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a b s t r a c t 

Functional origami tessellations have certain geometric or physical properties - such as flat-foldability and rigid-foldability - which make them of particular interest 

for a broad range of applications in science, engineering, and architecture. While some simple variations of certain functional origami tessellations can be designed 

trivially, a systematic symmetry-reduction scheme is proved to be productive for the computational generation of more complex, non-trivial variations. Such a scheme 

has been previously applied to the developable double corrugation (DDC) surface, widely known as the Miura-ori, resulting in the development of novel crystalline 

derivatives, the symmetry groups of which are subgroups of the parent pattern. Computational algorithms can search for and find flat-foldable solutions for a large 

number of derivatives of the DDC surface, but fail to find solutions for all of them. In this paper, we exploit the symmetry reduction scheme along with classical plane 

geometry to analytically demonstrate why some crystallographic derivatives of this pattern do not exist. To this end, by applying the local flat-foldability condition 

at the vertices of different orbits associated with each tessellation, we show that such patterns are never flat-foldable, regardless of the geometric specifications 

of their constituting quadrilateral facets. In particular, we prove that two-tile DDC surfaces composed of glide-reflected irregular quadrilaterals are intrinsically 

non-flat-foldable, resulted from geometric incompatibilities between the properties of certain unit cells and the local flat-foldability condition. 
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. Introduction 

Origami – the traditional art of paper folding – has inspired count-
ess practical applications over the past few decades. In particular,
ome origami tessellations have attracted the enormous interest of sci-
nce and engineering communities, as a result of their design versa-
ility and favourable mechanical properties such as limited degrees of
reedom [1–4] , stiffness-tunability [5–10] , flat-foldability [11,12] , and
igid-foldability [13–16] (stiffness-tunability is the condition of hav-
ng tunable structural stiffness; flat-foldability means that an originally
lanar thin sheet can be folded to a second ‘flat’ configuration; rigid-
oldability implies that the facets of the origami structure remain flat
uring folding/unfolding). 

One of the most noted and widely-used origami tessellations in sci-
nce, engineering, and architecture is the developable double corruga-
ion (DDC) surface, popularly known as the Miura-ori. As can be seen
rom Fig. 1 a, the crease lines of this pattern form parallelograms (more
recisely, a single parallelogram repeated in two directions) which tes-
ellate the plane. Variations of the DDC surface have also found numer-
us applications. As a result, developing new functional variations could
otentially expand the range of applications for such a fold pattern in
arious fields. To this end, the next section presents the mathematical
oncepts and definitions that are necessary to explore and design new
ariations for this tessellation. 
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. Theoretical background 

From a mathematical standpoint, symmetry is an intrinsic property
f every repetitive structure. On a broader level, symmetry analysis is an
nsightful approach to the design and analysis of engineering structures
f different types such as truss structures [17–28] , tensegrities [29–32] ,
nd layered space grids [33,34] . Therefore, to analyse the composition
nd design of a given tessellation, one needs to investigate symmetry
lements associated with that tessellation. 

Transformational geometry is the branch of mathematics studying
eometric transformations, which underlie the modern understanding
f symmetry [35] . A transformation 𝜏 on a set S is a function from S to S
hat is both one-to-one and onto, i.e. it is a one-to-one correspondence
rom S to itself [36,37] . An isometry is a distance-preserving transforma-
ion. Mathematically speaking, a transformation 𝜏: ℝ 2 → ℝ 2 is an isom-
try of the plane ℝ 2 if for any two points P and Q of ℝ 2 , the Euclidean
istance between P and Q remains invariant, i.e., | 𝜏( P ) − 𝜏( Q )| = | P − Q |
38,39] . In fact, an isometry is a special case of a similarity (similarities
re angle-preserving transformations which characterise Euclidean geom-
try) [40,41] . 

With the above concepts and definitions in mind, one can observe
hat every infinite, two-dimensional tessellation is composed of a design
otif transformed by a group of isometries to cover the plane without

ny gap or overlap. In general, the isometries of the two-dimensional
), chenyao@seu.edu.cn (Y. Chen). 
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Fig. 1. (a) Folding sequence of a typical developable double corrugation (DDC) surface or the Miura-ori; a 2 × 2 unit of this pattern is illustrated along with the 

mountain-valley assignment of crease lines (the thickness of the surface is assumed to be negligible). (b) Different types of non-trivial isometries of the plane. (c) 

Two standard choices for the smallest pmg unit cell for the Miura fold pattern (top), and the symmetry reduction of a pmg unit cell to a pg unit cell by removing the 

centres of rotation and axes of reflection (bottom right). The blue shaded area shows the fundamental region of the pattern. Different colours for a symmetry element 

represent different classes of that element in the pattern. The directions in which horizontal lines and zigzag polylines travel are respectively called the longitudinal 

and transverse directions of the pattern, represented by the y - and x -axes, respectively. The unit fragment of the pattern, composed of two adjacent parallelograms 

(denoted by P ), is illustrated on the top right. 
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Fig. 2. (a) The core quadrilateral (depicted by 

red dashed lines) and the distribution of the to- 

tal flat-foldability error for a typical octagonal 

unit fragment associated with the two plane 

symmetry groups p 1 and p 2. (b) Close-up of 

error distribution showing two local minima. 

