cells), is
negligible. The most expensive operation of the method, is the calculation of the mask αIB.

As mentioned on chapter 2, the mask is perceived as the solid volume fraction, e.i. the ratio
of the cell volume covered by the immersed solid. For each of the Nc cells of the domain, the
mask αj is calculated from the distances of the Nv cell’s vertices from the IB surface:

αj =

Nv∑
i=1

| min(dij, 0) |

Nv∑
i=1

| dij |
, j ∈ [1, Nc]

The distance of each vertex from the IB surface, as it is already mentioned in chapter 2, is
estimated as the minimum of the distance of the vertex from all of the points of the IB surface:

dij = min(dn) = min (rij,k · nIB,k) , rij,k =
−−−→
BkVij, j ∈ [1, Nc], i ∈ [1, Nv], k ∈ [1, NIB]

Therefore, the calculation of the mask field requires Nc×Nv×NIB algebraic operations, which
increase with the increase of background grid density and the level of complexity or geometric
details of the STL.

In order to accelerate this procedure and lower the computational cost, the mask field is
calculated only on the grid cells in the immediate vicinity of the IB surface. OpenFOAM provides
a Octree search algorithm, that helps determine which cells’ centres lay in the area enclosed
by the IB surface. In this way, an initial approximation of the solid cells is obtained, which
define the IB Cells stencil, illustrated in figure D.2a. Then, this stencil is extended to include
the neighbour cells that are cut by the IB surface. That way the IB Cells Extended stencil is
created, that holds all the internal or interface grid cells, as shown in figure D.2b. Finally the
mask field is calculated only for the cells in the latter stencil. For the case of a cylinder, in a
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two-dimensional setup, the mask is plotted in D.2c. This way the computational cost of the
mask estimation is lowered significantly.

The function that determines the IB Cells stencil, using the octree search, can be seen in
code-listing D.1.

The IB library, is also responsible for the update of the mask field on every time-step, if the
immersed body is moving, and of the forcing field with the new velocity field. The function
to update the IB in every time-step is explicitly called by the solver (executable), is defined
as updateIb(U), accepts as input argument the velocity field and is shown in code-listing D.2.
For the motion of the body, three different options are considered:

• prescribed motion, where either the position (angles) or the velocity (angular velocity)
is given as a function (linear or sinusoidal) of time

• induced motion, where a 6 d.o.f. motion solver is used to displace the body according to
the hydrodynamic or aerodynamic loading excessed by the flow

• tabulated motion, where the position (rotation) of the body is given as a table and at
each time-step the position (rotation) is determined by interpolation with respect to time

The IB library is accompanied by a library with modified turbulence models, as explained
in chapter 2. A modified wall distance, y′wall, class is included in the turbulence library, which
adjusts the wall distance, ywall in the presence of the immersed body:

y′wall = min(ywall, ywall,Ib)

The IB library is responsible for calculating the wall distance, ywall,Ib, of the cells’ centres from
the immersed boundary. If the body is moving, the wall distance has to be updated on every
time-step; this is handled by the updateIb(U) function as seen in lines 12-15 of code-listing
D.2. This operation is also computationally expensive, therefore is limited in an area twice the
length of the body (2 times the diagonal of the bounding box).

Since all the operations regarding the IB are handled internally by the library, the exposure
of the IB algorithm and functions is limited to creating the IB object, calling the updateIB(U)
function to update it, passing the new velocity field, in every time-step, and adding the IB
source term in the momentum equations by calling the ibSourceTerm() function. An example
of linking and using the IB library in a generic solver of OpenFOAM, employing a pressure-
correction algorithm, is given by code-listing D.3, where an implicit update of the forcing
term is also performed by calling the updateFIb(U) function in every iteration, which only
recalculates the source term fIb with the updated velocity.

The definition of multiple immersed bodies is also supported, because of the object ori-
ented nature of the coding platform. Multiple immersed boundary objects can be defined in
the beginning of the execution of the solver. Each body has its STL geometry and handles
autonomously its functionalities (calculates motion, mask, wall distance, source terms). At
every time-step, the forcing terms are summed up to provide a single volumetric source term
field to be added to the momentum equations. The solvers have to be adjusted to use the
code-snippets to create the immersed boundaries D.4 and sum the forcing terms D.5, provided
by the IB library, as seen in code-listing D.6.
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Figure D.1: The triangulated IB surface of a cylinder with the normal vectors.

