
Journal of Combinatorial Optimization (2022) 43:1203–1239
https://doi.org/10.1007/s10878-020-00632-x

Super-stability in the student-project allocation problem
with ties

Sofiat Olaosebikan1 · David Manlove1

Published online: 12 August 2020
© The Author(s) 2020

Abstract
The Student-Project Allocation problemwith lecturer preferences over Students (spa-
s) involves assigning students to projects based on student preferences over projects,
lecturer preferences over students, and the maximum number of students that each
project and lecturer can accommodate. This classical model assumes that each project
is offered by one lecturer and that preference lists are strictly ordered. Here, we study
a generalisation of spa- s where ties are allowed in the preference lists of students
and lecturers, which we refer to as the Student-Project Allocation problem with lec-
turer preferences over Students with Ties (spa- st). We investigate stable matchings
under the most robust definition of stability in this context, namely super-stability.
We describe the first polynomial-time algorithm to find a super-stable matching or to
report that no such matching exists, given an instance of spa- st. Our algorithm runs
in O(L) time, where L is the total length of all the preference lists. Finally, we present
results obtained from an empirical evaluation of the linear-time algorithm based on
randomly-generated spa- st instances. Our main finding is that, whilst super-stable
matchings can be elusive when ties are present in the students’ and lecturers’ prefer-
ence lists, the probability of such a matching existing is significantly higher if ties are
restricted to the lecturers’ preference lists.

Keywords Student-project allocation · Stable matching · Super-stability ·
Polynomial-time algorithm · Empirical evaluation

A preliminary version of a part of this paper appeared in Olaosebikan and Manlove (2018).
The first author was supported by a College of Science and Engineering Scholarship from the University
of Glasgow, and the second author was supported by Grant EP/P028306/1 from the Engineering and
Physical Sciences Research Council.

B Sofiat Olaosebikan
Sofiat.Olaosebikan@glasgow.ac.uk

David Manlove
David.Manlove@glasgow.ac.uk

1 School of Computing Science, University of Glasgow, Glasgow, Scotland, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-020-00632-x&domain=pdf
http://orcid.org/0000-0002-8003-7887
http://orcid.org/0000-0001-6754-7308

1204 Journal of Combinatorial Optimization (2022) 43:1203–1239

1 Introduction

The Student-Project Allocation problem (spa) (Abraham et al. 2007; Chiarandini et al.
2019; Manlove 2013) is a many-one matching problem which involves three sets of
entities: students, projects and lecturers. Each project is proposed by one lecturer and
each student is required to rank a subset of these projects that she finds acceptable,
in order of preference. Further, each lecturer may have preferences over the students
that find her projects acceptable and/or the projects that she offers. Typically there
may be capacity constraint on the number of students that each project and lecturer
can accommodate. The goal is to find a matching, i.e., an assignment of students to
projects based on the stated preferences such that each student is assigned to at most
one project, and the capacity constraints on projects and lecturers are not violated.

Applications of spa can be found in many university departments, for example,
the School of Computing Science, University of Glasgow (Kwanashie et al. 2015),
the Faculty of Science, University of Southern Denmark (Chiarandini et al. 2019), the
Department of Computing Science, University ofYork (Kazakov 2001), and elsewhere
(Anwar and Bahaj 2003; Calvo-Serrano et al. 2017; Harper et al. 2005). In this work,
we will concern ourselves with a variant of spa that involves lecturer preferences
over students, which is known as the Student-Project Allocation problem with lecturer
preferences over Students (spa- s) (Abraham et al. 2007; Manlove 2013). This variant
falls under the category of bipartite matching problem with two-sided preferences.1 In
this context, it has been argued that a natural property for a matching to satisfy is that
of stability (Roth 1984, 1990, 1991). Informally, a stable matching ensures that no
student and lecturer would have an incentive to deviate from the matching by forming
a private arrangement involving some project.

The classical spa- smodel assumes that preferences are strictly ordered. However,
this might not be achievable in practice. For instance, a lecturer may be unable or
unwilling to provide a strict ordering of all the students who find her projects accept-
able. Such a lecturer may be happier to rank two or more students equally in a tie,
which indicates that the lecturer is indifferent between the students concerned. This
leads to a generalisation of spa- s which we refer to as the Student-Project Allocation
problem with lecturer preferences over Students with Ties (spa- st).

If we allow ties in the preference lists of students and lecturers, three different
stability definitions naturally arise. Suppose M is a matching in an instance of spa-
st. Informally, we say that M is weakly stable, strongly stable or super-stable if there
is no student and lecturer such that if they decide to form an arrangement outside the
matching, respectively,

(i) both of them would be better off,
(ii) one of them would be better off and the other would be no worse off,
(iii) neither of them would be worse off.

With respect to this informal definition, a super-stable matching is also strongly
stable, and a strongly stable matching is also weakly stable. These concepts were first
defined and studied by Irving (1994) in the context of the Stable Marriage problem

1 For further reading on the classification of matching problems, we refer the interested reader to Manlove
(2013).

123

Journal of Combinatorial Optimization (2022) 43:1203–1239 1205

with Ties (smt), and subsequently extended to the Hospitals/Residents problem with
Ties (hrt) (Irving et al. 2000, 2003) (where hrt is the special case of spa- st in which
each lecturer offers only one project, and the capacity of each project is the same as
the capacity of the lecturer offering the project; and smt is a restriction of hrt where
the capacity of each hospital is 1).

Considering the weakest of the three stability concepts mentioned above, every
instance of spa- st admits a weakly stable matching (this follows by breaking the
ties in an arbitrary fashion and applying the stable matching algorithm described in
Abraham et al. (2007) to the resulting spa- s instance). However, such matchings
could be of different sizes (Manlove et al. 2002). Thus opting for weak stability leads
to the problem of finding a weakly stable matching that matches as many students
to projects as possible—a problem that is known to be NP-hard (Iwama et al. 1999;
Manlove et al. 2002), even for the so-called Stable Marriage problem with Ties and
Incomplete lists (smti), which is an extension of smt in which the preference lists need
not be complete. However, we note that a 3

2 -approximation algorithm was described
in Cooper and Manlove (2018a) for the problem of finding a maximum size weakly
stable matching, given an instance of spa- st.2

Although a super-stable matching can be elusive, it avoids the problem of finding
a maximum size weakly stable matching, because, as we will show in this paper,
analogous to the hrt case (Irving et al. 2000): (i) all super-stable matchings have the
same size; (ii) finding one or reporting that none exists can be accomplished in linear-
time; and (iii) if a super-stable matching M exists then all weakly stable matchings are
of the same size (equal to the size of M), and match exactly the same set of students.
Furthermore, Irving et al. (2000) argued that super-stability is a very natural solution
concept in cases where agents have incomplete information. Central to their argument
is the following proposition, stated for hrt in (Irving et al. 2000, Proposition 2), which
extends naturally to spa- st as follows (see Sect. 2.2 for a proof).

Proposition 1 Let I be an instance of spa- st, and let M be a matching in I . Then M
is super-stable in I if and only if M is stable in every instance of spa- s obtained from
I by breaking the ties in some way.

In a practical setting, suppose that a student si has incomplete information about two or
more projects and decides to rank them equally in a tie T , and a super-stable matching
M exists in the corresponding spa- st instance I . Then M is stable in every instance of
spa- s (obtained from I by breaking the ties) that represents the true preferences of si .
Consequently, we will focus on the concept of super-stability in the spa- st context.

Unfortunately not every instance of spa- st admits a super-stable matching. This
is true, for example, in the case where there are two students, two projects and one
lecturer, the capacity of each project is 1, the capacity of the lecturer is 2, and every
preference list is a single tie of length 2; any matching will be undermined by some
student si and the lecturer involving a project that si is not assigned to. Nonetheless,
it should be clear from the discussions above that a super-stable matching should be
preferred in practical applications when one does exist.

2 This approximation algorithm finds a weakly stable matching that is at least two-thirds the size of a
maximum weakly stable matching.

123

1206 Journal of Combinatorial Optimization (2022) 43:1203–1239

Relatedwork Irving et al. (2000) described an algorithm tofind a super-stablematching
given an instance of hrt, or to report that no such matching exists. However, merely
reducing an instance of spa- st to an instance of hrt and applying the algorithm
described in Irving et al. (2000) to the resulting hrt instance does not work in general
(we explain this further in Sect. 2.3). Other variants of spa in the literature involve
lecturer preferences over their proposed projects (Iwama et al. 2012; Manlove et al.
2018; Manlove and O’Malley 2008), lecturer preferences over (student, project) pairs
(Abu El-Atta and Moussa 2009), and no lecturer preferences at all (Kwanashie et al.
2015) (see Chiarandini et al. 2019 for a more detailed survey in this latter case). A
similar model known as the Student-Project-Resource Matching-Allocation problem
(spr) was recently considered in Ismaili et al. (2019). This model is different from
spa- s in the following ways: (i) in spa- s, the capacity of each project is fixed by
the lecturer offering it, while in spr, the capacity of each project is determined by the
resources allocated to it; (ii) in spa- s, each lecturer has a fixed capacity on the total
number of students that can be assigned to her projects, while in spr, there is no notion
of lecturer capacity.
Our contribution In this paper, we describe the first polynomial-time algorithm to find
a super-stable matching or to report that no such matching exists, given an instance
of spa- st—thus solving an open problem given in Abraham et al. (2007), Manlove
(2013). Our algorithm is student-oriented because it involves the students applying to
projects.Moreover, the algorithm returns the student-optimal super-stablematching, in
the sense that if the given instance admits a super-stable matching then our algorithm
will output a solution in which each assigned student has the best project that she
could obtain in any super-stable matching that the instance admits. We also present
the results of an empirical evaluation based on an implementation of our algorithm
that investigates how the nature of the preference lists would affect the likelihood of a
super-stablematching existing,with respect to randomly-generated spa- st instances.3

Our main finding from the empirical evaluation is that super-stable matchings are
very elusive with ties in the students’ and lecturers’ preference lists. However, if the
preference lists of the students are strictly ordered and only the lecturers express ties in
their preference lists, the probability of a super-stablematching existing is significantly
higher.

The remainder of this paper is structured as follows. We give a formal definition of
the spa- s problem, the spa- st variant, and the super-stability concept in Sect. 2. We
describe our algorithm for spa- st under super-stability in Sect. 3. Further, Sect. 3 also
presents our algorithm’s correctness results and some structural properties satisfied by
the set of super-stable matchings in an instance of spa- st. In Sect. 4, we present
the experimental results obtained from our algorithm’s empirical evaluation. Finally,
Sect. 5 presents some concluding remarks and potential direction for future work.

3 From a theoretical perspective, the likelihood of a stable matching existing has been explored for the
Stable Roommates problem—a non-bipartite generalisation of the Stable Marriage problem (Pittel and
Irving 1994).

123

Journal of Combinatorial Optimization (2022) 43:1203–1239 1207

2 Preliminary definitions and results

2.1 Formal definition of SPA-S

An instance I of spa- s involves a set S = {s1, s2, . . . , sn1} of students, a set P =
{p1, p2, . . . , pn2} of projects and a set L = {l1, l2, . . . , ln3} of lecturers. Each student
si ranks a subset ofP in strict order,which forms si ’s preference list.We say that si finds
p j acceptable if p j is in si ’s preference list, and we denote by Ai the set of projects
that si finds acceptable. Each lecturer lk ∈ L offers a non-empty set of projects Pk ,
where P1, P2, . . . , Pn3 partitions P . Also, lk ranks in strict order of preference those
students who find at least one project in Pk acceptable, which forms lk’s preference
list. We say that lk finds si acceptable if si is in lk’s preference list, and we denote by
Lk the set of students that lk finds acceptable.

For any pair (si , p j) ∈ S × P , where p j is offered by lk , we refer to (si , p j) as
an acceptable pair if si and lk both find each other acceptable, i.e., if p j ∈ Ai and
si ∈ Lk . Each project p j ∈ P has a capacity c j ∈ Z

+ indicating themaximum number
of students that can be assigned to p j . Similarly, each lecturer lk ∈ L has a capacity
dk ∈ Z

+ indicating the maximum number of students that lk is willing to supervise.
We assume that for any lecturer lk ,

max{c j : p j ∈ Pk} ≤ dk ≤
∑

{c j : p j ∈ Pk},

i.e., the capacity of lk is (i) at least the highest capacity of the projects offered by lk ,
and (ii) at most the sum of the capacities of all the projects lk is offering. We denote
by L j

k , the projected preference list of lecturer lk for p j , which can be obtained from
Lk by removing those students that do not find p j acceptable (thereby retaining the
order of the remaining students from Lk).

An assignment M is a subset of S ×P such that (si , p j) ∈ M implies that si finds
p j acceptable. If (si , p j) ∈ M , we say that si is assigned to p j , and p j is assigned si .
For convenience, if si is assigned in M to p j , where p j is offered by lk , we may also
say that si is assigned to lk , and lk is assigned si .

For any student si ∈ S, we let M(si) denote the set of projects that are assigned
to si in M . For any project p j ∈ P , we denote by M(p j) the set of students that
are assigned to p j in M . Project p j is undersubscribed, full or oversubscribed in M
according as |M(p j)| is less than, equal to, or greater than c j , respectively. Similarly,
for any lecturer lk ∈ L, we denote by M(lk) the set of students that are assigned to lk in
M . Lecturer lk is undersubscribed, full or oversubscribed in M according as |M(lk)|
is less than, equal to, or greater than dk , respectively.

A matching M is an assignment such that each student is assigned to at most one
project in M , each project is assigned at most c j students in M , and each lecturer is
assigned at most dk students in M (i.e., |M(si)| ≤ 1 for each si ∈ S, |M(p j)| ≤ c j for
each p j ∈ P , and |M(lk)| ≤ dk for each lk ∈ L). If si is assigned to some project in
M , for convenience we let M(si) denote that project. In what follows, lk is the lecturer
who offers project p j .

