

Zhou, X. and Keoh, S. L. (2020) Deployment of Facial Recognition Models at the Edge:

a Feasibility Study. In: 2020 21st Asia Pacific Network Operations and Management

Symposium (APNOMS), Daegu, South Korea, 23-25 Sep 2020, ISBN

9788995004388 (doi:10.23919/APNOMS50412.2020.9236972)

There may be differences between this version and the published version. You are

advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/221589/

Deposited on 3 August 2020

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.23919/APNOMS50412.2020.9236972
http://eprints.gla.ac.uk/221589/
http://eprints.gla.ac.uk/

Deployment of Facial Recognition Models at the
Edge: A Feasibility Study

Xihao Zhou
School of Computing Science

University of Glasgow, UK
2427216Z@student.gla.ac.uk

Sye Loong Keoh
School of Computing Science

University of Glasgow, UK
SyeLoong.Keoh@glasgow.ac.uk

Abstract—Model training and inference in Artificial Intelli-
gence (AI) applications are typically performed in the cloud.
There is a paradigm shift in moving AI closer to the edge,
allowing for IoT devices to perform AI function onboard without
incurring network latency. With the exponential increase of edge
devices and data generated, capabilities of cloud computing
would eventually be limited by the bandwidth and latency of
the network. To mitigate the potential risks posed by cloud
computing, this paper discusses the feasibility of deploying
inference onboard the device where data is being generated.
A secure access management system using MobileNet facial
recognition was implemented and the preliminary results showed
that the deployment at the edge outperformed the cloud deploy-
ment in terms of overall response speed while maintaining the
same recognition accuracy. Thus, management of the automated
deployment of inference models at the edge is required.

Index Terms—machine learning, edge computing, artificial
intelligence, facial recognition, security access management

I. INTRODUCTION

The number of connected Internet of Things (IoT) devices
is anticipated to reach over 50 billion by the end of 2020 [3].
IoT devices range from basic sensor and actuator nodes that
log and report data collected for cloud processing, to edge
devices with the capability of processing and analysing the
collected information. With the advances in modern comput-
ing technologies, Artificial Intelligence (AI) has been slowly
integrated into these devices, from smart home appliances to
autonomous vehicles. AI is one of the de-facto paradigm used
to intelligently process raw data collected from those devices
to produce prediction outputs without the need to program it
explicitly. To assist the process of developing AI applications,
one of the most commonly used methods is Machine Learning
(ML) algorithms such as deep learning [13].

Traditionally, AI and ML have primarily been performed
on servers and high-performance machines with powerful
Graphics Processing Units (GPU) [8]. At the moment, cloud
computing is the most common solution in providing the
necessary computing power, having devices to send the gen-
erated data to a remote server for centralised processing.
However, cloud computing does come with several flaws, such
as dependency on a strong network connectivity and potential
security issues to protect the confidentiality and integrity of
sensitive data.

The volume of data produced by edge devices had skyrock-
eted in recent times, with more data generated in the past

two years than in the entire human history before that. It is
estimated that around 1.7 Megabytes of new data is created
every second for every human on the planet. Transmitting a
vast amount of raw data to be processed in the cloud can be a
bottleneck due to the heavy reliance on the bandwidth of the
network. It is extremely resource intensive to stream real time
data to the cloud platforms to perform AI and ML functions,
thus, network latency is almost inevitable.

This paper proposes a new approach to mitigate the afore-
mentioned issues by moving the computation from the cloud
closer to the network’s edge, where the data is being generated.
This motivates the emergence of a new computing paradigm,
edge computing, which improves computation efficiency and
reduces overall latency. Moreover, it provides greater control
over data generated by the edge devices, offering better
privacy and security over cloud computing. With the ability
to run inference engine on edge devices, incremental machine
learning can be further optimised such that newly acquired
data can be sent to the cloud for training in batches, and the
re-trained inference model is then securely deployed onto the
edge devices. With edge intelligence, devices are granted the
ability to take control of the communication management and
their own data, thus improving quality and accuracy as well
as reducing the possibility of delayed response due to network
latency. One of the major advantages of edge intelligence is
having the ability to make an instant decision at the source of
where the data is created. Using a secure access management
system as a use case, we developed a facial recognition system
based on Tensorflow Lite and conducted extensive experiments
on both the edge with a Tensor Processing Unit (TPU) and the
cloud, to evaluate their performance in terms of recognition
rate, inference speed and network latency.

