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Diffusivity; MK, Mean Kurtosis; AK, Axial Kurtosis; RK, Radial Kurtosis; VOI, Volume 

Of Interest.
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Diffusion kurtosis imaging for characterizing tumor heterogeneity in an 

intracranial rat glioblastoma model

Abstract:

The utility of diffusion kurtosis imaging (DKI) for assessing intra-tumor heterogeneity 

was evaluated in a rat model of glioblastoma multiforme.

Longitudinal MRI including T2-weighted and diffusion weighted MRI (DWI) was 

performed on six female Fischer rats 8, 11 and 14 days after intracranial 

transplantation of F98 cells. T2-weighted images were used to measure the tumor 

volumes and DWI images were used to compute diffusion tensor imaging (DTI) and 

DWI parametric maps including mean diffusivity (MD), mean kurtosis (MK), axial 

diffusivity (AD), axial kurtosis (AK), radial diffusivity (RD), radial kurtosis (RK), 

fractional anisotropy (FA) and kurtosis fractional anisotropy (KFA). Median values from 

the segmented normal contralateral cortex, tumor and edema from the diffusion 

parameters were compared at the three imaging points and computed to assess any 

changes in tumor heterogeneity over time. Ex vivo DKI was also performed in a 

representative sample and compared with histology.

Significant differences were observed between the normal cortex, tumor and edema 

in both the DTI and DKI parameters. Notably, at the earliest time point MK and KFA 

were significantly different between the normal cortex and tumor in comparison to MD 

or FA. Although a decreasing trend in MD, AD and FA values of the tumor were 

observed as the tumor grew, no significant changes in any of the DTI or DKI 

parameters were observed longitudinally.
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While DKI was equally sensitive to DTI in differentiating tumor from edema and normal 

brain, it was unable to detect longitudinal increase of intra-tumoral heterogeneity in the 

F98 model of glioblastoma multiforme.

Keywords: MRI - diffusion kurtosis imaging; MRI – rat brain tumor; brain tumor; tumor 

heterogeneity.
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Introduction

Glioblastoma multiforme (GBM) is the most frequently occurring central nervous 

system primary brain tumor with poor prognosis and a median survival rate of 15 

months after diagnosis 1. Of the several rodent models of GBM, the rat orthotopic F98 

model has been reported to exhibit several traits of the human GBM in rats 2, including 

a high degree of heterogeneity, invasiveness and diffused boundaries 3. It has been 

used to assess chemo 4,5 and radiation 6 therapy and has also been used in MR studies 

including spectroscopy 7, diffusion 8-10, and perfusion MRI 6,11.

Diffusion-weighted magnetic resonance imaging (DWI) has been widely used to 

quantify the random motion of water molecules in biological tissues 12-14. Standard 

analytical models processing diffusion-weighted MRI data for computation of the 

apparent diffusion coefficient (ADC) values assume water displacement in the tissue 

(voxel of interest) follows a Gaussian statistical distribution, similar to the water 

diffusion observed in homogeneous liquids. However, it is well known that the 

assumption of Gaussian distribution fails in in vivo conditions due to the inherent 

heterogeneity from the presence of various tissue compartments, including different 

cell types, cell morphologies, extracellular matrix, and blood 15.

Diffusion Kurtosis Imaging (DKI) is a dimensionless metric that quantifies how much 

the water diffusion deviates from a Gaussian distribution due to cellular membranes, 

intra- and extracellular compartments and tissue structure 15-17. Thus, the diffusion of 

water molecules in homogeneous liquids will follow a Gaussian distribution with a 

kurtosis of zero. In tissues where diffusion is mostly hindered and restricted, water 
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molecules will more likely diffuse short distances around the initial position in a time t, 

leading to a sharper statistical distribution and a positive kurtosis.

DKI has been used to assess white matter damage and myelin density 17. Preclinical 

DKI studies include infarct 18, traumatic brain injury 19 and Alzheimer’s disease 20, type 

2 diabetic ischemic stroke 21, and acute alcohol intoxication 22.

DKI has also been reported to aid in assessing microstructural heterogeneity in tumors 

and its degree of diffusion restriction. It has been used in grading of human gliomas 

whereby higher mean kurtosis (MK) and lower mean diffusivity (MD) values were 

noted in high-grade solid tumors with increased cellularity 23. Increased cellularity and 

presence of spindle-shaped cells led to a higher kurtosis and lower diffusivity in 

colorectal tumors xenografts 24. 

Although promising, none of published studies have assessed longitudinal changes in 

kurtosis parameters of the tumor for assessing changes in tumor tissue heterogeneity 

with regards to the microenvironment and cellular components as the tumor grows. 

Therefore, we performed a longitudinal study in a rat F98 brain tumor model to assess 

whether changes in DKI parameters can better assess tumor heterogeneity as the 

tumor volume increases over time. 

Methods

Cell culture

F98 glioma cells (ATCC CRL-2937TM), were maintained as adherent monolayers 

cultured in Dulbecco Modified Eagles Medium containing 4.5 g/L glucose (DMEM 

D6429, Sigma-Aldrich, St. Louis, Missouri, USA) supplemented with 10% fetal bovine 
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serum (FBS 10270-106, Gibco, Thermo Fisher Scientific, Waltham, Massachusetts, 

USA). The cells were maintained at 37 °C in 5% CO₂ humidified atmosphere. Cells 

were passaged twice weekly at 1x105 per T-75 flask and terminated after the fifth 

passage to avoid chances of further mutations. Cells were tested bi-monthly for 

mycoplasma.

Brain tumor model

In vivo studies on rats were conducted in compliance with the UK Home Office Animals 

(Scientific Procedures) Act 1986 and with the ethical approval of the local committee 

of the University of Liverpool. Six F344 female (100-120 g) Fischer rats (Charles River, 

Margate, United Kingdom) were injected with 50,000 F98 cells suspended in 5 µL 

serum-free DMEM culture medium. The injection was performed in an aseptic 

environment using sterile tools. The rat was maintained under surgical anesthesia 

using a 3% isoflurane in O2 gas mixture. Rats were given subcutaneous injections of 

antibiotics (5 mg/kg, 25 mg/mL enrofloxacin, 2.5% Baytril, Bayer, Leverkusen, 

Germany) and analgesia (0.3 mg/mL buprenophine, Vetergesic, Ceva Animal Health, 

Amersham, UK) before the surgery, and 2 mL saline after the surgery. The rat was 

maintained in a three-point stereotaxic frame, the head was shaved and a small 

incision allowed access to the skull. A burr hole was drilled through the skull 3 mm 

right and 3 mm posterior from the bregma and the cells were injected 2.5 mm deep 

into the cerebral cortex. After the surgery, the skin was sutured, and the animal was 

returned to its cage for recovery. Three animals were housed together in a cage with 

stimulation objects and free access to food and water, which was provided ad libitum 

and the animals were kept in a 12-hour day/light cycle. 

Page 7 of 63

http://mc.manuscriptcentral.com/nbm

NMR in Biomedicine - For Peer Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review Only

MRI acquisition

MRI scans were performed at 9.4 T on a Bruker Biospec (Bruker BioSpin, Ettlingen, 

Germany). Signal was generated using a 86 mm transmission birdcage coil, and 

detected by a four-channel phased array surface coil. The rats were anesthetized with 

2% isoflurane in O2 and the respiration rate and body temperature were monitored 

using an abdominal motion sensor and a rectal probe (SA Instruments, Inc., Stony 

Brook, New York, USA). The body temperature was maintained at 35 °C by a hot water 

blanket and the respiration rate at 50-60 inspirations per minute. Each MRI experiment 

consisted of a localizer scan, followed by an anatomical T2-weighted sequence and a 

DWI sequence.

