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Key Points: 

 Causes for significant inconsistencies in important paleointensity records over the 0 – 45ka 

time period in Hawaii are investigated.  

 Disagreement is related to both the different demagnetization mechanisms and 

paleointensity protocols employed. 

 Both previous records are likely biased with the true values expected to lie intermediate 

between them. 
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Abstract 
Determining the strength of the ancient geomagnetic field is vital to our understanding of the 

core and geodynamo but obtaining reliable measurements of the paleointensity is fraught with 

difficulties. Over a quarter of magnetic field strength estimates within the global paleointensity 

database from 0-5 Ma come from Hawaiʻi. Two previous studies on the SOH1 drill core gave 

inconsistent, apparently method-dependent paleointensity estimates, with an average difference of 

30%. The paleointensity methods employed in the two studies differed both in demagnetization 

mechanism (thermal or microwave radiation) and Thellier-style protocol (perpendicular and Original 

Thellier protocols) – both variables that could cause the strong differences in the estimates obtained. 

Paleointensity experiments have therefore been conducted on 79 specimens using the previously 

untested combinations of Thermal-Perpendicular and Microwave-Original Thellier methods to analyze 

the effects of demagnetization mechanism and protocol in isolation. We find that, individually, neither 

demagnetization mechanism nor protocol entirely explains the differences in paleointensity estimates. 

Specifically, we found that non-ideal multi-domain-like effects are enhanced using the Original Thellier 

protocol (independent of demagnetization mechanism), often resulting in paleointensity 

overestimation. However, we also find evidence, supporting recent findings from the 1960 Kilauea 

lava flow, that Microwave-Perpendicular experiments performed without pTRM checks can produce 

underestimates of the paleointensity due to unaccounted-for sample alteration at higher microwave 

powers. Together, these findings support that the true paleointensities fall between the estimates 

previously published and emphasize the need for future studies (thermal or microwave) to use 

protocols with both pTRM checks and a means of detecting non-ideal grain effects. 
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1. Motivation 
The Pacific Ocean covers 30% of the Earth’s surface but has few islands, with the Hawaiian 

Islands being some of the most easily accessed. Volcanic islands, like Hawaiʻi, contain some of the best 

records of the temporal variation in Earth’s magnetic field over the last few Myr. Paleosecular 

variation timescales of this length are necessary to better understand long-term variations in 

geomagnetic behavior, as well as crust, mantle, and core interactions (e.g. McElhinny and Merrill 

(1975)). Accurate paleointensity data in the 0 – 5 Ma period is crucial because only in this interval is 

there enough spatial and temporal global coverage of data to characterize long term (Myr) variations. 

In order to obtain accurate paleointensity data, an appropriate paleointensity method for the mineral 

magnetic characteristics of any particular site must be used.  

Many paleomagnetic studies over the last 60 years (e.g. Coe et al. (1978), Cromwell et al. 

(2018), de Groot et al. (2013), Doell and Cox (1963), Doell and Cox (1965), and Teanby et al. (2002)) 

have found the Hawaiian Islands ideal for studying magnetic field variations in the central Pacific 

Ocean over the past hundred to few million years. Hawaiian absolute paleointensities (PI) have 

substantial temporal coverage and comprise 28% of the global paleointensity (PINT) database in this 

interval (Biggin et al., 2015) and are therefore important to study to understand long-term field 

behavior over this time interval. Numerous studies have taken advantage of the drill core from the 

Scientific Observation Hole (SOH) and Hawaiʻi Scientific Drilling Project (HSDP) projects to extract the 

required paleointensity data over the last 45 kyr (e.g. Cai et al. (2017), Gratton et al. (2005), and 

Teanby et al. (2002)), but the data have proven to be inconsistent and thus of potentially limited use. 

The paleomagnetism of the SOH1 core was studied twice previously- once by Teanby et al. 

(2002) using thermal PI experiments and again by Gratton et al. (2005) using microwave PI 

experiments and a different PI protocol. Teanby et al. (2002) and Gratton et al. (2005) each sampled 

the core independently and extracted paleointensities from 83 common flows. Teanby et al. (2002) 

additionally reported a new inclination record and dated the flows from 0 - 45 ka. The mean 

paleointensities reported by the two studies, 33.5 µT (Teanby et al., 2002) and 25.1 µT (Gratton et al., 

2005), differ by approximately 33%. Both studies reported mean uncertainty estimates of 

approximately 10%, which implies the possibility for a resolvable difference between them. 

At this stage it is useful to introduce our nomenclature that a given paleointensity “method” 

is composed of a combination of a specific “demagnetization mechanism” and a specific “protocol”. 

Teanby et al. (2002) used the conventional thermal demagnetization mechanism paired with the 

Original Thellier protocol (Thellier and Thellier, 1959), while Gratton et al. (2005) used the microwave 

demagnetization mechanism paired (predominantly) with the Perpendicular protocol (Kono and Ueno, 

1977). A third study, Laj et al. (2011), used the raw data from Teanby et al. (2002) (reanalyzed with 

their updated selection criteria to give an SOH1 average of 29.7 μT) combined with additional (non-

SOH1) data (acquired using the same method) from the SOH4 and HSDP1 drill cores, which cover 

additional flows, to create a more complete and statistically rigorous Hawaiian paleointensity record. 

Even after the Laj et al. (2011) reassessment, there remains nearly a 20% discrepancy between the 

thermal mechanism Original Thellier protocol and the microwave mechanism Perpendicular protocol 

results.  