123

1208 Journal of Combinatorial Optimization (2022) 43:1203–1239

Definition 1 (Stability) Let I be an instance of spa- st, and let M be a matching in
I . We say that M is stable if it admits no blocking pair, where a blocking pair is an
acceptable pair (si , p j) ∈ (S × P)\M such that (a) and (b) holds as follows:

(a) either si is unassigned in M or si prefers p j to M(si);
(b) either (i), (ii) or (iii) holds as follows:

(i) each of p j and lk is undersubscribed in M ;
(ii) p j is undersubscribed in M , lk is full in M and either

(1) si ∈ M(lk), or
(2) lk prefers si to the worst student in M(lk);

(iii) p j is full in M and lk prefers si to the worst student in M(p j).

To find a stable matching in an instance of spa- s, two linear-time algorithms were
described inAbrahamet al. (2007). The stablematching produced by thefirst algorithm
is student-optimal (i.e., each assigned student has the best-possible project that she
could obtain in any stablematching) while the one produced by the second algorithm is
lecturer-optimal (i.e., each lecturer has the best set of students that she could obtain in
any stable matching). The set of stable matchings in a given instance of spa- s satisfy
several interesting properties that together form what we will call the Unpopular
Projects Theorem [analogous to the Rural Hospitals Theorem for HR Irving et al.
2000], which we state as follows.

Theorem 1 (Abraham et al. 2007) For a given instance of spa- s, the following holds:

1. each lecturer is assigned the same number of students in all stable matchings;
2. exactly the same students are unassigned in all stable matchings;
3. a project offered by an undersubscribed lecturer is assigned the same number of

students in all stable matchings.

As we will see later in this paper, when ties are present in the preference lists
of students and lecturers, the set of super-stable matchings also satisfy each of the
properties in Theorem 1.

2.2 Ties in the preference lists

We now define formally the generalisation of spa- s in which the preference lists can
include ties. In the preference list of lecturer lk ∈ L, a set T of r students forms a tie of
length r if lk does not prefer si to si ′ for any si , si ′ ∈ T (i.e., lk is indifferent between
si and si ′). A tie in a student’s preference list is defined similarly. For convenience,
henceforth, we consider a non-tied entry in a preference list as a tie of length one.
We denote by spa- st the generalisation of spa- s in which the preference list of each
student (respectively lecturer) comprises a strict ranking of ties, each comprising one
or more projects (respectively students).

An example spa- st instance I1 is given in Fig. 1, which involves the set of students
S = {s1, s2, s3, s4, s5}, the set of projects P = {p1, p2, p3} and the set of lecturers
L = {l1, l2}, with P1 = {p1, p2} and P2 = {p3}. Ties in the preference lists are
indicated by round brackets.

123

Journal of Combinatorial Optimization (2022) 43:1203–1239 1209

Fig. 1 An example instance I1 of spa- st

In the context of spa- st, we assume that all notation and terminology carries
over from Sect. 2.1 as defined for spa- s with the exception of stability, which we
now define. When ties appear in the preference lists, three levels of stability arise (as
in the hrt context Irving et al. 2000, 2003), namely weak stability, strong stability
and super-stability. The formal definition for weak stability in spa- st follows from
the definition for stability in spa- s (see Definition 1). Moreover, the existence of a
weakly stable matching in an instance I of spa- st is guaranteed by breaking the ties
in I arbitrarily, thus giving rise to an instance I ′ of spa- s. Clearly, a stable matching
in I ′ is weakly stable in I . Indeed a converse of sorts holds, which gives rise to the
following proposition.

Proposition 2 Let I be an instance of spa- st, and let M be a matching in I . Then M
is weakly stable in I if and only if M is stable in some instance I ′ of spa- s obtained
from I by breaking the ties in some way.

Proof Let I be an instance of spa- st and let M be a matching in I . Suppose that M
is weakly stable in I . Let I ′ be an instance of spa- s obtained from I by breaking
the ties in the following way. For each student si in I such that the preference list of
si includes a tie T containing two or more projects, we order the preference list of
si in I ′ as follows: if si is assigned in M to a project p j in T then si prefers p j to
every other project in T ; otherwise, we order the projects in T arbitrarily. For each
lecturer lk in I such that lk’s preference list includes a tie X , if X contains students
that are assigned to lk in M and students that are not assigned to lk in M then lk’s
preference list in I ′ is ordered in such a way that each si ∈ X ∩ M(lk) is preferred to
each si ′ ∈ X\M(lk); otherwise, we order the students in X arbitrarily. Now, suppose
(si , p j) forms a blocking pair for M in I ′. Given how the ties in I were removed to
obtain I ′, this implies that (si , p j) forms a blocking pair for M in I , a contradiction
to our assumption that M is weakly stable in I . Thus M is stable in I ′.

Conversely, suppose M is stable in some instance I ′ of spa- s obtained from I by
breaking the ties in some way. Now suppose that M is not weakly stable in I . Then
some pair (si , p j) forms a blocking pair for M in I . It is then clear from the definition
of weak stability and from the construction of I ′ that (si , p j) is a blocking pair for M
in I ′, a contradiction. ��
As mentioned earlier, super-stability is the most robust concept to seek. Only if no
super-stable matching exists in the underlying problem instance should other forms
of stability be sought in a practical setting. Thus, for the remainder of this paper, we
focus on super-stability in the spa- st context.

123

1210 Journal of Combinatorial Optimization (2022) 43:1203–1239

Definition 2 (Super-stability) Let I be an instance of spa- st, and let M be a matching
in I . We say that M is super-stable if it admits no blocking pair, where a blocking pair
is an acceptable pair (si , p j) ∈ (S × P)\M such that (a) and (b) holds as follows:

(a) either si is unassigned in M or si prefers p j to M(si) or is indifferent between
them;

(b) either (i), (ii), or (iii) holds as follows:

(i) each of p j and lk is undersubscribed in M ;
(ii) p j is undersubscribed in M , lk is full in M and either

(1) si ∈ M(lk), or
(2) lk prefers si to the worst student/s in M(lk) or is indifferent between them;

(iii) p j is full inM and lk prefers si to theworst student/s inM(p j) or is indifferent
between them.

It may be verified that the matching M = {(s3, p2), (s4, p3), (s5, p1)} is super-stable
in Fig. 1. Clearly, a super-stable matching is also weakly stable. Moreover, the super-
stability definition gives rise to Proposition 1, which can be regarded as an analogue
of Proposition 2 for super-stability, restated as follows.

Proposition 1 Let I be an instance of spa- st, and let M be a matching in I . Then M
is super-stable in I if and only if M is stable in every instance of spa- s obtained from
I by breaking the ties in some way.

Proof Let I be an instance of spa- st and let M be a matching in I . Suppose that M is
super-stable in I . Wewant to show thatM is stable in every instance of spa- s obtained
from I by breaking the ties in some way. Now, let I ′ be an arbitrary instance of spa- s
obtained from I by breaking the ties in some way, and suppose M is not stable in I ′.
This implies that M admits a blocking pair (si , p j) in I ′. Since I ′ is an arbitrary spa- s
instance obtained from I by breaking the ties in some way, it follows that in I : (i) if si
is assigned in M then si either prefers p j to M(si) or is indifferent between them, (ii)
if p j is full in M then lk either prefers si to a worst student in M(p j) or is indifferent
between them, and (iii) if lk is full in M then either si ∈ M(lk) or lk prefers si to a
worst student in M(lk) or is indifferent between them. This implies that (si , p j) forms
a blocking pair for M in I , a contradiction to the super-stability of M .

Conversely, suppose M is stable in every instance of spa- s obtained from I by
breaking the ties in some way. Now suppose M is not super-stable in I . This implies
that M admits a blocking pair (si , p j) in I . We construct an instance I ′ of spa- s
from I by breaking the ties in the following way: (i) if si is assigned in M and si is
indifferent between p j and M(si) in I then si prefers p j to M(si) in I ′; otherwise
we break the ties in si ’s preference list arbitrarily, and (ii) if some student, say si ′ ,
different from si is assigned to lk in M such that lk is indifferent between si and si ′
in I then lk prefers si to si ′ in I ′; otherwise we break the ties in lk’s preference list
arbitrarily. Thus (si , p j) forms a blocking pair for M in I ′, i.e., M is not stable in I ′,
a contradiction to the fact that M is stable in every instance of spa- s obtained from I
by breaking the ties in some way. ��
The following proposition, which is a consequence of Propositions 1 and 2 , and
Theorem 1, tells us that if a super-stable matching M exists in I then all weakly stable

123

Journal of Combinatorial Optimization (2022) 43:1203–1239 1211

matchings in I are of the same size (equal to the size of M) and match exactly the
same set of students.

Proposition 3 Let I be an instance of spa- st, and suppose that I admits a super-
stable matching M. Then the Unpopular Projects Theorem holds for the set of weakly
stable matchings in I .

Proof Let I be an instance of spa- st. LetM be a super-stablematching in I and letM ′
be a weakly stable matching in I . Then by Proposition 2, M ′ is stable in some instance
I ′ of spa- s obtained from I by breaking the ties in someway. Also M is stable in I ′ by
Proposition 1. By Theorem 1, each lecturer is assigned the same number of students
in M and M ′, exactly the same students are unassigned in M and M ′, and a project
offered by an undersubscribed lecturer is assigned the same number of students in M
and M ′. Hence, the Unpopular Projects Theorem holds for the set of weakly stable
matchings in I . ��

2.3 Cloning from spa- stspa- stspa- st to hrthrthrt does not work in general

As mentioned earlier, Irving et al. (2000) described a polynomial-time algorithm to
find a super-stable matching or report that no such matching exists, given an instance
of hrt. The authors referred to their algorithm as Algorithm HRT-Super-Res. One
might assume that reducing a given instance of spa- st to an instance of hrt (using
a “cloning” technique) and subsequently applying Algorithm HRT-Super-Res to the
resulting instance would solve our problem. However, this is not always true. In what
follows, we describe an obvious method to clone an instance of spa- st to an instance
of hrt, and we show that applying the super-stable matching algorithm described in
Irving et al. (2000) to the resulting hrt instance does not work in general.

Amethod to derive an instance I ′ ofhrt froman instance I of spa- stwas described
by Cooper and Manlove (2018b). We explain this method as follows. The students
and projects involved in I are converted into residents and hospitals respectively in
I ′, i.e., each si ∈ S becomes ri in the cloned instance, and each p j ∈ P becomes h j .
Residents inherit their preference lists naturally from students, i.e., if ri corresponds
to si then the preference list of ri in I ′ is Ai , with each project in Ai being replaced
by the associated hospital. Hospitals inherit their preference lists from the projected
preference list of the associated project according to the lecturer offering the project,
i.e., if p j corresponds to h j (where p j is offered by lk) then the preference list of h j

in I ′ is L j
k , with each student in L j

k being replaced by the associated resident. Each
hospital also inherits its capacity from the project, i.e., for each h j associated with p j ,
the capacity of h j is c j .

Let lk be an arbitrary lecturer in I . In order to translate lk’s capacity into the hrt
instance, we create n dummy residents4 for each hospital h j corresponding to a project
p j ∈ Pk , where n is the difference between the sum of the capacities of all the projects
in Pk and the capacity of lk (recall that

∑
p j∈Pk c j ≥ dk). The preference list for each of

these dummy residents will be a single tie consisting of all the hospitals corresponding

4 The dummy residents created for each hospital will offset the difference between the corresponding
lecturer capacity and the total capacity of her proposed projects.

123

1212 Journal of Combinatorial Optimization (2022) 43:1203–1239

Fig. 2 An instance I of spa- st

Fig. 3 An instance I ′ of hrt cloned from the spa- st instance illustrated in Fig. 2

to a project in Pk . Further, the preference list for each hospital corresponding to a
project in Pk will include a tie in its first position consisting of all the dummy residents
associated with lk .

Next, we describe how to map between matchings in I and in I ′. Let M and M ′ be
a matching in I and I ′ respectively. Let ri be the resident associated with si and let
h j be the hospital associated with p j . If si is assigned in M to project p j , then ri is
assigned in M ′ to hospital h j . To illustrate the cloning technique described above, we
give an example instance I of spa- st in Fig. 2 as well as the corresponding cloned
hrt instance I ′ in Fig. 3. Also, we give an intuition as to why this technique will not
work in general.

With respect to Figs. 2 and 3 , each resident r1, r2 and r3 in I ′ corresponds to student
s1, s2 and s3 in I , respectively; and the preference list of each resident is adapted from
the preference list of the associated student. Also, each hospital h1, h2 and h3 in I ′
corresponds to project p1, p2 and p3 in I , respectively. The preference list of hospitals
h1 and h2 is L1

1 and L2
1 respectively, since l1 is the lecturer that offers both p1 and p2.

Similarly, the preference list of hospital h3 is L3
2, since l2 is the lecturer that offers

p3. Further, for lecturer l1 who offers both p1 and p2, since c1 + c2 = 2 > 1 = d1,
we add one dummy resident rd1 to the cloned instance. The preference list of rd1 is a
single tie consisting of h1 and h2; and the preference list of both h1 and h2 includes
rd1 in first position.

