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Abstract

In this paper, we reveal an intriguing relationship between two seemingly unrelated
notions: letter graphs and geometric grid classes of permutations. An important property
common for both of them is well-quasi-orderability, implying, in a non-constructive way, a
polynomial-time recognition of geometric grid classes of permutations and k-letter graphs
for a fixed k. However, explicit algorithms are available only for k = 2. In this paper, we
present the first explicit polynomial-time algorithm for the recognition of 3-letter graphs
over a cyclic decoder. It is based on a structural characterization of graphs in this class.

1 Introduction

Letter graphs and geometric grid classes of permutations have been introduced indepen-
dently of each other in [16] and [1], respectively. Nothing in the definitions of these notions
suggests any connection between them. We believe that letter graphs and geometric grid
classes of permutations can be connected through the notion of permutation graph. Speak-
ing informally, we believe that geometric grid classes of permutations and letter graphs are
two languages describing the same concept in the universe of permutations and permutation
graphs, respectively. We state this formally as a conjecture as follows:

Conjecture 1. Let X be a class of permutations and GX the corresponding class of per-
mutation graphs. Then X is geometrically griddable if and only if GX is a class of k-letter
graphs for a finite value of k.

In this conjecture, the parameter k stands for the size of the alphabet used to describe
graphs by means of letters (all definitions will be given in Section 2). In Section 3, we verify
this conjecture in two cases: first, in Section 3.1, we prove the “only if” part of the conjecture,
i.e., we translate the concept of geometric grid classes of permutations to the language of letter
graphs, and then in Section 3.2 we prove the conjecture in the reverse direction for k = 2.

An important property common for both of these notions is well-quasi-orderability. It
implies, in particular, that geometric grid classes of permutations and k-letter graphs (for
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a fixed k) can be described by finitely many forbidden obstructions. This proves, in a non-
constructive way, that geometric grid classes of permutations and k-letter graphs (for a fixed
k) can be recognized in polynomial time. However, explicit algorithms are not available for
the recognition problem, except for the 2-letter graphs and corresponding classes of permu-
tations. As a step towards solving this problem for larger values of k, in Section 4 we study
the class of 3-letter graphs. This class consists of finitely many subclasses corresponding to
different decoders. We focus on the decoder with a cyclic structure and provide a struc-
tural characterization of graphs in the corresponding class. Our characterization leads to a
polynomial-time algorithm to recognize graphs in this class. We also characterize this class
by means of four forbidden induced subgraphs.

We finish the paper in Section 5 by positioning graph lettericity in the hierarchy of other
graph parameters and discussing open problems in the area. All preliminary information
related to the topic of the paper can be found in Section 2.

2 Preliminaries

All graphs in this paper are finite, undirected, without loops and multiple edges. The vertex
set and the edge set of a graph G are denoted by V (G) and E(G), respectively. For a vertex
x ∈ V (G) we denote by N(x) the neighbourhood of x, i.e., the set of vertices of G adjacent
to x. A subgraph of G induced by a subset of vertices U ⊆ V (G) is denoted G[U ]. By G we
denote the complement of G.

A clique in a graph is a subset of pairwise adjacent vertices and an independent set is a
subset of pairwise non-adjacent vertices. A graph G is bipartite if V (G) can be partitioned
into two independent sets and G is split if V (G) can be partitioned into an independent set
and a clique.

By Kn, Cn and Pn we denote the complete graph, the chordless cycle and the chordless
path with n vertices, respectively. Also, G + H denotes the disjoint union of two graphs G
and H. In particular, pG is the disjoint union of p copies of G.

In the rest of this section we introduce some classes of graphs and permutations relevant
to the topic of the paper.

2.1 Chain graphs

A graph G is a chain graph if it is bipartite and admits a bipartition V (G) = V1 ∪ V2 such
that for any two vertices x, y in the same part Vi either N(x) ⊆ N(y) or N(y) ⊆ N(x). In
other words, the vertices in each part of the bipartition of G can be linearly ordered under
inclusion of their neighbourhoods, i.e., they form a chain. In terms of minimal forbidden
induced subgraphs, the chain graphs are precisely the 2K2-free bipartite graphs. Figure 1
represents an example of a chain graph Z5 containing 5 vertices in each part. In an obvious
way this example can be extended to Zn for any value of n. The importance of this graph is
due to its universality: Zn contains all n-vertex chain graphs as induced subgraphs [13].

2.2 Threshold graphs

The class of threshold graphs was introduced in [4], where it was characterized in terms of
minimal forbidden induced subgraphs as follows: a graph G is threshold if and only if it is
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Figure 1: The graph Z5

(P4, C4, 2K2)-free. This class is closely related to the class of chain graphs in the sense that
if we create a clique in one of the parts of a chain graph, then the graph transforms into
a threshold graph and vice versa. Moreover, by transforming Zn in this way we obtain an
n-universal threshold graph, i.e., a threshold graph containing all n-vertex threshold graphs
as induced subgraphs, see e.g. [8]. More about threshold graphs can be found in the book
[14] devoted to this class.

2.3 Permutation graphs

Let π be a permutation of the set {1, 2, . . . , n}. The permutation graphGπ of this permutation
has {1, 2, . . . , n} as its vertex set with i and j being adjacent if and only if (i−j)(π(i)−π(j)) <
0. A graph G is a permutation graph if there is a permutation π such that G is isomorphic
to Gπ.

Alternatively, a permutation graph can be defined as the intersection graph of line seg-
ments between two parallel lines: each segment represents a vertex and two vertices are
adjacent if and only if the corresponding segments cross each other. For instance, Figure 2
represents the permutation 415263 written at the bottom of the diagram. It is not difficult
to see that the permutation graph of this permutation is the chain graph Z3. Clearly, this
example can be extended to a diagram representing Zn for any value of n. Therefore, all chain
graphs are permutation graphs. It is also known that all threshold (and more generally, all
P4-free) graphs are permutation graphs. It is an interesting exercise (left to the reader) to
construct a (diagram of) permutation representing the universal threshold graph.

