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Abstract
Pairs of numerically computed trajectories of a chaotic system may coalesce
because of finite arithmetic precision. We analyse an example of this phe-
nomenon, showing that it occurs surprisingly frequently. We argue that our
model belongs to a universality class of chaotic systems where this numerical
coincidence effect can be described by mapping it to a first-passage process.
Our results are applicable to aggregation of small particles in random flows, as
well as to numerical investigation of chaotic systems.

Keywords: numerical precision, first-passage, chaos

(Some figures may appear in colour only in the online journal)

1. Introduction

When we numerically compute two distinct trajectories of a deterministic system, after a
certain number of iterations their coordinates may happen to be exactly equal, to machine
precision. At this point all subsequent computations of the two trajectories yield exactly the
same values. We might say that the trajectories have undergone numerical coalescence. This
coalescence effect is readily observed in systems with stable dynamics, where nearby trajec-
tories approach each other, typically with an exponentially decreasing separation. It might,
however, be expected that it would be unusual to see this numerical coalescence in chaotic
systems, where nearby trajectories have an exponentially growing separation (the concept of
chaos in the theory of dynamical systems is discussed in [1, 2]).
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There is a body of literature on the implications of finite numerical precision for investi-
gations of dynamical systems. Most of the works that we have found focus on the statistics
of the lengths of periodic orbits of the discrete map which results from using a finite numeri-
cal precision. Grebogi, Ott and Yorke [3] characterise the mean length and length distribution
of the discretised model, and also the distribution of the number of periodic orbits obtained
for a given number of initial conditions. Their work built upon earlier contributions con-
taining partial results [4, 5], and was later developed by numerous other authors ([6–8] are
among the most noteworthy contributions). There are a smaller number of works which have
addressed the question which we consider, namely, when will two trajectories coalesce due
to finite numerical precision. Maritan and Banavar [9] discuss the effects of adding noise to
a chaotic dynamical system, showing that there is a ‘synchronisation’ of different trajectories
if the numerical precision is finite. Later, Longa, Curado and Oliveira ([10], see also [11, 12])
explicitly discuss the roundoff-induced coalescence of chaotic trajectories for some specific
examples.

Our own work will consider whether and how a universal description of numerical coales-
cence can be developed. As a first step, we analyse this phenomenon in a simple dynamical
system which shows a transition to chaos, exploring its dependence upon the numerical pre-
cision of the calculation, which is denoted by δ. In our numerical work we used variable
precision arithmetic implemented in the mpmath package [13] for the Python programming
language, and comparable results were obtained using the Maple mathematical software sys-
tem [14]. These packages allow the number of decimal digits, M, to be set to an arbitrary
integer value. If the typical magnitude of the numbers representing the trajectory is x̄, we may
write

δ ∼ x̄ 10−M. (1)

Numerical experiments on a model system, introduced in section 2 below showed that
coalescence is surprisingly frequent. In section 3 we explain and demonstrate a sim-
ple theory which gives a surprisingly accurate quantitative description of this observa-
tion, showing that our numerical results are in agreement with a calculation which maps
the numerical coalescence to a first-passage problem [15] for a simple stochastic process.
In section 4 we argue that our results are representative of a physically significant uni-
versality class of chaotic systems, which combine chaotic dynamics with the influence
of external noise. Our theory introduces a universal scaling function which can be used
to collapse data on the variation of the mean number of iterations to coalescence as a
function of the numerical precision and two parameters describing the instability of the
attractor.

As well as being relevant to the numerical exploration of complex dynamical systems, the
effect can also serve as a model for aggregation of small particles in complex flows (which
seems to have been first considered by Deutsch [16], this problem is reviewed in [17–19]). If
the particles aggregate when their separation falls below a threshold, δ, this is analogous to
computing trajectories with a finite numerical precision.

