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ABSTRACT

Cells dissociated from the postnatally developing rat 
cerebellum retain their high affinity carrier-mediated transport 
system for (&) GABA (Kt = 1 .9 uM, V = 1.8 pmol per 10^ cells per 
min.) and (̂ H) glutamate (Kt = 10 uM, V = 7.9 pmol per 10^ cells 
per min.). Using a unit gravity sedimentation technique it was 
demonstrated that (̂ H) GABA was taken up principally into fractions 
which were enriched in such neuronal types as Purkinje, stellate 
and basket cells. (̂ H) ^-alanine (which is known to be taken up 
specifically by the glial GABA transport system) and (̂ H) glutamate 
were concentrated by cells of the same size range. (&) glutamate 
uptake was minimal in fractions enriched in precursors of granule 
cells. These results are discussed in relation to reports of high 
affinity (̂ H) glutamate uptake by glia. The role of glutamate 
transport in glutamatergic cells is also considered.

In addition the development of GABA, p-adrenergic and 
muscarinic acetylcholine receptors in the cerebella of weaver (wv), 
reeler, (rl) staggerer (sg) and jimpy (jp), neurological mutant mice 
and their normal counterparts was examined using the radioligands,
( H) muscimol, ( H) dihydroalprenolol ((̂ H) DHA) and (̂ H) 
quinuclidinylbenzilate ( (&) QNB) . The maximum increase in ligand 
binding occurred during the period 15-20 days for (&) muscimol,
10-15 days for (̂ H) DHA, 5-15 days for (̂ H) QNB. Binding of all 
ligands was significantly reducect with respect to controls in the 
cerebellar mutants, wv, rl and sg. (&) Muscimol binding was the 
most affected (i|-19 per cent control at 20 days) and (̂ H) QNB binding
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was least affected (3 6 - 5 0  percent control at 20 days)*
•zThe corresponding figures for ( H) DHA were 14-22 

percent* Binding of these ligands to jp tissue
was not significantly different from control except for (^H) QNB 
binding which was 80 percent of control at 20 days. Binding of 
all ligands was saturable and of high affinity (muscimol Kd =
12.8 nM; DHA Kd ~ 0.26 nM; QNB Kd = 0.11| nM) and the affinity 
constants for binding did not change significantly during 
development. These data are discussed in relation to (i) the 
known pharmacology and development of cerebellar neurons and (ii) 
the effects of the mutations on the development of cerebellar 
neurons.
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ABEREYIATIOHS USED
ACHC cis-aminocyclohexanecarboxylic acid 
AOAA aminooxyacetic acid
BSA bovine serum albumin
CF-EBSS calcium free Earle's basic salt solution
DHA dihydroalprenolol
DNase deoxyribonuclease
GABA îf-aminobutyric acid
HEPES N-2-hydroxyethyIpiperazine-N ' -2 ethansull’onic acid

the concentration of inhibitor required to reduce binding 
or uptake to 50 per cent of control

JÏÏÏP iodohydroxybenzylpindolol
jp jimpy mutant
nr homozygous nervous mutant
PBCM propylbenz ilylcholine mustard
PSG Puck's saline g
QNB quinuclidinylbenzilate
rl homozygous reeler mutant
SBT1 soya bean trypsin inhibitor
sg homozygous staggerer mutant
tris tris (hydroxymethyl) aminomethane
wv homozygous weaver mutant

f
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Aims

The overall aim of this thesis was to gain further information concerning 

the uptake of neurotransmitter candidates by various cerebellar cell types 

and to get some idea of the receptor populations associated with these 

cells. This was tackled in two separate ways. (i) A method for the 

isolation of cells from the developing rodent cerebellum has been developed 

in this laboratory along with a method for the separation of these cells on 

the basis of size. The high affinity transport of GABA,8-alanine and 

glutamate was examined in cell fractions enriched in particular neuronal 

types in order to further characterise the fractions, and to see whether 

glutamate uptake could be assigned to a particular cell type. The uptake 

of glutamate is of particular relevance since cerebellar granule cells are 

thought to use glutamate as their neurotransmitter and the uptake of 

glutamate by glutamatergic cells has been reported by some workers but is 

disputed by others (see Section 1.6). (ii) The second part of this thesis 

does not lead directly on from the above work because as outlined in 

Chapter 2 a large part of the work intended (e.g. characterisation of 

uptake by various cell types) had been completed by another group of 

workers. The final chapter of the thesis outlines work using radioligand 

techniques to examine the development of neurotransmitter receptors in 

normal and agranular mutant mouse cerebellum. The aim of this group of 

studies was to see whether the development of any group of receptors 

(i.e. GABA, 8-adrenergic or muscarinic cholinergic receptors) could be 

linked to known synaptogenic events; and in addition to see if the 

development of receptors in agranular cerebella could provide clues as to 

the cell types on which these receptors were located. It was hoped that 

such studies would also tell us something about the way in which the loss 

of one neuronal type affects the development of the remaining receptor 

populations.
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CHAPTER 1
INTRODUCTION

1.1 Structure and function of the cerebellum.

The cerebellum is phylogenetically one of the oldest

structures of the vertebrate brain. It is situated dorsal to the 
mid-brain, and posterior to the cerebral cortex. Superficially 
the cerebellum resembles the cerebrum since it has a highly 
convoluted appearance, and in section peripheral neuronal 
structures (cerebellar cortex) overlie white matter and cerebellar 
nuclei.

Owing to the uniform cytoarchitecture of the mature cerebellum 
first described by Ramon y Cajal, (1955), the cortex of the cerebellum 
is probably the most well characterised area of the brain. The 
cortex contains only five main neuronal types; Purkinje, Golgi, 
stellate and basket cells, all of which are inhibitory, and the 
granule cells which are excitatory. There are two major , 
inputs (as revealed by classical histological techniques) the

climbing fibres and mossy fibres which are both excitatory. The 
sole output of the cortex is the Purkinje axons which synapse 
with the deep cerebellar nuclei (Eccles et al. 1967).

Although much of the cerebellar circuitry has been characterised 
it is beyond the scope of this introduction to discuss the full 
range of interactions which are thought to take place. However,
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^ b r i outline of the major pathways is given below* Unless 
cited otherwise, the information is taken from the following 
sources (Eccles et al« 196?; Palay &Chan Palay, 1974)* The 
qualitative data are taken from Palkovits et al, (I97la,b,c) 
and Eccles(1973), and are for the cat * Although the numbers 
quoted below are an order of magnitude lower for the rat and 
mouse, the organisation is the same (Palay & Chan Palay, 1974; 
Caddy& Biscoe, 1976 ; Rakic & Sidman, 1973b)* The cytoarchi
tecture and synaptic connections are summarised in Figures 
1 and 3*

Granule cells. These are the most numerous neurons in the brain
9(approximately 2.2 x 10 per cerebellum). The granule cells are 

excitatory and synapse on the other four neuronal types in the cortex 

through their "T" shaped axons,the parallel fibres. The granule cell 

layer lies below the level of the Purkinje neurons, and the axons of 

the granule cells project up toward the cerebellar surface, bifircate 

and run horizontally in the molecular layer. The molecular layer 

consists of closely packed parallel fibres and the dendrites of the 

other four neurons. All granule cell synapses on the inhibitory 

neurons occur exclusively on dendrites in the molecular layer.

Purkinje neurons. The Purkinje neurons are the largest neurons

in the cerebellum (the approximate diameter of the perikaryon is

25 ym) and they appear as a single row of cells between the granule

cells and the molecular layer. These cells are much fewer in number
6than the granule cells (1.2 x 10 per cerebellum). Purkinje cell 

dendrites extend into the molecular layer where they receive synapses 

from the parallel fibres. The dendritic tree of the Purkinje cells is 

flattened and oriented perpendicular to the parallel fibres so that
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these neurons are contacted by many parallel fibres. The number 

of contacts has been estimated at 8 x lo"̂  per Purkinje cell. The 

axons of the Purkinje neurons leave the cerebellar cortex and form 

i'^hibitory synapses with the cerebellar nuclei located in the white 

matter. These axons are the sole output of the cerebellum.

Purkinje axon collaterals also synapse with the other three inhibitory 

neurons of the cerebellum and other Purkinje neurons.

Golgi neurons. The dendrites of these neurons project up into 

the molecular layer, where they are excited by the parallel fibres.

The dendritic tree is not flattened as in the Purkinje neurons but 

cylindrical. The Golgi cell axons branch extensively in the granule 

cell layer where they form inhibitory synapses on the granule cell 

dendrites. The Golgi axons synapse on granule cell dendrites and form 

part of the cerebellar glomerulus complex which includes the mossy 

fibre terminals (see Figure 2). Approximately 10^ granule cells 

are inhibited by one Golgi neuron. The Golgi neuron dendrites and 

soma are thought to be contacted by mossy fibres (Eccles et al. 1967; 

Hamori & Szentagothai, 1966; Altman, 1972c); however Fox et al. (1967) 
failed to find such contacts.

Basket and stellate neurons. These cells lie in the lower half of 

the molecular layer, and there are about 3 x 10^ stellate and basket 

^ cells per cerebellum. The stellate cells are located more superficially

than the basket cells which are located in the lower third of the 

molecular layer. The dendritic arbor of the basket cells extends up 

towards the cerebellar surface and is flattened in the same plane as 

the Purkinje neurons. These inhibitory neurons send out axons, which

T

r



—11—
r

project along the plane in which these cells are oriented, and synapse 

with the dendrites of Purkinje cells some 1-2 cells distant from the 

area in which the basket cell is located. Descending basket axon 

collaterals also synapse with the Purkinje cell body. Because of the 

orientation of the basket cells, Purkinje neurons which are excited by 

parallel fibres are not inhibited by basket cells receiving the same 

parallel fibre excitation. Functionally the stellate cells are very 

similar to basket cells but as their name implies the dendritic tree 

extends in all directions in the saggital plane of the molecular layer. 

However, the axons of these neurons do not have collaterals which 

synapse with the Purkinje cell body.

Afferent fibres. There are two major inputs to the cerebellum; 

the climbing fibres and the mossy fibres, both of which are excitatory.

Mossy fibres synapse with the granule cells. These fibres branchr
profusely, often sending branches to several folia, and terminate/in 

the cerebellar glomeruli, which are specialised synapses, consisting of 

the mossy fibre terminal which contacts the claw like granule cell 

dendrites and a Golgi axon contact. A single mossy fibre gives rise 

to 20 or more glomeruli and the dendrites from approximately 20 granule 

cells may contact each glomerulus. As already discussed, the mossy- 

fibres are also known to contact the Golgi neurons. The information 

carried in the mossy fibres comes from many areas including, the cerebral 

cortex (via the pons), muscle receptor organs, the reticular formation 

and the vestibular system.
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Climbing fibres contact Purkinje cell dendrites, each neuron 
being associated with one fibre which "clhubs" along the prhnary 
and secondary branches of the Purkinje cell arbour, synapsing 
at frequent intervals. These fibres arise mainly from the 
inferior olive which receives afferents from proprioceptors in 

^ the cerebral cortex.

There is at least one more afferent fibre system in the 
cerebellum. Autoradiographic and histochemical studies show that
these fibres are noradrenergic (arising in the locus coeruleus)
and synapsing with the primary and secondary dendrites (Hokfelt
& Fuxe, 1969; Olsen & Fuxe, 1971; Bloom et al. 1971). In
addition 5-hydroxytr̂ tci/77/Ae. Tibres have been observed in the

cerebellum which are thought to originate in the raphe nucleus
r (Hokfelt &Fuxe,ip69; Dahlstrom & Fuxe, .1965) however the

precise location of their synapses is unknown.

Efferent fibres. As already mentioned the sole output of 
the cerebellar cortex is the Purkinje axons which synapse with 
the neurons of the deep cerebellar nuclei located in the white 
matter. These nuclear cells relay information to the spinal 
cord and sensorimotor cortex.

A -

The source of the afferent fibres and the destination of the 
efferent system in the cerebellum indicate that this brain region 
pluys a major role in the processing of information concerning

T
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movement and posture. The experimental and clinical evidence 

supports this idea. The most obvious feature of gross cerebellar 

dysfunction is ataxia (Dow & Morruzi, 1958). Lesions of the 

cerebellum also result in dysmetria. Thus movements directed towards 

a particular object are poorly executed and the subject tends to 

overshoot and undershoot the target (reviewed by Dow & Morruzi 1958;

Ruch, 1960). All the evidence therefore points to the cerebellum 

modulating motor function. This would inevitably involve the cerebellum 

acting as a computer, evaluating and acting on information concerning the 

status of a particular motor function. The repetitive nerve networks lend 

themselves to the idea of the cerebellum as a computer and as early as 

1967 Eccles et al. suggested how the cerebellum might act in such a way.

The original idea has been elaborated on and various models have been put 

forward to account for the computational properties of the cerebellum 

(Eccles, 1973; Albus, 1971; Marr 1969). However as pointed out by 

Ito (1979) although the cerebellum (which structurally resembles a 

computer) may contribute to the functioning of the organism as if it 

were a computer, the way in which this brain region achieves this effect 

is still not sufficiently understood.
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FIGURE 1 Stereodiagram of the mammalian cerebellum showing the 
5 main neuronal types, granule neurons (green), Purkinje neurons 
(red) and the Golgi (Go), basket (Ba) and stellate neurons (St) 
shown in black. The two main afferents, the climbing fibres 
(Cl) and mossy fibres (Mo) are outlined in blue. This diagram 
was reproduced from Eccles et al. (1967).

A
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FIGURE 2 Simplified wiring diagram of the mammalian cerebellum 
showing the main nervous connections. The inhibitory cells are 
shown in black and the arrows indicate the direction of 
transmission. Pc = Purkinje cell, Gc = Golgi cell, 
be = basket cell, icnc = intracerebellar nuclear cell, 
pf parallel fibre, cf = climbing fibre, mf = mossy fibre. 
Reproduced from Eccles (1973).
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1 .2 Cerebellar development

The mouse cerebellum appears as a thickening of the anterior 
roof of the fourth ventricle around embryonic days 10-12 (Miale & 
Sidman, 1961). Using classical histogical techniques Ramon y Cajal 
(1955) observed the migration of Purkinje and granule neurons
which feature prominently in the development of this brain region.

3However autoradiographic techniques, using H-thymidine which 
labels dividing cells, allow the experimenter to determine the 
exact time and place at which particular cell types arise and 
subsequently to follow the migration of those cells. Using this 
technique in the mouse Miale and Sidman (1961) were able to show 
the time at which each of the five neuronal cell types was formed 
from its germinal cell and to follow the migration of these cells 
to their adult positions. The Purkinje and Golgi cells were shown 
to be formed from the ependymal layer on the roof of the i;th 
ventricle around embryonic days 11-13 and 12-15, respectively. 
Following the final mitosis these neuron precursors migrated 
upwards towards the developing cerebellar cortex. All the other 
neurons however arose from germinal cells located just below the 
pia i.e. the external granular layer. The granule cells formed 
during the late embryonic stages up to 15 days postnatally 
migrated downwards, past the Purkinje cell layer to the internal 
granular layer. The autoradiographic study showed that the 
stellate cells were formed from the external granular layer during 
the first postnatal week (Miale & Sidman,'1961 ),however no migrations 
of these cell types was observed.
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Although a number of cell types appear before and just after 
birth in the mouse, the maturation of the cerebellum occurs mainly 
postnatally and is essentially complete by 21 days (Meller & Glees,
1969j Larramendi, 1969). The time course for cerebellar maturation 
in the rat is very similar although a day or two slower (Altman 
1972 a, b, c). A brief outline of the development of the cerebellar 
neurons and their major connections is given below (see also Figure 
3 for a summary of the development of some of the major synaptogenic 
events in the rat cerebellum).

Purkinje neurons. Although formed before birth these cells 
do not take up their characteristic adult positions, i.e. a single 
row of neurons, until around 3-1; days after birth in both rat and 
mouse (Altman, 1972b; Rakic & Sidman, 1973a). At this age the 
Purkinje neurons have axons which project down into the white matter 
to the cerebellar nuclei (Larramendi, 1969; Meller & Glees, 1969;' 

Altman, 1972b). The climbing fibres form the first contact with 
the Purkinje neurons synapsing initially with protrusions from the 
cell body (perisomatic processes). These climbing fibres contacts 
are first observed on day 6 and are numerous by day 7 in the mouse 
(Larramendi, 1969); these events occur a day later in the rat 
(Altman, 1972b).

the climbing fibres make their first contacts with the 
P^^i^je cell body, in the adult they synapse on the primary and 
secondary Purkinje dendrites. This is achieved by a little 
understood process referred to by Larramendi (1969) as translocation.
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In the mouse this shift in the climbing fibres from the cell body 
to the primary and secondary dendrites occurs between day 6 and ll;.
The time course of these events is similar in the rat (Larramendi, 1969; 
Altman, 1972b). In adults the climbing fibres form a one-to-one 
association with the Purkinje cells (Ramon y Cajal, 1955; Eccles, 
et al. 1966). However in immature rats (8-9 days) 
electrophysiological evidence indicates that most of the Purkinje

^  cells are innervated by two climbing fibres although the normal
adult pattern is achieved around 15 days (Crepel et al. _
1976b). Thus it would appear that in addition to the
migration of climbing fibres, degeneration of some climbing fibre 
collaterals also takes place during the second postnatal week.

Basket cell axons make contact with the Purkinje cell body in 
the adult,and these synapses are formed shortly after the climbing 
fibres are translocated (day 10 in the mouse). These contacts

r'
increase in number up to II; days (Larramendi, 1967a). The first 
basket axon contacts are observed around day 12 in the rat (Altman, 
1972b). The basket and stellate cells also synapse with Purkinje 
dendrites but these appear to be formed at a later stage. Altman
(1972b) has observed stellate cell axon contacts on Purkinje 
dendrites at 15 days in the rat. Although Larramendi (I969) was 
unable to say precisely when such synapses were first formed, he 
estimated it to be after 10 days. The most numerous synapses on 
the Purkinje neurons are formed by the parallel fibres (Eccles et al. 
1967). Since the granule cells are migrating over the period 0-15 
days in the mouse (Miale & Sidman, 196I ) ,the period over which the 
maturation of the parallel fibre/Purkinje contacts occurs might be
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expected to be similarly prolonged. In the mouse parallel fibre 
contacts with Purkinje cells can be seen as early as day 7 or 8 
and on day ii; the molecular layer consists of large numbers of 
mature and maturing parallel fibres (larramendi, 1969). At this age 
however, Meller & Glees (1969) came to the conclusion that the 
Purkinje cells had attained the maximum number of spines. Since the 
granule cells are still being produced up to l5 days (Miale & Sidman, 196l) 
it seems more likely that development of parallel fibre synapses 
proceeds for a few days after day 15- Development of these synapses 
is much later in the rat cerebellum, the first synapses appearing 
around 12 days. However Woodward et al. (1971) showed using 
ethanolic phosphotungstic acid, which specifically stains synapses 
(Bloom & Aghajanian, 1968), that contacts were made on Purkinje 
cells around day 3-h} and their electrophysiological studies 
showed that responses to parallel fibre stimulation could be 

^ observed at this age. Despite this anomaly Altman's study
(1972b) clearly shows that most of the parallel fibres are laid 
down between 15 and 21 days,although synaptogenesis is not complete 
in the upper molecular layer until sometime between 21 and 30 days.

The granule cells. These cells undergo a number of 
developmental stages. Following the final mitosis ̂ the granule cells 
orient themselves in the antero-posterior plane (see Figure 1) and

^ the immature parallel fibres grow out from the granule cell. The
cell body now located centrally along the maturing parallel fibre
then migrates down into the internal granular layer leaving in its
path its 'T-shaped* axon. The way in which the granule cells migrate
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across the maturing molecular layer is unclear. Rakic (1971) has 
suggested that this might be achieved by an association between the 
granule neurons and the radially oriented Bergmann glia, which span 
the molecular layer. This idea was given some credence by the 
finding that such glial guides were absent from the cerebella of 
wv mice, in which the granule cells fail to migrate (Rakic & Sidman, 
1973a)although contrary reports have since appeared (see Section 1.3). 
Bignami & Dahl (1973) reported that Bergmann glia fibres

not become radially oriented until several days after birth in 
the rat and Das et al. 197̂4- concluded that the majority of these cells 
were formed 9 days- after birth,i.e. after granule cell migration had 
started. In addition Altman (1975) examined the alignment and 
development of Bergmann glia in normal and X-irradiated animals.
The parallel fibres of the X-irradiated rats were misaligned as 
were the Bergmann glia. Altman concluded that the Bergmann glia 
alignment was a consequence of parallel fibre orientation and that 
these cells were formed too late in development to influence the 
migration of the granule neurons. Thus the role of the Bergmann 
glia in the migration of granule cells is widely disputed.

The parallel fibres synapse (making up the presynaptic element) 
with all the other neuronal types of the cerebellum. The maturation 
of the synapses between parallel fibres and the Purkinje cells has been 
mentioned and to avoid repetition the maturation of other synapses 
concerned with the parallel fibres will be dealt with here.
Larramendi (1969) was unable to say exactly when the first stellate 
and basket cells were contacted by parallel fibres. However he
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observed well differentiated stellate cells with numerous parallel 
fibre synapses at ii; days. Also Larramendi came to the conclusion 
that these cells developed their synapses simultaneously at the 
dendritic and axonal poles. This would mean that basket cells 
would receive their first parallel fibre synapses around day 10, 
and basket cells would be contacted some time after 12 days. In 
the rat,parallel fibre synapses were seen in basket cells on day 7 
and similar synapses were observed on differentiating stellate 
cells at the beginning of the second week (Altman, 1972 a,b). It 
should be noted that there appear to be differences in the 
maturation of parallel fibre synapses in rat and mouse. Altman’s 
study (1972 a,b) shows that parallel fibres contact basket cells 
before they contact the Purkinje neurons and that these basket 
cells also achieve their synapses on Purkinje neurons before the first 
parallel fibres. However Larramendi’s study (1969) shows that the 

^ Purkinje cells were contacted by basket cell axons 2-3 days after
the parallel fibres. The only remaining cell type with which the 
parallel fibres form synapses are the Golgi cells. In the mouse 
differentiating Golgi cells are seen with a few parallel fibre 
synapses in 7 day old mice (Larramendi 1969). Golgi cell synapses 
in the molecular layer were not examined in Altman's study probably 
due to the difficulty in recognizing Golgi dendrites in electron 
micrographs (Altman, 1972 a,c). However maturation of the Golgi 
axons takes place around day 12 and since this is the age at which 
mature parallel fibres are seen in the molecular layer (Altman,
1972 a),it seems likely that parallel fibre synapses occur on 
Golgi cells at this time.
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In the granule cell layer the granule cells form dendrites 
which are contacted by mossy fibres and Golgi axons to form the 
cerebellar glomeruli. The maturation of the glomeruli is a 
protracted process (Larramendi, 1965^ 1967 b). Initially the
granule cell dendrites are contacted solely by the mossy fibre 
rosettes (around 7-10 days in the mouse) and Golgi axons were not 
seen contacting granule cell dendrites until after the formation of ‘ 
mossy fibre contacts,i.e. after day 7 (Larramendi 1965)* The 
maturation of the glomeruli is similar in the rat with the first 
contacts on granule cells being observed at the beginning of the■

third week (Altman, 1972 c). However the electrophysiological 
data of Puro & Woodward (1977) indicate that such synapses exist as 
early as 7 days.

Basket and stellate neurons. These interneurons are the only 
neurons in the cerebellum which do not migrate during development 
(Miale & Sidman, 1961). After undergoing their last cell division 
these cells are laid down on the developing molecular layer. The

interneurons orient themselves across the parallel fibres and newly 
formed parallel fibres are laid down over these cells (Altman, 1972 aj 
Larramendi, 1969; Hakic, 1972). These cells then form synapses with 
the parallel fibres with which they are in'contact. The basket cells are

generated first, and since the majority of parallel fibres are formed 
above the cell body of these cells, the majority of their dendrites 
grow upward into the maturing molecular layer taking on a basket 
shape (Rakic, 1972). Stellate cells however are laid down later, 
in the middle of the molecular layer, and the last stellate cells 
are formed during the major period of granule cell migration. Thus
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a considerable number of parallel fibres are laid down on top 
of these stellate cells (Miale & Sidman, 196I; Altman, 1972 a; 
Larramendi, 1969). The stellate cells are therefore able to form 
synapses with parallel fibres above and below the level of their 
cell bodies and consequently take on a star shape (Rakic, 1972).
The major synaptic contacts formed by and on these cells has 
already been discussed.

Golgi cells. Like the Purkinje neurons these cells are formed
before birth and migrate from the ependymal layer into the cerebellar
cortex (Mi^le & Sidman, 1961). Differentiating Golgi cells have been
observed in the mouse as early as 7 days (Larramendi, 1969) and 
maturing Golgi dendrites and immature axons have been observed in 
5“7 day rats, (Altman, 1972 c). Except for the mossy fibres which
synapse with the Golgi cell body all the other major contacts on and 
by Golgi neurons have been discussed. In the rat the mossy fibre 
synapses are seen in animals of 15 days or older (Altman, 1972 a).
Both Larramendi (1969) and Meller & Glees (1969) failed to definitely 
identify mossy fibre synapses on the Golgi cell body although 
Larramendi (1969) did report axosomatic synapses on Golgi neurons in 
7 day old mice.

