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vertex  e V(e^_2)9 w ith  i u{vCe^): 1 < j   ̂ t ,  j  r  i - 1 ,1 - 2 }

Ŵ _2 = since V^_g is  the only vertex  V s a tis fy in g
i“3

V € V(e^_g) and V i .u  ̂ V ( e j ) .

Thus, V. G VCe.) -  V (e ._^ ) ,

V i   ̂V(e;)n V(e._,),

V s   ̂ - Y(e.),
and the re s u lt  fo llow s.

page 138, lines 6 and 13:
In each line, for " %ln'(e)1+|n'(f^)1-2 „ ^g^d

1, l̂n' (e) l + In’ (f^)|-3 „

page 138, line 15:

for " In’(e)I+ln’(f^)j-1 " read " 1n’Ce)1+ln’(f^)]-2"

page line 17:

for " 1 ^ i < m " read ’’ 1 < i < m " .
J

May 1978
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"HYPERGRAPHIC MATROIDS" 

by
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Faculty of Mathematics, The Open University 

May 1977

A method of defining a matroid on the edge-set of a k-uniform 

hypergraph (a k-hypergraph) is defined, which is a generalisation of 

that used for defining a matroid on the edge-set of a graph; the 

matroids so defined are called "hypergraphic matroids".

Analogues are found in hypergraphs of the concepts of trees, 

forests, circuits, cutsets and components; we show that two general­

isations are necessary of the concept of a vertex in a graph - a 

vertex, and a (k-l)-subset of vertices of a k-hypergraph; we call 

such a subset a node. The class of hypergraphic matroids is not 

closed under contraction, but may be enlarged to the class of 

generalised hypergraphic matroids, which is the closure of the class 

of hypergraphic matroids under the operation of taking minors. These 

matroids.are defined in an analogous way to hypergraphic matroids, but 

a particular type of submodu-lar function is necessary, instead of the 

cardinality function used for hyper graphs. We show that no finite

set of forbidden minors exists to characterise either harpergraphic or 

generalised hypergraphic matroids. There is, however, a lattice 

characterisation of hypergraphic matroids.

Transversal matroids are hypergraphic, and ure give a simple 

method of obtaining a presentation. We also prove that hypergraphic 

matroids are representable over every characteristic, and that binary 

generalised hypergraphic matroids are graphic.

The graph-theoretic notion of series-parallel extension is gener­

alised, motivated by hypergraph considerations, to a. new operation



ABSTRACT CONTINUED

called generalised series-parallel extension. This operation has many 

properties similar to series-parallel extension. Generalised series- 

parallel networks are defined, and characterised by a set of six for­

bidden minors. An extension of this result characterises ternary base- 

orderable matroids.

We show that the matroid of a hypergraph can be used to derive 

weak and strong colourings of the nodes, and that, under obvious 

necessary conditions, all such colourings arise in this way. Connected­

ness and paths are investigated, but the results obtained for hypergraphs 

are less satisfactory than those for graphs, largely because the 

concepts of "node" and "vertex" do not coincide for general k-hypergraphs.
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/■ ' CltAFTER 1

INTRODUCTION, DEFINITIONS 

AND TERMINOLOGY

INTRODUCTION:

It has long been known that a matroid can be defined on the set of 

edges of a graph. Indeed, one of the principal reasons for studying 

matroids is that, in some senses, they are abstractions of granhs - 

preserving some, though not all, of the structure of graphs. Attempts 

have been made in the past to extend the definition of a matroid on the 

edges of a graph to a matroid on the edges of a hypergraph. Such 

attempts have met with mixed success; some potential definitions may not 

lead to matroids, while other definitions may fail to reduce to the

definition applicable to graphic matroids when the hypergraph is in fact 
a graph.

Our purpose is two-fold. Firstly, we shall define a matroid on the 

set of edges of a uniform hypergraph which avoids the above-mentioned 

difficulties, and we shall examine various properties of the class of 

matroids so produced. Secondly, we shall investigate what, if any, of 

the structure of a hypergraph is preserved by the matroid on its edges 

and. If any structure is preserved, what can be learnt about the hyper­
graph from the matroid.

A desirable property of any loopless matroid on the edge-set of a

graph is that two edges should be parallel in the matroid if and only if 

they are parallel in the graph. In a loopless graph, two edges are 

parallel if they have the same vertex-set. We say that two edges of a 

hypergraph are parallel if and only if they have the same vertex-set - 

I.e., for most practical purposes they are indistinguishable. A 

desirable property of any matroid on the set of edges of a hypergraph 

should be that two edges are parallel in the matroid if and only if they
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are parallel in the hypergraph. This property is not possessed by many 

of the definitions of a matroid on the edge-set of a hypergraph.

Loopless graphs are in fact uniform hypergraphs. It is not, therefore,

unreasonable that any definition of a matroid should be applicable only 

to uniform hypergraphs. We shall show, however, that our definition 

can be extended to the case of non-uniform hypergraphs.

Looking ahead briefly to the results of future chapters, we find 

analogues of many of the concepts of graph theory, such as trees, forests 

cutsets and components. We also find on several occasions that two 

generalisations of the concept of a vertex are necessary when we pass 

from a graph to a k-uniform hypergraph. These are a vertex in the 

hypergraph, and also the complement, within the vertex-set of an edge, 

of a vertex of that edge. This latter generalisation we call a node.

In the case of a k-uniform hypergraph, the nodes have cardinality (k-l). 

The use of (k-l)-subsets in the study of simplicial complexes has long 

been accepted, but appears to be a relatively new idea in hypergraph 

theory. The nodes of a hypergraph can be used to define paths, are 

partitioned by the components of the hypergraph, and, under certain 

circumstances, can be coloured using techniques derived from matroid 

theory.

The class of hypergraphic matroids is not closed under the operation 

of contraction, and this leads us to define a larger class of matroids - 

the generalised hypergraphic matroids - which is closed under the 

operation of taking minors. It transpires that there is a sense in 

which an edge contracted in a hypergraph is contracted to a node; this 

compares favoui’ably with the contraction of an edge of a graph to a 

vertex.

Various forbidden minor conditions are investigated, and it is 

shown that no finite set of forbidden minors exists to characterise
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hypergraphic or generalised hypergraphic matroids.

We generalise the notion of series-parallel extension to an 

operation called generalised series-parallel extension. This leads to a 

class of matroids called generalised series-parallel networks, which can 

he characterised by a set of six forbidden minors. An extension of this 

result leads to a forbidden-minor characterisation of ternary base- 

orderable matroids. Finally, a characterisation of hypergraphic 

matroids is given, in terms of the existence of a family of flats 

satisfying certain conditions.

TERMINOLOGY AND DEFINITIONS :

SET_THEORY:

We begin by defining some set-theoretic notation we shall be using. 

For typographical convenience, set difference will be denoted by

A will be used to denote symmetric difference. Thus,

A aB = (A-B)u(B-A).
The notation {x..j ,x̂  5 • •. jX^}^ means that x^ 4 Xj for i 7̂ j.

If (C^: i e I) is a family of sets, and J = {i^,ig,...,i^}^ £ I,

•j C- = u{[. : i € J} = C* uC- u . . .uC- .J 1 1 I2
P C- = n{C - : i G J} = C- nC. n. ..nQ. .

^1 ^2 ^n
T C- = A{[.: i e J} = r* ^C- A...AC. .

1 2 ^n
If ; i  ̂ l) is a family of matroids on disjoint sets, then.

with the same notation, ©  M. = ©fM. : i c J) = M. ©  M. ©.. .© M. .J-3. -^1 -Ig
If E and E ’ are sets defined to be isomorphic, and E = {e.,...,eI n T

then, unless otherwise stated, E' will be defined as {e.j ,eg,... ,e^}^, 

and the isomorphism 6 :E E* with O(e^) = e^ will be called the obvious 

bijection (or obvious isomorphism) between E and E ’*
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A k-set is a set of cardinality k.

If y is a set, and 1/£ F with IrVj = k, P/ is said to be a k-subset

of 7.

MTROID£:

Our matroid terminology will be standard — see, for example, Harary 

and Welsh [123 or Wilson [303. However, as we shall need to refer to 

many of the definitions, axiom systems and properties of matroids, we 

give a summary here.

fflatroid (independence structure) M on the finite set 2 is an 

ordered pair ([,I ) where I  is a set of subsets of [ satisfying the 

independence axioms;

(11) * el;

(12) If X e I and Y £ X/then Y e I ;
(13) If XjY^I 9.nd 1X1= lYl + 1j then there exists x e X“Y such that 

(Yu{x3) eX

The set J is called the set of independent sets of M.

A maximal independent set of M is called a base of M.

■ A set which is not independent is called dependent.

À minimal dependent set is called a circuit of M.

A single element of 2 which is a circuit of M is called a loop of M.

If {x,y}^ £ 2 s.nd {x,y} is a circuit of M, then x and y are said to 
be parallel in M.

A simple matroid is a matroid without loops or parallel elements.

It can be shovm that all bases of M have the same cardinality. A

matroid on the set 2 is determined uniquely not only by its independent

sets, but also by its bases or circuits.
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Base Axioms:

A set B of subsets of E is the set of hases of a matroid on E if 

and only if

(B1 ) B 7̂ 4>; ' ,

(B2) If 3̂   ̂B s,nd there exists h.̂ e ' then there exists

bg s Bg-B^ such that (B-]“(b̂ ) ufo^} sB.

Circuit Axioms :

A set C of subsets of E is the set of circuits of a matroid on E if 
and only if

(Cl) l f q , C 2 E C a n d  Ci £(^, t h e n C i = C g ;
(C2) If )C2  ̂G with r and if x £ nQg, then there exists

C3 s C such that C3 £ (C^uC2)-{x}.

The rank p/\ of a subset /\ of E is the maximum cardinality of indep­

endent sets contained in A- Thus, pA = max{ |X|:X £ A and X el).
The rank of the matroid M, denoted by r m  is equal to pE- 

The closure oA of the set A is the set {x: p(Au{x}) = pA>.

closed set or flat is the closure of some set. It can be shown 

that F £  E is a flat of M if and only if ap = p. A j-flat of M is a 

flat of M of rank j.

A point of M is a 1-flat of M.

A line of M is a 2-flat of M.

A plane of M is a 3-flat of M.

A hyperplane of M is a flat of M of rank rkM - 1.

• ̂  trivial j-flat of M is a j—flat of M which is independent.

IT XjY eE and Y£ ̂ X, then X is said to span Y- The span of X 
is the set aX.

A matroid can be determined uniquely by its hyperplanes, rank 

function or closure operator.
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Hyperplane Axioms:

A set H  of subsets of E is the set of hyperplanes of a matroid on E 

if and only if

(Hi) If HiiHg  ̂^  Hi £  Hg, then H-, = Hgl
(H2) If H1JH2 G H, and if x  ̂H^uHg and y e H-|“H2» then there exists 

Hg a H  such that y ^ Hg and Hg £  (H^^H^)u{x}.

Rank Axioms :

A function p: 2^ is the rank function of a matroid on E if and 

only if

(El) 0 £ pX s 1X1;

(R2) If Xs Y then pX £ pY;

(R3) (Submodularity of the rank function)

For any X,Y £  E, pX + pY ^ p(XuY) + p (XpY)-

Closure Axioms: ^

A function a: 2^ -> 2^ is the closure operator of a matroid on E 

if and only if 

(K1) X £  aX for all Xs Ei 

(K2) If Xl Ys then 0% £  oY;

(K3) o(oX) = aX;

(K4) If X G a(Xy{y}) and x i aX, then y e a(Xu{x}).

Where we are dealing with several matroids, the sets of independent 

sets, bases, circuits and hyperplanes of M will be denoted by I(m) , B(m), 

C(m) and H(M) respectively. The rank function of M will similarly be 

denoted by p^.

The dual of the matroid M = (E, B) is denoted by M^. It is the 

matroid (E, B*), where B* = {E“B- B  ̂B) . Clearly (M*)* = M.

It can be shown that Q is a circuit of M if and only if E“C is a 

hyperplane of M̂ .
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A circuit of M* is also called a co-circuit of M, a base of 

is called a co-base of M and so on. In particular, a loop of M* is 

called a co-loop of M. A co-loop of M is an element of E which is 

an element of every base of M or, equivalently, of no circuit of M.

The rank function of M* is denoted by p*. H  A £ Ej then
p^A = lAl + p(E“A) ” pE*
Isomorphism of Matroids;

Mi “ (E-j» I-]) and Mg = (Eg, ïg) are said to be isomorphic, written 

M.J = Mg, if and only if there exists a bijection (j):Ê E2 such that, 

for Ç

{x.|,Xg,...,x^}e I| if and only if {<(>x.|,(!)Xg,...,i|>x }

Operations on Matroids: .

RESTRICTION:

Let T £ E* Then the restriction of M to J, denoted by MxJ, is the 

matroid (J, J’) with set of independent sets I' = (X cI : X £  T)*
If T “ E~X Toi" some X £ Es we often refer to MxJ as the deletion

of X from M. If e is a loop or one of a pair of parallel elements of 

M, the deletion of {e} is called ah elementary simplification of M.

If M is a non-simple matroid, the simplification of M is the simple 

matroid obtained from M by successive elementary simplifications — i.e. 

the simple matroid (..(Mk(E-{e^}))x(E-{e^,eg}))x...x(E-{e ,...,e }) 

where e^ is a loop or one of a pair of parallel elements of 

Mx(E“{ĝ  ,... ,ê _.j } ) J (1 < i < m).

CONTRACTION:

Let 7 £ E* Then the contraction of M to 7, denoted by M.7, is the 

matroid (7, %") with set of independent sets J " ,  where

I = (X G I : X^A  ̂I Tor some maximal independent subset A £ E~T }»



' If T - E~X Tor some X £ Es we often refer to M.J as the contraction 

or contraction out of X from M, •
■ It is easy to check that (MxJ)^ = M'̂ .J.

Let M" =M. (E~X)* Then, for A £ E“Xs 

pg'(A) = Pm ^AuX) - Pm X̂)-
A minor of M is a matroid obtained from M by a sequence of 

restrictions and contractions.

If X a,nd Y are disjoint subsets of E, then

(Mx(E-X)).(E-(XuY)) = (M.(E-Y))x(E- (XuY)).
In other words, the matroid obtained from M by the deletion of % and the 

contraction of Y is independent of the order of the operations of 

deleting % and contracting Y« Thus, every minor of M may be written

as (MxA).B or as (M.%)xY for suitable sets As Bs Xs Y £  E*
The "scum theorem" of Crapo-Rota [6] states the following:

If M̂  is a simple minor of the simple matroid M, then

M-) = (M.A)>'B where rk(M^ ) - rk(M.A) for some AsB £  E-
A set of forbidden minors for a class m  of matroids is a set 

f of matroids such that M ÿ m  if M contains a minor 

isomorphic to a member of f.

TRUNCATION:

Let M be a matroid on Es and let t < rk(M). Then the t-truncation 

of M, denoted by is the matroid (E, with set of indep­

endent sets = {X e l: IXh t}.

Our method for obtaining truncations is that used by Piff [21].'

DIRECT SUM:

Let M̂  = (Ê s I^) and Mg = (Eg, Ig), where E^nEg = The

direct sum of M̂  and Mg, denoted by M.̂ ©Mg, is the matroid (E, 1), where
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E = E^uE^

Î = (l-,ulg: e . Ig e Ig>.

A matroid M is said to be connected if, for every representation 

M = with M., and as above. either F. = 6 or F_ = 6.— — I —  ̂• — I —2 ' — I *-2

A connected component of M is a maximal subset E’ £ E such that Mx^’ 

is connected. Equivalently, the matroid M on the set E is connected 

if and only if for every pair of elements {x,y}^ £  Es {x,y} £  Q 

for some Q e C(M) , It is easy to show that

= Pĵ (̂AnE-|) + PM^fAhEg)) Tor any A £ E-

DILWORTH TRUNCATION:

Let M be a matroid on E with rank r, and let denote the set

of (k+l)-flats of M (O < k < r, where is defined to be <{)).

Then the level-k Dilworth truncation of M, denoted by is the

matroid on the set F , where a set A  £  ̂ is independent in

if and only if either A =  (|) or

p(vG) > |G| + k for each non-empty subset G  of A, where 

v G  denotes the supremum in M of the flats G e G  “ i.e. that flat of 

M which contains each G g G  as a subset, and which is minimal with 

respect to this property. For a proof that the above definition does 

define a matroid, the reader is referred to Crapo-Rota [6].

Special Types of Matroid:

UNIFORM MATROID:

Let M = (E, I ) be the matroid on E, with I = (X £ E= |X| ^ r}, for
some r < [E| • Then M is called the uniform matroid of rank r on

the set E» It is easy to see that all uniform matroids of rank r

on sets of n elements are isomorphic; the notation U is used tor,n
denote the uniform matroid of rank r on n elements. The uniform
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maoroid of rank r on the n-set X is denoted by U (X)* The free 

.matroid on E is the matroid , where n = [Ej.

FMO MATROID:

This is the matroid on seven elements {a,b,c,d,e,f,g}. with 

circuits {a,b,f}, {a,c,e}, {a,d,g}, {b,c,d}, {b,e,g}, {c,f,g}, {d,e,f} 

and all 4-subsets of {a,b,c,d,e,f,g} containing none of these.

NON-FANO MATROID:

This IS the matroid on seven elements {a,b,c,d,e,f,g}. with 

circuits {a,b,f}, {a,c,e}, {a,d,g}, {b,c,d}, {b,e,g}, {c,f,g} and

all 4-subsets of {a,b,C;d,e,f,g} containing none of these.

REPRESENTABLE MATROIDS:

A matroid M = (Ej I ) is said to be linearly representable (or 

l".9P^Gsentable) over a field F if there exist a vector space V(n,F) 

of dimension n over F, and a function V(n,F) such that, for

any subset {x.j,xg,...,x^}^ Ç E,

{x^,Xg,...,X̂ } € I If and only if {^x^,#Xg,...,^x^} is linearly 
independent in V(n,F).

M is said to be representable over the characteristic q if there 

exists a field of characteristic q over which M is linearly rep­

resentable. The characteristic set of M is the set 

{ q: M is representable over characteristic q}.

^ binary matroid is one representable over GF(2).

^ ternary matroid is one representable over GF(3).

BASE-ORDERABLE matroids:

A matroid M = (E, B) is said to be base-orderable if, for each 

pair of bases  ̂B, there exists a function 0:



“ 1 1 “

depending on B-| and gg, such that

(i) 0 is 1-1 ;

(ii) for each b e g^, both (g^-{b})u{8b} and (gg"{eb})u{b} are bases of M.

A matroid M = B) is said to be fully (strongly) base-orderable 

if, for each pair of bases g^,ggC B, there exists a function 0:ĝ  -b Bp’ 

depending on B̂  and Bg, such that

(i) 0 is 1-1 ;

(ii) for each X £ Bi > toth (B,-X)u{ex: x e X) and (Bg-{Gx: x e %})uX

are bases of M.

TRANSVERSAL MATROIDS:

Let E be a finite set, and let A  = (Â * i g l) be a finite family 

of subsets of F* A partial transversal of A  is a set -fx.: i c  J  c  IT -  , 

of elements of E such that x^ e A^ Tor each i € J.

It can be shown that the set of partial transversals of A  forms the 

set of independent sets of a matroid on E* Such a matroid is called 

the transversal matroid on E associated with the family A.