The reader can easily verify that matching M = {(s1, p1), (s3, p3)} is super-
stable in the spa- st instance I illustrated in Fig. 2. Now, following our description
of how to map between matchings in I and in I ′, a matching in I ′ is M ′ =
{(rd1, h2), (r1, h1), (r3, h3)}, with (s1, p1) ∈ M corresponding to (r1, h1) ∈ M ′ and
(s3, p3) ∈ M corresponding to (r3, h3) ∈ M ′. Clearly, M ′ is not super-stable in I ′
as (rd1, h1) forms a blocking pair. In fact, the hrt instance I ′ admits no super-stable
matching. The justification for this is as follows: irrespective of the hospital that the
dummy resident rd1 is assigned to in any matching obtained from I ′, rd1 will block
this matching via the other hospital tied in her preference list (since the hospital would
be better off taking on rd1 , and rd1 would be no worse off).

123

Journal of Combinatorial Optimization (2022) 43:1203–1239 1213

One way to avoid this problem would be to strictly order the hospitals in rd1 ’s
preference list; however, the order in which the hospitals appear will lead to differ-
ent possibilities. For instance: if rd1 prefers h1 to h2, the reader can verify that the
corresponding hrt instance admits no super-stable matching; however, if rd1 prefers
h2 to h1, again the reader can verify that the corresponding hrt instance admits the
super-stable matching {(rd1, h2), (r1, h1), (r3, h3)}. The downside of this strategy is
that there is no obvious reason as to why rd1 should prefer h2 to h1 in the cloned hrt
instance in Fig. 3 by merely looking at the original spa- st instance in Fig. 2. Hence,
in order to make this technique work in general, we will need to generate every hrt
instance obtained by ordering the dummy residents’ preference lists in someway. This
is exponential in the problem instance.

3 An algorithm for SPA-ST under super-stability

In this section we present our algorithm for spa- st under super-stability, which we
will refer to as Algorithm SPA-ST-super. Before we proceed, we briefly describe
Algorithm HRT-Super-Res (Irving et al. 2000). The algorithm involves a sequence
of proposals from the residents to the hospitals. Each resident proposes in turn to
all of the hospitals tied together at the head of her preference list, and all proposals
are provisionally accepted. If a hospital h becomes oversubscribed then none of h’s
worst assignees nor any resident tied with these assignees in h’s preference list can be
assigned to h in any super-stable matching—such pairs (r , h) are deleted from each
other’s preference lists. If a hospital h is full then no resident strictly worse than h’s
worst assignees can be assigned to h in any super-stable matching—again such (r , h)

pairs are deleted from each other’s preference lists. The proposal sequence terminates
once every resident is either assigned to a hospital or has an empty preference list.
At this point, if the constructed assignment of residents to hospitals is super-stable in
the original hrt instance then the assignment is returned as a super-stable matching.
Otherwise, the algorithm reports that no super-stable matching exists.

We note that our algorithm is a non-trivial extension of Algorithm HRT-Super-Res
forhrt (Irving et al. 2000). Due to themore general setting of spa- st, Algorithm SPA-
ST-super requires some new ideas (precisely lines 27–34 of the algorithm on page 14),
and the proofs of the correctness results are more complex than for the aforementioned
algorithm for hrt. We give definitions relating to the algorithm in Sect. 3.1. We give
a description of our algorithm in Sect. 3.2, before presenting it in pseudocode form.
In Sect. 3.3, we illustrate an execution of our algorithm with respect to an example
spa- st instance. We present the algorithm’s correctness results in Sect. 3.4. Finally,
in Sect. 3.5, we show that the set of super-stable matchings in an instance of spa- st
satisfy analogous properties to those given in Theorem 1.

3.1 Definitions relating to the algorithm

First, we present some definitions relating to the algorithm. In what follows, I is an
instance of spa- st, (si , p j) is an acceptable pair in I and lk is the lecturer who offers

123

1214 Journal of Combinatorial Optimization (2022) 43:1203–1239

p j . Further, if (si , p j) belongs to some super-stable matching in I , we call (si , p j) a
super-stable pair.

During the execution of the algorithm, students become provisionally assigned to
projects. It is possible for a project to be provisionally assigned a number of students
that exceed its capacity. This holds analogously for a lecturer. The algorithm proceeds
by deleting from the preference lists certain (si , p j) pairs that cannot be super-stable.
By the term delete (si , p j), wemean the removal of p j from si ’s preference list and the

removal of si from L j
k (the projected preference list of lecturer lk for p j). In addition,

if si is provisionally assigned to p j at this point, we break the assignment. If si has
been deleted from every projected preference list of lk that she originally belonged
to, we will implicitly assume that si has been deleted from lk’s preference list. By the
head of a student’s preference list at a given point, we mean the set of one or more
projects, tied in her preference list after any deletions might have occurred, that she
prefers to all other projects in her list.

For project p j , we define the tail of L j
k as the least-preferred tie in L j

k after any
deletions might have occurred (recalling that a tie can be of length one). In the same
fashion, we define the tail ofLk (the preference list of lecturer lk) as the least-preferred
tie in Lk after any deletions might have occurred. If si is provisionally assigned to p j ,

we define the successors of si in L j
k as those students that are worse than si in L j

k . An
analogous definition holds for the successors of si in Lk .

3.2 Description of the algorithm

We now describe our algorithm, shown in pseudocode form in Algorithm 1. Algorithm
SPA-ST-super begins by initialising an empty set M which will contain the provisional
assignments of students to projects (and implicitly to lecturers). We remark that such
assignments can subsequently be broken during the algorithm’s execution. Also, each
project is initially assigned to be empty (i.e., not assigned to any student).

The while loop of the algorithm involves each student si who is not provisionally
assigned to anyproject inM andwhohas a non-emptypreference list applying in turn to
each project p j at the head of her list. Immediately, si becomes provisionally assigned
to p j in M (and to lk). If, by gaining a new student, p j becomes oversubscribed, it

turns out that none of the students st at the tail of L j
k can be assigned to p j in any

super-stable matching—such pairs (st , p j) are deleted. Similarly, if by gaining a new
student, lk becomes oversubscribed, none of the students st at the tail of Lk can be
assigned to any project offered by lk in any super-stable matching—the pairs (st , pu),
for each project pu ∈ Pk that st finds acceptable, are deleted.

Regardless of whether any deletions occurred as a result of the two conditionals
described in the previous paragraph, we have two further (possibly non-disjoint) cases
in which deletions may occur. If p j becomes full, we let sr be any worst student pro-

visionally assigned to p j (according to L j
k), and we delete (st , p j) for each successor

st of sr inL j
k . Similarly if lk becomes full, we let sr be any worst student provisionally

assigned to lk , and we delete (st , pu), for each successor st of sr in Lk and for each

123

Journal of Combinatorial Optimization (2022) 43:1203–1239 1215

project pu ∈ Pk that st finds acceptable. As we will prove later, none of the (student,
project) pairs that we delete is a super-stable pair.

At the point where the while loop terminates (i.e., when every student is provi-
sionally assigned to one or more projects or has an empty preference list), if some
project p j that was previously full ends up undersubscribed, we let sr be any one of

the most-preferred students (according to L j
k) who was provisionally assigned to p j

during some iteration of the algorithm but is not assigned to p j at this point (for con-
venience, we henceforth refer to such sr as the most-preferred student rejected from
p j according to L j

k). If the students at the tail of Lk (recalling that the tail of Lk is the
least-preferred tie in Lk after any deletions might have occurred) are no better than
sr , it turns out that none of these students st can be assigned to any project offered by
lk in any super-stable matching—the pairs (st , pu), for each project pu ∈ Pk that st
finds acceptable, are deleted. The while loop is then potentially reactivated, and the
entire process continues until every student is provisionally assigned to a project or
has an empty preference list, at which point the repeat-until loop terminates.

Upon termination of the repeat-until loop, if the setM , containing the assign-
ment of students to projects, is super-stable relative to the given instance I then M
is output as a super-stable matching in I . Otherwise, the algorithm reports that no
super-stable matching exists in I .

3.3 Example algorithm execution

We illustrate an execution of Algorithm SPA-ST-super with respect to the spa- st
instance shown in Fig. 1 (page 7). We initialise M = {}, which will contain the
provisional assignment of students to projects. For each project p j ∈ P , we set
full(p j) = false (full(p j) will be set to true when p j becomes full, so that
we can easily identify any project that was full during an iteration of the algorithm
and ended up undersubscribed). We assume that the students become provisionally
assigned to each project at the head of their list in subscript order. Table 1 illustrates
how this execution of Algorithm SPA-ST-super proceeds with respect to I1.

3.4 Correctness of algorithm SPA-ST-super

We now present a series of results concerning the correctness of Algorithm SPA-ST-
super. The first of these results deals with the fact that no super-stable pair is deleted
during an execution of the algorithm. In what follows, I is an instance of spa- st,
(si , p j) is an acceptable pair in I and lk is the lecturer who offers p j .

Lemma 1 If a pair (si , p j) is deleted during an execution of Algorithm SPA-ST-super,
then (si , p j) does not belong to any super-stable matching in I .

In order to prove Lemma 1, we present Lemmas 2 and 3 .

Lemma 2 If a pair (si , p j) is deleted within the while loop during an execution of
Algorithm SPA-ST-super then (si , p j) does not belong to any super-stable matching
in I .

123

1216 Journal of Combinatorial Optimization (2022) 43:1203–1239

Ta
bl
e
1

A
n
ex
ec
ut
io
n
of

A
lg
or
ith

m
SP

A
-S
T-
su
p
er

w
ith

re
sp
ec
tt
o
Fi
g.

1

W
hi
le
lo
op

ite
ra
tio

ns
St
ud

en
ta
pp

lie
s
to

pr
oj
ec
t

C
on

se
qu

en
ce

1
s 1

ap
pl
ie
s
to

p 1
M

=
{(s

1
,
p 1

)}.
f
u
l
l
(p

1
)
=
t
r
u
e
.

2
s 2

ap
pl
ie
s
to

p 1
M

=
{(s

1
,
p 1

),
(s
2
,
p 1

)}.
p 1

be
co
m
es

ov
er
su
bs
cr
ib
ed
.T

he
ta
il
of

L1 1
co
nt
ai
ns

s 1
an
d
s 2
—
th
us

w
e
de
le
te
th
e
pa
ir
s
(s
1
,
p 1

)
an
d

(s
2
,
p 1

)
(a
nd

w
e
br
ea
k
th
e
pr
ov
is
io
na
la
ss
ig
nm

en
ts
).

s 2
ap
pl
ie
s
to

p 3
M

=
{(s

2
,
p 3

)}.
f
u
l
l
(p

3
)
=
t
r
u
e
.

3
s 3

ap
pl
ie
s
to

p 2
M

=
{(s

2
,
p 3

),
(s
3
,
p 2

)}.
4

s 4
ap
pl
ie
s
to

p 2
M

=
{(s

2
,
p 3

),
(s
3
,
p 2

),
(s
4
,
p 2

)}.
f
u
l
l
(p

2
)
=
t
r
u
e
.

5
s 5

ap
pl
ie
s
to

p 3
M

=
{(s

2
,
p 3

),
(s
3
,
p 2

),
(s
4
,
p 2

),
(s
5
,
p 3

)}.
p 3

be
co
m
es

ov
er
su
bs
cr
ib
ed
.

T
he

ta
il
of

L3 2
co
nt
ai
ns

on
ly

s 2
—
th
us

w
e
de
le
te
th
e
pa
ir

(s
2
,
p 3

)
(a
nd

w
e

br
ea
k
th
e
pr
ov
is
io
na
la
ss
ig
nm

en
t)
.

T
he

fir
st
ite
ra
tio

n
of

th
e
w
h
i
l
e
lo
op

te
rm

in
at
es

si
nc
e
ev
er
y
un
as
si
gn
ed

st
ud
en
t(
i.e
.,
s 1

an
d
s 2
)
ha
s
an

em
pt
y
pr
ef
er
en
ce

lis
t.
A
tt
hi
s
po
in
t,
f
u
l
l
(p

1
)
is
t
r
u
e

an
d
p 1

is
un

de
rs
ub

sc
ri
be
d.

M
or
eo
ve
r,
th
e
st
ud

en
ta
tt
he

ta
il
of

L 1
(i
.e
.,
s 4
)
is
no

be
tte
r
th
an

s 1
,w

he
re

s 1
w
as

pr
ev
io
us
ly

as
si
gn
ed

to
p 1

an
d
s 1

is
al
so

th
e

m
os
t-
pr
ef
er
re
d
st
ud

en
tr
ej
ec
te
d
fr
om

p 1
ac
co
rd
in
g
to

L1 1
;t
hu
s
w
e
de
le
te
th
e
pa
ir

(s
4
,
p 2

).
T
he

w
h
i
l
e
lo
op

is
th
en

re
ac
tiv

at
ed
.

6
s 4

ap
pl
ie
s
to

p 3
M

=
{(s

3
,
p 2

),
(s
5
,
p 3

),
(s
4
,
p 3

)}.
p 3

be
co
m
es

ov
er
su
bs
cr
ib
ed
.T

he
ta
il
of

L3 2
co
nt
ai
ns

on
ly

s 5
—
th
us

w
e
de
le
te
th
e
pa
ir

(s
5
,
p 3

).

7
s 5

ap
pl
ie
s
to

p 1
M

=
{(s

3
,
p 2

),
(s
4
,
p 3

),
(s
5
,
p 1

)}.
A
ga
in
,e
ve
ry

un
as
si
gn
ed

st
ud
en
ts
ha
s
an

em
pt
y
pr
ef
er
en
ce

lis
t.
W
e
al
so

ha
ve

th
at

f
u
l
l
(p

2
)
is
t
r
u
e
an
d
p 2

is
un

de
rs
ub

sc
ri
be
d;

ho
w
ev
er

no
fu
rt
he
r
de
le
tio

n
is

ca
rr
ie
d
ou

ti
n
lin

e
34

of
th
e
al
go

ri
th
m
,s
in
ce

th
e
st
ud

en
ta
tt
he

ta
il
of

L 1
(i
.e
.,
s 3
)
is
be
tte
r
th
an

s 4
,w

he
re

s 4
w
as

pr
ev
io
us
ly

as
si
gn
ed

to
p 2

an
d
s 4

is
al
so

th
e

m
os
t-
pr
ef
er
re
d
st
ud

en
tr
ej
ec
te
d
fr
om

p 2
ac
co
rd
in
g
to

L2 1
.H

en
ce
,t
he

r
e
p
e
a
t
-
u
n
t
i
l
lo
op

te
rm

in
at
es

an
d
th
e
al
go

ri
th
m

ou
tp
ut
s

M
=

{(s
3
,
p 2

),
(s
4
,
p 3

),
(s
5
,
p 1

)}
as

a
su
pe
r-
st
ab
le
m
at
ch
in
g.