In vivo MR images were acquired longitudinally on days 8, 11 and 14 post- tumor cells 

inoculation to assess changes in the tumor microenvironment with DKI using a 

minimum of three time points (early, mid and late tumor stage). These time points were 

also chosen to comply with the home office guidelines of not subjecting the animal to 

undue stress of multiple anaesthesia sessions or exceeding the severity limits on 

animal health. A multi-slice T2-weighted sequence was acquired to locate the tumor 

using a fast spin echo sequence with the following parameters: TE/TR = 33/5000 ms, 

RARE factor = 8, matrix = 256x256, FOV = 40x20 mm, 38 slices, scan duration = 2 

min 38 s. DKI was performed using a respiratory-gated EPI-DTI sequence with the 

parameters: TE/TR = 23/2500 ms, 5 averages, 4 EPI segments, matrix = 128x64, FOV 

= 40x20 mm, 38 slices, voxel resolution = 0.3x0.3x0.3 mm3, δ/Δ=4/11 ms, 15 

directions, b-values = 0-1000-2000 s/mm2, 3 b0 images, 27.5 min. The total scan 

duration for each experiment was around 60 min. Animals were rehydrated with 1 mL 

saline injected subcutaneously after each MRI session.
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Image processing and statistical analysis

The brain was manually segmented on the b = 0 s/mm2 images from the diffusion-

weighted datasets using ITK-SNAP (www.itksnap.org). Tumors were manually 

segmented on the T2-weighted images to assess tumoral growth. Tumor growth rate 

was calculated from the logarithm of the volume ratio from day 8 to day 14, and 

volumetric doubling-time was then calculated using the exponential growth model 25. 

Diffusion and kurtosis parametric maps were calculated using the DKE software 

(Medical University of South Carolina, USA). A characteristic T2-weighted image of a 

typical rat 11 days after tumor cells injection and its corresponding parametric maps 

are shown in Figure 1. No corrections were made for geometric distortions or eddy 

current effects. Volumes of interests (VOI) corresponding to the whole tumor, the 

whole peritumoral edema and the contralateral normal appearing healthy brain 

parenchyma cortex were also segmented using ITK-SNAP and the binary masks were 

overlaid on the parametric maps. The contralateral normal brain healthy cortex VOI 

was segmented by selecting a region of frontal left cortex for every slice containing 

glioma. As the contralateral normal brain microstructure is unlikely to change due to 

the presence of the tumor on the ipsi-lateral side, it was used as reference with the 

hypothesis that no significant changes in the normal brain will be observed while 

changes in tumor heterogeneity will lead to changes in DKI parameters. Care was 

taken to keep the normal brain VOI to be as big and as close as possible to the first 

imaging time point in each animal and during longitudinal studies. Typical VOIs are 

shown in Figure 2b. Histograms of the parameter value distribution in the tumoral, 

edematous and cortical regions (Figure 2a and 2c) were generated using MATLAB 

(Mathworks Inc., Massachusetts, USA). Mean, median and standard deviation values 
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were calculated for each parameter using Origin (OriginLab, Northampton, 

Massachusetts, USA). A Wilcoxon signed-rank test was used to compare the tumor 

diffusion and kurtosis median values to the peritumoral edema and contralateral 

cortex. A Friedman test was used to compare the longitudinal data. A p-value of 0.05 

or below was considered to be significantly different between the groups.

Tissue collection

Animals were euthanized one day after the last MRI session using an overdose of 3 

mL/kg pentobarbital sodium (Euthatal, Merial Animal Health Ltd, Harlow, UK) injected 

intra-peritoneally. An incision was performed along the mid-ventral line through the 

abdomen to severe the aorta under the diaphragm. A midline thoracotomy gave 

access to the heart. A 25-gauge needle connected to an extension tube was clamped 

to the left ventricle of the heart to perfuse with 50 mL saline followed by 75 mL 4% 

Formalin (Sigma-Aldrich, St. Louis, Massachusetts, USA). Following fixation, brains 

were collected and suspended in 4% Formalin.

Ex vivo MRI

Ex vivo MR images of the brain suspended in perfluoropolyether oil (Fomblin, Solvay, 

Brussels, Belgium) were acquired using the same T2-weighted coronal fast spin echo 

sequence as the in vivo protocol except that 25 averages were used (scan duration = 

1 h 12 min). DWI was carried out using the same EPI-DTI sequence that was used in 

vivo with 25 averages (scan duration = 3 h 26 min).

Histology
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The brain sample that was used for ex vivo DKI study, was embedded in paraffin until 

sectioning after the DKI study. Hematoxylin and eosin (H&E) staining was performed 

on 4 μm coronal sections across the tumor. The sections closely matching the ex vivo 

imaging slice was qualitatively analyzed and the extent of cell density and cellular 

organization was based on visual assessment of staining.

Results

Figure 3 shows representative T2-weighted MR images of a tumor bearing rat brain, 

in which the developing tumor could be visualized 8, 11 and 14 days after tumor cells 

inoculation. All six rats developed tumors in the right cortex, visible on the MRI scans 

from one week post-surgery. The tumor volume grew from 23.63 ± 10.20 mm3 (day 8) 

to 112.40 ± 37.77 mm3 (day 14). Based on these MRI volumetric measurements, the 

growth rate was 0.116 days-1. The tumor volume doubling-time was 3.65 days (n=6) 

in agreement with other F98 volumetric studies 26-28.

Figure 2 shows the MD and MK histograms in the tumoral, edematous and 

contralateral regions of a representative rat and their corresponding maps 14 days 

post-implantation. A higher MD is observed in the tumor compared to the contralateral 

cortex, but with overlapping distributions (Figure 2a). The peritumoral edema 

demonstrated higher MD than both the tumor and the contralateral cortex. The highest 

MK was observed in the tumoral region, whereas the lowest values were found in the 

edematous region (Figure 2c). However, the MK voxel distributions from the three 

regions were overlapping.
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The median parametric values of the whole tumor excluding the edema, the 

peritumoral edema and the contralateral cortex volumes of interest (as shown in Figure 

2b) for the six rats are shown as scatter plots in Figure 4 and Figure 5 at day 8, 11 and 

14. Table 1 provides the mean and standard deviation values of the diffusivity and  

kurtosis parameters in the six rats.

Tumors were observed on the MD maps with a concentric hyperintense structure 

composed of the peritumoral edema and the necrotic core (Figure 2b). The tumor 

appears hyperintense on the MK maps (Figure 2d). The axial (AD) and radial diffusivity 

(RD) maps showed a concentric structure similar to that observed on the MD maps 

formed of high diffusivity in the peritumoral edema and necrotic core. Likewise, the 

axial kurtosis (AK) maps demonstrated hyperintense tumors. On the other hand, the 

radial kurtosis (RK) maps did not provide a clear definition of the tumor edges.

Tumor vs. contralateral cortex

A Wilcoxon signed-rank test showed a significantly higher MD in the tumor compared 

to the contralateral cortex from day 11 ( , ) (Figure 4a). Similar to 𝑍 = 2.097 𝑝 = 0.036

MD, the RD was significantly higher in the tumor than the contralateral cortex as 

illustrated in Figure 5b. No significant difference was observed between the tumor AD 

and the contralateral values (Figure 5a). The fractional anisotropy (FA) was 

significantly lower in the tumor on day 14 (Figure 5c).

The MK was significantly higher in the tumor compared to the contralateral cortex (

,  for all time points) (Figure 4b). Median RK was also significantly 𝑍 = 2.097 𝑝 = 0.036

higher in the tumor compared to the contralateral cortex on day 8 and day 11 (Figure 

5e), whereas the tumor AK was not significantly different (Figure 5d). Kurtosis 
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fractional anisotropy (KFA) was significantly lower in the tumor compared to the 

contralateral cortex at all time points (Figure 5f).