An important theorem (see, for example, Mirsky [20] for a proof of 

this) states that if r is the rank of the transversal matroid M 

associated with the family A ,  then there exists a subfamily A ’ of A  

such that (i) each partial transversal of A  is a partial transversal of

(ii) there are exactly r members of the family A'•

IT X 5. Es we shall use A(X) to denote the subfamily 

(Ap: X  ̂Ap Tor some x e X)•

Two results we shall be using later (see Mirsky [20] for proofs)

are:

If M is the transversal matroid on E associated with the family 

a-nd X £ E is independent in M, then, for each subset Y £ Xs
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| A ( Y ) |  2 lYI •

If X Ç. E Ts a circuit of M, then |AlX) I < |X| •
GAMMOIDS:

Let r he a directed graph without multiple directed edges on the 

vertex-set F, and let c_V, A set B c_ 7 is said to he linked into

if there exist pairwise-vertex-disjoint directed paths from B to B^ 
such that each element of B is linked hy one such path to an element of 

Bq. It can he shown (e.g. Piff [21] ) that the set of subsets of 7

which can be linked into Bq forms the set of independent sets of a

matroid on 7. Such a matroid is called a strict gammoid. A gammoid 

is a restriction of a strict gammoid. The properties of gammoids that 

we shall be using are:

(i) a strict gammoid is the dual of a transversal matroid;

(ii) the class of gammoids is closed under the operation of dualising;

(iii) the class of gammoids is closed under the operation of taking minors;

(iy) the class of gammoids is the class of contractions of transversal 

matroids;

(v) gammoids are representable over every characteristic;

(vi) gammoids are base-orderable;

(vii) gammoids are fully base-orderable.

Proofs of these results can be found in Mason [17], Piff [21] and 

Ingleton and Piff [15].

WHIRLS:

This class of matroids was introduced by Tutte in [27]. For n > 3,

the whirl W is defined to be the matroid on the set ''n
En = {aQ,a^,...,a^_^,bo,b^,...,b^_^}^ with circuits

Ci = {a^,a^^^,b^} (mod n) (O < i < n-1), the minimal members of
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{yC- : I 5 {0,1,2,...,n-1}} and the sets {h ,b ,...,b ^,,a.} (O < i < n-1)JL 2L y U 1 xl*“* 1 !L
It is easy to check that is a gammoid for n > 3, that is 

ternary, and that is not binary.

SUBMOD^m_MD_SUPERMODU^_F^ :

Submodular functions play an important part in matroid theory, 

and especially so in the theory of generalised hypergraphic matroids.

Let E be a finite set. A function y: 2^ is said to be

submodular (called semi-modular in Crapo-Rota [6]) if, for each pair of

sets A,B £ E, wA + wB ^ y(AuB) + y(AnB)-

A function y: 2^ Z  is said to be supermodular if, for each

pair of sets A,B £ E, pA + uB ^ y(A^B)+ y(AnB)'

A function y : 2^ Z. is said to be modular if, for each pair of

sets A,B £ E, wA + yB = y(AuB) + yCA^B)-

An example of a submodular function is the rank function of a

matroid. An example of a supermodular function will be given in

Chapter 4 - the v-function. The cardinality function is an example 

of a modular function.

GRAPHS AND HYPERGRAPHS:

The terminology of graph theory is fairly standard, and we shall 

not reproduce it here. Full details can be found in Wilson [29] 

or Harary [11]. Note, however, that Harary does not allow loops 

or multiple edges (his graphs are simple graphs); when dealing with 

matroids, it is preferable to allow these, and so we shall not restrict 

ourselves to simple graphs. A graph with loops or multiple edges is 

called a pseudo-graph by Harary.

The terminology of hypergraph theory is far from standard - indeed, 

each author seems to have his own definitions, and may even change his
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definitions from paper to paper. We therefore present our basic 

definitions here. Other definitions, whose motivation will become 

clearer in later chapters, are postponed until then.

In essence, a hypergraph is a set of vertices, together with 

a collection of subsets of vertices, called edges= This definition 

is used by many authors, but will not be entirely suitable for our 

purposes. We shall need to allow "multiple edges" - i.e. different 

edges which have the same vertex-set - so we define a hypergraph by 

means of an incidence relation as follows:

DEFINITION 1.1: A hypergraph H is an ordered triple (7,2;$) oT sets, where

7 is a finite, nonempty set of elements called vertices ;

E is a finite set of elements called edges ;

7nE = ({.;

and $ is a subset of Tx^ called the incidence relation of the 

hypergraph.

A vertex V e 7 is said to be incident with e e E iT and only if 

(V, e) € $.

Two edges e.̂ and e^ are said to be adjacent if there exists 

V e 7 such that (V,e.) e $ (i = 1,2).

Notation:

Where possible, we shall use the following conventions in 

connection with hypergraphs, as has been foreshadowed by earlier 

definitions:

Upper-Case Roman letters will denote vertices - e.g. A, B, A^, B^. . 

Upper-Case Italic letters will denote sets of vertices - e.g. 7, .

Lower-Case Roman letters will denote sets of edges, or elements of 

a matroid - e.g. e, a, b.j, x̂ .
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Upper-Case I.B.M. Orator type-face letters will denote sets of edges, 

or sets of elements of a matroid - e.g. Ai X> E,

Those symbols to which special meaning are attached will not be 

used in the above connection.

Where several hypergraphs are being discussed together, the 

vertex-set and edge-set of H may be denoted by V(H) and E(H) res­

pectively.

The vertex-set in H ot the edge e, denoted by Vg(e) is the set 

{V e 7: (V,e) e $}.

If A £ E) the vertex-set of A in H, denoted by Vg(A) is the 

set u{Vjj(e): e e A)*

It is often more convenient to describe H in terms of its 

vertices, edges and the vertex-sets of its edges. If this is done,

$ is understood to be defined as {(V,e): V e Vg(e), e e El*

Where there will be no confusion, the subscript K will be dropped.

The set A £ E is. said to span (7 c 7 if 17 c V(A).
If |V(e)I = k for each e £ Es 7 is said to be a uniform hypergraph 

of cardinality k, a k-uniform hypergraphor simply a k-hypergraph.

The value k is called "rank" by Berge in [1], but this term is 

unsatisfactory when we are also dealing with matroids.

H is said to be simple if V(e^) 4 Y{e^) for ê  4 ê .

If H is a simple hypergraph with |7|= p and {V(e): e c El is 

equal to the set of all k-subsets of 7, then H is said to be the 

complete k-hypergraph on 7, denoted by K^.

IT E' £  E and $ ’ = {(V,e) g $: e e E'}, then (7, E ’s $') is

called the strict subhypergraph of H induced by E’- With the same

notation, (V(E’), E ’» $') is called the subhypergraph of H induced

by E ’J s.nd is denoted by H , ; Note that Berge calls our "strictE
subhypergraph" a "partial hypergraph", reserving the term "subhypergraph "
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for a hypergrapb obtained in a particular way from a subset of F.

We prefer to use the name inspired by graph theory.

If F’ £ F, we define Ey, to be {e e E* V(e) £ F*}, and 

$y, to be {(v,e) e $: e e E y * T h e n  (F’, Ey,, $y,) is called the 

restriction of H to F’, and is denoted by H|F’.

A cycle of the hypergraph H is a sequence of edges and vertices 

of H (VQ,eQ,V.j ,e^,... ,ê _̂  ,Vq ) such that

e t(e^)nV(e^_^) (mod n)

V. 4 V. for i 7̂ j 

e. ^ e. for i ^ j.1 J
The edge-set of the cycle is the set {êQ,e^,...,e^_^}.

Hypergraph isomorphism has been defined in several ways; we shall 

be concerned only with the following:

DEFINITION 1.2: The hypergraph H.j = (F^, E-js ) and the hypergraph

Hg = (Fgj Eg) $2  ̂are said to be isomorphic if there exist

bisections $:F^ Fg and 0 :Ê  Eg such that
!

V (oe) = {#V: V e V„ (e)} for each e e Ei•Ug ^1 I

To assist in the presentation of matroids and hypergraphs, we 

shall often use pictorial representations. For matroids, we shall use 

Euclidean representation (in which 3 dependent points lie on a line, etc.) 

For hypergraphs, we shall adopt the method used by Crapo-Rota [6], in 

which edges are represented as shaded-in faces of a (not necessarily 

plane) graph.

For example, the hypergraph with edge-set {a,b,c,d}, where 

V(a) = {A,B,F}, V(b) = {B,C,D}, V(c) = {A,C,E} and V(d) = {D,E,F}, 

could be shown as the shaded octahedron in Figure 1.



Figure 1.

Before embarking on our construction of hypergraphic matroids, 

we should mention that Berge [1&2] and Helgason [13] have each 

produced matroids derived from hypergraphs.

Berge*s matroids have as ground-set the vertex-set F of the 

hypergraph H, and rank function p where pf7 = max{ |̂ 7nV(e) | :e e E } 

for W £ F. In particular, this gives rank 2 to all matroids 

derived from graphs.

Helgason is concerned with colouring hypergraphs. This is a 

different approach from ours, and yields a different matroid. This 

follows immediately from the fact that the class of hypergraphs on 

which Helgason defines his matroids (those with "geometric colouring 

closure", which we shall define in Chapter 10) does not contain all 

uniform hypergraphs. But, even for a uniform hypergraph which does 

have geometric colouring closure, the matroids need not coincide.

For example, consider the hypergraph shown in Figure 1. This has 

geometric colouring closure, and the matroid produced by Helgason has 

rank 3. But, anticipating Chapter 2, we can see that the hyper­

graphic matroid we define has rank 4,

Thus the three methods of obtaining matroids from hypergraphs 

do not coincide.
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CHAPTER 2

CONSTRUCTION OF 

HYPERGRAPHIC MATROIDS

Throughout this chapter, we shall use H to denote the k-hypergraph 

(F, Es $) (k 2 2) on the set F = {A.̂ , A^, ..., A^}^. We shall not, 

in general, assume that H is simple.

We know that if H is a graph, then the cycles of H determine the 

circuits of a matroid on the set of edges of H, called the cycle matroid 

of H. However, for the purposes of generalising the construction to

hypergraphs, it is more satisfactory to consider the forests of H, the

set of which is the set of independent sets of the cycle matroid.

Now, a set A of edges of the graph H is a forest if and only if

either A = or |v(G) i 2  IGI + 1 for each non-empty subset G of j\.

Since a graph is a uniform hypergraph of cardinality 2, we make 

the obvious generalisation.

DEFINITION 2.1; Let H = (F, E j $) be a k-hypergraph. with k  ̂2.

A £  E is called independent if and only if either

(i) A =

or (ii) |V(G)| 2 IGI + k - 1 for each nonempty subset G of A*

A set which is not independent is called dependent.

There is a very short proof that the independent sets defined

in (2.1) do form the independent sets of a matroid on the set E* This

method is used by Crapo-Rota [5] and is a frequently-used technique.

Define a set-function by ^(A) = | V(A) | - (k - 1 )

for A Q  E* Then if; is an increasing, integer-valued set-function, 

which takes the value 1 on elements of E* Furthermore, ip is sub­

modular. A theorem proved by Crapo-Rota shows that ip defines a matroid
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on £ the independent sets of which are those E for which
either A or ^(G) - |G| for each nonempty subset GofA*

This is precisely the definition of independent sets given in (2.1).

For a simple hypergraph on V , this is equivalent to proving that

the level-(k-l) Dilworth truncation of U (^) is a matroid on theP,P
k-subsets of the p-set , and then restricting this matroid to the 

subset {V(e): e e of this set of k-subsets. However, this method of

proof does not bring out any of the similarities to graphic raatroids.

We shall therefore prove this result again, using an approach derived 

from graph theory.

DEFINITION 2.2: An independent set A is said to be critical if

h'(A)l = lAl + k - 1.

LEMIVLA 2.3; If E ^ minimal dependent set, then:

(i) I V([)| = ICl + k - 2 ;

(ii) V(G) = V(C“{ e} ) for any e  ̂Cj and hence every vertex

V £ V(G) is an element of the vertex-sets of at least two 

edges of C ;

(iii) Q-{e} is critical for any e e C* •

Proof: Let e be any element of C* Then, by minimality of G,

Q-{e} is an independent set, so |v(C~{e})| - [G-{e}|+ k - 1

= Ici + k - 2.

Also, since C itself is dependent, there exists a nonempty subset 

A — C which |v(A)|^ lAl + k - 1. Since this cannot hold for any 

proper nonempty subset of C, |v(C)|< |[| + k - 1.

Combining these two inequalities ,

ICI + k -  1 >|v(C)| -  | v ( C - { e } ) | ICI + k -  2 ( l ) .

Thus, equality holds throughout, and so |v(C)I = ICl + k - 2 ,

V(C'-{e}) = V(C), and, since this holds for any e  ̂C? there exists
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no V 6V(0) such that V € V(e) for only one ee

Also, from (l), |v(C-{ e} )| = ][-{ e}| + k - 1, whence, since [-{ e}

is independent, [-{e} is critical.

LEM'IA 2.4: Let X?Y E_ E critical sets with j V(X)nV(Y) | > k - 1.

Hien |TA%uY)| ^|XuY | + % " 1-
If, in addition, Xu Y independent, then XuY is critical. ^

Proof; We have, since X and Y are critical, |V(X)| = |X| + k 1 (l)

|v(Y)| = lYI + k - 1 (2)

CASE I ;  XnY ^

Then V(X)nV(.Y) 2. V(XnY)' Now, XnY sX and so, by (2.1), )(nY is 

independent. Therefore, |V(XnY^| ^ |XnY| k ^ 1.

Thu s | V ( X ) n V ( Y ) |  ^ iX n Y I  +  k  -  1 ( : 0

CASE II; XnY =

Then (3) follows from the hypotheses of the lemma.

Now, from (1) and (2), |V(X)| + |V(Y)| = 2k + |X|+ |Y| “ ^ 

|V ( X ) u V ( y ) |  + |V(X)nV(Y)| = 2k + iXuYI + IXnYI -  2 .

Thus, from (3), |V(X)uV(y) | < |XbY| + k - 1.

B u t, V(XuY) = V ( X ) u V ( Y ) ,  so |V(XuY)|  3 IXuYI + k  -  1.

If, in addition, Xu Y ^s independent, the reverse inequality holds, 

and so XuY is critical,

DEFINITION 2,5; If ^ is a set of vertices of H such that P/ = V(A)

where A £  E ^nd jS. is critical, then (P/, $ ) is called a

fragment of H,

LEMMA 2,6; If ([/, F , $ ) and (f/, , $ ) are fragments of H with
U U  W W

•|J/n̂/| ^ k ~ 1, then F , $ ) is a fragment of H,
UuW UuW

Proof; Let U = VCX)- where X ̂  E and X is critical, and let 

W = V(y) where Y .5 E and Y is critical,
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Then' |V(X)nV(Y)l > k'- 1, and so, hy (2.4) |V(XuY)l^ iX^Yl + k - 1.

If XuY is independent, then, by (2.4) it is critical, and we are done,

since then UuW = V(XuY) where XuY is critical. If

XuY is dependent, then there exists a minimal dependent subset of XuY,

J, say. Then, by (2.3), | V(f) j = |T | + k - 2. Pick ê  e J. Then

V(T-(e^}) = V(T). Let X^ = X"{e^}, Y, = Y“{e^}. Then V(X-uY-|) = V(XuY)-

We claim that lV(X^uY^)l ^ lX-juY-|I + k ~ 1.

For, suppose not. Then lV(X^uY-|)i > iX-juY-ji + k - 1, and so, from 

the above, |XuYl + k - 1 > |V(XuY) I = I'V(X-,uYi)! > lX-|UY^I+ k - 1

• = I XuY I + k - 2.

|V(XuY)| = IXuYI + k - 1. (1)

We shall show that this implies that XuY is independent, contra- . 

dieting our hypothesis that it contains a dependent subset.

Since |V(X)| = |Xl + k - 1 and |V(Y)| = lYl + k - 1,

|V(X)I + l? (Y) l  = IXI + lYl + 2k - 2

|V(XuY)| + |V(X)nV(Y)| = |XuYl+ iXnYl + 2k - 2

from (1), |V(X)nV(Y)| = iXnYl + k -  1 (2)

CASE I: XnY = if- Then |V(X)nV(Y)l = k -  1.

Let X' S. X» Y' 5  Y" Then, by (2.1), both X' and Y' are indep­

endent. Assume X' Y Y' ^

Then |V(X')| + |V(Y')| > |X'I + lY'I + 2k - 2

|V (X 'uY ' ) |  + |V(X')nV(Y')l> iX 'u Y ' l  + iX 'nY ' l  + 2k - 2 .

Kow, X'nY' S  XnY = 4". and V(X')nV(Y') c V(X)nV(Y).

|V (X 'uY ') |  + k -  1 > lX 'uY ’ l + 2k - 2

|V(X'uY')| > l X ' u Y ' l + k - 1  (3)

If either X' or Y' is empty (but not both), the inequality (3) follows 

from the independence of the nonempty set. Since (3) is true for every 

nonempty subset of XuY, ky (2.1) XuY is independent.
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CASE II: XnY ^ ij>. Then XnY is independent, since it is a subset of the

independent set X- Thus, |V(XnY)|a iXnYI + k - 1.

Now, 'V(X)nV(Y) 3  V(XnY), and, from (2), |V(X)nV(Y)| "  iXnYI + k -  1. 

Thus |V(XnY)I = iXnYl + k - 1.

Suppose XuY is dependent. Then there exists a minimal dependent

subset X’ uY' of XuY: where X' t s  X and Y' _c Y*_ Since X and Y are _... -..

independent, X' ^ 4 and Y' f 4>. Now, by (2.3),

|V (X 'uY ') |  = iX 'uY ' l  + k -  2 .

• |V(X)I + 1V(Y)I + | v (X 'u Y ' ) |  = iXi + lYl + iX'uYM + 3k -  it

• • • | V ( Y ) M -  | V ( X ) u V ( X ' u Y ' ) l  + | V ( X ) n V ( X ' u Y ' ) |

= lYl + iXuX'uY' l  + lXn(X 'uY ' ) |  + 3k -  It.

Now, X' 5  X: so V(X ')  Ç V(X), and V(X)uV(X'uY') = V (X u Y ' ) .

|V(Y)| + |v(XuY') |  + |v(X)nV(X 'uY ') |

= lYi + iXuY'1 + lXn(X 'uY ' ) |  + 3k -  It 

•• •  |V(Y)uV(XuY')| + |V(Y)nV(XuY')l  + |V(X)nV(X'uY') |

. =lYuXuY'l + l Y n ( X u Y ' ) |  + l X n ( X ' u Y ' ) |  + 3k -  It 

l?(XuY)| + |V ( Y ) n V ( X u Y ' ) |  + | V ( X ) n V ( X ' u Y ' ) |

= I XuY I + lYn(XuY')|  + lXn(X 'uY ' ) |  + 3k -  It.

Therefore, from (l),

|V ( Y ) n V ( X u Y ' ) |  + | V ( X ) n V ( X ' u Y ' ) l

= lYn(XuY') | + lXn(X 'uY ' ) |  + 2k -  3 (It)

Now, |V(Y)nV(XuY’ ) i  > iv (Yn(XuY') ) |

2 | Y n ( X u Y ' ) |  + k - 1 since YafXuY' )nY a  Y'  Y 4>. 

Similarly, | V ( X ) n V ( X ' u Y ' ) |  > lX n (X ’ u Y ' ) |  + k - 1.

|V ( Y ) n V ( X u Y ' ) |  + | V ( X ) n V ( X ' u Y ' ) |

2 lYn(XuY')|  + lXn(X 'uY ' ) |  + 2k -  2 ,

which is a contradiction of (4).