It
is
cl
ea
r
th
at

M
is
su
pe
r-
st
ab
le
in

th
e
or
ig
in
al
in
st
an
ce

I 1
.

123

Journal of Combinatorial Optimization (2022) 43:1203–1239 1217

Algorithm 1 Algorithm SPA-ST-super
Input: spa- st instance I
Output: a super-stable matching M in I or “no super-stable matching exists in I”
1: M ← ∅
2: for each p j ∈ P do
3: full(p j) = false
4: repeat
5: while some student si is unassigned and has a non-empty preference list do
6: for each project p j at the head of si ’s preference list do
7: lk ← lecturer who offers p j
8: /* si applies to p j */
9: M ← M ∪ {(si , p j)} /*provisionally assign si to p j (and to lk) */
10: if p j is oversubscribed then

11: for each student st at the tail of L j
k do

12: delete (st , p j)

13: else if lk is oversubscribed then
14: for each student st at the tail of Lk do
15: for each project pu ∈ Pk ∩ At do
16: delete (st , pu)

17: if p j is full then
18: full(p j) = true

19: sr ← worst student assigned to p j according to L j
k {any if > 1}

20: for each successor st of sr on L j
k do

21: delete (st , p j)

22: if lk is full then
23: sr ← worst student assigned to lk according to Lk {any if > 1}
24: for each successor st of sr on Lk do
25: for each project pu ∈ Pk ∩ At do
26: delete (st , pu)

27: for each p j ∈ P do
28: if p j is undersubscribed and full(p j) is true then
29: lk ← lecturer who offers p j

30: sr ← most-preferred student rejected from p j according to L j
k {any if > 1}

31: if the students at the tail of Lk are no better than sr then
32: for each student st at the tail of Lk do
33: for each project pu ∈ Pk ∩ At do
34: delete (st , pu)

35: until every unassigned student has an empty preference list
36: if M is super-stable in I then
37: return M
38: else
39: return “no super-stable matching exists in I”

Proof Without loss of generality, suppose that the first super-stable pair to be deleted
within the while loop during an arbitrary execution E of the algorithm is (si , p j),
which belongs to some super-stable matching, say M∗. Suppose that M is the assign-
ment immediately after the deletion. Let us denote this point in the algorithm where
the deletion is made by ‡. During E , there are four cases that would lead to the deletion
of any (student, project) pair within the while loop.

123

1218 Journal of Combinatorial Optimization (2022) 43:1203–1239

(1) p j is oversubscribed. Suppose that (si , p j) is deleted because some student
(possibly si) became provisionally assigned to p j during E , causing p j to
become oversubscribed. If p j is full or undersubscribed at point ‡, since si ∈
M∗(p j)\M(p j) and no project can be oversubscribed in M∗, then there is some
student sr ∈ M(p j)\M∗(p j) such that lk prefers sr to si or is indifferent between
them. We note that sr cannot be assigned to a project that she prefers to p j in any
super-stablematching. Otherwise, since p j must have been in the head of sr ’s pref-
erence list when she applied, this would mean that a super-stable pair was deleted
before (si , p j). Thus either sr is unassigned in M∗ or sr prefers p j to M∗(sr) or sr
is indifferent between them. Clearly, for any combination of lk and p j being full
or undersubscribed in M∗, it follows that (sr , p j) blocks M∗, a contradiction.

(2) lk is oversubscribed. Suppose that (si , p j) is deleted because some student (possi-
bly si) became provisionally assigned to a project offered by lecturer lk during E ,
causing lk to become oversubscribed. At point ‡, none of the projects offered by
lk is oversubscribed in M , otherwise we will be in case (1). Similar to case (1), if
lk is full or undersubscribed at point ‡, since si ∈ M∗(p j)\M(p j) and no lecturer
can be oversubscribed in M∗, it follows that there is some project p j ′ ∈ Pk and
some student sr ∈ M(p j ′)\M∗(p j ′) such that lk prefers sr to si or is indifferent
between them. We consider two subcases.

(i) If p j ′ = p j then sr
= si . Moreover, as in case (1), either sr is unassigned
in M∗ or sr prefers p j ′ to M∗(sr) or sr is indifferent between them. For any
combination of lk and p j ′ being full or undersubscribed in M∗, we have that
(sr , p j ′) blocks M∗, a contradiction.

(ii) If p j ′
= p j . Assume firstly that sr
= si . Then as p j ′ has fewer assignees in
M∗ than it has provisional assignees inM , and as in (i) above, (sr , p j ′) blocks
M∗, a contradiction. Finally assume sr = si . Then si must have applied to
p j ′ at some point during E before ‡. Clearly, either si prefers p j ′ to p j or
si is indifferent between them, since p j ′ must have been in the head of si ’s
preference list when si applied. Since si ∈ M∗(lk) and p j ′ is undersubscribed
in M∗, it follows that (si , p j ′) blocks M∗, a contradiction.

(3) p j is full. Suppose that (si , p j) is deleted because p j became full during E . At
point ‡, p j is full in M . Thus at least one of the students in M(p j), say sr , will
not be assigned to p j in M∗, for otherwise p j will be oversubscribed in M∗.
This implies that either sr is unassigned in M∗ or sr prefers p j to M∗(sr) or sr
is indifferent between them. For otherwise, we obtain a contradiction to (si , p j)

being the first super-stable pair to be deleted. Since lk prefers sr to si , it follows
that (sr , p j) blocks M∗, a contradiction.

(4) lk is full. Suppose that (si , p j) is deleted because lk became full during E . We
consider two subcases.

(i) All the students assigned to p j in M at point ‡ (if any) are also assigned
to p j in M∗. This implies that p j has one more assignee in M∗ than it has
provisional assignees in M , namely si . Thus, some other project p j ′ ∈ Pk has
fewer assignees in M∗ than it has provisional assignees in M , for otherwise
lk would be oversubscribed in M∗. Hence there exists some student sr ∈

123

Journal of Combinatorial Optimization (2022) 43:1203–1239 1219

M(p j ′)\M∗(p j ′). It is clear that sr
= si , since si plays the role of st at some
for loop iteration in line 24 of the algorithm. Also, sr cannot be assigned to a
project that she prefers to p j ′ in M∗, as explained in case (1). Moreover, since
p j ′ is undersubscribed in M∗ and lk prefers sr to si , it follows that (sr , p j ′)
blocks M∗, a contradiction.

(ii) Some student, say sr , who is assigned to p j in M is not assigned to p j in M∗,
i.e., sr ∈ M(p j)\M∗(p j). Since sr cannot be assigned in M∗ to a project that
she prefers to p j and since lk prefers sr to si , it follows that (sr , p j) blocks
M∗, a contradiction.

��
Lemma 3 If a pair (si , p j) is deleted in line 34ofAlgorithmSPA-ST-super then (si , p j)

does not belong to any super-stable matching in I .

Proof Without loss of generality, suppose that the first super-stable pair to be deleted
during an arbitrary execution E of the algorithm is (si , p j), which belongs to some
super-stable matching, say M∗. Then by Lemma 2, (si , p j) was deleted in line 34
during E . Let lk be the lecturer who offers p j . Suppose that M is the assignment
during the iteration of the repeat-until loop where (si , p j) was deleted.

Let p j ′ be some other project offered by lk which was full during a previous
repeat-until loop iteration and subsequently ends up undersubscribed in the
current repeat-until loop iteration, i.e., p j ′ plays the role of p j in line 28. Sup-
pose that si ′ plays the role of sr in line 30, i.e., si ′ is the most-preferred student rejected

from p j ′ according toL j ′
k (possibly si ′ = si). Moreover si ′ was provisionally assigned

to p j ′ during a previous repeat-until loop iteration but (si ′ , p j ′) /∈ M in the
current repeat-until loop iteration. Thus (si ′ , p j ′) has been deleted before the
deletion of (si , p j) occurred; and thus, (si ′ , p j ′) /∈ M∗, since (si , p j) is the first super-
stable pair to be deleted. Further, lk either prefers si ′ to si or is indifferent between
them, since si plays the role of st at some for loop iteration in line 32.

We remark that no student who is provisionally assigned to some project in M
can be assigned to a project better than her current assignment in any super-stable
matching. For otherwise, this would mean a super-stable pair must have been deleted
before (si , p j), since each student who is assigned in M applies to projects in the
head of her preference list. So, either si ′ is unassigned in M∗ or si ′ prefers p j ′ to
M∗(si ′) or si is indifferent between them. By the super-stability of M∗, p j ′ is full in
M∗ and lk prefers every student in M∗(p j ′) to si ′ ; for otherwise, (si ′ , p j ′) blocks M∗,
a contradiction.

Let lz0 = lk , pt0 = p j ′ and sq0 = si ′ . Just before the deletion of (si , p j) occurred,
pt0 is undersubscribed in M . Since pt0 is full in M∗, there exists some student sq1 ∈
M∗(pt0)\M(pt0). We note that lz0 prefers sq1 to sq0 ; for otherwise, (si ′ , p j ′) blocks
M∗, a contradiction. Let pt1 = pt0 . Since (si , p j) is the first super-stable pair to be
deleted, sq1 is assigned in M to a project pt2 such that sq1 prefers pt2 to pt1 . For
otherwise, as each student applies to projects at the head of her preference list, that
would mean (sq1, pt1) must have been deleted before (si , p j), a contradiction. We
note that pt2
= pt1 , since (sq1, pt2) ∈ M and (sq1, pt1) /∈ M . Let lz1 be the lecturer
who offers pt2 . By the super-stability of M

∗, either (i) or (ii) holds as follows:

123

1220 Journal of Combinatorial Optimization (2022) 43:1203–1239

(i) pt2 is full in M∗ and lz1 prefers the worst student/s in M∗(pt2) to sq1 ;
(ii) pt2 is undersubscribed in M∗, lz1 is full in M∗, sq1 /∈ M∗(lz1) and lz1 prefer the

worst student/s in M∗(lz1) to sq1 .
Otherwise (sq1, pt2) blocks M∗. In case (i), there exists some student sq2 ∈
M∗(pt2)\M(pt2). Let pt3 = pt2 . In case (ii), there exists some student sq2 ∈
M∗(lz1)\M(lz1). We note that lz1 prefers sq2 to sq1 . Now, suppose M∗(sq2) = pt3
(possibly pt3 = pt2). It is clear that sq2
= sq1 . Applying similar reasoning as for sq1 ,
sq2 is assigned in M to a project pt4 such that sq2 prefers pt4 to pt3 . Let lz2 be the
lecturer who offers pt4 . We are identifying a sequence 〈sqi 〉i≥1 of students, a sequence
〈pti 〉i≥1 of projects, and a sequence 〈lzi 〉i≥1 of lecturers, such that, for each i ≥ 1

1. sqi prefers pt2i to pt2i−1 ,
2. (sqi , pt2i) ∈ M and (sqi , pt2i−1) ∈ M∗,
3. lzi prefers sqi+1 to sqi ; also, lzi offers both pt2i and pt2i+1 (possibly pt2i = pt2i+1).

First we claim that for each new project that we identify, pt2i
= pt2i−1 for i ≥ 1.
Suppose pt2i = pt2i−1 for some i ≥ 1. From above sqi was identified by lzi−1 such
that (sqi , pt2i−1) ∈ M∗\M . Moreover (sqi , pt2i) ∈ M . Hence we reach a contradiction.
Clearly, for each student sqi that we identify, for i ≥ 1 , sqi must be assigned to distinct
projects in M and in M∗.

Next we claim that for each new student sqi that we identify, sqi
= sqt for 1 ≤ t < i .
We prove this by induction on i . For the base case, clearly sq2
= sq1 . We assume that
the claim holds for some i ≥ 1, i.e., the sequence sq1, sq2 , . . . , sqi consists of distinct
students.We show that the claimholds for i+1, i.e., the sequence sq1 , sq2 , . . . , sqi , sqi+1

also consists of distinct students. Clearly sqi+1
= sqi since lzi prefers sqi+1 to sqi . Thus,
it suffices to show that sqi+1
= sq j for 1 ≤ j ≤ i − 1. Now, suppose sqi+1 = sq j for
1 ≤ j ≤ i − 1. This implies that sq j was identified by lzi and clearly lzi prefers sq j to
sq j−1 . Now since sqi+1 was also identified by lzi to avoid the blocking pair (sqi , pt2i)
in M∗, it follows that either (i) pt2i is full in M∗, or (ii) pt2i is undersubscribed in M∗
and lzi is full in M∗. We consider each cases further as follows.

(i) If pt2i is full in M∗, we know that (sqi , pt2i) ∈ M\M∗. Moreover sq j was identi-
fied by lzi+1 because of case (i). Furthermore (sq j−1, pt2i) ∈ M\M∗. In this case,
pt2i+1 = pt2i and we have that

(sqi , pt2i+1) ∈ M\M∗ and (sqi+1, pt2i+1) ∈ M∗\M,

(sq j−1, pt2i+1) ∈ M\M∗ and (sq j , pt2i+1) ∈ M∗\M .