Tumor vs. peritumoral edema

MD was significantly higher in the edema compared to the tumor and the contralateral 

cortex from day 8 ( , ) (Figure 4a). RD was also significantly higher 𝑍 = 2.097 𝑝 = 0.036

in the edema compared to the tumor (Figure 5b), and AD was significantly higher only 

on day 14 (Figure 5a). FA was significantly greater in the edema compared to the 

tumor (Figure 5c). MK was significantly lower in the edema compared to the tumor (

, ) (Figure 4b). Significant differences were observed for AK at all 𝑍 = 2.097 𝑝 = 0.036

time points (Figure 4d), and RK at day 8 and day 11 (Figure 5e). KFA did not show 

any significant difference between the tumor and the peritumoral edema (Figure 5f).

Longitudinal changes in imaging parameters

The Friedman test showed no significant changes in tumor MD ( , , 𝜒2 = 3 𝑑𝑓 = 2

) or MK ( , , ) values with time as tumor growth 𝑝 = 0.22 𝜒2 = 1.33 𝑑𝑓 = 2 𝑝 = 0.51

occurred. None of the other diffusivity and kurtosis parameters displayed any 

significant change with time and tumor growth.

Ex vivo diffusivity and kurtosis

Ex vivo MRI scans and corresponding H&E slices of a representative brain are shown 

in Figure 6. A reduced FA was observed in the necrotic center of the tumor and in the 

tumor surroundings (Figure 6a, Table 1). KFA followed the same trend (Figure 6b, 

Table 1). Comparing the histological section with the similar slice section on MRI, 

demonstrated a dense tumor (visual appearance of higher staining reflecting 
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increased cell density) on H&E staining (Figure 6f). The necrotic center was hollow 

due to the fixation and dehydration processes. The tumor edge seemed to have 

elevated cellular density compared to the contralateral cortex (Figure 6e).

Discussion

In this study, we investigated the utility of diffusion kurtosis to probe intra-tumoral 

heterogeneity in a rat model of intracranial glioblastoma. Although diffusion kurtosis 

demonstrated significant difference between the tumor, the peritumoral edema and 

the contralateral cortex from the early stage, none of the parameters significantly 

changed as the tumor grew.

We observed an increased mean diffusivity (MD) and mean kurtosis (MK) in the tumor 

in comparison with the contralateral cortex. The increased MD may be due to 

increased extracellular diffusivity, or a significant increase in intracellular water 

diffusion due to cellular swelling. An increased mean diffusivity in tumors relative to 

the contralateral cortex has been reported in rats with F98 and C6 glioma 8-10,29, 

although some discrepancy exists since another study reported decreased MD in C6 

gliomas 30. MRI diffusion parameters, such as MD and FA, have shown potential for 

predicting tumor grade 31,32, treatment monitoring and prognosis 33. The F98 tumors 

exhibited higher MK values compared to the contralateral cortex, similar to some 

human studies reporting higher MK in high grade tumors compared to lower grade 

glioma 23,34. However, higher MK has also been associated with inflammation and glial 

activity in rat model of traumatic brain injury 19,35. Hempel et al. 36 reported that MK 

was a robust parameter for WHO classification of human gliomas. In fact, the highest 

MK values were measured in IDHWT glioblastoma described by an increased 
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cellularity, cellular heterogeneity, hemorrhage, necrosis and microvasculature 

proliferation, and the lowest MK values were observed in IDHmut because of their low 

cell density and homogeneity 37. The high MK observed in the F98 glioma in our study 

might originate from the high cellular density of the tumoral rim and the heterogeneity 

of the necrotic core, which was verified by H&E staining whereby very high cell density 

was observed in the tumor, and a slightly increased cell density was observed in the 

peritumoral area compared to the contralateral cortex.

Radial and axial diffusivities (RD and AD) exhibited the same trend as the MD values 

in the tumor and the contralateral cortex. Previous studies also reported higher RD in 

F98, 9L and GBM22 rat tumors 8,10. We observed that RK was higher in the tumor 

compared to the contralateral cortex on day 8 and 11 whereas AK was not significantly 

different between the tumor and the normal brain.

A lower FA value was observed in the tumor compared to the normal brain in our study 

suggesting a more chaotic cellular organization in the tumor. In an earlier study, higher 

FA in tumor rim than the tumor core has been reported in the F98 model 9. As the 

tumor size increased, the necrotic core grew to become the major part of the tumor 

VOI by day 14 thereby contributing predominantly to the whole tumor diffusion 

anisotropy measurements in our study. Similar to our observations, increases in FA 

have been reported in human tumors from grade II to IV gliomas 31. Lower KFA from 

the F98 tumor, especially from the necrotic center indicates a much lower degree of 

tissue organization. KFA, which represents the anisotropy of the kurtosis tensor, has 

been recently proposed as useful microstructural contrast 38,39. Although this metric is 

more appropriate for white matter analysis in the case of several crossing fiber 
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orientations in the same voxel, it also seems to be of interest for grey matter 

microstructure description as elevated KFA was observed in tissues with low 

anisotropy such as the thalamus and lenticular nucleus where the cells are organized 

in oriented structures (e.g. lamina, nuclei) 39. The variability in the normal brain VOI 

parameters (Figure 5) was larger than expected, especially in the FA, RK and KFA 

values. The fact that this variability is not observed in all the parameters, suggests that 

there might be some variability in the selection of the VOI, leading to different GM/WM 

ratios, and that FA, KFA and RK are probably more sensitive to these subtle alterations 

than the other DTI and DKI parameters. We observed decreased KFA in the tumoral 

tissue, suggesting a lower degree of overall tissue organization, which was noted in 

H&E stains showing high cellular density in the tumor with heterogeneity due to the 

necrotic cores.

The peritumoral edema displayed higher MD due to increased extracellular water. The 

increased water diffusion in all directions causes a significant decrease in diffusional 

kurtosis compared to the contralateral cortex, but also relative to the tumor. 

Furthermore, the peritumoral edema FA was always significantly higher than that of 

the tumor. An increased peritumoral edema FA and increased MD were also described 

in several F98 and 9L rat glioma studies 8-10. However, an increased FA and decreased 

ADC (MD) in the area surrounding the tumor was reported by Kim et al. 10 and by 

Lope-Piedrafita et al. in 9L, F98 and C6 rat glioma, assumed to be caused by the 

compression of the surrounding cells to an oblate spheroid shape 40. The increased 

diffusion anisotropy measured in the peritumoral region can be explained by the 

compression of the grey matter by the tumor mass, but also the infiltration of the tumor 

in the surrounding tissue. The H&E staining shows a higher cellular density in the 
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edematous region. Furthermore, the cells seem to be more elongated in the region 

directly surrounding the tumor than in the contralateral cortex due to a tumoral mass 

effect, as suggested by Lope-Piedrafita 40. It seems that our F98 glioma model is not 

only highly infiltrative but also demonstrates a mass effect on the nearby tissue.

Diffusion kurtosis imaging (DKI) provides dimensionless metrics on the deviation of 

the probabilistic water displacement from a Gaussian distribution and has been 

proposed to better characterize tumor heterogeneity than standard DTI parameters in 

several pathological conditions (24). In contrast to our hypothesis, we did not observe 

any temporal evolution in DKI parameters with tumor growth, as the tumor tissue 

clearly became more heterogenous with time, with increased necrotic areas. An 

increase of ADC over time has been reported by Letourneur et al. 29 in a rat model 

with C6 glioma. However, no changes of ADC was observed in in F98 tumors 29 or 9L 

tumors 41.

Our study did not show any better sensitivity in identifying tumor tissue from healthy 

brain with DKI, compared to DTI at all imaging time points. Our initial hypothesis was 

that as the tumor grows, the increased microstructural heterogeneity due to hypoxia 

and necrosis would be quantifiable using DKI parameters. The lack of significant 

changes may either be due to tumor biology or due to limitations of the DKI technique. 