(c) Two flat-foldable solutions corresponding to 

the two minima given in part b. 

p  

a
 

[  

n  

e  

(  

M  

o  

c  

s  

s  

f  

f  

o
 

t  

i  

F  

a  

h
 

v  

i  
lane include the identity, rotations, reflections, and glide reflections,
s illustrated in Fig. 1 b. 

According to the classification of two-dimensional symmetry groups
42,43] , the symmetry of the Miura fold pattern is 22 ∗ in the Orbifold
otation [44] , [( ∞,2) + , ∞] or [ ∞,(2, ∞) + ] in the Coxeter notation (see,
.g., [45] or [46] ), or pmg in the International Union of Crystallography
IUCr) notation [47] . In this paper, the Miura fold pattern is denoted by
. According to [48] , there are two choices for the smallest unit cell

f a given Miura crease pattern that both match the standard pmg unit
ell used in the IUCr tables [47] , as illustrated in Fig. 1 c: the ‘primary
tandard’ choice S, and the ‘alternative standard’ choice S + . It has been
hown [48] that these two initial choices produce the same descendants
or some symmetric variations, whereas they generate different results
or some others. Hereafter in this study, those descendants of the Miura-
ri which can only be generated based on S + are denoted by M + . 

A ‘unit fragment’ of a tessellating mesh is defined as a minimal collec-
ion of adjacent facets which can generate the entire tessellation using
ts respective translation vectors [49] . As illustrated on the top right of
ig. 1 c, the unit fragment of a Miura fold pattern is composed of two
djacent parallelograms (denoted by P ) which share a fold line on the
orizontal lines of the pattern. 

Designers and researchers in various fields have proposed a range of
ariations for the Miura-ori [11,50–52] . A framework for the general-
sation of this origami tessellation is developed and presented in [49] .
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Fig. 3. (a) An M( pg 2,2 ) tessellation. (b) An M + ( pg 2,2 ) tessellation. Different colours for glide reflection axes (dashed lines) represent different classes of the symmetry 

element in the patterns (i.e., 𝐺  , 1 and 𝐺  , 2 ). The orientation of each quadrilateral is reserved because glide reflection is an indirect (or sense-reversing) isometry, as 

can be seen from the 2 × 2 module of representative squares on the bottom right corner of each tessellation. 

Fig. 4. An M( pg 2,2 ) tessellation. (a) State 0: a given Miura fold pattern. (b) State 

1: a symmetrically perturbed state using all degrees of freedom. 

Fig. 5. A pair of consecutive quadrilaterals in the y -direction from State 1 of 

the previous figure. 
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ccording to this framework, a repetitive convex quadrilateral mesh de-
igned by displacing the nodes of a conventional DDC crease pattern is
alled G i , j , where G is the name of its maximal plane symmetry group,
nd i and j are the number of quadrilaterals in the x - and y -directions,
espectively, within the unit cell of the pattern. The y -direction is the
irection of the parallel fold lines in the Miura fold pattern before ap-
lying variations. Variations of the DDC crease pattern which can only
e designed based on the alternative standard unit cell S + (shown in
ig. 1 c) are denoted by G + 

i,j . This framework was applied to the de-
ign of a range of isomorphic [53] and non-isomorphic [54] symmetric
escendants of the Miura-ori. It should be noted that according to this
ramework the mountain-valley assignment of the crease lines does not
ffect the symmetry of a tessellation. 

While some simple flat-foldable variations of the DDC crease pattern
an be designed trivially, some others require careful crystallographic
onsiderations and geometric calculations. A systematic symmetry-
eduction scheme is proved to be productive for the generation of some
ore complex, non-trivial derivatives. The design of some of these non-

rivial variations involves considerable geometric complexities which
equire effective computational strategies and algorithms. 

To explore the existence and design of such diverse solutions,
ere we present a computational framework which evaluates the flat-
oldability of various degree-4 tessellations. Consider a central point
 = [ X 0 Y 0 ] and four surrounding points N 1 = [ X 1 Y 1 ], N 2 = [ X 2 Y 2 ],
 3 = [ X 3 Y 3 ], and N 4 = [ X 4 Y 4 ] in the Cartesian coordinate system. Let
s define a 4 × 2 matrix 𝐍 = [ 𝑁 1 𝑁 2 𝑁 3 𝑁 4 ] 𝑇 containing all
he surrounding points. The line segment connecting each point N i ( i = 1,
, …, 5; and N 5 ≡ N 1 ) to node M is denoted by l i and the angle between
ny two successive line segments l i and l i + 1 in the counter-clockwise di-
ection around M is named 𝛼i ( i + 1) (note that 𝛼45 = 𝛼41 as N 5 ≡ N 1 ).
e define the local flat-foldability error function , 𝜀 , as a function of N and
 as follows 