By the inductive hypothesis, the sequence sq1 , sq2 , . . . , sq j−1 , sq j , . . . , sqi consists
of distinct students. This implies that sqi
= sq j−1 . Thus since pt2i+1 is full in M∗,
lzi should have been able to identify distinct students sq j and sqi+1 to avoid the
blocking pairs (sq j−1 , pt2i+1) and (sqi , pt2i+1) respectively in M∗, a contradiction.

(ii) pt2i is undersubscribed in M∗ and lzi is full in M∗. Similarly as in case (i) above,
we have that

sqi ∈ M(lzi)\M∗(lzi) and sqi+1 ∈ M∗(lzi)\M(lzi),

sq j−1 ∈ M(lzi)\M∗(lzi) and sq j ∈ M∗(lzi)\M(lzi).

123

Journal of Combinatorial Optimization (2022) 43:1203–1239 1221

Since sqi
= sq j−1 and lzi is full in M∗, lzi should have been able to identify
distinct students sq j and sqi+1 corresponding to students sq j−1 and sqi respectively,
a contradiction.

This completes the induction step. As the sequence of distinct students and projects
we are identifying is infinite, we reach an immediate contradiction. ��

Lemmas 2 and 3 immediately give rise to Lemma 1. The next lemma will be used
as a tool in the proof of the remaining lemmas.

Lemma 4 Let M be the assignment at the termination of Algorithm SPA-ST-super and
let M∗ be any super-stable matching in I . Let lk be an arbitrary lecturer: (i) if lk is
undersubscribed in M∗ then every student who is assigned to lk in M is also assigned
to lk in M∗; and (ii) if lk is undersubscribed in M then lk has the same number of
assignees in M∗ as in M.

Proof Let lk be an arbitrary lecturer. First, we show that (i) holds. Suppose otherwise,
then there exists a student, say si , such that si ∈ M(lk)\M∗(lk). Moreover, there
exists some project p j ∈ Pk such that si ∈ M(p j)\M∗(p j). By Lemma 1, si cannot
be assigned to a project that she prefers to p j in M∗. Also, by the super-stability of
M∗, p j is full in M∗ and lk prefers the worst student/s in M∗(p j) to si .

Let lz0 = lk , pt0 = p j , and sq0 = si . As pt0 is full in M∗ and no project is
oversubscribed in M , there exists some student sq1 ∈ M∗(pt0)\M(pt0) such that lz0
prefers sq1 to sq0 . Let pt1 = pt0 . By Lemma 1, sq1 is assigned in M to a project pt2
such that sq1 prefers pt2 to pt1 . We note that sq1 cannot be indifferent between pt2 and
pt1 ; for otherwise, as each student applies to projects at the head of her preference list,
since (sq1, pt1) /∈ M , that would mean (sq1, pt1) must have been deleted during the
algorithm’s execution, contradicting Lemma 1. It follows that sq1 ∈ M(pt2)\M∗(pt2).
Let lz1 be the lecturer who offers pt2 . By the super-stability of M∗, either (i) or (ii)
holds as follows:

(i) pt2 is full in M∗ and lz1 prefers the worst student/s in M∗(pt2) to sq1 ;
(ii) pt2 is undersubscribed in M∗, lz1 is full in M∗, sq1 /∈ M∗(lz1) and lz1 prefers the

worst student/s in M∗(lz1) to sq1 .
Otherwise (sq1, pt2) blocks M∗. In case (i), there exists some student sq2 ∈

M∗(pt2)\M(pt2). Let pt3 = pt2 . In case (ii), there exists some student sq2 ∈
M∗(lz1)\M(lz1). We note that lz1 prefers sq2 to sq1 . Now, suppose M∗(sq2) = pt3
(possibly pt3 = pt2). It is clear that sq2
= sq1 . Applying similar reasoning as for sq1 ,
student sq2 is assigned in M to a project pt4 such that sq2 prefers pt4 to pt3 . Let lz2
be the lecturer who offers pt4 . We are identifying a sequence 〈sqi 〉i≥1 of students, a
sequence 〈pti 〉i≥1 of projects, and a sequence 〈lzi 〉i≥1 of lecturers, such that, for each
i ≥ 1

1. sqi prefers pt2i to pt2i−1 ,
2. (sqi , pt2i) ∈ M and (sqi , pt2i−1) ∈ M∗,
3. lzi prefers sqi+1 to sqi ; also, lzi offers both pt2i and pt2i+1 (possibly pt2i = pt2i+1).

Following a similar argument as in the proof of Lemma 3, we can identify an
infinite sequence of distinct students and projects, a contradiction. Hence, if lk is

123

1222 Journal of Combinatorial Optimization (2022) 43:1203–1239

undersubscribed in M∗ then every student who is assigned to lk in M is also assigned
to lk in M∗.

Next, we show that (ii) holds. By the first claim, any lecturer who is full in M is
also full in M∗, and any lecturer who is undersubscribed in M has as many assignees
in M∗ as she has in M . Hence

∑

lk∈L
|M(lk)| ≤

∑

lk∈L
|M∗(lk)| . (1)

We note that if a student si is unassigned in M , by Lemma 1, si is unassigned in M∗.
Equivalently, if si is assigned in M∗ then si is assigned in M . Let S1 denote the set
of students who are assigned to at least one project in M , and let S2 denote the set of
students who are assigned to a project in M∗; it follows that |S2| ≤ |S1|. Further, we
have that

∑

lk∈L
|M∗(lk)| = |S2| ≤ |S1| ≤

∑

lk∈L
|M(lk)|, (2)

From Inequalities (1) and (2), it follows that |M(lk)| = |M∗(lk)| for each lk ∈ L. ��
The next three lemmas deal with the case that Algorithm SPA-ST-super reports the
non-existence of a super-stable matching in I .

Lemma 5 If a student is assigned to two or more projects at the termination of Algo-
rithm SPA-ST-super then I admits no super-stable matching.

Proof Let M be the assignment at the termination of the algorithm. Suppose for a
contradiction that there exists a super-stable matching M∗ in I . Suppose that a student
is assigned to two or more projects in M . Then either (a) any two of these projects
are offered by different lecturers or (b) all of these projects are offered by the same
lecturer.

Firstly, suppose (a) holds. Then some lecturer has fewer assignees in M∗ than in
M . Suppose not, then

∑

lk∈L
|M∗(lk)| ≥

∑

lk∈L
|M(lk)| . (3)

Let S1 and S2 be as defined in the proof of Lemma 4, it follows that |S2| ≤ |S1|.
Hence,

∑

lk∈L
|M∗(lk)| = |S2| ≤ |S1| <

∑

lk∈L
|M(lk)|, (4)

since some student in S1 is assigned in M to two or more projects offered by different
lecturers. Inequality (4) contradicts Inequality (3). Hence, our claim is established.
As some lecturer lk has fewer assignees in M∗ than in M , it follows that lk is under-
subscribed in M∗, since no lecturer is oversubscribed in M . In particular, there exists

123

Journal of Combinatorial Optimization (2022) 43:1203–1239 1223

some project p j ∈ Pk and some student, say si , such that p j is undersubscribed in M∗
and (si , p j) ∈ M\M∗. Since (si , p j) ∈ M , then p j must have been in the head of si ’s
preference list when si applied to p j during the algorithm’s execution. By Lemma 1,
either si is unassigned in M∗ or si prefers p j to M∗(si) or si is indifferent between
them. Hence (si , p j) blocks M∗, a contradiction.

Next, suppose (b) holds. Then |S1| ≤ ∑
lk∈L |M(lk)|. As in case (a), since |S2| ≤

|S1|, it follows that
∑

lk∈L
|M∗(lk)| ≤

∑

lk∈L
|M(lk)| .

Suppose first that |M∗(lk)| < |M(lk)| for some lk ∈ L. Then lk has fewer assignees
in M∗ than in M , and following a similar argument as in case (a) above, we reach
an immediate contradiction. Hence, |M∗(lk)| = |M(lk)| for all lk ∈ L. For each
lk ∈ L, we claim that every student who is assigned to lk in M is also assigned to
lk in M∗. Suppose otherwise. Let lz1 be an arbitrary lecturer in L. Then there exists
some student sq1 ∈ M(lz1)\M∗(lz1). Let M(sq1) = pt2 . By Lemma 1, sq1 is assigned
in M∗ to a project pt1 such that sq1 prefers pt2 to pt1 . Clearly, pt1 is not offered by lz1 ,
since sq1 ∈ M(lz1)\M∗(lz1). We also note that sq1 cannot be indifferent between pt2
and pt1 . Otherwise, the argument follows from (a), since sq1 is assigned in M to two
projects offered by different lecturers, and we reach an immediate contradiction. By
the super-stability of M∗, either (i) or (ii) holds as follows:

(a) pt2 is full in M∗ and lz1 prefers every student in M∗(pt2) to sq1 ;
(b) pt2 is undersubscribed in M∗, lz1 is full in M∗ and lz1 prefers every student in

M∗(lz1) to sq1 .

Otherwise, (sq1, pt2) blocks M∗. In case (i), there exists some student sq2 ∈
M∗(pt2)\M(pt2). Let pt3 = pt2 . In case (ii), there exists some student sq2 ∈
M∗(lz1)\M(lz1). We note that lz1 prefers sq2 to sq1 , and clearly sq2
= sq1 . Let
M∗(sq2) = pt3 (possibly pt3 = pt2). Applying similar reasoning as for sq1 , student sq2
is assigned in M to a project pt4 such that sq2 prefers pt4 to pt3 . We are identifying a
sequence 〈sqi 〉i≥1 of students, a sequence 〈pti 〉i≥1 of projects, and a sequence 〈lzi 〉i≥1
of lecturers, such that, for each i ≥ 1

1. sqi prefers pt2i to pt2i−1 ,
2. (sqi , pt2i) ∈ M and (sqi , pt2i−1) ∈ M∗,
3. lzi prefers sqi+1 to sqi ; also, lzi offers both pt2i and pt2i+1 (possibly pt2i = pt2i+1).

Following a similar argument as in the proof of Lemma 3, we can identify an infinite
sequence of distinct students and projects, a contradiction.

Now, let si be an arbitrary student such that si is assigned in M to two or more
projects offered by a lecturer, say lk . Then si ∈ M∗(lk). Moreover, there exists some
project p j ∈ Pk such that (si , p j) ∈ M\M∗. We claim that p j is undersubscribed
in M∗. Suppose otherwise. Let lz0 = lk , pt0 = p j and sq0 = si . Then there exists
some student sq1 ∈ M∗(pt0)\M(pt0), since pt0 is not oversubscribed in M and sq0 ∈
M(pt0)\M∗(pt0). Again, by Lemma 1, sq1 is assigned in M to a project pt1 such
that sq1 prefers pt1 to pt0 . Let lz1 be the lecturer who offers pt1 . Following a similar

123

1224 Journal of Combinatorial Optimization (2022) 43:1203–1239

argument as in the proof of Lemma 3, we can identify a sequence of distinct students
and projects, and as this sequence is infinite, we reach a contradiction. Hence our claim
holds, i.e., p j is undersubscribed in M∗. Finally, since si cannot be assigned to any
project that she prefers to p j in M∗ and since (si , p j) ∈ M∗(lk), we have that (si , p j)

blocks M∗, a contradiction. ��
Lemma 6 If some lecturer lk becomes full during some execution of Algorithm SPA-ST-
superand lk subsequently ends up undersubscribed at the termination of the algorithm,
then I admits no super-stable matching.

Proof Let M be the assignment at the termination of the algorithm. Suppose for a
contradiction that there exists a super-stable matching M∗ in I . Let lk be the lecturer
who became full during some execution of the algorithm and subsequently ends up
undersubscribed in M . By Lemma 4, |M(lk)| = |M∗(lk)| and thus lk is undersub-
scribed in M∗. At the point in the algorithm where lk became full (line 22), we note
that none of the projects offered by lk is oversubscribed. Since lk ended up undersub-
scribed in M , it follows that there is some project p j ∈ Pk that has fewer assignees in
M at the termination of the algorithm than it had at some point during the algorithm’s
execution, thus p j is undersubscribed in M .

We claim that each project offered by lk has the same number of assignees in M∗
as in M . Suppose otherwise, then there is some project pt ∈ Pk such that |M∗(pt)| <

|M(pt)|; thus pt is undersubscribed in M∗, since no project is oversubscribed in M .
It follows that there exists some student sr ∈ M(pt)\M∗(pt). By Lemma 1, sr is
either unassigned in M∗ or prefers pt to M∗(sr). Since lk is undersubscribed in M∗,
(sr , pt) blocks M∗, a contradiction. Hence |M∗(pt)| ≥ |M(pt)|. Moreover, since
|M(lk)| = |M∗(lk)|, we have that |M(pt)| = |M∗(pt)| for all pt ∈ Pk .

Hence p j undersubscribed in M implies that p j is undersubscribed in M∗. More-
over, there is some student si who was provisionally assigned to p j at some point
during the execution of the algorithm but si is not assigned to p j in M . Thus, the
pair (si , p j) was deleted during the algorithm’s execution, so that (si , p j) /∈ M∗ by
Lemma 1. It follows that either si is unassigned in M∗ or si prefers p j to M∗(si) or si
is indifferent between them. Hence, (si , p j) blocks M∗, a contradiction. ��
Lemma 7 If the pair (si , p j) was deleted during some execution of Algorithm SPA-
ST-super, and at the termination of the algorithm si is not assigned to a project better
than p j , and each of p j and lk is undersubscribed, then I admits no super-stable
matching.