Firstly, the DKI data were acquired at 9.4 T using two non-zero b-values that should 

theoretically allow kurtosis calculation in our model 38,42, but only two b-values may 

have not provided enough sensitivity in measuring early microstructural changes, as 

suggested by other reports which used several low and high b-values combinations 

15,17. The use of the b=0 values for both the DTI and DKI analysis led to some 

contributions from the fast (vascular) components of water diffusion due to the intra 

Page 17 of 63

http://mc.manuscriptcentral.com/nbm

NMR in Biomedicine - For Peer Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review Only

voxel intra molecular (IVIM) effect. However, since the IVIM effect would have 

impacted both the DTI and DKI measurements, we believe that the IVIM effects would 

have cancelled out while comparing the two (DTI versus DKI) for assessing tumor 

tissue heterogeneity. Additionally, although most human DKI studies are performed 

using 30 diffusion encoding directions, based on the recommendations of the DKE 

software, we used 15 diffusion directions in our study as the best compromise between 

SNR and acquisition time. However, we do not believe that the reduced number of 

diffusion direction impacts on the DKI fitting as it has been reported that DKI 

parameters can be calculated using a minimum of 15 diffusion directions 15,16. 

Preclinical DKI studies have been reported with 15 directions in a rat model of stroke 

at 4.7T 43, and 20 directions in diabetic rats at 7T 21. In fact, Latt et al. demonstrated 

that even 6 directions are sufficient to reach a good estimate of diffusion kurtosis in 

human MS at 3T 44. Another probable reason for not observing any change in kurtosis 

with tumor growth could be that the tumor was already highly heterogeneous 

(microstructurally) at the earliest imaging time point. In fact, a necrotic core was 

observed on the anatomical scans and parametric maps in all of the tumors from day 

11 post-implantation (second imaging time point). It is possible that the subsequent 

changes in tumor heterogeneity were not substantial enough to be detected with 

diffusion kurtosis MRI. The use of complementary imaging techniques could be useful 

to assess cellular swelling and extracellular matrix alterations such as time-dependent 

DTI that was used in tumor models to separate the intracellular and extracellular water 

diffusion 45,46. Alternatively, a slower growing tumor model could be used, or a 

treatment paradigm that substantially alters the tissue microstructure by induction of 

therapeutic cell death.
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In conclusion, an increased diffusional kurtosis in F98 tumors, and a decrease in the 

peritumoral edema was observed compared to the normal brain, although no changes 

in DKI parameters were noted as the tumor grew, indicating that this technique may 

not be able to observe the microstructural tumor heterogeneity in the F98 model.

Acknowledgements: Dr Arthur Taylor, University of Liverpool, is acknowledged for 
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Figure Legends

Figure 1: Representative T2-weighted image (a) and its corresponding diffusivity (b) 

and kurtosis (c) parametric maps. The red arrow indicates the tumor location on the 

T2-weighted image.

Figure 2: Mean diffusivity (a) and mean kurtosis (c) histograms in the tumor of a 

representative rat 14 days after tumor cell injection compared to the contralateral 

cortex and peritumoral edema and their corresponding mean diffusivity (b) and mean 

kurtosis (d) maps. The tumor (red), peritumoral edema (green) and contralateral cortex 

(blue) volumes-of-interest contours are illustrated on the MD (b) and MK (d) maps.

Figure 3: Typical T2-weighted images of the same rat at a similar slice level showing 

the presence of F98 tumors (top row, arrow). Boxplots showing the tumor volumes 

segmented from T2-weighted images in the six rats 8, 11 and 14 days post-

implantation (bottom row).

Figure 4: Comparison boxplots of the median values of mean diffusivity (MD) (a, left) 

and mean kurtosis (MK) (b, left) in the six rats in the tumor (red), peritumoral edema 

(yellow) and contralateral cortex (blue) (*: p<0.05), and representative MD and MK 

maps at day 8, day 11 and day 14 (right).

Figure 5: Boxplots of the axial diffusivity (a), radial diffusivity (b), fractional anisotropy 

(c), axial kurtosis (d), radial kurtosis (e) and kurtosis fractional anisotropy (f) in the 
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tumor, the contralateral healthy cortex and the edema, day 8, 11 and 14 post-

implantation (*: p<0.05).

 

Figure 6: FA (a) and KFA (b) maps of an ex vivo rat brain and corresponding 10X 

H&E staining (c). 20X magnification on the edematous region (d), the tumor edge (e), 

the tumor center (f) and the contralateral cortex (g). The red arrows indicate the tumor 

on the FA and KFA maps.
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Table 1: Mean ± standard deviation for all diffusion and kurtosis parameters in the 

tumor, edema and contralateral cortex volumes-of-interest of the six rats. (#: significant 

difference between the tumor and the contralateral cortex, $: significant difference 

between the tumor and the edema). Mean and standard deviation from the ex vivo 

data were taken from the volume of interest in one representative rat.

MD x 10-3 

(μm2/ms)

AD x 10-3 

(μm2/ms)

RD x 10-3 

(μm2/ms)
FA MK AK RK KFA

Tumor 0.78±0.04 0.90±0.06 0.71±0.04 0.16±0.04 0.87±0.05 0.89±0.07 0.86±0.09 0.49±0.15

Edema 0.87±0.06 $ 1.03±0.08 0.79±0.06 $ 0.19±0.02 0.76±0.03 $ 0.78±0.06 $ 0.75±0.05 $ 0.50±0.16

D
ay

 8

Contralateral 

cortex
0.71±0.03 0.84±0.03 # 0.64±0.03 # 0.17±0.03 0.78±0.09 # 0.75±0.26 0.70±0.17 # 0.60±0.18 #

Tumor 0.75±0.04 0.86±0.05 0.70±0.03 0.15±0.03 0.84±0.06 0.91±0.79 0.79±0.11 0.47±0.10

Edema 0.88±0.03 $ 1.03±0.08 0.79±0.03 $ 0.22±0.02 $ 0.74±0.04 $ 0.79±0.03 $ 0.71±0.08 $ 0.50±0.09

D
ay

 1
1

Contralateral 

cortex
0.68±0.04 # 0.78±0.04 0.61±0.04 # 0.19±0.05 0.75±0.07 # 0.92±0.02 0.67±0.12 # 0.62±0.11 #

Tumor 0.74±0.05 0.83±0.03 0.67±0.02 0.14±0.03 0.82±0.08 0.88±0.06 0.77±0.08 0.49±0.06

Edema 0.89±0.04 $ 1.07±0.05 $ 0.80±0.04 $ 0.22±0.02 $ 0.73±0.02 $ 0.74±0.04 $ 0.72±0.06 0.46±0.06

D
ay

 1
4

Contralateral 

cortex
0.67±0.01 # 0.82±0.03 0.59±0.01 # 0.22±0.02 # 0.72±0.06 # 0.83±0.06 0.73±0.11 0.62±0.05 #

Tumor 0.55±0.08 0.63±0.08 0.51±0.08 0.18±0.07 0.90±0.15 0.86±0.14 0.83±0.18 0.42±0.08

Ex
 v

iv
o

Contralateral 

cortex
0.31±0.01 0.37±0.02 0.28±0.01 0.23±0.03 1.65±0.12 1.61±0.17 1.56±0.16 0.50±0.05
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Diffusivity; MK, Mean Kurtosis; AK, Axial Kurtosis; RK, Radial Kurtosis; VOI, Volume 

Of Interest.
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Diffusion kurtosis imaging for characterizing tumor heterogeneity in an 

intracranial rat glioblastoma model

Abstract:

The utility of diffusion kurtosis imaging (DKI) for assessing intra-tumor heterogeneity 

was evaluated in a rat model of glioblastoma multiforme.

Longitudinal MRI including T2-weighted and diffusion weighted MRI (DWI) was 

performed on six female Fischer rats 8, 11 and 14 days after intracranial 

transplantation of F98 cells. T2-weighted images were used to measure the tumor 

volumes and DWI images were used to compute diffusion tensor imaging (DTI) and 

DWI parametric maps including mean diffusivity (MD), mean kurtosis (MK), axial 

diffusivity (AD), axial kurtosis (AK), radial diffusivity (RD), radial kurtosis (RK), 

fractional anisotropy (FA) and kurtosis fractional anisotropy (KFA). Median values from 

the segmented normal contralateral cortex, tumor and edema from the diffusion 

parameters were compared at the three imaging points and computed to assess any 

changes in tumor heterogeneity over time. Ex vivo DKI was also performed in a 

representative sample and compared with histology.