To investigate discrepancies between paleointensity results obtained using different 

demagnetization mechanisms (i.e. thermal and microwave), a meta-analysis of 13 paired studies 

(including that of the SOH1 drill core) was undertaken by Biggin (2010). It is important to note that the 

studies assessed in the Biggin (2010) analysis differed not only in demagnetization mechanism but also 

in protocol. Biggin (2010) concluded, firstly, that systematic differences existed between 

paleointensity estimates derived from thermal and microwave experiments performed on the same 

rocks, with the former tending to be significantly higher than the latter (at the 95% confidence level). 
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We carried out a further analysis (available in Supporting Information A), which showed this as well at 

the flow level.  Secondly, Biggin (2010) suggested that the most plausible explanation for the bulk of 

these discrepancies resided in unrecognized biasing from multi-domain-like effects being more 

prevalent in the thermal results. Importantly it was suggested that the discrepancies were more or 

less entirely due to the difference in the protocols used rather than in the demagnetization mechanism. 

With respect to the SOH1 case, Biggin (2010) hypothesized that the thermal results being higher than 

the microwave results was likely unrelated to the choice of thermal or microwave energy for 

demagnetization. Rather, the discrepancy was due to Teanby et al. (2002) employing the Original 

Thellier protocol while Gratton et al. (2005) employed the Perpendicular protocol.  

Since our initial flow level analysis of the SOH1 data confirmed the results of Biggin (2010) the 

aim of the present study is to test the hypothesis that the differences found in paleointensity results 

from the SOH1 core are entirely due to protocol and not due to demagnetization mechanism. We 

hypothesize that if the demagnetization mechanism-protocol pairs are reversed, such that microwave 

demagnetization is paired with the Original Thellier protocol and thermal demagnetization is paired 

with the Perpendicular protocol, then the sense of the discrepancy between the microwave and 

thermal results should reverse such that the former should give higher estimates than the latter. This 

study will explicitly test this hypothesis using new experiments performed on 24 of the same SOH1 

flows as studied originally by both Teanby et al. (2002) and Gratton et al. (2005).  

The results of this study are important on several levels. First, they provide improved insight 

into the strength of the magnetic field at the time of emplacement of the 241 flows sampled by the 

SOH1 drill core dataset. Second, they have implications for how the swathes of paleointensity 

estimates obtained by similar methods from rocks elsewhere in the world should be interpreted. As 

such, they expand the results of a recent restudy of the 1960 Kilauea lava flow by Grappone et al. 

(2019) to more Hawaiian lava flows. Lastly, they can provide guidance on how future paleointensity 

experiments should be performed and analyzed in order to maximize their reliability. 

 

2. Drill core geology and sampling 
The samples used in this study are from the SOH1 drill core, which was drilled from the Kilauea 

volcano on Hawaiʻi Island between 1989 and 1991 at 19°29’N, 154°54’W, to a total depth of 1685 m. 

The Hawaiʻi Institute of Geophysics and Planetology and the Hawaiʻi Natural Energy Institute drilled 

the borehole to assess the viability of using geothermal energy in the area (Quane et al., 2000). The 

core consists primarily of a’a (~ 66%) and pahoehoe (~ 22%) lavas from 241 aerial, subaerial, and 

submarine flows with thicknesses varying from 0.3 m to 17.4 m (Gratton et al., 2005; Teanby et al., 

2002). The remaining ~11% of the core consists of dyke intrusions. Samples were taken from 196 lava 

flows from the upper 779 m of the core to avoid the increasing number of dyke intrusions and 

apparent alteration at greater depths (Gratton et al., 2005). This portion of the core has been modelled 

with an age range of 0 – 45 ka (Teanby et al., 2002).  

The portions of each drilled 2.5 cm diameter core that were saved by Gratton et al. (2005) 

from their SOH1 study were retrieved from the University of Liverpool archive and subsequently used 

in this study. We cut 120 new specimens for the restudy from the material remaining from 24 flows 

that span the range of flows sampled in Gratton et al. (2005). Although the specimens used in this 

study are sister specimens from Gratton et al. (2005), we cannot rule out the possibility that the flows 

may be inhomogeneous even on a cm scale. Flows were selected based on the degree of disagreement 

in paleointensity (PI) estimates between the Gratton et al. (2005) and Teanby et al. (2002) studies, 

number of samples previously studied, and the availability of specimens. For the flows selected for 
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this study, the Teanby et al. (2002) PI estimates, at the flow level, ranged from 21% lower to 53% 

higher (with a mean of 27% higher) than the Gratton et al. (2005) estimates. 

 

3. Rock magnetism 
 Gratton et al. (2005) undertook an extensive survey of the hysteresis loop parameters of the 

SOH1 borehole. The raw data from their rock magnetic survey were reanalyzed here using Hystlab’s 

automatic hysteresis loop processing program (Paterson et al., 2018) and are replotted in Figure 1, 

with the flows investigated herein highlighted. The bulk domain stability (BDS) trendline from Paterson 

et al. (2017) lies below the main sequence of hysteresis loop parameters for SOH1 flows, which 

indicates the data have a mixture of magnetic domain types, potentially also including 

superparamagnetic grains. The specimens used in this study sample the main sequence of SOH1 data 

observed in Figure 1. The ratio of magnetic remanence to saturation magnetization (Mrs/Ms) values 

of the main sequence of SOH1 data lie consistently above the values that would be expected for multi-

domain grains of magnetite (Mrs/Ms > 0.1), which implies the presence of single domain and non-

single domain grains. Gratton et al. (2005) also determined thermomagnetic behavior for all the flows 

in their study.  They found highly reversible thermomagnetic curves with 98% of Curie temperatures 

falling in the range from 520 – 600 °C, with a mean of 561 °C and median of 570 °C. 22% of flows also 

contained a secondary ferrimagnetic phase with Curie temperatures below 340 °C.  