This paper is organised as follows: Section II presents
related work in edge intelligence. Section III describes the
proposed management architecture for AI at the edge, while
Section IV details the implementation of secure access man-
agement using facial recognition at the edge. Section V
presents the performance evaluation, and finally we conclude
the paper with future works in Section VI.

II. RELATED WORK

One of the major applications of edge computing is the
implementation of IoT sensors by the manufacturing industries

to monitor and control manufacturing processes and systems.
This facilitates the automation of manufacturing processes
including mechanical systems. IoT sensors are installed to
monitor dust, humidity and temperature within the plant via
RFID. This system provides real-time data to identify how
each and every part of electronics are assembled and stored and
also to monitor the time taken to complete each process [10]. It
has helped the company to establish 75% coverage of the plant
via the RFID-based monitoring system, saving the company
more than 5,000 man-hours per year. However, data collected
from sensors are being transmitted and processed in the cloud.

Cloud computing is still the most popular and prominent
method for AI applications. Large support for AI and ML
platforms provides a flexible and open environment making
it easier to collect and load datasets for AI systems directly
from the cloud-based data warehouse and data storage services
offered by the cloud platform providers. The major challenge
of this method is the movement of a large amount of data from
the point of generation to a cloud-based data warehouse for
the development of AI systems [7]. It is usually more difficult
to move this amount of data to a centralized data center due
to bandwidth limitations, cost, and latency issues.

AI models can be trained in the cloud and later deployed
onto devices to be executed closer to the data being pro-
duced [18]. Another approach is to train AI models on the
edge device itself on the basis of the data flowing through the
device. While both of these methods aid in reducing latency
issues, they can give rise to issues concerning accuracy. The
development and training of dataset to achieve highly accurate
AI models integrated within edge devices can pose challenges
due to the fact that they are built for low power and low cost,
thus limiting the amount of data that can be analysed onboard.

Several hardware accelerators are available to enable the
execution of AI inference engine on edge and mobile devices
with limited computation resources. Google Coral [4], Intel
Neural Compute Stick [6] and Nvidia Jetson [12] are hardware
platform designed to enhance AI performance on the edge.
These accelerators contain specialised chips built to perform
AI inference, while attached to an edge or mobile device, this
can effectively offload the computation needs for AI operations
from the device’s CPU onto the accelerator.

One prominent example of deploying AI on the edge is
the use of biometrics as a form of identification to unlock
smartphones. Most if not all smartphones in the market uses
some type of biometrics identification such as fingerprint
recognition or facial recognition as part of its unlocking
mechanism. However, such models are able to run on smart-
phones as it was designed to recognise and identify a small
number of identities, for most cases, the system is only able
to store the identity of the phone owner only. Furthermore,
smartphones nowadays have relatively strong computational
power as compared to simple IoT devices, allowing it to run
simple AI applications with ease.

It has been shown that object detection models can be
deployed onboard Unmanned Aerial Vehicles (UAV) with an
embedded edge device [13]. Several object detection models

Fig. 1. Facial Recognition at the Edge.

were used in the experiment, namely, YOLO [14], an advanced
computer vision framework that is optimized for object detec-
tion and DroNet [9], an efficient real-time detector for UAVs.
The models were trained to detect vehicles and pedestrians
on the road, key performance indicators includes frames per
second (FPS) and accuracy of the model. The embedded edge
device used was Odriod XU4 which has a 2GHz Octo core
CPU, 2GB of RAM and deployed on a Linux based operating
system. Most of the DroNet models used were able to achieve
a decent FPS of 4 - 9 and accuracy of over 80%, concluding
that AI at the edge is feasible.