Significant differences were observed between the normal cortex, tumor and edema 

in both the DTI and DKI parameters. Notably, at the earliest time point MK and KFA 

were significantly different between the normal cortex and tumor in comparison to MD 

or FA. Although a decreasing trend in MD, AD and FA values of the tumor were 

observed as the tumor grew, no significant changes in any of the DTI or DKI 

parameters were observed longitudinally.
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While DKI was equally sensitive to DTI in differentiating tumor from edema and normal 

brain, it was unable to detect longitudinal increase of intra-tumoral heterogeneity in the 

F98 model of glioblastoma multiforme.

Keywords: MRI - diffusion kurtosis imaging; MRI – rat brain tumor; brain tumor; tumor 

heterogeneity.
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Introduction

Glioblastoma multiforme (GBM) is the most frequently occurring central nervous 

system primary brain tumor with poor prognosis and a median survival rate of 15 

months after diagnosis 1. Of the several rodent models of GBM, the rat orthotopic F98 

model has been reported to exhibit several traits of the human GBM in rats 2, including 

a high degree of heterogeneity, invasiveness and diffused boundaries 3. It has been 

used to assess chemo 4,5 and radiation 6 therapy and has also been used in MR studies 

including spectroscopy 7, diffusion 8-10, and perfusion MRI 6,11.

Diffusion-weighted magnetic resonance imaging (DWI) has been widely used to 

quantify the random motion of water molecules in biological tissues 12-14. Standard 

analytical models processing diffusion-weighted MRI data for computation of the 

apparent diffusion coefficient (ADC) values assume water displacement in the tissue 

(voxel of interest) follows a Gaussian statistical distribution, similar to the water 

diffusion observed in homogeneous liquids. However, it is well known that the 

assumption of Gaussian distribution fails in in vivo conditions due to the inherent 

heterogeneity from the presence of various tissue compartments, including different 

cell types, cell morphologies, extracellular matrix, and blood 15.

Diffusion Kurtosis Imaging (DKI) is a dimensionless metric that quantifies how much 

the water diffusion deviates from a Gaussian distribution due to cellular membranes, 

intra- and extracellular compartments and tissue structure 15-17. Thus, the diffusion of 

water molecules in homogeneous liquids will follow a Gaussian distribution with a 

kurtosis of zero. In tissues where diffusion is mostly hindered and restricted, water 
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molecules will more likely diffuse short distances around the initial position in a time t, 

leading to a sharper statistical distribution and a positive kurtosis.

DKI has been used to assess white matter damage and myelin density 17. Preclinical 

DKI studies include infarct 18, traumatic brain injury 19 and Alzheimer’s disease 20, type 

2 diabetic ischemic stroke 21, and acute alcohol intoxication 22.

DKI has also been reported to aid in assessing microstructural heterogeneity in tumors 

and its degree of diffusion restriction. It has been used in grading of human gliomas 

whereby higher mean kurtosis (MK) and lower mean diffusivity (MD) values were 

noted in high-grade solid tumors with increased cellularity 23. Increased cellularity and 

presence of spindle-shaped cells led to a higher kurtosis and lower diffusivity in 

colorectal tumors xenografts 24. 

Although promising, none of published studies have assessed longitudinal changes in 

kurtosis parameters of the tumor for assessing changes in tumor tissue heterogeneity 

with regards to the microenvironment and cellular components as the tumor grows. 

Therefore, we performed a longitudinal study in a rat F98 brain tumor model to assess 

whether changes in DKI parameters can better assess tumor heterogeneity as the 

tumor volume increases over time. 

Methods

Cell culture

F98 glioma cells (ATCC CRL-2937TM), were maintained as adherent monolayers 

cultured in Dulbecco Modified Eagles Medium containing 4.5 g/L glucose (DMEM 

D6429, Sigma-Aldrich, St. Louis, Missouri, USA) supplemented with 10% fetal bovine 
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serum (FBS 10270-106, Gibco, Thermo Fisher Scientific, Waltham, Massachusetts, 

USA). The cells were maintained at 37 °C in 5% CO₂ humidified atmosphere. Cells 

were passaged twice weekly at 1x105 per T-75 flask and terminated after the fifth 

passage to avoid chances of further mutations. Cells were tested bi-monthly for 

mycoplasma.

Brain tumor model

In vivo studies on rats were conducted in compliance with the UK Home Office Animals 

(Scientific Procedures) Act 1986 and with the ethical approval of the local committee 

of the University of Liverpool. Six F344 female (100-120 g) Fischer rats (Charles River, 

Margate, United Kingdom) were injected with 50,000 F98 cells suspended in 5 µL 

serum-free DMEM culture medium. The injection was performed in an aseptic 

environment using sterile tools. The rat was maintained under surgical anesthesia 

using a 3% isoflurane in O2 gas mixture. Rats were given subcutaneous injections of 

antibiotics (5 mg/kg, 25 mg/mL enrofloxacin, 2.5% Baytril, Bayer, Leverkusen, 

Germany) and analgesia (0.3 mg/mL buprenophine, Vetergesic, Ceva Animal Health, 

Amersham, UK) before the surgery, and 2 mL saline after the surgery. The rat was 

maintained in a three-point stereotaxic frame, the head was shaved and a small 

incision allowed access to the skull. A burr hole was drilled through the skull 3 mm 

right and 3 mm posterior from the bregma and the cells were injected 2.5 mm deep 

into the cerebral cortex. After the surgery, the skin was sutured, and the animal was 

returned to its cage for recovery. Three animals were housed together in a cage with 

stimulation objects and free access to food and water, which was provided ad libitum 

and the animals were kept in a 12-hour day/light cycle. 
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MRI acquisition

MRI scans were performed at 9.4 T on a Bruker Biospec (Bruker BioSpin, Ettlingen, 

Germany). Signal was generated using a 86 mm transmission birdcage coil, and 

detected by a four-channel phased array surface coil. The rats were anesthetized with 

2% isoflurane in O2 and the respiration rate and body temperature were monitored 

using an abdominal motion sensor and a rectal probe (SA Instruments, Inc., Stony 

Brook, New York, USA). The body temperature was maintained at 35 °C by a hot water 

blanket and the respiration rate at 50-60 inspirations per minute. Each MRI experiment 

consisted of a localizer scan, followed by an anatomical T2-weighted sequence and a 

DWI sequence.

In vivo MR images were acquired longitudinally on days 8, 11 and 14 post- tumor cells 

inoculation to assess changes in the tumor microenvironment with DKI using a 

minimum of three time points (early, mid and late tumor stage). These time points were 

also chosen to comply with the home office guidelines of not subjecting the animal to 

undue stress of multiple anaesthesia sessions or exceeding the severity limits on 

animal health. A multi-slice T2-weighted sequence was acquired to locate the tumor 

using a fast spin echo sequence with the following parameters: TE/TR = 33/5000 ms, 

RARE factor = 8, matrix = 256x256, FOV = 40x20 mm, 38 slices, scan duration = 2 

min 38 s. DKI was performed using a respiratory-gated EPI-DTI sequence with the 

parameters: TE/TR = 23/2500 ms, 5 averages, 4 EPI segments, matrix = 128x64, FOV 

= 40x20 mm, 38 slices, voxel resolution = 0.3x0.3x0.3 mm3, δ/Δ=4/11 ms, 15 

directions, b-values = 0-1000-2000 s/mm2, 3 b0 images, 27.5 min. The total scan 

duration for each experiment was around 60 min. Animals were rehydrated with 1 mL 

saline injected subcutaneously after each MRI session.
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Image processing and statistical analysis

The brain was manually segmented on the b = 0 s/mm2 images from the diffusion-

weighted datasets using ITK-SNAP (www.itksnap.org). Tumors were manually 

segmented on the T2-weighted images to assess tumoral growth. Tumor growth rate 

was calculated from the logarithm of the volume ratio from day 8 to day 14, and 

volumetric doubling-time was then calculated using the exponential growth model 25. 