It should be noted that in this section most of the information 
given is for the first contacts seen for particular neuronal elements 
during development and that some of these contacts are not seen in any 
number until several days later. Figure 3 shows the ages in the rat 
at which particular cell contacts become prominent and there is some 
discrepancy between this and the age at which these contacts first 
occur as described in the text.
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FIGURE 3 Diagramatic representation of some of the major 

events occurring during the maturation of the rat cerebellum 

and outlined in Section 1.2. Reproduced from Altman (1973b)
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1.3 Neurological mutants

Over 100 neurological mutants have been identified in the mouse, 

most of which have been catalogued by Sidman et al. (1965). These 

mutations affect a wide range of neurological structures, which include, 

cerebellar and cerebral malformations, disorders of the neural crest, 

ear and retina. Also there are many disorders which are not attributable 

to any particular region but are presumably the result of more general
L

pathological changes in the nervous system. In the following study, four 

mutants have been examined. These mutants are weaver (wv) reeler (rl), 

staggerer (sg), in which the development and organisation of the cerebellar 

cortex is severely disrupted (Sidman, 1968), and jimpy (jp). The 

neuropathology of jimpy is quite different from that of the other three.

The neuronal organisation of the jp mutant is normal but myelination of 

axons in the central nervous system of these animals is markedly reduced 

(Sidman et al. 1964; Meier et■al. 1974). As will be discussed later in 

^ this section, marked abnormalities are also apparent in the cytoarchitecture

of the rl cerebral cortex. No such features have been reported for wv 

or sg. However Lane et al. (1977) have reported significant differences 

in the levels of monoamine neurotransmitters in the wv cerebral cortex. 

Whether this is a direct result of the mutation or a consequence of 

impaired cerebella function (i.e., a secondary effect of the mutation) is 

unclear.

A more detailed outline of the neuropathology of these mutants is 

given below. The gene symbols (wv, rl, etc.) are used to denote animals 

which are affected by those mutations.

Weaver. This autosomal recessive mutant was first described by Lane 

(1964). The mutation is characterised by instability of gait, hypotonia, 

tremor and poor survival (Sidman et al. 1964). The cerebellum of the 

\  homozygous wv is much smaller than that of the wild type (Sidman, 1968).
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The heterozygote cerebellum is also slightly smaller than control 

(Rezai & Yoon, 1972; Rakic & Sidman, 1973a) although heterozygotes are 

behaviourally normal.

Histological studies show that the most striking feature of "adult" 

wv cerebellar cortex is the almost total absence of granule cells (Sidman, 

1968; Rezai & Yoon, 1972; Rakic & Sidman, 1973 a,b; Hirano & Dembitzer,

1973) although some granule neurons survive particularly in the 

^ ventrolateral areas of the cerebellar hemispheres (Sidman, 1968). During

the development of the wv cerebellum the granule cells are formed at the 

normal time, but the rate of migration of these cells through the molecular 

layer is markedly reduced, and most of these cells die in the external 

granular layer, having failed to migrate (Sidman, 1968; Rakic & Sidman, 

1973a; Rezai & Yoon, 1972). The deficit in granule cell migration and 

loss of granule cells also extends to heterozygotes although the deficit 

is not as marked as in wv (Rezai & Yoon, 1972; Rakic & Sidman, 1973a).

Rakic & Sidman (1973a,c) have examined more closely the failure of 

granule cells to migrate in wv. As already discussed in Section 1.2 it 

has been suggested that migration in the cerebellar cortex takes place 

in association with radially oriented guides - the Bergmann glia 

(Rakic, 1971). During the development of the wv mutant and to a lesser 

extent in the heterozygotes, Rakic & Sidman (1973 a,c) reported that the 

Bergmann glia were reduced in number and only a few displayed normal 

cytological features. Sidman & Rakic (1973a) came to the conclusion that 

p' the granule cells were probably not the primary target of the weaver locus

since the granule cell precursors appear normal in mutants. In addition, 

granule cell death only becomes significantly elevated above control soon 

after migration begins in controls and granule cells which do migrate, 

survive and appear normal. On the basis of these findings and the evidence
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concerning the Bergmann glia Sidman & Rakic (1973 a,c) postulated 
that granule cell death occurred as a consequence of the failure 
of these cells to migrate; which was the direct result of Bergmann 
glia abnormalities. Furthermore they suggested that the Bergmann 
glia were probably the primary target of the weaver locus. However, 
using the immunological glial marker anti-glial fibrillary acid 
protein (Bignami & Dahl, 1973, 197^ a), Bignami & Dahl (197^ b) 
examined the Bergmann glia of wv mutants. They found that in 
day mutants the Bergmann glia were identical to those in'controls 
and even at 30 days the Bergmann glia of mutants appeared relatively 
normal, and they were oriented radially from the Purkinje cell 
layer up to the pial surface. Sotelo & Changeus (197^0 essentially 
confirmed these results in 20 day wv. (See also Section 1.2 for evidence 
concerning the role of Bergmann glia in granule cell migration). It 
is not clear why the studies of Sidman & Rakic (1972 a,c) should contrast 

^ with Bignami & Dahl (197U) and Sotelo & Changeux (197I4.'a) , although it
has been suggested that different genetic, backgrounds of the mice studied 
.may be responsible. However, the above findings cast doubt on the theory 

that the Bergmann glia are the primary target of the mutation. - . 
Although. Sidman & Rakic (1973a) maintain that granule cells which 
migrate, survive and appear normal, Sotelo & Ohangeux (197Ua) report 
that even migrating granule cells die in the more severely affected 
areas of the cerebellum. Sotelo & Changeux (I97^a) thus concluded 

r-\ that the genetic abnormalities were probably associated with the
granule cells. However, granule cells cultured from wv cerebellum 
survive as long as those from normal littermates (Messer & Smith,
1977) indicating that granule cell death is the result of factors 
external to these cells.



Whatever the site of action of the weaver locus, the granule
cell deficit has a marked effect on the organisation of the
cerebellum (Sidman, 1968; Rakic & Sidman, 1973b; Hirano & Dembitzer
1973, 197^; Sotelo, 1975 a,b). It seems likely that the abnormalities
seen in the "mature" wv cerebellum are the result of granule cell 
loss and not a more direct effect of the mutation for the following
reason. Cerebellar organisation in wv closely resembles that 
observed in experimentally induced agranular cerebella, where the 
dividing granule cell precursors are destroyed by, viral infection, 
Z-irradiation or chemical poisoning (Herndon, et al. 1971;

Altman & Anderson, 1972, Hirano, et al. 1972; Hinas et al. 1973;
Rakic & Sidman, 1973b; Ŝotelo 1975b). However such treatment 
also destroys the interneuron precursors and these animals are 
severely depleted oP basket and stellate cells (Altman & Anderson, 1972; 
Woodward, et al. 197^).

Since all the neuronal elements of the cerebellum are contacted 
granule cell axons (Ecoles et al. 1967)^it is not surprising that 

all cells in the cerebellum are affected by granule cell loss in wv.
The major changes in cerebellar organisation are briefly outlined 
below.

Although the Purkinje cell bodies are distributed several rows 
deep instead of forming a single layer, these cells appear superficially 
normal using classical histological techniques (Sidman, 1968). However 
these neurons have a reduced dendritic arbor and form few tertiary 
branches (Bradley & Berry, 1978; Rakic & Sidman 1973 b; Sotelo, 1975 a).
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Spiney branchlets, which normally form synapses with parallel fibres 
are absent from wv Purkinje neurons (Sotelo, 1975 a,b; Rakic &
Sidman, 1973. Hirano & Dembitzer, 1973). However, the primary and 
secondary dendrites are studded with spines, which closely resemble 
those contacting parallel fibres in the normal cerebellum. These 
spines show the characteristic membrane thickening, similar to 
normal post-synaptic elements and extracellular material, such as 
is seen in synaptic clefts is also associated with these processes. 
Neuronal contacts are rarely observed on these spines and most of 
them are enveloped by glia (Rakic & Sidman, '1973b; Hirano & Dembitzer, 
1973,* Sotelo, 1975 a,b). Interneuron and climbing fibre input to 
the Purkinje neurons is also altered. Basket fibres do not form the 
classical synapses with the Purkinje cell body, and although contacts 

formed by the interneurons on the Purkinje cell body and dendrites 
they are reduced in number. The surface density of climbing fibre 
varicosities on Purkinje neurons is increased (Sotelo, 1975 b). 
Electrophysiological studies indicate that as in developing animals, 
wv Purkinje cells are multiply innervated by climbing fibres, in 
contrast to the one-to-one relationship maintained between these 
neuronal elements seen in normal cerebellar cortex (Crepel et al.
1976 b; Crepel & Mariani, 1976; Puro & Woodward, 1977; Ecoles et al. 
1967). Multiple innervation of Purkinje cells by climbing fibres 
is also seen in animals depleted of granule cells by X-irradiation 
(Crepel et al. 1976 a; Woodward et al. 197L).

The basket and stellate cells are generated at the normal time 
during development but, in contrast to the Purkinje cells their 
dendrites are stunted and randomly oriented (Rakic & Sidman, 1973 b;
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Sotelo 1975b). However like the Purkinje cells these 
interneurons develop post-synaptic specialisations in the absence 
of the granule neurons (Sotelo, 1975 b).

There is little information concerning the Golgi neurons in 
the cerebellum of the wv mutant. However the migration of these 
neurons into the cerebellar cortex appears normal, although the 
final position of the Golgi neurons is altered, possibly due to the 
smaller size of the mutant cerebellum, as already discussed for the 
Purkinje neurons (Rakic & Sidman, 1973 a,b).

In the absence of granule cells the mossy fibres form more than 
the usual number of contacts with Golgi neurons. Some aberrant 
granule cells are found in the "molecular layer" and mossy fibres 
are found in contact with these cells (Rakic & Sidman, 1973 b;
Sotelo, 1975 b).

Sotelo (1975 b) has reported the presence of heterologous 
synapses i.e. synapses between neurons which do not usually contact 
one another in-the normal cerebellum. Most of these contacts occur on 
Purkinje cell spines normally contacted by parallel fibres and heterologous 
contacts include mossy fibre rosettes and granule cell bodies/ 
dendrites.‘ Similar abnormal synapses have been observed in 
experimentally induced agranular cerebella (Altman & Anderson,
1972; Hinas et al. 1973). The importance of this synaptic 
remodelling is unclear since most of the Purkinje cell spines remain 
unoccupied (Sotelo, 1975 b) and according to Rakic (1976) such 
abnormal synapses also occur occasionally in the normal cerebellum.
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In summary the evidence suggests that synaptic reorganisation 
involving neuronal elements which do not normally form contacts is 
not a major phenomenon, in contrast to certain other brain areas, 
where lesions result in the establishment of abnormal new contacts 
(Raisman, 1969; Lynch et al» 1973; Schneider, 1970). However some 
synaptic remodelling of normal synapses does take place, i.e. 
multiple innervation of Purkinje neurons by climbing fibres and 
increases iu the number of synaptic contacts made on Golgi cells 
by mossy fibres (Crepel et al. 1976 a; Rakic & Sidman, 1973 b).

Staggerer. This agranular mutant was first described by 
Sidman et al. (1962) and like the wv this mutation is autosomal and 
recessive. Behaviourally sg resembles wv, and the cerebellum of this 
mutant is much smaller than that of the wild type; even smaller than 
the wv cerebellum (Sidman, 1968).

5 Unlike the wv the granule cells of sg migrate into the external
granular layer, albeit prematurely, (Yoon, 1972) and these cells 
develop ^ d  superficially resemble mature granule cells. The parallel 
fibres of these cells make synaptic contact with all their normal targets 
with the exception of the Purkinje cells and granule cell dendrites 
receive their normal synaptic inputs in the glomeruli (Sidman, 1972; 
Sotelo & Changeux, 197̂ 1 b). The Purkinje cells of this mutant are also 
strikingly abnormal and under the light microscope these neurons 
s.ppsar [immature and stunted (Sidman, 1968). Electron—microscopic
studies show that in the developing mutant these neurons also lack 
the dendritic spines^ contacted by parallel fibres in 
normal animals, and which are also found in the wv mutant despite the
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absence of the fibres (Sotelo, 1973; Sotelo & Changeux, 197^ b;
Sotelo, 1975 a; Hirano & Dembitzer, 1975; Landis & Sidman, 1978).
However a few spines have been observed in older animals (20-28 days) 
(Sotelo, 1975a; Hirano & Dembitzer, 1975). This led Hirano &
Dembitzer (1975) to propose that Purkinje cell spine production 
is late and abortive in the sg mutant. Evidence that granule cells 
are able to recognize the Purkinje neurons in sg comes from the 
finding that the immature nonsynaptic segment of parallel fibres 
form adhesion zones on the smooth surface of the Purkinje dendrites.
In normal animals such contacts are taken to be the initiation of 
synapse formation between these neuronal elements (Sotelo & Changeux 
197^ b). Although these adhesive zones do not resemble normal synapses, 
Crepel & Mariani (1975) have reported that such undeveloped synapses 
may function, albeit inefficiently. Because of the abnormality of 
the Purkinje cells, and the relatively normal, although shortlived, 
development of the granule neurons it has been suggested that the 
Purkinje neurons are the primary target of the sg locus (Sidman,
1972; Landis, 1971; Landis & Sidman, 1978). Sotelo & Changeux 
(1974 b) have further proposed that granule cell death may be a direct 
consequence of these cells being unable to synapse with aberrant 
Fhrkinje neurons. Further evidence that the sg locus directly affects 
the Purkinje neurons comes from chimera studies. Chimeras are animals 
produced by the combination of two separate embryos. In order to 
obtain sg/normal chimeras an eight cell embryo from a normal mouse 
is combined with an eight cell sg embryo. The resulting blastocyst 
is then returned to the uterus. The cells of animals thus formed are
made up of cells of two types, i.e. sg and normal cells. The cells 
of normal parents can be distinguished from those of mutant producing
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parents in the chimera because sg cells also possess high levels of 
the enzyme ̂ -glucuronidase, which can be identified histochemically 
(see Mullen, 1977 for more detailed description of methods).
Staggerer Purkinje neurons in such chimeras are aberrant despite the 
presence of adjacent normal Purkinje and granule cells,strongly 
suggesting that the cause of the Purkinje cell malformation is 
intrinsic to these cells (Herrup & Mullen, 1976; Mullen, 1977).
Yoon (1972) studied autoradiographically the proliferation and 
migration of the cells of the external granular layer using ^H- 
thymidine (see Section 1.2). He was able to show that there was a 
reduction in the proliferation of these cells and that they migrated 
prematurely from the external granular layer. On the basis of this 
information, Yoon (1972, 1976) proposed that the sg mutation affected 
the granule cell population directly, in addition to the Purkinje 
neurons. However Landis & Sidman (1974, 1978) suggest that the Purkinje 
neurons may modulate granule cell proliferation, a view also held by

r"
Sotelo & Changeux (1974 b). They further postulate that in sg this 
modulation is altered resulting in granule cell hypoplasia (Landis 
& Sidman, 1974, 1978). Recently Herrup & Mullen (1979) performed 
a quantitative study of large neurons in 30 day sg. They concluded 
that depending on the number of Golgi cells, which are difficult 
to distinguish from Purkinje neurons in sg, the deficit of Purkinje 
neurons in sg ranged from 60 - 90, percent. Thus it seems that the effect

 ̂  ̂ the sg locus on the Purkinje cell population is more severe than
was hitherto realised.

■Although the synaptic organisation of the sg cerebellum has been 
less studied than in wv a number of reports have been concerned with 
this subject. Degeneration of parallel fibres begins around day 7

-1
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reaching a maximum between day 1 6 and 21 (Landis & Sidman, 1978).
These observations have been essentially confirmed by Sotelo &
Changeux (1974b) and Hirano & Dembitzer (1975). Death of the 
granule cells results in the loss of the postsynaptic elements 
in the cerebellar glomeruli (Landis & Sidman, 1978) and 
according to Sotelo and Changeux (1974 b) this also brings about 
degeneration of the mossy fibres. Despite the loss of the 
parallel fibres the stellate and basket cells appear normal although 
their dendritic arbor may be reduced (Landis & Sidman, 1978). The 
Purkinje neurons are contacted by climbing fibres on schedule, and 
although these synapses survive into adulthood they remain of the 
immature type, i.e. fibres synapsing with processes on the cell 
soma or proximal dendrites (Landis & Sidman, 1978). However 
electrophysiological studies indicate that only 40^ of Purkinje 
cells are innervated by climbing fibres (Crepel & Mariani, 1975).
These studies also suggest that, while parallel fibres do not form 
mature synaptic contacts, the initial adhesive zones between these 
two cells are capable of effecting neurotransmission (albeit 
inefficiently). Although as mentioned in Section 1.2, it is ^lf;fiGult

to differentiate between Golgi and Purkinje dendrites by electron 
microscopy, Landis & Sidman (1978) identified a number of Golgi 
cells with extensive dendritic arbors and multiple axons in 16 
day old sg. In addition mossy fibre axons have been observed 
synapsing on the Golgi cell bodies. Despite the death of the 
granule cells the Golgi axon synapses in the glomeruli 
survive to adulthood,and there is no evidence to suggest that these 
inhibitory neurons (and the stellate and basket cells) degenerate 
during or after the granule cell loss (Landis & Sidman, 1978).
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Thus it appears that with the exception of the Purkinje 
and granule neurons most of the other neuronal elements develop 
relatively normally. However the large Purkinje cell deficit 
and the ultimate death of the granule cell population results 
in a cerebellum smaller than that of wv.

Reeler. This cerebellar mutant (first described by Falconer,
1951) behaviourally resembles the other two cerebellar mutants, 
and examination of the cerebellarcortex reveals a significant 
although much reduced population of granule cells (Sidman, 1968).
In addition,this mutation also affects the hippocampal formation 
and the cerebral cortex (Meier & Hoag, 1962; Hamburgh, I960, 1963;
Caviness & Sidman, 1972, 1973 a,b; Caviness, 1973; Devor, 
et al. 1975). Apart from the loss of granule cells,the most 
obvious feature of the rl cerebellum is the unusual position of the 
granule cells relative to the Purkinje cells. The majority of the 
granule cells occupy what would normally be the molecular layer.
Where the normal spatial relationship between granule and Purkinje
neurons is attained, the dendritic arbor of the Purkinje cell is
normal and reaches up into the shallow molecular layer. However in the areas
where these cells are abnormally positioned the arbor of the
Purkinje neurons is malformed (Sidman, 1968; Rakic & Sidman, 1972;
Rakic, 1976; Mariani et al. 197:7). Although the Purkinje neurons 
are generated on schedule (Sidman 1968) many Purkinje cells lie in the 
white matter, presumably having failed to reach the cortex. It has 
been suggested that, since these neurons must migrate through 
numerous axons in the foetal brain to reach their final position, 
the Purkinje neurons must be guided to their final position.
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Sidman (1968) has postulated that such a mechanism might be at 
fault in the rl mutant. A similar fault might also explain the 
failure of the granule neurons (which are also generated at the 
normal time) to migrate inward past the layer of Purkinje neurons 
in rl mutants. The idea of a defect in the control of migration 
is supported by the finding that malformations in the rl brain occur 
in regions in which cells must migrate through other neurons in 
order to attain their correct positions, i.e. the cerebral cortex 
and hippocampus (Angevine & Sidman, 1961; Angevine, 1965; Berry & 
Rogers, 1965; Sidman, 1968). Experiments with rl/normal chimeric 
mice indicate that the fault which leads to the abnormal positioning 
of cells in the cerebellar cortex is extrinsic to the Purkinje and 
granule neurons since both normal and mutant cells are malpositioned 
in such chimeras (Mullen, 1977).

As already discussed the abnormality of the cerebellar cortex 
depends on the relative positions of granule and Purkinje neurons.
Up to 4 0. per cent of the Purkinje dendrites occur in areas of the cortex 
where they are in contact with the narrow molecular layer and the 
development of cells in such areas is relatively normal (Rakic & 
Sidman, 1972; Rakic 1976; Mariani, et al. 1977). The synaptic 
organisation in the areas of the remaining malpositioned Purkinje 
neurons is as follows. Those Purkinje neurons whose dendrites 
ramify the granular layer have a disoriented and reduced dendritic 
arbor. As in wv (Sotelo, 1975 a,b) the dendrites of these Purkinje 
neurons lack spiney branchlets although the primary and secondary 
branches of these cells have numerous spines on their surface 
(Rakic & Sidman, 1972; Mariani et al. 1977). Occasionally parallel
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fibres are observed synapsing with spiney branchlets on these 
cells. Most of the normal contacts on Purkinje cells are 
maintained in this region and basket cell axons can be seen 
descending into the granular layer to synapse with the Purkinje 
cell bodies(Rakic & Sidman, 1972; Mariani et al.1977). Climbing 
fibres appear to form more than the usual number of contacts with 
the Purkinje dendrites in this area of the cortex. Electro
physiological studies indicate that these cells are multiply 
innervated by climbing fibres (Mariani, 1977). In this respect 
climbing fibre innervation of these Purkinje neurons is similar 
to that observed in immature and wv cerebellar cortex (Crepel 
et al. 1976b;Crepel & Mariani, 1976; Puro & Woodward, 1977) and 
contrasts with one-to-one relationship maintained between these 
elements in normal and more superficially placed Purkinje neurons 
(Ecoles et al. 1967; Mariani et al. 1977). In addition Mariani 
et al. (1977) have observed heterologous synapse formation between 
mossy fibre rosettes and Purkinje dendritic spines. The electro
physiological function of these synapses was also demonstrated in 
the same study. As already discussed the relevance of such 
heterologous synapses is unclear since the majority of spines 
remain asynaptic and heterologous synapses are also occasionally 
observed in normal animals (Rakic, 1976). The Purkinje cells in 
the white matter resemble wv Purkinje neurons and receive no inputs 
from the cerebellar cortex. However, these neurons appear to be 
multiply innervated by climbing fibres. Although a few heterologous 
synapses between mossy fibres and Purkinje dendrites have been observed in 
this region most of the mossy fibres pass through this area to the 
cortex. Synapses are also formed on the Purkinje cell dendrites
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and somas by Purkinje axon collaterals and the axons of interneurons 
(of unknown origin) also found in the white matter (Mariani et al. 1977).

The cerebellum of the rl mutant is very similar in synaptic 
organisation to the wv mutant, although in the reeler significant 
numbers of granule cells are able to establish normal contacts 
and survive to adulthood. Thus the cerebellum of rl may be 
considered to be not as disrupted as that of the wv. In contrast, the 
eventual loss of the granule neurons and the marked deficit of 
Purkinje neurons indicates that the sg mutation most severely affects 
the neuronal population of the cerebellum.

Jimpy. This mutant was first described by Phillips (1954). The 
gene is carried on the X-chromosome and expressed in males carrying the 
gene. Jp animals can be recognised behaviourally at around 10 days 
when they show a marked tremor. Older animals exhibit occasional 
tonic seizures and rarely live longer than one month (Sidman et al. 1965).

The most striking feature of jp animals is the paucity of myelin in 
the brain although myelination of the peripheral nervous system appears 
normal (Sidman et al. 1964; Meier et al. 1974; Hirano et al. 1969).
The cause of this abnormality is unclear. It appears to be the result 
of a failure to produce myelin and not the result of demyelination 
(Meier et al. 1974). However biochemical studies have failed to show 
any consistent abnormalities in the synthesis of myelin in these animals 
(Meier et al. 1974; Matthieu et al. 1974; Mandel et al. 1972). A nwiber of 
studies have been reported showing abnormalities associated with
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the oligodendrocytes (which are known to be responsible for the 
myelination of axons in the central nervous system (Peters et al. 
1970) and it has been suggested that the primary genetic defect 
might be associated with these cells. However Skoff (19?6) 
reported that the abnormality is preceded by astrocyte proliferation 
and he suggested that in excess these cells might interfere with the 
interactions occurring between axons and oligodendroglia.

There are, to my knowledge, no reports in the literature of 
any abnormalities of cerebellar neurons occurring in jp animals, 
although defects in the growth of myelinated axons in the optic 
nerve of these animals has been demonstrated (Webster et al. 1976). 
Recently Kristt & Butler (1978) found reduced dendritic 
arborization of cerebral cortex stellate neurons and they suggested 
that this might be in response to reduced neuronal input due to 
impaired axonal growth. Alterations to cerebellar neurons might 
also occur in jp if the growth of myelinated axons, which include 
the mossy and climbing fibres was impaired (Palay & Chan-Palay,
1974). Sotelo et al. (1975) for example has reported an increase in 
Purkinje spine formation following the destruction of climbing fibres 
in adult rats.

Detailed aims of the studies involving the use of the 
neurological mutants are outlined in Chapter 3.
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FIGURE h Diagramatic representation of neuronal organisation 
of the cerebellar cortex of normal and weaver, reeler and 
staggerer, mutant mice.
Key: Ba, Basket cell; OF, climbing fibre; G, granule cell;
GII, Golgi cell; MF, mossy fibre; P, Purkinje cell; PA, Purkinje 
cell axon; PF, parallel fibre; S, stellate cell. The major classes 
of synapses are circled and numbered: 1, climbing fibre Purkinje cell 
dendrite; 2, mossy fibre- granule cell dendrite; 3, parallel fibre- 
Purkinje cell dendrite; 4, mossy fibre- Golgi cell; 5, basket cell 
axon- Purkinje cell soma; 6, parallel fibre- basket cell dendrite;
7, stellate cell axon- Purkinje cell dendrite; 8, parallel fibre- 
stellate cell dendrite; 9, Purkinje cell axon collateral- Purkinje 
cell soma; 10, parallel fibre- Golgi cell dendrite. (Reproduced from 
Rakic, 1979).
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1.4 Neurotransmltters of the cerebellum
This topic has been reviewed by Tebecis (1974) (see also the 

more general reviews Curtis & Johnston, 1974; Ernjevic, 1974; De 
Feudis, 1975). In this section a brief outline of the major 
postulated neurotransmitters of the cerebellar neurons and afferent 

fibres is presented.