III. ARTIFICIAL INTELLIGENCE AT THE EDGE

Facial recognition is one of the most popular methods
for biometric identification as it is fast and relatively easy
to implement. It has been deployed in many application
areas such as a simple usage of unlocking mobile phones,
secure visitor registration, access management and attendance
taking in classrooms. In recent years, this technology has
been utilised for security purposes like video surveillance in
sensitive or restricted areas to detect unauthorised personnel
and identification of wanted criminals in the public.

The core technology behind facial recognition systems is
AI. There are multiple well established AI algorithms that
can accurately detect and identify faces from an image or
video. With AI, a model can be trained to recognise faces for
identification and authentication purposes. In most scenarios,
real time recognition is necessary for efficiency and security
reasons. With that, having a facial recognition and identifica-
tion system on edge devices is highly desirable.

A. Secure Access Management Use Case

Figure 1 shows an example deployment of facial recognition
system at the edge to enable secure access management. In
this simple deployment architecture, both the IoT camera
and the smart door or gantry are connected together in a
local network, while there is a cloud database that is used
to store metadata of access requests, to facilitate re-training
of the facial recognition model. The main edge device in the
system is the IoT camera which will perform the key system
operations such as data processing and facial recognition.

Fig. 2. Continuous Deployment of AI Inference Model on the Edge.

In this application use case, when a user requests to enter
a building, photo(s) of the user is taken by the IoT camera
and then processed to ensure that the photo is readable by
the facial recognition model on the edge device. An authenti-
cation decision is made locally by the IoT camera using the
inference with the deployed facial recognition model. Access
is granted if the user can be recognised and authenticated, and
subsequently triggers an action on the smart door or gantry.

B. Continuous Deployment of Inference Model

In the cloud deployment, the inference model is always
updated. On the contrary, for edge deployment, the inference
model at the edge devices must be managed to ensure that
critical security updates and inference ability are updated
periodically. The ability to constantly re-train and update the
facial recognition model is hence an important consideration
in order to build a robust system. Figure 2 shows the process
flow the continuous deployment of AI model. When an user
(not known to the system) enters the building for the first
time, the metadata of the visit will be sent to the database,
identifying that it is a new visitor. The machine used to train
the facial recognition model will fetch the data of new visitors
and use relevant data such as the photos taken and the name
of the visitor to retrain the facial recognition model so that the
person will be recognised by the system for future visits. After
the training is done, the updated model will then be deployed
to the IoT camera.

C. Development of Facial Recognition Model at the Edge

As there are many facial recognition models that can be
used, it is important to first develop and evaluate facial
recognition models in order to identify the most applicable
model to be deployed on an edge device. The development of
AI model is divided into several steps: Data Acquisition, Data
Preparation, Model Selection, Training, and Evaluation.

1) Data Acquisition: Three datasets were selected to de-
velop the facial recognition model, including two public
datasets, VGG Face2 [1] and CASIA-WebFace [17], as well
as a private dataset. Table I shows the metadata of both
public datasets, the VGG Face2 dataset is one of the largest
public datasets available online with a large amount of unique
identities and a high number of samples per identity. CASIA-
WebFace is significantly smaller than VGG Face2, however,
it contains more identities with a smaller number of samples
per identity. The private dataset consisted of photos obtained
from university students. This private dataset was made up

TABLE I
METADATA OF PUBLIC DATASETS

Dataset
Name

Number
of

Identities

Number
of Photos

Average
Sample
Size per
Identity

Dataset
Size (GB)

VGGFace2 8631 3,124,422 362 36
CASIA-WebFace 10,575 494,414 46 4.9

Fig. 3. Data Preparation Steps.

of photo shots with the consent of the subjects and personal
photos provided by the subjects.