1 2 3 4 5 6

4 1 5 2 6 3

Figure 2: A diagram representing the permutation 415263
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2.4 Letter graphs

Let Σ be a finite alphabet and P ⊆ Σ2 a set of ordered pairs of symbols from Σ, called the
decoder. To each word w = w1w2 · · ·wn with wi ∈ Σ we associate a graph G(P, w), called
the letter graph of w, by defining V (G(P, w)) = {1, 2, . . . , n} with i being adjacent to j > i
if and only if the ordered pair (wi, wj) belongs to the decoder P.

It is not difficult to see that every graph G is a letter graph in an alphabet of size at most
|V (G)| over an appropriate decoder P. The minimum ` such that G is a letter graph in an
alphabet of ` letters is the lettericity of G and is denoted `(G). A graph is a k-letter graph
if its lettericity is at most k.

The notion of k-letter graphs was introduced in [16] and in the same paper the author
characterized k-letter graphs as follows.

Theorem 1. A graph G is a k-letter graph if and only if

1. there is a partition V1, V2, . . . , Vp of V (G) with p ≤ k such that each Vi is either a clique
or an independent set in G, and

2. there is a linear ordering L of V (G) such that for each pair of distinct indices 1 ≤ i, j ≤
p, the intersection of E(G) with Vi × Vj is one of the following four types (where L is
considered as a binary relation, i.e., as a set of pairs):

(a) L ∩ (Vi × Vj);
(b) L−1 ∩ (Vi × Vj);
(c) Vi × Vj;
(d) ∅.

Example. Consider the alphabet Σ = {a, b} and the decoder P = {(a, b)}. It is not difficult
to see that for any word w the graph G(P, w) is a chain graph. Indeed, in this graph the
a vertices (i.e., the vertices labelled by a) form an independent set and the b vertices form
an independent set. Besides, each of these two sets forms a chain defined by the order in
which the vertices appear in the word. Also, it is not difficult to see that the periodic word
abab . . . ab of length 2n defines the chain graph Zn. This observation provides an alternative
proof of the universality of Zn, since every word of length n is a subword of abab . . . ab. If
we add to the decoder the pair (a, a), the graph Zn transforms into the n-universal threshold
graph. Therefore, all chain graphs and all threshold graphs have lettericity at most 2.

The notion of letter graphs is of interest for various reasons. First, some important graph
classes, such as chain graphs or threshold graphs, can be described in the terminology of letter
graphs. Second, letter graphs provide an interesting contribution to the theory of ordered
graphs, i.e., graphs given together with a linear order of its vertices; for more information
on this notion see e.g. [15]. Third, graph lettericity contributes to the rich theory of graph
parameters. We discuss this topic in Section 5. Finally, and perhaps most importantly,
graphs of bounded lettericity are well-quasi-ordered by the induced subgraph relation [16].
This is a rare property of graphs, which was shown, up to date, only for some restricted graph
classes, see e.g. [5, 11].
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2.5 Geometric grid classes of permutations

The notion of geometric grid classes of permutations was introduced in [1] as follows. Suppose
that M is a 0/± 1 matrix. The standard figure of M is the set of points in R2 consisting of

• the increasing open line segment from (k − 1, `− 1) to (k, `) if Mk,` = 1 or

• the decreasing open line segment from (k − 1, `) to (k, `− 1) if Mk,` = −1.

We index matrices first by column, counting left to right, and then by row, counting
bottom to top. The geometric grid class of M , denoted by Geom(M), is then the set of all
permutations that can be drawn on this figure in the following manner. Choose n points in
the figure, no two on a common horizontal or vertical line. Then label the points from 1 to n
from bottom to top and record these labels reading left to right. The example on Figure 3,
which originally appeared in [1], represents two permutations that lie, respectively, in the
grid classes of (

1 −1
−1 1

)
and

(
−1 1

1 −1

)
.
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Figure 3: The permutation 351624 on the left and the permutation 153426 on the right.

We will say that a permutation class is geometrically griddable if it is contained in the union
of finitely many geometric grid classes. The geometrically griddable classes of permutations
enjoy many nice properties. In particular, in [1] the following result has been proved.

Theorem 2. Every geometrically griddable class of permutations is well-quasi-ordered and
is in bijection with a regular language.

To define the pattern containment relation, we observe that the intersection diagram
representing a permutation (see e.g. Figure 2) uniquely defines the permutation without the
labels attached to the segments. Then a permutation π is said to contain a permutation ρ
if the intersection diagram representing ρ can obtained from the diagram representing π by
deleting some segments.

3 Letter graphs and geometric grid classes of permutations

In this section we verify Conjecture 1 in two cases: the “only if” direction” (Section 3.1) and
the case k = 2 of the “if” direction” (Section 3.2).
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3.1 From geometric grid classes of permutations to letter graphs

The goal of this section is to prove the following result.

Theorem 3. Let X be a class of permutations and GX the corresponding class of permutation
graphs. If X is a geometric grid class, then GX is a class of k-letter graphs for a finite value
of k.

To prove Theorem 3, we first outline the correspondence (bijection) between a geometri-
cally griddable class of permutations and a regular language established in Theorem 2. To
this end, we need the following definition from [1].

Definition 1. We say that a 0/± 1 matrix M of size t× u is a partial multiplication matrix
if there are column and row signs

c1, . . . , ct, r1, . . . , ru ∈ {1,−1}

such that every entry Mk,` is equal to either 0 or the product ckr`.