(a) IB stencil (b) IB Extended stencil (c) IB Mask

Figure D.2: Immersed Boundary’s cell stencils and mask αIB field. IB cells have their center laying
inside the immersed boundary, IB cells extended have at least one of their vertices laying inside the
immersed boundary. The mask represents the solid volume fraction.
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1 void Foam::immersedBoundarySource::makeIbCells()
2 {
3 scalarField& ibMask_ = ibMask();
4

5 //- TriSurface Search
6 triSurface ibTemp( ibSurf_);
7 triSurfaceSearch ibTriSurfSearch( ibTemp );
8

9 //- Mark cells inside the TriSurface
10 boolList centresInside = ibTriSurfSearch.calcInside( mesh_.cellCentres() );
11

12 labelHashSet ibCellSet;
13

14 forAll(mesh_.C(),cellI)
15 {
16 if ( centresInside[cellI] )
17 {
18 ibCellSet.insert(cellI);
19 ibMask_[cellI] = 1.;
20 }
21 else
22 {
23 ibMask_[cellI] = 0.;
24 }
25 }
26

27 ibCellsPtr_ = new labelList(ibCellSet.toc());
28 sort(*ibCellsPtr_);
29 }

Listing D.1: Use of Octree Search to find cells lying in IB region.

1 void Foam::immersedBoundarySource::updateIb( const volVectorField& UIn )
2 {
3 // Update Stencils if Immersed Boundary is moving
4 if ( ibMoving() )
5 {
6 reInitFields();
7 moveIb();
8 makeIbCells();
9 makeIbCellsExt();

10 makeMask();
11 makeLayers();
12 if (dTurbulent())
13 {
14 calcWallDistance();
15 }
16 }
17 calcUtarget();
18 calcSourceTerms( UIn );
19 calcForces();
20 }

Listing D.2: Function to Update IB.
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1 ...
2 #include "immersedBoundarySource.H"
3 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
4 int main(int argc, char *argv[])
5 {
6 // Create Immersed Boundary
7 immersedBoundarySource ib(mesh);
8 ...
9

10 while (runTime.loop())
11 {
12 ...
13

14 //Calculate IB Masks and Source Terms
15 ib.updateIb(U);
16 Info<<"Immersed Boundary Updated"<<endl;
17 // Pressure -velocity PISO corrector
18 {
19 // Momentum predictor
20 fvVectorMatrix UEqn
21 (
22 fvm::ddt(U)
23 + fvm::div(phi, U)
24 + turbulence ->divDevReff(U)
25 - ib.ibSourceTerm() // IbSource Term
26 );
27 ...
28

29 // --- PISO loop
30 for (int corr=0; corr<nCorr; corr++)
31 {
32 ...
33

34 // Pressure corrector
35 fvScalarMatrix pEqn
36 (
37 fvm::laplacian(rAU, p) == fvc::div(phiHbyA)
38 );
39 ...
40

41 U = HbyA - rAU*fvc::grad(p);
42 U.correctBoundaryConditions();
43 ib.updateFIb(U); // Update forcing
44 }
45 }
46 ...
47 }
48 }

Listing D.3: Call of IB source term in solver.
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1 wordList ibNames( immersedBoundaryDict.lookup("Bodies") );
2 PtrList<immersedBoundarySource> ibBodies(ibNames.size());
3

4 Info<<"\nCreating Immersed Boundaries\n"<<endl;
5 forAll (ibNames,counter)
6 {
7 word tmpName(ibNames[counter]);
8 ibBodies.set
9 (

10 counter,
11 new immersedBoundarySource
12 (
13 mesh,
14 immersedBoundaryDict.subDict(tmpName)
15 )
16 );
17 }

Listing D.4: Multi-body support: Create IBs.

1 volVectorField ibSrc
2 (
3 IOobject
4 (
5 "ibSrc",
6 runTime.timeName(),
7 mesh,
8 IOobject::NO_READ,
9 IOobject::AUTO_WRITE

10 ),
11 mesh,
12 dimensionedVector( "0", dimAcceleration , vector::zero )
13 );
14

15 forAll (ibNames,counter)
16 {
17 ibBodies[counter].updateIb(U);
18 Info<<"Updated Immersed Boundary: "<<ibNames[counter]<<endl;
19 ibSrc += ibBodies[counter].ibSourceTerm();
20 }

Listing D.5: Multi-body support: Sum IB forcing.
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1 ...
2 #include "immersedBoundarySource.H"
3 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
4 int main(int argc, char *argv[])
5 {
6 //Create Immersed Boundaries
7 #include "createImmersedBoundaries.H"
8 ...
9

10 while (runTime.loop())
11 {
12 //Calculate IB Masks and Source Terms
13 #include "calcIbSourceTerms.H"
14

15 // Pressure -velocity PISO corrector
16 {
17 // Momentum predictor
18 fvVectorMatrix UEqn
19 (
20 fvm::ddt(U)
21 + fvm::div(phi, U)
22 + turbulence ->divDevReff(U)
23 - ibSrc // IbSource Term
24 );
25 ...
26

27 }
28 ...
29 }
30 }

Listing D.6: Multi-body support: Multi-body Solver
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D.2 Computational Cost
The advantages of the IB methods over the conventional boundary conformal approaches, is
qualitatively demonstrated by the ease of grid generation and the ability to undertake com-
putations of moving, internal to the domain, bodies. However, the performance of the herein
proposed numerical method can be quantitatively assessed by measuring the computational
time of the performed simulations.