2) Data Preparation: Figure 3 shows the data preparation
process for the development of facial recognition model. The
identified faces in the dataset are extracted and then facial
alignment is performed. This acts as a form of normalisation
of the data, ensuring that they are uniformed. The images are
then encoded into a three dimensional array object that can be
used to train the AI model. All encode images are then merged
into a list of array object and data splitting is performed to
divide the data into two unique sets, one is used for model
training and the other for model testing or validation.

TABLE II
BASE MODEL INFORMATION

Base Model Name Number of Layers Number of Parameters
SimpleNet 6 134,528
InceptionResNetV2 572 55,873,736
InceptionV3 159 23,851,784
Xception 126 22,910,480
MobileNet 88 4,253,864
MobileNetV2 88 3,538,984

3) Model Selection: Six base models were put to test in
order to evaluate their accuracy and efficiency. Table II shows
some basic information of the base models such as number of
layers and parameters, amongst the six models, five are pre-
existing model proven to be efficient in object recognition and
image classification tasks. Of which, there are highly dense
models namely, InceptionResNetV2 [15], InceptionV3 [16]
and Xception [2]. MobileNet and MobileNetV2 [5] are op-
timised models built to ensure smooth AI operations when

deployed on the edge and mobile devices. Finally, a custom
model called SimpleNet, which contains a simple convolutional
and max pooling layer were used as part of the selection as
illustrated in Table III.

TABLE III
BASE MODEL STRUCTURE OF SIMPLENET

Layer Input Shape Output Shape Parameters
Conv2D 1 160 x 160 x 3 160 x 160 x 256 3328
MaxPooling2D 1 160 x 160 x 256 80 x 80 x 256 0
Dropout 1 80 x 80 x 256 80 x 80 x 256 0
Conv2D 2 80 x 80 x 256 80 x 80 x 128 131200
MaxPooling2D 2 80 x 80 x 128 40 x 40 x 128 0
Dropout 2 40 x 40 x 128 40 x 40 x 128 0

4) Model Training and Hyper Parameter Optimisation:
During the model training phase, parameters such as loss and
accuracy are used to monitor the performance of the model.
The loss of a model indicates the number of errors made during
the training, thus, the lower the loss the better the model.
On the other hand, the accuracy during training determines
the number of correct prediction the model made using the
training dataset, percentage values are produced, and a higher
accuracy is desirable. The loss and accuracy values are co-
related to each other, a lower loss means a higher accuracy,
and vice versa.

Hyper-parameters such as the batch size and epoch are used
to fine-tune the model. It is important to tune the training
epoch, which is the number of times the training dataset
iterates through the training model. Running too little epochs
will produce a model with poor performance, while running
too many epochs might result in over-fitting when the model
starts to learn from statistical noise within the dataset. Batch
size is the number of samples being passed to the training
model during each iteration of a training run. Having a too
small or too large batch size will both affect the training
effectiveness.

IV. USE CASE IMPLEMENTATION

A. Implementation Framework and Hardware

TensorFlow was used as the main framework to implement
the facial recognition model due to its ability to be deployed
on a variety of platforms, especially its support for edge
devices and AI accelerators with TensorFlow Lite. Moreover,
TensorFlow also has native integration with Keras API, which
is very useful for building deep learning models. Other than
TensorFlow, Scikit Learn was also used for the Triplet Loss
models.

As for the edge device, the secure access management
system was built using a Raspberry Pi B+ device, with
a camera attached. Coral Accelerator which has TPU was
chosen for its native support for TensorFlow and ease of model
conversion and deployment. This setup was used for the facial
recognition model evaluation and the deployment of the secure
access management system.

B. Model Training

While performing the training of facial recognition models,
the optimal batch sizes selected were 128, 64 and 16 for the
VGG Face2, CASIA-WebFace and the private set we collected
respectively. Tensorboard [11] was used to monitor and visu-
alise the number of epochs affecting the training results. It is
observed that 50 epochs is the optimal number that will not
cause overfitting and produced the best models.