Diffusion and kurtosis parametric maps were calculated using the DKE software 

(Medical University of South Carolina, USA). A characteristic T2-weighted image of a 

typical rat 11 days after tumor cells injection and its corresponding parametric maps 

are shown in Figure 1. No corrections were made for geometric distortions or eddy 

current effects. Volumes of interests (VOI) corresponding to the whole tumor, the 

whole peritumoral edema and the contralateral normal appearing healthy brain 

parenchyma cortex were also segmented using ITK-SNAP and the binary masks were 

overlaid on the parametric maps. The contralateral normal brain healthy cortex VOI 

was segmented by selecting a region of frontal left cortex for every slice containing 

glioma. As the contralateral normal brain microstructure is unlikely to change due to 

the presence of the tumor on the ipsi-lateral side, it was used as reference with the 

hypothesis that no significant changes in the normal brain will be observed while 

changes in tumor heterogeneity will lead to changes in DKI parameters. Care was 

taken to keep the normal brain VOI to be as big and as close as possible to the first 

imaging time point in each animal and during longitudinal studies. Typical VOIs are 

shown in Figure 2b. Histograms of the parameter value distribution in the tumoral, 

edematous and cortical regions (Figure 2a and 2c) were generated using MATLAB 

(Mathworks Inc., Massachusetts, USA). Mean, median and standard deviation values 
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were calculated for each parameter using Origin (OriginLab, Northampton, 

Massachusetts, USA). A Wilcoxon signed-rank test was used to compare the tumor 

diffusion and kurtosis median values to the peritumoral edema and contralateral 

cortex. A Friedman test was used to compare the longitudinal data. A p-value of 0.05 

or below was considered to be significantly different between the groups.

Tissue collection

Animals were euthanized one day after the last MRI session using an overdose of 3 

mL/kg pentobarbital sodium (Euthatal, Merial Animal Health Ltd, Harlow, UK) injected 

intra-peritoneally. An incision was performed along the mid-ventral line through the 

abdomen to severe the aorta under the diaphragm. A midline thoracotomy gave 

access to the heart. A 25-gauge needle connected to an extension tube was clamped 

to the left ventricle of the heart to perfuse with 50 mL saline followed by 75 mL 4% 

Formalin (Sigma-Aldrich, St. Louis, Massachusetts, USA). Following fixation, brains 

were collected and suspended in 4% Formalin.

Ex vivo MRI

Ex vivo MR images of the brain suspended in perfluoropolyether oil (Fomblin, Solvay, 

Brussels, Belgium) were acquired using the same T2-weighted coronal fast spin echo 

sequence as the in vivo protocol except that 25 averages were used (scan duration = 

1 h 12 min). DWI was carried out using the same EPI-DTI sequence that was used in 

vivo with 25 averages (scan duration = 3 h 26 min).

Histology
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The brain sample that was used for ex vivo DKI study, was embedded in paraffin until 

sectioning after the DKI study. Hematoxylin and eosin (H&E) staining was performed 

on 4 μm coronal sections across the tumor. The sections closely matching the ex vivo 

imaging slice was qualitatively analyzed and the extent of cell density and cellular 

organization was based on visual assessment of staining.

Results

Figure 3 shows representative T2-weighted MR images of a tumor bearing rat brain, 

in which the developing tumor could be visualized 8, 11 and 14 days after tumor cells 

inoculation. All six rats developed tumors in the right cortex, visible on the MRI scans 

from one week post-surgery. The tumor volume grew from 23.63 ± 10.20 mm3 (day 8) 

to 112.40 ± 37.77 mm3 (day 14). Based on these MRI volumetric measurements, the 

growth rate was 0.116 days-1. The tumor volume doubling-time was 3.65 days (n=6) 

in agreement with other F98 volumetric studies 26-28.

Figure 2 shows the MD and MK histograms in the tumoral, edematous and 

contralateral regions of a representative rat and their corresponding maps 14 days 

post-implantation. A higher MD is observed in the tumor compared to the contralateral 

cortex, but with overlapping distributions (Figure 2a). The peritumoral edema 

demonstrated higher MD than both the tumor and the contralateral cortex. The highest 

MK was observed in the tumoral region, whereas the lowest values were found in the 

edematous region (Figure 2c). However, the MK voxel distributions from the three 

regions were overlapping.
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The median parametric values of the whole tumor excluding the edema, the 

peritumoral edema and the contralateral cortex volumes of interest (as shown in Figure 

2b) for the six rats are shown as scatter plots in Figure 4 and Figure 5 at day 8, 11 and 

14. Table 1 provides the mean and standard deviation values of the diffusivity and  

kurtosis parameters in the six rats.

Tumors were observed on the MD maps with a concentric hyperintense structure 

composed of the peritumoral edema and the necrotic core (Figure 2b). The tumor 

appears hyperintense on the MK maps (Figure 2d). The axial (AD) and radial diffusivity 

(RD) maps showed a concentric structure similar to that observed on the MD maps 

formed of high diffusivity in the peritumoral edema and necrotic core. Likewise, the 

axial kurtosis (AK) maps demonstrated hyperintense tumors. On the other hand, the 

radial kurtosis (RK) maps did not provide a clear definition of the tumor edges.

Tumor vs. contralateral cortex

A Wilcoxon signed-rank test showed a significantly higher MD in the tumor compared 

to the contralateral cortex from day 11 ( , ) (Figure 4a). Similar to 𝑍 = 2.097 𝑝 = 0.036

MD, the RD was significantly higher in the tumor than the contralateral cortex as 

illustrated in Figure 5b. No significant difference was observed between the tumor AD 

and the contralateral values (Figure 5a). The fractional anisotropy (FA) was 

significantly lower in the tumor on day 14 (Figure 5c).

The MK was significantly higher in the tumor compared to the contralateral cortex (

,  for all time points) (Figure 4b). Median RK was also significantly 𝑍 = 2.097 𝑝 = 0.036

higher in the tumor compared to the contralateral cortex on day 8 and day 11 (Figure 

5e), whereas the tumor AK was not significantly different (Figure 5d). Kurtosis 
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fractional anisotropy (KFA) was significantly lower in the tumor compared to the 

contralateral cortex at all time points (Figure 5f).

Tumor vs. peritumoral edema

MD was significantly higher in the edema compared to the tumor and the contralateral 

cortex from day 8 ( , ) (Figure 4a). RD was also significantly higher 𝑍 = 2.097 𝑝 = 0.036

in the edema compared to the tumor (Figure 5b), and AD was significantly higher only 

on day 14 (Figure 5a). FA was significantly greater in the edema compared to the 

tumor (Figure 5c). MK was significantly lower in the edema compared to the tumor (

, ) (Figure 4b). Significant differences were observed for AK at all 𝑍 = 2.097 𝑝 = 0.036

time points (Figure 4d), and RK at day 8 and day 11 (Figure 5e). KFA did not show 

any significant difference between the tumor and the peritumoral edema (Figure 5f).

Longitudinal changes in imaging parameters

The Friedman test showed no significant changes in tumor MD ( , , 𝜒2 = 3 𝑑𝑓 = 2

) or MK ( , , ) values with time as tumor growth 𝑝 = 0.22 𝜒2 = 1.33 𝑑𝑓 = 2 𝑝 = 0.51

occurred. None of the other diffusivity and kurtosis parameters displayed any 

significant change with time and tumor growth.

Ex vivo diffusivity and kurtosis

Ex vivo MRI scans and corresponding H&E slices of a representative brain are shown 

in Figure 6. A reduced FA was observed in the necrotic center of the tumor and in the 

tumor surroundings (Figure 6a, Table 1). KFA followed the same trend (Figure 6b, 

Table 1). Comparing the histological section with the similar slice section on MRI, 

demonstrated a dense tumor (visual appearance of higher staining reflecting 
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increased cell density) on H&E staining (Figure 6f). The necrotic center was hollow 

due to the fixation and dehydration processes. The tumor edge seemed to have 

elevated cellular density compared to the contralateral cortex (Figure 6e).