Hereafter, numerical details and computational cost of few simulations performed with the
presented method are presented. For the simulations, three different computers have been
mainly used, according to the computational needs. These computers are:

• workstation: Desktop workstation equipped with a Intel Xeon E5-2690 V3 @2.6GHz
processor, with 2 sockets of 12 double-threaded cores each, with hyper-threading enabled,
increasing the number of available CPUs to 48.

• arion: Computer cluster of 4 nodes, each equipped with a processor @3.3Ghz, with 2
sockets of 4 single thread cores each.

• solon: Computer cluster of many nodes with either 20 or 32 CPUs.

Case of High-Velocity Projectile Impact

In the case of high-velocity projectile impact, presented in Chapter 4, both three- and two-
dimensional simulations were carried out.

The importance of the two-dimensional simulations is apparent from the level of detail
unveiled in comparison with the three-dimensional simulation. Such fine spatial resolution
would not possible to be achieved considering the complete three-dimensional domain, because
the computational cost would be prohibiting. This can be seen from table D.1, where the
computational cost of the aforementioned computations is presented.

The simulations where carried out mainly on the workstation computer, where depending
on the total cell count from 4 up to 40 cores have been used. The solon cluster computer was
also used to accelerate the simulation of the finest 2-D mesh (5lvl), where 96 CPUs have been
used.

It can be seen that for the 2D-4lvl mesh, with far fewer cells, a much higher resolution
is achieved, compared to the 3D mesh, demanding half the computational power. However,
further refining the grid, the computational cost gets much higher. The presence of the IB
source term in the equations, which receives high values, dictate severe time-step restrictions
and for all the simulations, the Courant number is limited below 0.05. This increases the
number of iterations/time-steps to complete the simulation and therefore the computational
cost, which for the 2D-5lvl mesh is much higher that for the 3D mesh.
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Mesh Cells dxmin [mm] dtmean [s] CPUh Tmean
step [s]

3D 2.9M 0.192 5.27e-9 4358 24.92
2D-2lvl 40k 0.250 7.45e-9 18 1.250
2D-3lvl 120k 0.125 3.51e-9 432 4.790
2D-4lvl 375k 0.063 1.33e-9 2621 13.23
2D-5lvl 1.2M 0.031 0.91e-9 31261 20.82

Table D.1: Computational cost (in CPU-hours) for the 3D and 2D simulations, along with indicative
clock time for completion of one time-step (Tmean

step ) and characteristic spatial and temporal resolution
(dxmin and dtmean).

Case of bi-leaflet MHV

For the case of bi-leaflet Mechanical Heart Valve (MHV), presented in Appendix C, a paramet-
ric study of two-dimensional computations and a three-dimensional simulations were carried
out. The arion cluster was used and parallel computations were carried out on 2 or 8 CPUs,
according to the cell count, except for the case of the coarse 2D mesh that a serial run was
performed. The performance details are summarised in table D.2.

It is evident that with larger and finer grids, smaller time-steps are used (based on the
CFL condition Co,max ≤ 0.5) and more computational power is needed. However, for the
2D computations it can be seen that after reaching a certain level of spatial discretisation
the (wall-clock) time needed for the implicit pressure-correction algorithm to complete one
time-step is stabilised around 30 seconds. On the contrary, for the 3D simulations, the full
three-dimensional nature of the flow seems to affect convergence because the (wall-clock) time
to achieve convergence and complete one time step increases drastically to 185 seconds, for a
spatial and temporal discretisation level equivalent to this of the medium 2D mesh case.

Mesh Case ID Cells dymin [mm] dtmin [s] dtmean [s] CPUh Tmean
step [s]

2D coarse CEU0.5 33k 0.237 1.0e-4 1.6e-4 9 10
2D medium MEU0.5 76k 0.118 2.0e-5 3.2e-5 240 29
2D fine FEU0.5 220k 0.059 1.9e-6 1.4e-5 1847 31
3D 3DCL0.5 1.3M 0.159 2.7e-5 7.1e-5 2357 185

Table D.2: Computational cost (in CPU-hours) for the 3D and 2D simulations of bi-leaflet MHV in
straight axisymmetric aorta, along with indicative clock time for completion of one time-step (Tmean

step )
and characteristic spatial and temporal resolution (dymin and dtmin,mean).