Example. The matrix

(
1 0 −1
−1 1 0

)
is a partial multiplication matrix. This matrix has

column and row signs c2 = c3 = r1 = 1 and c1 = r2 = −1.

The importance of this notion for the study of geometric grid classes of permutations is
due to the following proposition proved in [1].

Proposition 1. Every geometric grid class is the geometric grid class of a partial multipli-
cation matrix.

Let M be a t× u partial multiplication matrix with column and row signs

c1, . . . , ct, r1, . . . , ru ∈ {1,−1}

and let ΦM be the standard gridded figure of M . We will interpret the signs of the columns
and rows of M as the “directions” associated with the columns and rows of ΦM with the
following convention: ci = 1 corresponds to→, ci = −1 corresponds to←, ri = 1 corresponds
to ↑, and ri = −1 corresponds to ↓. The standard gridded figure of the matrix M =(

0 1 1
1 −1 −1

)
with row signs r1 = −1 and r2 = 1 and column signs c1 = −1, c2 = c3 = 1

is represented in Figure 4.
The base point of a cell Ck,` of the figure ΦM is one of the four corners of the cell, where

both directions (associated with column k and row `) start. For instance, in the example
on Figure 4, which originally appeared in [1], the base point of the cell C3,1 is the top-left
corner. For convenience, we assume that the diagonals of the cells have unit length.

In order to establish a bijection between Geom(M) and a regular language, we first fix
an alphabet Σ (known as the cell alphabet of M) as follows:

Σ = {ak` : Mk,` 6= 0}.

Now, let π be a permutation in Geom(M), i.e., a permutation represented by a set of n points
in the figure ΦM . For each point pi of π, let di be the distance from the base point of the cell
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Figure 4: A standard gridded figure of a partial multiplication matrix.

containing pi to pi. Without loss of generality, we assume that these distances are pairwise
different and the points are ordered so that 0 < d1 < d2 < · · · < dn < 1. If pi belongs to
the cell Ck,` of ΦM , we define φ(pi) = ak`. Then φ(π) = φ(p1)φ(p2) · · ·φ(pn) is a word in
the alphabet Σ, i.e., φ defines a mapping from Geom(M) to Σ∗. Figure 4 shows seven points
defining the permutation 1527436. The mapping φ associates with this permutation a word
in the alphabet Σ as follows: φ(1527436) = a31a31a22a21a11a32a22.

Conversely, let w = w1 · · ·wn be a word in Σ∗ and let 0 < d1 < · · · < dn < 1 be n
distances chosen arbitrarily. If wi = ak`, we let pi be the point on the line segment in cell
Ck,` at distance di from the base point of Ck,`. The n points of ΦM constructed in this way
define a permutation ψ(w) in Geom(M). Therefore, ψ is a mapping from Σ∗ to Geom(M).

This correspondence between Σ∗ and Geom(M) is not yet a bijection, as illustrated in
Figure 5, because the order in which the points are consecutively inserted into independent
cells (i.e., cells which share neither a column nor a row) is irrelevant. To turn this correspon-
dence into a bijection, we say that two words v, w ∈ Σ∗ are equivalent if one can be obtained
from the other by successively interchanging adjacent letters which represent independent
cells. The equivalence classes of this relation form a trace monoid and each element of this
monoid is called a trace. It is known that in any trace monoid it is possible to choose a unique
representative from each trace in such a way that the resulting set of representatives forms
a regular language (see e.g. [6], Corollary 1.2.3). This is the language which is in a bijection
with Geom(M), as was shown in [1].
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Figure 5: Two drawings of the permutation 1527436. The drawing on the left is encoded as
a31a31a22a21a11a32a22 and the drawing on the right is encoded as a31a31a22a21a32a11a22.

Next, we will show that the permutation graph Gπ of π ∈ Geom(M) is a k-letter graph
with k = |Σ|. Indeed, the non-empty cells of the figure ΦM define a partition of the vertex
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set of Gπ into cliques and independent sets and the word φ(π) defines the order of the vertex
set of Gπ satisfying conditions of Theorem 1. More formally, let us show that the matrix M
uniquely defines a decoder P ⊆ Σ2 such that the letter graph G(P, w) of the word w = φ(π)
coincides with Gπ. In order to define the decoder P, we observe that two points pi and pj of
a permutation π ∈ Geom(M) corresponds to a pair of adjacent vertices in Gπ if and only if
one of them lies to the left and above the second one in the figure ΦM . Therefore, if

• Mk,` = 1, then the points lying in the cell Ck,` form an independent set in the permu-
tation graph of π. Therefore, we do not include the pair (ak`, ak`) in P.

• Mk,` = −1, then the points lying in the cell Ck,` form a clique in the permutation graph
of π. Therefore, we include the pair (ak`, ak`) in P.

• two cells Ck,` and Cs,t are independent with k < s and ` < t, then no point of Ck,`
is adjacent to any point of Cs,t in the permutation graph of π. Therefore, we include
neither (ak`, ast) nor (ast, ak`) in P.

• two cells Ck,` and Cs,t are independent with k < s and ` > t, then every point of Ck,`
is adjacent to every point of Cs,t in the permutation graph of π. Therefore, we include
both pairs (ak`, ast) and (ast, ak`) in P.

• two cells Ck,` and Cs,t share a column, i.e., k = s, then we look at the sign (direction)
associated with this column and the relative position of the two cells within the column.

– If ck = 1 (i.e., the column is oriented from left to right) and ` > t (the first of the
two cells is above the second one), then only the pair (ak`, akt) is included in P.

– If ck = 1 and ` < t, then only the pair (akt, ak`) is included in P.

– If ck = −1 (i.e., the column is oriented from right to left) and ` > t (the first of
the two cells is above the second one), then only the pair (akt, ak`) is included in
P.