Thus, there exist no such sets and Y ’» and so %uY is independent.
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But, by hypothesis, XuY is  dependent. Thus, 1 V(X̂ , uY-j ) I ^ IX-] uY-| 1 +k- I . 

Hence, iVCX^uYi)! < iXiuYil + % - 1 = iXuYl + k " 2.
Now,^either X^uY  ̂ is  independent, or i t  contains a minimal dependent 

subset say. In  the la t t e r  case, l e t  e^ e and w rite  X i“ {^2^’ 

Yg “ Y-]” {®2^‘ uow repeat the above procedure, w ith  X-| ?Yi i^  place o f

X)Y und Xg^Yg iu  place o f X-] jY-] s show th a t e ith e r  XguYg is  indep­

endent, or i t  contains a minimal dependent subset "|"g, say. We can 

thus continue to  repeat the procedure, de le tin g  an element from a 

minimal dependent subset, as long as Xj_uV'i is  dependent.

Now, a t stage i  we have lV (X ^ u Y i)U  iXuYl + k -  ( i + l )  (5)

Since iV(X^uYj_) I " |V(XuY)l) "̂ ke process must eventually  stop, since a l l  

sets are f in i t e .  Thus, there ex is ts  r  fo r  which XpUŶ . is  independent

and so lV(X^uY^)l>lXpUY^I + k -  1.

From ( 5 ) ,  we have | V ( X ^ u Y ^ ) IXuYI + k -  ( r + l )  = |X^uY^I + k -  1.

T]:ius, X^uYy is  c r i t i c a l ,  and UuW = V()^uY^).

Thus {UuWi r/) $T, r;) is  a fragment o f H.UuW- UuW

LEMMA 2.7:  Let A Le a subset o f the edges o f H, and l e t  H' = H be the
A

subhypergraph o f H induced by j\. Then there  ex ists  a unique p a r t it io n  

o f A in to  6-| 502’ * • * such th a t H  ̂ is  a fragment o f H' fo r  each i ,  

w ith  the property th a t ,  i f  (p/, is  a fragment o f H’ , then ç  Gp

fo r  exactly  one value o f i .

Proof:

( i )  Existence o f a p a r t it io n .

Let the fragments o f H’ be (j/^ , ) ( i  £ I  ).

We may p a r t ia l ly  order the fragments o f H’ by inc lusion  o f edge-sets -  i . e .

4  ^Uy E^. ) i f  — E^ Let us c a l l  th is  order
 ̂  ̂ J J 1 J

"containment” of fragments. . Let the maximal elements in  th is  p a r t ia l
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order be H ~ (V(G,), G;, $;) (l ^ i ^ n).Gp 1
By (2 .6)5 ÎT IV(Gp)nV(Gj)l > k “ 1 for i r j, then $̂ ) would

be a fragment of H ’, where W = V(G-)uV(G-). Thus, since the fragments ̂ 0
H are maximal, lV(G-)uV(G•)I < k - 1 for i r j. Hence, in particular,Gp 1 J
GpnGj = <|> for i r j, and so the Gp partition A* Also, by maximality,

every fragment of HV is contained in at least one of the H ; furthermore,
: ....... ..  - - - -- - - Gp - - ----
since iV(G-)nV(G«)I < k - 1 for i ^ j, every fragment of H' is contained 

in at most one of the H . Thus, every fragment of H ’ is contained in
Gi

exactly one of the H
Gp

(ii) Uniqueness of the partition.

If (P/, $|y) is a member of a set D of fragments of H', then

(^9 Er̂ 9 $̂ ) is contained in some maximal fragment H , say. If D  is
Gr

a partition satisfying the conclusions of (2.?), apart from the

uniqueness condition, then H is contained in a fragment {U, E , $ )
Gr u U

which is a member of D. Tims, (p/, E^9 $̂ ) is contained in ([/, E^9 $^),

and so, by the requirement that every fragment of H' is contained in

exactly one member of D, we deduce that ((7, Er79 $7,) = iU, Et/9 = H .■ w VI u u

Thus, every member of D  is a member of the partition described in (i).

Since every member of the partition described in (i) must be contained

in some member of D, and is maximal with respect to containment, D

is the set {H : 1 < i < n}.Gp
Thus, the partition described in (i) is unique.

DEFINITION 2.8: The fragments H = (V(G*)s G-s $-) constructed inGp 1 1 1
(i) of (2.7) are called the components of H’.

THEOREM 2.9: If X9Y s-re independent sets of edges of the hypergraph

H = (F, E9 $)9 und if 1X 1= IYl + 19 then there exists an edge 

b G X“Y such that Yu{b} is independent.
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Proof: Suppose first that Y is critical. Then, since

K(a) I- iXl k - 1 = lYl + k = ly(Y) 1 + 1, there exists V e V(X)-V(Y).

Pick any edge b e X with V £ V(b). Then Yu{b} is independent, since

IV(g)uV(b)I > 1V(0)I + 1 > 101 + k = (101 + 1) + k - 1

“ I0U{L}1 + k - 1 for any nonempty
subset 0 of Y*

Suppose now that Y is not critical. If there exists V £ V(X)-V(Y)

then we pick b as in the previous case. Otherwise, consider the

subhypergraph Hy of H induced by Y, and let Gi,02,...,G^ be the

partition of Y described (for the set &) in (2.7), such that

 ̂ i is the set of components of H . Let 10̂ 1 = r^ (l<i<n).

Then V(G^) D V(x) for at most r^ edges x £ X, since X is independent.

Thus, there are at most p%^(^p) “ lYl edges x of X satisfying

V(x) Ç V(Gp) for some i, 1 < i < n. Since iXl = lYj + 1, there

exists at least one edge b £ X with V(b)^ V(G^) for any i. (l)

Now, if Yu{b} were dependent, it would contain a minimal dependent

subset 0. Since Y is independent, b £ [. Write Y ' = [- {b}. Then,

by (2.3)(iii), Y' is a critical set. Thus, is a fragment of H^.

By (2.7), it is therefore contained in a component H for some r.
Gr

In particular, V(Y’) c V(0^). But, by (2.3)(ii),

V(b) _c V(Y*u{b}) = V(Y’) £V(0^), which contradicts (l). Thus,
Yu{b} is independent.

COROLLARY 2.10: The independent sets as defined in (2.1) are the

independent sets of a matroid on the edge—set E of H.

Proof: (II) follows from (2.l)(i);

(12) Let X be an independent set, and let Y £ X- Then, either

Y " since 1V(0)1 > 101 + k - 1 for each nonempty
subset 0 of X,
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|V(G)|> iGl + k “ 1 for each nonempty subset G of Y*

Thus, Y is independent.

(13) follows from (2.9).

DEFINITION 2.11: Any matroid isomorphic to one obtained by the

definition (2.1) is called a ĥ '-pergraphic matroid. The hyper» 

graphic matroid obtained from the hypergraph H is denoted by M(h ).

PROPOSITION 2.12: If M is a hypergraphic matroid on the set 3 und

3 ' £ $ 3  then Mx3 ’ is'hypergraphic.

Proof: Let M s M(h), where H = (7, Es $) is a k-hypergraph for some k,

and let (j)*. 3^ E Le the bisection which induces the isomorphism.

Let E' = {e £ E= G = ({)(s) for s £ 3’}*

Let H* = (7, E ‘9 $'), where $’ = {(V,e) £ $: e £ E*}» Then a set 

A* £ E* i-S independent in M(H') if and only if A* is independent in 

M(h). Thus, M(H’) £ M(h)xE'. So, since Mx3’-s M(h)xE’,

Mx3’ = M(H*)j and so Mx3* is hypergraphic.

We have already referred to the complete hypergraph K^. TheP
matroid derived from this, M(K^), is what Crapo-Rota [6] call the

completed k-truncation of the Boolean lattice B^ (which is the lattice

of flats of the matroid U ). This is because the lattice of M(k )PsP - P
contains all the points of B^ from the k-sets upwards, together with the 

necessary extra points to make the lattice geometric (the completion of 

the lattice). The lattice point of view, however, brings out none of 

the similarities to graph theory, and we believe that it is more 

natural to consider such matroids as arising from hypergraphs in the 

way we have described.

In the same way that it is sufficient to consider 1-connected 

graphs in the study of graphic matroids, it is sufficient to consider 

hypergraphic matroids derived from hypergraphs which are themselves 

components. Tliis result is the content of the next theorem.



THEOREM 2.13: If M is a hypergraphic matroid, there exists a uniform

h]»rpergraph H" = ( F’, 0's $" ) such that :

(i) M=M(H");

(ii) ( F', B'j $") is a component of H".

Proof: Since M is hypergraphic, there exists a k-hypergraph H = ( F, E, $) 

such that M =M(h). As  in (2.T), partition E into G-j 5 • • • 9 such

that H is a component for-each i ( 1 < i <n). Form a new hypergraph
Gi

H’, where H’ has components H ^  = (Vj^,(Gp5 G|9 $|)9 such that

H’ IVjj,(Gp = H IV̂ (Gp) for each i, and V^, (Gp) (Ĝ ) = ((> for i f j.

Extend the isomorphisms to a hijection between the edges of H’ and H.

Then clearly independence in M(h ) implies independence in M(H')* Also,

a circuit of M(H) is mapped onto a circuit of M(H’) since, by (2.3),

every circuit C of M(h ) satisfies C _E Gp for some i. Thus, M(H) =M(K’)

Now, pick a set W of k-1 vertices in ,(G^)9 nnd form a new

hypergraph H" as follows :

Let FJ, ..., ^  Le sets of vertices with I Fp I = lFjj,(Gp)i ( 1 ̂ ^ )

such that FpnFj = (7 for i f j . Let 7" = 7" uFgU* • • ul̂ *

For each i ( 1 < i < n) define HV = (PV, Gp9 $p) = H’ |V(Gp)* ( 1 )

Put E" = G"uG2U...uG^ and let $" = {(V",e"): (V’,e’) c $'} where

V’ is the image of V" under the isomorphism (I), e" is the image of e’

under the isomorphism (l), and $* =

Define H" = (7", E"9 $'')9 and define a bisection between E" and E ’

by the extension of the isomorphisms (I).

Now, since !v(GV)nV(G'') I = k - 1 for i f j, H"„ is a component ^ J E
of H". Clearly independence in M(H”) implies independence in M(H’). 

Suppose that X’ is an independent set in M(H’). If X’ ~ then., 

there is nothing to prove. Assume, therefore, that X' ^ # and let 

A ’ be a nonempty subset of X'* Denote by A"9 X'* Lhe images of A ’9 

X ’ respectively under the bisection between E" and E*•
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Let B- = A ’uGj (1 ^ j ^ n), and let {Aj: 1 < i < m} be the set of 

Bj which are nonempty. Then, since (Gp)nV^, (Gj ) = <j) for i , 

iVg.CA')! = IVh ,(A|)I + IVjj.CApI + ... + |Vjj,(A;)i.

Thus, (using V( ) to denote vertex-sets in H") we have

|v(A")i = lv(A'i'uÂ u...uA;)i = |v(A';uA^u...uA;)-Ri + iA'nv(A!,'u...uA;)|

= iv(A;)-%l + lv(Ap-(.'l + . . .  + \nfÇ̂)-w\ +i&b(uA^)i

= |v(A'j)l + |v(Apl + ... + |v(A;)l - |v(A'')nfi/| - ivCApnFi - ...

- |V(Â )nl/l +i |S'nV(uAp I 

= iVjj.CApI + ... + l\.(A;)l- (lv(Ai')ni/| +...+|v(A;)n%i) 

|k'nV(uAp I

+ k - 1 + ... + lÂ I + k - 1 (since AJ is independent 

V(A")n(/|+.. . + |V(/̂ )n!/| ) and nonempty for each i)

Iv'nV(uApi

+ ... +lA^I + m(k-l) - m(|V(uApnf/l) + |V(uA.)n(-/l

+ ... +IA%I + k - 1.

Since this is true for each nonempty subset A" of X", X" indep­

endent in M(H"). Thus, M(H") = M(H’) = M(h ) = M as required.

It is therefore sufficient, when dealing with hypergraphic matroids,

to restrict our attention to hypergraphs consisting of only one 

component.

DEFINITION 2.14: A hypergraph H = (F, Es $) is said to be critical

if (F, Es $) is a component of H.

The reason for using the term "critical" for the hypergraph H 

itself, is that every base of M(h ) is a critical subset of E, and that 

V(h ) is spanned by E« From the foregoing results, it is clear that a 

critical set in a hypergraph is the analogue of a tree in a graph.

The motivation leading to (2.1),and the proofs following, show that 

an independent set in a hypergraph is the analogue of a forest in a 

graph.

& lA] 
-( 

+

^ lAl 

5 lA"
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As an example of the construction of (2.13), consider the hyper- 

graph H with vertex-set V = {A,B,C,D,E,F,G}^ and edge-set 

E = {a,h,c,d,e}^ , where V(a) = {A,B,C}, V(b) = {A,B,D},

V(c) = {A,C,D}, V(d) = {C,E,F} , V(e) = {D,F,G}.

This hypergraph is shown in Figure 2.

e F
Figure 2.

G*

This has three components, whose edge-sets are {a,h,c}, {d} and {e} 

respectively. The rank-U matroid M(h ) is shown in Euclidean represent­

ation in Figure 3.

e

Figure 3

The construction of (2.13) first gives a hypergraph H ’ with 

vertex-set F’ = {A',B',C',D',C",E",F",D*,F*,G*}, and edge-set 

E' = {a',h',c',d',e'}^, where Vg,(a*)= {A',B',G'}, V^,(h') ={A',B',D'} 

Vjj,(c') = {A',C',D'} Vg,(d')= and V^,(e') = {D*,F*,G*}.

Then, taking W = {C’,D*} say,.we obtain the critical hypergraph 

H" with vertex-set {A",B",C',D',E",F"}^ and edge-set = {a",b",c",d",e"l

where V(a") = {A",B",C }, V(b') = {A",B",D'}, V(c") = {A",C',D'}
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V(d") = {C’jD’jE"} and V(e") - {C',D*,F"}. The hypergraph H” is 

shown in Figure U. It is easy to see that, under the obvious bisection 

between the edge-sets ^.and M(H) = M(H").

M 3

Figure h
D

It follows from (2.6) that no subset of V with cardinality k-1 

can be contained in the vertex-set of more than one component of a 

hypergraph. In a sense, therefore, these (k-1)-subsets are 

partitioned by the components of the hypergraph, in a similar way to 

the partitioning of the vertex-set of a graph by the vertex-sets of 

the components of the graph. We shall be using these (k-1)-subsets 

often in subseq̂ uent chapters, and we give those contained in the 

vertex-set of some edge of the hypergraph the name of "nodes". More 

formally :

DEFINITION 2.15: Let H = (y, ,̂ $) be a k-hypergraph with k > 2. A

subset il/ _c 7 with \N\- k-1, and such that N _c V(e) for some 

e £ ^ is called a node of H. If jc the set of nodes 

{il/: N £  V(e) for some e £ j\̂} is denoted by n(^). We write 

n(e) for n({e}). The set of all nodes of H is denoted by n(H).

With any k-hypergraph H, therefore, we can associate another 

hypergraph of the same cardinality, whose vertex-set is the set n(ïï), 

whose edge-set is the set ^(H), and an incidence relation "il/ is 

incident with e if and only if # jc Vjj(e)". We embody this concept in the 

following definition:
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DEFINITION 2. |6 : Let H - ( F, . 'be a k-hypergraph, with k ^ 2 and

E ̂  node-hypergraph of H, denoted hy N(h ), is the hypergraph

(%= E%) ^%ere = n(H), E% = E and V̂ (̂e) }.

EXAMPLE: Let H he the hypergraph K? on the set F = {A^B,C,D } .= Then

n(H) is the set of all 2-suhsets of F contained in the vertex-set of 

some edge of H - i.e., in this case, all 2-suhsets of F. n (H) is 

shown in Figure 5. Some properties of node-hypergraphs will he

investigated in Chapter 9

Figure 5

NON-UNIFORM HYPERGRAPHS:

So far in this chapter we have dealt exclusively with uniform 

hypergraphs. We now consider briefly the non-uniform case, and show 

that, under one possible definition for the associated matroid, no 

non-hypergraphic matroids result; under another possible definition 

matroids are produced which fail to satisfy the desirable property 

mentioned in Chapter 1; a third possible definition, which permits 

loops, is one which we shall be using in Chapter H — however, every 

matroid produced Dy this definition is either hypergraphic, or is such 

that the matroid formed from it by the deletion of loops is hypergraphic 

Essentially, therefore, no greater generality results.

It would be possible to apply (2 .1) to non-uniform hypergraphs by



• . , - 32 -
■ /

dropping the requirement that H be uniform, and taking k to be some 

integer less than the maximum cardinality of V(e) where e o E*

However, if ê  and e^ were such that V(e^) = Y{e^) and |V(ê )| = |V(e2)l> k, 

we would have {e^e^} independent in the resulting matroid which, as 

they have identical vertex-sets is rather unnatural. Indeed, that 

such a set should be dependent was the desirable property that we 

mentioned.in Chapter 1.

An alternative, simplër, approach is to regard all edges with 

vertex-sets having cardinality less than the maximum of |V(e)| for 

e £ E as being loops; this is equivalent to dropping the requirement 

that H be uniform in (2.1) and taking k to be the maximum cardinality 

of V(e) for e e E* This is the extension we shall make in Chapter 

4, in order to allow loops.

The compromise between these two extremes is to vary the value 

of k, depending on the set of edges under consideration.

DEFINITION 2.17: Let H" = (7", $") be a hypergraph. A set

A" £ E" is said to be independent if and only if either

(i) A"=
or (ii) |V(0")1 > 10"I - 1 + min{lV(e")I : e" £ 0"} for each nonempty 

subset 0" of /\".

It can be proved directly that the set of independent sets 

defined by (2.17) is the set of independent sets of a matroid on E"«

However, we shall prove this in another way, which shows that no matroids 

result which are not hypergraphic by our earlier definition.

THEOREM 2.l8: Let H" = (7", E"s $") be a hyper graph. Then there

exists a uniform hypergraph H’ = (7', E"> $') such that A" £  E" is 

independent in M(H’) if and only if A" is independent according to (2.17).
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Proof; Put k = max {|V^„(e") |: e" £ F" }. Let {

be a set of vertices disjoint from 7’, and let 7  - 7'u{Â  jA^,. • • ,Â  

Define H ’ =_ ( 7*, E"? $’) to be the (k+2)-hypergraph where 

Vg,(e") = V%„(e")u{A.: 1 < i < k - rVg„(e")}u{B^,B2}

Then |Vg„(G") |h IG" i - 1 + min {|Vjj„(e")j: e" £ G" } if and only if 
|Vjj,(G") 1̂  IG"I + (k+2) - 1 

Thus, (2 .17) defines the set of independent sets of a matroid M on E"@ 

and M = M(H’). We therefore obtain no new matroids satisfying 

the desirable property that two edges with the same vertex-set should 

be parallel in any matroid obtained from the hypergraph.

Note that (2.17) has been included to show that it is possible 

to extend the definition of hypergraphic matroids to non-uniform 

hypergraphs without requiring all edges with less than maximum 

cardinality to be loops. We shall not be using definition (2.17) in 

future chapters, because it does not allow loops in the resulting 

matroid. Our definition of independence will therefore continue to 

be (2.1), until we modify it in Chapter h.