The hysteresis and thermomagnetic parameters are typical of low-Ti magnetite-rich basaltic 

lavas found on Hawaiʻi and which have been the focus of other Hawaiian paleointensity surveys (e.g. 

Cai et al. (2017), Cromwell et al. (2018), and Hill and Shaw (2000)). Additional, new rock magnetic 

information (FORC and SEM analysis) from the main sequence can be found in Supporting Information 

B. 

 

4. Methods 
All new thermal tests were carried out in air using a Magnetic Measurements MMTD-80 

thermal demagnetizer, and specimens were cooled quickly using a built-in cooling fan. The specimens 

were then measured on the University of Liverpool Geomagnetism Laboratory’s 2G SQUID 

Magnetometer and RAPID system. All microwave tests were run on the 14 GHz Tristan Microwave 

System (Hill et al., 2008), also at the University of Liverpool. The goal of this study was to replicate the 

experimental conditions of the previous studies as closely as possible to properly isolate each variable 

of interest. 

In the Original Thellier (OT) protocol (Thellier and Thellier, 1959), each specimen is heated to 

a given temperature, 𝑇𝑁 , in a known, non-zero intensity magnetic field and then cooled to room 

temperature and measured. The polarity of the magnetic field is then reversed, and the sample is 

taken to 𝑇𝑁 again. The protocol can also be referred to as infield-infield, or ‘II’. The process is then 

repeated at 𝑇𝑁+1. Partial thermal remanent magnetization (pTRM) checks were included after every 

2nd step (i.e. from 𝑇𝑁+1 to 𝑇𝑁−1). For consistency with the PINT database (Biggin et al., 2009), when 

used with thermal energy, this protocol (with pTRM checks) will be referred to as Th-OT+, to 

acknowledge the pTRM check addition. The microwave (MW) variant of the OT protocol simply 

replaces the heat with microwave power integrals and will be referred to as MW-OT+. We used 

powers ranging from 5 to 40 W in 3 to 5 W steps, applied for 5 to 15 s and assumed that any power 

not reflected was absorbed by the specimen-cavity coupled system. For MW-OT+, we used a steady 

magnetic field applied parallel/anti-parallel to the natural remanent magnetization (NRM), which 
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Biggin (2010) predicted to be the least affected by non-ideal Arai plot behavior. For Th-OT+, we used 

an applied field with an inclination of ± 90° in specimen coordinates. 

 The Perpendicular (Perp) protocol is a modification of the Original Thellier protocol that only 

requires a single thermal or microwave treatment (Kono and Ueno, 1977). Samples first get stepwise 

demagnetized in a zero field to remove any soft magnetic overprints. Once the primary component of 

magnetization is identified as beginning at some 𝑇𝑃, the sample is then heated to 𝑇𝑃+1 in a magnetic 

field applied in the direction perpendicular to the characteristic component (the remaining NRM). The 

process is then repeated for 𝑇𝑃+2 and higher. Gratton et al. (2005) determined that many samples had 

a second ferrimagnetic phase with an unblocking temperature around 300 °C, which they interpreted 

to be the result of oxyexsolution into Ti-rich and Ti-poor lamellae during extrusion. Therefore, samples 

undergoing Thermal Perpendicular (Th-Perp) were first step-wise demagnetized in 40-50 °C steps 

from 100 °C to 300-340 °C to ensure that the perpendicular field was applied only to the high 

temperature ferrimagnetic phase. After successfully finding the characteristic direction, the field in 

the oven was switched on. The steps continued to 590 °C in 10-30 °C increments. The process is the 

same using the microwave system (MW-Perp), but with power integral steps instead of temperature 

steps until a consistent magnetic direction is obtained (Hill and Shaw, 2007). We did not include any 

pTRM checks in our new perpendicular experiments in order to replicate the methods used by Gratton 

et al. (2005). All data were analyzed using the methods described in Hill and Shaw (2007).  

Laboratory field strengths were selected that were as close to the original analyses as possible. 

All experiments in Teanby et al. (2002) were carried out using an applied field of 40 μT, as were the 

new MW-OT+ experiments completed herein. Microwave studies are carried out one sample at a time, 

so the field strength often varied specimen to specimen within a flow in Gratton et al. (2005). For the 

specimens we selected, the mean applied field used in Gratton et al. (2005) for microwave treatments 

was 31 ± 1.3 μT, so we used a field of 31 μT in our Th-Perp experiments.  

A summary of the experiments carried out in this study is given in Table 1. We ran 79 

specimens using either MW-OT+ or Th-Perp. Additionally, 19 specimens were tested using Th-OT+ and 

22 were tested using MW-Perp, replicating the original studies in order to confirm the previous results. 

The median number of specimens tested from each of the 24 flows we examined was 3, with a range 

of 1-11.  