Also, the computational cost of the cases of pulsatile flow through a model aorta, featuring
a 180o bend, with and without a bi-leaflet Mechanical Heart Valve (MHV) mounted on the root
of the turn, presented in Chapter 5, is presented here, in table D.3. The simulations without the
MHV, are carried out on the solon computer cluster, employing 64 (coarse) and 160 (medium,
fine) CPUs, while the case with the MHV is ran on the workstation, with 24 CPUs; it was found
the optimal number of CPUs for this parallel computation, probably because OpenFOAM could
not profit of hyper-threading or because of the architecture of the particular processor was not
suitable for parallel numerical computations with that huge amount of data. Although the
cases without the MHV, employ a standard incompressible solver provided by OpenFOAM,
following a PIMPLE pressure-correction algorithm, without taking into account the Immersed
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Boundary proposed in this study, they provide valuable information for qualitative comparison.
It is evident that with increasing spatial resolution, for the cases without the MHV, the total

and per time-step computational cost increases significantly. However, the minimum and mean
values of the simulation time-step, which is governed by the CFL condition, which remain stable
with increasing grid resolution, may be an indication that at least the maxima of the velocity
field are well resolved. Also, the influence of the MHV on the flow is implicitly demonstrated
by the increase of per time-step computational cost, compared to the coarse mesh simulation
without the MHV, despite the similar total number of cells and reduced spatial resolution. The
increase is partially a result of the different number and models of the CPUs used (24 with
MHV, 64 without MHV), however, ×3 more CPUs seem unlike to cause ×10 acceleration of
the computation.

Mesh Cells dymin [mm] dtmin [s] dtmean [s] CPUh Tmean
step [s]

without bi-leaflet MHV
3D coarse 2M 0.04 1.7e-5 3.7e-5 3531 18
3D medium 8M 0.04 1.6e-5 3.4e-5 41493 77
3D fine 11M 0.02 2.1e-5 3.5e-5 55509 100

with bi-leaflet MHV
3D coarse 2M 0.20 1.0e-5 2.5e-5 15303 187

Table D.3: Computational cost (in CPU-hours) for the 3D simulations of pulsatile flow through a
model aorta, for the cases of sections 5.2 and 5.3, along with indicative clock time for completion of
one time-step (Tmean

step ) and characteristic spatial and temporal resolution (dymin and dtmin,mean).

Despite the particular details of each computation, it is important to highlight that the
simulations mentioned above, it is feasible to be performed on an advanced desktop workstation
within couple of weeks or a medium size cluster within few days. Given the possible application
of studies of such biological flows in real-life medical cases, the required computational means
and the completion time are essential for patient-specific solutions.
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Case of Flow over NACA0066

For the case of pitching hydrofoil NACA0066, presented in Chapter 3, some computational
details are presented here. More precisely, table D.4 compares the computational cost for the
cases presented in the aforementioned chapter, for the different turbulent models used. On the
other had, table D.5 compares a simulation of the pitching hydrofoil to a simulation of a static
hydrofoil, to assess the additional computational burden resulting from the moving Immersed
Boundary; the two simulations refer to different cavitating regimes (σ = 1.3 and σ = 3) but
employ the same mesh, turbulence model and similar total simulated time (∼ 0.2 seconds),
therefore only the ascending phase of the rotation is considered.

Apart from the fact that all three turbulence models, the single equation Spalart-Allmaras,
the two-equations k−ω SST and the four-equations k−ω SSTLM , perform in a similar way, as
seen in table D.4, it can be observed from table D.5 that the motion of the Immersed Boundary
do not increase the computational load of the simulation. This is the important advantage of
Immersed Boundary techniques over conformal grid approach; since the computational grid
does not have to be regenerated or altered in every time-step, the computational cost is similar
to the case where the immersed body remains static.

Turb Model CPUh Tmean
write [s]

Sp. Allm. 4099 3900
k − ω SST 4398 4184
k − ω SST − LM 4598 4374

Table D.4: Computational cost (in CPU-hours) for the 3D RANS simulations of turbulent cavitating
flow over the pitching hydrofoil NACA0066, presented in Chapter 3, for the different turbulent models,
along with indicative clock time for results’ output every 1.0ms (Tmean

write ).

Case σ dtmean [s] CPUh Tmean
write [s] Tmean

step [s]
Static α = 6o 1.3 1.29e-07 2238 5035 0.7
Pitching α = 0o − 15o 3.0 1.29e-07 2414 4744 0.6

Table D.5: Computational cost (in CPU-hours) for the 3D RANS simulations of turbulent cavitating
flow over static and pitching hydrofoil NACA0066, using Spalart Allmaras turbulent model, along with
indicative temporal resolution (dtmean) and clock time for completion of one time-step (Tmean

step ) and
output results every 1.0ms (Tmean

write ).
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Appendix E

On the Accuracy of the Method

This chapter discusses the numerical accuracy of the developed method. Apart from the
validation presented in chapter 3, the present chapter takes a closer look on the numerics of
the method, the factors that may affect its accuracy and comments on its diffusive nature as
a direct forcing approach.