We end this chapter by noting the connection between our definitions 

and those of Berge [1]. Berge defines a hypergraph to be connected 

if, for any two edges e^,e^ of the hypergraph, there is a sequence of 

edges of the hypergraph (e^,e2,...,e^) such that e^ and e^^^ are 

adjacent for each i (l < i < t-l).

A critical hypergraph is connected in the sense of Berge, but 

there are hypergraphs connected in the sense of Berge which are 

not critical. For example, consider the hypergraph H on the set of 6 

vertices {A,B,C,D,E,F}^ with two edges a and b where V(a) = {A,B,C,D} 

and V(b) = {C,D,E,F}. This hypergraph is shown in Figure 6 .

It is clearly connected in the sense of Berge, but it has 6 vertices,

2 edges and cardinality 4. So |v(E)| - 6 > 2 + 4 -  1 = |E |+  k - 1,



Figure 6

Hence H is net critical, since M(h ) has rank 2 and [ is a hase of M(H)

À circuit C necessarily contains the edge-set of a cycle, since, hy

(2.3)9 every vertex in V(C) is contained in the vertex-sets of at least 

two elements of Q. However, not every cycle is such that its edge-set 

is dependent, and the hypergraph shown in Figure 6 provides a suitable 

example. This also gives a reason why the cycles of a hypergraph are 

not appropriate as a starting-point for matroids. We have, in the 

hypergraph of Figure 6, two edges which together form the edge-set of 

a cycle. Thus, if any matroid were possible starting from the cycles 

of the hypergraph, these edges would he parallel. But they do not have 

the same vertex-set, which is contrary to the desirable property we 

mentioned in Chapter 1. Our requirement for independence ensures that 

two edges are parallel if and only if they have the same vertex-set.

Another good reason for not using the cycles of a hypergraph to 

attempt to define the circuits of a matroid is that there exist 

uniform and non-uniform hypergraphs, the edge-sets of whose cycles do 

not satisfy the circuit axioms (Cl) and (C2).
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CHAPTER 3

! ELEMENTARY PROPERTIES OF

HYPERGRAPHIC MATROIDS

In this chapter, we shall prove various properties of hypergraphic 

matroids, and use these to show that the Fano matroid and its dual are 

not hypergraphic matroids. We also produce a generalisation to hyper­

graphs of the notion of a cutset in graphs, and show that the set of 

cutsets of a hypergraph H is the set of circuits of the dual of M(H).

PROPOSITION 3.1: Let II = ( F, ,̂ $ ) he a k-hypergraph. If A £ E j A  ̂4),

then I V( A) I - (k-1 ) > pA, where p is the rank function of M(H).

If H^ is a fragment of H, then ( A)l - (k-l) = pj\.

Proof: Let A_5 E let g he a maximal independent subset of A*

Then pA = IB I* Also, since B is independent, hy (2.1),

1 V(B) I  ̂ IBI + k - 1. Since V(A) £>V(B),

I V(A) I ^ fV(B)l ^ IBI + k - 1 = pA + k - 1.

If H^is a fragment, V( A) = V(]}) for some critical subset g _c A- 

Therefore, pA+ k - 1 < ^(A) I = ^(D) I

= IJ3I + k - 1 since J) is critical

^ IB 1 + k - 1 since B is a maximal independent

subset of A

= pA + k - 1.
Thus, equality holds throughout, and the second half of the 

proposition now follows.

PROPOSITION 3.2: Let H = ( F, $) he a k-hypergraph. If

C ~ {S'! 3^25^2 ^ circuit of cardinality 3 in M(h) then, under a

suitable labelling of the vertices, V(e^) = {A,C }uP/, V(ep) = {B,C}uP/ 

and V(e^) = {A,B}uI/, where {A,B,C }̂ nP/ = 4» and {A,B,C}uf/ _c F.
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Proof: Since C is a circuit, by (2.3), Iv({e^,e2})| = lV(C)l = k+1.

Since H is a k-hypergraph, |V(e^)|= k (1 < i < 3).

So, |V(e^)nV(e2)| = k - 1. Let V(e^) nV(eg) = U. Then V(e^) = {A}u% 

and V(eg) = (b}uî/ under a suitable labelling of the vertices. Also 

by (2.3), V(eg) Ç V(C) = V(e^)uV(e2) = {A,B}u%.

Furthermore, since every vertex in V(Q) is contained in the vertex-sets 

of at least two elements of C j (A,B} jç v(e^). Thus V(e^) = {A,B}uP/

for some subset W U with |I71 = k - 2. Let {C} = U-W. Then

V(e^) = {A,C)uW, Y{e^) = {B,C}u^ and V(e_) = {A,B}u^.

PROPOSITION 3.3: Let H = (F, E, $) be a k-hypergraph. If Q is a

circuit of cardinality in M(H), then, for any e e [, there exists 

e* e C such that |V(e)nV(e’)I = k - 2, and V(e)uV(e’) = V(C).

Proof: Let C = {e,e^,e2,e }̂̂ . Then, since [ is a circuit, by (2.3),

lV(C)I = |V({e,e^,e2,ê })I = k+2. Since>H is a k-hypergraph,

|V(e)i = |V(ê )| = k (1 < i < 3). Thus, |V(e)nV(e^)| > k-2 for each

i, 1 < i < 3. If strict inequality holds for each i, then, since is

a minimal dependent set, |V(e)nV(e^)| = k - 1 for each i.

Suppose this is so. Since {e,e^,e2) is critical (by (2.3)),

|V({e,e^,e2})| = k + 2. Thus, there exist vertices e V(e^),

Vg 6 V(eg) such that é V(e)uV(eg) and é V(e)uV(e^).

But, by (2.3), {V^,Vg} 2  ̂ (sg), so |V(e^)nV(e)| < k-2, which is a 

contradiction. Thus, there exists e’ e C satisfying |V(e)nV(e')| = k-2 

But then dV(e)uV(e')I = k+2, and so V(e)uV(e’) = V([).

(3.2) and (3.3) are not of any great interest in themselves

(except that they mirror the behaviour of circuits of similar sizes in

graphs), but they are of considerable use in constructing hyper graphic 

presentations of matroids, if such presentations exist, or in proving 

that certain matroids are not hypergraphic.
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It is routine to check that all matroids on at most six elements 

are hypergraphic. '

THEOREM 3.^: Let M be a matroid of rank 3 on the seven-element set

E= {a,b,c,d,e,f,g}^. If the set of circuits of M contains r
{a,b,c}j {a,d,e}, {a,f,g} and no other sets of cardinality 3

containing a, then M is not hypergraphic.

Proof: (i) We prove first that M is simple. .

Since each of the seven elements of 2 is contained in a circuit 

of cardinality 3, M is loopless. Suppose M has a parallel pair of 

elements, {b,d}, say. Then, by (C2), there exists a circuit of M 

contained in ({a,b,c}u{b,d})-{b} = {a,c,d}. This circuit cannot be 

{a,c,d}, since this is a set of cardinality 3 containing a. It 

cannot be {a,c} or {a,d}, since both of these are properly contained in 

circuits of M. It must therefore be {c,d}. But then b and c are 

parallel, and so {b,c} is a circuit, which is impossible, since it is 

properly contained in the circuit {a,b,c}.

A similar argument applies to other possible pairs of parallel 

elements. Thus, M is simple.

(ii) We now prove that M is not hypergraphic.

Suppose M is hypergraphic. Then, by (2.13), there exists a 

critical hypergraph H = (F’, 2'j $') of cardinality k, where 

|F'| = k+2, and M = M(H) . Let 2’ “ {a.' ,b* ,c ’ ,d’ ,e’ ,f ' ,g’ }̂ , and let 

the matroid isomorphism be that induced by the obvious bisection between 

2 and 2'* Then, since {a’,b’,c’} is a circuit, by (3.2), V(a') = {A,C}u^ 

V(b') = {B,C}uf7 and V(c') = {A,B}uP/, for a suitable labelling of the 

vertex-set 7 ’, where |%'|= k-2. Then |V({a',b’ ,c ' } ) [ = k+1, so there 

is exactly one vertex D, say, with D e F’-V({a*,b’,c’}).

Now, since none of d',e’,f’,g’ forms a circuit with {a',b’}, D is an 

element of each of V(d’), V(e’), V(f’) and V(g’).
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Also, since {a’,d',e’} and {a’,f’,g’} are circuits, we have 

|V( {a’,d’,e*})i = k+1, and so V({a’,d*,e’}) = {A,B,D}u&% Similarly, 

V({a',f',g'}) = {A,B,D}uI7.

Thus, V( {a* ,d* ,e’,f ' ,g’}) = {A,B,D}uJ75 so, hy (3.1), the rank in 

M(H) of {a’,d’,e’,f’,g'} is at most 2. But, in M, the rank of 

{a,d,e,f,g} is 3, which is a contradiction. Thus, M is not 

hypergraphic.

. /.
PROPOSITION 3.5: The matroid M on the seven-element set

2 =  {a,h,c,d,e,f,g}^ with circuits {a,h,c}, {a,d,e}, {a,f,g} and 

all ii-subsets of 2 containing none of these is the simplest non­

hypergraphic matroid, in that it has fewest elements, and, amongst 

all non-hypergraphic matroids on seven elements, it has fewest 

circuits of less than full rank.

Proof: That M is not hypergraphic follows from (3.^). That M has

fewest elements amongst all non-hypergraphic matroids follows from the 

fact that every matroid on at most six elements is hypergraphic.

That any matroid on seven elements with at most two circuits of less 

than full rank can be shown by routine check.

PROPOSITION 3 .6 : The Fano matroid is not hypergraphic.

Proof: (3 .̂ ).

THEOREM 3.T: Let M be a matroid of rank U on the seven-element set

2 = {a,b,c . e,f ,g}^. If the set of circuits of M contains 

{a,b,c,d}, {a,b,e,f}, {a,c,f,g}and {a,d,e,g}, and no other circuits 

of cardinality U containing a, then M is not hypergraphic.

Proof: (i) We prove first that M is simple.

Since each element of 2 is properly contained in a circuit, M is 

loopless. Suppose that M contains a pair of parallel elements.

Since no such pair can be a subset of one of the 4-sets given in the
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hypotheses of the theorem, such a pair can he only {h,g},{c,e} or{d,f}. 

Consider, for example, the pair If these are parallel, then, by

(02), there exists a circuit contained in ({a,b,c,d}u{b,g})-{b}, i.e. in 

{a,c,d,g}. This circuit cannot be {a,c,d,g}, since this is a 4-set 

containing a. It cannot be any of the pairs of elements in the set, 

since no such pair can be parallel. It cannot be a triple containing a, 

since any such triple is properly contained in a circuit of M. It must 

therefore be {c,d,g}. But then we have p({a,b,c ,d}'u{c,d,g}) = p({a,b,c,d}) 

and so p({a,b,c,d,g}u{a,d,e,g}) = p({a,b,c,d}), and

p({a,b,c,d,e,g}u{a,b,e,f}) = p({a,b,c,d}). Thus, rkM = p({a,b,c,d}) = 3, 

which is a contradiction of the hypothesis that M has rank 4.

A similar argument holds for other possible pairs of parallel 

elements. Thus, M is simple.

(ii) We now prove that M is not hypergraphic.

Suppose M is hypergraphic. Then by (2.13), there exists a critical 

k-hypergraph H = (W, F' $’) vith|F' ( = k+3, such that M = M(h) .

Let 2’ {a',b',c',d',e',f',g'}^, and let the matroid isomorphism be

induced by the obvious bisection from £ to £ ’. We note that the set 

of circuits given in the hypotheses of the theorem is symmetric in b,c,d 

in that, for any permutation of b,c,d, there is a corresponding 

permutation of e,f,g which preserves the circuits listed in the 

hypotheses of the theorem. Now, by (3.3) applied to the circuit 

{a',b',c',d'}, there is an edge x’ in {b',c’,d'} such that 

lV(a‘)uV(x') I = k-2. By the symmetry referred to above, we may 

assume without loss of generality that x’ = b'.

Thus, |V (a ' )u V (b ' ) |  = k+2. Now, by (2.3), |V({a',b',e',f'})| = k+2, 

since {a',b',e',f'} is a circuit. Thus, V({a',b',e',f'}) = V({a',b'}). 

Hence |V({a',b',c',d',e',f'})| = k+2 and so, by (3.1), in M{H),

{a* ,b‘,c * ,d’,e’,f ’ } has rank at most 3. But, in M, {a,b,c ,d,e,f} has
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rank 4, since it spans F in M, and M has rank 4. Thus, M is not 

hypergraphic,

COROLLARY 3.8: The dual of the Fano matroid is not hyper graphic.

PROPOSITION 3.9: Let H = ( F, F, $) he a k-hypergraph. Let

{a,b,c}^ c 2. If {a,b} and {a,c} are critical sets, and if'{b,c} 

is independent and not critical, then V(b)uV(c) V(a) V(b)nV(c). 

Proof: Since {a,b} is critical, |V(a)uV(b)| = k+1. So

V(b) = (V(a)-{A}) (j{B} for some {A,B}^ _c F. Similarly, since {a,c} 

is critical, V(c) = (V(a)-{C}) u{D} for some {C,D} , ç  F.

Therefore, V(b)uV(c) = (V(a)-( {A>n{C}) ) u( { B } ’u { D } )  ( 1 )

V(b)nV(c) = (V(a)- ( {A}u{C}) )u '( {B}n{D})  (2)

Now, {b,c} is independent and not critical, so |V(b)uV(c)] > k+2.

Thus, since |V(a) |  = k, from (l), A ^ C and B f D. Therefore,

V(b)uV(c) = V(a)u{B,D} and V(b)nV(c) = V(a)-{A,C}. Hence .

V(b)uV(c) 3  V(a) D V(b)nV(c).

PROPOSITION 3.10: Let H = (F, 2) $) be a k-hypergraph, and let

A Ç 2 be a critical set. I f  e e 2“A ^^d V(e) c V(A), then  

Au(e} is dependent in M(h ).

Proof: |V(Au{e})| = |V(A)uV(e) | = |V(A) | since V(e) c V(A)

= lAl + k - 1 since A is critical 

< lAuie} I + k - 1 since e ^

Thus, l\u{e) 5s dependent.

PROPOSITION 3.11: Let H =  (f , 2) $) be a k-hypergraph, such that

M(h ) is simple. Let 2’ = {a,b,c,d,e,f,g,x,y,z}^ ^ 2 be such that

the set of circuits of M(h )><2 ’ contains {a,b,c}, {a,d,e}, {a,f,g} 

and no other circuits of cardinality 3 containing a. Suppose 

fu rth e r  th a t ,  in  M^H), x c c ( { b , d } ) n a ( { c , e } ) ,  y  g a ( { b , f } ) n a ( { c , g } )
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and z e a( {d,f}) na( {e,g.}). Then {x,y,z] is a circuit of M(H).

Proof: We note first that M(H)xP* necessarily has rank >4, since, hy

(3.4), M’ = M(H)x{a,b,c,d,e,f,g} cannot have rank 3, and the requirement 

that M(h )x2’ has only the given circuits of cardinality 3 containing a 

precludes the possibility that M ’ has rank less than 3. Furthermore, 

by an application of the rank function, we see that M(H)x2’ has rank at 

most 4, since p({a,b,c}u{a,d,e}) < p({a,b,c}) + p({a,d,e}) - 1 = 3  (1)

and p({a,f,g}u{a,b,c,d,e}) < p({a,f,g})+p({a,b,c,d,e})-1 <4 (2)

and p({a,b,c,d,e,f,g,x,y,z})=p({a,b,c,d,e,f,g}), since 

X € a({b,d}), y e a({b,f}) and z £ a({d,f}).

Thus, equality must hold in the inequalities (1) and (2).

Since {a,b,c} is a circuit, by (3.2), V(a) = A/u{A,C}, V(b) = P/u{B,C} 

and V(c) = î7u{A,B} for a suitable labelling of F, where |I7| = k-2.

{a,d,e} is a circuit, so, by (2.3), V(a)uV(d)uV(e) = %b{A,C}u{B} for some 

D £ F-{A,C}. Since, inM(H), p({a,b,c,d,e}) = 3, by (3.1),

|V({a,b,c,d,e}) 1 > k+2-, so D  ̂{A,B,C}uî7. By (2.3), D £ V(d)nV(e).

Since {b,d,x} is a circuit, |V(b)uV(d)uV(x)| = k+1. Since 

V(b)uV(d) 2 î7u{B,C,D}, we must have V(b)uV(d)uV(x) = &b{B,C,D}.

Thus, V(d) Ç (V(a)uV(d)uV(e))n(V(b)uV(d)uV(x)) = f/u{C,D}.

Since |V(d)| = k = \W\ + 2, equality holds, so V(d) = I7u{C,D}.

Similarly, V(e) = P/u{A,D} and V(x) = î7u{B,D}.

Again, using the circuits {a,f,g} and {b,f,y},

V(f) = îv'u{C,E}, V(g) = î7u{A,E} and V(y) - I/u{B,E} for some 

E i {A,B,C,DW. Thus, V(z) c (V(d)uV(f ) )n(V(e)uV(g) )

= ({C,D,E}uf7)n({A,D,E}uJ7) = {D,E}uJ7.

So, since |V(z)| = k = \W\ +2, equality holds, and V(z) = {D,E}u[/.- 

Thus, V(x) = {B,D}uf/, V(y) = {B,E}uI/, V(z) = {D,E}ur/ and so 

{x,y,z} is a circuit of M(h).’
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• This theorem is a specialisation of Desargues' theorem. Translated 

into a geometric interpretation in the Euclidean representation of M(h), 

(3. I 1) states that if bdf and ceg are triangles, such that the lines 

be, de and fg are concurrent at a, then the points x,y and z formed

by the intersections of corresponding sides of the triangles are

collinear.

The proof of (3.11) shows that, up to the common set î7 of vertices, 

the allocation of vertices is the same as the allocation of vertices to 

the edges of a the matroid M(K^) is, in Euclidean representation, 

the Desargues configuration without coincidences in three dimensions.

PROPOSITION 3.12 (direct SUM): Let ,Mg be hypergraphic matroids.

Then M̂  ©  M^ is hypergraphic.

Proof: Let = (Fj, 2^3 $̂ ) (i = 1,2) be a k|-hypergraph such that

%  = Without loss of generality, suppose k]| > k ' ,  and put

k = k^. Let F^,F2 ,IV be disjoint sets of vertices such that

|F̂ I = IF̂  I li = 1,2) and |Iv̂| = k̂  - k^. Let 0̂  denote a bisection

between and Fj (i = 1,2).

Let be the k-hypergraph (7^, 2^, $ J  where

~  ̂ 1̂*  ̂Vjjt(e)}, for each e £ 2q'

Let H2 be the k-hypergraph {v^uW, 2p, $?), where 

Vr (e) = {V e Y^: £ V , (e) }uF, for each e e 2o*
2

Then M(H^) = (i = 1,2). Let H be the hyper graph (7 , 2s $), where 

F = F̂ uFgUf/, 2 = t'u22 and $ = $^u$g. Then M(H) = M(H^ ) ©  ̂ (Hg).

For, let Ç 2j_ be a nonempty set independent in M(H^) (i - 1,2).

Then |Vr (0̂ )[ > |0̂ | + k - 1 for each nonempty subset of

- iGpl + k - 1 for each nonempty subset 0  ̂of

and so A- is independent in M(H). Write Q = Q^uGg. Then, if G^,Gg f K
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1Vr(G ) I = |Vr(G-i)1 + |VR(Gg) I  ̂ !G-| 1 + iGgI + k-i + k-i
• > ! G1 k - 1 since k > 1.