 Our selection criteria are based on the MC-CRIT.C1 selection criteria, without tail checks, from 

Paterson et al. (2015). These were also used successfully by Grappone et al. (2019) to study the 1960 

Kilauea lava flow. We relaxed the FRAC/f criterion (Shaar and Tauxe, 2013) (a measure of the 

proportion of the NRM used to determine the result) from 0.45 (used in Grappone et al., 2019) to 0.35 

because of extensive alteration observed at higher temperatures/power integrals and because of 

difficulties in demagnetizing the specimens using microwaves. Relaxing this criterion yielded 7 

additional specimen-level estimates most notably from MW-Perp experiments, without changing any 

flow-level estimates in a statistically significant manner. The selection criteria are detailed in Table 2. 

 For our analysis, we use two statistical tests: the T-test and the Wilcoxon signed rank test (see 

for example, Klugh (1986)). For the study-level data, which are normally distributed (see the failure to 

reject the null hypothesis in Kolmogorov-Smirnov test in Supporting Information A), we use a two-

sample, unpaired T-test to test if the method-level means are equal. A paired difference test is more 

appropriate for the flow-level data, which have flow-level data pairings. The paired data do not visually 

appear to be normally distributed (a weak assumption required for a paired T-test), so we should 

choose a nonparametric test. Biggin (2010) used the Wilcoxon signed rank test in their analysis of the 

SOH1 dataset so for consistency we also use that for flow level data.  
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5. Paleomagnetic results and analysis 
5.1 New data 

A summary of all experiments run herein is given in Supporting Information C, and these new 

experiments are described in this subsection. Paleointensity estimates that passed the selection 

criteria were obtained from experiments performed on 73 specimens from 20 flows. A pass rate of >50% 

at the specimen-level was achieved for every experimental method tested. The most common reason 

for failure of the new MW-Perp and MW-OT+ experiments was low FRAC/f, as the microwave often 

could not fully demagnetize each specimen. The most common reason for failure for the new Th-OT+ 

experiments was high DRAT (i.e. pTRM check failures), and for Th-Perp, it was high scatter around the 

best fit line (β). The only clear difference in Arai plot shape observed between the different methods 

is that the new Th-OT+ data often show two slopes where for some specimens both slopes passed the 

selection criteria. In these cases, the low temperature slope was selected, as they had the higher FRAC. 

These new Th-OT+ data additionally show the highest mean curvature values (as defined by |𝐾⃗⃗ ′|) at 

0.30, compared to those of the Th-Perp (0.22), MW-OT+ (0.21), or MW-Perp (0.093). All new 

measurement data can be found on the MagIC database. Examples of passed MW-OT+ and Th-Perp 

data can be found in Figure 2 (Aii, Aiii, Bii, Biii, Cii, Ciii).  Examples of passed Th-OT+ and MW-Perp data 

can be found in Supporting Information C. 

Flow mean results are detailed by paleointensity method in Supporting Information C.  The 

new Th-OT+ and MW-OT+ flow-level mean PI estimates tend to yield higher values with  44.0 ± 16 μT 

across 5 flows and 29.5 ± 9.2  μT, across 19 flows, respectively. New Th-Perp and MW-Perp 

experiments tend to yield lower mean PI estimates with estimates of 27.8 ± 8.1 μT, across 11 flows, 

and 18.5 ±  10 μT, across 5 flows, respectively. If we assume our new PI estimates are normally 

distributed, which is noted (see Supporting Information A), we can use a two-sample T-test to 

determine whether observed differences between experiments are statistically significant. From the 

new data, the Th-OT+ mean estimate (44.0 μT) is higher than the MW-OT+ mean (29.5 μT), the Th-

Perp mean (27.8 μT), and the MW-Perp mean (18.5 μT), at the 95% confidence level, with p-values of 

0.0147, 0.0176, and 0.0001, respectively. The new data’s Th-Perp mean estimate is not statistically 

distinct from the new data’s MW-OT+ mean estimate at the 95% confidence level (p = 0.62). The new 

data’s MW-Perp flow-level mean PI estimate of 18.5 μT is lower than the new data’s MW-OT+ mean 

estimate at the 95% confidence level, with a p-value of 0.0015. The new data’s Th-Perp and MW-Perp 

estimates are not statistically different at the 95% confidence interval, with a p-value of 0.0676.  

5.2 Incorporation of existing datasets 

The new Th-OT+ results reported here are broadly consistent with their original counterparts  

reported by Teanby et al. (2002) and Laj et al. (2011). Both have the same two-slope (concave-up) 

behavior (see Figure 2 for Teanby et al. (2002) results and Supporting Information C for a direct 

comparison). When considering only the four flows tested in both the present study and by Teanby et 

al. (2002), the mean PI values (43.5 ± 19 μT and 30.8 ± 14 μT) have overlapping uncertainty bounds 

and are not statistically distinct from each other at the 95% confidence level (p = 0.3232).  

The new MW-Perp data reported here also broadly replicate the lower estimates reported by 

Gratton et al. (2005). The Arai plots appear single-sloped (see Figure 2 for Gratton et al. (2005) results 

and Supporting Information C for a direct comparison) and the mean PI values for the nine flows tested 

here and in Gratton et al. (2005) are 18.2 ± 10 μT and 18.6 ± 9.8 μT, respectively. These mean values 

are not statistically distinct at the 95% confidence level (p = 0.9462). This result supports Grappone et 

al. (2019)’s finding that the different generations of the microwave systems give equivalent results.  
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The consistency of our newly obtained results with those from the previous studies enables 

us to  conclude that we may reasonably combine our new Th-OT+ data with the Teanby et al. (2002) 

data and our new MW-Perp data with the Gratton et al. (2005) data. All the data is therefore combined 

to create one dataset which forms the basis for discussion in the following section. The combined 

SOH1 dataset, consisting of data from this study, Teanby et al. (2002), and Gratton et al. (2005)  is 

summarized in Table 3. 