– If ck = −1 and ` < t, then only the pair (ak`, akt) is included in P.

• two cells Ck,` and Cs,t share a row, i.e., ` = t, then we look at the sign (direction)
associated with this row and the relative position of the two cells within the row.

– If r` = 1 (i.e., the row is oriented from bottom to top) and k < s (the first of the
two cells is to the left of the second one), then only the pair (as`, ak`) is included
in P.

– If r` = 1 and k > s, then only the pair (ak`, as`) is included in P.

– If r` = −1 (i.e., the row is oriented from top to bottom) and k < s, then only the
pair (ak`, as`) is included in P.

– If r` = −1 and k > s, then only the pair (as`, ak`) is included in P.

It is now a routine task to verify that G(P, w) coincides with Gπ.
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3.2 From 2-letter graphs to geometrically griddable classes of permutations

In this section, we prove the “if” part of Conjecture 1 for k = 2. In other words, we prove
the following result.

Theorem 4. Let X be a class of permutations and GX the corresponding class of permutation
graphs. If GX is a class of 2-letter graphs, then X is geometrically griddable.

Proof. Let Σ = {a, b}, and fix a decoder P. Consider a graph Gπ ∈ GX and represent it by
a word over Σ with the decoder P.

Assume first that P contains either both of (a, b) and (b, a), or none of them. Then we
have either all possible edges between the set of vertices of Gπ labelled by a and the set of
vertices of Gπ labelled by b or none of them. In the first case, X is contained in the geometric
grid class of the matrix on the left, and in the second case, X is contained in the geometric
grid class of the matrix on the right:(

ma 0
0 mb

)
and

(
0 ma

mb 0

)
,

where ma (resp. mb) denotes either 1 if (a, a) /∈ P (resp. (b, b) /∈ P) or −1 if (a, a) ∈ P (resp.
(b, b) ∈ P).

Now suppose only one of (a, b) and (b, a) is in P. Without loss of generality assume it is
(a, b), since the other case is similar.

If only one of (a, a) and (b, b) is in P, then Gπ is a threshold graph. In this case, π can
be placed in the figure of (

−1 1
1 −1

)
known as ×-figure (see the right-hand side of figure Figure 3). Indeed, according to Propo-
sition 5.6.1 in [17], a permutation can be placed in the ×-figure if and only if it avoids
2143, 3412, 2413 and 3142. The first two of these permutations correspond to 2K2 and C4,
while the last two both correspond to P4. Since a graph is threshold if and only if it is
(P4, C4, 2K2)-free, we conclude that π can be placed in the ×-figure, since Gπ is threshold.

The cases when either both or none of (a, a) and (b, b) belong to P are complementary to
each other. Therefore, we may assume without loss of generality that none of them belongs
to P. Then Gπ is a chain graph, and hence it is K3 and 2K2-free. Hence π avoids 321 and
2143. It is known [3] that the class of permutations avoiding 321 and 2143 is the union of
two classes: the class A1 avoiding 321, 2143 and 3142, and the class A2 avoiding 321, 2143
and 2413.

A short case analysis shows that any permutation in A1 can have at most one drop (i.e.,
two consecutive elements such that the first one is larger than the second one), hence it can
be placed in the figure of

(
1 1

)
. Similarly, any permutation in A2 consists of two increasing

subsequences such that all the elements of one of them are greater than every element of the

other, hence it can be placed in the figure of

(
1
1

)
.

The difference between the two classes can be illustrated as follows. For the class A1, the
word representing Gπ as a 2-letter graph can be read at the top of the diagram representing
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a b a b a b

b b b a a a

b b b a a a

a b a b a b

Figure 6: The diagrams of two permutations π such that Gπ is the graph of the word ababab
with P = {(a, b)}.

π (see the left diagram in Figure 6), while for the class A2, this word can be read at the
bottom of the diagram (see the right diagram in Figure 6).

4 Characterization and recognition of 3-letter graphs

To develop an efficient algorithm for the recognition of 3-letter graphs we focus on graphs rep-
resentable over a specific decoder. For this purpose, we choose the decoder {(a, b), (b, c), (c, a)},
because it has a nice cyclic structure simplifying some of the proofs. For other decoders, the
recognition algorithms are similar (though not identical), so we omit them.

We start by presenting a decomposition theorem for 3-letter graphs over the decoder
{(a, b), (b, c), (c, a)} in Section 4.1. This result can be viewed as a specialization of Theorem 1
to our particular case. It immediately leads to a simple polynomial-time algorithm to recog-
nize graphs in our class, which is described in Section 4.2. As a byproduct, the decomposition
theorem of Section 4.1 also leads to the induced subgraph characterization of 3-letter graphs
over the decoder {(a, b), (b, c), (c, a)}. This result is of independent interest and is presented
in Section 4.3.

4.1 Characterization of 3-letter graphs over the decoder {(a, b), (b, c), (c, a)}

To characterize 3-letter graphs, we need a few observations about 2-letter graphs. Let
G = (V,E) be a graph and A an independent set in G. We will say that a linear order
(a1, a2, . . . , ak) of the vertices of A is

- increasing if i < j implies N(ai) ⊆ N(aj),

- decreasing if i < j implies N(ai) ⊇ N(aj),

- monotone if it is either increasing or decreasing.

By definition, each part of a chain graph (i.e., a 2K2-free bipartite graph) admits a
monotone ordering. Let G = (A ∪ B,E) be a chain graph given together with a bipartition
V (G) = A ∪ B of its vertices into two independent sets. We fix an order of the parts (A
is first and B is second), a decreasing order for A, an increasing order for B, and call G a
properly ordered graph. This notion suggests an easy way of representing a 2K2-free bipartite
graph as a 2-letter graph.