 ( 𝐍 , 𝑀) = 
(
𝜋 − 

{
𝛼12 ( 𝐍 , 𝑀) + 𝛼34 ( 𝐍 , 𝑀) 

})2 
(1)

To show examples for trivial and non-trivial solutions, let us con-
ider the boundaries of a general 2 × 2 module (i.e., an ‘octagonal unit
ragment’ [12] ) as illustrated in Fig. 2 a. Denoting the errors for nodes
 4 , N 5 , N 6 and M (the unknown central vertex) as 𝜀 4 , 𝜀 5 , 𝜀 6 , and 𝜀 m ,

espectively, the total flat-foldability error 𝜀 t of the tessellation is defined
s 

 𝑡 = 

√ 

𝜀 2 4 + 𝜀 2 5 + 𝜀 2 6 + 𝜀 2 
𝑚 (2)
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Fig. 6. An example of a pgg + 2,2 variation of 

the Miura-ori, consisting of two different start- 

ing parallelograms P 1 and P 2 . Solid and dashed 

lines represent mountain and valley folds, re- 

spectively. The blue shaded area shows the 

fundamental region of the pattern. Different 

colours for a symmetry element represent dif- 

ferent classes of that element in the pattern 

[54] . 

Fig. 7. Design generation process of the pg 2,2 derivative of the DDC surface. 

Fig. 8. An M + ( pg 2,2 ) tessellation. (a) State 0: a given Miura fold pattern. (b) 

State 1: a symmetrically perturbed state using all degrees of freedom. 
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We use this definition for the total flat-foldability error as an ob-
ective function to be minimized. Fig. 2 a shows the ‘core quadrilateral’
12] and the distribution of the total flat-foldability error for a typical
ctagonal unit fragment associated with the two plane symmetry groups
ith parallelogram unit cells, i.e. p 1 and p 2. A close-up of the error dis-

ribution in the vicinity of the two local minima of the error function
s shown in Fig. 2 b. As can be seen from Fig. 2 c, one of these two min-
ma generates a trivial solution, M T , for which the internal fold lines
re piece-wise parallel to the borders of the octagonal unit fragment;
his produces an M + (( p 2) 2,2 ) derivative of the DDC surface, which is
lobally-planar. On the other hand, the other local minimum generates
 non-trivial solution, M NT , which produces an M(( p 1) 2,2 ) derivative of
he DDC surface, which is globally-curved. 

In contrast to the above example, there are some cases in which
hilst the geometry is relatively simple and the number of unknowns

s only a few, we can observe that no computational algorithm would
enerate any valid flat-foldable solution. The non-existence of such func-
ional variations is generally a result of clashes between crystallographic
estrictions and the local flat-foldability condition. The next section
eals with two specific derivatives of the Miura-ori which are of this
ype. 

. Design and analysis of pg derivatives of the DDC surface 

In transformational geometry, a reflection in line  , denoted by 𝑅  ,
ollowed by a translation T parallel to  , denoted by 𝑇  (alternatively,
he translation followed by the reflection), is called a glide reflection,
epresented by 𝐺  | 𝑇 in this paper. In other words 

  | 𝑇 ( 𝑃 ) = 
[
𝑅  ◦𝑇  

]
( 𝑃 ) = 

[
𝑇  ◦𝑅  

]
( 𝑃 ) , (3)

here P is a point on the plane and ○ denotes the composition of func-
ions. In the x-y Cartesian coordinate system, with the assumptions that
 passes through O and makes an angle 𝜑 with the positive x -axis (i.e.,
 ∶ 𝑦 = 𝑥 tan 𝜑 ), the transformed coordinates of point P under 𝐺  | 𝑇 , de-
oted by P’ , can be expressed as 

 ′ = 

[ 
𝑥 ′

𝑦 ′

] 
= 𝐺  | 𝑇 ( 𝑃 ) = 

[ 
cos 2 𝜑 sin 2 𝜑 

sin 2 𝜑 − cos 2 𝜑 

] [ 
𝑥 

𝑦 

] 
+ 

[ 
𝑇 𝑥 
𝑇 𝑦 

] 
. (4)

mongst the seventeen plane symmetry groups, the group pg is the only
roup that contains glide reflections only, without any rotations or re-
ections. Depending on the choice of the standard unit cell (see Fig. 1 c),
here are two minimal pg derivatives of the DDC crease pattern in the
ongitudinal direction. These two pg derivatives, represented by M( pg 2,2 )
nd M + ( pg 2,2 ), are depicted in parts a and b of Fig. 3 , respectively. As
an be seen from the figure, both patterns are composed of two irregular
uadrilaterals, with a difference in their compositions, as conceptualised
y a 2 × 2 module of representative squares on the bottom right corner
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Fig. 9. A pair of consecutive quadrilaterals in the y -direction from State 1 of 

the previous figure. 