Thus, writing j\ = A-j uAg, if A^ is independent in M(H^) (i =1,2),

A is independent in M(h ). ■

Conversely, suppose A is independent in M(H). Write = AoEp*

Then, if Aq ^ ~ I'̂ jĵ Ĝ ) 1  ̂ iGpl + k-1, for each nonempty

subset G^ of Ap* and so Ap is independent in M(H^).

Thus, M(H) = M(H^) ©  M(Hg)= ©  M^, and so is

hypergraphic.

PROPOSITION 3.13: Let M be a matroid of rank r on the set 2 s-nd

suppose X e 2 is such that x is an element of no circuit of M of

cardinality less than (r+l). Then Mx(2-{x}) is hypergraphic if

and only if M is hypergraphic.

Proof: Assume M is hypergraphic. Then, by (2.12), Mx(2-{x}) is

hypergraphic.

Now suppose M x(2“{x }) is hypergraphic. If x is a coloop of M, then 

M = (Mx(2-{x}) ©  ^({x}), and hence, by (3.12), M is hypergraphic.

If X is not a coloop of M, write 2* = {e*: e e 2}) and let H' be the

critical k-hypergraph (W, 2'-{x'}, $’) with M(H’) = Mx(2-{x}), where

the isomorphism is that induced by the obvious bisection between 2 and 

2*. Choose a set W' of | F' |-k vertices disjoint from F*, and put

F" = F'uf/’, 2" = {e": e e 21-

Let H" = (f", 2") $") be the hypergraph with V „(e") = V , (e’)uî7’ 

if e" r x". and Vr „(x ") = 7'. Then H" is a uniform hypergraph of 

cardinality |7'(.

• Let A” £ Then A" is independent in M(H"), if and only if

either A" “ ({), or |TR„(G") I ^ lG"i |F'| - 1 for each nonempty subset

G" of A".
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But this is equivalent to |Vg,(G') | > iQ' | + k - 1 for each nonempty 

subset G’ of A’* Thus, A* is independent in M(H’) if and only if /\" 

is independent inM(H"), where A" }' Hence M(H”) x(p’-{x" }) = M(H' )

Now let A" _E E"s vith x" e A"*' If lA" 1 ^ 2, then V^„(A) = 

so there are no circuits of M(H") containing x" of less than full rank. 

However, since H* is critical, r = |F* | -k+1. By (3.1), 

rkM(H") < ;|V(H") I - !F* ! + 1 = |Î7* I + 1 = r; also, from the above, 

rkM(H") >rkM(H’) = r. Therefore, M(H") has rank r.

Let B" He any base of M(H") not containing x". Then {x" }uB" is a 

circuit of M(H"). Conversely, if {x" }uB" is a circuit of M(ll"),

B" is a base of M(H"). Therefore, M(H") = M, the isomorphism being that 

induced by the obvious bisection between p ’ and Thus, M is

hypergraphic.

COROLLARY 3.1^: Let M be a matroid of rank r on the set 2» and suppose

that x^,X2,...,Xg e 2 are such that none of them is contained in a 

circuit of M of less than full rank. Then Mx(2“{x^,X2 ,...,x^}) 

is hypergraphic if and only if M is hypergraphic.

Proof: Repeated application of (3.13).

DEFINITION 3.15: Let M be a matroid of rank r on the set 2s and let

X  ̂2" Then the matroid on the set 2u{x}, whose set of bases is 

the set B(M)u{[u{x}: U| = r-1 and I £ I(m )} is called the 

free, rank-preserving one-point extension of M by x.

If X^E “ the matroid on 2uX whose seu of bases is the set 

n ^ Y ' Y s X s  lYl - 9̂ 111 = r -  lYl, I e I(M)} is called the 

free, rank preserving [XI-point extension of M by %.

COROLLARY 3.16: If M is a hypergraphic matroid on the set 2 and x 2s

the free rank-preserving one-point extension of M by x is 

hypergraphic.
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Proof: Let be the free, rank-preserving one-point extension of M

by X. Then x is contained in no circuit of M, of less than full rank ■— I
i.e. in no circuit of cardinality less than rkM^ + 1. Thus, by

(3 .13), is hypergraphic if and only if M^x(£-{x}) is hypergraphic.

But M^x(E“{x}) = M, and M is hypergraphic, so is hypergraphic.

Note that the one—point extension of (3.15) is a very particular 

one-point extension, in which the point x is placed "in general pos­

ition" in M. It is not true that placing x elsewhere in M will 

necessarily give a hypergraphic matroid- from the hypergraphic matroid M. 

For example, consider the matroid M = M(K^), shown in Euclidean repres­

entation in Figure T(a). A one-point extension of M placing x in the 

flat ^({c,e}) gives the matroid shown in Euclidean representation in 

Figure 7(b). By (3.4), this is not hypergraphic.

a

(a) (b)

Figure 7

PROPOSITION 3.17: Let H -  (y, 2, $) be a k-hypergraph, and let

{a,b,c,d}^ S E* {&,b}, {a,c}, {a,d}, {b,c} and {b,d} are 

critical sets of edges, and if no three of these edges together 

form a circuit, then {c,d} is critical.

Proof: Since {a,b} is critical, we have V(a) = {A}uî7, V(b) = {B}uF/

for a suitable labelling of the elements of 7, where (î7| = k-1.

Then V(a)uV(b) — {A,B}uf/. Since c does not form a circuit with {a,b}, 

V(c) £  V(a)uV(b), and so there exists C e 7 such that C e V(c) and
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C i V\a)uV(b). Thus, V(a)uV(c) _£ {A,C}uF/. Since {a,c} is critical, 

equality holds. Similarly, V(b)uY(c) ='{B,C}uY. Thus, since 

V(c) ^ (V(a)uV(c))n(V(b)uV(c)) = {C}uY and |V(c)| = k, equality holds 

here, and V(c) = {C}uf7.

Similarly, V(d) = {D}uY, where D {A,B,C}ul7.

Thus V(c)uV(d) = {C,D}uF/, and so {c,d} is critical.

PROPOSITION 3.18: Let H = (F, 2? $) T̂ e a k-hypergraph, and let

{(V(Qj.), ^ , $^): 1 ^ i < m} be the set of components of H. Then, if

p is the rank function of M(h ), 
m .

~ for any ft £ 2*

Proof: Let $j) (1 ^ i ^ m) be k-hypergraphs such that

M(HI) s M(H)xg under the obvious isomorphism, and such that FînFÎ = é 
for i ^ j. Put F’ = F’uF^u...uF^, 2’ = GiUG^u...u(^ and $' = $’u...u$^.

Let H = (F', 2'j $'). Then, as in the proof of (2.13), M(H’) ^ M(h ).

Also, M(H’) = M(HÎ ) e  M(Hi) ©. . .© M(H’).“ I —  ̂ —  m
For, let /\! ,/\! ,.. ./U be nonempty independent subsets of 

1 2 n
Gj ,G! (% ^ m).

1 2 \

Then |V̂ , (Bp )i - IBp I ^ k - 1 for each nonempty subset gl of J\l .
j j ""j ""j

• • u...uB| )I ^ I Bp uB̂  u...uB| 1+ k - 1, since
1 2  n 1 ■"2 n

Fj nF| = (p for r f s, and k > 1. 
r s

Thus /\’ = A! UÛ! u... u AI is independent in M(H’).
1 ^2 \

Conversely, if, with the above notation, /\’ = /\| u/\[ u. ..uftp is independ-
1 2 ^m

ent in M(H’) where each r (pi then, for any nonempty subset
j

Bi. Ap. 9 ^^H'^Bp ) I - I Bp I + “ 1j since gî is a nonempty subset
J J j  j  j

of f\\ and hence
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|V_, (B! ) | > IB; I + k - 1.
"j J J

Thus, A Î is independent<in M(HÎ ).
, ■ j

Hence, M(H’) = M(Hî) ©  M(H* ) ©.. .© M(H* ), and so— . . . , —  1 d . . . '
M(H) 2 M(H!j) é  M(Hp ® . . .© M(H^) . Thus, for A 5  E.

pA =  “ (p(GinA))- 1=1 -*■

We close this chapter by examining the analogue in hypergraphs 

of cutsets in graphs.

DEFINITION 3.19': Let (V(Q,̂  ) ,G^ ,$^) be a component of the hypergraph

(F, F, $) . A subset X £  E is said to separate (V(Gi ),

if (V(G^), G-|“X 5 is not a critical hypergraph, where

= {(V,e):e : e e Q^-X); i.e., there exists no critical set 

A E  Gi"X such that V(G^) = V(/\).

DEFINITION 3.20: Let H = (F, E» $) "be a k-hypergraph. A cutset of H

is a subset C* £  E such that 

(i) Q* separates some component of H;

(ii) no proper subset of separates any component of H.

LEMMA 3.21 : Let H = (F, E@ $) a k-hypergraph with components

(V(G-)j G '9 $' ) (1 ^ i ^ m), and let Q* be a cutset of H.
^ - . :Then G* _c Gp for some i.

Proof: Suppose G*nG» f  ̂and [*nG- #  <f> -where i r j.

Then (V(G-)j G*“C*» ) is not a critical hypergraph. Let c e Q^nG- »1 1 (1.;
Then (V(G. ), G.*"(C*“{o}) » $') = (V(G: ), G-:“C*9 $'), since c £ Q* and, 

by (2.7), G^nGj = Thus, G*-{c} separates (V(Gi), G^^ $^), and so

G* is not a cutset, since there exists a proper subset of G* which 

separates a component of H. But this contradicts the hypothesis that 

G* is a cutset. Thus, G* £  G^ for some i.



LEMMA. 3.22: Let (vCG^), G-j î $-j) be a component of the k-hypergraph

H. Then jV(G.j)| = pG.j + k - 1, where p is the rank function of 

M(H).

Proof : Since (V(G^) , G-js $-|) is a component of H, it is a fragment of

H. The result now follows from (3.1).

LEMMA 3.23: Let H = (F, F, $) be a k-hypergraph, and let be a

cutset of H. Then is a hyperplane of M(h ) .

Proof: Let {(V(G^), G^, $i): t i ^ be the set of components of

H. Then, by (3.21 ), Gĵ for some i. Without loss of generality,

assume C* £ G-j.

Since Q* separates (V(G|), G^, p(Gi“Ĉ ) < p(G-|)v 

For, if not, there exists an independent set A 5 G-j”C* with pj\ - pG^.

Then IV(G|)1 >|V(A)1 > lAl + k - 1 = pG^ + k  - 1.
But, by (3.22), |V(Ĝ  ) | = lGi K  k - 1. So A is critical, and V(G|)=V(A). 

But this contradicts the hypothesis that Q* separates (V(G^), G-j 9 ̂ 1 )• 

Thus, p(Gi C*) <p(Gi)' Furthermore, since G* is minimal with respect

to separation of (y(G^) , G-j 9 $i), forrany c G*> there exists a critical

set A £  Gi“(C*"ic}) with V(A) = V(G^); so p(G-{-(G*“ic})) = p(G^) for 

any c £ C*-

^ Since the rank function is increasing in unit steps, we must have

p(Gi“C*) = p(G-i) “ 1 '
m

Wow, by (3.18), pE = .Z\P(G; )
!=■> ^ ,' m

= p(G^) + .2_p(Gi)' 1=2 1

p(E-C*) = p(GrC*) + .E p(6p since C* c
m 
Zi=2'

■ mand for any c e G*9 P(E"(C*"{c})) = p(Gi"(C*"{c})) + Z p(G;)
1=2 ^

Thus, P(E“C*) = p(E) “ 1
and, for any c £ G*j p(E"(C*"{c})) = p(E)
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Tkus is a hyperplane of M(H).

LEMMA. 3.24: Let H = ( F, 2» ke a k-hypergraph. If 2* is a

hyperplane of M(H) 5 then 2”E' is a cutset of H.
Proof: Let H have components (V((^), $.) ( 1 <i;;<m).

Then, hy (3.18), pE “ p((̂ j d  )

Write G* = Then 2-C^ = E\ so p(2r'Ĉ ) = pE "i- Also, for any

c e G^ j p(Er(C^" {G}) ) = p2.
m . "■ ,By (3.18), p(E-C*) = >(Gl-(7 ) ; (2)

and, for any c e C*» p(E~( C*“ {°  ̂ = . Z, p((%"((7"P })) (8)

From (1) and (2), there exists j such that p(0.-G*) = p(G*) “ 1, since

p is an increasing function which increases in unit steps.

Thus, G* separates (V(G*), Gû ’ $•), since |V(G-) I =pGi + k - 1 (hy (3.22))Ü J J o •
- ^  1 +1,

and so (V(G*), G;"C*, $») is aot a critical hypergraph.«3 J J ,

Furthermore, for any c e G*» does not separate

(V(G'), G*9 $4) for any i. For, from (l) and (3),1 1 1
P(Gi-(C*-{c})) = p(Gi) (1 ^ i ̂  m),

so, if A is a maximal independent subset of Gi~*̂ C*“d}), p/\ ” pGi

pG- + k - 1 = 1v (Gjt ) I from (3.22)
: ^  ■■■■ -

-> |V(A) I since A  £  Gi

> lAl + k - 1 since A is independent

' ; ■= ' PGi + k - 1.
So equality holds throughout, and A £  G*“^C*“d}) is a critical set

with V(A) = V(G^), whence (V(Gi), Gi"^C*“d}), $̂ ) is a critical 

hypergraph.

Thus, G* separates some component of H, and G*"{c} separates no

component of H, for any c e G*' Thus, G* = E”E*^® a cutset of H.
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THEOREM 3.25: The set of cutsets of the k-hypergraph H = (F, E, $)

is the set of circuits of a matroid M^(H) , where M"(h ) = (M(H))*. 

Proof: From (3.23) and (3.24), is a cutset of H if and only if

2“C* is a hyperplane of M(H). Thus, the set of cutsets of H is the 

set of cocircuits of M(H) , and hence the set of circuits of (M(H) )*.

COROLLARY 3.26: Let H.̂ = (F^, E.jV $1  ̂ and H^ = (F^, Eg'

uniform hypergraphs with M(H.j ) = M(Hg). Let the isomorphism 

he induced hy the hijection 9: E| Eg- C* is a cutset of H.̂

if and only if {0(c): c e is a cutset of Eg.

Proof: C* is a cutset of H.j if and only if C* is a cocircuit of M(H.j)

Since M(H.) = M(H^), this is so if and only if {8(c) : c e [*} is a 

cocircuit of M(H^) ; i.e. if and only if {9(c): c e is a cutset of H .

EXAMPLE: Let H he the hypergraph shown in Figure 2. The cutsets of

H are the sets {di, {e}, {a,h}, {a,cl and {b,c}.

These are the circuits of the matroid on the distinct elements a,b,c,d,e 

consisting of the two loops d and e, and the three parallel elements 

a,b,c - the dual of the matroid M(h ) shown in Figure 3.

The cutsets of the critical hypergraph shown in Figure 4 are {d"} , {e"},

# {a",b"}, {a",c"} and {b’’,c"}. The isomorphism between the ground-sets 

of the matroids M(h ) and M(H") thus maps the sets of cutsets of H to 

the set of cutsets of H”.
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CHAPTER 4 

MIWORS OF 

HYPERGRAPHIC MATROIDS

It is well-known that any minor of a graphic matroid is itself 

graphic. However, the class of hypergraphic matroids as we have defined 

it is not closed under the operation of contraction, even if we extend the 

definition to allow loops in hypergraphic matroids. This observation 

will lead us to define the class of generalised hypergraphic matroids.

We first modify (2.1) to permit loops in a hypergraphic matroid.

DEFINITION 4 .1: Let H = ( F, [, $ ) be a hypergraph and k > 2 an int eger

\ with |F|+i1 >- k! > max{ |v(e) [: e eg. A set A £  E is said to be 

independent if and only if either

(i) A =
: or (ii) |V(G) I & IGI + k - 1 for each nonempty subset G A-

The set of independent sets thus defined is the set of independent

sets of a matroid M(H) on F. This follows immediately from the corres­

ponding proof for (2 .1). Alternatively, the method used by Crapo-Rota 

[6] can be applied.

Any matroid isomorphic to M(h ) for some H is called a hypergraphic 

matroid.

PROPOSITION 4.2: Let M be a matroid on the set 2*, l^t e* e E"

be a loop of M. Then M is hypergraphic if and only if 

Mx(2*-{e'}) is hypergraphic.

Proof: Let 2 ke an isomorphic copy of 2*- Suppose M is hyper graphic.

Then there exists a hypergraph H = (f , E» such that M = M(h ) , where 

the isomorphism is induced by the obvious bisection between 2 and 2* •

Let H’ = (F, 2"{^}) $’), where = {(V,a) e $: a g E“{^}}* Then clearly 

M(H') =M(H)x(2-{e}) =Mx(2'-{e'}).
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Conversely, suppose Mx(2*-{eO) is hypergraphic. Let 

H ’ = (f, "be that M(H^) sMx(£r-{e’}), where the

isomorphism is induced hy the obvious hijection between 2 2'*

Let F7 £ F be such that J{/1= k-1, where k ^ 2 defines M(H’) as in (4.1) .

Then \V\ > \W\ > 0. Define H = (F, 2’ where $ = $'u{(V,e): V e W}. 
Define M(H) using k as in (4.1 ). Then clearly M(h)h M, and so M 

is hypergraphic.

This result is the justification for using the term "hypergraphic 

matroid" to describe a matroid obtained either from definition (2.1) 

or from (4.1). For, a matroid is hypergraphic in accordance with

(4.1) if and only if the matroid obtained from it by the deletion of 

loops is hypergraphic in accordance with (4.1). But, a loopless matroid 

is hypergraphic in accordance with (4.1) if and only if it is hyper graphic 

in accordance with (2.11) - i.e. if and only if it is isomorphic to

M(H) , for some uniform hypergraph H, where the independent sets of M(H) 

are as defined in (2.1). Thus, the only différence between the matroids 

obtained from (4.1) and those obtained from (2.1) iis that those from

(2.1) are loopless, while those from (4.1) may have loops. The simple 

underlying matroids are the same. In particular, in order to prove

’ whether a given matroid is or is not hypergraphic, it is sufficient to 

consider that simplification of the matroid which deletes its loops.

PROPOSITION 4.3: If M is a hypergraphic matroid on the set 2 and

2* £  E) then Mx^» is hypergraphic.

Proof: (4.2) and (2.12).

PROPOSITION 4.4: The class of hypergraphic matroids is not closed under

the operation of contraction.

Proof: We shall present a hypergraphic matroid, and a contraction of that

matroid which is not hypergraphic.
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Let be the free, rank-preserving one-point extension by x 

(see (3.15) for the definition) of the matroid M(H), where H = ( 7, £5 $) 

is the following 2-hypergraph:

7 =  {^,B,C,D,E£
■ nE = {a,b,c,d,e,f,g £

V(a) = {A,B}, V(b) = {A,C}, V(c) =' {B,C }, V(d) = {A,D}, V(e) = {B,P},

V(f) = {A,E} and V(g) = {B,E}.

Then, by (3.16), is hypergraphic ; it has circuits {a,b ,c },

{a,d,e}, {a,f ,g }, {b,c,d,e }, {b,c,f ,g }, {d,e,f ,g } and all 5-subsets of 

£t»{x} containing none of these. therefore has rank 4.