Among the most widely used benchmark cases for the assessment and the validation of
immersed boundary methods are the low Reynolds number incompressible or compressible
flows over stationary or moving cylinders [15, 50, 136, 145, 170, 186], for which experimental
data also exist, Couette flows that have analytical solutions [15], as well as supersonic flow over
cylinders [50, 218] featuring the well-known bow shock; also the development of the boundary
layer over a plate can be used to assess the immersed boundary method for turbulence treatment
[148], where Blasius solution can provide analytical velocity profiles to compare to. Regarding
two-phase flows, a well-known test-case to assess the interaction of an immersed body with
liquid-gas interphase is the cylinder exit or entry problem [252]. For fluid-structure interaction
problems, vortex-induced-vibrations [19, 40] and particle mitigation or suspension in Couette
flow [51] or under the influence of a travelling shock wave [175].

In order to assess an immersed boundary method on cavitating flows, amongst many hy-
drofoil cases, the case reported by Dular [54], where computational and experimental results
exist, serves as a good benchmark. In addition, cavitating flows through step-nozzles, such as
the case of Akira Sou et al. [210], who report experimental measurements as well, and the case
of Winklhofer nozzle [253], which is widely studied with numerous numerical tools, could also
be used. The cavitaing high-speed flow over an underwater projectile [196] or the cavitation
initiation form the rotation of a cross [170], could also be an option for validation because
of their straightforward configuration. Each of the aforementioned tests may correspond to
different cavitation regime, which has to be taken into account during the development of the
method.

The simpler the case the more confident conclusions can be drawn upon the characteristics of
the method, its accuracy or the influence of spatial and temporal resolution or the discretisation
schemes; Kadoch et al. [106] resort into the solution of simple diffusion equations to initially
test their penalisation immersed boundary method. On the other hand, if the main interest
lays on the application and how the immersed boundary method could ease the simulation of
a complex problem, the ad-hoc evaluation of the accuracy or a convergence study, on the main
case or a simplified version of it, can be more appropriate [59, 149].
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E.1 Order of Accuracy
In order to assess the accuracy of the developed Immersed Boundary method, the dependency
of the computational error from the spatial resolution is evaluated initially.

As a widely adopted practice, the numerical error of the computed velocity field is estimated
for varying spatial resolution, for the cases of an oscillating cylinder in stagnant fluid, presented
in chapter 3, as well as of a Taylor-Couette flow developed between two rotating cylinders. Both
cases are two-dimensional, assume viscous incompressible fluids and are chosen because of their
simplicity.

The Euclidean or L2 norm of the velocity error vector e = u−uref is used as an indication
of the convergence of the computations; it is evaluated as the volume-weighted average of the
square of its norm:

||eu|| = ||e|| =

√
1

VT

∫
||e||2dV =

√√√√ 1

VT

n∑
j

Vj||uj − uref,j||2 (E.1)

where Vj and uj refer to the volume and velocity, respectively, of the cell j of the discretised
computational domain, of total volume VT and total cell number n. As the reference veloc-
ity field, uref , is chosen in both cases the velocity field of the finest grid, thus the order of
convergence rate of the velocity error with increasing spatial resolution is studied.

For the case of the oscillating cylinder, four different canonical homogeneous grids are
used, discretising a domain of size 55dcyl × 35dcyl, where dcyl = 0.01 m is the diameter of the
cylinder, with 60, 120, 240 and 480 cells along the diameter dcyl. Using telescopic refinement,
a constant resolution is achieved in an area 4dcyl × 4dcyl around the cylinder, where the four
grids yield a minimum (square) cell edge of 0.167 mm, 0.0833 mm, 0.0417mm and 0.0208 mm,
corresponding to 51k, 67k, 137k and 334k cells in total, respectively. The error of the velocity
is estimated with regards to the velocity field of the finest mesh of 480 cells/dcyl.