Proof Suppose for a contradiction that there exists a super-stable matching M∗ in
I . Let (si , p j) be a pair that was deleted during an arbitrary execution E of the
algorithm. This implies that (si , p j) /∈ M∗ by Lemma 1. Let M be the assignment
at the termination of E . By the hypothesis of the lemma, lk is undersubscribed in M .
This implies that lk is undersubscribed in M∗, by Lemma 4. Since p j is offered by
lk , and p j is undersubscribed in M , it follows from the proof of Lemma 6 that p j is
undersubscribed inM∗. Further, by the hypothesis of the lemma, either si is unassigned
in M , or si prefers p j to M(si) or is indifferent between them. By Lemma 1, this is
true for si in M∗. Hence (si , p j) blocks M∗, a contradiction. ��

123

Journal of Combinatorial Optimization (2022) 43:1203–1239 1225

The next lemma shows that the final assignment may be used to determine the exis-
tence, or otherwise, of a super-stable matching in I .

Lemma 8 If at the termination of Algorithm SPA-ST-super, the assignment M is not
super-stable in I then no super-stable matching exists in I .

Proof Suppose M is not super-stable in I . If some student si is assigned to two or
more projects in M then I admits no super-stable matching, by Lemma 5. Hence
every student is assigned to at most one project in M . Moreover, since no project or
lecturer is oversubscribed in M , it follows that M is a matching. Let (si , p j) be a
blocking pair for M , then si is either unassigned in M or prefers p j to M(si) or is
indifferent between them. Whichever is the case, (si , p j) has been deleted. Let lk be
the lecturer who offers p j . In what follows, we will identify the point in the algorithm
at which (si , p j) was deleted, and consequently, we will arrive at a conclusion that no
super-stable matching exists.

Firstly, suppose (si , p j)wasdeleted as a result of p j being full or oversubscribed (on
lines 12 or 21). Suppose p j is full in M . Then (si , p j) cannot block M irrespective
of whether lk is undersubscribed or full in M , since lk prefers the worst assigned
student/s in M(p j) to si . Hence p j is undersubscribed in M . As p j was previously
full, each pair (st , pu), for each st that is no better than si at the tail of Lk and each
pu ∈ Pk ∩ At , would have been deleted on line 34 of the algorithm. Thus, if lk is full
in M then (si , p j) does not block M . Suppose lk is undersubscribed in M . If lk was
full at some point during the execution of the algorithm then I admits no super-stable
matching, by Lemma 6. Hence lk was never full during the algorithm’s execution.
Recall that each of p j and lk is undersubscribed in M . As (si , p j) is a blocking pair
of M , si cannot be assigned in M to a project that she prefers to p j . Hence I admits
no super-stable matching, by Lemma 7.

Next, suppose (si , p j) was deleted as a result of lk being full or oversubscribed (on
lines 16 or 26), (si , p j) could only block M if lk is undersubscribed in M . If this is
the case then I admits no super-stable matching, by Lemma 6.

Finally, suppose (si , p j) was deleted (on line 34) because some other project p j ′
offered by lk was previously full and ended up undersubscribed on line 28. Then lk
must have identified the most-preferred student, say sr , who was previously assigned
to p j ′ but subsequently got rejected from p j ′ . At this point, si is at the tail ofLk and si
is no better than sr inLk . Moreover, every project offered by lk that si finds acceptable
would have been deleted from si ’s preference list at the for loop iteration in line 34.
If p j is full in M then (si , p j) does not block M . Hence p j is undersubscribed in M .
If lk is full in M then (si , p j) does not block M , since si /∈ M(lk) and lk prefers the
worst student/s in M(lk) to si . Hence lk is undersubscribed in M . Again by Lemma 7,
I admits no super-stable matching.

Since (si , p j) is an arbitrary pair, this implies that I admits no super-stable match-
ing. ��

The next lemma shows that Algorithm SPA-ST-super may be implemented to run
in linear time.

123

1226 Journal of Combinatorial Optimization (2022) 43:1203–1239

Lemma 9 Algorithm SPA-ST-super may be implemented to run in O(L) time and
O(n1n2) space, where n1, n2, and L are the number of students, number of projects,
and the total length of the preference lists, respectively, in I .

Proof The algorithm’s time complexity depends on how efficiently we can execute the
operation of a student applying to a project and the operation of deleting a (student,
project) pair, each of which occur once for any (student, project) pair. It turns out that
both operations can be implemented to run in constant time, giving Algorithm SPA-ST-
super an overall complexity of Θ(L), where L is the total length of all the preference
lists. In what follows, we describe the non-trivial aspects of such an implementation.
We remark that the data structures discussed here are inspired by, and extend, those
detailed in Abraham et al. (2007, Section 3.3), for Algorithm SPA-student.

For each student si , build an array positionsi , where positionsi (p j) is the posi-
tion of project p j in si ’s preference list. For example, if si ’s preference list is
(p2 p5 p3) p7 (p6 p1) then positionsi (p5) = 2 and positionsi (p1) = 6. In gen-
eral, position captures the order in which the projects appear in the preference list
when read from left to right, ignoring any ties. Represent si ’s preference list by
embedding doubly linked lists in an array preferencesi . For each project p j ∈ Ai ,
preferencesi (positionsi (p j)) stores the list node containing p j . This node contains
two next pointers (and two previous pointers)—one to the next project in si ’s prefer-
ence list (after deletions, this project may not be located at the next array position),
and another pointer to the next project p j ′ in si ’s preference list, where p j ′ and p j

are both offered by the same lecturer. Construct the latter list by traversing through
si ’s preference list, using a temporary array to record the last project in the list offered
by each lecturer. Use virtual initialisation (described in Brassard and Bratley 1996,
p. 149) for these arrays, since the overall O(n1n3) initialisation may be too expensive.

To represent the ties in si ’s preference list, build an array successorsi . For each
project p j in si ’s preference list, successorsi (positionsi (p j)) stores the true boolean
if p j is tied with its successor in Ai and false otherwise. After the deletion of
any (student, project) pair, update the successor booleans. As an illustration, with
respect to si ’s preference list given in the previous paragraph, successorsi is the
array [true, true, false, false, true, false]. Now, suppose p3 was
deleted from si ’s preference list, since successorsi (positionsi (p3)) is false and
successorsi (positionsi (p5)) istrue, set successorsi (positionsi (p5)) tofalse (since
p5 is the predecessor of p3). Clearly using these data structures, we can find the next
project at the head of each student’s preference list, find the next project offered by
a given lecturer on each student’s preference list, as well as delete a project from a
given student’s preference list in constant time.

For each lecturer lk , build two arrays preferencelk and successorlk , where
preferencelk (si) is the position of student si in lk’s preference list, and successorlk
(preferencelk (si)) stores the position of the first strict successor (with respect to
position) of si in Lk or a null value if si has no strict successor5. Represent lk’s
preference list (i.e., Lk) by the array preferencelk , with an additional pointer, lastlk .
Initially, lastlk stores the index of the last position in preferencelk . To represent
the ties in lk’s preference list, build an array predecessorlk . For each si ∈ Lk ,

5 For example, if lk ’s preference list is s5 (s3 s1 s6) s7 (s2 s8) then successorlk is the array [2 5 5 5 6 0 0].

123

Journal of Combinatorial Optimization (2022) 43:1203–1239 1227

predecessorlk (preferencelk (si)) stores the true boolean if si is tied with its pre-
decessor in Lk and false otherwise.

When lk becomes full, make lastlk equivalent to lk’s worst assigned student through
the following method. Perform a backward traversal through the array preferencelk ,
starting at lastlk , and continuing until lk’s worst assigned student, say si ′ , is encoun-
tered (each student stores a pointer to their assigned project, or a special null value if
unassigned). Deletions must be carried out in the preference list of each student who
is worse than si ′ on lk’s preference list (precisely those students whose position in
preferencelk is greater than or equal to that stored in successorlk (preferencelk (si ′)))

6.
When lk becomes oversubscribed, we can find and delete the students at the

tail of lk by performing a backward traversal through the array preferencelk , start-
ing at lastlk , and continuing until we encounter a student, say si ′ , such that
predecessorlk (preferencelk (si ′)) stores the false boolean. If lk becomes under-
subscribed after we break the assignment of students encountered on this traversal
(including si ′) to lk , rather than update lastlk immediately, which could be expen-
sive, we wait until lk becomes full again. The cost of these traversals taken over the
algorithm’s execution is thus linear in the length of lk’s preference list.

For each project p j offered by lk , build the arrays preferencep j
, successor p j and

predecessor p j
corresponding to L j

k , as described in the previous paragraph for Lk .

Represent the projected preference list of lk for p j (i.e.,L j
k) by the array preferencep j

,
with an additional pointer, last p j . These project preference arrays are used in much
the same way as the lecturer preference arrays

Since we only visit a student at most twice during these backward traversals, once
for the lecturer and once for the project, the asymptotic running time remains linear.

��

Lemma 1 shows that there is an optimality property for each assigned student in any
super-stable matching found by the algorithm, whilst Lemma 8 establishes the correct-
ness ofAlgorithmSPA-ST-super. The following theoremcollects togetherLemmas1, 8
and 9 .

Theorem 2 For a given instance I of spa- st, Algorithm SPA-ST-super determines,
in O(L) time and O(n1n2) space, whether or not a super-stable matching exists in
I . If such a matching does exist, all possible executions of the algorithm find one in
which each assigned student is assigned to the best project that she could obtain in any
super-stable matching, and each unassigned student is unassigned in all super-stable
matchings.

Given the optimality property established by Theorem 2, we define the super-stable
matching found by Algorithm SPA-ST-super to be student-optimal.

6 For efficiency, we remark that it is not necessary to make deletions from the preference lists of lecturers or
projected preference lists of lecturers for each project the lecturer offers, since the while loop of Algorithm
SPA-ST-super involves students applying to projects in the head of their preference list.

123

1228 Journal of Combinatorial Optimization (2022) 43:1203–1239

Fig. 4 Instance I2 of spa- st

3.5 Properties of super-stable matchings in spa- st

In this section,we consider properties of the set of super-stablematchings in an instance
of spa- st. We show that the Unpopular Projects Theorem for spa- s (see Theorem 1)
holds for spa- st under super-stability.

Theorem 3 For a given instance I of spa- st, the following holds:

1. each lecturer is assigned the same number of students in all super-stable match-
ings;

2. exactly the same students are unassigned in all super-stable matchings;
3. a project offered by an undersubscribed lecturer has the same number of students

in all super-stable matchings.

Proof LetM andM∗ be two arbitrary super-stablematchings in I . Let I ′ be an instance
of spa- s obtained from I by breaking the ties in I in someway. Then by Proposition 1,
each of M and M∗ is stable in I ′. Thus by Theorem 1, each lecturer is assigned the
same number of students in M and M∗, exactly the same students are unassigned in
M and M∗, and a project offered by an undersubscribed lecturer has the same number
of students in M and M∗. ��
To illustrate this, consider the spa- st instance I2 given in Fig. 4, which admits
the super-stable matchings M1 = {(s3, p3), (s4, p2), (s5, p3), (s6, p2)} and M2 =
{(s3, p3), (s4, p3), (s5, p2), (s6, p2)}. Each of l1 and l2 is assigned the same number
of students in both M1 and M2, illustrating part (1) of Theorem 3. Also, each of s1
and s2 is unassigned in both M1 and M2, illustrating part (2) of Theorem 3. Finally, l2
is undersubscribed in both M1 and M2, and each of p3 and p4 has the same number
of students in both M1 and M2, illustrating part (3) of Theorem 3.

4 Empirical evaluation

In this section, we evaluate an implementation of Algorithm SPA-ST-super. We imple-
mented our algorithm in Python,7 and performed our experiments on a system with
dual Intel Xeon CPU E5-2640 processors with 64GB of RAM, running Ubuntu 17.10.
For our experiment, we were primarily concerned with the following question: how
does the nature of the preference lists in a given spa- st instance affect the existence
of a super-stable matching?

7 https://github.com/sofiatolaosebikan/spa-st-super

123

https://github.com/sofiatolaosebikan/spa-st-super

Journal of Combinatorial Optimization (2022) 43:1203–1239 1229

4.1 Datasets

When generating random datasets, there are clearly several parameters that can be
varied, such as the number of students, projects and lecturers; the lengths of the
students’ preference lists as well as a measure of the density of ties present in the
preference lists. We denote by td , the measure of the density of ties present in the
preference lists. In each student’s preference list, the tie density tds (0 ≤ tds ≤ 1) is
the probability that some project is tied to its successor. The tie density tdl in each
lecturer’s preference list is defined similarly. At tds = tdl = 1, each preference list
comprises a single tie while at tds = tdl = 0, no tie would exist in the preference lists,
thus reducing the problem to an instance of spa- s.

4.2 Experimental setup

For each range of values for the aforementioned parameters, we randomly generated a
set of spa- st instances, involving n1 students (which wewill henceforth refer to as the
size of the instance), 0.5n1 projects, 0.2n1 lecturers and 1.5n1 total project capacity
which was randomly distributed amongst the projects. The capacity for each lecturer
lk was chosen uniformly at random to lie between the highest capacity of the projects
offered by lk and the sum of the capacities of the projects that lk offers.8 In each set,
we measured the proportion of instances that admit a super-stable matching.

It is worth mentioning that when we varied the tie density on both the students’
and lecturers’ preference lists between 0.1 and 0.5, super-stable matchings were very
elusive, even with an instance size of 100 students. Thus, for the purpose of our
experiment, we decided to choose a low tie density.

4.2.1 Correctness testing

To test the correctness of our algorithm’s implementation, we implemented an Integer
Programming (IP) model for super-stability in spa- st (see Appendix 1) using the
Gurobi optimisation solver in Python (see Footnote 7).We randomly generated 10, 000
spa- st instances, each consisting of 100 students and a constant ratio of projects,
lecturers, project capacities and lecturer capacities as described above. Also, each
student’s preference list was fixed at 10, with a tie density of 0.1. With this setup, we
verified consistency between the outcomes of our implementation of Algorithm SPA-
ST-super and our implementation of the IP-based algorithm in terms of the existence
or otherwise of a super-stable matching.