Fig. 10. Two line segments AM and AN , parallel to B g A l and B g A g respectively, 

are added to the previous figure to form triangles T 1 and T 2 . 
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Fig. 11. Q 1 and Q 2 are two congruent isosceles trapezoids, T , with a base equal 

to 𝑎 
2 + |𝑥 𝐴 − 𝑥 𝐵 | and a height (altitude) equal to b . 
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f each tessellation. This section proves the impossibility of flat-folding
uch tessellations. 

.1. The M( pg 2,2 ) tessellation 

heorem 3.1. An M( pg 2 , 2 ) tessellation is never flat-foldable . 

Proof . An M( pg 2,2 ) unit cell is depicted in its original configuration,
tate 0, in Fig. 4 a. There are two distinct orbits of nodes associated with
he unit cell, shown as A 0 and B 0 . Since we are dealing with a pg group,
e have a degree of freedom for the aspect ratio of the unit cell ( r x is

he scale factor in the x -direction). We are allowed to move nodes A 0 
nd B 0 in the x - or y -directions; however, we know that pg cannot fix
he unit cell in the x -direction. Therefore, for a fixed set of ā, y A , y B , 
here is a single degree of freedom for x A – x B . (It should be noted that
hanging the sign of x A – x B , while keeping the other degrees of freedom
xed, makes the pattern reflected with respect to the x -axis). In Fig. 4 b,
e have perturbed the pattern using all the degrees of freedom that we

ntroduced earlier to obtain a new configuration, State 1. 
With the purpose of examining the application of the flat-foldability

ondition to the pattern at nodes A and B , we have illustrated a pair
f consecutive quadrilaterals in the y -direction, from State (2) of the
revious figure, in Fig. 5 . Nodes with index r represent the equivalent
odes on the right of respective nodes. For clarity, as we are dealing with
 geometry problem, we ignore the naming scheme for symmetrically
quivalent nodes associated with a unit cell. We have renamed the grey
odes A and B (see Fig. 5 ) as A g and B g , where g stands for glide-reflected.

Line segments AB and B g A g , r have the same length, and the same
cute angle (the absolute value of the angle is considered) with respect
o the y -axis, 𝜇, as a result of the glide-reflection transformation. There
s a similar relationship between line segments BA r and B g A g , which
ntersect the y -axis at an angle axis 𝜈 (we assume that 𝜇 ≠ 0 and 𝜈 ≠ 0).
pplying the local flat-foldability condition at node B g , we obtain 

+ 𝛽 = 𝜋, (5)

hich implies that 

𝐵 ∥ 𝐴 𝑔 𝐵 𝑔 . (6)

In other words 

= 𝜈. (7)

Therefore, T 1 = AA r B and T 2 = A g A g , r B g are two congruent isosceles
riangles. As a result 

𝐵 = 𝐴 𝑔 𝐵 𝑔 . (8)

From Eqs. (6) and (8) we conclude that Q 2 must be a parallelogram.
imilarly, it can also be concluded that Q 1 must be a parallelogram.
ence, the pattern is a pgg + 2,2 variation of the Miura-ori presented in
ig. 6 . For 𝜇 = 𝜈 = 0 , the pattern is a Miura-ori. 

From the above discussion, we conclude that a flat-foldable pg 2,2 
erivative of the Miura-ori does not exist. The design generation process
eading to this conclusion is illustrated in Fig. 7 . 

.2. The M + ( pg 2,2 ) tessellation 

In the previous section, we proved that a flat-foldable pg 2,2 variation
f the Miura-ori, M( pg 2,2 ), does not exist. Starting from the alternative
tandard unit cell, S + , illustrated in Fig. 1 , this section discusses the
g + 2,2 variation of the Miura-ori, M + ( pg 2,2 ). 

heorem 3.2. An M + ( pg 2,2 ) tessellation is never flat-foldable . 

Proof . An M + ( pg 2,2 ) unit cell is depicted in its original configuration,
tate 0, in Fig. 8 a. Similar to the M + ( pg 2,2 ) case, there are two distinct
rbits of nodes associated with the unit cell, shown as A 0 and B 0 . The
etails of the degrees of freedom for this case are similar to the pg 2,2 
ariation discussed earlier. As can be seen in Fig. 8 b, we have perturbed
he pattern using all the degrees of freedom that we introduced earlier
o obtain a new configuration, State 1. 

To investigate the application of the flat-foldability condition to the
attern at nodes A and B , we have illustrated a pair of consecutive
uadrilaterals in the y -direction, from State 1 of the previous figure,
n Fig. 9 . For clarity, as we are dealing with a geometry problem, we
gnore the naming scheme for symmetrically equivalent nodes associ-
ted with a unit cell. We have renamed the black nodes A 1 and B 1 as A
nd B , respectively, and the grey nodes A 1 and B 1 as A g and B g , respec-
ively where g stands for glide-reflected. Nodes with index l represent
he equivalent nodes on the left of each node A or B . 

Line segments B l A and A l B g have the same length, and the same acute
ngle (the absolute value of the angle is considered) with respect to the
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Fig. 12. A tessellation based on the previous 

figure; it is a non-legitimate variation of the 

Miura-ori with a (maximal) symmetry group 

cmm . 