10



Let G = (A ∪ B,E) be a properly ordered 2K2-free bipartite graph. To represent G as
a 2-letter graph, we fix the alphabet Σ = {a, b} and the decoder P = {(a, b)}. The word ω
representing G can be constructed as follows. To each vertex of A we assign letter a and to
each vertex of B we assign letter b. The a letters will appear in ω in the order in which the
corresponding vertices appear in A and the b letters will appear in ω in the order in which
the corresponding vertices appear in B. The rule defining the relative positions of a vertices
with respect to b vertices can be described in two different ways as follows:

R1 an a vertex is located between the last b non-neighbour (if any) and the first b neighbour
(if any),

R2 a b vertex is located between the last a neighbour (if any) and the first a non-neighbour
(if any).

It is not difficult to see that both rules R1 and R2 define the same word and this word
represents G.

Now we turn to 3-letter graphs. Let G = (A ∪ B ∪ C,E) be a graph whose vertex set is
partitioned into three independent sets A, B, C such that

(a) G[A ∪B], G[B ∪ C] and G[C ∪A] are 2K2-free bipartite graphs,

(b) there are no three vertices a ∈ A, b ∈ B, c ∈ C inducing either a triangle K3 or an
anti-triangle K3.

We call any graph satisfying (a) and (b) nice. Our goal is to show that a graph G is a
3-letter graph over the decoder {(a, b), (b, c), (c, a)} if and only if it is nice. First, we prove
the following lemma.

Lemma 1. Let G = (A∪B ∪C,E) be a nice graph. Then each of the independent sets A, B
and C admits a linear ordering such that all three bipartite graphs G[A ∪ B], G[B ∪ C] and
G[C ∪A] are properly ordered.

Proof. We start with a proper order of G[A ∪ B], in which case the order of B is increasing
with respect to A. Let us show that the same order of B is decreasing with respect to C.

Consider two vertices bi and bj of B with i < j, i.e., bi precedes bj in the linear order of
B and hence N(bi) ∩ A ⊆ N(bj) ∩ A. To show that the linear order of B is decreasing with
respect to C, assume the contrary: bj has a neighbour c ∈ C non-adjacent to bi. Without
loss of generality, we may suppose that the inclusion N(bi) ∩A ⊆ N(bj) ∩A is proper, since
we can, if necessary, reorder all vertices with equal neighbourhoods in A decreasingly with
respect to their neighbourhoods in C, which keeps the graph G[A ∪ B] properly ordered.
According to this assumption, bj must have a neighbour a ∈ A non-adjacent to bi. But then
either a, bj , c induce a triangle K3 (if a is adjacent to c) or a, bi, c induce an anti-triangle K3

(if a is not adjacent to c). A contradiction in both cases shows that the linear order of B is
decreasing with respect to C.

Similar arguments show that the order of A which is decreasing with respect to B is
increasing with respect to C. Now we fix a linear order of C which is increasing with respect
to B and conclude, as before, that it is decreasing with respect to A. In this way, we obtain
a proper order for all three graphs G[A∪B], G[B∪C] and G[C∪A] (notice, in the last graph
C is the first part and A is the second).
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Theorem 5. A graph G is a 3-letter graph over the decoder {(a, b), (b, c), (c, a)} if and only
if it is nice.

Proof. If G is a 3-letter graph over the decoder {(a, b), (b, c), (c, a)}, then obviously Va (the set
of vertices labelled by a), Vb and Vc are independent sets and condition (a) of the definition
of nice graphs is valid for G. To show that (b) is valid, assume G contains a triangle induced
by letters a, b, c. Then b must appear after a in the word representing G, and c must appear
after b. But then c appears after a, in which case a is not adjacent to c, a contradiction.
Similarly, an anti-triangle a, b, c is not possible and hence G is nice.

Suppose now that G = (A ∪ B ∪ C,E) is nice. According to Lemma 1, we may assume
that A, B and C are ordered in such a way that each of the three bipartite graphs G[A∪B],
G[B ∪ C] and G[C ∪A] is properly ordered.

We start by representing the graph G[A ∪B] by a word ω with two letters a, b according
to rules R1 or R2. To complete the construction, we need to place the c vertices

- among the a vertices according to rule R1, i.e., every c vertex must be located between
the last a non-neighbour alnn (if any) and the first a neighbour afn (if any),

- among the b vertices according to rule R2, i.e., every c vertex must be located between
the last b neighbour bln (if any) and the first b non-neighbour bfnn (if any).

This is always possible, unless

- either afn precedes bln in ω, in which case afn is adjacent to bln and hence afn, bln, c
induce a triangle K3,

- or bfnn precedes alnn in ω, in which case bfnn is not adjacent to alnn and hence
alnn, bfnn, c induce an anti-triangle K3.

A contradiction in both cases shows that ω can be extended to a word representing G.

4.2 Recognition of 3-letter graphs over the decoder {(a, b), (b, c), (c, a)}

In this section, we show how we can determine whether a graph G can be represented as a
3-letter graph over the cyclic decoder {(a, b), (b, c), (c, a)}. In order to do that, we will assume
that G does indeed have such a representation ω, and derive various properties of ω.

If G has a twin v for a vertex u (i.e., N(v) = N(u)), then any word representing G−v can
be extended to a word representing G by assigning to v the same letter as to u and placing
v next to u. This observation shows that we may assume without loss of generality that

• G is twin-free.

Due to the cyclic symmetry of the decoder, we may also assume without loss of generality
that

• the last letter of ω is c.

Then

• the first letter is not a, since otherwise the first and the last vertices are twins.