Our explanation of the numerical coalescence phenomenon is related to earlier studies
[20, 21], where it was shown that trajectories of a chaotic system can display a clustering
effect, which is characterised by a power-law distribution of their separations. We review
the relationship between the results in this paper and those earlier works in our conclusions,
section 5.
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Figure 1. Sawtooth function used in equation (2).

2. An example

We start with a simple example illustrating the effect that we wish to explain and analyse.
Consider trajectories of a one-dimensional map

xn+1 = xn + F(xn − φn) (2)

in the case where F is a function which is continuous and differentiable almost everywhere, and
which has unit period, F(x + 1) = F(x). The φn are random numbers, chosen independently at
each time step, with a distribution which is uniform on [0, 1]. These random variables could
represent the effects of external noise, or of coupling to other degrees of freedom. We also found
it convenient to require that the mean value of F(x) is equal to zero. Note that, while a single
trajectory of (2) executes a random walk, this equation describes a differentiable dynamical
system, so that it is possible to calculate the Lyapunov exponent [1]. A system with similar
properties to (2) is discussed in some detail in [22].

In our study the function F(x) was piecewise linear, having a sawtooth form illustrated by
figure 1, with gradients ±g on intervals of length 1/2,

F(x) =

⎧⎪⎨
⎪⎩

gx − g
4

0 � x � 1
2

g(1 − x) − g
4

1
2

� x � 1
. (3)

With this choice of F(x), an individual trajectory xn executes a random walk for which the
variance of the step sizes is g2/48, implying that

〈xn〉 = 0, 〈x2
n〉 = 2Dn, D =

g2

96
, (4)

where 〈·〉 denotes expectation value.
Because the map is periodic, with period unity, if two trajectories xn and x′n differ by an

integer, then xn−x′n remains equal to the same integer for all subsequent iterations. Note that
the map has multiple pre-images when g > 1. We shall assume that g > 1 throughout our
discussion of the map defined by (2) and (3).

In section 3 we demonstrate that the map is chaotic (because the Lyapunov exponent,
λ, is greater than zero [1]) for g >

√
2. When λ > 0, nearby trajectories should separate

exponentially [1]: if Δxn is the separation of two trajectories after n iterations, then

λn =
1
n

ln

(
Δxn

Δx0

)
(5)
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Table 1. Two trajectories of a realisation of (2) after n = 2.5 × 105 iterations, computed
with M = 10 digit arithmetic. One of the initial conditions was random in [0, 1], and the
initial separation was Δx0 = 0.25 in all cases.

g xn x′n Δxn

1.3 −94.673 871 72 −93.673 871 72 −1.0
1.35 41.579 903 09 44.579 903 09 −3.0
1.4 41.417 227 53 41.417 227 53 0.0
1.45 84.316 049 15 84.316 049 15 0.0
1.5 46.595 226 84 46.595 226 84 0.0
1.55 68.706 610 11 172.695 6409 −103.989 0308
1.6 −60.552 167 35 −147.545 1987 86.993 0313
1.65 −48.663 642 09 155.337 1666 −204.000 8087
1.7 −154.982 8462 −122.617 0971 −32.365 749 12

approaches the Lyapunov exponent λ as n →∞, provided Δx0 is sufficiently small that
|Δxn| 	 1. When λ < 0, trajectories converge to the same point (if their initial separation
is small) or else to integer separations due to the periodic nature of the one-dimensional
map. When λ > 0, it might be expected that a very small initial separation of trajecto-
ries eventually grows to be of order unity, and the similarity of (2) to the equation of a
random walk leads one to expect that the subsequent growth of separation is diffusive,
Δx ∼ √

n.
However, numerical investigations of (2) show a different behaviour. Table 1 lists the sep-

arations for pairs of trajectories with x0 random and an initial separation of Δx0 = 0.25 after
n = 2.5 × 105 iterations of the map, for a range of values of g. Here we used an arithmetic
precision which was defined by specifying M = 10 decimal places. The numerically com-
puted separations of the two trajectories, xn and x′n, are either exactly zero or exactly integers,
for two values of g which are in excess of the threshold for chaos, which is at g =