With the exception of the granule neurons all the neuronal 
types of the cerebellum are inhibitory (Ecoles et al. 1967).
All the available evidence, neurophysiological, neuropharmacological 
and biochemical, indicates that Purkinje, stellate, basket and Golgi 
neurons use 2f-aminobutyric acid (GABA) as their neurotransmitter.
The evidence is as follows. The inhibitory influences of these 
neurons is mimicked by iontophoretically applied GABA (Obata et al. 
1970; Bruggencate & Engberg, 1971; Kawamura & Provini, 1970). 
Furthermore the GABA antagonist bicuculline blocks the inhibitory 
actions of these neurons (Curtis et al. 1970a; Curtis et al. 1970b; 
Bisti et al. 1971; reviewed by Curtis, 1979). Immunohistochemical
studies show that the enzyme responsible for GABA synthesis, 
glutamate decarboxylase is localised in the inhibitory neurons 
(Saito et al. 1974; reviewed by Roberts, 1979). Autoradiographic 
analysis of (%) GABA transport reveals that of the cerebellar 
neurons only the inhibitory cells possess high affinity transport 
sites for GABA (Schon & Tversen, 1972; Hokfelt & Ljungdahl, 1972; 
see also section 1.6). Recently a method has been devised for the 
electron - and light - microscopic autoradiographic visualisation 
of GABA receptors using the GABA mimetic (̂ H) muscimol (Chan-Palay, 
1978; see also section 1.7). Essentially the study of Chan-Palay
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(1978) confirms the role of GABA in the neurotransmitter function 
of the interneurons and Purkinje cells, with these cells being 
heavily labelled. However relatively little(^H) muscimol binding 
was localised on the granule cells, although Chan-Palay (1978) 
makes no mention of labelling of the cerebellar glomeruli, which is 
where the presumed GABAergic Golgi cells contact the granule neurons 
(see section 1.1).

The cerebellum contains relatively large amounts of the 
inhibitory neurotransmitter candidate taurine (Curtis & Johnston ,
1974) and the finding that animals depleted of superficial stellate
cells by X-irradiation are also deficient in taurine has been .taken
to indicate that taurine might function as a neurotransmitter of
these inhibitory neurons (McBride et al. 1976b). However as already discussed
GABA seems the most likely neurotransmitter candidate of these neurons
and direct evidence for the role of taurine is lacking.

The neurotransmitter of the granule cells is unknown but of 
the putative excitatory neurotransmitters, glutamate appears the 
most likely candidate. The granule cells excite all other neurons ; 
of the cerebellum through their parallel fibres, and I
iontophoretically applied glutamate excites all cerebellar neurons 
McCance'& Phillis, 1968; Kawamura & Provini, 1970; Chujo et al. 1975).
Other evidence for glutamate being o:.neurotransmitter comes mainly from 
heurochemical studies on agranular cerebella. The cerebellar cortex 
contains relatively high levels of glutamate (Johnson & Aprison, I97l), 
the highest levels being found in the molecular layer (Nadi et al. 1977b;
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Berger et al. 1977). However in the agranular cerebella of mutant
mice (wv, sg and rl) and X-irradiated or virus treated animals the 
level of glutamate is markedly reduced while no corresponding change 
is seen for any other amino acids (McBride et al. 1976a,b; Hudson et al. 
1976; Valcana et al. 1972; .Young et al. 1974).
In addition Young et al. (l 974) reported a marked decrease in the 
high affinity transport of (̂ H) glutamate in the agranular cerebella 
of virally treated animals. Similarly Rhode et al. (1979) reported 
that in synaptosomes prepared from the agranular cerebella of 
X-irradiated rats, both the levels of glutamate and uptake of ( H)
glutamate were markedly decreased. However in at least one study 
(Patel et al. 1975) there was failure to find a reduction of glutamate

levels in the agranular cerebella of X-irradiated rats. Rea & îfcBride 
(1978) showed that glutamate reduction was confined to the agranular 
cortex and normal levels were found in the white matter and deep 
cerebellar nuclei. One would predict this if granule cell
loss were responsible for the glutamate deficit. However 
Roffler-Tarlov & Sidman (1978) reported reduced glutamate levels in both 
the cerebellar cortex and deep cerebellar nuclei of sg and rl mutant mice. 
The glutamate deficit in the deep cerebellar nuclei cannot be 
explained by the absence of granule cells. Thus these authors concluded 
that glutamate reduction in the cerebellar cortex was not necessarily 
the result of granule cell loss and that this phenomenon was not 
sufficient evidence for suggesting that glutamate was the granule 
cell neurotransmitter. A slightly different approach was adopted by

Tran & Snyder (1979) to discover the neurotransmitter of the granule 
cells. Instead of removing the granule cells these authors
used the neurotoxic agent kainic acid, which destroys the inhibitory
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neurons of the cerebellum but spares the granule cells (Herndon &
Coyle, 1977). In kainic acid treated animals glutamate levels were
not significantly different from controls although ( H) glutamate
transport was reduced by 25-30 percent. However (̂ H) GABA transport was
reduced by 65-70 percent and GABA levels were reduced by 50 percent. Thus the
results of Tran & Snyder (1979) were consistent with the idea that
granule cells use glutamate as their neurotransmitter, while the
remaining neurons use GABA. However the only direct evidence for
glutamate functioning asthe granule cell neurotransmitter comes
from the study of Sandoval & Cotman (1978). They showed that
cerebellar synaptosomes exhibited calcium dependent release of
glutamate. This release was most marked in synaptosomes prepared
from the molecular layer (the region containing the granule cell
axon terminals).

Climbing fibres powerfully excite the Purkinje neurons but 
their neurotransmitter is unknown. It is possible to destroy 
climbing fibres using 3-acetylpyridine (Desclin, 1974, Sotelo et al.
1975). In animals where these fibres have been destroyed the level 
of aspartate is significantly reduced (Nadi et al. 1977 a) » Since 
this compound is a putative excitatory neurotransmitter (see reviews 
by Curtis & Johnston, 1974; Krnjevic, 1974),Nadi et al. (l977a) suggested that 
aspartate might be the neurotransmitter released from climbing fibres.
However no direct evidence concerning the neurotransmitter role of 
this amino acid has been forthcoming.

A population of noradrenergic fibres arising in the locus 
coeruleus is known to synapse on Purkinje neurons (Bloom et al. 1971 ;
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Hoffer et al. 1973). These fibres are inhibitory and the effects 

of stimulation of these fibres are mimicked by iontophoretically
f tapplied noradrenaline and cyclic 3 , 5 -adenosine monophosphate 

(cyclic AMP) and blocked by g-adrenergic antagonists and prosta

glandins and (Hoffer et al. 1969, 1971, 1973; Siggins et al. 

1971a,b). These results and others suggest that noradrenaline 

inhibits Purkinje cell firing by acting through 3-adrenoceptors to 

stimulate adenyl cyclase (reviewed by Nathanson, 1977). (See page 

72 for details of the various subclasses of adrenoceptors). This 

idea is supported by the finding that the number of Purkinje cells 

stained for cyclic AMP by immunohistological techniques, is increased 

following the application of noradrenaline (Siggins et al. 1973b).

More recently /Ifclas et al. (1977) reported that it was possible to

visualise the Purkinje 3-adrenoceptors at the light microscope level 

using the fluorescent 3-adrenergic probe 9-aminoacridine propranolol 

(9-AAP). These workers showed that fluorescence was restricted to 

the surface of these cells and was abolished by the presence of 

^-propranolol. This is what one would predict if 9-AAP were binding 

to the Purkinje cell 3-adrenoceptor (see section 1.7 for details of 

neurotransmitter receptor binding). However Hess (1979) has reported 

that 9-AAP binding is not as selective as Atlas et al. (1977) 

suggests and has shown that autofluorescence confounds these studies.

The neurotransmitter of the mossy fibres is unclear (Tebecis, 1974). 

However the distribution of enzymes for the synthesis (choline 

acetyltransferase) and degradation (acetylcholinesterase) of 

acetylcholine indicate that it may function as a neurotransmitter in 

the granule cell layer (Kasa & Silver, 1969; Shute & Lewis, 1965;

Kan et al. 1978). These enzymes appear to be restrictied mainly to
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the archicerebellar cortex in the rat. The electro-physiological

data are conflicting. Crawford et al. (1965) observed that granule

cells were unresponsive to acetylcholine or cholinomimetics.

However McCance & Phillis (1968) observed that acetylcholine was

capable of stimulating the deep granule cells, which along with the

histochemical data concerning the localisation of acetylcholinesterase

led them to conclude that a proportion of cerebellar mossy fibres

was cholinergic. Neurotransmitter binding studies (see section 1.7)

using muscarinic and nicotinic cholinergic ligands show that there

are comparatively few acetylcholine receptors in this brain region

(Yamamura & Snyder, 1974a; Yamamura et al. 1974; Kobayashi et al.1977;

Segal et al. 1978). Of these^the concentration of muscarinic receptors

is the highest. However^autoradiographic analysis of the distribution

of these receptors reveals that in adult rat the majority of the

muscarinic binding occurs in the molecular layer (Rotter et al. 1979b).

However^this distribution pattern does not correspond to any known

cholinergic input and unfortunately Rotter et al. 1979b) were not able

to identify the precise cellular site of this binding. By contrast,
125autoradiographic analysis of I-a-bungarotoxin binding revealed that 

the cerebellar glomeruli were heavily labelled by this nicotinic 

receptor ligand (Hunt & Schmidt, 1978). Thus it appears that if there 

are any cholinergic mossy fibres then they excite the granule neurons 

through nicotinic receptors on these cells. The role of muscarinic 

receptors in the adult cerebellum is unknown and Rotter et al.(l979b,c) 

has suggested that such receptors may be vestigial.

As mentioned in section 1.1, 5-HT containing fibres are present 

in the cerebellar cortex mainly in the granular layer. These fibres 

appear to terminate in structures resembling mossy fibre rosettes
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(Bloom et al. 1972). Iontophoretically applied 5-HT excites 

the granule cells, and destruction of the raphe nuclei (the source 

of most 5-HT fibres) results in the degeneration of 5-HT containing 

fibres (Bloom et al. 1972); all of which suggests that certain of 

the mossy fibres may release 5-HT as a transmitter.

In summary: the neurotransmitters of the cerebellar inhibitory 

neurons (GABA) and a small proportion of axons synapsing on Purkinje 

cells (noradrenalin) are firmly substantiated. The evidence 

concerning the role of glutamate as the granule cell transmitter is 

conflicting and, with the exception of one study, circumstantial.

This amino acid has also been suggested as the neurotransmitter of 

the climbing and mossy fibres although there is no direct evidence. 

Acetylcholine may function as the neurotransmitter of the mossy 

fibres. Other neurotransmitter candidates for which limited 

evidence is available are, taurine (neurotransmitter of superficial 

stellate cells), aspartate (climbing fibres) and 5-HT (mossy fibres).
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1.5 Cell isolation techniques

The contribution of individual cell types to the overall 

functioning of the brain would be more easily studied if relatively 

pure populations of these cells were available. A number of workers 

have concentrated on obtaining cell fraction enriched in glial or 

neuronal cells (Poduslo & Norton, 1975; Rose, 1972; Sellinger et al.

1971). In this section a method for the isolation and separation of 

the major neuronal cell types and the glia from the cerebellum is 

introduced. The cerebellum is an ideal brain region from which to 

obtain enriched cell populations for the following reasons. The 

cerebellum contains only five major neuronal cell types and these 

cells have been well characterised (see section 1.1). The development 

of the neuronal and glial cells of the cerebellum has been well 

documented and this development occurs mainly postnatally in the rodent 

(see section 1.2 and Lewis et al. 1977).

Cell isolation is, always associated with some degree of cell damage 

(Johnston & Roots, 1970; Rose, 1972) and although a number of workers 

have attempted to isolate enriched cell populations from the cerebellum 

(Sellinger et al. 1971; Cohen et al. 1973; Hazama & Uchimura, 1974; 

Yanigihara & Hamberger, 1973; Barkley et al. 1973), they did not 

extensively assess this damage; this problem has been examined by Poduslo 

& McKhan (1977) and Campbell et al. (1977).

In this laboratory a method has been devised (in collaboration with 

Dr. R. Balazs, Institute of Neurology, Queens Square, London) for the 

isolation of perikarya from the developing rat cerebellum (Wilkin et al.

1976). Close attention was paid to structural and biochemical integrity 

of these cells. The isolation technique involves mild trypsinisation
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to facilitate the disaggregation of the tissue without shearing, 

a prominent feature of isolation featuring solely mechanical disruption. 

Following trypsinisation the tissue is disaggregated by passing it 

through a pasteur pipette (see Chapter 2 for detailed method).

This isolation technique resulted in high yields of viable cells, 

free of debris, from the developing rat cerebellum (345 x 10^ cells/g 

wet wt from 10 day animals). According to the criterion of DNA 

recovery only 57 percent of the cells are lost during the isolation 

procedure. Ten days is the optimum age for cell isolation since in 

older animals fewer cells survive the procedure, possibly as a consequence 

of the more differentiated state of the cells in older animals. Details 

of the structural and metabolic integrity of these cells are as follows; 

over 80 percent of cells produced by enzymic disaggregation excluded 

trypan blue (indicating that the plasma membrane was intact) compared 

with less than 20 percent of cells produced by sieving. Electron 

micrographs of the enzymically treated cells showed that most of these 

cells had an uninterrupted plasma membrane and the cytoplasmic and nuclear 

ultrastructures were well preserved. In addition these electron 

micrographs of isolated cells were markedly similar to micrographs taken 

of cells in situ. The cells were metabolically active and were able to, 

metabolise (^^C) glucose, accumulate potassium and incorporate radio

labelled lysine into protein. However the most convincing demonstration 

of viability comes from culture studies. These perikarya can be 

readily cultured, and using the criterion of DNA recovery, 90 percent 

of the cells survive the first day in culture (Currie et al. 1979).

Advantage was taken of the wide variation in cell size seen in the 

cerebellum, and reflected in the isolated cells, to obtain enriched cell 

populations by unit gravity sedimentation (Cohen et al. 1978).
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Briefly this consisted of layering the cells on top of a continuous

bovine serum albumin gradient and allowing the cells to fall through the

gradient (see Chapter 2 for details). The total metabolic activity of

enriched cell populations was comparable to that seen for the original

cell suspension. Four cell fractions (designated B-E) have been

tentatively identified (see Table 1). The largest cells are enriched in

the E fractions (i.e. 50 percent of the cells in this fraction are greater

than 14.5 ym in diameter compared with 2 percent in the original cell

suspension). Around 40 percent of these cells were identified as Purkinje

cells in low power electron micrographs. The cells in the D fraction

were not identified by Cohen et al.(1978). However Cohen et al. (1979)

showed, using the glial marker anti-glial fibrillary acid protein (anti-GFAP)

(see section 1.2), that astrocytes were enriched in this fraction. Currie

& Dutton (unpublished observations) were able to show that a considerable

proportion of cells cultured from this region resembled interneurons.

Moreover these cells accumulated (̂ H) GABA, which could be inhibited by cis-

aminocyclohexanecarboxylic acid (ACHC), strongly indicating that these
3cells are GABAergic neurons (see section 1.6) . ( H) Thymidine is

rapidly accumulated by cells in the C fraction and it was suggested 

(Cohen et al. 1978) that this fraction might be enriched in dividing 

granule cell precursors. The appearance of these cells, their size 

and their predominance in the total cell suspension are consistent with 

this suggestion. However there is an enrichment of GFAP-positive cells 

in these fractions and considerable numbers of glia are also probably 

present. The differentiating granule cells are thought to occur in the 

B fraction, since these cells do not accumulate (̂ H) thymidine and they 

are similar in size and appearance to the premigratory granule cells.

The C  fraction contains cells of the same size as the C cells but 

with anomolous sedimentation characteristics (they are lighter than
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their size would indicate). Although the identity of these cells 
is not clear it is possible that they.are damaged. It was 
suggested by Cohen et al. (1978) that these cells might be glia but 
the subsequent demonstration of only small numbers of GFAP positive 
cells in these fractions (Cohen et al. 1979) indicate that this is 
unlikely. The A fraction is subcellular and consists mainly of free 
nuclei and neuronal and glial fragments.

Isolated cells and enriched cell fractions, produced by 
modifications of the methods outlined above (Wilkin et al. 1976;

oCohen et al. 1978),were used to study the transport of ( H) GABA,
3 3( H) glutamate and ( H) ^-alanine into neurons and glia. (See
section 1 .6 for background to transport studies and Chapter 2 for
detailed aims of the study).

A number of workers have tried to isolate the large synaptic 
specialisation peculiar to the cerebellar cortex, i.e. the cerebellar 
glomerulus (Israel & Whittaker, 1965; Hajos et al. 197Lj Balazs et al. 
1975; Hajos et al. 1975)* The glomerulus consists of a mossy fibre 
terminal surrounded by the dendritic claws of granule neurons. In 
turn these dendrites are contacted by inhibitory Golgi axons (Palay 
& Chan Palay, 1974). These glomerular particles have been 
biochemically characterised (Hajos et al. 1974; Balazs et al. 1975) 
and are highly enriched in glutamate decarboxylase (GAP), the enzyme 
responsible for the synthesis of GABA. This is consistent with the 
role of GABA as the Golgi cell neurotransmitter (see section 1 .4)•
The presence of Golgi terminals is also supported by the finding that 
the dendritic processes on the surface of the glomeruli accumulate ( H)
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GABA (Wilkin et al. 1974, see also section 1.6). As discussed in 
section 1.4 ,acetylcholine has been suggested as a neurotransmitter 
of certain mossy fibres. However there is only a slight enrichment 
of cholineacetyltransferase in the glomeruli suggesting that only a 
fraction,if any,of the mossy fibres are cholinergic.

Cerebellar glomeruli produced by a modification of the method 
of Hajos et al. (1975) were used here to examine neurotransmitter 
receptor binding (see section 1 .7 for background to neurotransmitter 
binding and Chapter 3 for detailed aims of the study).
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1.6 High affinity uptake of putative amino acid neurotransmitters

A number of amino acids including Y-aminobutyric acid (GABA) glycine, 

taurine, aspartate and glutamate have been proposed as neurotransmitters 

in the mammalian central nervous system (reviewed by Curtis & Johnston 1974).

Of these amino acids the neurochemistry and neuropharmacology of GABA and 

glutamate have been the most widely studied (see section 1.4).

3 3( H)GABA and ( H)glutamate are taken up by high affinity^carrier-mediated, 

active transport systems in the brain, and it has been postulated that 

such systems may be responsible for the removal of released neurotransmitter 

from the synaptic cleft (Iversen & Neal, 1968; Logan & Snyder 1972). However, 

wfigtjie/ihigh affinity transport results in the net uptake is unclear, since 

a number of reports suggest that tritiated amino acid uptake may proceed by 

homoexchange (reviewed by Fagg & Lane, 1979). However the net uptake of 

glutamate into synaptosomes has been demonstrated by Roskowski (1978). In 

addition Roskowski (1978) has reported that net uptake of GABA takes place 

into synaptosomes, but only when they have been depleted of this neurotransmitter 

by potassium stimulated depolarisation.

GABA is the most firmly substantiated neurotransmitter candidate in

the mammalian brain and is probably the neurotransmitter of the cerebellar

Purkinje, stellate, basket and Golgi cells. (see section 1.4). High

^ffiuity transport of ( H) GABA in rat brain was first reported by

Iversen & Neal (1968), and subsequent autoradiographic studies indicated
3that in the cerebellum ( H) GABA was rapidly accumulated by inhibitory 

neurons both in vivo (Schon & Iversen, 1972; Hokfelt & Ljungdahl, 1972) 

and in vitro (Sotelo et al. 1972; Ljungdahl et al. 1973; Lasher 1974;

Hosli & Hosli 1976). Glia also possess a high affinity transport system 

for GABA (Schon & Kelly, 1974b; Schousboe et al. 1977a). However the
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substrate specificity of the neuronal and glial transport systems is

different (reviewed by Iversen & Kelly, 1975). Neuronal (̂ H) GABA

transport can be inhibited specifically by cis 3-aminocyclohexanecarboxylic

acid (ACHC) (Bowery et al. 1976; Neal & Bowery, 1977) and glial (̂ H) GABA

uptake by g-alanine (Schon & Kelly, 1974b; Iversen & Johnston 1971).

In the brain it is not possible to quantify glial uptake of (̂ H) GABA by

specifically inhibiting the neuronal component since glial transport is

small by comparison (Schon & Kelly 1974b). However glial GABA transport

can be examined using ( H) 3-alanine which is a specific substrate for
this system (Schon & Kelly, 1975; Kelly & Dick 1976). (̂ H) GABA uptake

into glia also differs from neuronal uptake in that the former is markedly

affected by the GABA: glutamate transaminase inhibitors such as

aminooxyacetic acid (AOAA) (Iversen & Johnston 1971; Snodgrass & Iversen,

1974; Schon & Kelly 1974b). It is suggested that AOAA prevents the
3rapid degradation of ( H) GABA by glia to readily excreted metabolites, 

thus increasing the apparent uptake of (̂ H) GABA into these cells.

Compared to GABA the role of glutamate as a neurotransmitter is unclear. 

In the cerebellum a number of workers have suggested that glutamate may 

be the neurotransmitter released by the granule cell parallel fibres 
(reviewed in section 1.4).

( H) glutamate is taken up by high affinity active transport systems 

in rat synaptosome preparations and brain slices (Logan & Snyder 1972;

Balcar & Johnston 1972). However the relative role of neurons and glia 

in the uptake of glutamate is disputed. Freshly prepared and cultured
3

glial cells accumulate ( H) glutamate by high affinity transport 

(Henn et al. 1974; Balcar et al. 1977; Faivre-Bauman et al. 1974;

Schousboe et al. 1977b). In addition autoradiographic studies of brain, 

retina and spinal sensory ganglia demonstrate that glia, but not neurons.
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accumulate (̂ H) glutamate (Schon & Kelly 1974a; White & Neal 1976;

McLennan 1976). However Weiler et al. (1979) has reported that glutamate

uptake into synaptosomes is 3-5 fold higher than into glia, and Heart

(1976) has presented autoradiographic evidence for uptake into synaptosomes
3In addition, a recent autoradiographic study indicates that ( H) glutamate 

is accumulated by nerve endings in the hippocampus (Storm-Mathisen & 

Iversen, 1979). Moreover (\) glutamate uptake in this region is 

attenuated by lesioning axons to this brain area (Storm-Mathisen, 1977).

Recent autoradiographic experiments in this laboratory show that in
3cultures of cerebellar neurons ( H) glutamate is taken up by glial cells 

but not by granule cells (Currie & Dutton, unpublished) for which 

glutamate is a putative neurotransmitter.

3 3 3In this thesis the uptake of ( H) GABA, ( H) 3-alanine and ( H) glutamate

by cerebellar perikarys isolated from 10 day rat cerebellum (see section 1.4)

Was examined. See Chapter 2 for the detailed aims of the study.
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Analysis of transport data. Carrier-mediated transport must 

by definition be saturable, and the transport of molecules by such a 

system can be characterised by two parameters i.e. the affinity of the 

transported molecule for the carrier (f(̂ ) and the number of carriers.

The latter parameter is generally expressed indirectly as the maximum 

rate of transport that the system can achieve. An equation which 

describes binding in terms of these parameters can be derived thus:

k kC + S _1__  ̂CS 2 j: + S

where S = substrate 

C - carrier 

CS = substrate carrier complex.

The assumption is made that transport is relatively slow compared with 

the formation of the complex. Hence the complex is in equilibrium with 

the substrate and carrier, i.e.

C + S 1 CS

Therefore according to the Law of Mass Action: 

k^. (C) (S) = k_^. (CS)-(i)

but (C) = - (CS) -(ii)

substituting equation (ii) in (i).

k^.(S).((C^Q^^^) - (CS)) = k_^. (CS) -(iii)
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re-rranging equation (iii).

(CS) -dv)
—  1

but transport (v) is given by:

V = (CS).k (CS) = ^  -(v)

substituting equation (v) in (iv).

K 'Sfvi’f-1
rearranging equation (vi).

V = k2«(Ctotal).(S) -(vii )
(S) + k_^

Maximal rate of transport is given by:

k^. (Ctotal) = V -(viii)

and the affinity of the substrate for the carrier is given by;

k_^ = -(ix)

57”

substituting equations (viii) and (ix) in (vii)

V = V. (S) - (x)
\  + (S)



r-
—63—

This is identical to the Michaelis-Menten equation which was 
initially derived to describe the catalysis of biochemical reactions by 
enzymes (see Neame & Richards, 1972 for further background to 
transport kinetics). The Michaelis-Menten equation describes a 
rectangular hyperbola and when plotting experimental data the Eadie 
Hofstee transformation of equation (x) which describes a straight 
line, is used.

i.e. V = -Kt'(^g^) ^

Thus plotting v against , -E-5 , is given by the slope of the 
line and V by the y intercept.

Analysis of transport data. Following the incubation of tissue 
with the radiolabelled substrate the excess substrate must be removed 
and there are two methods routinely used. The tissue can be filtered 
and washed over glass-fibre or paper filters under slight suction, 
which was the method used in this study. Alternatively the tissue

can be centrifuged and the excess ligand removed by aspiration. This 
method was used mainly when, examining uptake into isolated cells or

synaptosomes. The relative merits of these two methods are discussed 
in section 1 .7 and will not be dealt with here.