 

5.3 Analysis of combined dataset 

Figures 3 - 5 display a series of one-to-one comparisons of the PI data produced by different 

methods at the flow level, utilizing data from the combined dataset, which allows the influence of 

demagnetization technique and PI protocol to be scrutinized. From visual inspection, the data do not 

appear to be symmetrically random about the 1:1 line nor cluster close to it.  Thus the PI estimate 

data pairs do not visually appear to be consistently normally distributed about the 1:1 line, which 

indicates that a two-sample T-test may be insufficient. We instead use the Wilcoxon signed rank test 

(see Biggin, 2010) to examine if the respective deviation of the datasets from the 1:1 line is significant 

at the 95% (α = 0.05) confidence interval. The null hypothesis is that the data scatter about the 1:1 

line is random.  

In keeping with Biggin (2010), we first confirm that the Th-OT+ data are consistently higher 

than the MW-Perp data (Figure 3A). The Wilcoxon signed rank test gives W = 1, which corresponds to 

a p-value of 0.0008 for 15 data points, so we can reject the null hypothesis that the deviation from the 

1:1 line and hence the data scatter is random. 

Next we test the hypothesis of Biggin (2010) that the primary cause for the Th-OT+ data being 

consistently higher than the MW-Perp data is due to the differing PI protocol (OT+ vs Perp) and not 

demagnetization mechanism (MW vs. thermal).  We do this by comparing the MW-OT+ and Th-Perp 

data (i.e. the inverse combination) to see if the OT+ protocol continues to yield systematically higher 

values than the Perp protocol. It can be seen in Figure 3B that in fact, MW-OT+ data are not 

consistently higher than Th-Perp data; the paired results are significantly closer to and fall on either 

side of the 1:1 line. The Wilcoxon signed rank test gives W = 18, which corresponds to a p-value of 

0.33 for 10 data points, so we cannot reject the null hypothesis that the deviation from the 1:1 line is 

random. Having failed to support the simple hypothesis that the protocols are entirely responsible for 

the differences in PI results, we now examine demagnetization mechanisms and protocols in isolation 

to probe deeper into these specimens’ behavior.  

If the cause of the discrepancy between the Th-OT+ and MW-Perp data were purely due to 

demagnetization mechanism, then we would expect that estimates from MW-OT+ and MW-Perp 

would be similar and would cluster around the 1:1 line. Similarly, estimates from Th-OT+ and Th-Perp, 

would also be similar, clustering around their 1:1 line. These cases are plotted in Figure 4. For the flows 

they have in common (Figure 4A), the mean PI estimate for the MW-OT+ data is 30 ± 8.8 μT and for 

the MW-Perp data is 26.1 ± 7.7 μT. The Wilcoxon signed rank test gives W = 23, which corresponds 

to a p-value of 0.0065 for 18 data points, so we can reject the null hypothesis that the deviation from 

the 1:1 line is random. Next, we investigate the Th-OT+ and Th-Perp data (Figure 4B). For the flows 

they have in common, the mean PI estimate for the Th-OT+ data is 38.3 ± 14 μT and 27.5 ± 8.3 μT 

for the Th-Perp data. The Wilcoxon signed rank test for Th-OT+ vs Th-Perp gives W = 3, which gives a 

p-value of 0.05 for 7 data points, therefore also rejecting the null hypothesis that the deviation from 

the 1:1 line is random. Therefore, changing the protocol to OT+ from Perp does indeed cause higher 

paleointensities to be measured, but this is not the entire explanation for the discrepancy illustrated 

in Figure 3A.  
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For the flows that have both Th-OT+ and MW-OT+ data (Figure 5A), we observe mean PI 

estimates of 40.7 ± 13 μT and 28.8 ± 10 μT, respectively. The Th-Perp and MW-Perp data give more 

similar estimates (Figure 5B). For the flows they have in common, the mean PI estimates are 28 ± 8.6 

and 26.6 ± 5.9, respectively. For Th-OT+ vs MW-OT+, the Wilcoxon signed rank test gives W = 1, which 

corresponds to a p-value of 0.0012 for 14 data points. We can therefore reject the null hypothesis that 

the deviation from the 1:1 line is random, which indicates Th-OT+ data are higher than the MW-OT+ 

data. For the Th-Perp and MW-Perp data, the Wilcoxon signed rank test gives W = 25, which 

corresponds to a p-value of 0.24 for 11 data points. Thus, we cannot reject the null hypothesis that 

the Th-Perp and MW-Perp data’s deviation is random, which suggests that the Th-Perp data are not 

higher than the MW-Perp data. This result agrees with the T-test in section 5.1. 

We therefore observe that neither the demagnetization mechanism nor the protocol used can, 

in isolation, fully explain the differences in paleointensity estimates observed. We additionally find 

that the Th-OT+ method yields results that are consistently (and statistically) higher than the other 

three methods used. 