√
2 =

1.414 21 . . ..
It is easy to understand why this numerical coalescence effect is possible for values of g

beyond the threshold for chaos. When λ > 0, it is still possible for trajectories to coalesce if
two trajectories happen to reach exactly the same point (this is possible because the calculation
uses finite precision arithmetic, and because points may have multiple pre-images). However,
we might expect that this occurrence is rare. Above the threshold for chaos, nearby points are
separating exponentially. If these separations were to fill the unit interval with constant density,
there would be a probability P ∼ δ to coalesce at each iteration of the map. If the probability
to coalesce were δ upon each iteration, then after n iterations the probability Pc for the paths
to have undergone coalescence would be

Pc ∼ nx̄ 10−M. (6)

In our numerical investigation illustrated by table 1, n = 2.5 × 105, implying (from
equation (4), using g =

√
2 as a representative value) that x̄ =

√
2Dn ≈ 100. This would

give an estimate for the probability for coalescence of Pc ∼ 2.5 × 105 × 100 × 10−10 =
2.5 × 10−3. According to this estimate, the results displayed in table 1 appear to be highly
unlikely. The remainder of this paper will explain and quantify the effect illustrated in table 1,
(section 3), and discuss the extent to which it is a manifestation of a universal phenomenon
(section 4).
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Table 2. Tabulation of the mean number of iterations before coalescence, 〈N〉, deter-
mined numerically for different values of the coefficient g and of the number of digits,
M. The Lyapunov exponent λ, given by the first line of equations (9), is positive when
g >

√
2 = 1.41 . . ..

〈N〉

g M = 7 M = 10 M = 15 M = 20 M = 30 M = 40 M = 50

1.25 58.0 81.8 120 159 237 318 396
1.3 83.0 120 177 243 363 481 612

1.32 101 141 217 295 444 599 761
1.34 119 180 273 371 566 773 957
1.36 151 230 371 502 785 1.08 × 103 1.33 × 103

1.38 193 323 523 739 1.17 × 103 1.66 × 103 2.11 × 103

1.39 227 392 668 957 1.61 × 103 2.24 × 103 2.92 × 103

1.4 272 467 883 1.42 × 103 2.48 × 103 3.54 × 103 4.54 × 103

1.41 327 611 1.29 × 103 2.10 × 103 4.41 × 103 6.96 × 103 9.75 × 103

1.42 413 828 1.91 × 103 3.73 × 103 1.04 × 104 2.00 × 103 3.02 × 104

1.43 476 1.07 × 103 3.25 × 103 8.34 × 103 2.82 × 104

1.44 604 1.68 × 103 5.88 × 103 1.97 × 104

1.45 815 2.42 × 103 1.19 × 104 3.09 × 104

1.46 1.07 × 103 3.93 × 103 2.41 × 104

1.47 1.50 × 103 6.25 × 103 5.75 × 104

1.48 1.89 × 103 1.08 × 104 7.57 × 104

1.49 2.76 × 103 1.85 × 104 5.73 × 104

3. Coalescence in finite precision arithmetic

3.1. Numerical investigation

When two trajectories, started from randomly chosen initial conditions, reach exactly the same
coordinate (or else two coordinates with an exactly integer separation), their values remain
locked together for all subsequent iterations. If the arithmetic of a numerical iteration of
the map has a finite precision, say M decimal places, then this phenomenon of numerical
coalescence provides an explanation for the effect illustrated in table 1. The principal diffi-
culty is to explain why the effect happens so much more frequently than the simple estimate,
equation (6).

We can take two trajectories and determine the ‘time’ N (that is, number of iterations) for
them to coalesce. This will be different for different initial conditions. We should therefore look
at the probability P(N), or else at statistics such as the moments 〈Nj〉. The simplest statistic is
just the mean time for coalescence, 〈N〉, and the remainder of this section is concerned with
estimating this quantity.