Although the excess substrate is removed some radioactivity will 
remain which is not the result of transport. Some of the substrate 
will enter the tissue by diffusion. If the centrifugation method is 
used a significant amount of the substrate will remain trapped in the 
water space in the pellet. Even using a filtration assay some of the 
substrate will remain with the tissue and on the filter as a result of
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physicociiemical attraction phenomena. Such remaining radioactivity 
is often referred to as non-specific binding (see also section 1.7).

In assays using the centrifugation technique (”*̂ 0) inulin 
or sucrose, which are not transported, have been used to determine 
the volume of the trapped water space (Henn & Hamberger, 1971;
Levi & Raiteri, 1973; Somoza & De Feuidis, 1978). The amount of 
trapped substrate can then be calculated. However this correction 
method does not account for diffusion or non-specific binding.
Using the filter assay relatively little of the substrate is trapped 
especially when using cell suspensions as outlined in Chapter 2.
However diffusion and non-specific binding must account for some 
of the apparent transport. A number of techniques have been 
employed to determine that uptake which is due to transport. A 
number of studies have used the apparent uptake which occurs at 
zero incubation time as a control (iversen & Neal 1968; Balcar & 
Johnston 1972). _ Such controls give an estimate of non- -
specific binding,but not diffusion. An alternative is to perform 
parallel incubations at 0°G (Schon & Kelly 1974; Campbell & Shank 1978; 
Thomas & Redburn 1978). Since high affinity transport of amino acids 
is an active process (Iversen & Neal 1968; Logan & Snyder 1972) 
transport should be markedly reduced at this temperature. Thus an 
estimate of diffusion and non-specific binding can be obtained.
However Iversen and Neal (1968) have shown that significant (̂ H) GABA 
transport occurs even at these low temperatures. Since transport is 
saturable the addition of cold substrate will reduce the amount of 
labelled substrate taken up̂ . If the concentration of radiolabelled 
substrate is close to,or less than,its dissociation constant (K.j.) ,



ft,.

—65 —

then the presence of cold substrate at a concentration of 100-1000 
fold greater than the will result in 98-100 percent inhibition of 

uptake. Thus the difference in uptake in the presence and absence 
of excess cold substrate will be a measure of transport. This 
correction method has been used in this and other transport studies 
(Olsen et al. 1978), and it gives an estimate of both non specific 
binding and diffusion.

The detailed aims of studies involving the uptake (̂ H) GABA,
3 3( H) glutamate and ( H) j5-alanine by isolated cerebella perikarya 
(see section 1.4) are outlined in Chapter 2.



1 .7 Neurotransmitter receptor binding

Prior to 1965 the examination of neurotransmitter receptors 
was restricted to dose-response studies. In the brain this . 
generally involves the use of iontophoresis which has a number of 
limitations, not least of which is the difficulty in determining 
the precise concentration of a ligand ejected from a pipette, 
at the site of action. In 1965 Paton & Rang published an account

3of the binding of H-atropine to muscarinic receptors in the guinea 
pig ileum. Because the specific activity of the ligand was 
relatively low and specific binding was only a small fraction of 
total binding, detailed characterisation of the receptor was not 
possible. Interest in the labelling of neurotransmitter receptors 
in the central nervous system was stimulated by the discovery of 
opiate binding receptors in the brain (Pert & Snyder, 1974; Simon 
et al. 1973; Terenius, 1973). Since that time,ligands of high 
specific activity have become widely available for d  number of 
postulated neurotransmitter receptor systems (see Snyder & Bonnet, 
1976; Wolf et al. 1977; Maguire et al. 1977; Yamamura et al. 1978, 
for reviews and Table 2 for a list of the ligands commonly in use).

Binding will occur between all radioligands and biological 
material. However a proportion of this binding will be non-specific, 
(i.e. binding not associated with the receptor) and this binding is 
generally non-saturable. The causes of non-specific binding include
such phenomena as /entrapment of the ligand by the tissue, ionic and 
hydrophobic interactions, and van der Waal’s forces. To determine 
the amount of non-specific binding controls are included in the assay 
which contain excess cold ligand or other displacer (discussed further
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below), which competes for the specific binding sites, excluding

the radioligand. However the presence of excess ligand does not

alter the number of radioactive molecules bound to non-specific sites.

Thus the difference between binding of radioligand in the presence

and absence of a displacer is taken to be specific binding.

Although the displacement of a radioligand in this way meets the

first criterion for the binding of a molecule to a receptor, i.e.

saturability of the receptor is confirmed, this cannot be taken

as proof of binding to a biological receptor. Cuatrecasas &
125Hollenberg (1975) demonstrated the saturable binding of I-insulin 

to talcum powder, and Snyder et al. (1975b) were able to show 

stereospecific saturable binding to glass fibre filters commonly 

used in neurotransmitter receptor assays. These examples serve 

as a reminder that saturable binding is not exclusively a 

biological phenomena.

In order to be confident that a ligand is binding to physiological 

receptors the following criteria (which are not exhaustive) must 

be fulfilled.

(i) Binding must be saturable, stereospecific and of high 

affinity. The binding parameters should also match what is known 

about the receptor from physiological studies. For example, the 

biologically active stereoisomer should be bound, the biological 

potency of the ligand should reflect the binding dissociation 

constant and binding sites should be of an appropriate number. 

Generally neurotransmitter receptors have a density range of 10-100 

pmoles/g tissue (Snyder & Bennet, 1976).
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(ii) The radioligand should be displaced by drugs known to 
act through the receptor to which the ligand is thought to be 
bound. For example ( H) QNB binding which is thought to bind to 
the muscarinic cholinergic receptor is displaced by both muscarinic 
antagonists and agonists but not by nicotinic drugs or other 
neurotransmitter candidates or their analogues (Yamamura & Snyder,
1974a). In addition the in vivo potency of drugs should reflect 
their ability as displacers. This generally holds true in that 
the rank order of antagonists biological potency matches their 
ability to displace ligands and similarly for agonists. However 
major discrepancies are seen between biological and binding potency 
when agonists are used to displace antagonists and vice versa. For 
example acetylcholine is not as effective at displacing ( H)QNB 
as one might predict from its biological activity (Snyder et al. 1975-̂ ) 
To account for these phenomena ' it has been proposed that the receptor 
exists in two forms (which may or may not be interconvertible).
Each form binds the agonist or antagonist preferentially. Receptor 
systems for which these models have been postulated include 
dopamine (Burt et al. 1976) serotonin (Bennet & Snyder, 1976), the 
opiates (Pert & Snyder, 1974), adrenergic system (U’Prichard et al.' 
1977). A similar two site model has been postulated to account 
for the binding properties of muscarinic receptors (Birdsall & Hulme, 
1976a) and opiate receptors (Birdsall et al. i976b). . However in 
this model the two sites are postulated to have identical affinities 
■for antagonists, but one site has a higher affinity for.'agonists.

(iii) Since neurotransmitters are thought to act as receptors 

on the cell surface, binding should be highly enriched in preparations 

containing external cell membranes and in particular synapses. Also 

^ if the radioligand can be visualised by autoradiography one would
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3expect to see the ligand concentrated at cell surfaces. ( H)QNB 

binding for example is enriched in the microsomal pellet which 

includes the synaptosomes (Yamamura & Snyder, 1974a). Also using 

autoradiographic techniques Chan-Palay (1978) was able to show 

that binding appeared to be localised on cells, adjacent to 

areas of synaptic contact.

(iv) The density of innervation of a brain region (or organ) 

might be expected to correlate with the density of binding sites 

for an appropriate neurotransmitter in that area. However in 

the brain the density of innervation is generally determined by 

the level of presynaptic markers. These parameters only give 

an indication of the number of axons in an area and not the 

number of nerve terminals. Also the number of receptors need not 

necessarily be related to the number of terminals, it might for 

example, be more dependent on the number of receptive neurons in 

the area. Where a neurotransmitter is known to be of importance 

in a particular brain region there is often a higher concentration 

of receptors in that area. For example, GABA is known to be 

the major inhibitory transmitter in the cerebellum (see section 1.4) 

and this brain region contains the highest concentration of GABA 

receptors (Zukin et al. 1974).

As already mentioned the criteria for receptor identification 

outlined here are not exhaustive and a more complete list is given 

by Burt (1978b).

Kinetics of binding. The binding of a radioligand to its 

receptor generally obeys the law of mass action although there are
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notable exceptions to this rule (Burgen, Hiley & Young 1974; 
Birdsall et al. 1976 a; Birdsall & Hulme 1976; Lirnbird & Lefkowitz, 
1976). Saturable binding can be characterised by two parameters; 
the strength of attachment between the ligand and its receptor, 
i.e. the association constants, or its reciprocal, the dissociation 
constant (Ed) and the number of sites available for binding, 
designated Bmax.

A straight line equation for the binding of a ligand to its 
receptor can be derived thus :

F + R-̂ ==4====> RF -(i)

where F = unbound ligand 
R = free receptors 
RF = ligand bound to receptors 

if B = amount of ligand bound to receptor, under equilibrium 
conditions -

substituting this information in equation (i)

F B
kg

thus according ! the Law of Mass Action, at equilibrium
E. = F (.pmax-B) - (ii)

B
rearranging equation (ii) gives

- B )
Kd
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This is the Scatchard (1949) equation which is identical to 
the Eadie Hofstee transformation of the Lineweaver Burk equation 
for the interaction between an enzyme and its substrate, i.e.

V = V-v 
( s ) Km

Thus by plotting binding data as B/F against B the
experimental points should fit a straight line, the slope of which
will yield-1/Kd and X intercept B . ■ ■ Normally the amount ofmax
ligand is not depleted significantly as a result of binding. Free 
ligand therefore is usually taken to mean the ligand concentration

at the start of the experiment. However if the amount of ligand 
bound is a significant amount of the free ligand this must be taken 
into account when constructing the Scatchard plot. An additional 
check that binding obeys the Law of Mass Action can be made by 
expressing the data as a Hill plot (see Birdsall & Hulme, 1976) 
i.e. plotting B/B'^^-B against log (S). The gradient of such a 
plot (thft Hill coefficient nl̂) should equal unity. A number of 
workers have reported Hill coefficients of significantly less than 
one for the binding of tritiated muscarinic agonists (reviewed 
by Birdsall & Hulme, 1976) and the p -adrenergic antagonist 
(̂ H) dihydroalprenolol ('̂ H)DHA Limbird & Lefkowitz, 1978 - 
though see later in this section for details of experiments 
involving ( H)DHA binding. There are a number of explanations 
which would account for such deviations of the Hill coefficient from 
unity. These include, negative cooperativity, i.e. the binding of 
the ligand brings about a conformational change in adjacent 
receptors reducing their affinity for the ligand. The
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desensitisation of receptors by the ligand would also account for 
this phenomenon. However in the case of acetylcholine agonists 
the most likely explanation was thought to be the presence of 
heterogeneous receptor populations (Birdsall & Hulme, 1976).

Estimation of non-specific binding. The addition of excess 
cold ligand in neurotransmitter binding assays must by definition 
reduce the binding of the radioligand if binding is saturable.
However one must be confident that the displacer is removing 
most of the ligand bound to the receptors. If the concentration of radio- 
: ligand used is close to its Ed then .100-1000 fold excess of cold ligand will 
displace 98-100' percent of the specifically bound counts. Often a 
displacer different from the radioligand is used in an attempt to 
increase the likelihood that true receptor binding is being 
characterised. In such circumstances a concentration of displacer 
40-fold higher than its IC^q (the concentration of displacer required to 
reduce specific binding of the radioligand to 50 percent control) will 
result in 98 percent displacement of specific counts.

Separation of the tissue from the incubation medium. There are 
two major methods available for separating the tissue from the excess 
radioligand: rapid filtration under suction through glass fibre 
filters, followed by rapid rinsing of the filters with buffer, or 
rapid centrifugation of the incubation followed by superficial 
rinsing of the pellet. The first method is suitable only for 
ligands which are relatively tightly bound to the receptor and 
which will not be removed in significant amounts from the receptors 
during the 30 seconds it takes to complete the procedure. This
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is the method employed for the study of (̂ H) dihydroalprenolol 
[(̂ H) DHA)and (̂ H) quinuclidinylbenzilate((^H) QNB^in this study.
The centrifugation method is used for those ligands which 
rapidly dissociate from their receptors and are likely to be 
"washed off" if a filter assay were used. Where appropriate, 
the filter method is by far the superior of the two methods since 
it is rapid and the washing of the tissue and filter markedly 
reduces non-specific binding. ' Non-specific binding is 
particularly high when the centrifugation assay is used since 
inevitably some unbound ligand remains trapped in the water space 
of the pellet (see Bennett, 1978, for further discussion).

Muscarinic acetylcholine receptor. Tritiated acetylcholine 
(which also binds to nicotinic receptors) and its more specific 
agonists have been used to label these receptors (Birdsall et al.
1976a). However antagonists are generally used to label these 
receptors since they bind with much higher affinity. This allows 
the use of low ligand concentrations, which results in lower non
specific binding. Thus the level of specific binding can be more

3 3accurately determined. Such antagonists include ( H) atropine, ( H) QNB 
( H) dexetimide and the irreversible antagonist ( H) propylbenzilylcholine 
mustard (PBCM) (Baton & Rang, 1965; Yamamura & Snyder, 1974.̂ ^̂  ̂ Laduron 
et al. 1979; Burgen et al. 1974). Of these compounds only ( H)

3QNB is widely available. ( H) QNB binding to muscarinic 
cholinergic receptors was first described by Yamamura & Snyder (1974&) *

This ligand fulfills all the criteria for binding to a receptor ■ 
outlined earlier in this section (reviewed by Snyder et al. 1975 s.;
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Birdsall & Hulme 1976). Binding is of very high affinity 

(Kd = 0.4 nM) and is suitable for study by filtration assays 

(Yamamura & Snyder, 1974a). (̂ H) QNB has been used extensively

to study muscarinic receptors in central and peripheral nervous 

tissues (Yamamura et al. 1974; Yamamura & Snyder, 1974a; Kobayashi 

et al. 1978; Yavin & Harel, 1979; Ben-Barak & Dudai, 1979; Burt, 

1978b; Sugiyama et al. 1977). Binding has also been examined in 

cultured neurons and a variety of tissues including heart and gut 

(Strange et al. 1978; Dudai & Yavin, 1978; Siman & Klein, 1979; 

Galper & Smith, 1978; Roeske & Yamamura, 1978; Yamamura & Snyder, 

1974b).

As already discussed the binding of muscarinic agonists and 

antagonists is consistent with binding to two receptors which have 

identical affinities for the antagonist but differing agonist 

affinities (Birdsall & Hulme, 1976). The relevance of these sites is 

unclear, although they may be related to different receptor-effector 

mechanisms (Birdsall et al. 1976a). However antagonist ligands can 

be used to label both forms of the receptor.

3~Adrenergic receptor. Just as acetylcholine receptors can be 

subdivided into muscarinic and nicotinic receptors, so the adrenergic 

receptors can be classified as a and ^-adrenoceptors on the basis of 

antagonist specificity (Nickerson & Collier, 1975). The 

picture is further complicated by the finding that the 3-adrenoceptors 
can be further subdivided into B^ and B^ receptors on the basis of 

their sensitivity to selective antagonists and the potency of agonists 

(Lands et al. 1966, 1967; Koelle, 1975).
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For similar reasons to those outlined for the use of muscarinic 

antagonists, 3-adrenergic antagonists are generally used in receptor 
binding studies (see reviews, Wolfe et al. 1977; Maguire et al. 1977).

Two ligands are routinely used and commercially available; (̂ H) DHA
125 125 125and ( I) iodohydroxybenzylpindoloI (( I)IHYP). Although ( I)IHYP

binds with a higher affinity and is available at a much higher specific

activity than (̂ H) DHA, the latter ligand is often preferred because it
125is the more stable of the two (( I)IHYP breakdown can occur within 

minutes) and the specific activity of the compound does not need 

constantly redetermining (Maguire et al. 1977).

(̂ H) DHA binding to rat brain tissue has been characterised by

Alexander et al. (1975) and Bylund & Snyder, 1976 and these studies

indicate that the compound fulfills all the criteria required of a

specific 3-adrenergic ligand. Binding is of high affinity (Kd=lnM)

and, like (̂ H) QNB, this ligand is suitable for filter assays (Byland
3& Snyder, 1976). ( H) DHA has been used extensively to examine

3-adrenoceptors in a variety of structures and systems including brain, 
heart, liver, cultured cells and erythrocytes (reviewed by Maguire et al. 

1977; Wolfe et al. 1977).

Both DHA and IHYP are, like many 3-adrenergic antagonists,

hydrophobic molecules, which may account for the local anaesthetic

properties of these compounds (Maguire et al. 1977; Moe & Abildskov,

1975). If one uses one 3-antagonist to displace another (e.g.
3propranolol to displace ( H) DHA) it has been demonstrated that a 

second low affinity binding site is revealed (Bylund, 1978; Nahorski 

& Richardson, 1979; Mendel & Almon, 1977). It has been suggested that 

this displacement of the radioligand from a low affinity site
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is due to the local anaesthetic action of these compounds. Thus

the addition of an excess of displacer alters the partition coefficient

of the radioligand, resulting in displacement of the ligand from the

tissue. (Mendel & Almon, 1977). If instead of an antagonist one uses

an agonist such as isoprenalin, which is devoid of local anaesthetic

effects, then displacement is consistent with (̂ H) DHA binding to a single

population of receptors (Bylund, 1978; Nahorski & Richardson, 1979).

As one might expect the low affinity site is not stereospecific, since it

is a simple physicochemical interaction of the ligand with the tissue,

and the ligand is displaced by antagonists even in the presence of excess

isoprenalin (Nahorski & Richardson, 1979). Limbird & Lefkowitz (1976)
3have reported that ( H) DHA binding displays negative cooperativity.

However, these authors used propranolol as a displacer, and since the

Scatchard plots of Nahorski & Richardson (1979) for (̂ H) DHA binding

displaced by propranolol resemble negative cooperativity curves, it is

possible that Limbird & Lefkowitz (1976) were observing the combined

displacement of (̂ H) DHA from low and high affinity binding sites.

Whether two true 3-adrenoceptors exist similar to that proposed for

(̂ H) QNB is unclear, although U*Prichard et al. (1978) have reported

that ( H) adrenaline is more readily displaced by 3-agonists than
3antagonists. It should perhaps be noted here that ( H) DHA binds to 

both B^ and B^ receptors (U'Prichard et al. 1978) and while it appears 

that 3-receptors of the cerebellum are of the B^ type, those in the 

cerebral cortex appear to be of the B^ type (U'Prichard et al. 1978; Cote 

& Kebabian, 1978).

GABA receptor. This receptor has been studied using the endogenous 

ligand ( H) GABA. Kinetic studies in the presence of sodium revealed 

two binding sites. The low affinity site was sodium-dependent, 

and binding was inhibited by GABA transport inhibitors suggesting that
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this was the GABA transport receptor. However the high affinity 

site (Kd = 100 - 400nM) is sodium independent (assays for this 

receptor are generally performed in the absence of sodium to reduce 

binding to the transport receptor) and fulfills all the criteria for 

GABA binding to its neurotransmitter receptor (Zukin et al. 1974;

Enna & Snyder, 1975; Young et al. 1976). Unlike the other two 

receptor systems outlined (i.e. muscarinic-cholinergic and 

3-adrenergic receptors) there is not a wide range of specific GABA 

antagonists available from which to prepare radioligands. 

Neurophysiological studies indicate that bicuculline is a relatively 

specific GABA antagonist (Curtis et al. 1971; Johnston et al. 1972). 

Mohler & Okada (1977, 1978) have reported stereospecific high affinity 

binding of ( H) bicuculline methiodide in rat brain. This binding 

was localised in synaptosomal preparations and was displaced by GABA 

and compounds thought to act at the neurotransmitter receptor, but 

not by GABA uptake inhibitors. However specific bicuculline binding 

can only be demonstrated in the presence of anions, such as thiocyanate, 

which promote protein unfolding (Collins & Cryer, 1978). In addition 

these anions increase ten fold the potency of bicuculline in 

displacing ( H) GABA binding (Enna & Snyder, 1977) . These findings 

suggest that bicuculline does not bind to exactly the same site as 

GABA (Collins & Cryer, 1978^ Enna & Snyder, 1977). Other problems 

associated with the use of bicuculline for the study of GABA receptors 

are the relative instability of bicuculline and its methiodide 

derivative (although the methochloride is fairly stable). The 

affinity of binding of these compounds is not markedly greater than 

that of GABA.
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There are a number of useful GABA agonists which bind with
3relatively high affinity. Of these ( H) muscimol has been the most

widely studied. This compound binds with a much higher affinity

than GABA (Kd = 2-40 nM) and binding fulfills all the criteria for

binding to the GABA neurotransmitter receptor (Beaumont et al. 1978;

Snodgrass, 1978; Leach & Wilson, 1978; Wang et al. 1979). In addition, 
3 3( H) muscimol resembles sodium independent ( H) GABA binding in that

it is enhanced by freezing and detergents (Enna & Snyder, 1977;

Wong & Horng, 1977; Beaumont et al.1978; Snodgrass, 1978; Ennà et al.

1979; Wang et al. 1979). The reasons for this enhancement is unclear,

but there is evidence to suggest that freezing and detergents may

remove an endogenous GABA receptor modulator (Guidotti et al. 1978; ■
3 3Johnson & Kennedy 1978). Displacement of ( H) GABA and ( H) muscimol

by GABA agonists, and enhancement of the binding of these ligands

following freezing and detergent treatment suggest that perhaps there

is more than one GABA receptor, muscimol has a higher affinity for one

of these sites (Enna et al. 1978; 1979; Herschel & Baldessarini, 1979).
3 3A comparison of ( H) GABA and ( H) muscimol binding in various brain

regions indicate that the levels of binding are very similar (Enna

et al. 1978). Moreover, the maximal binding levels are almost

identical (Enna et al. 1979), indicating that there are the same:

number of muscimol sites as GABA sites. However, de Feudis et al.

(1979a) claim to have shown that there are significantly more muscimol
3receptors than GABA receptors. Although ( H) muscimol binding is 

generally examined using a centrifugation assay, a filtration assay 

for this ligand has been recently reported (Williams & Risley, 1979).
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Localisation of neurotransmitter receptors. Although this 
section and the studies outlined in Chapter 3 deal solely with 
methods for the quantitative analysis of neurotransmitter binding, 
a number of workers have developed methods for visualising the 
distribution of binding using autoradiographic or fluorescence 
techniques (reviewed by Kuhar, 1978). Briefly, ligands are 
administered to living animals systemically, the animals are then 
killed and the brain tissue rapidly fixed. This technique has 
been used to examine the distribution of a number of receptors 
including GABA receptors using ( H) muscimol (Ohan-Palay, 1978;

3Ghan-Palay et al. 1978), muscarinic receptors (( H)QNB) (Kuhar & 
Yamamura, 1975) and p-adrenoreceptors using the fluorescent ligand 
9-AA.P (Melamed et al. 1976). An alternative method is to incubate 
tissue slices in the presence of the ligand which allows greater 
control of the conditions under which binding occurs. This method

125has been used to label nicotinic receptors ( I-^-bungarotoxin)
3

(Segal et al. 1978) and muscarinic receptors (( H)PBCM) (Rotter et al. 
1977; Rotter et al. 1979a). Using autoradiographic techniques it is 
possible not only to examine localisation by light microscopy, but also 
to resolve localisation at the subcellular level by electronmicroscopic 
autoradiography. The latter technique has been applied to the 
examination of nicotinic receptors at the synaptic junction using

 bungarotoxin (Fertruck & Saltpeter, 197U) and GABA receptors
in the central nervous system using (̂ H) muscimol (Chan-Palay et al. 
1978; Chan-Palay, 1978; Chan-Palay & Palay, 1978). As in the other 
binding studies, binding to receptors is taken to be that displaced 
by excess cold ligand or other displacer (see also Kuhar, 1978) for 
other criteria necessary for receptor localisation.
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CHAPTER 2 

TRANSPORT OF GABA,

3-ALANINE AND

GLUTAMATE INTO

PERIKARYA OF RAT

POSTNATAL CEREBELLUM

2.1 Introduction

In sections 1.5 and 1.6 the uptake of glutamate and GABA into 

neurons and glia was outlined and a method for the isolation and 

separation of perikarya from the developing rat cerebellum was 

described. In this Chapter the uptake of these amino acids into 

perikarya obtained by a modification of the method outlined in 

section 1.5 is examined in order to determine the following. As 

mentioned previously (section 1.5) cell isolation techniques 

severely disrupt the cell surface, and it would be useful to know 

whether newly isolated perikarya possess high affinity transport 

sites and of what type. In addition the uptake of 3-alanine, GABA 

and glutamate by enriched perikaryal fractions obtained by unit 

gravity sedimentation has been examined in order to further 

characterise these fractions and to determine which population of cells 

is responsible for the uptake of glutamate.

2.2 Materials and Methods

Cell isolation and separation procedures

Cerebella from Wistar CFHB rat pups aged 10-11 days were used 

throughout. These animals were killed by decapitation and the 

cerebellum removed. The meninges were removed from the cerebellum 

using watch-makers forceps and 3-4 cerebella were used in the isolation
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procedure. Isolated cells were prepared using a modification 

(Dutton, Currie & Tear, 1980) of the method of Wilkin et al. (1976).