4.2.2 Experiment 1

In our first experiment, we examined how the length of the students’ preference lists
affects the existence of a super-stable matching. We increased the number of students

8 We remark that the parameter space was chosen to ensure that projects could typically accommodate
more than one student, that the total capacity of the projects exceeded the number of students, and that each
lecturer typically offered multiple projects, without reflecting any specific real-world application.

123

1230 Journal of Combinatorial Optimization (2022) 43:1203–1239

Fig. 5 Proportion of instances that admit a super-stable matching as the size of the instance increases while
varying the length of the preference lists with tie density fixed at 0.005 in both the students’ and lecturers’
preference lists

Table 2 Time (in seconds) for our algorithm’s implementation to terminate averaged over 1000 for each
instance size, with the students’ preference lists length fixed at 50

n1 100 200 300 400 500 600 700 800 900 1000

Time 0.017 0.046 0.082 0.120 0.160 0.203 0.248 0.298 0.349 0.399

n1 while maintaining a constant ratio of projects, lecturers, project capacities and
lecturer capacities as described above. For various values of n1 (100 ≤ n1 ≤ 1000)
in increments of 100, we varied the length of each student’s preference list for various
values of x (5 ≤ x ≤ 50) in increments of 5; and with each of these parameters, we
randomly generated 1000 instances. For all the preference lists, we set tds = tdl =
0.005 (on average, 1 out of 5 students has a single tie of length 2 in their preference
list, and this holds similarly for the lecturers).

The result, which is displayed in Fig. 5, shows that as we varied the length of
the preference list, there was no significant uplift in the number of instances that
admitted a super-stable matching. In most cases, we observed that the proportion of
instances that admit a super-stable matching is slightly higher when the preference list
length is 50 compared to when the preference list length is 5. The result also shows
that the proportion of instances that admit a super-stable matching decreases as the
number of students increases. Further, we recorded the time taken for our algorithm’s
implementation to terminate, and as can be seen in Table 2, for an instance size of 1000
and preference list length 50, the algorithm terminates in approximately 0.4 second.

4.2.3 Experiment 2

In our second experiment, we investigated how the variation in tie density in both
the students’ and lecturers’ preference lists affects the existence of a super-stable
matching. To achieve this, we varied the tie density in the students’ preference lists
tds (0 ≤ tds ≤ 0.05) and the tie density in the lecturers’ preference lists tdl (0 ≤
tdl ≤ 0.05), both in increments of 0.005. For each pair of tie densities in tds × tdl ,

123

Journal of Combinatorial Optimization (2022) 43:1203–1239 1231

Fig. 6 Result for Experiment 2. Each of the coloured square boxes represents the proportion of the 1000
randomly-generated spa- st instances that admit a super-stable matching, with respect to the tie density in
the students’ and lecturers’ preference lists. See the colour bar transition, as this proportion ranges from
dark (100%) to light (0%)

we randomly-generated 1000 spa- st instances for various values of n1 (100 ≤ n1 ≤
1000) in increments of 100. For each of these instances, we maintained the same ratio
of projects, lecturers, project capacities and lecturer capacities as in Experiment 1.
Considering our discussion from Experiment 1, we fixed the length of each student’s
preference list at 50.

The result displayed in Fig. 6 shows that increasing the tie density in both the
students’ and lecturers’ preference lists reduces the proportion of instances that admit
a super-stable matching. In fact, this proportion reduces further as the size of the
instance increases.When ties occur only in the lecturers’ preference lists, we found that
a significantly higher proportion of instances admit a super-stable matching—about
74% of the randomly-generated spa- st instances involving 1000 students admitted a
super-stable matching. The confidence interval for this value is (0.71, 0.77). However,
the reverse is the case when ties occur only in the students’ preference lists. We have
no explanation for this outcome.

123

1232 Journal of Combinatorial Optimization (2022) 43:1203–1239

5 Discussion and concluding remarks

In this paper, we have described a linear-time algorithm to find a super-stablematching
or report that no such matching exists, given an instance of spa- st. We established
that for instances that do admit a super-stable matching, our algorithm produces the
student-optimal super-stable matching, in the sense that each assigned student has the
best project that she could obtain in any super-stable matching. We leave open the
formulation of a lecturer-oriented counterpart to our algorithm.

Further, we carried out an empirical evaluation of our algorithm’s implementation.
The purpose of our experiments was to investigate how the nature of the preference
lists affects the existence (or otherwise) of super-stable matchings in an arbitrary
instance of spa- st. Based on the instances we generated randomly, the experimental
results suggest that as we increase the size of the instance and the density of ties
in the preference lists, the likelihood of a super-stable matching existing decreases.
There was no significant uplift in this likelihood even as we increased the lengths of
the students’ preference lists. When the ties occur only in the lecturers’ preference
lists, we found that a significantly higher proportion of instances admit a super-stable
matching. However, the reverse is the case when the ties occur only in the students’
preference lists.

Given that there are typically more students than lecturers in practical applications,
it could be that only lecturers are permitted to have some form of indifference over
the students that they find acceptable, whilst each student might be able to provide a
strict ordering over what may be a small number of projects that she finds acceptable.
Further evaluation of our algorithm could investigate how other parameters (e.g., the
popularity of some projects, or the position of the ties in the preference lists) affect
the existence of a super-stable matching. It would also be interesting to examine the
existence of super-stable matchings in real spa- st datasets.

From a theoretical perspective, the following are other directions for future work.
Let I be an arbitrary instance of spa- st.

1. Can we formalise the results on the probability of a super-stable matching existing
in I? As mentioned in Section 1, this question has been partially explored for the
Stable Roommates problem (Pittel and Irving 1994).

2. Is there a characterisation of the set of super-stable matchings in I in terms of a
lattice structure? It is known that the set of super-stable matchings in an instance
of smt forms a distributive lattice under the dominance relation (Manlove 2002;
Spieker 1995). To generalise this structural result for spa- st, ideas fromManlove
(2002) and Spieker (1995) would certainly be useful.

Acknowledgements The authors would like to thank Frances Cooper, Kitty Meeks, Patrick Prosser, and
also the anonymous reviewers, for valuable comments that helped to improve the presentation of this paper.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted

123

Journal of Combinatorial Optimization (2022) 43:1203–1239 1233

by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: An IPmodel for super-stability in SPA-ST

A.1 Introduction

In this section, we describe an IP model for super-stability in spa- st. Although a
super-stable matching in an instance of spa- st can be found in polynomial-time
(as illustrated by Theorem 2), our reason for this is purely experimental. Let I be
an instance of spa- st involving a set S = {s1, s2, . . . , sn1} of students, a set P =
{p1, p2, . . . , pn2} of projects and a set L = {l1, l2, . . . , ln3} of lecturers. We construct
an IP model J of I as follows. Firstly, we create binary variables xi, j ∈ {0, 1} (1 ≤
i ≤ n1, 1 ≤ j ≤ n2) for each acceptable pair (si , p j) ∈ S×P such that xi, j indicates
whether si is assigned to p j in a solution or not. Henceforth, we denote by S a solution
in the IP model J , and we denote by M the matching derived from S in the following
natural way: if xi, j = 1 under S then si is assigned to p j in M , otherwise si is not
assigned to p j in M .

A.2 Constraints

In this section, we give the set of constraints to ensure that the assignment obtained
from a feasible solution in J is a matching, and that the matching admits no blocking
pair.
Matching constraints

The feasibility of a matching can be ensured with the following three set of con-
straints.

∑

p j∈Ai

xi, j ≤ 1 (1 ≤ i ≤ n1), (5)

n1∑

i=1

xi, j ≤ c j (1 ≤ j ≤ n2), (6)

n1∑

i=1

∑

p j∈Pk

xi, j ≤ dk (1 ≤ k ≤ n3) . (7)

Note that Inequality (5) ensures that each student si ∈ S is not assigned to more
than one project, while Inequalities (6) and (7) ensure that the capacity of each project
p j ∈ P and each lecturer lk ∈ L is not exceeded.

Given an acceptable pair (si , p j), we define rank(si , p j), the rank of p j on si ’s
preference list, to be r + 1, where r is the number of projects that si prefers to p j .
Clearly, projects that are tied together on si ’s preference list have the same rank. Given
a lecturer lk ∈ L and a student si ∈ Lk , we define rank(lk, si), the rank of si on lk’s
preference list, to be r + 1, where r is the number of students that lk prefers to si .

123

http://creativecommons.org/licenses/by/4.0/

1234 Journal of Combinatorial Optimization (2022) 43:1203–1239

Similarly, students that are tied together on lk’s preference list have the same rank.With
respect to an acceptable pair (si , p j), we define Si, j = {p j ′ ∈ Ai : rank(si , p j ′) <

rank(si , p j)}, the set of projects that si prefers to p j . Let lk be the lecturer who offers

p j . We also define Ti, j,k = {si ′ ∈ L j
k : rank(lk, si ′) < rank(lk, si)}, the set of

students that are better than si on the projected preference list of lk for p j . Finally,
we define Di,k = {si ′ ∈ Lk : rank(lk, si ′) < rank(lk, si)}, the set of students that are
better than si on lk’s preference list.

In what follows, we fix an arbitrary acceptable pair (si , p j) and we enforce con-
straints to ensure that (si , p j) does not form a blocking pair for the matching M .
Henceforth, lk is the lecturer who offers p j .

Blocking pair constraints First, we define θi, j = 1−xi, j −∑
p j ′ ∈Si, j xi, j ′ . Intuitively,

θi, j = 1 if and only if si is unassigned in M , or si prefers p j to M(si) or is indifferent
between them. Henceforth, if (si , p j) forms a blocking for M then we refer to (si , p j)

as a blocking pair of type (i), type (ii) or type (iii), according as (si , p j) satisfies
condition (i), (ii), or (iii) of Definition 2, respectively. We describe the constraints to
avoid these types of blocking pair as follows.

Type (i). First, we create a binary variable α j in J such that if p j is undersubscribed
in M then α j = 1. We enforce this condition by imposing the following constraint.

c jα j ≥ c j −
n1∑

i ′=1

xi ′, j , (8)

where
∑n1

i ′=1 xi ′, j = |M(p j)|. If p j is undersubscribed in M then the RHS of Inequal-
ity (8) is at least 1 and this implies that α j = 1, otherwise α j is not constrained. Next,
we create a binary variable βk in J such that if lk is undersubscribed in M then βk = 1.
We enforce this condition by imposing the following constraint:

dkβk ≥ dk −
n1∑

i ′=1

∑

p j ′ ∈Pk

xi ′, j ′, (9)

where
∑n1

i ′=1

∑
p j ′ ∈Pk xi ′, j ′ = |M(lk)|. If lk is undersubscribed in M then the RHS of

Inequality (9) is at least 1 and this implies that βk = 1, otherwise βk is not constrained.
The following constraint ensures that (si , p j) does not form a type (i) blocking pair
for M .

θi, j + α j + βk ≤ 2 . (10)

Type (ii). We create a binary variable ηk in J such that if lk is full in M then ηk = 1.
We enforce this condition by imposing the following constraint.

dkηk ≥
⎛

⎝1 +
n1∑

i ′=1

∑

p j ′ ∈Pk

xi ′, j ′

⎞

⎠ − dk . (11)

123

Journal of Combinatorial Optimization (2022) 43:1203–1239 1235

If lk is full in M then the RHS of Constraint (11) is at least 1 and this implies that
ηk = 1, otherwise ηk is not constrained. Next, we create a binary variable δi,k in J
such that if si ∈ M(lk), or lk prefers si to a worst student in M(lk) or is indifferent
between them, then δi,k = 1. We enforce this condition by imposing the following
constraint.

dkδi,k ≥
n1∑

i ′=1

∑

p j ′ ∈Pk

xi ′, j ′ −
∑

si ′ ∈Di,k

∑

p j ′ ∈Pk

xi ′, j ′ . (12)

Note that if si ∈ M(lk) or lk prefers si to a worst student in M(lk) or lk is indifferent
between them, then the RHS of Constraint (12) is at least 1 and this implies that
δi,k = 1, otherwise δi,k is not constrained. The following constraint ensures that
(si , p j) does not form a type (ii) blocking pair for M .

θi, j + α j + ηk + δi,k ≤ 3 . (13)

Type (iii). Next we create a binary variable γ j in J such that if p j is full in M then
γ j = 1. We enforce this condition by imposing the following constraint.

c jγ j ≥
(
1 +

n1∑

i ′=1

xi ′, j

)
− c j . (14)

where
∑n1

i ′=1 xi ′, j = |M(p j)|. If p j is full in M then the RHS of Inequality (14) is at
least 1 and this implies that γ j = 1, otherwise γ j is not constrained. Next, we create
a binary variable λi, j,k in J such that if lk prefers si to a worst student in M(p j) or is
indifferent between them, then λi, j,k = 1. We enforce this condition by imposing the
following constraint.

c jλi, j,k ≥
n1∑

i ′=1

xi ′, j −
∑

si ′ ∈Ti, j,k
xi ′, j . (15)

Note that if lk prefers si to a worst student in M(p j) or is indifferent between them,
then the RHS of Inequality (15) is at least 1 and this implies that λi, j,k = 1, otherwise
λi, j,k is not constrained. The following constraint ensures that (si , p j) does not form
a type (iii) blocking pair for M .