Contracting x yields the matroid on the set £ with rank 3 and 

circuits {a,b,c }, {a,d,e }, {a,f,g} and all 4-subsets of £ containing 

none of these. By (3.4) M" is not hypergraphic.

Thus, the class of hyper graphic matroids fails to be closed under

since every minor of a hypergraphic matroid is isomorphic to the 

contraction of a restriction of a hyper graphic matroid, the class of 

minors of hyper graphic matroids is the same as the class of contractions 

of hypergraphic matroids.

DEFINITION 4.5: A matroid isomorphic to the contraction of a hypergraphic

matroid is called a generalised hynergraphic matroid.

We shall now derive a method of defining generalised hyper graphic

matroids in terms of a submodular function, which is analogous to that

described for hypergraphic matroids in Chapter 1. In order to explain

the motivation of the method, consider the hypergraph H = (7, £, $) which 
3consists of on the vertex-set 7 = {A,B,C,D,E,F}^, together with an extra 

edge e with V(e) = {A,E,F}. The matroid is shown in Euclidean repres­

entation in Figure 8, with the points a e £-{e}labelled by V(a).
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ffl.îpj

Figure 8

If we now contract e, we obtain the matroid shown in Euclidean 

representation in Figure 9, with the points a e E“{^} again labelled 

with V(a). We can see from this that a set of parallel elements of this 

matroid is a set of edges whose vertex-sets are the 3~subsets of 

{A,E,F,X}, where X e {B,C,D}, excluding {A,E,F } itself, and that the 

edge with vertex-set {A,E,F} has become a loop.

Figure 9

Now, if we are to maintain any sort of hypergraphic structure, we 

would expect that, in some sense, the "cardinality" of the set {A,E,F} 

should now be less than 3. Accordingly, we define a function
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y : 2 ̂  -3- ~2l_ such that

y(î7) =
(F) - 1 if {A,E,F} ç  &f.

It is a matter of routine to check that the matroid after the 

contraction has independent sets A 5  where A  is independent if

and only if either A "  or yV(Q) > jQl + k - 1 for each nonempty

.subset 0 of A» where, in this case, k = 3.

We now proceed to the case of contraction of a general k-hypergraph. 

Let H = (F, $) be a k-hypergraph with k > 2. Let

K = {e^ sin independent set of M(H) , defined by (2.1).

DEFINITION 4.6: For F/ c F, define v(î7) = | {i: V(e. )\c F/, e. £ |(} |.

PROPOSITION 4.7: V is increasing and supermodular.

Proof: (i) v is increasing.

Let F/ F7 £  F. 7 Then v([/) = |{i: V(e^) £  F7, £ [(} |

: < l{i: T(ep ç  p, e. e K H
= v{w) .

(ii) V is supermodular. Let 7/,F/ £  F.

Then v{UuW) = |{i: V(e. ) c [/uF7, e. £ |(}|
■■ .  ̂ ■ ■

> |{i: V(e.) c Z7 or V(e.) c_ p/, e. £ ](}| (1)
' y

v(j/riF7) = |{i: V(e. ) cUnW , e. £ [(}|

' = |{i: V(e.) c # and V(e.) c F7, e. £ K H■. 1 — . 1 ■ —  i . 1 . 5
v(£/uF7) + v([FnF7) > |{i: V(e^) £  y or V(e^) c F/, £ |(}|

+ |{i: V(e^) c U and V(e^) c [/, £ |(}|

= |{i: V(e^) £  y, £ K H  + |{i: V(ej; ) F7, £ [(} |

= v(y) + v{w )

PROPOSITION 4.8: Let y,F/ c F. Then viUuW) + viUnW) = vU + vW

if and only if, for each e^ £ |( with V(e^) c_ UuW, either V(e^) c y 
or V(e. ) c F7.

, -L .
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Proof: ( => ). If v{UüW) + \){Uc\W) = \U equality must hold in (l)

of the proof of (4,7). Thus, V(e^) £  U or V(e^) £ W for each e^ e |̂. 
(<= ) If V(e.) £ 7/ul7=> V(e-) £  J/ or V(e.) £ F7 for each e. e [4

equality holds in •( 1 ) of the proof of (4.7), and so

v(Z/ur/) + v( Ur\W) — xtU + \)P/.

DEFINITION 4.9: Let v: 2 ̂  Z  Le defined hy (4.6). Define

y: 2^ ->ZLy y Y = min{|y| - W c y £  F}.

PROPOSITION 4.10: y is increasing and submodular, and 0 < yZ ^ |Z|

for each X £ F.

Proof: (i) y is increasing. Let X £  Y ç F 

Then y% = min{|y| - yY: Z £  ̂ / £ F}

< min{|y| - vU: Y £  F £  F}

: y  = wY
(ii) y is \mibrnodular. Let Z,Y £ F, and suppose ,yZ = \U\ -vU, 
yY = |F/| >  VÎ/ for Z c y, Jc y.

Then yZ + yY = \U\ - vU + \W\ - v̂ 7

= |yuy| + |yny| - ivu + ̂y)

2: |yuy; + |yny| -  M u u w ) + viunw)) by (4.7)
= (|yuy| - v(tAjy)) + (jynyl - v(c/ny))
> y(ZuY) -ry(ZnY), since ZOY £ yuy and ZnY £  UnW

(iii) - yZ < |Z|

yZ = min {|Y| - vY: Z £ Y £ F} < |Z|  - vZ < |Z|

(iv) yZ > 0.

Let Y £ Z, and let K’ = {e^ e K: V(e^) £  Y}.

Then |K’ | = vY and V(K* ) £ Y. Now, K* E K ̂ .nd |( is independent in

M(H), so |V(K')| ^ IK’I + k - 1, if K’ r

.'. |Y| > vY + k - 1, if vY ¥ 0.

.*. |Y| - vY > k  - 1, if vY f  0.
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If vY = 0, jJj - 0.

Thus, since yZ = min{ \Y\ - vY: Z£ Y £  F }, yZ > 0. ,

PROPOSITION 4.11: Let G-E"K* ^ ^ n  yV(G) b IGl+ k - 1 if and only

if 1F(Gu[^’)] > iGuK’l + k - 1 for each subset |{* of .

Proof: Since is independent in M(h ), we have Iv(|(*)l ^ (K*( + k - 1

for each nonempty subset K ’ of K»

(i) Assume pV(G) ^ IGI + k - 1. Let K ’ £  K* Then

v(v(GuK"))^ IK*I, so y(v(GuK’ ))  ̂ iv(GuK')f -  IK'U 
|v(GuK')l ^ ii(v(GuK’ )) + IK'I

> yV(G) + IKM since y is increasing

^ IGI + k - 1 + [K  ̂I by hypothesis

= iGuK' l + k - 1

(ii) Assume |V(GuK') l ^ IG^K’ I + k - 1 for each subset K* of K»

Let U £  7 be-such that V(G) £  U and yV(G) = \U\ -v-U,

Let K" = {e € K- V(e) £  Î/}. (1)

Then V(GuK") = V(G)uV(K") £'^ (2)

, yV(G) = |!7| - vU

= jf/j - IK" I Ly (!)

\  ^  |V(GuK")l - iri Ly (2)
'

> iGuK’ l + k - 1 - IK' I by hypothesis -

IGI + k - 1 since GnK’ = 4».

Since y is increasing, integer-valued and submodular, it can be 

used to define a matroid on E”K the way indicated in the following 

definition. For a proof that this does yield a matroid, see Crapo-Rota 

[6].

DEFINITION 4.12: With the notation of the previous propositions, define

M"(h ) to be the matroid on the set E”K whose independent sets are

l.ii those A £  E""K which either A “ 4> or ■yV(G) lGl+ k - 1  for
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each nonempty, subset Q of A.

THEOREM 4.13: = M(H).{[-]().

Proof: (i) Let A ^ 4> be an independent set of M"(h ).

Then yV(Q)> jQI + k - 1 for each nonempty subset Q of A- 

So, by (4.11), jv(GuK')) ^ iGuK'I + k - 1 for each nonempty subset 

G of A snd each subset K' oY K« Also, since K is independent in M(H), 

|V(]{")i > IK" I + k - 1 for each nonempty subset of K»

Thus, |V(B) ] ^ iBl + k  - 1 for each nonempty subset B of AuK- 

Thus AuK is independent in M(h) .

(ii) Suppose AuK is independent in M(H) , with A # and j\ c E“K«

Then |V(B) E ̂ |B| + k - 1 for each nonempty subset B  of AuK*

So, in particular, jV(GuK’ ) 1 ^ jGuKV 1 + k - 1 for each nonempty subset 

G of j\ and each subset K* of K* Therefore, by (4.11), yV(G) > |Gl +k- 1

-for each non'ëmpty subset G of A* Thus, A is independent in M"(H).

Therefore, A is independent in M"(H) if and only if AuK is indep­

endent in M(h ). But the set of A £  E“K for which AuK is independent 

in M(H) is the set of independent sets of M(h ).(E“K)*

Thus, M"(H) = M(H).(E-K)*

 ̂ In order to provide a convenient way of describing the contraction 

M(H).(E“K ) 9  we now introduce an object called a generalised hypergraph.

DEFINITION 4.14: With the notation of this chapter, given a k-hyper-

graph H = (y, E, $) with k > 2 , and a subset K £  E independent in 

M(h) , the generalised hypergranh produced from H by K is defined to 

be the pair (H,K) = ((y, E, $) , K)* Since the order of the sets in

the brackets will remain fixed, we shall also write this as

(y, E, K)*
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DEFINITION 4,15: If K = (F, E $, K ) is a generalised hypergraph,

the matroid M(K) is defined to be M(h) . (E-=K ) j where H = ( F, £, $).

PROPOSITION 4.16: A matroid M is a generalised hypergraphic matroid

if and only if M = M(K) where K is a generalised hypergraph.

Proof: If M;=M(K), then clearly M is a generalised hypergraphic

matroid.

Conversely, suppose that M is a generalised hypergraphic matroid.

Then M= M ( H S ’) where HV = ( F» , 0, $') , and g £  p . Let [J 

denote the set of loops of M(H’) • ( E’ “  S’) 9 and let be a maximal 

subset of S’ which is independent in M(H’ ). Let H" =  ̂ -

Then H" is a k-hypergraph for some k > 2, where, if £(H") 4), .

k = max {ÎVg, (e'̂ J : e’ € E’ }• Choose x / E’9 and let y be a set of 

vertices with F/nF’ = <{) and I y I = k. Let £ be a set of |£’ j distinct 

edges disjoint from E’ u{xj whose vertex-sets are all equal to y. Put

F =  F’uy, E = ((E’-S’)-L’)uK’uLu{x}, K = K'"{x} and
$ = {(V,e) € $’: e e (E-L)-{3cM(V,e): V £ y, e £ £u{x}}.

Then H = ( F, E, $) is a k-hypergraph with k S 2, such that |( is indep­

endent in M(h) , and M = M(h) , (E“K) • So, writing K = (F, E’ $9 9

M = M(k ), as required. '

PROPOSITION 4.17: If K = (F, E9 K) is a generalised hypergraph with

K = 9̂ 29• * * then M(k) is the matroid whose independent sets

are those A £  E“K which A = q or ^V(G)>(GI+ k - 1 for each 

nonempty subset G of A 9 where yZ = min{ (Y| —  |{i: V(e. )cY}I : ZçY £F} 

Proof: (4.12), (4.15) and (4.13).

PROPOSITION 4.18: With the notation of this chapter, let K = (F, E» ^ 9 |()

be a generalised hypergraph. Then, if Q is a circuit of M(K) ,

pV(C) = 1CI+ k - 2.



Proof: Since C is dependent in M(K), there exists a nonempty subset

d s C v i t k  HT(C') < ICI + k - 1 (1)

Since ( l ) cannot hold for any proper nonempty subset £ ’ of Q (because each 

such G ’ is independent)5 pV(G) < |GI + k - 1. (2)

Now, if c £ G) G"{c} is independent, so \N{Q~{c }) > lG~{o })+ k - 1

= |Gl + k - 2 (3)
Combining (2) and (3), since, by (4.10), y is increasing,

#(C) = lCl+ k  - 2.

PROPOSITION 4.19: With the notation of this chapter, if Z c F and

yZ < k - 1, then yZ = |Z|.

Proof : Let Y c F be such that Z £  Y end yZ = IY( “ vJ-

Then jj| - vj < k - 1 (1) :

Let K’ = £ K- V(e^) çYJ. Then |K’ I = vY and V(K' ) £  Yr
So, from ( 1 ), |V(K* ) (- jK ’ I < k - 1

i* . |V(K’)| : < iK'l + k - 1.

Thus, if K* f 4>9 K' is not independent in M(H). But K* £  K K is

independent in M(h ) , which is a contradiction. Thus K’ ~ 4> and so

|Y| = PZ. Now, yZ < IZl by (4.10), so 

lYl = VX < \X\ < \Y\ since Y £  Z.

Thus, yZ = |Zl.

Having defined the class of generalised hypergraphic matroids so that 

it is closed under the operation of taking minors, it is natural to ask 

whether it is closed under other matroid operations, such as truncation 

or the taking of duals. The question of duality will be left to a later 

chapter. However, the class is closed under the operation of truncation, 

as we shall now prove.

LEMMA 4.20: If M i s  a matroid of rank r on the set S, and A is an indep­

endent subset of S, then (M.(S“A))^^^ “ ^^^^*(S“A) (^ ^ k < r-pA)
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Proof : g is a base of M. CS-A) if &&& only if BuA is a base of M.
Thus, Z S~A is an independent set of (M. (S“A ) if and only if IZI - t 

and Z B for some base B of M. S “A ) ; so , Z £  S“A is an independent set 

of M. (S"A) Vif and only if IZ^Al - t + )AI and Z^A is an independent 
set of M. Hence Z ̂  S"A is an independent set of (M. (S~A) if and only 

if Z^A is an independent set of , i.e. if and only if Z
is an independent set of (AI ) ̂ (S"A) «

Thus (M.(S-A))^^^ =

Thus, in order to prove that every truncation of a generalised 

hypergraphic matroid is generalised hypergraphic, it is sufficient to 

prove that every truncation of a hypergraphic matroid is generalised 

hypergraphic.

PROPOSITION 4.21: . Let M be a matroid of rank r on the set $, and

Tet x,j ,x^,...  ̂ S( (t ^ r) be distinct elements. Define ^

to be the free rank-preserving t-point extension of M by

. {x^,X2 ,...^x^}. Then =,I^.S .

Proof: The bases of those sets I independent in M with

111 = r-t (since t ^ r). The bases of are those J £  S such that

, ,Xg, ... ,x^} is a base of M^. Now, by (3.15), J>J{x̂  jX^,... ,x^}

is a base of M  if and only if J is independent in M and jjl = r-t
(r—t )(since t ^ r). Thus, the bases of M are the same as the bases of

% ' S  and so -

PROPOSITION 4.22: If M is a generalised hypergraphic matroid of rank r

and t ^ r, is generalised hypergraphic.

Proof: Since M is generalised hypergraphic, by (4.16) there exists a

uniform hypergraph H on the set E such that M = M(H). (E“K) , where K is 

independent in M(H). With the notation of (4.21), define M(H)^.
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Then, by (,3. l4), M(h )̂  is hypergraphic.

By (4.21)

Now, rk(M(H) ) - r + h, where h = j K ), so

: :> M H L - E

.•• M(H)(''+^-^\(E-K) = (M(H)^.E).(E-K)

= m (h )^.(Et K)-

By (lt.20), M(h )^^'^^"^^(E-K) = (M(H).(E-K)'/^”^^

Thus, = M(H)^. (E“ K) 9 anâ. so is generalised hypergraphic.

■PROPOSITION 4.23: If M,j and a.re generalised hypergraphic matroids on

disjoint sets, then is generalised hypergraphic.

Proof : follows from (3.12) , (4.16) and contraction.

We close this chapter by developing some properties of the functions 

y and V defined earlier.

DEFINITION 4.24: With the notation of this chanter, the (h-) closure

operator < > on F is defined by 

<X> = {V € F: y(Zu{V}) = yZ}.

A set Z of vertices for which <X> — X  will be called closed.

From (4.10) it iscclearbthàt y is the rank function of a matroid on 

F. We may therefore use the results of matroid theory to prove some 

results about the closure operator.

PROPOSITION 4.25: With the notation of this chapter, let Z7,y c F, and

let Z,Y £ F be closed sets. Then:

(a) U £ <U>

(b) if y £ y, then <y> £ <y> (continued on next page)
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(c) y<%>= yy

(d) <y>Li<y> c <uuw>

(e) <U>p<W> =) <UnW>

( f )  <ZnY> = ZnY.^ :

Proof: These are all elementary results in matroid theory and we omit

the details.

PROPOSITION 4.26: With the notation of this chapter, if Z is a closed

set, then yX ~ |Z) - \jZ.

Proof : We have yZ = min {I 1 - \>Ui X £ Z/ £ F}.

Let Y he a maximal set such that Z c Y c F and yZ = |Y| — vY.

Then, since iiY < |Y| -vY = yZ and y is increasing, yY = yZ.
Thus, Y c <Z>. For, if Y e Y, yZ < y(Zu{Y}) ^ yY^ yZ. Since Z is

closed, Z = <Z>, so, because Z £ Y £ <Z>, Y = Z , and yZ = |Z| “ vZ*

PROPOSITION 4.27: With the notation of this chapter, let A Le a set of

edges of the generalised hypergraph K = (F, Ea K) * Then

yV(A) - pA+ k - 1, where p is the rank function of M(k ) .

Proof: Let B Le a maximal independent subset of A* Then |B| = pA>

and UV(B) - |B|+ k - 1. Since y is increasing,

^ yv(A) ^ yv(B) ^ |B| + k - i = pA + k - i.

PROPOSITION 4.28: With the notation of this chapter, let AaB Le sets of

edges of the generalised hypergraph K = (F, Es $s K) 9 such that there 

exist integers t,r > 0 with yV(A) = t+r, yV(A^B) - yF(B) + L, 

and such that there exists C £ A^B with yV(C) = r. Then

<V(A)>n<V(B)> = <V(C)>.

Proof: By (4.25)(c), y<V(A)> =t+r, y<V(AuB)> = yV(AuB) and y<V(B)>= yV(g)

By submodularity Pf y,(4.10),
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y<7( A) > + y<V(B) > h y( <Y( A) >u^( B) >) + y( A) >n<Y( B) >)

^ y(v( A)#(.B)) + y( <v( A) >n<F( B) >) since y is incr­
easing

> y<v( B) > ■3't + iX <V( A) >n<V( B) >)

> +y<V( g) > - r + y( <V( ̂  >n<V( g) >)

i" : (1)
Now, <V( A) >n<v( g) > £  V( A) nV( g) 3 V( Q  , since Q ç  Ang- 

.-. by (4.25)(b) «V(A)>n<V(B)»£ <V([)>

.*. by (4.25) (f) <V(A)>n<V(B)> d <V( Q  >.

But, from (l), y( <V( A) >n<V(g) >) ^ r. Thus, since ̂( g) = r,

/V(A)>n<^(B)>=^(0>^ L  -

P R O P O S I T I O N  4.29; with the notation of this chapter, if a e cr(A) ? then

<V(a)> c <V(A)> and yv(Au{a}) = yY(A).

Proof : If -&€ A ) Lherp is nothing to prove ̂ So assume a ̂  A* - Bet

B e  a  Le such that (alyg is a circuit of M(K).