The modified method was as follows. All media were based on calcium 

and magnesium free Earles basic salt solution (Gibco-Biocult) 

containing in addition 0.3 percent bovine serum albumin (BSA, fraction V, 

Sigma), 14 mM glucose and 1.5 mM MgSO^. (The glucose was added to the 

medium to provide a substrate for cell metabolism during the isolation 

and the presence of magnesium sulphate was required QS'Q cofactor for 

DNase I used in the procedure). The medium was sterile filtered 

(0.22 ym, Millipore membranes) and maintained at physiological pH by 

gassing with 95 percent O^ and 5 percent COg. All operations were 

carried out at room temperature unless specified otherwise. The 

cerebella were chopped at 400 ym intervals in two directions (the 

second pass being at right angles to the first) using a Mcllwain 

chopper (Mickle Engineering Company). Chopped cerebella were 

dispersed in 10 ml of medium containing 0.025 percent trypsin (type III, 

Sigma) and incubated for 15 minutes at 37°C in a shaking water bath. 

(Brief tryptic digestion appears to reduce the degree of cell damage 

caused by cell isolation, presumably by breaking down the matrix which 

binds the cells together). The incubation was terminated by the 

addition of 10 ml of medium containing 6.4 yg per ml DNase I (Sigma) 

and 80 yg per ml soya bean trypsin inhibitor (SBTI, Sigma) and the 

tissue was sedimented. (The DNase reduces the tendency of the 

isolated cells to reaggregate due to the presence of chromatin 

released from damaged cells. Any further digestion of the cells would 

be undesirable and the SBTI prevents this). The supernatant was 

discarded and the pellet resuspended in 2 ml of medium containing 
40 yg per ml DNase I, 0.5 mg per ml SBTI and 3mM magnesium sulphate.
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The tissue blocks were sheared by trituration (12-15 times) using 

a siliconised Pasteur pipette. After 3-5 minutes the supernatant, 

containing mainly isolated cells, was transferred to a 10 ml conical 
centrifuge tube. The trituration procedure was repeated on the 

remaining undisrupted material and the supernatants combined. 

(Light-microscopic examination of the isolated cells reveals that 

these cells are shorn of their processes). Perikarya largely debris 

free, were obtained by underlaying the supernatant with 2 ml of medium 
containing 4 percent BSA and centrifuging (5 minutes, 100 xg).

Pelleted cells were resuspended in 2-3 ml of calcium and magnesium 

free Krebs Ringer buffer or for the sodium dependence experiments in 

0.32 M sucrose. Cell counting and sizing were performed using a

Coulter Counter 2B1 (Coulter Electronics) with a 140 ]im orifice tube.

The size ranges examined (designated A-E; see also Table 1) were 

approximate to the spectrum of cell sizes seen in the intact cerebellum 

(Wilkin et al. 1975). The instrument was calibrated with latex 

beads of known diameter. Although the isolated cells are damaged 

by the above isolation procedure (i.e. the removal of cell surface 

proteins by trypsin, and shearing of cell processes) the study of 

Wilkin et al. (1976) indicate that over 80 percent of these cells have 

intact cell membranes. Furthermore the isolated cells are metabolically 

active, synthesise proteins, accumulate potassium ions and are 

capable of long term survival in culture (Wilkin et al. (1976);

Currie et al. (1979)) (see section 1.5 for further details).

Analysis of transport

3General considerations. The uptake of 4-amino-n-(2,3- H) butyric 

acid ( (̂ H) GABA), g-(3-^H) alanine ((^H)3-alanine) and l-(G-^H)
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' 3glutamic acid ((-H) glutamate) (specific activities; 54, 49 and 30 

Ci per mmol, respectively, all 1 yCi per JJl, Radiochemical Centre 

Amersham) was measured using a filtration method as follows.

Incubations were carried out in plastic-ware or siliconised glassware 

and unless specified otherwise the incubation temperature was 25°C. 

Triplicate 50-100 yI aliquots of cells were added to filtration 

stacks holding 5-10 ml of 0.9 percent saline. The cells were 

collected on glassfibre filter discs (Whatman GF/C by slight suction 

and washed a further 3 times with 5-10 ml of saline. The filters 

were treated with 150 yl of NCS (G.D. Searle Limited) to solubilise 

the tissue and the radioactivity was counted by liquid scintillation 

spectroscopy on a Beckman LS250 counter. The scintillant used was 

toluene methoxyethanol (4:1) containing 6g per 1 PRO. Correction was 

made for quenching by the external standards ratio technique 

(Peng, 1977). Unless stated otherwise correction was made for radio

activity not due to transport by performing parallel incubations in 

the presence of 1 mM GABA or 1 mM glutamate as appropriate or by 

removing aliquots of the incubate immediately after commencing the 

incubation (see section 1.6 for theoretical background to these 
corrections). In both cases counts not due to high affinity transport 

were typically less than 10% of the total counts.

3 3Time-course of ( H) GABA and ( H) glutamate transport into the cell.

Two hundred microlitres of the cell suspension (2-11 x 10^ cells)

were incubated with 2 ml of Puck's saline G (PSG, Puck et al.1958)
3containing 20 yl of ( H) GABA (final concentration 0.17 ym). This 

medium has been used previously for the examination of (̂ H) GABA 

uptake into cultured neurons and glia (Lasher, 1974) and has advantage 

over BBSS in that it does not require gassing. The incubations were
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carried out at 25° or 37°C and in the presence or absence of 10 yM

aminooxyacetic acid (AOAA, Sigma). Aliquots were taken for analysis

immediately after adding the cell suspension and at time intervals
3up to 32 minutes. The uptake of ( H) glutamate (10 yCi in 2 ml final 

concentration 0.16 yM) was performed similarly except that AOAA was 

not used and uptake was examined at 25° only.

4 3Dependence of ( H) GABA and ( H) glutamate transport on cell 

concentration. Twentyfive to one hundred microlitres of the cell 

suspension (1-7 x 10^ cells) were incubated with 10 yCi of (̂ H) GABA 

or 5 yCi of ( H) glutamate in PSG to give a final volume of 1.1 ml. 

Aliquots were removed from the incubates for analysis after 4 minutes

3Sodium dependence of ( H) GABA transport. Two hundred microlitres

of the cell suspension in 0.32 M sucrose (8 x 10^ cells) were incubated 
3with 20 yCi of ( H) GABA (final concentration 0.17 yM) in 2 ml of 

0.32M sucrose. Triplicate 100 yl aliquots were taken from the incubate 

at O, 2 and 4 minutes. After 4 minutes 1 ml of 0.9 percentNaCl was 

added to the incubate and further aliquots were taken at 6 and 8 minutes.

3 3Kinetics of ( H) GABA and ( H) glutamate uptake. One hundred 

microlitres of the cell suspension were incubated with 1 ml of PSG 

containing ( H) GABA and unlabelled GABA to a final specific activity of 

1 Ci/mmol and a concentration range of 0.1-3.6 yM. Aliquots were taken 

for analysis after 4 minutes. In the case of (̂ H) glutamate, 50 yl

aliquots of the cell suspension were incubated with 0.5 ml of PSG 

containing varying amounts of (̂ H) glutamate and unlabelled glutamate 

to give a final specific activity of 0.1 Ci/mmol and a concentration 

range of 2.5 - 100 yM. Aliquots were taken for analysis after 4 minutes,
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Effects of inhibitors on (̂ H) GABA, transport. One hundred 

microlitres of cell suspension (2-5 x 10^ cells) were pre-incubated 

for 4 minutes with 1 ml of PSG containing varying concentrations 

of cis 3-aminocyclohexanecarboxylic acid (ACHC 10-1000. JJM, kindly 

provided by Dr. N.G. Bowery, St. Thomas' Hospital Medical School), 

3-alanine (10-1000 yM, Sigma) or (+) bicuculline (500 yM, Sigma).
3Six microCuries of ( H) GABA in 100 yl of PSG were then added and 

aliquots were taken for analysis after a further 4 minutes.

3Effects of osmotic shock on ( H) GABA transport. One hundred 

microlitres of cell suspension (2-5 x 10^ cells) were incubated with 

1 ml of PSG containing 10 yl of (̂ H) GABA. Six aliquots (100 yl) 

were taken for analysis after 4 minutes. Three aliquots were washed 

as already outlined. The remaining aliquots were treated in the same 

manner except that distilled water was substituted for 0.9 percent 

saline during washing.

3 3 3Distribution of ( H) GABA, ( H) 3~alanine and ( H) glutamate uptake

in enriched cell fractions. In these experiments the cells were labelled

at an intermediate stage of the isolation, just before the final

centrifugation through 4 percent BSA, and the cells were fixed in

glutaraldehyde before separation. Ten millilitres of the crude cell
3 3suspension were incubated with 50 yCi of either ( H) GABA, ( H) glutamate

3 3 3or ( H) 3-alanine for 30 minutes. ( H) GABA and ( H) 3-alanine

incubations were performed in the presence of AOAA (10 yM final

concentration) which was added to the cell suspension 15 minutes before

the tritiated amino acids. (̂ H) GABA incubations were also carried

out in the presence or absence of ACHC (500 yM) . The ACHC was added

4 minutes before the (̂ H) GABA. Incubations were terminated by
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centrifugation through 2 ml of 4 percent BSA in calcium and magnesium 

free Krebs Ringer buffer (CMF-KRB) (5 minutes, lOOxg). The pellet was 

gently resuspended by trituration in 5 ml of CMF-KRB and the cells fixed 

by adding a further 5 ml of 5 percent glutaraldehyde in phosphate buffered 

saline. (Glutaraldehyde fixation was used to prevent the loss of label 

from the cells during the separation procedure, since it takes up to 4 

hours to obtain enriched cell fractions from the cell suspension. In one 

experiment using ( H) GABA the glutaraldehyde fixation step was omitted . 

After 15 minutes the cells were sedimented (5 minutes, lOOxg) and 

resuspended in 10 ml of 0.2 percent BSA in CMF-KRB. Twenty microlitre 

aliquots of this fixed cell suspension were taken for cell counting. 

Coulter counter analysis showed no significant perturbation of cell size 

due to the fixation procedure. Up to 180 x 10^ cells were used in the 

cell separation (Cohen et al. 1978) which was performed as follows. The 

separation was carried out at 3 C using solutions which had been gassed 

with 95 percent O^ and 5 percent CO after sterile filtering (0.22 yM 

Millipore membranes). The perspex separation chamber was of the type 

described by Miller & Phillips (1969). The chamber which was 12.5 cm in 

diameter was filled by upward displacement through a hole in the conical 

base with the following solutions in sequence: (i) 50 ml CMF-KRB (ii) 50 ml 

0.2 percent BSA in CMF-KRB containing the fixed perikarya (iii) 500 ml of 

a discontinuous BSA gradient 0.5 percent -2 percent in CMF-KRB, generated 

from equal volumes of 0.5 percent and 2 percent BSA in CMF-KRB using an 

LKB gradient mixer. The perikarya were allowed to fall through the 

gradient for 2 hours. The chamber was emptied slowly (approximately 

30 ml per minute) and around 50 x 10 ml fractions were collected for 

analysis using a fraction collector (Ultrorac, LKB). Alternate fractions 

were analysed for cell number and size distribution. The remaining 

fractions were analysed for radioactivity as outlined previously. The 

entire 10 ml fraction was filtered through glassfibre filters for analysis 
of radioactivity.
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2.3 Results
3 3Time course of ( H) GABA and ( H) glutamate uptake into cell perikarya»

3When the cell suspension was incubated with ( H) GABA (0.17 yM) there was 

a rapid accumulation of label into the cells (Figure 5). Uptake at 25°C 

was linear for the first 4 minutes rising to 1.8 pmol/per 10^ cells at 32 

minutes. At this temperature AOAA did not have any significant effect.

At 37°C (Figure 5 inset) uptake in the absence of AOAA was similar to that 

seen at the lower temperature. However in the presence of AOAA the 

apparent uptake at 37°C was significantly elevated after 32 minutes to 

2.6 pmol per 10^ cells (t = 2.99, p<0.05, 1-tailed paired Student's t-test). 

The initial rate of ( H) GABA uptake was linear with cell concentrations up 

to 6 X 10^ cells per ml (not shown).

3( H) glutamate (0.16 yM) was also rapidly accumulated by the isolated 

perikarya at 25 C (Figure 6). The uptake was linear over the first 4 

minutes rising to 1.15 pmol per 10 cells at 32 minutes. The initial rate 

was again found to be linear with respect to cell concentration.

3Sodium dependence of ( H) GABA transport. When the normal medium was 

replaced by 0.32 M sucrose, the uptake of ( H) GABA was greatly reduced 

(Figure 7). The addition of 0.9 percent N a d  during the incubation resulted 

in a 13-fold increase in the rate of uptake.

3 3Kinetics of ( H) GABA and ( H) glutamate transport. An Eadie-Hofstee
3plot of initial rate of ( H) GABA transport and GABA concentration was 

found to fit a straight line (Figure 8, see also section 1.6). Thus the 

kinetics of ( H) GABA transport are compatible with a high affinity 

carrier-mediated process with an observed Kt of 1.9 +0. 2 yM and V of
51.8 2)2 pmol per 10 cells per minute. Similarly Figure 9 demonstrates 

that ( H) glutamate uptake also proceeds by a high affinity transport 

process with the following kinetics Kt 10+ly M  and V 7.9 + 0.8 pmol per 

10^ cells per minute.
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I Effect of inhibitors on ( H) GABA uptake. Uptake of ( H) GABA

(0.1 yM) was inhibited by ACHC and 3-alanine (Figure 10). ACHC was the

more potent of the two with an IC^^ of 70 yM (10^^= concentration of

inhibitor required to reduce uptake to 50 percent control). Although

3-alanine did inhibit uptake, much higher concentrations were required

(IC^0=6OOyM). Bicuculline has a small but significant effect at the high

concentration of 500 yM reducing uptake to 80 control (t=5.42,p<0.02,

1-tailed paired Student's t-test, 2 degrees of freedom) (not shown).

3Effect of osmotic shock on ( H) GABA uptake. When the cells were

washed with distilled instead of isotonic saline, after incubating with 
3
( H) GABA, the apparent uptake of this amino acid was significantly reduced 

to less than 9 percent of control (t=19.5, p<0.001, 1 tailed paired 

Student's t-test, 2 degrees of freedom) (not shown).

3 3 3Transport of ( H) GABA, ( H) 3-a.lanine and ( H) glutamate into the

enriched cell fractions. The greatest uptake of ( H) GABA (0.6 pmol per

10 cells) was seen in E and D, which contained the largest cells

(Figure 11a, Table 1). Uptake was lower (0.24 pmol per 10^ cells) in the

C fraction containing intermediate size cells, and was minimal in the B and

C  fractions (0.06 pmol per 10^ cells). In the presence of ACHC (500 yM),

(̂ H) GABA transport was reduced by 43%but there was no obvious change in

the pattern of uptake. However the pattern of ( H) glutamate uptake was
3notably different from that of ( H) GABA (Figure 11b). In this case 

uptake into the D fraction was most prominent (1.37 pmol per 10^ cells,

respectively). Uptake was lowest in the B and C fractions. The
3 3distribution of ( H) 3-alanine (Figure 11c) resembled that of ( H) glutamate

in that uptake was greatest in the D fraction.

The A fraction contains a large proportion of subcellular particles 

smaller than the lower size limit for A (5.5 yM spherical diameter) and 

therefore estimates of cell numbers are innacurate. Nevertheless it appears



t
-90-

that there was significant transport of all three amino acids into this 
fraction.

In the experiment where the glutaraldehyde fixation step was omitted 

the amount of (̂ H) GABA lost during the separation procedure was increased 

to 84 percent compared with 33 percent for fixed cells. However the 

pattern of uptake was the same whether or not fixation was carried out.

Since the cell fractions are of different sizes it is conceivable 

that the difference in uptake by the fractions could be a function of 

cell volume. However the finding that the patterns of uptake are

for the 3 amino acids indicates that this is not the case.
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3Figure 5 A summary of ( H) GABA transport (GABA concentration = 0.17 yM) 

by the cell suspension. The time course (0-32 minutes) of uptake was 

examined at 25 C and 37°C (inset) in the presence (solid lines) and 

absence of AOAA (10 yM) (broken lines).

*At 37 C the apparent uptake of GABA was significantly increased by the 

presence of AOAA (t = 2.9, p<0.05, 1 tailed paired Student's t-test).

The results are plotted as means sem; number of determinations in 
parentheses.
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3FIGURE 6 Transport of ( H) glutamate (0.16 pM) by the cell 
suspension at 25°G over the time interval 0-32 minutes. 
Results of four determinations plotted as means + S.E.M.
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FIGURE 7 Na+ dependence of (̂ H) GABA transport. Results
of duplicate experiment plotted as means + range. Incubations
were initially in 0.32M sucrose. At k min. 0.9 per cent NaCl 
wasadded to give a Na+ concentration of 72mM.
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3FIGURE 8 Eadie-Hofstee plot of ( H) GABA transport. From this 
data V (1.8 + 0.1 pmol per 10 cells per minute) and Kd (1 .9 + 0.2 pM) 
were calculated by linear regression (r = 0.92) (Edwards 196?)• 
Results are from 2 experiments each data point representing one 
determination.
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FIGIIEIE 9 Eadie-Hofstee plot of (̂ H) glutamate transport. 
From this data V (7.9 + 0.8 pmol per 10^ cells per minute) 
and Kd (10+2 juM) were calculated hy linear regression 
(r = 0.92) (Edwards, 1967). Each data point represents 
the mean of two determinations from duplicate experiments 
(range 18 per cent).
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Figure 10 A summary of the effects of increasing concentrations of
3GABA transport inhibitors (ACHC and 8-alanine) on the uptake of ( H) GABA 

by the cell suspension. The determined from this figure for

ACHC and 8~a-lanine were 70 yM and 600 yM respectively. The results are 

plotted as mean percent of control (i.e. percent of uptake in the absence 

of inhibitor) _+ sem, against log inhibitor concentration (yM); n = 6 unless 

indicated otherwise in parentheses.
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FIGURES 11 a,b,c. Distribution of (̂ H) GABA (+ 500 yM. ACHC) 
(̂ H) p-alanine and (̂ H) glutamate uptake in separated cell 
fractions. Results of single experiments are shown. All 
experiments were performed at least twice. Horizontal bars 
indicate predominant cell size in cell fraction (see Table 1)
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2,k Discussion

The freshly prepared cell bodies from the developing rat 
cerebellum possess high affinity transport systems for GAM 
(Figure 8) and glutamate (Figure 9) with properties similar to 
those reported for various preparations of both the rat cerebral 
cortex and the cerebellum. High affinity uptake of GABA and 
glutamate has been demonstrated in slices (iversen & Neal, 1968;
Balcar & Johnston, 1972) and synaptosomes (Bond, 1973j Levi & Raiteri,
1973). Cultured cerebellar cells also possess a high affinity
transport system for GAM (Lasher, 1975). lu addition Bamberger 
(1971) has reported uptake of low concentrations of both GABA and 
glutamate into cells from the adult rabbit cerebral cortex 
produced by a sieving technique.

The Kt of 1.9 found here for GABA uptake from postnatal rat
cerebellum compares with Lhe values reported for various
other preparations which range from 0.3 p-M for cultured cerebellar 
neurons and glia (Lasher, 1975) to 22 pM for rat cerebral cortex 
slices (Iversen & Neal, 1968). Similarly the Kt for glutamate 
uptake (10 pM) is close to the values (20 pM) found for cerebral 
cortex slices and synaptosomes (Balcar & Johnston, 1972; Logan &
Snyder, 1972). Accurate comparison of our findings on the maximal
rate of transport (V) with the published values is difficult. However,
since approximately 2.5 x 10^ cells are equivalent to 1 mg wet
weight of tissue, the maximal rates of transport of GABA and glutamate
transport into the cerebellar total cell suspension approximate to
i;.5 and 20 nmol per g wet weight per min.,respectively,and compare with 11
and 2U0 nmoles per g wet. weight per min.for slices (iversen & Neal,
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1968; Balcar & Johnston, 1972). The slower rate of GABA uptake in our 

preparation may be partly explained by the loss of nerve terminals which 

are sheared off during the isolation p r o c e d u r e . A  large number of high 

affinity transport sites for GABA are thought to be contained in the nerve 

terminals (Kelly & Dick, 1976; Iversen & Bloom, 1972). When one considers 

that the dendrites and axons have been estimated to account for 80-95 percent 

1-hs cell volume (Rose, 1972) then the large loss of uptake sites is not 

surprising. In addition trypsinisation is known to remove proteins from 

 ̂ cell surface (see Wilkin et al. 1976) and this may affect transport sites.

Several studies have reported that high affinity GABA transport requires 

the presence of extracellular sodium (see Section 1.6) (Weinstein et al.1965; 

Iversen & Neal, 1968; Lasler, 1975; Schousboe et al. 1977a). In this study 

sucrose was substituted for sodium chloride, therefore the possibility that 

chloride ions are responsible for the reduction in transport seen in the 

sucrose medium cannot be ruled out. However previous workers (Weinstein 

al. 1965; Iversen & Neal, 1968; Lasher, 1975; Schousboe et al. 1977a)

shown that chloride ions are not directly implicated in the transport of 

GABA. Thus it seems likely that the reduction in sodium ions accounts for 

the deficit in GABA transport in the sucrose medium. It should perhaps be 

noted that on adding the sodium chloride to the sucrose medium, the 

concentration of sodium ions was increased to only 50 percent of that found 

in PSG. This may partly explain why the rate of GABA transport is still 

reduced when compared with that found for cells in PSG.

^  'I'he high affinity uptake of amino acids reported and cited in this chapter

can be distinguished from the high affinity binding of amino acids and other 

compounds outlined in Chapter 3, in a number of ways. Iversen and Neal 

(1968) reported that after incubating rat cerebral cortex slides with (^H)GABA 

the concentration of label in the slices rose to 100—fold of that in the 

medium. Thus GABA was presumably being transported against a concentration 

gradient by an active process. This was confirmed by the finding that
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metabolic inhibitors and ouabain (which inhibits sodium dependent active 

transport indirectly by blocking Na/K-ATPase) severely reduced GABA 

transport (Iversen & Neal, 1958; Lasher, 1975). Similar findings have 

been reported for glutamate (Balcar & Johnston, 1972; Logan & Snyder, 1972). 

However the tissue to medium ratios achieved for glutamate were around 

40:1 (Balcar & Johnston (1972). It is possible to estimate the tissue to 

medium ratios for freshly prepared cells from the data in Figures 5 and 6 

using the cells per mg wet wt approximation discussed on page 103. The 

tissue to medium ratio for both GABA and glutamate approximate to 20:1 

after 30 minutes. This strongly suggests that these amino acids are being 

transported into cells. This somewhat lower figure for GABA, glutamate 

transport into freshly prepared cells compared with slices (Iversen & Neal, 

1968; Balcar & Johnston, 1972) may be due to the leakiness of these disrupted 

cells and or a function of the slower rate of transport. Further evidence 

for the internal accumulation of'GABA comes from the finding that when 

these cells are lysed with distilled water, GABA is lost from the cells.

This loss of GABA would not have been expected if GABA were bound to the 

surface of these cells.

The use of neuronal and glial inhibitors of GABA uptake (ACHC and 

8-alanine, respectively) indicate that over the short time interval studied 

(4 minutés) most of the uptake is into neurons since ACHC is the more 

effective inhibitor. The IC^^ found for ACHC is 70 yM which compares well 

with the value reported for rat cerebral cortex slices (62 yM) where the 

uptake is almost totally neuronal (Neal & Bowery, 1977). However, some 

GABA transport remains even in the presence of ImM ACHC suggesting that there 

is some transport of GABA by glia. This is further supported by the finding 

that GABA transport is inhibited by low concentrations (10-100 yM) of 

8-alanine.

The predominance of neuronal (̂ H) GABA transport contrasts with the 

observations of Hamberger (1971) on bulk prepared cells from adult 

cerebral cortex where uptake of (\) GABA was mainly into the fraction
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y  " designated as "glial". At ImM concentrations of 8-alanine and ACHC 

there appears to be some overlap in the specificity of these inhibitors 

since their combined inhibition exceeds 100 percent. This may be 

explained by the observations of Neal & Bowery (1977) and Bowery et al.

(1976) which suggest that both inhibitors are capable of increasing the 

release of endogenous GABA perhaps sufficiently to reduce the transport of
3
( H) GABA. AOAA has relatively little effect on GABA transport at

25 and 37 C (except after 32 minutes at 37°C) suggesting also that uptake

of GABA is mainly into neurons since AOAA is known to greatly elevate
3the apparent uptake of ( H) GABA into glia (Schon & Kelly, 1974b) but not 

over short time intervals, into neurons (Snodgrass & Iversen, 1973). 

Bicuculline, which inhibits the post-synaptic actions of GABA but not its 

transport (see Sections 1.6 and 1.7) is capable of effecting only 20 percent 

inhibition at the high concentration of 500 yM confirming that binding

to the post-synaptic receptor does not play a significant part in these

studies.

3 3The metabolism of ( H) GABA and ( H) glutamate has not been examined

in these studies. The metabolism of GABA is unlikely to have been

important for the following reasons. With the exception of one experiment 

all the studies were performed at 25°C. Figure 5 shows that at this 

temperature, AOAA, which blocks GABA transaminase, the enzyme responsible 

for GABA metabolism (Snodgrass & Iversen, 1973) has no significant effect 

on the apparent uptake of GABA by the cells. Thus it seems unlikely that 

significant amounts of GABA were metabolised during the first 30 minutes 

of incubation. Glutamate metabolism may have been more of a problem.