12



Assume that the first letter of ω is b. Then according to the decoder

(b1) no vertex between the first b and the last c is adjacent to both of them,

(b2) every vertex non-adjacent to the first b and non-adjacent to the last c must be labelled
by a,

(b3) every vertex non-adjacent to the first b and adjacent to the last c must be labelled by
b,

(b4) every vertex adjacent to the first b and non-adjacent to the last c must be labelled by
c.

If the first letter is c, we have instead that:

(c1) no vertex between the first c and the last c is adjacent to both of them,

(c2) every vertex adjacent to the first c and non-adjacent to the last c must be labelled by
a,

(c3) every vertex non-adjacent to the first c and adjacent to the last c must be labelled by
b,

(c4) every vertex non-adjacent to the first c and non-adjacent to the last c must be labelled
by c.

This discussion, together with conditions (a) and (b) from the previous subsection, leads
to the following recognition algorithm:

Algorithm: Recognition of 3-letter graphs over the cyclic decoder {(a, b), (b, c), (c, a)}
Input: A graph G
Output: true if G is a 3-letter graph over the cyclic decoder, false otherwise

1: set G′ := G
2: while G′ has a pair of twins do
3: remove one of the twins from G′

4: for each ordered pair (u, v) of distinct vertices in G′ do
5: if u and v have no common neighbours then
6: if u and v are adjacent then
7: set A := N(u) ∪N(v)
8: set B := N(u) ∪N(v) ∪ {u}
9: set C := N(u) ∪N(v) ∪ {v}

10: else
11: set A := N(u) ∪N(v)
12: set B := N(u) ∪N(v)
13: set C := N(u) ∪N(v) ∪ {u, v}
14: if G[A∪B], G[B ∪C] and G[C ∪A] are 2K2-free bipartite graphs and there are no

vertices a ∈ A, b ∈ B, c ∈ C inducing either a triangle or an anti-triangle then
15: return true
16: return false
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Theorem 6. The 3-letter graphs over the decoder {(a, b), (b, c), (c, a)} can be recognized in
polynomial time.

Proof. It is easy to see that the above algorithm terminates, and correctness follows from the
above discussion together with Theorem 5.

To determine its complexity, let n be the number of vertices of the graph and m the
number of edges. Note first that the ‘while’ loop at line 2 takes O(n3) time per iteration and
iterates at most n times.

Lines 6 to 14 can be implemented in linear time. It takes O(n + m) time to recognize
chain graphs (see e.g. [9]), and the condition on triangles and anti-triangles can be checked
in O(n2.376) time (finding triangles can be reduced to matrix multiplication, see e.g. [10],
and we can use for instance the Coppersmith-Winograd algorithm after some straightforward
preprocessing in order to detect the appropriate kinds of triangles or anti-triangles). Finally,
the ‘for’ loop at line 5 is iterated through at most n2 times. This gives O(n4.376) time
complexity overall.

We remark that the above algorithm can be made constructive without an increase in
complexity. We just need to make two modifications as follows: first, we use Theorem 5 to
produce a word representing the twin-free graph G′. Second, we record the twins we removed
to obtain G′ from G and once we have a word for G′, we use the recorded information to
obtain a word for G.

4.3 Minimal forbidden induced subgraphs for 3-letter graphs over the de-
coder {(a, b), (b, c), (c, a)}

To determine the list of minimal forbidden induced subgraphs for our class, we will rely on
our earlier characterization of graphs in this class as “nice” (Theorem 5). We start with a
preparatory result.

Lemma 2. Let G be a graph and let H1 and H2 be nice subgraphs of G with disjoint vertex
sets V (H1) = A1 ∪B1 ∪ C1 and V (H2) = A2 ∪B2 ∪ C2. If the subgraphs induced

• by A1 ∪B2, B1 ∪ C2 and C1 ∪A2 are complete bipartite,

• by A1 ∪A2, A1 ∪ C2, B1 ∪A2, B1 ∪B2, C1 ∪B2 and C1 ∪ C2 are edgeless,

then the subgraph induced by V (H1) ∪ V (H2) = (A1 ∪A2) ∪ (B1 ∪B2) ∪ (C1 ∪ C2) is nice.

Proof. By assumption, A1∪A2 and B1∪B2 are independent sets. Let us show that these two
sets induce a chain graph. First, it is not difficult to see that A1 ∪ (B1 ∪B2) induces a chain
graph, because G[A1 ∪ B1] is a chain graph and G[A1 ∪ B2] is complete bipartite. Similar
arguments show that A2 ∪ (B1 ∪ B2), (A1 ∪ A2) ∪ B1 and (A1 ∪ A2) ∪ B2 all induce chain
graphs. Therefore, if the subgraph of G induced by A1∪A2 and B1∪B2 contains an induced
2K2, then this 2K2 contains exactly one vertex in each of the four sets, which is impossible.
This contradiction shows that the subgraph of G induced by A1 ∪A2 and B1 ∪B2 is a chain
graph.

By symmetry, (B1 ∪B2)∪ (C1 ∪C2) and (C1 ∪C2)∪ (A1 ∪A2) also induce chain graphs.
It remains to show that no 3 vertices a ∈ A1 ∪A2, b ∈ B1 ∪B2, c ∈ C1 ∪C2 induce a triangle
or an anti-triangle. Since H1 and H2 are nice, we may assume without loss of generality that
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two of the vertices belong to H1 and one to H2. Also, due to the symmetry of the decoder,
we may assume that a ∈ A1, b ∈ B1, and c ∈ C2. Then a, b, c induce neither a triangle (since
a is not adjacent to c) nor an anti-triangle (since b is adjacent to c).

We are now ready to prove the characterization in terms of minimal forbidden induced
subgraphs.

Theorem 7. A graph G is a 3-letter graph over the decoder {(a, b), (b, c), (c, a)} if and only
if it is (K3, 2K2 +K1, C5 +K1, C6)-free.