We investigated the mean number of iterations for coalescence of trajectories 〈N〉 as a
function of g and of the number of decimal digits, M. The results are presented in table 2.
The initial separation was Δx0 = 0.1 in all cases, and for all of the data points we averaged
over 1000 realisations, with initial conditions distributed randomly with uniform density on
[0, 1].

Note that most of these values of 〈N〉 are sufficiently small that x̄ ∼
√

2D〈N〉 is not a
very large number: for example at g = 1.4 and M = 20, we found 〈N〉 ≈ 2500, implying that
x̄ ≈ 10, which indicates that only one of the M = 20 digits is required to store the integer part
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of xn leaving 19 digits after the decimal point. For this reason our analysis of these data will
make the simplifying assumption that the precision of the calculation, δ, is given by δ = 10−M,
where M is the number of digits.

3.2. Theory: relation to mean first-passage time

Next we consider how to analyse the results in table 2. Because the map (2) has unit period,
two trajectories which have an exactly integer separation maintain the same separation for
all subsequent iterations. In this sense, integer separations of trajectories are equivalent to a
zero separation, and accordingly we define Δxn as the magnitude of the separation of two
trajectories modulo unity. In order to facilitate the calculation of 〈N〉, the separation of two
trajectories, Δx, is transformed into a logarithmic variable,

Z ≡ − ln |Δx|. (7)

If trajectories were computed with arbitrary precision, the variable Z would occupy the interval
Z ∈ [0,∞). When Z is large, the separation of two trajectories is very small, and (at points
where the derivative of the map exists) the iteration of Z is described by linearisation of the
map, so that

Zn+1 = Zn − ln

∣∣∣∣∂xn+1

∂xn

∣∣∣∣ . (8)

For the map (2), the dynamics of (8) is Markovian, with displacements ΔZ± = −ln(1 ± g)
occurring with random choices of the sign, having probabilities P± = 1/2. Because (8) is the
equation of a random walk, over many iterations the motion of Z can be modelled by an advec-
tion–diffusion equation, with a drift velocity v and a diffusion coefficient D (see [23] for a
discussion of the relationships between random walks or Langevin processes and diffusion or
Fokker–Planck equations). Note that, from the definition of the Lyapunov exponent λ [1], we
have λ = −v. The values of v and D are determined from the statistics of ΔZ: if time is mea-
sured by the number of iterations, the drift velocity v and diffusion coefficient D are obtained
from

v = −λ = 〈ΔZ〉 = −1
2

[ln(g + 1) + ln(g − 1)] ,

〈ΔZ2〉 = 1
2

[ln(g + 1)]2 +
1
2

[ln(g − 1)]2,

D =
1
2

[
〈ΔZ2〉 − 〈ΔZ〉2

]
.

(9)

The first of these relations shows that λ = ln
√

g2 − 1, which is positive when g >
√

2.
When Δx is small, implying that Z is large, the behaviour of Z is determined by

the linearised equation of motion, leading to (8). In the vicinity of Z = 0, however, Z
has complex dynamics which could, in principle, be determined from the equation of
motion of x, [that is, from equation (2)]. However we can observe that the representa-
tive point Z does not pass Z = 0, and eventually will leave the region close to Z = 0.
This implies that the diffusion process can be modelled as having a reflecting barrier at
Z = 0. If we take account of the coalescence of trajectories due to finite-precision repre-
sentation of arithmetic, this implies that the separation of trajectories becomes zero when
Δx = δ = 10−M where δ is the floating point precision. At this point, the diffusive model

6
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ceases to be appropriate. We can represent this by introducing an absorbing barrier at a
position

Z0 = − ln δ = M ln 10. (10)

The mean number of iterations before coalescence, 〈N〉, is the same as the mean time for first
contact with the absorbing barrier in the diffusion process. This quantity is known as the mean
first-passage time.