Discussion

In this study, we investigated the utility of diffusion kurtosis to probe intra-tumoral 

heterogeneity in a rat model of intracranial glioblastoma. Although diffusion kurtosis 

demonstrated significant difference between the tumor, the peritumoral edema and 

the contralateral cortex from the early stage, none of the parameters significantly 

changed as the tumor grew.

We observed an increased mean diffusivity (MD) and mean kurtosis (MK) in the tumor 

in comparison with the contralateral cortex. The increased MD may be due to 

increased extracellular diffusivity, or a significant increase in intracellular water 

diffusion due to cellular swelling. An increased mean diffusivity in tumors relative to 

the contralateral cortex has been reported in rats with F98 and C6 glioma 8-10,29, 

although some discrepancy exists since another study reported decreased MD in C6 

gliomas 30. MRI diffusion parameters, such as MD and FA, have shown potential for 

predicting tumor grade 31,32, treatment monitoring and prognosis 33. The F98 tumors 

exhibited higher MK values compared to the contralateral cortex, similar to some 

human studies reporting higher MK in high grade tumors compared to lower grade 

glioma 23,34. However, higher MK has also been associated with inflammation and glial 

activity in rat model of traumatic brain injury 19,35. Hempel et al. 36 reported that MK 

was a robust parameter for WHO classification of human gliomas. In fact, the highest 

MK values were measured in IDHWT glioblastoma described by an increased 
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cellularity, cellular heterogeneity, hemorrhage, necrosis and microvasculature 

proliferation, and the lowest MK values were observed in IDHmut because of their low 

cell density and homogeneity 37. The high MK observed in the F98 glioma in our study 

might originate from the high cellular density of the tumoral rim and the heterogeneity 

of the necrotic core, which was verified by H&E staining whereby very high cell density 

was observed in the tumor, and a slightly increased cell density was observed in the 

peritumoral area compared to the contralateral cortex.

Radial and axial diffusivities (RD and AD) exhibited the same trend as the MD values 

in the tumor and the contralateral cortex. Previous studies also reported higher RD in 

F98, 9L and GBM22 rat tumors 8,10. We observed that RK was higher in the tumor 

compared to the contralateral cortex on day 8 and 11 whereas AK was not significantly 

different between the tumor and the normal brain.

A lower FA value was observed in the tumor compared to the normal brain in our study 

suggesting a more chaotic cellular organization in the tumor. In an earlier study, higher 

FA in tumor rim than the tumor core has been reported in the F98 model 9. As the 

tumor size increased, the necrotic core grew to become the major part of the tumor 

VOI by day 14 thereby contributing predominantly to the whole tumor diffusion 

anisotropy measurements in our study. Similar to our observations, increases in FA 

have been reported in human tumors from grade II to IV gliomas 31. Lower KFA from 

the F98 tumor, especially from the necrotic center indicates a much lower degree of 

tissue organization. KFA, which represents the anisotropy of the kurtosis tensor, has 

been recently proposed as useful microstructural contrast 38,39. Although this metric is 

more appropriate for white matter analysis in the case of several crossing fiber 
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orientations in the same voxel, it also seems to be of interest for grey matter 

microstructure description as elevated KFA was observed in tissues with low 

anisotropy such as the thalamus and lenticular nucleus where the cells are organized 

in oriented structures (e.g. lamina, nuclei) 39. The variability in the normal brain VOI 

parameters (Figure 5) was larger than expected, especially in the FA, RK and KFA 

values. The fact that this variability is not observed in all the parameters, suggests that 

there might be some variability in the selection of the VOI, leading to different GM/WM 

ratios, and that FA, KFA and RK are probably more sensitive to these subtle alterations 

than the other DTI and DKI parameters. We observed decreased KFA in the tumoral 

tissue, suggesting a lower degree of overall tissue organization, which was noted in 

H&E stains showing high cellular density in the tumor with heterogeneity due to the 

necrotic cores.

The peritumoral edema displayed higher MD due to increased extracellular water. The 

increased water diffusion in all directions causes a significant decrease in diffusional 

kurtosis compared to the contralateral cortex, but also relative to the tumor. 

Furthermore, the peritumoral edema FA was always significantly higher than that of 

the tumor. An increased peritumoral edema FA and increased MD were also described 

in several F98 and 9L rat glioma studies 8-10. However, an increased FA and decreased 

ADC (MD) in the area surrounding the tumor was reported by Kim et al. 10 and by 

Lope-Piedrafita et al. in 9L, F98 and C6 rat glioma, assumed to be caused by the 

compression of the surrounding cells to an oblate spheroid shape 40. The increased 

diffusion anisotropy measured in the peritumoral region can be explained by the 

compression of the grey matter by the tumor mass, but also the infiltration of the tumor 

in the surrounding tissue. The H&E staining shows a higher cellular density in the 
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edematous region. Furthermore, the cells seem to be more elongated in the region 

directly surrounding the tumor than in the contralateral cortex due to a tumoral mass 

effect, as suggested by Lope-Piedrafita 40. It seems that our F98 glioma model is not 

only highly infiltrative but also demonstrates a mass effect on the nearby tissue.

Diffusion kurtosis imaging (DKI) provides dimensionless metrics on the deviation of 

the probabilistic water displacement from a Gaussian distribution and has been 

proposed to better characterize tumor heterogeneity than standard DTI parameters in 

several pathological conditions (24). In contrast to our hypothesis, we did not observe 

any temporal evolution in DKI parameters with tumor growth, as the tumor tissue 

clearly became more heterogenous with time, with increased necrotic areas. An 

increase of ADC over time has been reported by Letourneur et al. 29 in a rat model 

with C6 glioma. However, no changes of ADC was observed in in F98 tumors 29 or 9L 

tumors 41.

Our study did not show any better sensitivity in identifying tumor tissue from healthy 

brain with DKI, compared to DTI at all imaging time points. Our initial hypothesis was 

that as the tumor grows, the increased microstructural heterogeneity due to hypoxia 

and necrosis would be quantifiable using DKI parameters. The lack of significant 

changes may either be due to tumor biology or due to limitations of the DKI technique. 

Firstly, the DKI data were acquired at 9.4 T using two non-zero b-values that should 

theoretically allow kurtosis calculation in our model 38,42, but only two b-values may 

have not provided enough sensitivity in measuring early microstructural changes, as 

suggested by other reports which used several low and high b-values combinations 

15,17. The use of the b=0 values for both the DTI and DKI analysis led to some 

contributions from the fast (vascular) components of water diffusion due to the intra 
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voxel intra molecular (IVIM) effect. However, since the IVIM effect would have 

impacted both the DTI and DKI measurements, we believe that the IVIM effects would 

have cancelled out while comparing the two (DTI versus DKI) for assessing tumor 

tissue heterogeneity. Additionally, although most human DKI studies are performed 

using 30 diffusion encoding directions, based on the recommendations of the DKE 

software, we used 15 diffusion directions in our study as the best compromise between 

SNR and acquisition time. However, we do not believe that the reduced number of 

diffusion direction impacts on the DKI fitting as it has been reported that DKI 

parameters can be calculated using a minimum of 15 diffusion directions 15,16. 