Fig. 13. The pair of consecutive quadrilaterals of Fig. 9 when 𝜇 = 𝜈 = 0. 
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 -axis, 𝜇, as a result of the glide-reflection transformation. There is a
imilar relationship between line segments AB and B g A g , which intersect
he y -axis at an angle 𝜈. We assume that 𝜇 ≠ 0 and 𝜈 ≠ 0. 

The two hatched triangles B l AB and A l A g B g are congruent, as they
ave two congruent corresponding angles with a congruent included
ide. Therefore, the following relationship exists between their corre-
ponding angles at nodes A and B g 

+ 𝛾 = 𝜀 + 𝛿. (9)

Applying the local flat-foldability condition, we can write the follow-
ng equations in terms of the fold angles around nodes A and B 

+ 𝜁 = 𝜋, (10) 

+ 𝜀 = 𝜋. (11) 

Substituting the equivalents for 𝜁 and 𝜀 from Eqs. (10) and (11) into
q. (9) gives 

+ 𝛿 = 𝛽 + 𝛾. (12)

On the other hand, the internal angles of quadrilateral Q 2 must add
p to 2 𝜋, i.e. 

+ 𝛽 + 𝛾 + 𝛿 = 2 𝜋. (13)
From Eqs. (12) and (13) we can conclude 

+ 𝛿 = 𝛽 + 𝛾 = 𝜋. (14)

This implies that AB g is parallel to BA g (and so to B l A l ). In other
ords 

= 𝜏. (15) 

The previous figure is repeated in Fig. 10 with some additional ele-
ents. A line is drawn from node A parallel to B g A l to intersect B l A l at
 point M . The quadrilateral MA l B g A is a parallelogram, as it has two
airs of parallel opposite sides. Consequently, AM has the same length as
 g A l , and as we already know that B g A l = B l A , we conclude that triangle
 1 = B l MA is isosceles. As a result, we have 

 = 𝜁. (16)

In a similar way, and by drawing line segment AN parallel to B g A g 
rom node A , we can conclude that 

= 𝛾. (17) 

On the other hand, in parallelogram B l A l A g B , the two adjacent angles
t nodes B l and A l must add up to 𝜋, i.e., ( 𝜀 + 𝜇) + ( 𝜁 + 𝜇) = 𝜋; this gives

 + 𝜇 = 
𝜋

2 
. (18)

In a similar way, we can conclude 

+ 𝛿 = 
𝜋

2 
. (19)

ence 

= 0 . (20)

Referring to Eq. (15) , we conclude 

= 𝜏 = 0 . (21)

This means that parallelogram B l A l A g B must be a rectangle. It also
mplies that nodes A and B g must be mirror nodes. Therefore, the fol-
owing relationships must be satisfied 

= 𝛾 and 𝜀 = 𝛿. (22)

We know from elementary geometry that if in a triangle an altitude
s also a bisector, the triangle is isosceles. Therefore 

B = 𝐴𝐵 𝑙 = 
𝑎 

2 
+ ||𝑥 𝐴 − 𝑥 𝐵 

|| and 𝜇 = 𝜈 = arctan 
(||𝑥 𝐴 − 𝑥 𝐵 

||∕ 𝑏 ). (23)

As a result, Q 1 and Q 2 are two congruent isosceles trapezoids, T , with
 base equal to 𝑎 2 + |𝑥 𝐴 − 𝑥 𝐵 | and a height (altitude) equal to b , as shown
n Fig. 11 . 
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Fig. 14. Design generation process of the 

pg + 2,2 derivative of the DDC surface. 
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A tessellation based on the previous figure is depicted in Fig. 12 . It
s a non-legitimate [49] variation of the Miura-ori, and its (maximal)
ymmetry group is cmm . In fact, it is a 90° rotated version of the bellow
or accordion) pattern (see, e.g. [51] ). 

Now we consider the case when 𝜇 = 𝜈 = 0. In this case, in order to
ave a flat-foldable pattern, both nodes A and B must be mirror nodes.
urthermore, as B l B and A l A g are parallel, nodes A and B g (and conse-
uently B ) must be geometrically congruent. As a result, there is only
ne acute angle in the pattern. In other words 

= 𝛾 = 𝜀 = 𝜂. (24)

Also we have 

= 𝜎 = 
𝜋

2 
− 𝛼. (25)

Therefore, Q 1 and Q 2 are two different parallelograms, P 1 and P 2 ,
haring a side, as shown in Fig. 13 . However, a tessellation based on P 1 
nd P 2 is not strictly pg , but it is pmg + 2,2 . If P 1 and P 2 are congruent, the
esulted tessellation is the original Miura-ori. From the above discussion,
e conclude that a flat-foldable pg + 2,2 variation of the Miura-ori does
ot exist. 

From the above discussion, we conclude that a flat-foldable pg + 2,2 
ariation of the Miura-ori does not exist. The design generation process
eading to this conclusion is illustrated in Fig. 14 . 