Then yV(gu{a}) = :|gu{a}| + k - 2 by (4.18) (l)

and, since g is independent yV(g) > |g| + k - 1  = |gu{a} | + k - 2 (2)

Thussince y is increasing, yV(g) = yV(gu{a}) (3)

By submodularity of y, yV(gu{a}) + yV(A)> yV(Au{a}) + y(V(gu{a}) nV(A) )
^ . : ' > yV(A) + yV(g) since y is incr­

easing V 
= yV(A) + yV(gu{a}) by (3)

Thus, equality holds throughout, and so yV(Au{a}) = yV(A)-

Therefore, yV(Au{a}) = yV(A) and so <V(a)>£ <V(A)>-

For convenience, in many of the following chapters we shall restrict 

our attention to generalised hypergraphs arising from critical hypergraphs, 

That there is no loss of generality in doing so, follows from the next 

theorem.
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THEOREM 4.30: M is a generalised hypsrgraphic matroid if and only if

M 2 M(H). (E“K̂  where H = E, $) is a critical k-hypergraph for 

: some k > 2 , and K is independent in M(E).

Proof: Suppose M;is a generalised hypergraphic matroid. Then

M = M(HJ .). (E’-S* ) for some hypergraph H* = (P , El, $1), S’ £  E’, and

M(H* ) is defined hy some k > 2. Let K’ he a maximal independent subset
of 2’, and let £’ -denote the set of loops of M(H* ) .(£*■"$’ ) • Then

H’// , ,\ . is a k-hypergraph, and so, by (2.13), there exists
((E S )“L )uK

a critical k-hypergraph H" = ( F", E" 9 $") with M(H") = M(H' ( j-^’ )uK* ̂ '

where E" = ( (E’"S’ )"L’ )uK’ 9 snd K’ is independent in M(H"). Choose 

X 4 E’ 9 and define V„„(x) = {A}uy, where A F", and p/ c f" with 

|y| = k - 1. Let E be a set of |£’ | distinct edges, disjoint from 

E’ u{x}, whose vertex-sets are all equal to V^„(x), Let H be the 

k-hypergraph (F, E 9 $) where F = F"u{A}, E " E"uLu{^}

$ = $"u{(V,e) : V £ Vg„(x), e £ £u{x}}. Put K = K’u{x}. Then clearly

M(h).(E“K) = and X is independent in M(H) , and H is a critical 

k-hypergraph, since |V(h) ] = |V(gu{x}) | = |V(g) | + 1 = rkM(H") + k

= rkM(H) k - 1 :

where g is a base of M(H"). Since A £ V(x)-V(g), gu{x} e I(M(H) )

^ so gu{x} is critical.

The converse is immediate.

THEOREM 4.31: If K = (F, E 9 $9 K) where H = (F, E 9 $) is a critical

k-hypergraph, then yF = yV(E) = yV(E“K) “ k + p(E“K) " ̂ 9

where p is the rank function of M(K).

Proof: Since H is critical, |F| = k + rkM(H) - 1 and V(E) = F.

Thus, yF = |F| - |K| = k - 1 + Crk(M(_H) - |K| )

^ k - 1 + p(E“K).
Also, by (4.27), yV(E-K) ^ p(E"K) + k - 1. Since y is increasing, 

yF S yV(ErK); and the result now follows.
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CHAPTER 5

TRANSVERSAL MATROIDS 

1. ; AND GAMMOIDS

We now turn briefly to the class of transversal matroids and

gammoids. We shall prove that transversal matroids are hypergraphic,

end use a result of Ingleton and Piff [15 ] to prove that gammoids are

generalised hypergraphic. We also show that whirls are hypergraphic.

Let M be a transversal matroid on the set S = {x. ,... 5X„ }

By a result proved by Mir sky in C20 3, if r is the rank of M, there is

a presentation of the independent sets of M as the partial transversals

of a family A =  ( A. : 1 ^ i  ̂r), where £  S for each i. Now, if

X € S and X jk A. for any i, x is a loop of M. Since, by (4.2), a

matroid is hypergraphic if and only if the minor obtained from it by

deletion of “its loops is hypergraphic, it is sufficient to prove that

Mx( .u A.) is hypergraphic.
1=1 ^  ■

THEOREM: 5.1: If M is a transversal matroid, then M is hypergraphic.

Proof: With the above notation, let E’ “ ---t N '  We shall show that
■■ . ■ . ■ . ■ is hypergraphic. By re-numbering if necessary, let

' E* ” {^19^2 ’* *’ ket 2 be an isomorphic copy of the set 9

under the obvious bisection 0:E E* » where ©(e^) = x^.

For each i, 1 ^ i ̂  m, define = |{j: x^ e Aj}|. Then q^ > 1  for each

i. ■ For 1 ^ i ^ m, let V. be a set of vertices such that |F-| = 9

and V.nV. = <(, for i f j. Let 1/ be the set of vertices,

where hlnV. =  ̂for each i, 1 £  i < m. Let V — F^uFgU* ♦ • uT̂ »

Let H = (Fuy, E 9 $) where, for each e^ e E»

Vntei) = e ( i s i s m ) .
(i) H is a uniform hypergraph of cardinality at least 2.



,For, |v(e^)| = |y| - |f |̂ +|{B^ : x .̂ e Aj^l 

; = 1 

|F| + 2. \

Write k = |y| +2. Then k > 2.

(ii) M(H) = M^E’9 the isomorphism being that induced by the bijection 0. 

Suppose (x. : i e 1} is independent in Mx£V for some I £ {1 „2„... ,m}.

Then, for any nonempty subset J £  I,

|{j: X. £ A- Tor some i £ J}| > |j| (l)

If |J] = 1, then e^ is independent in M(h ) , -where J = {i}. If |j| >2,

lÿV(ei) I = l^(F-F^) 1 + lÿ {Bj: £ Aj^l tl%}|

= |f | + I{j: x^ £ Aj for some i £ J}| + 1

> |f 1 + |j| +1  from (r)

Thus, {é.: i £ 1} is independent in M(H).

Conversely, suppose that {x. : i e 1} is a circuit of M^E’ for some

I £  {1,2,3,... ,m}. Then, since MxE’ is loopless, |l| > 2.

|{j: X. £ A- for some i £ l}| < |l|
^ J

and so Iĵ V(ê ) I = |f | + |{j: x^ £ Aj for some i e l}|

< |F| + |l| + 1

= FI + k - 1.; -  : : ' ' ,
Thus, {e. ; i £ lliis dependent in M(H). Therefore, M(H) = Mxg’, and so

' ^  ... '

MxE ’ is hypergraphic. Thus, by (4.2), M is hypergraphic.

We now give two examples of the construction of (5.1).

EXAMPLE 1: Let M = ^({x^ ,x̂  ,x̂  ,x̂ } ). Then M can be represented

as a transversal matroid using the family A  = (Â  ̂ Aĝ  ' where

A^ = Ag = -(x̂  ,x̂  sX̂ ,Xĵ }. Then = 2 for each i, and so we obtain the

6-hypergraph H = ( FuFî E , $), where V(e^) =
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Y{e^) = {V̂  .Bg}, Vfe^) = {V̂  .V^.Vj^.B^.Bl.Bg}

T h e  h y p e r g r a p h ic  m a t r o i d  M ( h )  i s  c l e a r l y  i s o m o r p h ic  t o  ^2 k'

EXAMPLE 2 .  L e t  M h e  t h e  t r a n s v e r s a l  m a t r o i d  w h o s e  p r e s e n t a t i o n  i s

A =  ( A - j9 A2 ’  A39 A4 ) 9 { x ^ , X 2 , x ^ , x ^ } ,

h  = \  = ^ 3X5} ,  u

T h e n  q^ =  q ^  =  q ^  =  2 ,  q ^  =  q ^  =  3 .  W r i t i n g  F ^  =

a n d  F  =  { V j . .  ,  w e o b t a i n  t h e  9 - h y p e r g r a p h  H =  (F u f / ^  2 ?  $ )  w h e r e■ > ‘ > I 2̂
V ( e y  = (V g .V g jV jj^  ,Vj^g,Vj.j ,V j 2 ,B q ,B.| jBg}

V ( e g )  =  ( V ,  ,V 3 ,V ^ ,  ,Y i,2 ,V 5  ̂ . V ^ g . B ^ . B ,  ,B g }

V (e 3 ) = /v ; .V g ,V ^ ^ .V ^ g ,V ^ ; ,V g g .B Q ,B ^ ,B g }

V ( e j )  =: { v y , V g , V 3 ,V ^ ^  ,Y i^ g ,B o ,B 2 ,B 3 ,B i^ }

. Ï .  ”  : 'Z
I t  c a n  b e  c h e c k e d  t h a t  M (h ) =  M . N o t e ,  h o w e v e r ,  t h a t  a l t h o u g h  H

i s  a  h y p e r g r a p h  w i t h  M (h ) =  M , i t  i s  b y  n o  m e a n s  t h e  o n l y  o n e .  I n d e e d ,

i n  t h i s  c a s e ,  M i s  g r a p h i c ,  b e in g  t h e  c y c l e  m a t r o i d  o f  t h e  g r a p h  s h o w n

i n  F ig u r e  1 0 .

F ig u r e  10

I n  [ 15] ,  I n g l e t o n  a n d  P i f f  sh o w  t h a t  s t r i c t  g a m m o id s  a r e  t h e  

d u a ls  o f  t r a n s v e r s a l  m a t r o i d s ,  a n d  t h a t  e v e r y  g a m m o id  i s  t h e  c o n t r a c t i o n  

o f  a  t r a n s v e r s a l  m a t r o i d .  T h is  l a t t e r  r e s u l t  s h o w s  t h a t  g a m m o id s  a r e  

g e n e r a l i s e d  h y p e r g r a p h ic  m a t r o i d s .
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PROPOSITION 5.2: If M is a gainmoid, then M is a generalised hyper­

graphic matroid.

Proof: By (5*l) every transversal niatroid is hypergraphic, and so,

by (4.5) every contraction of a transversal matroid is generalised 

hypergraphic.

In his paper [17], Mason gives, as an example of a strict gammoid, 

■the matroid M shown in Euclidean representation in Figure 11 *

I
Figure 11

This has rank 3, and has circuits {4,3,2}, {4,6,8} and {4,5,9}

(and others) and no circuits of cardinality three containing the element 

4 except the three stated. Thus, by (3.4), |^{2,3,4,5 ,6,8,9} is not 

hypergraphic , and so j by (2.12), M is not hypergraphic. Hence

PROPOSITION 5.3: If M is a gammoid, then M is a generalised h^per-

graphic matroid but not, in general, a hypergraphic matroid.

In [27], Tutte shows that the only 3-connected matroids in which  ̂

every element is essential are the wheels and whirls. Wheels are 

graphic, and hence hyper graphic. It is easy to see that whirls are

gammoids, and hence generalised hypergraphic. In fact, they are 

hypergraphic, as we now prove.

THEOREM 5.4: Let M be a whirl. Then M is hypergraphic.

Proof: Let M be the whirl of order n on the set g defined as
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{Iq ,ag,a^,...,a^_^}^, where M has circuits

{ai,ai_j_i ,hi} (mod n) ( 1 < i < n-1 ), the symmetric differences of

sets of these given in Chapter 1, and the sets ,b^^^,a^} for

each i. Let q — {eQ,e^,... ,ê__;j ,Xq ,x  ̂, ... ,x̂ _̂  and let

8: F S he defined hy 8(e.) = b. , 8(x^) = a. (0 < i < n-l).

Let ^ — {Aq ,Â  5... 5 5— {3q ,3-j 5... be disjoint

sets of vertices 5 and let F = AuS. Define H = (F, E, $) to be the 

hypergraph with

V(x.) =  {A.}u5 (0 < i < n-1) .
. 1 ' , 1 ■

V(e-) = {A-,A. . '}u(S-{B. })(mod n) (0 < i < n-1 )1 1 l-rt 1
It is easy to check that M(h ) = M.

For example, V({x^5x̂ j_̂  ,ê }) = {A-,A^^^}u5 (mod n)

= V({x^,x^^^}) = V({x^,e^})

= V({x.^,,ep)

ahd SO {x. ,x. . ,e.'} is a circuit of M(h ) .1 1+1 1 —
The symmetric differences of these given in Chapter 1 are also 

circuits, and the proof is of the same form.

|V({e. : i £ I}) I 2: n + |l| for each nonempty set I £  {0,1, ,n-1},

and so {e^jC^ . ,ê _̂ }:lis independent in M(h ). Also, since

V({eQ,e^,...,e^_^}) = F, {eQ,e^,...,e^_^} is spanning in M(h ) .

■ : -Now, X. cannot form a circuit {x.}u{e.: j e  J }  for any 

J  with I J |  < n, since, for any such J , there exists j e J  with 

V(ej) ^ v({x^}u{e^ÿ m e  J—{j}}). mus, {eQ,e^,...,e^_^,x^} 

is a circuit for each i, and so M(h) = M.

We therefore have the interesting result that the three-connected 

matroids in which every element is essential are all hypergraphic 

matroids. This result will be used in Chapter 11.



-  7 1  -

CHAPTER 6 

DUALITY

The title of this chapter is slightly misleading. Our object is 

to use the results of Chapter 4 to show that neither (M(K^ nor

(m (K^))* is generalised hyper graphic. We use this result to make 

various deductions. : 1

THEOREM 6.1: (M(K^ _))* is not a generalised hypergraphic matroid.

Proof: The graph _ is shown, suitably labelled, in Figure 12.

Figure 12

The circuits of (M(K_ with the above labelling, are:0,0
GÎ =

Dg =

C3 = 
D3 =

and all minimal symmetric differences of sets of these.

Suppose :(M(K_ o))* is generalised hypergraphic. Then, by (4.30), 

there exists a generalised hypergraph K = (F, £, $, |{) such that 

E“ K ” |V(x)| = k for each x e H = (F, E, $) is &

critical k-hypergraph for some k ^ 2, and (M(K^ ̂ J)* = M(K) , where the

isomorphism is induced by the obvious map between E“K ^nd 

{x^,x^,...,x^}. Denote the images of C^a respectively.

1 ^ i,j ^ 3 (1)

1 < i,j < 3 (2)

By (4.18) yV(C-) = pV(DJ = k+1-L J
and pV(Q.AD') = k+21 d



= pV(I^qA%)Y:^^^k^ 1 ^  j ^ 3 )  (3)

Since H is critical, by (4.31) , pV(E-K) = yV( 0 = k+3 (4)

Since q  nB ^  a ( Q A ), by (4.29), y V( Ĉ uDj ) = yV( {.A ) Y  So, from (2),

yV( ( \ u ) = k+2 ( 1 < i,j < 3) (5)

Similarly, P^^Q^uI^uÇ^) = yV( u(̂  uQ̂ ) = k+3 ( 1 ̂  <n^, 1:^^) (6)

Write = <̂ ( (̂ ) >, - ^( Î ) > (1 < i < 3)

and = <V(Xj.)> ( 1 < i < 9) •

From (1) and (5), using (4.25), 

k+1 + k+2 = yC^ + y<CgUD^>

^ yC^ + y(C"2UD̂ ) by (4.25)
Y  y(C uC^uD^) + y(C^n(CgUD^)) ty (4.10)

 ̂ y(Ĉ uĈ uD̂ ,) + y.̂  ̂ since y is increasing

>  k+3 + k I by (6).

Thus, equality holds throughout, so , (T)

In particular , and similarly for other sets. (®)

Results similar to (7) hold for other sets Dj snd

Thus, <V(Cj)> = <V(x^)>u<v(xg)>u<v(x^)>uF^ (9)

for some set y c_ y where f n<V(x. )>=  ̂for i = 1,2,3,
■ 1  ̂ , .w ' ; -V';::'.

7 n<V(C-)> “ 4> for i = 2,3 and F̂  n<V(D.)> = ({> for j - 1,2,3.1 1 Y  . Y .

Then (9) becomes = Z^uZ^uZ^uF^ (10)

Similarly, C, = u{Z. : x. e C.}uFV 1 .
1 J J  ̂ > (11)

, A  "  : ^  J

•Where F. nZ. = F.n# - &  (1  ̂i^hi< 3, 1 < j < 9).
1 J : 1: m \  Y-

and î̂ ĵ ~ ” <f* (l ^ i < j — 3)

By (4.26) = I6̂i I - y^i

so, by (11 ) and (l), = lu{Zj = Xj e ! - k - 1 (12)

and similarly = | u{Ẑ  : Xj e - k - 1



Thus, +vD^ = - 2k-2

= Û uZgUZgUZj ûX̂ uF^uP/j l̂ -k-2 + IXĵ l - k t>y (7) 

av(C^uO^) +vx^ ty (5)

>ve, + VB by (!*.7)

Thus, equality holds throughout 5 and so (C'̂ uD̂  ) = j C^uD^l -k-2 

A similar result holds for other sets - i.e.

u(C.uD.) =|C.uD.| - k—  2 (1 < i,j < 3) (13)

Now, = ((C'̂ uD̂ )nC2)u((̂ 7̂ uZ?̂ )nZ?2)

= by (7) (14)

Write Zj = yZv and Z = Z^uZ^u.. .uZg.

+ vCCgUOg) = A i , 2,3,4,?} A A ’ - k - 2
+ A i ,2,4,5.8} A

) = A l , 2 , 3 , 4 , 5 , G , 7 , 8 } " % A A l  - l Y ^

> \) (C. uCgUD^uDg) + V ( )n(CgUD^O^hy (6) and (l4)
^  u (Ĉ uD̂ .) + V (C^uD^) hy (4.7)

Thus equality holds throughout, and so

uCC^uCgUD^uDg) = IC^uCgUD^uDgl " k - 3 (15)

A similar result hblds for other sets and D^*

+ yCg - l % , 2 , 3 , 4 , 5 , 6 , 7 , 8 } " % % A '  " 1  ~ ^

= IXvF^uy^uFgUK^uiygl -k-3 + IX^uJg l - k-1 by (8)

> y(C^uCgUCgUD^uDg.) + v(X^u%g)

avCCj^uCgUD^uDg) +bCg by (4.7)

Thus, equality holds throughout, and so 

' ^(ZuF^uFgUFgUR^^u^g) = IZuF^uFgUFgUR^^uVgl - k - 3 . (l6)

Similarly, \)(ZuF^uFgUFgUW^u;7g) = iZuF̂ uF ûFgUJ^̂ ur/gj- k - 3



f

:
So, V (ZuF̂ uFgUFgUl/̂ uf̂ g) + v (ZuF̂ uF̂ uFgUf̂ ûf/̂ )

= IZuF̂ uF̂ uFgUP/̂ uÎ g I - k'-3 + jZuF̂ uF̂ uFgUP/̂ uî/̂  I -k-3

= iZuF̂ UF̂ uF̂ uf/̂ ul ĝU ĝl - k-3 + {ZuF^uFgUFgUiy^ | - k-3

> V(ZuF, ùFgUFgUiy^uÿgUf^g ) + v CZuF^uFgUFgUK )̂ hy (6 )

> V (ZuF^uFgUFgU^^uWg) + V (ZuF^uF^uF^ur/^uP/^ ) hy (4.7)

Thus, equality holds throughout, and so

, u(ZuF^uFgUFgU^^) = IZuF ûFgUF ûP/ l̂ - k - 3

i.e. v(C^uC^uCgUD^) = iC^uC^uC^uD^I - k - 3

v(C^uOp + vCCgUOi) i  l^i,2,3.4,7} A A '  “ ®
■*■ ^ " 2 from (12)

: ; = A i , 2 , 3 , 4 . 5 , 6 , 7 } A À A '  - 1^-3 
, 1  A i 3 . 7 } A '  - ^ ’ from (T) ^

> U (C^uCgUD^) + uD^ from (1) and (4)

> v (C^uD^) + viC^vD^d from (4.7)

Thus, equality holds throughout, and so

vCC^uCgUD^) = IC ûCgUfl î- k - 3 (18)

and similar results hold for other choices of Cĵ , Q, and 

Now, viC^uC^uD^) + u(CgUD^)

= \C^[}C^uD. I - k-3 + |C_uD;| - k-2 hy (18) and (13)1 / 1  O 1
= IC^uCgUCgUD^I - k-3 + ID̂ I - k-1 - 1 hy (7)

= IZuF^uFgUFgUW^I - k-3 + (Dil - k-1 - 1

= ufC^uCgUCgUD^) + v((C^uCgUD^)n(CgUD^)) - 1 from (17)

Thus, hy (4.8), there exists one e € K with V(e) £  ZuF^uF^uF^uJ/^ 

such that V(e) is not a subset of or D^. So, since equality

holds in the derivation of (l6) , V(e) must he a subset of , and, hy 

similar reasoning, of

But, D^nD^ £ D^n(C^uD^) £ (hy (8))

which is a contradiction.