On the other hand, the Taylor-Couette flow developed between two cylinders is studied,
with the outer cylinder of radius Ro = 0.1 m being stationary and the inner cylinder of radius
Ri = 0.025 m rotating counter-clockwise with a constant angular velocity of ωi = 10 rad/s. A
similar test-case is used by Blais et al. [15]. Both cylinders are modelled as immersed boundaries
into a square domain of 2.2Ro, discretised with canonical (mainly homogeneous) grids, ranging
from 15 × 15 cells to 200 × 200 cells, with a corresponding resolution of dx = 14.667 mm to
dx = 1.1 mm. In addition, because the configuration is rather simple, the domain is discretised
with conformal grids as well, in order to compare the developed method to standard body
conforming solvers. A constant tangential velocity boundary condition is assigned on the inner
wall, rather than employing an Arbitrary Lagrangian-Eulerian, rotating frame of reference or
sliding mesh method to account for wall motion. The conformal grids follow a canonical polar
arrangement, ranging from 16 × 8 cells along the periphery and the diameter of the circular
annulus respectively, to 128× 64. The velocity error is calculated relative to the finest grids of
200× 200 cells for the IB approach and of 128× 64 cells for the body conformal approach.

For the case of the oscillating cylinder, where first order time and spatial schemes are
employed, it is clearly shown that the method achieves first order of accuracy. This is in
accordance with the findings of Fadlun et al. [59].On the other hand, for the case of Taylor-
Couette flow, it can be seen that although for coarser grids the error decreases faster than
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Figure E.1: L2 error norm of velocity field, of oscillating cylinder in incompressible stagnant fluid
(a) and for the case of Taylor-Couette flow between two rotating cylinders (b). Grid dependence for
the developed forcing IB method coupled with PISO or PIMPLE algorithms is shown; results for
standard body-conformal solvers are presented for the Couette flow for comparison.

first order, for denser grids it slows down to first order, for both PISO and PIMPLE pressure-
correction algorithms; the overall rate is proportional to an order of convergence of 1.4. It can
be seen that computations with conformal mesh exhibit an equivalent convergence rate.

Regarding direct forcing IB methods, Fadlun et al. [59], within the framework of finite-
differences, have investigated different interpolation techniques for projecting the body veloc-
ity on the background mesh: linear interpolation between the body wall and the grid point,
volume weighted interpolation based on solid volume fraction, which is similar to the approach
employed herein, and direct transfer of the velocity to the closest grid point, which corresponds
to a stepwise or stair-case representation of the body. They have shown that the latter achieves
a slower than first order convergence rate, while the solid volume weighting and linear interpo-
lation yield first and second order convergence, respectively. Similar findings, for finite volume
solvers, are reported by Mochel et al. [149] who used a stepwise projection of the immersed
body and achieved slower than first order convergence, and Blais et al. [15] who developed a
direct forcing method employing a volume weighting projection that achieves faster than first
order convergence for the case of Taylor-Couette flow; Blais’ method employs a less accurate
estimation of solid volume fraction based on covered vertices, but also relies on relaxation of
the forcing term throughout the PISO iterations.

Moreover, what makes the Taylor-Couette flow an interesting test-case is the fact that an
analytical expression for the velocity profile between the two cylinders exists. The velocity of
the fully developed flow, when the outer cylinder is static and the inner is rotating with angular
velocity ωi, follows a radial distribution given by:

uθ(r) = ωi
κ

1/κ− κ
Ro

(
Ro

r
− r

Ro

)
(E.2)

where κ = Ri/Ro the ratio of the cylinders’ radii and r the distance from the common centre.
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The velocity profile along the radius of the circular annulus is shown in figure E.2a, calcu-
lated analytically or extracted from simulations of the proposed IB method coupled with the
PISO algorithm, for different grids, as well as from computations with standard conformal grid
approach. It can be seen that the no-slip boundary condition is better applied on the outer
stationary cylinder, while in the vicinity of the inner rotating immersed body a persistent small
underestimation of the velocity can be observed. This probably can be explained by taking
into account that for the forcing term to be non-zero, a local small error in the velocity field is
needed and therefore a small deviation from the desired value is expected.

The influence of the numerics is quantified in figure E.2b, where the L2−norm of the velocity
error is plotted for different set-ups, using as reference the error of a computation employing the
PISO algorithm, 2nd order spatial and temporal discretisation, constant time-step of 1 ms and
an implicit treatment of the forcing source term, which is updated in every PISO iteration with
the corrected velocity field. It is observed that although the discretisation schemes do not affect
the results, the time-step plays an important role, as the use of larger, variable according to the
CFL condition, time-step, increases significantly the error; all simulations with the PIMPLE
algorithm, which can be seen as an implicit PISO, are carried out with adjustable time-step.
Thus, the basic advantage of the PIMPLE algorithm over the PISO, which is the ability to
use larger stepping, even reaching Co > 1, is annulated in the specific test-case, revealing the
requirement of the forcing method for controlled time-advancing. Finally, with regards to the
representation of the immersed body, it can be seen that a finer surface grid does not affect
the result; the projection approach used decouples the computational mesh and the body’s
triangulated surface resolution, simplifying the pre-processing of the computations. The latter
comments can be further discussed.