. Conclusions 

Exploring crystalline design variations of the developable double
orrugation (DDC) surface or the Miura-ori, in this paper we studied
he two minimal pg variations of this crease pattern in the longitudinal
irection, namely M( pg 2,2 ) and M + ( pg 2,2 ). Both of these two tessella-
ions are composed of two irregular quadrilaterals which tile the plane
y glide reflections and translations, without having any rotational or
eflectional symmetries. The main geometric difference between these
wo tessellations is that M( pg 2,2 ) has a composition similar to a checker-
oard, while M + ( pg 2,2 ) consists of alternate strips of glide-reflected im-
ges of one tile. 

By applying the local flat-foldability condition at the vertices of dif-
erent orbits associated with each tessellation, we proved that such pat-
erns are never flat-foldable, regardless of the geometric specifications
f the two irregular quadrilaterals. This is because of the incompatibil-
ty between the crystalline structure of the patterns and the condition
f local flat-foldability. In other words, we showed that no two irregu-
ar quadrilateral tiles can constitute a flat-foldable, developable double
orrugation surface. 
eclaration of Competing Interest 

The authors declare that they have no known competing financial
nterests or personal relationships that could have appeared to influence
he work reported in this paper. 

RediT authorship contribution statement 

Pooya Sareh: Conceptualization, Methodology, Formal analysis, Vi-
ualization, Writing - original draft. Yao Chen: Investigation. 

cknowledgements 

This research work has been partially supported by the National
atural Science Foundation of China (Grant numbers 51978150 and
1850410513 ). 

eferences 

[1] Miura K . Map Fold a La Miura Style, Its Physical Characteristics and Application to
the Space Science. In: Takaki R, editor. Research of pattern formation. KTK Scientific
Publishers; 1994. p. 77–90 . 

[2] Yoshimura, Y., On the mechanism of buckling of a circular cylindrical shell under
axial compression, in NACA Technical Memorandum 1390. 1955, National Advisory
Committee for Aeronautics; Washington, DC, United States. 

[3] Rivas-Adrover E . A New Hybrid Type of Deployable Structure: origami-scissor
Hinged. Journal of the International Association for Shell and Spatial Structures
2018;59(3):183–90 . 

[4] Yu H , Guo Z , Wang J . A method of calculating the degree of freedom of foldable
plate rigid origami with adjacency matrix. Advances in Mechanical Engineering
2018;10(6):1687814018779696 . 

[5] Zhai Z , Wang Y , Jiang H . Origami-inspired, on-demand deployable and collapsi-
ble mechanical metamaterials with tunable stiffness. Proceedings of the National
Academy of Sciences 2018;115(9):2032 . 

[6] Overvelde JTB , et al. A three-dimensional actuated origami-inspired transformable
metamaterial with multiple degrees of freedom. Nat Commun 2016;7(1):10929 . 

[7] Zhang Q , et al. Origami and kirigami inspired self-folding for programming three-
-dimensional shape shifting of polymer sheets with light. Extreme Mech Lett
2017;11:111–20 . 

[8] Sareh P , et al. Rotorigami: a rotary origami protective system for robotic rotorcraft.
Science Robotics 2018;3 . 

[9] Yoneda T , Matsumoto D , Wada H . Structure, design, and mechanics of a paper spring.
Physical Review E 2019;100(1):013003 . 

10] Zhao Z , et al. Origami by frontal photopolymerization. Sci Adv 2017;3(4):e1602326 .
11] Nojima T . Modelling of Folding Patterns in Flat Membranes and Cylinders by

Origami. JSME International Journal Series C 2002;45(1):364–70 . 
12] Sareh P . The least symmetric crystallographic derivative of the developable double

corrugation surface: computational design using underlying conic and cubic curves.
Mater Des 2019;183:108128 . 

13] Demaine E . Folding and Unfolding. UWSpace 2001 . 
14] Glugla DJ , et al. Rigid Origami via Optical Programming and Deferred Self-Folding

of a Two-Stage Photopolymer. ACS Appl Mater Interfaces 2016;8(43):29658–67 . 

https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0001
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0001
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0002
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0002
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0003
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0003
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0003
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0003
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0004
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0004
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0004
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0004
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0005
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0005
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0005
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0006
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0006
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0006
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0007
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0007
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0007
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0008
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0008
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0008
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0008
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0009
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0009
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0009
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0010
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0010
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0011
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0011
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0012
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0012
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0013
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0013
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0013


P. Sareh and Y. Chen International Journal of Mechanical Sciences 185 (2020) 105881 

[  

[  

[  

[  

[  
 

[
 

[  
 

[  
 

[  

[  

[  
 

[  
 

[  
 

[  
 

[  
 

[  

[  

[  
 

[  

[  

[  

[  

[  

[  

[  

[  

[
[  

[  

[  

[  

[  

[  

[  

[  
 

[  

[  

[  
 

[  

[  
15] Zhang Z , et al. A rigid thick Miura-Ori structure driven by bistable carbon fibre-re-
inforced polymer cylindrical shell. Compos Sci Technol 2018;167:411–20 . 