3.3. Calculation of mean time to coalescence

When considering dispersion over distances which are large compared to the displacement at
an individual step of a random walk, the motion can be modelled by a diffusive process. In the
limit where the number of decimal places M (and therefore the coordinate Z0 of the absorbing
barrier) becomes large compared to the steps described by equation (8), we can therefore use
a Langevin equation model, of the form

Ż = − dV
dZ

+
√

2Dη(t) (11)

where V(Z) is a potential and η(t) is white noise.
There is an extensive literature on the mean first-passage time for diffusive processes [15].

We shall use a standard formula for the mean first-passage time for the Langevin equation. We
assume that there is a reflecting barrier at Z1, absorbing barrier at Z0, and particles initially
released from Zi. The mean first-passage time is (see [24, 25])

〈T〉 = 1
D

∫ Z0

Zi

dx exp[V(x)/D]
∫ x

Z1

dy exp[−V(y)/D]. (12)

As Z approaches ∞, the mean velocity v becomes independent of Z, and is equal to −λ, where
λ is the Lyapunov exponent. The dynamics of Z is also subject to fluctuations about this mean
motion (which are quantified by the diffusion coefficient D). If the potential is V(x) = −vx,
then the drift velocity, −V′(x), is a constant, v, as required. The true boundary condition at
Z = 0 could be modelled more faithfully by introducing a delay time, but we shall assume
that using a reflecting boundary at Z = 0 is sufficient. We could, in principle, average over the
initial conditions by averaging Zi over the steady-state distribution of Z, but again we adopt
a simplifying assumption, assuming all of the representative points are injected at Zi = 0 (we
expect that this approximation will cause our calculation to overestimate the time taken to reach
the absorbing barrier). Defining

α =
v

D
(13)

and setting V(x) = −vx in equation (12), we obtain

〈T〉 = 1
D

∫ Z0

0
dx exp(−αx)

∫ x

0
dy exp(αy). (14)

Evaluating the integrals gives

〈T〉 = 1
vα

[
exp(−αZ0) − 1

]
+

Z0

v
. (15)

7
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Noting that the expected number of iterations for path coalescence is 〈N〉 = 〈T〉, this can be
written in the form

〈N〉 = Z2
0

D
f (X) (16)

where

X =
λZ0

D
(17)

and

f (X) =
exp(X) − 1 − X

X2
. (18)

Because this approximation assumes |Z0| 
 1, the predicted values of 〈N〉 are un-observably
large or small unless g is close enough to g0 =

√
2 that we can make the following two

approximations:

D ≈ D0 =
[ln (

√
2 − 1)]2 + [ln (

√
2 + 1)]2

4
≈ 0.388 41,

v ≈ ∂λ

∂g

∣∣∣∣
g=g0

(g − g0) =
√

2(g − g0),

(19)

where g0 =
√

2 is the parameter value for the threshold of chaos, and D0 is the value of the
diffusion coefficient at g0. Using these approximations we find

〈N〉 ∼ (ln 10)2

D0
M2 f (X) ≈ 13.65 × M2 f (X),

X =

√
2 ln 10

D0
(g −

√
2) ≈ 8.384 × M (g −

√
2).

(20)

The function f(X) (defined by (18) is positive for all real X. It implies the following limiting
behaviours:

lim
λ→−∞

〈N〉 ∼ −Z0

λ
,

lim
λ→+∞

〈N〉 ∼ Z2
0

D
exp(X)

X2
,

lim
λ→0

〈N〉 ∼ Z2
0

2D
. (21)

The first of these is what would be expected from the definition of the Lyapunov exponent. The
value of 〈N〉 should not exceed δ−1 = 10M, so that exponential growth in the limit as λ→∞
which is predicted by (21) will only be correct when g − g0 is sufficiently small.