 

6. Discussion 

6.1 Paleointensity methodology differences 
Double-heating Thellier protocols have long been known to have problems with multi-domain 

components causing non-linear Arai plots (Levi, 1977). Hodgson et al. (2018) showed that this can 

apply to non-single domain oxyexsolved titanomagnetite grains as well, which are common in basaltic 

lavas such as the Hawaiian lavas of the SOH1 drill core. These non-single domain components can lead 

to concave up (two-slope) Arai plots. If the low blocking temperature (power integral) portion is used, 

the data give PI overestimates and conversely, underestimates are obtained if the high blocking 

temperature (power integral) portion is used (Levi, 1977; Smirnov et al., 2017; Thomas, 1993; Xu and 

Dunlop, 2004). Grappone et al. (2019) studied samples from the 1960 Kilauea lava flow, another 

Hawaiian lava flow. They showed that the high estimates often found using thermal double treatment 

methods (of which Thermal-Original Thellier is one) (e.g. Yamamoto et al. (2003)) are not replicated 

when using the microwave demagnetization mechanism. Our data here confirm this conclusion, as 

the Thermal-Original Thellier method yields the highest estimates, but the Microwave-Original Thellier 

data align much more closely with the Perpendicular datasets obtained using either demagnetization 

mechanism. 

A recent study by Cromwell et al. (2018) (using the Thermal-IZZI method and strict selection 

criteria) reports PI estimates from 22 surface lava flows across the island of Hawaiʻi. They found 

estimates consistent with geomagnetic field models in the 270 – 10,000 yr range. However, the study 

was unable to reproduce the high estimates found in Teanby et al. (2002) and Laj et al. (2011). Cai et 

al. (2017) additionally found systematically lower estimates than Laj et al. (2011) using subaerial glassy 

basaltic margins on older flows from the HSDP2 core, using the same techniques as Cromwell et al. 

(2018). Based on the data herein and the other studies, the thermal Original Thellier method appears 

to give higher PI estimates than other PI methods and is likely an overestimate of the true 

palaeointensity due to exaggerated multi-domain-like effects and the lack (in these experiments) of 

any mechanism to detect these. 

The original microwave study for the 1960 Kilauea lava flow, Hill and Shaw (2000), gave site-

level estimates up to 20% lower than the expected value of 36.5 μT. In both the Hill and Shaw (2000) 

and the Gratton et al. (2005) studies, an older MW system was used with the Perpendicular protocol 

(Kono and Ueno, 1977), which uses only a single treatment per step and no pTRM checks. Grappone 
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et al. (2019) showed that changing the microwave experimental protocol to a more common double-

treatment technique including alteration (pTRM) checks (in their case the IZZI protocol (Yu et al., 2004)) 

gave the correct answer of 36.5 μT for the 1960 Kilauea lava flow. Although the Original Thellier 

protocol’s additional treatments cause more thermochemical alteration than the perpendicular 

protocol, it is likely that the SOH1 samples behave in a similar way to the 1960 Kilauea flow and that 

the Perpendicular datasets give low estimates due to undetected alteration.  

The Microwave-Perpendicular and the Thermal-Perpendicular datasets are not statistically 

distinct implying that it is not something inherent to the microwave causing the differences between 

the original Teanby et al. (2002) and Gratton et al. (2005) datasets. It has been shown that for well-

behaved (SD) grain-containing ceramics, there is a detectable difference in paleointensity estimates 

due to differences in cooling rate (Poletti et al., 2013).  Since the Microwave-Perpendicular and the 

Thermal-Perpendicular datasets are not statistically distinguishable, any cooling rate effect would be 

relatively minimal.  Further, the Microwave-Original Thellier data have a faster cooling rate but give 

lower estimates than the Thermal-Original Thellier data, which is the opposite of the expected cooling 

rate effect (Poletti et al., 2013).  

Additionally, the perpendicular protocol having less than half the number of treatments as in 

the Original-Thellier protocol introduces another complication if these specimens undergo stress 

relaxation during the experiment. If even mild stress relaxation affects the specimens, the 

perpendicular data will appear too low because pTRMs would be gained more efficiently than NRM 

would be lost (Kosterov and Prevot, 1998). 

That the Microwave-Original Thellier results are lower than their Thermal-Original Thellier 

counterparts suggests that something inherent to the microwave demagnetization mechanism 

dampens the effects on the data from non-ideal vortex-state grains. If this finding were the result of 

the microwave not causing the same magnitude of stress relaxation as in thermal experiments, the 

Microwave-Perpendicular data would be expected to be even lower than the Thermal-Perpendicular 

data (Kosterov and Prevot, 1998). This does appear to be the case here (Figure 5B), as the differences 

are not statistically significant. 

Based on the above discussion, explanations therefore exist both for why the thermal original 

Thellier experiments overestimate the true value (multi-domain-like effects) and for why 

perpendicular experiments (both thermal and microwave) underestimate it (unrecognized alteration), 

which implies that the best estimate should fall between these two extremes.  

The inherent uncertainty in the data and techniques used to obtain paleointensity estimates 

can and should be expressed in the stated uncertainties associated with a flow-level mean (for 

example, averaging the Th-OT+ and MW-Perp and providing the resulting large std. deviation). Until 

new, high-quality data exist for all the flows studied here from the SOH1 drill core, the authors propose 

that for each flow, the available flow-level Th-OT+ and MW-Perp datasets, which are the largest two, 

be averaged. Supporting Information D provides an example of this averaging for the flows containing 

at least two specimens in each Th-OT+ and MW-Perp dataset (i.e. the flows studied in the meta-

analysis described in Supporting Information A). This method gives a mean paleointensity estimate of 