θi, j + γ j + λi, j,k ≤ 2 . (16)

123

1236 Journal of Combinatorial Optimization (2022) 43:1203–1239

A.3 Variables

We define a collective notation for each set of variables involved in J as follows:

A = {α j : 1 ≤ j ≤ n2}, Γ = {γ j : 1 ≤ j ≤ n2},
B = {βk : 1 ≤ k ≤ n3}, Δ = {δi,k : 1 ≤ i ≤ n1, 1 ≤ k ≤ n3},
N = {ηk : 1 ≤ k ≤ n3}, X = {xi, j : 1 ≤ i ≤ n1, 1 ≤ j ≤ n2},

Λ = {λi, j,k : 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, 1 ≤ k ≤ n3} .

A.4 Objective function

On one hand, every super-stable matchings are of the same size, and thus nullifies
the need for an objective function. On the other hand, optimization solvers require an
objective function in addition to the variables and constraints in order to produce a
solution. The objective function given below involves maximising the summation of
all the xi, j binary variables.

max
n1∑

i=1

∑

p j∈Ai

xi, j . (17)

Finally, we have constructed an IP model J of I comprising the set of integer-valued
variables A, B, N , X , Γ ,Δ, and Λ, the set of Inequalities (5) - (16) and an objective
function (17). Note that J can then be used to construct a super-stable matching in I ,
should one exist.

A.5 Correctness of the IPmodel

Given an instance I of spa- st formulated as an IP model J using the above transfor-
mation, we present the following lemmas regarding the correctness of J .

Lemma 10 A feasible solution S to J corresponds to a super-stable matching M in I .

Proof Assume firstly that J has a feasible solution S. Let M = {(si , p j) ∈ S × P :
xi, j = 1} be the assignment in I generated from S. We note that Inequality (5) ensures
that each student is assigned in M to at most one project. Moreover, Inequalities (6)
and (7) ensures that the capacity of each project and lecturer is not exceeded in M .
Thus M is a matching. We will prove that Inequalities (8) - (16) ensures that M admits
no blocking pair.

Suppose for a contradiction that there exists some acceptable pair (si , p j) that
forms a blocking pair for M , where lk is the lecturer who offers p j . This implies that
either si is unassigned in M or si prefers p j to M(si) or is indifferent between them.
Thus

∑
p j ′ ∈Si, j xi, j ′ = 0. Moreover, since si is not assigned to p j in M , we have that

xi, j = 0. Thus θi, j = 1.
Now suppose (si , p j) forms a type (i) blocking pair for M . Then each of p j and lk

is undersubscribed in M . Thus
∑n1

i ′=1 xi ′, j < c j and
∑n1

i ′=1

∑
p j ′ ∈Pk xi ′, j ′ < dk . This

123

Journal of Combinatorial Optimization (2022) 43:1203–1239 1237

implies that the RHS of Inequality (8) and the RHS of Inequality (9) is strictly greater
than 0. Moreover, since S is a feasible solution to J , α j = βk = 1. Hence, the LHS
of Inequality (10) is strictly greater than 2, a contradiction to the feasibility of S.

Now suppose (si , p j) forms a type (ii) blocking pair for M . Then p j is undersub-
scribed in M and as explained above, α j = 1. Also, lk is full in M and this implies that
the RHS of Inequality (11) is strictly greater than 0. Since S is a feasible solution, we
have that ηk = 1. Furthermore, either si ∈ M(lk) or lk prefers si to a worst student in
M(lk) or lk is indifferent between them. In any of these cases, the RHS of Inequality
(12) is strictly greater than 0. Thus δi,k = 1, since S is a feasible solution. Hence the
LHS of Inequality (13) is strictly greater than 3, a contradiction to the feasibility of S.

Finally, suppose (si , p j) forms a type (iii) blocking pair for M . Then p j is full in
M and thus the RHS of Inequality (14) is strictly greater than 0. Since S is a feasible
solution, we have that γ j = 1. In addition, lk prefers si to a worst student in M(p j)

or is indifferent between them. This implies that the RHS of Inequality (15) is strictly
greater than 0. Thus λi, j,k = 1, since S is a feasible solution. Hence the LHS of
Inequality (16) is strictly greater than 2, a contradiction to the feasibility of S. Hence
M admits no blocking pair; and hence, M is a super-stable matching in I . ��
Lemma 11 A super-stable matching M in I corresponds to a feasible solution S to J .

Proof Let M be a super-stable matching in I . First we set all the binary variables
involved in J to 0. For each (si , p j) ∈ M , we set xi, j = 1. Since M is a matching,
it is clear that Inequalities (5) - (7) is satisfied. For any acceptable pair (si , p j) ∈
(S ×P)\M such that si is unassigned in M or si prefers p j to M(si) or is indifferent
between them, we set θi, j = 1. For any project p j ∈ P such that p j is undersubscibed
in M , we set α j = 1 and thus Inequality (8) is satisfied. For any lecturer lk ∈ L such
that lk is undersubscribed in M , we set βk = 1 and thus Inequality (9) is satisfied.

Now, for Inequality (10) not to be satisfied, its LHS must be strictly greater than 2.
This would only happen if there exists some (si , p j) ∈ (S × P)\M , where lk is the
lecturer who offers p j , such that θi, j = 1, α j = 1 and βk = 1. This implies that either
si is unassigned in M or si prefers p j to M(si) or is indifferent between them, and
each of p j and lk is undersubscribed in M . Thus (si , p j) forms a type (i) blocking pair
for M , a contradiction to the super-stability of M . Hence, Inequality (10) is satisfied.

For any lecturer lk ∈ L such that lk is full in M , we set ηk = 1. Thus Inequality (11)
is satisfied. Let (si , p j) be an acceptable pair such that p j ∈ Pk and (si , p j) /∈ M .
If si ∈ M(lk) or lk prefers si to a worst student in M(lk) or is indifferent between
them, we set δi,k = 1. Thus Inequality (12) is satisfied. Suppose Inequality (13) is not
satisfied. Then there exists (si , p j) ∈ (S ×P)\M , where lk is the lecturer who offers
p j , such that θi, j = 1, α j = 1, ηk = 1 and δi,k = 1. This implies that either si is
unassigned in M or si prefers p j to M(si) or is indifferent between them. In addition,
p j is undersubscribed in M , lk is full in M and either si ∈ M(lk) or lk prefers si to
a worst student in M(lk) or is indifferent between them. Thus (si , p j) forms a type
(ii) blocking pair for M , a contradiction to the super-stability of M . Hence Inequality
(13) is satisfied.

Finally, for any project p j ∈ P such that p j is full in M , we set γ j = 1. Thus
Inequality (14) is satisfied. Let lk be the lecturer who offers p j and let (si , p j) be an
acceptable pair. If lk prefers si to a worst student in M(p j) or is indifferent between

123

1238 Journal of Combinatorial Optimization (2022) 43:1203–1239

them, we set λi, j,k = 1. Thus Inequality (15) is satisfied. Suppose Inequality (16)
is not satisfied. Then there exists some (si , p j) ∈ (S × P)\M such that θi, j = 1,
γ j = 1 and λi, j,k = 1. This implies that either si is unassigned in M or si prefers p j

to M(si) or is indifferent between them. In addition, p j is full in M and lk prefers si
to a worst student in M(p j) or is indifferent between them. Thus (si , p j) forms a type
(iii) blocking pair for M , a contradiction to the super-stability of M . Hence, Inequality
(16) is satisfied. Hence S, comprising the above assignments of values to the variables
in A ∪ B ∪ N ∪ X ∪ Γ ∪ Δ ∪ Λ, is a feasible solution to J . ��

The following theorem is a consequence of Lemmas 10 and 11 .

Theorem 4 Let I be an instance of spa- st and let J be the IPmodel for I as described
above.A feasible solution to J corresponds to a super-stablematching in I .Conversely,
a super-stable matching in I corresponds to a feasible solution to J .

References

Abraham DJ, Irving RW, Manlove DF (2007) Two algorithms for the student-project allocation problem. J
Discrete Algorithms 5(1):79–91

Abu El-Atta AH, Moussa MI (2009) Student project allocation with preference lists over (student,project)
pairs. In: Proceedings of ICCEE 09: the 2nd international conference on computer and electrical
engineering. IEEE, pp 375–379

Anwar AA, Bahaj AS (2003) Student project allocation using integer programming. IEEE Trans Educ
46(3):359–367

Brassard G, Bratley P (1996) Fundamentals of algorithmics. Prentice-Hall, London
Calvo-Serrano R, Guillén-Gosálbez G, Kohn S, Masters A (2017) Mathematical programming approach

for optimally allocating students’ projects to academics in large cohorts. Educ Chem Eng 20:11–21
Chiarandini M, Fagerberg R, Gualandi S (2019) Handling preferences in student-project allocation. Ann

Oper Res 275(1):39–78
Cooper F, Manlove DF (2018a) A 3/2-approximation algorithm for the student-project allocation problem.

In: Proceedings of SEA’18: the 17th international symposium on experimental algorithms, volume
103 of Leibniz international proceedings in informatics (LIPIcs), pp 8:1–8:13

Cooper F, Manlove DF (2018b) A 3/2-approximation algorithm for the student-project allocation problem.
CoRR. arXiv:1804.02731

Harper PR, de Senna V, Vieira IT, Shahani AK (2005) A genetic algorithm for the project assignment
problem. Comput Oper Res 32:1255–1265

Irving RW (1994) Stable marriage and indifference. Discrete Appl Math 48:261–272
IrvingRW,ManloveDF, Scott S (2000) The hospitals/residents problemwith Ties. In: Proceedings of SWAT

’00: the 7th Scandinavian workshop on algorithm theory, volume 1851 of lecture notes in computer
science. Springer, pp 259–271

Irving RW, Manlove DF, Scott S (2003) Strong stability in the hospitals/residents problem. In: Proceedings
of STACS ’03: the 20th annual symposium on theoretical aspects of computer science, volume 2607
of lecture notes in computer science. Springer, pp 439–450

Iwama K, Manlove D, Miyazaki S, Morita Y (1999) Stable marriage with incomplete lists and ties. In: Pro-
ceedings of ICALP’99: the 26th international colloquium on automata, languages, and programming,
volume 1644 of lecture notes in computer science. Springer, pp 443–452

Iwama K, Miyazaki S, Yanagisawa H (2012) Improved approximation bounds for the student-project allo-
cation problem with preferences over projects. J Discrete Algorithms 13:59–66

IsmailiA,YahiroK,YamaguchiT,YokooM(2019) Student-project-resourcematching-allocation problems:
two-sided matching meets resource allocation. In: Proceedings of AAMAS’19: the 18th international
conference on autonomous agents and multiagent systems, pp 2033–2035

Kazakov D (2001) Co-ordination of student-project allocation. Manuscript, University of York, Department
of Computer Science. Available from http://www-users.cs.york.ac.uk/kazakov/papers/proj.pdf (last
accessed 12 April 2020)

123

http://arxiv.org/abs/1804.02731
http://www-users.cs.york.ac.uk/kazakov/papers/proj.pdf

Journal of Combinatorial Optimization (2022) 43:1203–1239 1239

Kwanashie A, Irving RW, Manlove DF, Sng CTS (2015) Profile-based optimal matchings in the student–
project allocation problem. In: Proceedings of IWOCA’14: the 25th international workshop on
combinatorial algorithms, volume 8986 of lecture notes in computer science. Springer, pp 213–225

Manlove DF (2002) The structure of stable marriage with indifference. Discrete Appl Math 122(1–3):167–
181

Manlove DF (2013) Algorithmics of matching under preferences. World Scientific, Singapore
Manlove DF, Irving RW, Iwama K, Miyazaki S, Morita Y (2002) Hard variants of stable marriage. Theor

Comput Sci 276(1–2):261–279
Manlove DF, Milne D, Olaosebikan S (2018) An integer programming approach to the student-project

allocation problem with preferences over projects. Lecture notes in computer science, vol 10856.
Springer, pp 313–325

Manlove DF, O’Malley G (2008) Student project allocation with preferences over projects. J Discrete
Algorithms 6:553–560

Olaosebikan S, Manlove D (2018) Super-stability in the student-project allocation problem with ties. In:
Proceedings of COCOA’18: the 12th annual international conference on combinatorial optimization
and applications, volume 11346 of lecture notes in computer science. Springer, pp 357–371

Pittel BG, Irving RW (1994) An upper bound for the solvability probability of a random stable roommates
instance. Random Struct Algorithms 5:465–486

Roth AE (1984) The evolution of the labor market for medical interns and residents: a case study in game
theory. J Polit Econ 92(6):991–1016

Roth AE (1990) New physicians: a natural experiment in market organization. Science 250:1524–1528
Roth AE (1991) A natural experiment in the organization of entry levellabor markets: regional markets for

new physicians and surgeons inthe U.K. Am Econ Rev 81:415–440
Spieker B (1995) The set of super-stablemarriages forms a distributive lattice. Discrete ApplMath 58:79–84

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Super-stability in the student-project allocation problem with ties
	Abstract
	1 Introduction
	2 Preliminary definitions and results
	2.1 Formal definition of SPA-S
	2.2 Ties in the preference lists
	2.3 Cloning from spa-st-.4 to hrt-.4 does not work in general

	3 An algorithm for SPA-ST under super-stability
	3.1 Definitions relating to the algorithm
	3.2 Description of the algorithm
	3.3 Example algorithm execution
	3.4 Correctness of algorithm SPA-ST-super
	3.5 Properties of super-stable matchings in spa-st

	4 Empirical evaluation
	4.1 Datasets
	4.2 Experimental setup
	4.2.1 Correctness testing
	4.2.2 Experiment 1
	4.2.3 Experiment 2

	5 Discussion and concluding remarks
	Acknowledgements
	Appendix A: An IP model for super-stability in SPA-ST
	A.1 Introduction
	A.2 Constraints
	A.3 Variables
	A.4 Objective function
	A.5 Correctness of the IP model

	References