Balcar & Johnston (1972) showed that in rat brain slices,incubated under 

similar conditions to those used here, over 90 percent of (̂ H) glutamate 

remained unmetabolised after 8 minutes. Thus it seems probable that 

even over the 30 minute incubation period used to study glutamate uptake 

into the enriched cell fractions, the majority of the glutamate would be 

y  unmetabolised.
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^  The distribution of (^H)ÇRBfi (̂ /̂/jglutamate and (̂ H) 8-alanine

(Figure 11) in enriched cell fractions shows some interesting differences.
3( H) GABA which is known to be transported into the GABAergic Purkinje

and Golgi neurons both in vivo (Schon & Iversen, 1972; Hokfelt & Ljungdahl,

1972) and in vitro (Hosli & Hosli, 1976; Ljungdahl et al. 1973; Lasher, 1974)

is taken up mainly into the E and D fractions. This uptake is inhibited

by ACHC which is consistent with an enrichment of larger inhibitory neurons

in these two fractions (see Table 1). 8-alanine which is almost exclusively

accumulated by glia (Schon & Kelly, 1975; Kelly & Dick, 1976), is taken up
3mainly by the D fraction indicating an enrichment of glial cells. ( H)

glutamate is also accumulated mainly by the D fraction. Since a number of

workers have reported the uptake of (̂ H) glutamate into glia (McLennan,1976;

White & Neal, 1976; Henn et al. 1974) it is probable that uptake of (̂ H)

glutamate into the D fraction is mainly into this cell type. However,
3uptake of ( H) glutamate is often cited as a property of glutamatergic 

cells (Young et al. 1974; Storm-Mathisen, 1977; Iversen & Mathisen, 1976). 

Since the granule cells are thought to use glutamate as their neurotransmitter
1--"

(Young et al. 1974; Hudson et al. 1976; Sandoval & Cotman, 1978), one might 

expect to see a peak of glutamate uptake in cell fractions enriched in 

granule cells, i.e. the C and B fractions. However, uptake into these two 

fractions is low compared with the D fraction. It is possible that 

glutamate uptake may occur mainly into granule cell dendrites (which are 

removed during isolation) and not into the perikarya. Such dendrites 

would be found in the A fraction. However glutamate uptake into this 

fraction is relatively low and could be accounted for by the presence of 

glial fragments since similar uptake is seen for 8-alanine. The large 

amount of GABA uptake seen in the A fraction indicates that dendrites of 

GABAergic neurons may occur in this fraction. The results for glutamate 

transport compare well with the findings of Campbell & Shank (1978) who 

report that transport is three times more rapid into glia than into granule 

enriched populations. Unfortunately their data are expressed in uptake per
y
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mg protein, and accurate comparisons are difficult. Campbell & Shank (1978) 

came to the conclusion that uptake of glutamate in the granule cell fraction 

was not the result of glial contamination for the following reason. The 

ratio of GABA: glutamate uptake was much greater in the glial fraction 

compared with the granule cell fraction, whereas one would predict that the 

ratios should be equal if glia were responsible for GABA and glutamate 

uptake in the two fractions. However as Campbell & Williams (1978) point 

out, their glial fraction contains some neurons (Purkinje and interneurons) 

which might account for the rapid uptake of GABA in this fraction. A 

comparison using 8-alanine instead of GABA might have been more revealing. 

Messer (1977) reported that it was not possible to show specific 

accumulation of (̂ H) glutamate in cultures from the developing mouse 

cerebellum and studies of rat cultures prepared in this lab confirm this 

(Pearce, Currie & Dutton, unpublished).

It has been previously reported that the perikarya isolated from the 

developing rat cerebellum are metabolically active (Wilkin et al. 1975) 

and can be cultured (Currie et al.l979). In this study it has been 

demonstrated that these cells retain high affinity transport systems for 

both GABA and glutamate which compare with those in intact tissues.

Using the unit gravity sedimentation technique the uptake of these 

tritiated amino acids gives further information about the identity of 

the cell fractions and provides added evidence that the uptake of 

( H) glutamate in the cerebellum is primarily into glial cells and not 

the presumed glutamatergic granule cells.
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2.5 Future directions
Perhaps one of the most obvious experiments to do is to 

characterise GAM transport into neurons and glia using the unit 
gravity separation technique^since to my knowledge no one has 
examined the kinetics of GABA transport in neurons and glia 
freshly prepared from the same brain region. Unfortunately as 
can be seen from Figure 11 and Table 1, the glial enriched fraction 
between fractions D and C is contaminated by interneurons.
However Cohen et al. (1980), using similar techniques for the 
isolation and separation of cerebellar neurons, avoided this 
problem by depleting the interneuron population. This was 
achieved by the administration of the anti mitotic hydroxyurea 
(Ebels et al. 1975) to 6 day rats, thus preventing the formation 
of interneurons and granule cells from their precursors. This 
treatment also allows greater numbers of Purkinje and Golgi 
neurons to be separated since 1 80 x 10^ cells is maximum number 
of cells that can be separated on the sedimentation chamber and 
usually most of these cells are granule neurons. Using this 
technique relatively pure populations of GABAergic' neurons 
(Purkinje and Golgi cells in the E fraction) and glial cells 
(mainly astrocytes in the latter part of the D fraction) (see also 
Table 1) were obtained. The kinetics for GABA transport into these 
fractions was similar to that reported in this chapter, but the Kt for 
neuronal transport (approx. 2uM) was twice that found in this 
study for glia. Similarly^the maximal rate of GABA
transport into neurons (0.310 nmol per 10^ cells per min.) was 
6-fold higher than that for glial cells. The faster rate of GABA 
transport into neurons is in accord with the conclusions drawn from

y
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GABA uptake into neurons and glia from different regions of the 
nervous system (see Section 1.6). It should perhaps be noted 
that the values for maximal transport of GABA by neurons reported 
by Cohen et al. (1980) were about 150 fold nigher than reported 
in this Chapter for the cell suspension. This may be 
explained by the presence of large numbers of granule cells, 
which do not contribute significantly to GABA transport (see 
Figure 11 ) in the cell suspension (the E cells account for about 
1 per cent of cells in the cell suspension. Table 1 ). These workers 
also confirmed the specificity of ACHC and p-alanine in 
inhibitory neuronal and glial GABA transport.

As mentioned in Section 1 .5 methods have been developed in this 
lab for the culture of cerebellar neurons and when this work was 
initiated it was hoped that the GABA transport would be extended 
to the cerebellar cultures. Since that time a significant amount 
of autoradiographic data have been accumulated in this lab concerning 
the uptake of (̂ H) GABA and (̂ H) glutamate and the specificity of 
the inhibitors ACHC and p-alanine all of which essentially support 

findings of this Chapter (Currie & Dutton, 1978; Pearce &
Dutton, unpublished). The ultimate aim of such studies is the 
identification of cell types in culture, i.e. ACHC-sensitive 
GABA transport characterises neurons and ̂ —alanine sensitive uptake 
characterises glia.



y
-113“

CHAPTER 3

MUSCIMOL DHA AND
QND BINDING SITES IN

NORMAL A W  NEUROLOGICALLY 
MUTANT MICE

3.1 Introduction

Jn Sections 1.2 and 1.3 the development of the cerebellum in 
normal and neurologically mutant mice (wv, rl, sg and jp) has been 
outlined and the neuropathology of these mutants discussed. In 
this chapter a study of the binding of neurotransmitter receptor 
ligands (%) muscimol, (&) DHA and (&) QNB to the total particulate 
fractions of developing normal and neurologically mutant mice is 
outlined. These ligands allow the characterisation of GABA,p - 
adrenergic and muscarinic receptors (see section 1 .7). (̂ H) DHA
and (̂ H ) muscimol were chosen for the study becausep -adrenergic and 
GABA receptors are known to be involved in the functioning of the 
cerebellum and there is information regarding the location of these 
receptors (see section 1.1*). (̂ H ) QNB was included since although
the function and precise location of these receptors in the cerebellum 
is not known (Rotter et al. 197%), it was hoped that the following 
study might provide answers to these questions.

The aims of the study were as follows :
(i) to gain some idea of the time course of development of receptors; 

and to compare this with what was known about the synaptogenic 
events occurring in the cerebellum.
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(ii) to use the mutants to examine receptor development in the

absence of granule cells in order to gain information concerning, 

the function of these neurons, and the way in which the

reorganisation of the cerebellum following granule cell loss

affects receptor development.

The possibility of performing binding studies on cell enriched fractions 

was considered. However there are a number of difficulties involved in

this sort of work. For example suspensions of cells can be obtained only

from mice aged 8 days or younger. At this stage of development, the 

majority of DHA, muscimol and QNB binding sites have not been formed, 

although the cerebellum does contain significant numbers of these 

receptors at 8 days. Another problem is that as outlined in Chapter 2, 

the dendrites, the main sites of synaptic contact are removed by the 

isolation procedure. Thus one might expect the major sites of receptors 

to be lost. However perhaps the largest drawback is the extremely small 

amount of material, which is available from the fractions, on which to 

perform analyses. The pooled E and D fractions contain less than 100 yg 

of protein each. Thus it would be extremely difficult to obtain 

sufficient material to obtain an accurate estimate of the concentration 

of binding sites on E and D cells. (About 2.5 mg protein, was used to 

assay muscimol receptors in mutant anipials). Since the remaining 

fractions contain granule cells, the exercise would be unlikely to yield 

any information concerning the cellular location of neurotransmitter 

binding sites. However it is hoped that an alternative strategy may be 

adopted to answer such questions (see Section 3.5).



r -115-

3.2 Materials and methods

Breeding of normal and neurologically mutant mice. Unless stated 

otherwise, all mice used in the following studies were produced in this 

institution by sibling crosses. These animals originated from stock 

imported from the Jackson Laboratory (Bar Harbor, . For binding

studies in normal mice animals of the B6/CBA hybrid strain (of either 

sex) were used throughout. However adult male CBA animals (age 5-10 

weeks) supplied by Olac (Bicester) were used in the cerebellar 

glomerulus studies. The following procedures were adopted for the 

breeding and identification of neurological mutants.

Weaver. These mutants (background strain B5/CBA) were produced by the 

crossing of heterozygous wv siblings from litters which had previously 

produced mutants. Mutants were identified by their uncoordinated gait 

which was easily recognisable in animals older than 8 days.

Heterozygous wv cannot be identified behaviourally, and thus not all 

pairs selected for breeding produced mutants. (The probability of 

selecting two heterozygous wv from a mutant producing litter is 0.40.

In the colony of 48 breeding pairs used in these studies about 50 percent 

of these matings were eventually rejected as non-mutant producers.

3Reeler In the ( H) QNB binding study rls of the C57BL/5J strain were

used. The mutants were produced as outlined above for wv by crossing

heterozygous rls which were identified by their unsteady gait (the 

symptoms are first apparent around 10 days). The heterozygous rls 

cannot be identified, and thus, as with the wv mutants, not all breeding 

pairs produce mutants. C57BL/5J rl colony consisted of 48 breeding 

pairs, however this mutation was transferred to the B5/CBA background to 

bring it in line with the wv and jp mutations. In addition^previous



r
—  116 —

studies have shown that rl mutants maintained on hybrid background 

strains were more robust than their inbred counterparts (Caviness et al. 

1972). The transfer of the rl mutation from the C57BL/6J to the 

B6/CBA background was carried out as follows: G57BL/6J rl carrying 

females (identified by their breeding record) were mated with CBA males 

(supplied by Olac) to produce the hybrid B6/CBA. The rl carrying 

offspring of this mating were then identified by back-crossing with 

proven (C57BL/6J carriers). The rl carrying hybrids thus identified 

were inbred for at least seven generations before use. The rationale 

for the production and identification of these hybrid rl was identical 

to that outlined for the C57BL/6J animals.

Staggerer. These mutants were of the C57BL/6J strain. The problems 

associated with the selection of heterozygous rls and wvs for the 

production of mutants was almost eliminated by the use of the marker 

genes dilute (d) and short ear (se). These recessive genes lie close 

to the sg locus and in the colony used here they were associated with 

the unaffected chromosome. Thus normal (non-sg carrying animals) 

express these genes, i.e. they have grey coats and short ears. 

Heterozygous animals for breeding purposes were identified by their 

dark coats and lack of neurological symptoms. Sgs were identified 

by their ataxia which was apparent around 8 days. This classification 

of animals on the basis of marker genes does not take into account 

the phenomenon of recombination (i.e. crossovers, where a gene is 

transferred between chromosome pairs during meiosis). However the two 

marker genes are relatively close to the sg locus, thus recombinations 

are uncommon (approximately 5 percent).
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Jimpy. This gene is sex linked and is expressed by male animals 

carrying the gene. These mutant males were identified by their 

characteristic shaky gait as early as 10 days. The mutants are 

produced by crossing normal males and carrier females. Thus half the 

male offspring will be jp mutants. In order to facilitate the

identification of female jp carriers the mutation was linked with the 

dominant coat marker tabby (Ta). Thus carriers have a tabby coat as 

do most jp males. However the loci for these genes are relatively 

far apart and 10-20 percent recombination takes place. Thus, 1 in 5 to

1 in 10 tabby females do not carry the jp gene and the same proportion of

tabby males are not mutants.
\

control animals. Controls for the studies involving the mutant animals 

were taken from non-mutant producing colonies or in the case of sg 

non-carrier animals identified by their short ears and grey coat were 

used. Where possible control animals were of the same background 

strain as their mutant counterparts. However in the ( H) QNB binding 

study C57BL/6J controls were not available and a closely related strain 

C57BL/10 were used. No attempt was made to limit the litter size of

either normal or mutant litters since mutants were not readily

identifiable until the second postnatal week. However animals from 

small (less than 4) or large litters (greater than 10) were not used.

In selecting cerebella for analysis each determination was performed on 

material from the litters of one or more breeding pairs and no more than 

two determinations were carried out on material from the same source. 

Thus the material for five determinations was obtained from the litters 

of at least three separate breeding pairs.
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Preparation of cerebellar glomeruli. These particles were made by a 

modification of the method described by Hajos et al. (1975). The 

cerebella of 12 male CBA mice (aged 6-10 weeks) were removed and cleared 

of meninges as described in Section 2.2. The cerebella were chopped at 

1 mm intervals in two directions (the second pass being at right angles 

to the first). Hereafter all procedures were carried out at 0-4°C and 

all solutions contained 1 mM magnesium sulphate. The chopped cerebella 

were transferred to a modified Dounce homogeniser, containing 8-10 ml of 

0.3 M sucrose, and homogenised by 30-35 strokes of a stainless steel 

pestle (radial clearance 0.25 mm). This pestle was then replaced by 

another of narrower clearance (0.12 mm) and the tissue further 

homogenised by 50-55 strokes. The homogenate was transferred to a 

beaker and the homogeniser washed out with a further 3-4 ml of sucrose 

solution. The homogenate was filtered under gentle pressure through 

nylon and metal mesh filters (pore sizes 150 ym and 40 ym, respectively) 

(Stanier, Manchester) inserted on to the end of a cylinder prepared 

by removing the end of a 10 ml syringe barrel. Five hundred to one 

thousand microlitres of this filtered homogenate were 

retained for analysis and the remainder was centrifuged (10 minutes,

900 xg). The supernatant was retained for analysis and the pellet 

gently resuspended in isotonic sucrose (final volume 10 ml) by 

trituration using a 1 ml Eppendorf pipette. The suspension was 

centrifuged again and the procedure repeated. The final pellet 

was resuspended in 5 ml of 0.3 M sucrose. Three portions of 

approximately 2 ml were then layered on a linear gradient (in a 23 ml 

polycarbonate centrifuge tube (MSE) generated from 7.5 ml of 1.2 M 

and 1.35 M sucrose solutions. This gradient was under layered with a 

cushion of 5 ml of 1.4 M sucrose. These tubes were centrifuged 

(3 X  25 ml (MSE 43127-104) (50 minutes, 53,000 x g)) after which 4 ml

and 3 X  5 ml aliquots, were drawn off from the bottom of the tube, in 

that order. The glomeruli were concentrated at the gradient cushion
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fractions thus obtained were diluted with distilled water to give a 
final volume of around 40 ml. The diluted fractions, the original 
homogenate and the first supernatant were centrifuged (30 minutes,
50,000 X g) and the pellets resuspended in 2 ml of buffer (appropriate 
to the binding study for which these fractions were to be used). This

( H) Muscimol binding. A modification of the method outlined by 
Snodgrass (1978) was used to study the binding of this ligand.
Cerebellar tissue (25-55 wet wt.) was homogenised using a Polytron 
homogeniser (Kinematica) in 2 ml of ice cold distilled water.
Homogenates were centrifuged (50,000 x g for 20 minutes at 3 C).
Pellets were resuspended in 2 ml distilled water and stored at -20°C 
for at least 24 hours before analysis. (Freezing the tissue had the 
effect of increasing specifi;c ]blnding by 35% Cnot shown; (t = 3.29, 
p<0.025. Student's t-test). Prior to analysis homogenates were made 
up to 7 ml with ice cold distilled water and centrifuged (50,000 x g 
for 20 minutes at O ). Pellets were resuspended in a further 7 ml of 
cold water, centrifuged, and the final pellets resuspended in 2.2 ml 
of ice cold water. This procedure was also adopted for cerebellar
glomerular material. Duplicate 500 yl aliquots of this suspension

. . ' o'  ̂ . : "• ■ ■■were incubated at O C for 10 minutes in 5 ml polypropylene centrifuge
tubes (Sarstedt) with 1 ml of 60m M  HEPES-Tris buffer (pH 6.8)

: : g / y  : 3 /  ^
containing (N-methylamine- H) muscimol ( ( H) muscimol, 19 Ci per mmol.
Radiochemical Centre, Amersham) in the presence or absence of 100 yM

■ -' 3' 'GABA (Sigma). Specific (H) muscimol binding reached equilibrium 
very rapidly, most of the binding had occurred within 1 minute and 
was complete by 10 minutes (Figure 12a). Incubations were terminated 
by centrifugation at 50,000 xg for 10 minutes at 0°C. The supernatants 
were aspirated and the pellets superficially washed twice with 5 ml of
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ice cold water. The pellets were solubilised by heating to 50°C for

1 hour with 100 yl of O.1̂ ] NaOH. The solubilised pellets were

transferred to scintillation vials and the radioactivity was measured

by liquid scintillation specroscopy using 10 ml of 0.6 percent PPO

(Sigma) in 4:1 toluene: methoxyethanol. Alternatively the samples

were counted using 8 ml of the scintillant "Cocktail T" (Hopkin and

Williams) plus 1 ml of distilled water. Counting efficiency ranged

from 26-34 percent and correction was made for quenching by the

external standards ratio technique (Peng 1977). The apparent
3dissociation constant (Kd) for ( H) muscimol binding was determined 

. 3using a range of ( H) muscimol concentrations from 0.5 - 33 nM. In all
3other experiments the ( H) muscimol concentration was fixed at 2.8 nM. 

Specific binding was taken to be that displaced by 100 yM GABA and this 

binding varied from 80 percent of total counts for binding to tissue from 

normal animals to 30 percent for binding to mutant tissue. Binding 

was linear with protein concentrations up to 0.55 mg protein per 

incubation (this limit was not exceeded) and was maximally displaced 

by 100 yM GABA (IC^^ - 130 yM). Protein concentrations were determined 

by the method of Lowry et al. (1951).

3
( H) DHA binding. This was determined using a modification of the 

method described by Bylund (1978). Cerebellar tissue (25-55 mg wet wt.) 

was homogenised using a Polytron disintegrator in 2 ml of ice cold 0.05 M 

tris HCl buffer (pH 8.0 at 25 C). The homogenate was stored at -20°C 

to await analysis performed as follows. (Freezing the tissue had no 

significant effect on binding). Homogenates were made up to 7 mis with 

buffer^ centrifuged (50,000 xg, 20 minutes, 3°C). Pellets were 

resuspended in a further 7 ml of buffer and again centrifuged. The 

final pellets were resuspended in 4.1 ml of buffer for assay.

Duplicate 900 ml aliquots of the homogenates were incubated at 25°C for 

.25 minutes with 100 yl of buffer containing 1 (propyl-2, 3-^H)
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dihydroalprenolol ( (̂ H) DHA), 32-59 Ci per mmol (Radiochemical Centre, 

Amersham) in the presence or absence of 1 yM 1-isoproterenol bitartrate
3(isoprenalin (Sigma)). (Specific ( H) DHA binding reached equilibrium

within 15 minutes and remained constant for at least 25 minutes

(Figure 15a)). Incubations were terminated by the addition of 5 ml of

ice cold buffer and rapid filtration through glass fibre filters. The

filters were immediately washed twice with a further 5 ml of cold buffer.

Radioactivity on these filters was determined using the method outlined
3previously* The Kd of ( H) DHA binding was determined using a

3range of ( H) DHA concentrations from 0.1 to 2.2 nM. In all other
3experiments binding was performed using a fixed concentration of ( H) DHA

(0.5 nM). Specific binding was taken to be that displaced by isoproteronal,

This binding varied from 50 percent of total counts for binding to tissue

from normal animals, to 15 percent for binding to mutant tissue. Binding

was linear with cerebellar tissue concentrations up to mg protein per
3incubation (this limit was not exceeded). Specific ( H) DHA binding was 

displaced by 97 percent by 1 yM isoproterenol (IC^^-30yM).

3( H) QNB binding. The binding of this ligand was examined using a 

modification of the method described by Yamamura & Snyder (1974).

Cerebella were homogenised using a Polytron disintegrator or glass-tefIon 

mortar and pestle in 0.05 M sodium potassium phosphate buffer (pH 7.4)

(final tissue concentration approximately 5-15 mg per ml). When the 

cerebral cortex was examined the tissue concentration was reduced to 3 mg 

per ml to reduce the level of specific binding to that of the cerebellum.

The protein concentration for material from the cerebellar glomeruli 

preparation was 0.5 - 2.7 mg per ml. Triplicate 100 yl aliquots of these 

homogenates were incubated with 1 ml of buffer containing (3-?H) 

Quinuclidinyl-benzilate ((H) QNB, 8-16 Ci per mmol. Radiochemical Centre, 

Amersham) in the presence or absence of 10 yM (Sigma) for 60 minutes at 

25°C. (Specific (̂ H) QNB binding reached equilibrium within 20 minutes and 

thereafter remained constant for at least 60 minutes (Figure 18a)).
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Y  The incubations were terminated by the addition of 5 ml of ice cold

buffer and rapid filtration under suction through glass fibre filters 

(Whatman, GF/C). The filters were immediately washed 3 times with 5-10 ml

of ice cold buffer. The radioactivity on the filters was then counted as
3 3outlined for ( H) muscimol binding. The Kd of ( H) QNB binding was

determined using a range of (̂ H) QNB concentrations (0.04-2 nM). All

other studies were performed using a fixed QNB concentration (2nM) which

gives greater than 90 percent saturation of the QNB receptors. (Although

QNB binding was not examined at concentrations in excess of 2nM the use of

this concentration was felt to be justified for the following reason. A
3number of workers have examined ( H) QNB binding in excess of 2nM and

lower affinity sites were not revealed (Yamamura & Snyder, 1974a;

Sugiyama et al. 1977; Mallol et al. 1979)). Specific binding was taken 

to be that displaced by atropine, i.e. the difference between binding 

in the presence and absence of atropine (typically 75 percent of total 

binding). Saturation binding was linear with cerebellar tissue 

concentrations up to 2.4 mg wet wt. per incubation and was maximally

displaced by 10 yM atropine 8 nM) .

3.3 Results
3 3( H) Muscimol binding. Examination of the kinetics of ( H) muscimol

binding by Scatchard Analysis (Figure 12) indicated that this ligand was

bound with high affinity to a single population of receptors

(Kd = 13 ^  1 nM, B^^^ 1270 +_ 100 pmol per g protein at 20 days). A

statistical analysis of the data in Figure 12 (Edwards, 1967) showed

that the Kds at 10 and 20 days were not significantly different

(Figure 12, legend). Although significant levels of binding were found

at the earliest age examined (0.028 pmol per cerebellum, at 5 days)
3development of ( H) muscimol binding occurred mainly postnatally 

(Figure 13). The maximum increase in binding occurred between 15 and 

20 days and binding levels continued to increase up to 30 days.
4
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’ Although there was no significant increase in binding after 25 days

there was a slight but significant reduction in binding between 30 and 

40 days (t = 3.07, p<0.02, 2-tailed Student's t-test). With the
3exception of jp, ( H) muscimol binding was reduced in all mutant cerebella

(Figure 14, see also Tablé 3 for a summary of the analysis of variance

of this data). Binding per cerebellum was most reduced in sg (11 and

4 percent of control at 10 and 20 days respectively). The corresponding

values for wv were 41 and 12 percent and for rl 34 and 19 percent. It

 ̂ should perhaps be noted that although in all cerebellar mutants, binding

with respect to control decreases over the period 10-20 days, the
3absolute values for ( H) muscimol binding in these mutants show a 

significant increase (i.e. wv, t = 3.69, p<0.01; sg, t = 3.13, p<0.02; 

all 2 tailed Student's t-test). The concentration of (̂ H) muscimol 

binding sites in preparations of cerebellar glomeruli was significantly 

higher (approximately 3-fold) than that of the homogenate from which they 

were prepared (t = 3.36, p<0.05. Student's t-test. Table 4).

3 3( H) DHA binding. The Scatchard plot of ( H) DHA binding (Figure 15)

indicated that this ligand was bound to a single population of receptors 

with high affinity (Kd = 0.26 + 0.5 nM, B^^^ = 86 7 pmol per g protein

at 20 days). Statistical analysis of the data in Figure 15 also 

indicated that the Kds for binding at 10 and 20 days were not
3significantly different (Figure 15 legend). ( H) DHA binding developed

mainly after birth (Figure 16). Significant binding was found in the 

cerebellum at 5 days . The maximum increase in binding occurred 

between 10 and 15 days and maximum levels of binding were achieved at 

20 days (0.0888 pmol per cerebellum). Thereafter no significant changes
3in binding occurred. ( H) DHA binding per cerebellum was significantly 

reduced in all mutants at 10 and 20 days except for jp (Figure 17, see also 

Table 5 for a summary of the analysis of variance of these data).