29.2 ± 12 μT.  This mean value is virtually identical to the mean MW-OT+ estimate of our newly 

collected data, 29.5 ± 9.2 μT, but higher than the equivalents measured by Gratton et al. (2005) and 

lower than those in Teanby et al. (2002). Flows characterized by data produced from only a single 

method (more than half; 97/181) across these studies (and the Laj et al. (2011) reanalysis) should not 

be considered accurate to within stated uncertainties.  
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6.2 Implications for future experiments 
The perpendicular protocol has largely fallen out of use due to the lack of pTRM checks, but 

the Original Thellier protocol lives on as do the IZZI (Yu et al., 2004), Coe (ZI) (Coe, 1967), and Aitken 

(IZ) (Aitken et al., 1988) protocols. Modeling done in Biggin (2010) carries the implication that the 

Original Thellier protocol has the potential to exaggerate multi-domain behavior compared to other 

Thellier-style double treatment experiments, which is largely consistent with the study carried out 

here. We therefore suggest that any future experiments performed with the Original-Thellier protocol 

(or indeed the Coe or Aitken protocols), should incorporate pTRM tail checks alongside pTRM checks 

such that multi-domain-like effects may be detected. The IZZI protocol has the built-in advantage of 

allowing detection of non-ideal behavior via zig-zags in the Arai plot. 

This study is consistent with previous studies (e.g. Grappone et al. (2019)) that have shown 

that while different methods can give seemingly reliable data, non-ideal effects (multidomain 

behavior, stress relaxation, undetected alteration) can be a biasing influence. We therefore concur 

with the finding in Grappone et al. (2019) that at least pilot specimens should be run using at least 2 

Thellier-style protocols (or the IZZI protocol) as a 1st order check for non-ideal paleointensity behavior. 

Better still, different methods (e.g. Thermal Thellier, Microwave Thellier, or Multi-Specimen) should 

be employed to produce reliable multi-method paleointensity estimates (de Groot et al., 2013), which, 

ideally, should be internally consistent. Biggin and Paterson (2014) provided a set of quantitative 

criteria for evaluating the reliability of paleointensity estimates. Such paleointensity estimates are 

required to satisfy the TECH QPI criterion of Biggin and Paterson (2014), which requires paleointensity 

estimates to come from multiple techniques. 

Conclusions 
 In this paper, we have sought to identify the cause for systematic discrepancies between 

previously published paleointensity studies on the SOH1 drill core. New paleointensity data confirm 

the systematic offset observed from previous studies when using the same methods; namely, 

Thermal-Original Thellier estimates were ~30% higher than Microwave-perpendicular estimates. For 

the first time, Thermal-Perpendicular experiments and Microwave-Original Thellier experiments were 

undertaken on these rocks. Our results confirm that Thermal-Original Thellier data can be too high in 

the presence of magnetic carriers that do not behave as non-interacting SD grains. We further confirm 

that perpendicular data, which lack pTRM checks for alteration, can be too low due to undetected 

thermochemical alteration.  

Until new measurements are made using reliable methods, results previously obtained from 

the SOH1 drill core using different methods should be combined at the flow level. The resulting 

enhanced standard deviation will accurately reflect the intrinsic uncertainty associated with the mean. 

The potential for biasing in those flows only represented by estimates produced by only one of the 

previously applied methods should be recognized. 

Future studies undertaken using the thermal and/or microwave demagnetization mechanisms 

should avoid any protocols which do not contain within them checks for both lab-induced alteration 

and non-ideal multi-domain- like behavior. The IZZI protocol with pTRM checks satisfies both of these 

criteria. 
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Table 1 Summary information of new experiments carried out in this study 

Method Number of 
specimens 

Number of 
accepted estimates 

Success 
rate 

Lab field 
(μT) 

Microwave-OT+ 48 33 69% 40 

Microwave-Perp 22 13 59% 25-50 

Thermal-OT+ 19 10 52% 40 

Thermal-Perp 31 17 55% 31 

Total 120 73 61% 25-50 
Number of specimens run for each method is given along with the number of specimens that gave 

acceptable results (number of passes) and the associated success rate. The final column gives the 

applied Lab fields used during the experiment for each method.  

 

 

 

Table 2 Selection criteria  

N FRAC/f* β q |𝑲⃗⃗⃗ ′| MADANC
** α** DRAT** Δθ*** 

≥ 4 ≥ 0.35 ≤ 0.1 ≥ 1 ≤ 0.480 ≤ 10 ≤ 10 ≤ 10% ≤ 1° 

N is the number of data points, FRAC/f are measures of the NRM used, β is a measure of scatter around the 

best-fit line, q is a measure of the data quality, |𝐾⃗⃗ ′| is a measure of Arai plot curvature, MAD and α determine 

the scatter of the specimen’s paleodirection. Δθ is the change in the θ1 + θ2 value, an indication of the 

perpendicularity between the NRM and TRM directions (Hill and Shaw, 2007) for the perpendicular experiment. 

For further details the reader is referred to Paterson et al. (2015). 

 

*FRAC is used for OT+ experiments and f for Perp experiments.  

**OT+ techniques use these criteria, but Perp does not, for technical reasons 

*** Used only for Perpendicular experiments 
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Table 3 Paleointensity results, broken down by flow and method for the combined dataset, consisting of new data, data 

from Teanby et al. (2002) and data from Gratton et al. (2005). 