Equation (20) are expected to give an asymptotic approximation to 〈N〉, which is valid when
M 
 1 and g −

√
2 	 1. We compared this theory against the data tabulated in table 2 by test-

ing whether it would collapse onto a single curve, representing the function f(X). Because of the
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Figure 2. Plot Y against X for g from 1.25 to 1.49. Data points for different numbers
of digits (M = 7, 10, 15, 20, 30, 40, 50), plotted with different symbols according to the
legend on the figure, collapse onto the function ln

(
exp(X)−X−1

X2

)
(bold curve).

exponential growth of f(X) for positive X, it is more convenient to graph ln f(X). Accordingly,
in order to test the prediction contained in equations (16)–(18), we made a plot of

Y = ln

(
〈N〉

13.65 × M2

)
(22)

as a function of X, as defined by equation (20). In figure 2 we display our plot of Y versus X for
the data in table 2. We use different point styles (and colours, online) to distinguish the values
of M, and included some additional data for more densely sampled values of the coefficient g.
The points with different colours all collapse onto the same curve, which is well approximated
by the function Y(X) = ln f(X), plotted as a solid curve. This validates the theory described by
(16)–(18) as a description of the finite-precision path-coalescence effect for map (2) and (3).

We considered a one-dimensional chaotic system which was designed to enable us to write
down an explicit formula for 〈N〉. We conclude this section by reviewing our calculation,
in order to distinguish the important general principles from the specifics of our model sys-
tem. Our theory, which is contained in equations (16)–(18), uses only the numerical precision
δ ∼ 10−M and two additional parameters λ and D, which characterise the stability of the sys-
tem. Equations (19) and (20) are descriptions of how these parameters are estimated for our
illustrative model system, described by equations (2) and (3). We note that while there were
two diffusion coefficients occurring in our calculation, only one of them is directly relevant
to the theory. A single trajectory has a diffusive dispersion with diffusion coefficient D, given
by equation (4), and the logarithm of the separation of two nearby trajectories is governed by
a Markov process, which is approximated by an advection–diffusion equation with diffusion
coefficient D and drift velocity λ (equation (9)). Not all chaotic systems exhibit diffusive dis-
persion (see [26]), but this diffusive spatial dispersion of the coordinate x was not a central
part of our argument. Our illustrative model was chosen to have diffusive dynamics in order
to make the computation of the parameters λ and D analytically tractable. The other diffusive
process, applying to the logarithmic separation variable Z defined by equation (7), is a generic
feature of chaotic dynamical systems. In the next section we discuss the extent to which our
approach of modelling numerical coalescence by a first passage process can be generalised.

9
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4. Generalisation to other systems

In section 3 we showed that our data on the mean number of iterations before numerical coa-
lescence can be collapsed onto a scaling curve, as illustrated in figure 2. Next we shall argue
that the theory for numerical coalescence which was presented in section 3 is applicable to a
broad class of dynamical systems, and in this sense it may be said to be ‘universal’.

Consider a differentiable map in d dimensions, with a control parameter g. We denote
phase points on a trajectory by xn, and the small separation of two trajectories at iteration
n is denoted by δxn. If we define δrn = |δxn| and Zn = −ln δrn, then when δrn is small,
ΔZn = Zn − Zn−1 depends upon the position xn−1 and upon the ratios of the components of
δxn−1, but the probability distribution of ΔZn becomes independent of Zn as Zn →∞. Numer-
ical coalescence occurs when Zn becomes sufficiently large, so that the numerical coalescence
process in d dimensions can be formulated as a first-passage problem in one dimension. This
one-dimensional problem can be analysed by the approach used in section 3.