16] Liu J , et al. Fabrication, dynamic properties and multi-objective optimization of a
metal origami tube with Miura sheets. Thin-Walled Structures 2019;144:106352 . 

17] Zingoni A . Group-theoretic applications in solid and structural mechanics: a review.
Computational structures technology. GBR: Civil-Comp press; 2002. p. 283–317 . 

18] Bai Y , et al. Exploiting group symmetry in truss topology optimization. Optimization
and Engineering 2009;10(3):331–49 . 

19] Chen Y , et al. An Integrated Geometric-Graph-Theoretic Approach to Representing
Origami Structures and Their Corresponding Truss Frameworks. Journal of Mechan-
ical Design 2019;141(9):091402–091402-8 . 

20] Jacobsen AJ , Barvosa-Carter W , Nutt S . Micro-scale truss structures with three–
fold and six-fold symmetry formed from self-propagating polymer waveguides. Acta
Mater 2008;56(11):2540–8 . 

21] Chen Y , et al. Nodal flexibility and kinematic indeterminacy analyses of symmet-
ric tensegrity structures using orbits of nodes. International Journal of Mechanical
Sciences 2019;155:41–9 . 

22] Chen Y , Feng J , Sun Q . Lower-order symmetric mechanism modes and bifurca-
tion behavior of deployable bar structures with cyclic symmetry. Int J Solids Struct
2018;139:1–14 . 

23] Chen Y , et al. A computational method for automated detection of engineering struc-
tures with cyclic symmetries. Comput Struct 2017;191:153–64 . 

24] Chen Y , Sareh P , Feng J . Effective insights into the geometric stability of symmetric
skeletal structures under symmetric variations. Int J Solids Struct 2015;69:277–90 . 

25] Zingoni A , Pavlovic MN , Zlokovic GM . A symmetry-adapted flexibility approach
for multi-storey space frames. Part 1: general outline and symmetry-adapted redun-
dants.. Structural Engineering Review 1995;2(7):107–19 . 

26] Chen Y , Yan J , Feng J , Sareh P . Particle Swarm Optimization-Based Metaheuristic
Design Generation of Non-Trivial Flat-Foldable Origami Tessellations With Degree-4
Vertices. J. Mech. Des. 2020:1–25 MD-19-1839 . 

27] Chen Y , Yan J , Feng J , Sareh P . Feasible prestress modes for cable-strut structures
with multiple self-stress states using particle swarm optimization. Journal of Com-
puting in Civil Engineering 2020;34(3) . 

28] Chen Y , Yan J , Feng J , Sareh P . A hybrid symmetry–PSO approach to finding the self-
-equilibrium configurations of prestressable pin-jointed assemblies. Acta Mechanica
2020(4) . 

29] Connelly R , Back A . Mathematics and tensegrity: group and representation theory
make it possible to form a complete catalogue of “ strut-cable ” constructions with
prescribed symmetries. Am. Sci. 1998;86(2):142–51 . 

30] Connelly R , Terrell M . Globally rigid symmetric tensegrities. Structural Topology
1995 núm 21 1995 . 

31] Masic M , Skelton RE , Gill PE . Algebraic tensegrity form-finding. Int J Solids Struct
2005;42(16–17):4833–58 . 

32] Chen Y , et al. Feasible Prestress Modes for Cable-Strut Structures with Multiple Self-
-Stress States Using Particle Swarm Optimization. Journal of Computing in Civil
Engineering 2020;34(3):04020003 . 
33] Zingoni A . On the symmetries and vibration modes of layered space grids. Engineer-
ing Structures 2005;27(4):629–38 . 

34] Zingoni A . Symmetry recognition in group-theoretic computational schemes for com-
plex structural systems. Comput Struct 2012;94:34–44 . 

35] Sibley TQ . Thinking geometrically: a survey of geometries, 26. The Mathematical
Association of America; 2015 . 

36] MacLaren MD , Marsaglia G . Uniform random number generators. Journal of the
ACM (JACM) 1965;12(1):83–9 . 

37] Oberkampf WL . Domain mappings for the numerical solution of partial differential
equations. Int J Numer Methods Eng 1976;10(1):211–23 . 

38] Forney GD . Geometrically uniform codes. IEEE Transactions on Information Theory
1991;37(5):1241–60 . 

39] Uspenskij V . The Urysohn universal metric space is homeomorphic to a Hilbert space.
Topol Appl 2004;139(1–3):145–9 . 

40] Klein F . A comparative review of recent researches in geometry. Bulletin of the Amer-
ican Mathematical Society 1893;2(10):215–49 . 

41] Coxeter HSM , Greitzer SL . Geometry revisited, 19. Maa; 1967 . 
42] Schwarzenberger RLE . The 17 plane symmetry groups. Mathematical Gazette

1974;58:123–31 . 
43] Schattschneider D . The plane symmetry groups: their recognition and notation. The

American Mathematical Monthly 1978;85(6):439–50 . 
44] Conway JH , Huson DH . The Orbifold Notation for Two-Dimensional Groups. Struct

Chem 2002;13(3):247–57 . 
45] Coxeter HSM , Moser WOJ . Generators and relations for discrete groups, 14. Springer

Science & Business Media; 2013 . 
46] Macbeath AM . The classification of non-euclidean plane crystallographic groups.