Flow 
Th-OT+ 

(μT) 
Npass/ 
Ntested 

MW-OT+ 
(μT) 

Npass/ 
Ntested  

Th-Perp 
(μT) 

Npass/ 
Ntested  

MW-Perp 
(μT) 

Npass/ 
Ntested 

2 58.6 1/2 22.5 ± 4.7 2/2 29.4 ± 5.1 3/3 21.3 ± 2.0 4/4 
6 50.4 ± 4.5 2/3 45.1 ± 2.8 2/2   36.5 ± 0.6 3/3 
7  0/1   39.2 1/1 35.8 ± 1.6 4/4 
8 59.0 ± 3.2 3/3 43.7 ± 4.9 2/2  0/1 36.5 ± 5.9 8/10 

22  0/1 37.2 ± 2.6 3/3 26.3 1/2 21.3 ± 9.5 2/2 
23 51.4 ± 0.9 2/2 36.7 ± 2.2 3/5 27.7 ± 0.1 2/2 28.8 ± 1.0 2/2 
24   25.9 1/2  0/2 18.5 ± 4.1 2/4 
26  0/1 32.5 1/2 21.2 1/3 33.1 ± 2.0 5/5 
36  0/1 32.7 1/1  0/1 34.8 ± 2.8 2/2 
37 54.2 ± 6.0 4/5 33.4 ± 1.6 2/2   24.8 ± 6.0 3/4 
48   29.4 ± 3.4 2/2 26.4 ± 4.1 3/3 28.0 ± 0.5 2/2 
87 32.2 ± 2.3 2/4  0/1   14.6 ± 1.9 4/4 
91 23.8 ± 0.8 2/3  0/1   11.8 ± 0.9 4/4 

163 45.9 ± 11 3/3 25.7 ± 1.5 2/3   18.6 1/3 
176 26.3 ± 13 3/4    0/1   
186 25.1 ± 4.0 2/6    0/1 18.2 ± 2.6 2/2 
189 27.7 ± 0.2 2/3 22.1 1/1 25.6 1/1 19.8 ± 1.0 2/2 
193 31.7 1/2 18.5 1/1  0/1 15.0 ± 0.1 2/3 
196 24.7 ± 1.3 2/2 15 1/1   12.6 1/3 
206 40.1 ± 29 2/5 18.7 1/3 26.2 1/1  0/3 
220 46.4 ± 7.9 4/6 37.2 ± 6.1 2/3 33.8 1/1 26.0 ± 4.7 7/12 
221 40.9 ± 2.1 3/3 36.7 1/4 39.5 ± 2.8 2/4 31.4 ± 2.8 4/5 
222 39.8 ± 3.3 3/3 33.7 1/2  0/1 37.8 ± 1.6 3/3 
237 25.5 ± 8.2 3/9 14.3 ± 8.5 4/5 10.4 1/2 19.1 ± 0.2 2/4 

Mean 39.0 ± 12 18/22 29.5 ±  9.2 19/21 27.8 ± 8.1 11/18 24.8 ± 8.5 22/23 
Note: Npass is the combined number of specimens that passed the PI selection criteria. Ntested is the 

combined number of specimens that were tested from a given flow with a given method. Empty cells 

indicate no experiments were attempted because of a lack of material. For the mean row, Npass and 

Ntested reference the number of flows. 
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Figure 1 Hysteresis parameters plot for all the flows in the SOH1 borehole (as studied by Gratton et al., 2005), highlighting 

which flows were studied herein for new PI estimates. Mrs/Ms refers to the ratio of remanent saturation magnetization to 

the saturation magnetization and HCR/HC refers to the ratio of coercivity of remanence to coercivity. The Bulk Domain 

Stability trendline derives from the results of Paterson et al. (2017). The three named flows have new PI estimates, as well 

as FORC and SEM analysis in Supporting Information B. 
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Figure 2 Normalized Arai plot examples comparing the different methods used. A) Flow 2 (503 cm thickness), B) Flow 23 

(137 cm thickness), and C) Flow 206 (290 cm thickness).  The data are normalized by NRM0. The filled circles are accepted 

data points, with the solid black line being the best-fit line. Open circles are rejected data points.  The black right-angles 

lines are pT(M)RM checks, which are only present in OT+ data. Orthogonal vector plots are provided in core coordinates 

for the OT+ data.  All specimens presented pass their original study’s selection criteria. The microwave data are visually 

more linear than the thermal data, and the OT+ data are often two-sloped. The powers given for the Gratton et al. (2005) 

MW data are power applied and the power integrals given in the new data are (inferred) energy absorbed. 
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Figure 3 Testing Biggin (2010)'s hypothesis that only paleointensity protocol affects PI estimate. Flow-level paleointensity 

estimates are plotted against each other for completely distinct PI methods (no shared protocol or demagnetization 

mechanism). A: Confirming that the Th-OT+ data are higher than the MW-Perp data. B: Checking if MW-OT+ data are 

higher than Th-Perp. The mean PIs listed are for the flows the methods have in common. N is the number of data points, 

W and p are the statistics from the Wilcoxon signed rank test.  
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Figure 4 Testing the hypothesis that only paleointensity protocol affects PI estimate, control. Flow-level paleointensity 

estimates are plotted against each other for different PI protocols, separated by demagnetization mechanism. A: 

Microwave data; B: Thermal data. The mean PIs listed are for the flows the methods have in common. N is the number of 

data points, W and p are the statistics from the Wilcoxon signed rank test.  
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Figure 5 Testing the hypothesis that only demagnetization mechanism matters. Flow-level paleointensity estimates are 

plotted against each other for different PI methods, separated by protocol. A: Original Thellier data; B: perpendicular data. 

The mean PIs listed are for the flows the methods have in common. N is the number of data points, W and p are the 

statistics from the Wilcoxon signed rank test.  

 