We assume that the dynamical system is either autonomous, or else driven by a process
which is at least statistically stationary in time. The sequence of values ΔZn has mean and
correlation statistics

v = 〈ΔZn〉,

Cnm = 〈ΔZnΔZm〉 − v2,
(23)

which are independent of Z. If the system has chaotic dynamics, then the ΔZn can be regarded
as random variables. Then ‘coarse-grained’ evolution of Z can be modelled by a Langevin
equation, and correspondingly the probability density function P of ΔZ at iteration n can be
modelled by an advection–diffusion equation, where n is identified with the time t. The drift
velocity is v and the diffusion coefficient D is

D =
1
2

∞∑
m=−∞

Cnm. (24)

Note that −v is equal to the leading Lyapunov exponent.
Thus we have argued that the theory presented in section 3 should be quite generally

applicable. Its application requires us to identify just two parameters, the Lyapunov exponent
λ = −v and the diffusion coefficient D from the statistics of the differential of the flow along
a trajectory.

Both the Lyapunov exponent and the diffusion coefficient are functions of the control param-
eter g. Our theory is applicable in the vicinity of the transition to chaos, when g ≈ g0 defined
by v(g0) = 0. We also define

v′0 =
dv
dg

∣∣∣∣
g=g0

, D0 = D(g0). (25)

Provided v′0 and D0 are non-zero, we expect that the mean time for coalescence is given by
equation (16), where the parameter X is given by

X =
g′

0 ln 10
D0

(g − g0)M. (26)

We can also relate the scaling parameter X to the correlation dimension d2 of the dynamical
system (discussed in [1]). In [20] it is shown that, when d2 	 1, d2 ∼ λ/D, so that

X ∼ d2 ln 10M ∼ −d2 ln δ, (27)
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where δ is the numerical precision. Hence we find that the relationship between 〈N〉 and the
numerical precision is

〈N〉 ∼ Z2
0

D0
F(−d2 ln δ)

=
1

d2
2D0

[
exp(−d2 ln δ) + d2 ln δ − 1

]
, (28)

where F(·) is the function specified by equation (18). In the limit where X = −d2ln δ 
 1
we therefore have 〈N〉 ∼ δ−d2/D0, which is related to an expression for the mean length of a
periodic orbit which was proposed in [3].

The theory presented above is expected to be applicable when D0 and v′0 are both non-zero.
This is expected to hold when the specification of the dynamical system includes noise, so
that the quantities ΔZn are random numbers. The system that we considered in our numerical
example, defined by equations (2) and (3), is a concrete example.

In the case of an autonomous dynamical system, however, the assumptions leading to
equations (16)–(18) may not hold. In the case where the transition to chaos arises because
a stable periodic orbit either disappears, or else undergoes a bifurcation, the ΔZn form a peri-
odic sequence when g is on the stable side of the transition. In this case the diffusion coefficient
D is equal to zero in the stable phase, and we must have D0 = 0, so that the theory is not
applicable.

5. Conclusions

We have exhibited an example of a chaotic system where trajectories coalesce at a surprisingly
high rate in the vicinity of the threshold of chaos due to arithmetic truncation errors. The effect
was explained by a transformation of the separation of two trajectories to a logarithmic variable,
which leads to analogy with a first-passage problem for a diffusive process. This effect is a
consequence of transient convergence of chaotic trajectories, which was previously analysed
in [20, 21]. Our analysis of the numerical coalescence phenomenon is based upon a principle
that was used in those earlier works, namely that the linearised equation of motion is mapped to
an advection–diffusion equation if we make a logarithmic transformation, equation (8) in this
present work. Here we have shown that the numerical coalescence effect may be understood
using a surprisingly simple treatment of the associated first-passage problem.

Our analysis is also relevant to understanding the aggregation of particles in complex flows
where the particles aggregate when their separation is equal to δ. In particular, our theory for
〈N〉 describes the mean time for collision of particles which are advected by a flow which has
a Lyapunov exponent which is close to zero.

The theory that we have presented is valid when the stability factors ΔZn have random
or pseudo-random fluctuations. This includes almost all real-world applications of chaotic
dynamics, where noise will be present. In section 4 we pointed out that the effect may
be absent in systems where the transition to chaos arises from perturbation of a periodic
orbit.
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