Early stopping was another fail-safe mechanism that was
put in place to avoid overtraining of the model and reduced
overall training time. The TensorFlow Keras library provides
a built in early stopping function that can be used, it uses
the loss value to monitor the training progress. Whenever the
loss value stops getting better for 10 consecutive epochs, the
training will be stopped and the epoch with the best weights
will be saved.

C. Model Conversion for Edge Deployment

Model conversion was needed so that they can be deployed
onto the Raspberry Pi and the Coral Accelerator. Two con-
versions had to be performed, first the regular TensorFlow
model was converted to a TensorFlow Lite model which can
be used on the Raspberry Pi. This was executed using the
Python TensorFlow Lite library. Next, the regular TensorFlow
was converted to a quantised TensorFlow Lite model where
quantisation is a process of converting 32-bit floating-point
numbers to the nearest 8-bit fixed-point numbers. This was
done so that the quantised TensorFlow Lite model can be
converted to a Edge TPU model which the Coral Accelerator
can read. The conversion to Edge TPU model was performed
using the Edge TPU Compiler tool by Google.

After all the conversions, three new models were created
for the deployment of facial recognition system on the cloud
(regular TensorFlow model), Raspberry Pi (TensorFlow Lite
model), and Raspberry Pi with TPU (Edge TPU model). All
models were able to go through the conversion process other
than models created using SimpleNet.

V. EVALUATION AND RESULTS

This section presents the evaluation of the base models with
Triplet Loss on different platforms in terms of model accuracy,
inference speed, and size of the model.

A. Model Accuracy and Inference Speed

Figure 4 illustrates the results of accuracy and inference
speed of regular Tensorflow, Tensorflow Lite and Edge TPU
when they are deployed on a laptop vs. Raspberry Pi. It is
observed that most models were able to achieve an accuracy
of over 80%.Accuracy of the models were maintained after
converting to the TensorFlow Lite format. As for the Edge
TPU, there was a slight decrease in accuracy due to the
quantisation process of the models when converting to the
Edge TPU format. With Triplet Loss, most models were
not affected much with a slight decrease in accuracy of
around 1 – 3%, with the exception of Xception where a 22%
decrease in accuracy was observed. InceptionV3, MobileNet,

Fig. 4. Tensorflow with Triplet Loss: (a) Regular Tensorflow (b) Tensorflow Lite (c) Edge TPU

TABLE IV
SUMMARY OF EACH MODEL’S INFERENCE SPEED, ACCURACY AND SIZE WHEN DEPLOYED ON THE RASPBERRY PI

TF Lite Edge TPU
Speed

(s) Accuracy Size
(MB)

Speed
(s) Accuracy Size

(MB)
SimpleNet 00.486 0.73 69.20 - - -
InceptionResNetV2 01.807 0.91 207.00 01.433 0.72 54.3
InceptionV3 00.711 0.88 83.70 00.491 0.88 22
Xception 01.188 0.91 80.00 00.504 0.72 22.2
MobileNet 00.233 0.93 12.50 00.051 0.94 3.5
MobileNetV2 00.190 0.66 8.80 00.059 0.65 2.9

and MobileNetV2 models are the most consistent in terms of
accuracy for all three formats. There was no change in the
accuracy when models were tested on the Raspberry Pi.

In terms of inference speed, it is evident that the Triplet
Loss are slower than the Softmax, this is due fact that Triplet
Loss models require one extra round of inference with the
SVM models. Even so, the difference in speed were relatively
minor for TensorFlow Lite and Edge TPU. Amongst the three
formats, it was clear that the Edge TPU models are the
fastest with an average of 32% improvement in speed when
compared to Tensorflow Lite and 45% when compared to
regular TensorFlow. At the same time, a noticeable distinction
between the speed of regular models and edge optimised
models like MobileNet and MobileNetV2 can be seen. Since
the edge optimised models were designed to operate efficiently
on CPUs with lesser computing power, inference speed were
relatively faster as well. As expected, inference speed of
models when running on the Raspberry Pi is much slower than
running on Laptop, this is particularly true for the TensorFlow
Lite models. However, it can be observed that the decrease in
speed was more apparent for models with more layers. Edge
optimised models were not affected as much, especially for
the Edge TPU, since most of the inference functions were
offloaded to the Coral Accelerator.