Canadian Journal of Mathematics 1967;19:1192–205 . 
47] Hahn T . International tables for crystallography, volume A: space-group symmetry.

USA: Springer; 2005 . 
48] Sareh P . Symmetric Descendants of the Miura-ori. PhD Dissertation. Engineering

Department, University of Cambridge, UK 2014 . 
49] Sareh P , Guest SD . A Framework for the Symmetric Generalisation of the Miura-ori.

International Journal of Space Structures, Special Issue on Folds and Structures
2015 . 

50] Sareh P , Guest SD . Designing symmetric derivatives of the Miura-ori. Advances in
Architectural Geometry 2014. Springer International Publishing; 2014. p. 233–41 . 

51] Jackson P . Folding techniques for designers-from sheet to form. Mac Win Pa: Lau-
rence King Publishing; 2011. ISBN 978-1856697217 . 

52] Barreto PT . Lines meeting on a surface: the “MARS ” paperfolding. in origami sci-
ence & art: proceedings of the second international meeting of origami science and
scientific origami. Japan: Otsu; 1997 . 

53] Sareh P , Guest SD . Design of isomorphic symmetric descendants of the Miura-ori.
Smart Materials and Structures 2015;24(8):085001 . 

54] Sareh P , Guest SD . Design of non-isomorphic symmetric descendants of the Miu-
ra-ori. Smart Materials and Structures 2015;24(8):085002 . 

http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0014
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0014
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0014
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0015
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0015
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0015
http://refhub.elsevier.com/S0020-7403(19)34828-3/othref0002
http://refhub.elsevier.com/S0020-7403(19)34828-3/othref0002
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0016
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0016
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0016
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0017
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0017
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0017
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0018
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0018
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0018
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0018
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0019
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0019
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0019
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0020
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0020
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0020
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0020
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0021
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0021
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0021
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0022
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0022
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0022
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0022
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0023
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0023
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0023
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0023
http://refhub.elsevier.com/S0020-7403(19)34828-3/optg51cRKykut
http://refhub.elsevier.com/S0020-7403(19)34828-3/optg51cRKykut
http://refhub.elsevier.com/S0020-7403(19)34828-3/optg51cRKykut
http://refhub.elsevier.com/S0020-7403(19)34828-3/optg51cRKykut
http://refhub.elsevier.com/S0020-7403(19)34828-3/optg51cRKykut
http://refhub.elsevier.com/S0020-7403(19)34828-3/opt5cbpFFAfpL
http://refhub.elsevier.com/S0020-7403(19)34828-3/opt5cbpFFAfpL
http://refhub.elsevier.com/S0020-7403(19)34828-3/opt5cbpFFAfpL
http://refhub.elsevier.com/S0020-7403(19)34828-3/opt5cbpFFAfpL
http://refhub.elsevier.com/S0020-7403(19)34828-3/opt5cbpFFAfpL
http://refhub.elsevier.com/S0020-7403(19)34828-3/optFiNqlR7iLF
http://refhub.elsevier.com/S0020-7403(19)34828-3/optFiNqlR7iLF
http://refhub.elsevier.com/S0020-7403(19)34828-3/optFiNqlR7iLF
http://refhub.elsevier.com/S0020-7403(19)34828-3/optFiNqlR7iLF
http://refhub.elsevier.com/S0020-7403(19)34828-3/optFiNqlR7iLF
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0024
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0024
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0024
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0025
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0025
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0025
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0026
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0026
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0026
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0026
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0027
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0027
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0027
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0028
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0028
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0029
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0029
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0030
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0030
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0031
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0031
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0031
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0032
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0032
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0033
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0033
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0034
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0034
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0035
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0035
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0036
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0036
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0036
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0037
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0037
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0038
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0038
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0039
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0039
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0039
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0040
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0040
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0040
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0041
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0041
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0042
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0042
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0043
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0043
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0044
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0044
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0044
http://refhub.elsevier.com/S0020-7403(19)34828-3/optvrCDynKhmx
http://refhub.elsevier.com/S0020-7403(19)34828-3/optvrCDynKhmx
http://refhub.elsevier.com/S0020-7403(19)34828-3/optvrCDynKhmx
http://refhub.elsevier.com/S0020-7403(19)34828-3/othref0003
http://refhub.elsevier.com/S0020-7403(19)34828-3/othref0003
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0045
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0045
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0046
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0046
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0046
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0047
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0047
http://refhub.elsevier.com/S0020-7403(19)34828-3/sbref0047

	Intrinsic non-flat-foldability of two-tile DDC surfaces composed of glide-reflected irregular quadrilaterals
	1 Introduction
	2 Theoretical background
	3 Design and analysis of pg derivatives of the DDC surface
	3.1 The M(pg2,2) tessellation
	3.2 The M+(pg2,2) tessellation

	4 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	References