Proof. For the “only if” direction, it is straightforward to check that none of the four graphs
in our list is nice and that they are minimal with that property. For the “if” direction, we
split the analysis into two cases.

Assume first that G is 2K2-free. If, in addition, it is C5-free, then G is 2K2-free bipartite,
i.e., a chain graph (since it has no 2K2, K3, C5, and the absence of 2K2 forbids longer odd
cycles), hence it is nice, with one of the 3 sets being empty. So suppose G has an induced
C5. Label its vertices clockwise by v1, . . . , v5 (whenever indices are added in this proof, the
addition will be modulo 5). Any vertex of G not in the C5

• has to be adjacent to at least one vertex in the C5, since otherwise an induced C5 +K1

arises,

• cannot have a single neighbour in the C5, since otherwise an induced 2K2 can be easily
found,

• cannot be adjacent to 3 or more vertices or to 2 consecutive vertices in the C5, since G
is K3-free.

Hence the vertices of G can be partitioned into 5 sets V1, . . . , V5 such that the vertices in Vi
are adjacent to exactly vi−1 and vi+1 in the C5 (note vi ∈ Vi for i = 1, . . . , 5). Each Vi is
an independent set (since they share a common neighbour, and triangles are forbidden), and
adjacency between them is easy to determine:

• if ui ∈ Vi, ui+1 ∈ Vi+1, then ui and ui+1 are adjacent, since otherwise ui, vi−1, ui+1, vi+2

induce a 2K2,

• if ui ∈ Vi, ui+2 ∈ Vi+2, then ui and ui+2 are non-adjacent, since otherwise ui, vi+1, ui+2

induce a triangle.

This determines all adjacencies in G, and it is easy to check that G is nice, e.g. with partition
(V1 ∪ V4), (V2 ∪ V5), V3.

Now we turn to the case when G contains an induced 2K2. We denote one of the edges
of the 2K2 by uw and partition the vertices of G into three subsets as follows (observe that
there are no vertices adjacent to both u and w, since triangles are forbidden):

U is the set of vertices adjacent to w (u belongs to U). Since triangles are forbidden, U
is an independent set.

W is the set of vertices adjacent to u (w belongs to W ). Since triangles are forbidden, W
is an independent set.
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X is the set of vertices adjacent neither to u nor to w. The subgraph induced by X must be
K2+K1-free, since otherwise an induced copy of 2K2+K1 would arise. It is not difficult
to see that the (K2+K1,K3)-free graphs that are not edgeless are precisely the complete
bipartite graphs. Therefore, the vertices of X can be split into two independent sets
with all possible edges between them. We call these independent sets C1 and A2 (this
notation is chosen for consistency with Lemma 2) and observe that each of them is
non-empty, because X contains the other edge of the K2.

Since G is K3-free, no vertex of G can have neighbours in both C1 and A2. Thus W can be
partitioned into three subsets as follows:

A1 is the vertices of W that do have neighbours in C1 (and hence have no neighbours in
A2),

C2 is the vertices of W that do have neighbours in A2 (and hence have no neighbours in
C1),

W ′ is the set of remaining vertices of W , i.e., those that have neighbours neither in C1 nor
in A2.

We partition U into three subsets in a similar way:

B1 is the vertices of U that do have neighbours in C1 (and hence have no neighbours in
A2),

B2 is the vertices of U that do have neighbours in A2 (and hence have no neighbours in
C1),

U ′ is the set of remaining vertices of U , i.e., those that have neighbours neither in C1 nor
in A2.

We note that

• Every vertex of A1 is adjacent to every vertex of B2. Indeed, if a1 ∈ A1 is not adjacent
to b2 ∈ B2, then u,w, a1, b2 together with a neighbour of a1 in C1 and a neighbour of
b2 in A2 induce a C6.

• Every vertex of B1 is adjacent to every vertex of C2 by similar arguments.

• Every vertex of U ′ is adjacent to every vertex of W ′. Indeed, if u′ ∈ U ′ is not adjacent
to w′ ∈W ′, then u′, w′, w together with any two vertices c1 ∈ C1 and a2 ∈ A2 induce a
2K2 +K1.

• Every vertex of W ′ is adjacent to every vertex in B1 or to every vertex in B2. Indeed,
if a vertex w′ ∈ W ′ has a non-neighbour b1 ∈ B1 and a non-neighbour b2 ∈ B2, then
w′, w, b1, b2 together with a neighbour of b1 in C1 and a neighbour of b2 in A2 induce a
C5 +K1.

• Every vertex of U ′ is adjacent to every vertex in A1 or to every vertex in C2 by similar
arguments.
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The above sequence of claims shows that we can move the vertices from W ′ to either A1 or
C2 and those from U ′ to either B1 or B2 in such a way that the two subgraphs G[A1 ∪ B2]
and G[B1 ∪ C2] are complete bipartite.

To sum up, we have partitioned G into independent sets A1, A2, B1, B2, C1, and C2, such
that G[A1∪B2], G[B1∪C2] and G[C1∪A2] are complete bipartite, while G[A1∪A2], G[A1∪C2],
G[B1∪A2], G[B1∪B2], G[C1∪B2] and G[C1∪C2] are edgeless. To apply Lemma 2 it remains
to show that G[A1 ∪B1 ∪ C1] and G[A2 ∪B2 ∪ C2] are nice.