B. Model Size

Table IV shows the sizes of the various models on Ten-
sorflow Lite and Edge TPU. The initial size of the regular
Tensorflow was relatively large, especially for the models not
optimised for the edge devices. After conversion to Tensor-
Flow Lite, the size decreased by an average of 67% across
the board. The most significant decrease can be seen when
the base models were converted to run on Edge TPU with

an average of 74% reduction in size from the Tensorflow Lite.
Edge optimised models, e.g., MobileNet and MobileNetV2 can
be reduced to less than 5 MBs, making them highly feasible
for edge deployment.

C. Deployment for Secure Access Management

The evaluation results have revealed that MobileNet is the
best model to be used as it outperformed others in terms of
inference speed and accuracy on the Raspberry Pi with a Coral
Edge Accelerator. It achieved 94% recognition accuracy and
recorded the fastest inference speed at only 0.051 seconds per
image when running on the Edge TPU. In terms of size, only
MobileNetV2 was slightly smaller, even though its speed was
comparable with MobileNet, but its accuracy was the worst
amongst all.

We have deployed a secure access management system
using MobileNet on the cloud using the regular Tensorflow,
as well as on a Raspberry Pi with Coral Accelerator using
the Edge TPU. Further system evaluations were conducted
to compare the performance of real-time facial recognition
between cloud and the edge. In this case, the private dataset
collected was used, in which ten test subjects were part of
the training data, while another two subjects were unknown.
Each participant was tasked to use the system ten times in a
random order. This process was carried out for both the edge
and cloud deployment.

1) System Accuracy: Table V shows the average results
for the 120 tests performed on each deployment method. It
is observed that there was a huge drop in the accuracy of
the models when real time facial recognition was performed,
from the initial 93% on the static dataset to around 64%. The
decrease in the accuracy was most likely due to two main
factors: quality of the photos taken by the Raspberry Pi camera

TABLE V
EVALUATION RESULTS FOR BOTH DEPLOYMENT METHODS

Accuracy Inference Speed
(s)

System
Response Speed

(s)
Cloud Deployment 0.62 0.418 2.891
Edge Deployment 0.64 0.036 0.036

and the lighting conditions. Most of the images in the training
dataset were taken using a mobile phone with a high resolution
camera. There was no major difference in terms of accuracy
on both cloud and edge.

2) Inference Speed: On the other hand, a significant dif-
ference in inference speed can be observed between cloud
and edge. The deployment on the edge was around 70 times
faster than deployment on the cloud. This is attributed to
two main reasons: namely, boost in speed due to the Coral
Accelerator and network latency. As can be seen in Table
IV, the inference speed on Edge TPU is significantly faster
than the regular Tensorflow by 55% since most of the AI
operations were offloaded to the Coral Accelerator. Network
latency seems to have affected the overall response speed
for the cloud deployment. The actual inference speed of the
facial recognition model on the cloud server was 0.418s which
was already much slower than the inference speed on the
RaspberryPi. With The actual response speed was 2.891s by
the cloud, this means that approximately 2s were spent on
network communication.

VI. CONCLUSIONS

This paper has shown that it is feasible to deploy AI appli-
cations and systems onto edge devices, to mitigate concerns of
using cloud platform that mainly revolves around bandwidth
limitations and network latency. Edge computing has emerged
recently to tackle these issues, by moving processing of data to
where it is being generated. Our work has taken a step further
by having AI applications deployed solely on edge devices to
create a truly intelligent edge.