Binding per cerebellum was most reduced in sg (20 and 14 percent control
4
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-J" at 10 and 20 days respectively). The corresponding values for wv were

45 and 22 percent and for rl, 48 and 19 percent. Although the 

cerebellar mutants show a reduction in binding relative to control 

between 10 and 20 days, the absolute binding figures show absolute 

increases (some of which are significant over this period (i.e. wv, 

t =2.87, p<0.05; rl, t = 1.7, p<0.1 sg, t = 6.46, p<O.01; 2 tailed 

Student's t-test, using a method for non-homogenous variance (Winer, 1971) 

where appropriate).

_̂ q 2
( H) QNB binding. Examination of the kinetics of ( H) QNB binding by

3Scatchard analysis (Figure 18) indicated that ( H) QNB was bound to a

single population of receptors with high affinity (Kd = 0.15 + O.OlnM B^^^=

162 + 5 pmoles per g protein). In addition Figure 18 showed that the

Kds at 10 and 20 days were not significantly different (Figure 18 legend).

Most of the development of binding in the cerebellum occurred postnatally

(Figure 19). Significant levels of binding were recorded at 5 days

(0.099 pmol per cerebellum) and the maximum increase in binding occurred
3between 5 and 15 days. The development of ( H) QNB binding was

^  3
essentially complete by 20 days (0.773 pmol per cerebellum). ( H) QNB

binding was reduced in all the cerebellar mutants (Figure 20, see also

Table 6 for a summary of the analysis of variance for this data).

Binding was most affected in wv (40 and 36 percent of control at 10 and 20

days respectively) and sg (41 and 22 percent of control at 10 and 20 days

respectively). Rl was the least affected of the cerebellar mutants (62

and 50 percent of control at 10 and 20 days). Jp mutants showed normal

ii—  binding levels at 10 days and a 20 percent reduction in binding at 20 days

It should perhaps be pointed out that in all cerebellar mutants there was

an increase in the concentration of binding sites compared to their

controls (Figure 20). Examination of the kinetics of (̂ H) QNB binding

to mutant tissue (Table 7) indicated that the affinity constants for this

binding were not significantly different from their individual controls.
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In addition the Kd for binding to cerebral cortex (0.16 nM) was not

significantly different from that for cerebellum although maximal

binding was much higher in the cerebral cortex (B cerebral cortex =max
1520 + 100 pmol per g protein compared with B cerebellum = 162 pmol —  max
per g protein). Although in all cerebellar mutants there were no major

3changes in the amount of ( H) QNB binding per cerebellum relative to 

controls at 10 and 20 days, there were significant increases in the 

absolute values of binding in. wv, rl and sg cerebellum over this period 

(i.e. wv, t = 7.65, p<0.01; rl,. t = 4.03 p<0.01; sg, t = 10.14 p<0.01).
3Table 4 shows that the concentration of ( H) QNB binding sites in 

cerebellar glomeruli was not significantly different from that of the 

original homogenate from which these particles were prepared.

The data for the development of binding sites in normal mice and the 

comparison of binding sites in normal and mutant mice has been presented 

both in terms of binding per g protein (i.e. receptor concentration) and 

binding per cerebellum. However since the cerebellum is undergoing rapid 

growth over the period studied and because the cerebellar sizes of the 

mutants are much smaller than their controls, these two parameters 

provide differing information about the change in cerebellar receptor 

populations. In the development of binding sites in normal animals 

for exampley the binding per cerebellum data show how the receptors change 

in number in this brain region. However the binding per g protein data, 

indicates how the receptor population changes during development in 

relation to the growth of the cerebellum. (i.e. if the increase in 

receptor population exceeds the change in cerebellar weight then one sees 

an increase in the receptor concentration). In the absence of data 

concerning the growth of the cerebellum such information could prove 

misleading. For example in the development of QNB binding there was no 

dramatic change in the concentration of these receptors in the cerebellum 

between 5 and 20 days, but the number of receptors in this brain region
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increased 8-fold. When examining receptor populations in mutant 

animals the same problems arise. For example an increase in the 

concentration of binding sites (as seen for QNB binding) might be 

misleading if one did not know that mutant cerebella were much smaller 

than their controls. However such data provides information concerning 

the possible location of binding sites. If the concentration of 

binding sites is increased in mutant cerebella, this may indicate that 

those cells remaining have a higher proportion of receptors than those 

cells lost. The binding per cerebellum data for the mutants 

indicates whether there has been a net loss of receptors from the 

brain region as a result of the mutation. Thus if the receptors were 

unaffected by the mutations the binding per cerebellum data would be 

identical to controls whereas the concentration of binding sites 

would be markedly increased. To avoid confusion, the discussion will 

be limited to binding per cerebellum unless indicated otherwise.
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FIGURE 12 Scatchard plot of (̂ H) muscimol binding to the total 

particulate fraction of 10 day (circles) and 20 day (triangles) 

mouse cerebellum. Each point is the mean of 2 experiments (range < 15 

percent). The binding parameters, calculated from these data by 

linear regression (Edwards, 1967) were as follows:

10 days, Kd = 16.4 ^  3.4 nM, ~ 310 48 pmol per g protein;

20 days Kd — 13.0 4̂  1.4 nM, = 1282 ^  105 pmol per g protein.

The regression coefficients for the linear regressions were 0.86 and 

0.95 for 10 and 20 days respectively. The difference between the 

Kds was not statistically significant (t = 0.51, p<0.50, 2 tailed 
Student's t-test).
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FIGURE 12a Time course of (^H)rausciraol binding. Cerebellar 
tissue from 20 day emimals was incubated with (^H)muscimol 
for If 3 and 10 minutes before centrifugation# The results 
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3FIGURE 13 The development of ( H) muscimol binding in normal 
mouse cerebellum. Results plotted as means + S.E.M. n = 5- 
Unbroken line shows data expressed as pmol per cerebellum; 
broken line shows data as pmol per g protein.
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14 A summary of the data for (̂ H) muscimol binding to

"freeze thawed" total particulate fraction from the cerebella of

weaver, reeler, staggerer and jimpy mutants at age 10 and 20 days

(as indicated below bars). The data are expressed as mean percent

control ±  s.e.m. (n = 5), both as binding per cerebellum (open bars),

and binding per unit protein (shaded bars). The appropriate controls

were taken from the following sources: wv, rl and jp controls were

normal B6/CBA stock; sg controls were non-carriers from sg stock.

Identified by their dilute coat marker (see page 113 for further 
details).

The absolute control values at age 10 days were as follows: wv, rl and

jp controls, 0.080 + O.ol2 pmol per cerebellum, 99 t 10 pmol per g 

protein; sg controls, 0.070 +^>011 pmol per cerebellum, 67 + 7 pmol 

per g protein. At 20 days the corresponding values were: wv, rl and 

jp controls, 0.533 +6.025 pmol per cerebellum, 273 + 1 4  pmol per 

g protein; sg controls 0.344 + 0-OZ/ pmol per cerebellum, 1^2 +

11 pmol per g protein, :
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FIGURE 15 Scatchard plot of (̂ H) DHA binding to the total 
particulate fraction of 10 day (circles) and 20 day (triangles) 
mouse cerebellum. Each data point represents the mean of 2 
determinations from duplicate experiments (range 15 per cent). 
The binding parameters, calculated from this data by linear 
regression (Edwards, 1967), were as follows : 10 days, Kd = q .19 + 

0.03 ^max " ^ pmol per g protein; 20 days, Kd = 0.26 +
0.05 nM, B = 8 6 + 7  pmol per g protein; The regressionIiioJK.
coefficients for the linear regressions were 0.90 and 0.88 for 
10 and 20 dayŝ  respectively.
The difference between the Kds was not statistically significant 
(t = 1.1^,pu>0.25, 2 tailed Student's t-test).
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FIGURE 13a Time course of (^H)DHA binding. Cerebellar
?tissue from 20 day animals was incubated with ( H)DHA

for 1,5»12 and 25minutes before filtering. The results
are from 2 experiments and are expressed as means 1 
range.
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FIGURE 16 The development of (̂ H) DHA binding in normal mouse 
cerebellum. Results are plotted as means + S.E.M. n = 6 
unless indicated otherwise in parantheses. Unbroken line 
shows data expressed as pmol per cerebellum; broken line shows 

data as pmol per g protein.



t
—136 —

FIGURE 16

0 .10-,

■s
ü-
mft
tH
I
I
Q

r50

0.05 -

oj

- - Ï

5
POSTNATAL AGE (days)



T
-137“

Figure 17 A summary of the data for (̂ H) DHA binding to the total 

particulate fraction from the cerebella of weaver, reeler, staggerer 

and jimpy mutant mice at age 10 and 20 days (as indicated below bars).

The data are expressed as mean percent control ^  s.e.m. (n = 5), both 

as binding per cerebellum (open bars), and binding per unit protein 

(shaded bars). The absolute control values at age 10 days were as 

follows: wv controls, 0.0285 +0.0011 pmol per cerebellum, 30.7 1.0 pmol

per g protein; rl controls, 0.0250 +. 0.0033 pmol per cerebellum, 24.5 

+ 3.9 pmol per g protein; sg controls, 0.0268 _+ 0.0021 pmol per cerebellum, 

39.6 + 2.6 pmol per g protein; jp controls, 0.0274 0.0039 pmol per

cerebellum, 31.6 + 3.9 pmol per g protein. At 20 days the values were: 

wv controls, 0.0888 0.0043 pmol per cerebellum, 42.1 + 1.5 pmol per g

protein; rl controls, 0.0888 4̂  0.0043 pmol per cerebellum, 42.1 4̂  1.5 

pmol per g protein, sg controls, 0.0665 +̂  0.0031 pmol per cerebellum,

43.3 + 1.5 pmol per g protein, jp controls, 0.0874 +^0.0041 pmol per 

cerebellum, 43.7 + pmol per g protein.
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FIGURE 18 Scatchard plot of (̂ H) QNB binding to cerebellar 
homogenates from 10 day (triangles) and 20 day (circles) mouse. 
Each point is the mean of ii experiments (S.E.Ms < 10 percent). 
The binding parameters calculated from this data by linear 
regression (Edwards, 1967) were as follows : 10 days, Kd =
O.lU + 0.01 nM,  ̂131 + h pmol per g protein; at 20 days
Kd = O.lU + 0.03 hM, = 118 + 11 pmol per g protein. The
regression coefficients for the linear regressions were 0.97 and 
0.99 at 10 and 20 days,respectively. The difference between the 
Kds was not statistically significant (t = 0.037 p-<C0.25,
2 tailed Student’s t-test).
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figure l8a Time course of (^H)QNB binding. 
Cerebellar homogenates from 10 day mice were 
incubated with (^H)QNBl for 5 j 10,20 and 60 
minutes before filtering. The results are from 
2 experiments and are expressed as means 1 range
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FIGURE 19 The development of (̂ H) QNB binding in normal mouse 
cerebellum. Results plotted as means + S.E.M., n = 6 unless 
otherwise indicated in parentheses. Unbroken line shows data 
expressed as pmoles per cerebellum; broken lines shows data as 
pmoles per g protein. The cerebellar wet wts. of these animals 
are as follows : 5 days, 12 + 0.5 mg; 10 days, 32 + 1.3 mg; 
l5 days, i;1 + 1 .Ij. mg; 20 days, 50 + 1.1 mg; 25 days, 51 + 1 .8 mg,
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-1 4 4 -"T 3Figure 20 A summary of the data for ( H) QNB binding to cerebella

homogenates of weaver, reeler, staggerer and jimpy mutants at age

10 and 20 days (as indicated below bars). The data are expressed as

mean percent control s.e.m. (n = 6) in the form ( Ĥ) QNB bound per

cerebellum (open bars) and (̂ H) QNB bound per unit protein (shaded bars).

The absolute control values at age 10 days were as follows: for wv and jp,

124 +_ 7 pmoles per g protein, 0.373 + 0.023 pmol per cerebellum; rl

control, 118 pmol per g protein; 0.373 0.011 pmol per cerebellum;

' ' sg control (grey), 134 7, pmol per g protein, 0.384 + 0.011 pmol per

cerebellum. The mean cerebellar wet weights (mg) for the mutants were: 

wv, 15 +0.8, sg 9 +0.2; rl, 14 ĵ  O.6; jp, 31 _+ 1.8. At 20 days the 

control values were wv and jp control, 130 +. 9 pmoles per g protein,

0.773 0.022 pmoles per cerebellum, rl control,!18 + 5 pmoles per g

protein, 0.659 + 0.016 pmoles per cerebellum; sg control, 156 11

pmoles per g protein, 0.649 +̂  0.032 pmoles per cerebellum. The mean 

cerebellar wet weights (mg) for the mutants were: wv, 16 +_0.4; sg,

8 + 0.2; rl, 16 + 0.5; jp, 40 + 0.8.
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figure 2 1 A summary of* the binding data from figures 
13 t1 6 ,19 »plus the cerebellar weight data from figure 
19(legend), is given below. The data are expressed as a 
percentage of the value from 25 day animals, to allow
a comparison of the developmental profiles of (^H)QNB,
3 3( H)DHA and ( H)muscimol binding and cerebellar growth#
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TABLE 3 Summary of analysis of variance performed on (̂ H) muscimol
binding (per cerebellum) in mutants and their controls.

AGE MUTANT
(10 vs 20 days) vs

CONTROL

wv 28.2 33.7
sg 17.7 i|8.5
rl 32.5 2ii.l|.
jp 381 0.03^

The experiments were designed for 2 x 2  factorial analysis of 
variance. However a significant difference in cell variances was 
observed in all comparisons (p<0 .05, from variance ratio 
distribution statistic). (Homogeneity of variance is a prerequisite 
for analysis of variance (Edwards^ 1967)). Thus the simple effects 
of age and mutation were computed using a modification of analysis 
of variance^ which takes into account the heterogeneity of variance, 
outlined in Winer (1971).

The F ratios are given above for the simple effects of age and 
mutation (n = 5, 1 and 19 degrees of freedom). All F ratios 

are highly significant (p<0.001) unless indicated otherwise.

^p>0.25 (not significant).
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TABLE k The binding of (̂ H) muscimol and (̂ H) QNB to fractions 
enriched in cerebellar glomeruli, values expressed as mean
- S.E.M. (n = 3).

AMOUNT OF LIGAND BOUND 
(pmol per g protein)

LIGAND
(̂ H) MUSCIMOL 
(̂ H) QNB

TOTAL HOMOGENATE 
- 159 

152 - 30

GLOMERULI FRACTION 
1076 -  295*

lij.2 -  1 0

^Significantly different from total homogenate value t = 3.362 
p<0.05 (2-tailed Student's t-test).
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3TABLE 5 Summary of analysis of variance performed on ( H) DBA
binding (per cerebellum) in mutants and their controls.

AGE MUTANT
(10 vs 20 days) vs

CONTROL
wv 18.7 38.5
sg 9.5b 66,k
rl 19.9 38.0
jp 137 0.06&

The experiments were designed as outlined in Table 3 legend. 
However a significant difference in cell variances was observed 
(p<0.05 from variance ratio distribution statistic). Thus 
F ratios for the simple effects of mutation and age were computed 
(see Table 3 legend) (n = 5, 1 and 19 degrees of freedom). All 

F  ratios given above are highly significant (p<0.001) unless 
indicated otherwise.

%>0.25 (not significant) ^p<0.01 .
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3TABLE 6 Summary of analysis of variance performed on ( H) QNB
binding (per cerebellum) in mutants and their controls.

wv-î(-

MJTANT
AGE vs INTERACTION

(10 vs 20 days) CONTROL
ia.8 i;5.3
10.7̂  17.5sg»

rl 170 255 111
jp Il*7 8.1î  9.5^

The F ratios are given for a 2 x 2 factorial design (n = 6, 1 and 
20 degrees of freedom) unless indicated otherwise.

Significant F ratios for interaction means that the combined 
effects of mutation and age were non additive.

*Where no interaction values are shown, a significant difference 
in cell variances was observed (p<C0.05, from variance ratio 
distribution statistic) (see Table 3 legend). In such cases the 
F ratios for the simple effects of mutation and age were computed 
(see Table 3 legend for details) (n = 6, 1 and 23 degrees of freedom). 
All F ratios given above are highly significant (p<0.00l) unless 

otherwise indicated.

^p<o.025 ^p<0.005.
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TABLE 7 A summary of binding parameters for ( H) QNB binding to 

normal and mutant mouse cerebellar material. The Kd and Bmax values 

were obtained from Scatchard plots of data (n = 8) from duplicate 

experiments. The line of best fit for the Scatchard plot was 

determined by linear regression (Edwards, 1967).

Mouse
strain
(Age in days)

Apparent 
Kd (nM+SEE)

Apparent Bmax 
(pmoles/gprotein 
+ SEE)

Correlation 
cooefficient

wv/wv (20) 0.13 + 0.01 163 + 4 .99
B6/CBA (20) 0.11 + 0.02 130 + 9 .93

sg/sg (15) 0.08 + 0.02 291 + 27 .85
C57BL/6 (grey) 

(15) 0.09 +0.02 138 + 1 1 .89

rl/rl (12) 0.11 + 0.01 159 + 5 .98
C57BL/10 (12) 0.13 + 0.02 155 + 1 3 .92

B6/CBA cerebellum
(20) 0.14 + 0.01 162 + 5 .99

B5/CBA cerebral
cortex (20) 0.16 + 0.02 1520 + 100 .95



t
-152-

TABLE 8 Body weights of normal and mutant mice used in the 
QNB binding study (Figure 20) at age 10 and 20 days. Values 
expressed as mean + S.E.M. (n = 5 or 6).

BODY WEIGHT (g)
ANIMAL TYPE 10 days 20 days
B6/CBA 5.9 + 0.2 9.1 + 0.2

C57BL/6 (dilute) 5.9 + 0.3 7.7 + O.h
wv k-7 + 0.3 ' 6.1 + O.ii
sg i4.5 + 0.3 5.8 + 0.3

5.1 + 0.5 6.0 + 0 .14.
jp I4.5 + 0.6 5.2 + 0.2
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TABLE 9 A summary of the binding per cerebellum data shown in 
figures lii, 17 and 20. Values are expressed as mean + S.E.M.
(see individual figures for further details).

MUTATION RADIOLIGAND BINDING PER CEREBELLUM (PER CENT CONTROL)
(age in days) (̂ H) MUSCIMOL (̂ H) DHA (̂ H) QNB

wv (10) i;1 + 9 i;6 + 3 UO + 3
wv (20) 12 + 1 22 + 2 36 + 2

rl (10) 3h + 10 U8 + 5 62 + b
rl (20) 1 9 + 2  19 + 3 50 + 2

sg (10) 1 1 + 1  20 + 1 Ii1 + 3
sg (20) i; + 1 lii + 1 + 1

jp (10) 68 + 6 96 + 9 100 + 10

jp (20) 99 + 8 107 + 2 80 + 3
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3.4 Discussion

Muscimol binding. The maximal amount of muscimol binding in 20 day

mouse cerebellum in this study (1.3 pmol per mg protein. Figure 12)

is similar to that observed by Snodgrass (1978), 3.3 pmol per mg

protein and Beaumont et al. (1978), B^^^ (high affinity binding) 0.7 pmol

per mg protein in the rat cerebral cortex and by Wang et al. (1979),

B (high affinity binding) 2.1 pmol per mg protein, for mouse cerebral

cortex. Although none of these studies examined binding in the

k— _ cerebellum, Beaumont et al. (1978) found that binding in the cerebellum

was twice as high as in cerebral cortex. Assuming an identical Kd in

both brain regions the B in cerebellum would approximate to 1.4 pmolmax
per mg protein. It should be noted that the studies of Snodgrass (1978), 

Beaumont et al. (1978) and Wang et al. (1979) were carried out on crude 

synaptic membrane preparations, whereas this study was performed on the 

total particulate fraction. One would expect the concentration of 

receptors in the preparation used here to be lower than that of crude 

synaptic preparations. The level of specific binding reported here for 

mouse cerebellar total particulate fraction, up to 80 percent, compares 

with over 80 percent reported by Beaumont et al. (1978) for rat brain 

membranes. Snodgrass (1978) reported a figure of 65 percent for 

specific binding to rat brain membranes and the higher level of non 

specific binding may be the result of less thorough washing. Snodgrass 

(1978) only washed the preparation once after the incubation and 

centrifugation, whereas in this study and that of Beaumont et al. (1978) 

the pellet was rinsed twice. The Kd for muscimol binding to mouse 

cerebellar tissue at 20 days (13 1 nM, Figure 12) was similar to that

reported by Wang et al. (1979) (9 nM) for high affinity binding to mouse

cerebral cortex. However this figure is higher than that reported by 

Snodgrass (1978) (2.7 nM) and intermediate between high and low

affinity binding sites (Kd = 2.2 ^M and 60 ^M) found by Beaumont et al. 

(1978) for rat cerebral cortex. The biphasic nature of binding reported
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by Beaumont et al. (1978) and Wang et al. (1979) was not apparent in 

these studies (Figure 12) indicating that over the range of 

concentrations used muscimol was bound to a single population of 

high affinity binding sites. Since there was no significant 

difference in the affinity of binding at 10 and 20 days it is probable 

that the changes in binding occurring during development were due to 

a change in the number of receptors and not due to a change in the 

affinity of the receptor for the ligand. Because of the large amounts 

of material required to examine the kinetics of binding, information 

concerning the Kd of muscimol binding to mutant material was not 

available. However since the binding of muscimol to normal cerebellum 

did not indicate the presence of more than one high affinity site for 

this ligand it has been assumed in this discussion that changes in 

muscimol binding to the mutants were due to changes in the number of 

receptors.

The developmental profile of muscimol binding (Figure 13) closely 

resembles that reported for sodium independent GABA binding to rat 

cerebellar material (Coyle & Enna, 1976) which adds further weight to 

the hypothesis that muscimol binds to GABA receptors (see section 1.7). 

The majority of GABA receptors in the cerebellum are thought to be 

localised on the granule cell dendrites (postsynaptic to the Golgi 

cell axons) in the cerebellar glomeruli, because the granule neurons are 

known to be receptive to GABA (see section 1.4) and are by far the most 

numerous neuronal type in the cerebellum (Eccles et al. 1967).

Additional evidence for the localisation of the majority of GABA 

receptors on the granule cells comes from studies of virally induced 

granule cell deficient hamsters (Simantov et al. 1976) and mutant mice 

(sg, wv and rl) (Olsen & Mikoshiba, 1978) which show a severe reduction 

in sodium independent GABA binding. In the study of Olsen & Mikoshiba
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it is also reported that GABA receptor binding in the cerebellum

of the nervous mutant (nr) which has a deficit of Purkinje neurons

(Sidman & Green, 1970) was not significantly different from control

animals. Thus these authors concluded that GABA receptors on Purkinje

cells make up only a small fraction of the GABA receptors in the

cerebellum. Further evidence for this idea comes from the study of
3Roffler-Tarlov (1979). This study examined ( H) GABA binding to the 

cerebellum of the nervous mutant over the period of Purkinje cell death, 

which starts around day 15, and showed that there was no marked loss 

in binding sites over this period. The reduction in binding seen in 

agranular cerebella (Simantov et al.1976; Olsen & Mikoshiba, 1978) 

suggests that a large proportion of the GABA receptors are associated
0with granule neurons. This is supported by the finding that ( H)

muscimol binding is significantly enriched in cerebellar glomeruli

fractions (Table 4) and the report by Olsen & Mikoshiba (1978) which

showed that purified granule cell fractions contained large numbers of 
3( H) GABA receptors. Thus it seems probable that the development of 

muscimol binding is mainly a reflection of the maturation of GABAergic 

synapses on the granule cells. The finding that the major increase 

in muscimol binding is between 15 and 20 days supports this idea, since 

in the mouse the cerebellar glomeruli approach maturity around day 15 

although the maturation of the glomeruli is not complete until around 

day 35 (Larramendi, 1969). A number of studies have suggested that 

receptor formation precedes synaptogenesis (Woodward et al. 1971;

Crain & Bornstein, 1974), and the finding that significant levels of 

muscimol binding (0.028 pmol per cerebellum) are found in 5 day mouse 

cerebellum supports this idea since the earliest GABAergic synapses 

appear around day 7 (Larramendi 1969).
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The reduction in muscimol binding to the cerebellar material from 

wv, rl and sg is similar to that observed by Olsen & Mikoshiba (1978) 

for sodium independent GABA binding. This is further confirmation 

of the validity of the use of muscimol to examine GABA receptors.

Interpretation of the mutant data reported here poses some 

problems. Although the most marked feature of the cerebellum of 

these animals is the loss of granule neurons, other anomalies occur, 

both as a consequence of granule cell loss and in certain instances, 

possibly as a more direct effect of the mutation (Rakic & Sidman,

1973 a,b; Sotelo, 1975 a,b; Sidman, 1968; Rakic, 1976; see also 

section 1.3). Despite this problem, the finding that muscimol binding 

is severely reduced in the cerebella of the animals (Figure 14 and 

Table 3) suggests that a large proportion of the muscimol binding 

deficit is due to the loss of binding sites on granule neurons.

Of the cerebellar mutants, rl is least affected (19 percent control 

at 20 days) and this might be predicted, since these animals have 

significant numbers of normal granule cells (Sidman, 1968).