,

0.00

0.05

0.10

0.15

0.20

0.25

0.025 0.050 0.075 0.100

U
x

[m
/s

]

r [m]

Taylor-Couette Flow: Velocity Profile
analytical

conf. 128× 64
Ib 30× 30
Ib 60× 60

Ib 200× 200

(a)
,

0

1

2

3

4

LinearUpwind

Linear
Upwind

LinearisedSrc

FinerSTL

CFL1.0

e/
e r
ef

Taylor-Couette Flow: Error by Set-up
pisoIb

pimpleIb

(b)

Figure E.2: Velocity profile for different grids compared to the analytical solution (a) and Euclidean
norm of velocity error for different numerical set-ups (b) for the case of Taylor-Couette flow between
two rotating cylinders. As reference error is used the error of the pisoIb case, with 2nd order linearUp-
wind and Crank-Nicolson schemes for velocity’s spatial and temporal discretisation, with dt = 10−3 s
and implicit treatment of the forcing source term; eref = 2.35 · 10−3. All computations are carried
out on a 88× 88 mesh.
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E.2 Projection error and Diffusion
The above analysis indicates that the resolution of the triangulated surface that represents the
immersed boundary does not play an important role on the computations. This is an character-
istic aspect of the method that can be seen as an important advantage. Other methodologies,
such as ghost-cell approaches or forcing approaches that employ Lagrangian markers, which
may require interpolation of the boundary condition or spreading of the forcing on the Eulerian
background grid in the vicinity of the boundary, seem more dependent on the nodes that dis-
cretise the body representation. Uhlmann [229] demands that each Lagrangian forcing point
should control one Eulerian grid cell, a condition that is equivalent to setting the resolution
of the two grids to be of the same order, or the elementary surface area to be equal to the
cell’s face, that is dS = dx2, where S the immersed surface and dx the Eulerian grid spacing;
the least necessary number of Lagrangian markers to discretise the immersed body can be
explicitly derived.

For the herein presented IB method, there is not such a requirement, as far as the resolution
of the immersed surface is fine enough to capture the characteristics of the geometry and
accommodate the geometric features of all the length scales. This is also visualised in figure
E.3, where different aspects of the numerical computations are plotted for different ratios of the
eulerian grid cell edge over the length of the element discretising the immersed surface. The
accuracy of the immersed boundary projection on the background mesh can be estimated by
the volume of the discretised cylinder, calculated as the integral of the solid volume fraction.
Although the resolution of both the Eulerian and the surface grids determine the accuracy of
projection, it is found that the error never exceeds the 3%. Apart from the evident impact of the
background grid on the results, shown by the plotted lines, it can be stated that an increase of
the number of elements of the triangulated surface, although it affects the immersed boundary
projection, it does not increase the accuracy of the computation, as shown by the symbols.

Therefore, the only requirement of the method is a triangulated surface of proper quality.
There is not a specific rule for the generation of surface mesh. The points or cell edges should
not necessarily be equidistant, but rather the surface should be refined near special or small
geometric features or areas of change of curvature; as the projection takes into account the
perpendicular distance from the nearest surface point, straight edges could be described even
by one element but curves should be explicitly refined or errors would occur. Such errors,
although rather small, are visible for the case of under-resolved hydrofoil leading edge of figure
E.4.

Another characteristic of forcing methods is their diffusive nature. As continuous or direct
forcing methods usually evaluate the forcing on Lagrangian markers or nodes of the immersed
boundary representation, the forcing is spread in nearby computational cells [13,77,181,182,186,
229]. Therefore, although the forcing nodes can be accurately tracked and the representation
of the boundary would be sharp, the projected forcing would result in a thin diffused interface,
sometimes occupying few cells, as required by the discrete forms of Dirac Delta functions δ(x)
(see also figure 1.2). Moreover, if a level-set function is used as a projection of the body on
the background computational mesh, the captured fluid-solid interface would be diffused over
one or two cells. However, several cut-cell techniques follow a level-set projection and employ
a piecewise linear approximation to reconstruct the boundary within the cells and apply the
topological changes [102,138,175,198]; this approach would lead to spurious oscillations and is
replaced by a more precise representation of the intersection [170].
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Figure E.3: Influence of ratio of cell edges of background mesh (dx) and triangulated immersed
surface (ds), on computations is presented, in terms of cylinder’s volume and L2−norm of the velocity
field error. The discretised cylinder’s volume is presented as a percentage of the actual volume of the
cylinder (Vcyl = π ·R2

i · dz). The lines correspond to cases with constant surface grid (85 points along
the circumference) and varying background grid. The symbols indicate cases on constant background
resolution but varying surface grid: coarse (85 points) with filled symbols and fine (132 points) with
hollow symbols.