Preclinical DKI studies have been reported with 15 directions in a rat model of stroke 

at 4.7T 43, and 20 directions in diabetic rats at 7T 21. In fact, Latt et al. demonstrated 

that even 6 directions are sufficient to reach a good estimate of diffusion kurtosis in 

human MS at 3T 44. Another probable reason for not observing any change in kurtosis 

with tumor growth could be that the tumor was already highly heterogeneous 

(microstructurally) at the earliest imaging time point. In fact, a necrotic core was 

observed on the anatomical scans and parametric maps in all of the tumors from day 

11 post-implantation (second imaging time point). It is possible that the subsequent 

changes in tumor heterogeneity were not substantial enough to be detected with 

diffusion kurtosis MRI. The use of complementary imaging techniques could be useful 

to assess cellular swelling and extracellular matrix alterations such as time-dependent 

DTI that was used in tumor models to separate the intracellular and extracellular water 

diffusion 45,46. Alternatively, a slower growing tumor model could be used, or a 

treatment paradigm that substantially alters the tissue microstructure by induction of 

therapeutic cell death.

Commented [PH1]:  R3.1
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In conclusion, an increased diffusional kurtosis in F98 tumors, and a decrease in the 

peritumoral edema was observed compared to the normal brain, although no changes 

in DKI parameters were noted as the tumor grew, indicating that this technique may 

not be able to observe the microstructural tumor heterogeneity in the F98 model.
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Figure Legends

Figure 1: Representative T2-weighted image (a) and its corresponding diffusivity (b) 

and kurtosis (c) parametric maps. The red arrow indicates the tumor location on the 

T2-weighted image.

Figure 2: Mean diffusivity (a) and mean kurtosis (c) histograms in the tumor of a 

representative rat 14 days after tumor cell injection compared to the contralateral 

cortex and peritumoral edema and their corresponding mean diffusivity (b) and mean 

kurtosis (d) maps. The tumor (red), peritumoral edema (green) and contralateral cortex 

(blue) volumes-of-interest contours are illustrated on the MD (b) and MK (d) maps.

Figure 3: Typical T2-weighted images of the same rat at a similar slice level showing 

the presence of F98 tumors (top row, arrow). Boxplots showing the tumor volumes 

segmented from T2-weighted images in the six rats 8, 11 and 14 days post-

implantation (bottom row).

Figure 4: Comparison boxplots of the median values of mean diffusivity (MD) (a, left) 

and mean kurtosis (MK) (b, left) in the six rats in the tumor (red), peritumoral edema 

(yellow) and contralateral cortex (blue) (*: p<0.05), and representative MD and MK 

maps at day 8, day 11 and day 14 (right).

Figure 5: Boxplots of the axial diffusivity (a), radial diffusivity (b), fractional anisotropy 

(c), axial kurtosis (d), radial kurtosis (e) and kurtosis fractional anisotropy (f) in the 
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tumor, the contralateral healthy cortex and the edema, day 8, 11 and 14 post-

implantation (*: p<0.05).

 

Figure 6: FA (a) and KFA (b) maps of an ex vivo rat brain and corresponding 10X 

H&E staining (c). 20X magnification on the edematous region (d), the tumor edge (e), 

the tumor center (f) and the contralateral cortex (g). The red arrows indicate the tumor 

on the FA and KFA maps.
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Table 1: Mean ± standard deviation for all diffusion and kurtosis parameters in the 

tumor, edema and contralateral cortex volumes-of-interest of the six rats. (#: significant 

difference between the tumor and the contralateral cortex, $: significant difference 

between the tumor and the edema). Mean and standard deviation from the ex vivo 

data were taken from the volume of interest in one representative rat.

MD x 10-3 

(μm2/ms)

AD x 10-3 

(μm2/ms)

RD x 10-3 

(μm2/ms)
FA MK AK RK KFA

Tumor 0.78±0.04 0.90±0.06 0.71±0.04 0.16±0.04 0.87±0.05 0.89±0.07 0.86±0.09 0.49±0.15

Edema 0.87±0.06 $ 1.03±0.08 0.79±0.06 $ 0.19±0.02 0.76±0.03 $ 0.78±0.06 $ 0.75±0.05 $ 0.50±0.16

D
ay

 8

Contralateral 

cortex
0.71±0.03 0.84±0.03 # 0.64±0.03 # 0.17±0.03 0.78±0.09 # 0.75±0.26 0.70±0.17 # 0.60±0.18 #

Tumor 0.75±0.04 0.86±0.05 0.70±0.03 0.15±0.03 0.84±0.06 0.91±0.79 0.79±0.11 0.47±0.10

Edema 0.88±0.03 $ 1.03±0.08 0.79±0.03 $ 0.22±0.02 $ 0.74±0.04 $ 0.79±0.03 $ 0.71±0.08 $ 0.50±0.09

D
ay

 1
1

Contralateral 

cortex
0.68±0.04 # 0.78±0.04 0.61±0.04 # 0.19±0.05 0.75±0.07 # 0.92±0.02 0.67±0.12 # 0.62±0.11 #

Tumor 0.74±0.05 0.83±0.03 0.67±0.02 0.14±0.03 0.82±0.08 0.88±0.06 0.77±0.08 0.49±0.06

Edema 0.89±0.04 $ 1.07±0.05 $ 0.80±0.04 $ 0.22±0.02 $ 0.73±0.02 $ 0.74±0.04 $ 0.72±0.06 0.46±0.06

D
ay

 1
4

Contralateral 

cortex
0.67±0.01 # 0.82±0.03 0.59±0.01 # 0.22±0.02 # 0.72±0.06 # 0.83±0.06 0.73±0.11 0.62±0.05 #

Tumor 0.55±0.08 0.63±0.08 0.51±0.08 0.18±0.07 0.90±0.15 0.86±0.14 0.83±0.18 0.42±0.08

Ex
 v

iv
o

Contralateral 

cortex
0.31±0.01 0.37±0.02 0.28±0.01 0.23±0.03 1.65±0.12 1.61±0.17 1.56±0.16 0.50±0.05
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Figure 1: Representative T2-weighted image (a) and its corresponding diffusivity (b) and kurtosis (c) 
parametric maps. The red arrow indicates the tumor location on the T2-weighted image. 
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Figure 2: Mean diffusivity (a) and mean kurtosis (c) histograms in the tumor of a representative rat 14 days 
after tumor cell injection compared to the contralateral cortex and peritumoral edema and their 

corresponding mean diffusivity (b) and mean kurtosis (d) maps. The tumor (red), peritumoral edema 
(green) and contralateral cortex (blue) volumes-of-interest contours are illustrated on the MD (b) and MK 

(d) maps. 
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Figure 3: Typical T2-weighted images of the same rat at a similar slice level showing the presence of F98 
tumors (top row, arrow). Boxplots showing the tumor volumes segmented from T2-weighted images in the 

six rats 8, 11 and 14 days post-implantation (bottom row). 
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Figure 4: Comparison boxplots of the median values of mean diffusivity (MD) (a, left) and mean kurtosis 
(MK) (b, left) in the six rats in the tumor (red), peritumoral edema (yellow) and contralateral cortex (blue) 

(*: p<0.05), and representative MD and MK maps at day 8, day 11 and day 14 (right). 
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Figure 5: Boxplots of the axial diffusivity (a), radial diffusivity (b), fractional anisotropy (c), axial kurtosis 
(d), radial kurtosis (e) and kurtosis fractional anisotropy (f) in the tumor, the contralateral healthy cortex 

and the edema, day 8, 11 and 14 post-implantation (*: p<0.05). 
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Figure 6: FA (a) and KFA (b) maps of an ex vivo rat brain and corresponding 10X H&E staining (c). 20X 
magnification on the edematous region (d), the tumor edge (e), the tumor center (f) and the contralateral 

cortex (g). The red arrows indicate the tumor on the FA and KFA maps. 
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Diffusion kurtosis imaging for characterization of tumor heterogeneity in an 

intracranial rat glioblastoma model

Clémentine Lesbats, Claire Louise Kelly, Gabriela Czanner, Harish Poptani*

Diffusion kurtosis imaging (DKI) was performed longitudinally in a rat model of 

glioblastoma to assess intra-tumor heterogeneity. Although mean kurtosis values were 

significantly higher in the tumor compared to the healthy brain cortex or peri-tumoral 

edema, no significant changes in any of the DKI parameters of the tumor were 

observed when the values were compared longitudinally.
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