Because of the 2K2 + K1-freeness, the subgraph induced by the set of non-neighbours
of any vertex is 2K2-free. Therefore, each of G[A1 ∪ B1], G[B1 ∪ C1] and G[C1 ∪ A1] is
2K2-free, since they are induced by non-neighbours of a2, u, w, respectively (where a2 is an
arbitrary vertex in A2, which exists because A2 is not empty). We do not need to worry about
triangles, since they are forbidden anyway. Finally, if there was an anti-triangle induced by
a1 ∈ A1, b1 ∈ B1, c1 ∈ C1, then together with u and any vertex a2 ∈ A2 they would induce a
2K2+K1. This shows that G[A1∪B1∪C1] is nice. The other subgraph is treated analogously.
Therefore, by Lemma 2 G is nice.

5 Concluding remarks and open problems

The notion of letter graphs studied in this paper is relatively new. To better understand its
relation to the existing notions, we discuss in Section 5.1 the position of graph lettericity in
the hierarchy of other graph parameters. Then we conclude the paper in Section 5.2 with a
number of open problems.

5.1 Graph lettericity in the hierarchy of graph parameters

In this section we show that lettericity is squeezed between neighbourhood diversity and linear
clique-width in the sense that bounded neighbourhood diversity implies bounded lettericity,
which in turn implies bounded linear clique-width.

We start with the neighbourhood diversity. This parameter was introduced in [12] to
study parameterized complexity of algorithmic graph problems and can be defined as follows.

Definition 2. Two vertices x and y are said to be similar if there is no third vertex z
distinguishing them (i.e., if there is no third vertex z adjacent to exactly one of x and y).
Clearly, the similarity is an equivalence relation. The number of similarity classes is the
neighbourhood diversity of G.

Theorem 8. If the neighbourhood diversity of G is k, then the lettericity of G is at most k.

Proof. It is not difficult to see that every similarity class in a graph is either a clique or an
independent set and between any two similarity classes we have either all possible edges or
none of them. Therefore, if the neighbourhood diversity of G is k, then we need at most k
letters to represent G as a k-letter graph (one letter per similarity class). If a similarity class
corresponding to letter a is a clique, we include the pair (a, a) in the decoder, otherwise we
do not. Also, if two similarity classes corresponding to letters a and b are complete to each
other (all possible edges between them), we include both pairs (a, b) and (b, a) in the decoder,
otherwise we include neither of them. With the decoder constructed in this way, any word
over the alphabet of k letters represents G.
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Now we turn to linear clique-width. This is a restriction of a more general parameter
clique-width. The clique-width of a graph G is the minimum number of labels needed to
construct G using the following four operations:

(i) Creation of a new vertex v with label i (denoted by i(v)).

(ii) Disjoint union of two labeled graphs G and H (denoted by G⊕H).

(iii) Joining by an edge each vertex with label i to each vertex with label j (i 6= j, denoted
by ηi,j).

(iv) Renaming label i to j (denoted by ρi→j).

Every graph can be defined by an algebraic expression using the four operations above. This
expression is called a k-expression if it uses k different labels. For instance, the cycle C5 on
vertices a, b, c, d, e (listed along the cycle) can be defined by the following 4-expression:

η4,1(η4,3(4(e)⊕ ρ4→3(ρ3→2(η4,3(4(d)⊕ η3,2(3(c)⊕ η2,1(2(b)⊕ 1(a)))))))).

Alternatively, any algebraic expression defining G can be represented as a rooted tree,
whose leaves correspond to the operations of vertex creation, the internal nodes correspond
to the ⊕-operations, and the root is associated with G. The operations η and ρ are assigned
to the respective edges of the tree. Figure 7 shows the tree representing the above expression
defining a C5.

���� ���� ���� ���� ��������

���� ���� ���� ����
+ + + +C5

4(e) 4(d) 3(c) 2(b)

1(a)
ρ4→3ρ3→2η4,3η4,1η4,3 η3,2 η2,1

Figure 7: The tree representing the expression defining a C5

Let us observe that the tree in Figure 7 has a special form known as a caterpillar tree
(that is, a tree that becomes a path after the removal of vertices of degree 1). The minimum
number of labels needed to construct a graph G by means of caterpillar trees is called the
linear clique-width of G and is denoted lcwd(G). Clearly, lcwd(G) ≥ cwd(G).

Theorem 9. lcwd(G) ≤ `(G) + 1.

Proof. Let w = w1, w2, . . . , wn be a word defining a graph G with vertex set {v1, . . . , vn} over
an alphabet Σ = {a1, . . . , ak} of k ≤ `(G) letters with a decoder P. To construct a linear
clique-width expression for G we will use k + 1 labels a0, a1, . . . , ak as follows. Assume the
subgraph of G induced by the first i − 1 vertices has been constructed in such a way that
in the end of the construction the label of vj is wj for each j = 1, . . . , i − 1. A new vertex
vi is created with label a0. Then for each j = 1, . . . , i − 1 we connect wj to a0 whenever
(wj , wi) ∈ P and rename a0 to wi. It is not difficult to see that this procedure creates the
graph G.
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5.2 Open problems

In this paper, we revealed a relationship between letter graphs and geometrically griddable
permutations. We also gave a partial description of this relationship. However, describing
the relationship in its whole generality remains an open problem.

One more open problem is the development of algorithms for the recognition of k-letter
graphs. For k = 2, a solution to this problem follows from the results in [16], where the author
gave a complete characterization of 2-letter graphs for each possible decoder. This naturally
leads to a quadratic algorithm to recognize the 2-letter graphs. In the present paper, we
studied 3-letter graphs representable over a specific decoder and characterized this class both
structurally and in terms of minimal forbidden induced subgraphs. As a result, we obtained
a polynomial-time algorithm for the recognition of graphs in this class. Similar ideas can be
used for the recognition of 3-letter graphs over other decoders. However, a more challenging
task is the development of algorithms independent of the decoders.

It also remains open whether the lettericity of a graph can be computed in polynomial
time. Note that for the related parameter linear clique-width this problem is NP-complete
[7].
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