Binding is similarly affected by the wv mutation (12 percent 

control at 20 days). The slightly lower figure for the wv mutant 

may be the result of the larger granule cell deficit seen in wv 

compared with rl (Sidman, 1968). The sg mutant shows the largest 

binding deficit (4 percent control at 20 days). Whether the increased 

reduction in sg compared with wv is the result of Purkinje cell loss 

in these animals is unclear. However, the finding that the levels 

of the GABA synthesising enzyme (glutamate decarboxylase) are more 

reduced in sg (20 percent control at 21 days) than wv (30 percent 

control) (Beart & Lee, 1977) indicates that GABAergic neuron activity 

is markedly more affected in sg compared with wv, possibly as a result
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of Purkinje cell loss. The finding that muscimol binding is not 

significantly affected by the jp mutation (Figure 14) is consistent 

with the normal neuronal organisation of the jp cerebellum 

(Hirano et al. 1969; Sidman et al. 1964).

In all cerebellar mutants the deficit in muscimol binding 

increased in severity over the period 10-20 days (Figure 14), which 

is perhaps an indication that the processes responsible for the 

reduction in binding continue to operate over this interval. This 

process may be the continuing granule cell death/short fall in 

available granule neurons^which occurs maximally between 10 and 21 

days (see Section 1.3). Both Olsen & Mikoshiba (1978) and 

Simantov et al. (1976) attempted to estimate the percentage of 

total GABA receptors on the granule cells using the results of 

sodium independent GABA binding to agranular cerebellar tissue.

This has not been attempted here since it is not possible to 

calculate what effects the reduction in granule cells has on the 

GABA receptor populations of the remaining cell types.

DHA binding. The level of DHA binding observed in this study 

(Bmax 86 7 pmol per g protein at 20 days. Figure 15) compares

with the values of 110 pmol per g protein (for crude membrane 

fraction) and 5.1 pmol per g wet wt. (for total particulate 

fraction), reported for DHA binding to rat cerebellum (Alexander 

et al. 1975; Johnson & Hallman, 1978). The Kds reported for this 

binding by Alexander et al. (1975) and Johnson & Hallman (1978)

(6.7 nM and 1.6 nM, respectively) were higher than the value 

reported here (0.26 + 0.05 nM, Figure 15). However Bylund (1978)

1̂.
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using similar concentrations of radioligand and isoproterenol as 

a displacer (see Section 1.7 for the importance of displacer choice 

in 3-adrenoceptor binding studies), obtained a Kd of 0.5 nM for 

DHA binding to guinea pig cerebral cortex. That the Kds for DHA 

binding at 10 and 20 days did not differ significantly (Figure 15 

legend) suggests that the changes in binding seen during development 

were due to a change in the number of receptors and not due to a 

change in the affinity of the receptor for the ligand. Because 

of the large amounts of material required to examine the kinetics 

of binding, information concerning the affinity of DHA binding 

to mutant cerebellar material was not available. However since 

the binding of DHA to developing normal cerebellum did not indicate 

the presence of more than one high affinity site for this ligand, 

it has been assumed here that changes in mutant DHA binding were 

due to changes in the number of binding sites.

Significant amounts of DHA binding were found in 5 day animals 

(0.010 0.001 pmol per cerebellum)(Figure 16), and by analogy

with the rat, it seems likely that noradrenergic synapse formation 

occurs prior to this age (Yamamoto et al. 1977). There is no 

direct evidence concerning the neurotransmitter function of these 

early binding sites in the mouse cerebellum. However, Harden et al.

(1977) examined the ontogeny of 3-adrenoceptors in the rat cerebral
125 125cortex using the ligand ( I) iodohydroxybenzylpindolol ( ( I) IHYP)

They found that the development of these binding sites was coincident

with that of catecholamine stimulated adenylcyclase activity. In

addition. Woodward et al. (1971) showed that rat Purkinje neurons

were responsive to iontophoretically applied noradrenalin as early

as birth. Thus it is probable that these early receptors in the

mouse cerebellum are capable of functioning.
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The Sharp increase in DHA binding between 10 and 15 days 

coincides with the translocation and maturation of the climbing 

fibres (Larramendi, 1969). Although the noradrenergic fibres are 

not considered as climbing fibres (Bloom et al. 1971), they are 

similar in a number of respects. For example, both types of 

fibre synapse with Purkinje neurons on the dendritic thorns 

(Palay & Chan-Palay, 1974) and fluorescence studies indicate that 

as with climbing fibres, noradrenergic fibres are initially located 

around the cell body during development, but subsequently come to 

occupy the primary and secondary Purkinje cell dendrites in the 

molecular layer (Yamamoto et al. 1977; Bloom et al. 1971). Thus it 

may be that the noradrenergic fibres may undergo translocation 

similar to that documented for the climbing fibres (Larramendi, 1969) 

The time course for the development of DHA binding seen in this 

study is also paralleled by an increase in tyrosine hydroxylase 

activity (the enzyme responsible for the control of catecholamine 

Synthesis) with a six-fold increase occurring in the mouse 

cerebellum between 10 and 21 days (Beart & Lee, 1977). This gives 

further support to the idea that the development of DHA binding is 

closely associated with the development of noradrenergic functioning 

in the cerebellum.

DHA binding to total particulate fractions from the cerebella of 

wv, rl and sg mutants was markedly reduced (Figure 17), but was not 

significantly different from control value for material from jp 

mutants. The latter finding is consistent with the normal neuronal 

organisation in the cerebellum of jp mutants (Sidman et al. 1964; 

Hirano et al. 1969). If one assumes that the Purkinje cells are 

responsible for most of the DHA binding in the cerebellum (see
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Section 1.4) then it is not surprising that DHA binding was reduced 

in sg (14 percent control at 20 days. Figure 17) since these 

animals have a severe Purkinje cell deficit (Herrup & Mullen, 1979), 

and those Purkinje neurons which survive appear immature and stunted 

(Sidman, 1968; Landis & Sidman, 1978; see also Section 1.3). That 

adrenergic functioning is impaired in sg, is supported by the 

finding that tyrosine hydroxylase levels are much reduced 

(approximately 50 percent control at 20 days in the cerebella of 

these animals) (Beart & Lee, 1977). In addition using histo- 

fluorescence techniques the noradrenergic fibres of sg appear as 

disorganised matted tangles (Landis et al. 1975). The reduction 

in binding in wv and rl mutants is more difficult to explain since 

these animals have relatively normal numbers of Purkinje neurons 

(Sidman, 1968), although the dendritic arbor of these neurons is 

affected by the mutations (see Section 1.3). Reduced levels of 

tyrosine hydroxylase in wv mutant cerebellum has been reported 

(Beart & Lee, 1977) although the normal pattern of noradrenergic 

innervation of Purkinje neurons appears to remain (Landis et al.

1975). It seems likely therefore that in wv cerebellum the deficit 

in DHA binding is due to reduced noradrenergic functioning.

Presumably this is brought about indirectly by the effects of granule 

cell loss on the Purkinje cells, since the wv mutation is not thought 

to act directly in the Purkinje neurons (see Section 1.3). Since

j  the final result of the wv and rl mutations on cerebellar organisation

is very similar (Sidman, 1968) one might suggest that the reduction in 

DHA binding to the cerebellum is also the result of a deficit in 

noradrenergic functioning.

Unfortunately, there are no data for tyrosine hydroxylase activity
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in the rl mutant. However Landis et al. (1975) examined the 

noradrenaline levels in wv, rl and sg. The levels in sg and wv, 

consistent with tyrosine hydroxylase activity, were markedly 

reduced (approximately 50 percent control) while in rl the 

noradrenaline levels were not significantly different from control 

values. The reason for the difference is noradrenaline levels in 

wv and rl are not readily apparent, since the final effect of 

these mutations on the Purkinje cells is very similar (Sidman, 1968)., 

It should perhaps be noted that there appears to be a major anomaly in 

the data presented by Landis et al. (1975). The cerebellar weights 

for their mutants, sg, wv and rl (27, 39 and 30 mg wet wt.) contrast 

markedly with those used here (8, 16 and 16 mg wet wt)j and with 

those reported by other workers including Mallet et al. (1976);

Beart & Lee (1977) and Mariani et al. (1977). These differences 

were not the result of the mutations being carried on different 

backgrounds since identical strains were used in this study.

Another mechanism by which a reduction in DHA binding might be 

achieved is by noradrenergic hyperinnervation. Hyperinnervation 

of the rat cerebellum (produced by the neurotoxic agent 

6-hydroxydopamine) has been shown to reduce DHA binding in this 

region (Johnson & Hallman, 1978; Harden et al.1979). However this 

hyperinnervation, which increased noradrenaline levels two-fold, 

only reduced (^H) DHA binding to 80 percent of control. Since as 

already outlined there is no evidence to suggest that the cerebella 

of wv, sg or rl are hyperinnervate, it seems unlikely that such 

a phenomenon could account for the reduction in DHA binding seen in 

this study. Thus despite the findings of Landis et al. (1975), that

T-
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noradrenaline levels in rl cerebellum were normal, it seems 

probable that the reduction in DHA binding is the result of reduced 

noradrenergic functioning in this mutant.

In all cerebellar mutants the deficit in DHA binding relative 

to controls, increased in severity over the period (10-20 days.

Figure 17), which is perhaps an indication that the processes 

responsible for the reduction in binding continue to operate over 

this interval. This increasing deficit is most pronounced in wv 

(where binding fell from 46 percent control at 10 days to 22 percent 

control at 20 days) and in rl (where the corresponding fall in 

binding was from 48 to 19 percent control). This is consistent 

with the idea that the effect of the granule cell deficit (which 

occurs mainly during this period) on Purkinje cell development may be 

a major factor in reducing the number of DHA binding sites in wv and 

rl cerebellum. In the sg mutant the fall in binding relative to 

control between 10 and 20 days was much smaller (falling from 20 

percent at 10 days to 14 percent at 20 days; Figure 17). This 

might be taken as an indication that the granule cell loss plays a 

smaller part in the DHA binding deficit seen in sg. This is in accord 

with the suggestion that Purkinje cell loss might be the main cauS^ • 

of reduction in DHA binding in sg cerebellum.

There is little evidence for 3-adrenoceptors on neurons other 

than the Purkinje cells in the cerebellum (Tebecis, 1974). Although 

a number of studies have shown that glial cells possess 3-adrenergic 

ligand binding sites and catecholamine stimulated adenyl cyclase 

(Clark & Perkins, 1971; Gilman & Nirenberg, 1971; Maguire et al.

1976; Harden et al. 1976). However 6-hydroxydopamine which 

specifically destroys noradrenergic nerve terminals significantly
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affects 3-adrenergic ligand binding (Johnson & Hallman 1978;

Harden et al. 1979) and catecholamine sensitive adenylate cyclase 

(Kalisher et al. 1973) which suggests that these receptors are in 

close association with noradrenergic nerve terminals, i.e. postsynaptic 

specialisations on neurons. The studies of Atlas et al. (1977) 

using the fluorescent g-adrenergic ligand 9-amino acridinepropranolol 

(9-AAP) failed to show any major localisation over cells other than 

neurons in the cerebellar and cerebral cortex. Further evidence 

for the mainly neuronal localisation of 3-adrenoceptors comes from the 

sg mutant data. DHA binding in the cerebellum of these mutant 

animals is severely reduced (14 percent control at 20 days) although 

considerable astrocytic proliferation occurs (Hirano & Dembitzer,

1976; Lee et al. 1977) indicating that DHA binding to glia is 

probably not important in this study.

QNB binding. The amount of QNB binding in 20 day old mouse 

cerebellum seen in this study (130 +. 9 pmol per g protein. Figure 19) 

compares with values of 34 pmol per g protein (for crude membrane 

preparation) (Yamamura & Snyder, 1974a) and 51 pmol per g protein 

(total homogenate) (Kobayashi et al. 1978) for the rat cerebellum. 

Mallol et al. (1979) examined the binding of QNB to rat cerebellar 

homogenates using a variety of techniques and reported binding 

levels as high as 312 pmol per g protein using Millipore filtration 

and centrifugation techniques (see Section 1.7). They attributed 

the lower levels of binding reported by Yamamura & Snyder (1974a) 

and Kobayashi et al. (1978) partly to the use of glass fibre filters. 

However in this laboratory no significant difference was observed 

in QNB binding when the glass fibre filtration method was compared 

with the centrifugation method (East unpublished). The apparent
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Kd for binding to mouse cerebellar tissue was slightly lower 

(0.15 _+ 0.03 nM, Table 7) than that reported for the rat (0.4 nM) 

(Yamamura & Snyder, 1974). That the apparent Kd for QNB binding to 

cerebellar homogenates was not significantly affected by development 

(Figure 18) or as a result of the mutations (Table 7) indicates that 

the increases in QNB binding reported here were due to alterations 

in the numbers of receptors for the radioligand. In addition the 

finding that the Kds for cerebral cortex and cerebellum were not 

significantly different (Table 7) indicates that the QNB receptors 

are probably the same in both brain regions. This finding is in 

agreement with work recently published by Yavin & Harel (1979) for 

the rabbit although these authors found a much higher Kd (1.5 nM).

The developmental profile (maximal increase occurring between 5 

and 15 days) coincides with a major period of synaptogenesis in the 

mouse cerebellum (Larramendi, 1969). However the time course 

of development of QNB binding in the cerebellum appears to have 

important interspecies variation . Yavin & Harel (1979) found that 

in rabbit the development of QNB binding was complete by postnatal 

day 10, which corresponds roughly to day 5 or 6 in the mouse (based 

on cerebellar weights relative to adult values). At this age 

the cerebellum is very immature (around 25 percent of adult wet wt.) 

and synaptogenesis is just beginning (Larramendi, 1969). Thus 

the total development of QNB binding precedes synaptogenesis in 

the rabbit cerebellum and because of this Yavin & Harel (1979) 

suggested that these receptors might be implicated in neurogenesis.

The development of QNB binding in the brain of chick 
and rat is closely followed by the development of acetyl
cholinesterase (AchE) and cholineacetyltransferase (CAT) 
(Enna, Yamamura & Snyder, 1976; Coyle o. Yamamura, 1976)o
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Thus the data suggest that in the whole brain QNB binding may be 

associated with cholinergic synaptogenesis. Beart & Lee (1977) have 

shown that over the period 10-20 days the total CAT activity of the 

mouse cerebellum increases two-fold. In the present study QNB 

binding increased by a similar amount over the same time period 

(Figure 19). The evidence suggests that as for whole brain the 

development of QNB binding in the cerebellum is accompanied by the 

ontogenesis of a cholinergic marker indicating that QNB may be 

the result of synaptogenesis which contrasts with what occurs in 

the rabbit cerebellum. Although the data are not comprehensive, 

similar events seem to occur during the development of the human 

cerebellum (Brooksbank et al. 1978).

Although the development of* (jNB binding parallels that 
of the cholinergic marker CAT, muscarinic binding sites 
are located mainly in the molecular layer, where there 
are few cholinergic fibres (Rotter et al. 1 9 7 9b).

The function and precise cellular location of these receptors 

is unknown. However Rotter et al. (1979b) listed four structures

in the adult rat molecular layer on which these muscarinic receptors 

might be located. These were the non receptive parts of the Golgi 

and granule cells (parallel fibres) in the molecular layer (see 

Section 1.4 for evidence of their cholinoceptive nature). Rotter et al. 

(1979b) also considered that the Purkinje cells might also account for 

this binding since cholinoceptive Purkinje neurons have been reported 

(Crawford et al.1966). They also suggested that muscarinic receptors 

might occur on the climbing fibres since the pattern of development of
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these fibres closely corresponds to that seen for (̂ H) PBCM binding, 

i.e. starting in the deep medullary layer and moving through the 

granular layer to terminate in the molecular layer after 14 days 

(Rotter et al. 1979c). In addition Rotter et al. (1979c) 

postulated that this binding in the molecular layer might not be 

functional and might be a histogenetic expression of some primitive 

cholinergic mechanism.

That QNB binding is reduced by 50-60 percent of control in 

the agranular mutants, wv, rl and sg, suggests that a significant 

number of QNB binding sites are not localised on granule neurons, 

or their parallel fibres. This is further substantiated by the 

significant increases in the concentration of QNB receptors seen 

in the cerebella of all these mutants at 20 days (Figure 20). Also 

the finding that QNB binding sites are not enriched in cerebellar 

glomeruli fractions (Table 4) supports the idea that a large 

proportion of these sites are on cells other than granule neurons.

The possibility that large numbers of QNB binding sites are located 

on the Purkinje neurons is difficult to reconcile with the mutant 

data. The QNB binding levels in wv and sg are similar (Figure 20) 

despite the fact that sg has a severe Purkinje cell deficit 

(Herrup & Mullen, 1979). Thus of the four structures which might 

account for muscarinic binding sites as proposed by Rotter et al. (1979b) 

the Golgi neurons and the climbing fibres seem the more likely 

candidates. However if the major site of QNB binding were the 

climbing fibres, one might expect the increase in QNB binding to 

level out considerably after 15 days, since the study of Larramendi (1969)
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before this age. Thus of the alternatives, the location of muscarinic 

binding sites on Golgi neurons seems the most tenable.

QNB binding in the jp mutant, which has an apparently normal 

cerebellum in terms of synaptic organisation (Sidman et al. 1964;

Hirano et al. 1969), was only slightly reduced (80 percent control 

at 20 days. Figure 20). This slight reduction in binding may have 

been the result of a nutritionally based retardation of development 

since these animals have lower body and cerebellar wts. (Figure 20 

legend and Table 8).

It has been suggested that axonal growth is affected by the 

paucity of myelin in these animals (Webster et al. 1976, see also 

Section 1.3) and therefore the deficit in QNB binding might be the 

result of impaired neuronal input.

In all agranular mutants there is no large reduction in the 

amount of QNB binding relative to controls over the period 10-21 

days. This may indicate that the initial effects of these mutations,

i.e. those occurring before 10 days, play a larger role in producing 

the binding deficit than the larger reduction in granule cells seen 

between 10 and 20 days (Sidman 1968; Miale & Sidman, 1961). Another 

possibility is that reorganisation of the cerebellum might account 

for the absence of a further binding deficit over this period. For 

example, iriossy fibres form more than the usual number of contacts 

with Golgi cells in the wv mutant (Rakic & Sidman, 1973b). Such 

contacts might stimulate receptor formation.

T
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Whatever the site or sites of QNB binding in the cerebellum, 

the neuromodulatory role of these receptors, if any, remains 

to be established. However it seems unlikely that they play a 

major role in neurotransmission at the mossy fibre-granule cell 

dendrite synapse, since autoradiographic evidence strongly 

suggests that these sites are nicotinic (Hunt & Schmidt, 1978).

A comparison of the binding of the three ligands. The high 

concentration of muscimol binding sites in mouse cerebellum 

1280 pmol per g protein,(Figure 12) is in agreement with the 

wide range of evidence which indicates that all the major classes 

of neurons in the cerebellum receive GABAergic contacts (see 

Section 1.4). The level of binding of DHA is an order of 

magnitude smaller (86 pmol per g protein), but this is consistent 

with DHA binding sites being sited predominantly on the Purkinje 

neurons which account for less than 0.1 percent of cerebellar neurons 

(see Section 1.1). The similarly low level of QNB binding 

(130 pmol per g protein) coupled with the fact that these 

receptors do not appear to be localised adjacent to any cholinergic 

input (Rotter et al. 1979b) would seem to indicate that these 

receptors do not play a major role in cerebellar neurotransmission.

The developmental profiles of binding for the three ligands 

show some marked differences. Muscimol binding for example 

occurs latest in development (Figure 21) and the binding levels of
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this ligand increase much faster than cerebellar growth. In 

contrast the increases seen in QNB and DHA binding during 

development closely parallel the increase in cerebellar wet 

weight. These differences are reflected in the finding that 

only the concentration of muscimol binding increased markedly 

during development (Figures 13, 16 and 19). The possible 

reasons for these differences have been outlined in the previous 

discussion but it is worth repeating these points. Both QNB and 

DHA binding sites appear to be localised on cells other than 

granule neurons. These cells (i.e. Purkinje and interneurons) 

mature relatively early in development and form a large number of 

synapses during the period of granule cell proliferation and 

migration (i.e. before 15 days) (Larramendi, 1969; Miale & Sidman, 

1961). Since granule cell proliferation accounts for the 

increase in cerebellar size, this may explain why the developmental 

profiles for DHA and QNB binding closely follow the cerebellar 

growth curve (Figure 21). The majority of muscimol binding is 

thought to be on granule cell GABA receptors. The granule neurons 

continue to achieve their final locations up to around 15 days 

(after which cerebellar growth slows considerably (Figure 21,

Miale & Sidman, 1961). However the synaptic development of 

the cells may continue up to 35 days (Larramendi, 1969). This 

may explain why muscimol receptor binding levels continue to 

increase after cerebellar growth has finished.
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Although there is a large discrepancy in the binding levels of 

DHA and muscimol, the development of these binding sites and the 

effects of the cerebellar mutations on them is very similar and contrasts 

sharply with QNB binding. For example: (i) During development both

DHA and muscimol binding have a phase of very rapid increase in 

receptor number between 15 and 20 days for muscimol (Figure 13) and 

10 and 15 days for DHA (Figure 16). These time intervals coincide 

with periods of synapse formation on granule cell dendrites and

sharp increases in binding may be related to synaptogenic events.

No similar sharp increase was seen for QNB binding, which may indicate 

that these receptors are not directly associated with synapses.

(ii) The change in DHA and muscimol binding relative to controls in 

the cerebellar mutants at 20 days takes the form, rl>wv>sg 

(Table 9). However for QNB binding the order is different rl>sg=wv.

This suggests that the ways in which these mutations affect DHA and 

muscimol binding may be different for QNB binding. QNB 
binding is also less affected by these mutations than 
either ÜHA or muscimol binding; this despite the finding 
that muscarinic receptors are located in the molecular 
layer (Rotter et al. 1979b), which is drastically
altered by the lack of parallel fibres (Sidman, 1968).
These findings may be a further indication that QNB 
binding sites are not directly associated with synapses, 
and are thus not as markedly affected as DHA and muscimol 
binding (which,it is suggested, are located at synapses) 
by the synaptic reorganisation that occur in these 
mutants .
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3,5 Future directions
Although the data presented in this chapter give some idea of 

the way in which receptors develop in relation to neuronal input 
and the way in which this relationship is affected by the 
cerebellar mutations ̂ a number of questions remain unanswered.
Some of these questions and possible solutions are outlined below.

The results of the muscimol binding study indicate that a 
large number of GABA receptors are localised on granule cells. However one 
cannot be certain that the reduction in muscimol binding seen in the 
agranular mutants is not an indirect effect of granule cell loss 
(similar to that seen for DMA binding). This problem might be solved by 
a more critical evaluation of GABA receptor development in the nervous 
mutant (Sidman & Green, 1970) or another Purfcinje cell-depleted mutant such 
as the Pur kin je cell degeneration mutant (Mullen et al.1976). In both of these 
mutants the Purkinje cells die in the later stages of cerebellar 
development : and the majority of the other neuronal cell types 
remain unaffected (Sidman & Green, 1970; Landis & Mullen, 1978).
If a significant reduction in binding relative to controls was 
not observed over this period of Purkinje cell loss,then the 
assumption made by Olsen & Mikoshiba (1978) that GABA receptors 
on the Pun-kin je neurons make up only a small fraction of cerebellar 
GABA receptors might be justified.

The QNB binding results do not provide any direct evidence 
concerning the localisation of these receptors. Rotter et al.
(1979b) have suggested that these receptors might be on climbing 
fibres. This possibility could be eliminated by the use of

T
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3-acetylpyridine. This compound results in the death of climbing 
fibres (Desclin, ^97h) and an examination of QNB binding in animals 
thus treated might reveal whether QNB receptors were located on 
these fibres.

As mentioned in Chapter 2 a method has been developed in this
lab for the production of rat cerebellar cultures (Currie et al.
1979). Recently the culture conditions, have been modified,
allowing the successful culturing of mouse cerebellar neurons
(pigott & Dutton, unpublished). A number of workers have examined 
3 3( H) muscimol and ( H) QNB binding in neuronal cultures (De Feudis 
Gt al. 197%;Dudai & Yavin, 1978; Siman & Klein, 1979). In the 
case of ( H) QNB such studies have provided useful information about 
receptor regulation and neurotransmission. For example Siman &
Klein (1979) showed that the muscarinic receptors of cultured 
chick cerebral cells were reduced in number by the presence of 
cholinomimetics, while the muscarinic blocker atropine, brought 
about an increase. From these data these workers were also able 
to estimate the turnover time of these receptors. It is hoped 
that similar information might be gained for GABA and p-adrenergic 
receptors using the cerebellar cultures, one preliminary study has 
been performed on cultured mouse cerebellar neurons. In that study 
( H) QNB binding _was shown to increase four-^old over the. first two 
weeks j£_ vitro . (East & Dutton, unpublished)^which suggests that 
these receptors are situated on cerebellar cells and not climbing 
fibres. - /

Autoradiographic procedures for the localisation of (̂ H) muscimol

T
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have been published (Chan-Palay 1978) and a method is available for 
the localisation of muscarinic receptors using (%) propylbenzilylcholine 
mustard (Rotter et al. 1979a) The adaptation of such techniques to examine 
receptors in culture might give a better idea of the precise cellular 
location of these receptors. The histofluorescence technique of 
Melamed et al. (1976) could also be used to visualise ^-adrenoceptors 
in culture.

The ultimate aim of such studies is to examine not only the way 
in which receptor populations are modified by interaction with 
neu. otransmitters and their analogues, but in addition, the way in 
which receptors (both number and distribution) of a particular cell 
type are influenced by the presence of other cells. Such questions 
can only be answered using cultured cells.

r
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