After an extensive evaluation of different facial recognition
systems and the ability to convert them for edge deployment,
we have also shown that a security access management system
using facial recognition as authentication, executed at the
edge was able to function efficiently and make predictions
accurately on edge platforms.

In order to ensure robustness of the systems with AI at
the edge, the process of continuous deployment for facial
recognition model must be automated. Currently, the process
involves multiple elements that require human intervention,
such as running the program to retrain the model with data of
new visitors and deploying the updated model onto the edge
device. Automation and managing continuous deployment of
AI inference engine must be implemented, to ensure the
security and integrity of the inference models deployed.

Finally, as there are six levels of edge intelligence as
conceptualized by [19]. The proposed study has only managed
to achieve level 3 where AI inference is performed on the edge,

with the model training done in the cloud. In the future, it is
expected that model training will be feasible on the edge, so
that it can be truly independent from the cloud. This will be
very challenging due to the limited computation and storage
capabilities of edge devices, nonetheless there are already
ongoing research to make this possible by having distributed
and federated learning across multiple edge devices.

REFERENCES

[1] Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and Andrew Zisser-
man. Vggface2: A dataset for recognising faces across pose and age. In
2018 13th IEEE International Conference on Automatic Face & Gesture
Recognition (FG 2018), pages 67–74. IEEE, 2018.

[2] François Chollet. Xception: Deep learning with depthwise separable
convolutions. CoRR, abs/1610.02357, 2016.

[3] Dave Evans. The internet of things: How the next evolution of the
internet is changing everything. 2011.

[4] Google. Google coral. https://coral.ai/.
[5] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,

Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

[6] Intel. Intel neural compute stick. https://software.intel.com/en-us/neural-
compute-stick.

[7] Fatemeh Jalali, Olivia J Smith, Timothy Lynar, and Frank Suits. Cogni-
tive iot gateways: automatic task sharing and switching between cloud
and edge/fog computing. In Proceedings of the SIGCOMM Posters and
Demos, pages 121–123. 2017.

[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 25, pages 1097–1105. Curran
Associates, Inc., 2012.

[9] Christos Kyrkou, George Plastiras, Theocharis Theocharides, Stylianos I
Venieris, and Christos-Savvas Bouganis. Dronet: Efficient convolutional
neural network detector for real-time uav applications. In 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages
967–972. IEEE, 2018.

[10] Sastry KM Malladi, Thirumalai Muppur Ravi, Mohan Komalla Reddy,
and Kamesh Raghavendra. Edge computing platform, 2019. US Patent
10,379,842.

[11] D Mané et al. Tensorboard: Tensorflow’s visualization toolkit, 2015.
[12] Nvidia. Nvidia jetson. https://www.nvidia.com/en-sg/autonomous-

machines/.
[13] George Plastiras, Maria Terzi, Christos Kyrkou, and Theocharis

Theocharidcs. Edge intelligence: Challenges and opportunities of near-
sensor machine learning applications. In 2018 IEEE 29th International
Conference on Application-specific Systems, Architectures and Proces-
sors (ASAP), pages 1–7. IEEE, 2018.

[14] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 7263–7271, 2017.

[15] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. Inception-
v4, inception-resnet and the impact of residual connections on learning.
CoRR, abs/1602.07261, 2016.

[16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens,
and Zbigniew Wojna. Rethinking the inception architecture for computer
vision. CoRR, abs/1512.00567, 2015.

[17] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li. Learning face
representation from scratch. arXiv preprint arXiv:1411.7923, 2014.

[18] Engin Zeydan, Ejder Bastug, Mehdi Bennis, Manhal Abdel Kader,
Ilyas Alper Karatepe, Ahmet Salih Er, and Mérouane Debbah. Big
data caching for networking: Moving from cloud to edge. IEEE
Communications Magazine, 54(9):36–42, 2016.

[19] Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang.
Edge intelligence: Paving the last mile of artificial intelligence with edge
computing. Proceedings of the IEEE, 107(8):1738–1762, 2019.