Figure E.4: Influence of the resolution of the triangulated surface representing the immersed bound-
ary, on the mask or solid volume fraction calculation.

For the herein proposed method the fluid-solid interface has always a width of one cell,
those with mask value between 0 and 1; however it is also of diffusive nature, as the exact
location inside the cell of the boundary is not known and the forcing is applied on the cell
centre, scaled by the mask value. This normally results in low velocity flow in the interface
cells, where fraction of the body momentum is imposed, but spurious flow may appear inside
the body, in the vicinity of the interface.

The level of this error in the velocity depends mainly on the application, and loosely on the
grid resolution. Two examples are given in figure E.5 for an incompressible, low-Re flow, with
moving boundary, and a far more complex, high-Re cavitating flow over a static hydrofoil. The
error may be judged negligible if we take into account that in the first case, it never exceeds
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0.6% of the imposed body velocity, and the latter case, velocity values ≤ 0.0008 m/s appear
in the body area while the inlet velocity is 13 m/s and the maximum velocity in the channel
may reach ∼ 20 m/s, due to the blockage or the high-speed re-entrant jets. In addition, this
error means the fluid enclosed by a static immersed boundary might be moving slightly, but
compared to the bulk flow it cannot produce significant momentum or energy losses and cannot
affect significantly the total mass conservation.

Finally, these errors may be tackled by the use of more appropriate numerics, such as the
use of relaxation for the forcing term, the use of a predictor step, similar to the fractional-
step approach of Fadlun et al. [59] and Uhlmann [229], or pressure correction according to the
rationale of Riahi et al. [186].

(a) (b)

(c)

Figure E.5: Examples of erroneous velocity field inside the projected immersed body: (a,b) for an
oscillating cylinder in incompressible stagnant fluid, presented as the difference of resulting velocity
from the instantaneous target body velocity, which is Ubody = 0.16 m/s; (c) for a turbulent cavitating
flow over a static hydrofoil in a channel with Uin = 13 m/s, presented by means of velocity magnitude,
which should be zero inside the immersed body.
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Appendix F

List of Publications

Herein are enlisted the publications and the dissemination of the PhD project’s progress and
results.

Peer-Reviewed Journal Publications

1. Li Q., Stavropoulos-Vasilakis E., Koukouvinis P., Gavaises M. and Bruecker H. C. ,
March 2020, Micro-pillar wall shear-stress measurements in the aortic arch with CFD-
assisted calibration, In preparation

2. Stavropoulos-Vasilakis E., Malgarinos I., Koukouvinis P. and Gavaises M., February
2020, A direct forcing Immersed Boundary Method for Cavitating Flows, Computer
Methods in Applied Mechanics and Engineering (Submitted, awaiting editorial decision)

3. Stavropoulos-Vasilakis E., Kyriazis N., Koukouvinis P., Farhat M. and Gavaises M.,
2019, Cavitation induction by projectile impacting on a water jet, International Journal
of Multiphase Flow, 114, pp.128-139, doi: 10.1016/j.ijmultiphaseflow.2019.03.001

Conferences Publications

1. Stavropoulos-Vasilakis E., Kyriazis N., Koukouvinis P., Farhat M. and Gavaises
M., 2018, Cavitation Induction by Projectile Impacting on a Water Jet, In Proceed-
ings of the 10th International Symposium on Cavitation (CAV2018), ASME Press, doi:
10.1115/1.861851_ch43

Workshop Participation

1. Stavropoulos-Vasilakis E., Malgarinos I., Dr. Koukouvinis P., Prof. Gavaises M.,
Coupled simulation of valve motion and cavitation, Validation of Immersed Boundary
Method, 2016, 4rth Cavitation Workshop, International Institute for Cavitation Research,
CIHEAM, Greece, (poster participation)
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2. Stavropoulos-Vasilakis E., Dr. Koukouvinis P., Prof. Gavaises M., Immersed Bound-
ary Method for Cavitating Flow Simulation, 2017, 5th Cavitation Workshop, International
Institute for Cavitation Research, CIHEAM, Greece, (poster participation)

3. Stavropoulos-Vasilakis E., Kyriazis N., Dr. Koukouvinis P., Prof. Gavaises M.,Cavitation
During High Speed Impacts, Dec. 2017, SIG Drop Dynamics Meeting, UK Fluids Network
EPSRC, Wadham College, University of Oxford, UK, (presentation participation)

4. Stavropoulos-Vasilakis E., Dr. Koukouvinis P., Prof. Gavaises M., Immersed bound-
ary method for simulation of high-velocity projectile impact on water column, 2019, 6th

Cavitation Workshop, International Institute for Cavitation Research, CIHEAM, Greece,
(poster and presentation participation)
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