Thus, there exists no such K, and so (M(K^ g))* is not generalised
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hypergraphic.

The method of proof used here - that of building up a set of 

vertices from closed sets in different ways, and showing that there 

are then inconsistencies in the resulting v-function - is very 

powerful, and we shall use it often.

It is not possible to show that a matroid is not generalised 

hypergraphic merely hy using the function P, because all we know

about U (not involving v) is that it is increasing and submodular, and

HV(A) ^ pA + k - 1 for each nonempty subset A of E“K j

pV(x) = k for each X € £“K such that (x) is independent,

and PV(C) = ICI + k ~ 2 for each circuit C £  E“K*

But we can take PV(A) - pA ^ k - 1 for each A £  E"K uith A ̂  ^ 
and P<î> = 0, and satisfy these conditions.

It is necessary to explore beyond the sets V(A) into the subsets of V 
and bring'Tn the function v to produce a contradiction.

We next prove, by a method similar to that of (6.1), that 

(M(Kj-))* is not generalised hypergraphic.

THEOREM 6.2: (M(K^))* is not a generalised hypergraphic matroid.—  5
Proof: The graph K is shown, suitably labelled, in Figure 13.

Figure 13

With the above labelling, the circuits of (M(K^))* are



- 76 -

Cî = Cg = {xQ,3Cj,X^,X^} C3  = -Cx’,x^,x^,x^}

Q  = {x^,x^,x^,x^} C^ = {x^,x^,x^,xj}

and ail symmetric differences (in pairs) of these.

Suppose (M(Kr-))* is generalised hypergraphic. Then, hy (4.30), 

there exists a generalised hypergraph K = (F, 2, $, K) such that 

E~K = yXg," • , |v(x) I = k for each X € E, H = (F, E, $) is
a critical k-hypergraph for some k ^ 2, and (M(Ka))* =. M(H) , where the

r  ̂ \ ^  --isomorphism is induced hy the obvious bisection between E“K and

{x^,x’,...,x^}. Denote the image of C| by ( 1 - i - 5)•

Then, by (4.18), pV(C-) = k + 2  (l < 1  < 5) ( D

and PV(C-^C^) = k + 4 (l ^  i < 3 ^ 5 ) (2 )1 J
Since H is critical, by (4.31 ), PV(E~K) = fV(£) = k+5 (3)

From (2), since E-pC* £ <̂ (C-̂ C*) > ty (4.29), PV(C-uC.) = k+4 (4)
1  J 1 J . iJ

Now, k + 2  + k + 2  = P<V(C.)>:+ P<V(C.)>

^ P<V((].uE.)> + P(<V(C')^P<V(C.)>)by submodularity
. . . . x:.. . ... .. .....of .P .

- P<V(C'UC.)> + P<V(C nC')> since P is incre-
' J /.£/. : . J asing . :

= k+4 + k from (4)

Thus, equality holds throughout, and so

<V(C.)>n<v(C.)> =<V(C.nC-)> (5)
Write <V(x.)> - X. (O ̂  i ^ 9)1 1

J Ç  {0 ,1,...,9}

; X = XgU%^U...U%g ^

<V(C)> = C. ( 1 ^  i ^ 5)
■ ' .

Then, from (5), (̂ 2 = u{‘X.: x. e C - (6)
, . J J 1 1

Where F. c F, F.n%. = <f) (l ^ i < 5, 0 < j < 9)
I -  1 J

and F.nF. = # (1 ^ i < j  ̂5)1 J . / ■

It is easy to check that p(C^uCjUC^) = 6 for 1 ^ i < j < m ̂  9,

p({ x.,x.}) = 2 for 0 ^ i < j ^ 9

p({x.,x.,x }) = 3 for 0 ^ i < j < m ^ 91 J m
and p({x.,x. ,x ,x.}) = 4 for any subset {x. ,x.,x ,x } not one of the 1 . 1  m u  i j m o
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circuits C •
.

Thus, hy (lt.27), PV(C^uCj"(^) - k+5 (1 s i < j < m s 5) (T) .

;iV((x. a k+1 (0 ^ i < j s 9) (8)
1 J

pV({x. ,x. ,x }) > k+2 (0 ^ i < j < m < 9) (9)1/ J m ;
pV({x. ,x. ,x ,x }) ^  k+3 for any subset
■ “ . £  J ^ ■

{x.,x.,x ,x.} not equal to one of the circuits E • (1 )̂1 ' J m' t s
From (4), k+2 + k+4 = PV(C.j ) 1̂ V(C2^C3)

^ PVCC.uCpUf ) + P(V(CJnV(CpUCo)) since P is
' ^ submodular

^  FV(C.uCpUr ) + pV({x ,x̂ }) since P is
■ ^ increasing

a k+5 + k+1 from (T) and (8)

Thus 9 equality holds throughout, and so

1,V({xg,Xg})=1,(%oU%g) = k + 1 (11)

A result similar to (11) holds for any pair fx^ ,Xj} £  for some m.

Now, k+4 + k+4 = pVEC^uE^) + pVtCgUCg)

 ̂ pv(c^uC2uc^uCi^)^p(mCiuCi^))
since p is submodular

^  pV(CiUCpuQuCr) + pV({x_,Xp,x_,Xg}) since p is
‘  ̂ increasing

k k+5 + k+3 from (3) and (10)

Thus, equality holds throughout, and so

pV({xQ,X2 ,x^,Xg}) = k + 3 (“l̂ )

k+1 + k+1 = 1|V({Xq,x^}) + pV({x2 ,x̂ }) from (11)

^ pV({x_,Xp,Xq}) + pV(xc-) since P is increasing 
 ̂ and submodular

> k+2 + k from (9)

Thus, equality holds throughout, and so

pV({xg,X2 ,x̂ }) = k + 2 (13)

Similarly, pV({xQ,X2 ,Xg}) = k + 2

Thus, k+2 + k+2 = pV({xQ,X2 ,Xr}) + pV({xQ,X2 )Xg})
> pv({x_,xp,x^,xn}) + pV({x ,x }) since p is incr^

^ ^  ̂ ° easing and submodular
> k+3 + k + 1 from (10) and (s)
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Thus, equality holds throughout, and so

pV({xQ,Xp}) = p CZqUZ^) = k + 1 (1̂ )

A result similar to (l4) holds for other pairs {x.,x.} of elements •
- ,

such that {x. ,x.}^ C for any m.
, 1 J —  rm

Thus, from (11 ) and ( l4), pV({x̂ . ,x-}) = y(X^uJ^) = k+1 

for any i,j 0 < i < j  ̂9 

So, hy (4.28), i<V({x^,x^})>n<V({x^,x^})> = <V(x^)>

where 0 < i < 9, 0 < j < m < 9, i ^ j,m,

and so (%.uZ.)n(%.u% ) = Z. Cl6)1 J 1 m i
By (4.26), + uCg

- l^{0,h.5.9}U^ll " k-2 +

; = l̂ o'

> vC. + ty (4.7)

Thus, equality holds throughout, and so

How vCC^uCg) '* vCg

" l^^0,l,4,5,7.8.9}"^l"^2l ^ 2k - 6

= l^{0,l,2 3 ,5 ,6,7,8,9}“W ^ '  - - k-1 from (5)
k uCg) + uCCC^uCgOnCg) from (15) and (5)

> uCC^uCg) + uCg hy (4.7)

Thus, equality holds throughout, and so

^(Cj^uCgUCg) = '‘*^{0,1,2.4,5,6,7,8,9}“V ^ 2 ‘̂*̂ 3' (18)

Also vaLi,5}) = (19)

Similarly, ĝ  ) = !-̂ {2,8}̂ ~ k-1 and (-̂ {2,9} ̂ " '̂̂ {2 ,9}^“^“*̂ (^^)

••• '’̂ {2,8}^ '’̂ {2,9} = J^{2,8}' '^{2,9}> - 2k-2

= '^{2.8.9} I - k-2 + (16)
^ vX{2,8,g} + v%2 from (9)

> VX(2,8}+ «^2,9} > y  (>1.T)
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Thus, equality holds throughout, and so

"^{2.8,9} = (21)

So, from (18),

l^^0,l,2,h,5.6.7,8,9}"^l"^3"^3l “ *̂ ” 5 + l^ { 2 , 3, 8 ^

= [XuV^uV^uV^uV,^] -k-5 + 1X^2,8 ,9}'"1̂“2 from (l6)

> VCC^UC^UCgUC^) + VXjj^g^g}
a vCC^uC^uCg) + vC^ hy (ît.7)

Thus, equality holds throughout, and so

^(xuy^uFguyguy^) = ixuy ûyguyguŷ l̂ - k - 5  (22)

How, vCC^uC^uCgUC,^) + vCg

= IXuH^uygUFgUy^l - k-5 f I^i3,4.6,7)"*5l ” 1̂“^

>  IXuy^uFjhVVI's' “T “5+ IZ{3,%,G,7}'' ' k-2

a VCfiUCgUCgUC^UCg) + VX{g 7 }

> u(C uCgUCgUC^) + vC^ hy (4.7)

Thus, equality holds throughout, and so

V^{3.4,6,7} = l1^{3,h.6,7}| - k “ 2 : ' , (̂ '̂ l)

Prom the calculation deriving (22), hy (4.8), for each e € K with 

V(e) Ç  ZuF^uFgUFgUF^, V(e) c or V(e) Ç C ^ C ^ C ^ ,

From the previous equaities, this implies V(e) 2  for some i,

1 < i < 4 (24)

Now, hy an argument similar to that used to derive (20), hut applied 

to the sets Z{3,4}' ^{3.6}a^a ^{3 ,7}'

''^{3.7}= l^{3 ,7} l -k-1' ^^{3 ,4} = ''1{3.4}'- ^-1

vf{3,6}= '^{3,6}l -k-1-
Then, as in the derivation of (21),

(25)

'’̂ {3 ,4} V  '’̂{3,6} = ''"'{3,4.6} ^^^3 (26)

So, VX{3,4.6) + ^^{3.7} = '"'{3,4,5}) " ■'■ '"'{3 ,7}' "'I""’’
= )"'{3,4 .6.7}) “ k-2 + 1X3 ! - k-1
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v%{3.4.6.7} + ''"'3 ‘ ^ (23).
Thus, hy (4.8), there exists e e K such that V(e) 2  ̂ {3 ,4 ,6,7}»

but V(e) i  and V(e) i

So, applying (4.8) to (26) , V(e) ^  ^(e) A  "̂ {3 ̂ 3}

V(e) (27)

But, from (24), V(e) 2 for some i, 1 i ^ 4.

Thus, V(e) S. C-P^^ for some i, 1 ^ i ^ 4.

Thus, V(e) 2 ^1, or V(e) 2  ̂ 7 or V(e) 2  or V(e) 2  ̂ 3 » ^%ich

contradicts (27). Thus, there exists no such K , and so 

{M(Kr))* is not generalised hypergraphic.

We have thus proved

COROLLARY 6.3: The class of generalised hypergraphic matroids is

not closed under the operation of matroid duality.

- V , V ' ' ' ' ' % ' - • - ' "
COROLLARY 6.4: If M is a generalised hypergraphic matroid, and M

is regular (i.e. representable over every field), then M is 

graphic.

Proof : By a proof in [23], M is regular if and only if M does not

contain any minor isomorphic to the Fano matroid' or the dual of

the Fano matroid.

By (6.1), (6.2) and (4.5), if M is generalised hypergraphic, 

then M contains no minor isomorphic to (M(K^ ^))* or (M(K^))*. Thus, 

hy a proof in [24], M is graphic.

We shall show in the next chapter that generalised hypergraphic 

matroids are representable over any characteristic. In particular, 

this implies that the Fano matroid and its dual are not generalised 

hypergraphic matroids. (Alternatively, this can he proved using the 

methods of this chapter). We therefore have the following theorem :
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THEOREM 6.5: If M is a binary g e n e r a l i s e d .hypergraphic matroid,

then M is graphic.
Proof: HL , is the forbidden minor for binary matroids ([21] et alibi)

2,4 ^
The result now follows from (6.4) and the above remarks.

COROLLARY 6.6 : If M is transversal and binary, then M is isomorphic

to the cycle matroid of a,planar graph.

COROLLARY 6.7: If M is a gammoid and M is binary, then M is .

isomorphicrto the cycle: matroid of a planar graph.

Proof of (6.7): ((6.6) is a special case).

By (5.2), a gammoid is generalised hypergraphic. The dual of a

g a m m o i d  is a gammoid ([15], [21]) and is representable over the same

fields. T h u s ,  by (6.5), hoth M  and M* are graphic, and so M is 

isomorphic .to the cycle matroid of a planar graph.

Corollary (6.6) is one of the main results of de Souza and 

Welsh [7].
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REPRESEHTABILITY OF GENERALISED 

HYPERGRAPHIC MATROIDS

It is -well-known that graphic matroids are representahle over 

every field. However, since the forbidden minor for binary matroids 

is U_ ) (a transversal matroid), this result cannot hold for the 

class of hypergraphic matroids. indeed, it is a consequence of (6.4) 

that a hypergraphic matroid representable over every field is in fact
V  ■ ■ 7- ■■graphic.

In this chapter, we shall use a result of Mason [18] to show that 

c omul et e hypergrauhic matroids (the matroids of the complete hypergraphs) 

are representable over every characteristic. Since every simple 

generalised hypergraphic matroid is a minor of a complete hypergraphic 

matroid, this implies that generalised hypergraphic matroids are 

representable over every characteristic.
-.... -  ̂ ' - ■ ■ 1.- , . : P : ' : 7':- :;7 '

THEOREM 7.1 (Masbn Cl8]): Let M be a matroid on the set £ with rank 

at least 4. Then M is representable over characteristic q if

The method of proof is based on an observation by Crapo-Rota [63.
'  ̂ 7 , . .7 : / _ y /7 a 1.If M is embedded in a projective space P, the points of M ’ can 

be Identified -with the intersections of the lines of M  in the 

embedding with a hyperplane of P external to M and in general 

position with respectoto .the points of M in the embedding. Mason's 

proof in fact uses a vector space rather than a projective space, but 

the method of proof is similar.

LEMt/[A 7.2: Let A  £  and let P denote the rank function of M ’ .
It aThen P,(vA) = min ( z(pA: “ k)) where (A-,A^,..., A  .) is a

K TT i=1 ^ ^ TT
partition of A  into subsets of vA denotes the supremum
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in of the elements of A, and pA^ = p(vA^).
Proof: For each ft. g A, let B- and C- e he such that

' k . • . - k
B^vC^ = and B^AC^ £ F . Then vA = v( BuC), where
B= {B- : A7 € A} , € = {Q : À7 E A}.

By a result in Crapo-Rota [6],

(V(BuC)) = min ( .1. (pG- - k)) (l)

where (G. ,Gg,... ,G ) is a partition of the set G  = BuC .

Now, suppose that, for some A^ £ A , Bĵ  and are not contained 

in the same member of the partition at which the minimum

in ( 1 ) is reached. Suppose B^ £ and e G^, say.

Then p((y^)A(;vC^))> p (B̂ îaC^) = k.

Now, pGj + p<^ > ip((,vC^)v^)) -h p((v^ ) a(v^))

Thus, (pGj - k) + (pG^ - k) > (p(( v(̂ )v( v^))-k) + _(p( v(^)A(v4^)-k)

- p( ( v G  )v( v G  )) - k.
Thus, if G. ,G^,...,G is a partition of G  at which the minimum I m

of (1) is achieved, and B* e G. and C- £ Gg, then the minimum is also. 1 . , I ■ 1 ^
achieved at G u G , . ,G We can continue thus, combining sets in I d  o . , m _

the partition, until we reach a partition G^ ,*** ,\^ such that, for

any Ax £ A, B- and C- are members of G '• for some j. Clearly, with
1 1 J

each such G- can associate the subset A. of A, where
'  ̂ J . .

A  = {Ax : B" ,C- £ G U .  Furthermore, v(% = vA,.J 1 1 1 J J Jk n
Thus, p (vA) = Z (pA x “ k).

, ^ i=1 ^
Now, with any partition A^ lA^," ' of A, we can associate a

partition where © j = e A p ,  and each of the

partitions is such that ( Z (pG- - k)) h (.Z (pG| “ k)), since
j=1 J 1=1 .

the right-hand side of this inequality is the minimum possible.

7̂TThus, pĵ (vA) = min (,Z7 (pA - k ) , where (Aj ,A^,... ,^^) is a partition
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of A.

THEOREM T.3:

Proof: Suppose A =  'tA** i ̂  l) çF^*^^ is independeniT in .
■ ^  J iV _

For each nonempty subset J ^ I, let A  = %  - - i  ̂J)-
: : . ̂  : V;

Then P|_(v A*̂ ) > |j| + 1 .for each nonempty subset J c_ I.
k J, . , £ir, , XV V .JFrom (7.2 ), p, (_ A  ) = min ( Z (pA. - k)), where (A+,A ,... ,A ) is aX TT i=1 1 V ^ -̂̂TT

J
partition of A  .

Pj^(vÀ^) < pA^ - k 

p A*̂  > |j| + k + 1 (1)

Since ( 1 ) holds for each nonempty subset J  I , A  is independent in

Conversely, suppose A £  F̂ "̂  is a circuit of (M ’ ) .
k ' ■ ■ ■ ■ ^

Then p, (f A-) < |l| + %  where A  = (A- : i e I}-

Now, for some partition A - ,A. j*** ,A of A,
m

Pk(l Ai) = jll(P^j-k) (2)

Suppose m > 1. Then each A. is independent in (M ’ ) ’ and is

nonempty, so, from (1), > 1^| + k +  1.

z ( p A . - k )  > III + m > ill + r  > p, ( | a P ,
3=1 J ■ / '

which contradicts (2). Therefore, m = 1, and so
- k  ■

pĵ (̂  Af) “ pA- k, and hence pA < |l| + k + 1.

Thus, A  is dependent in .

Since the elements of are the elements of F^
^ , k + 1  = (^.k)d,1,pk+2^

THEOREM 7.4: M(K^) is representable over every characteristic.
P

Proof: We have, from earlier remarks (or definition (2.1)), that

M(i^) -
Thus, by repeated application of (7.3),
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M(Kk) = (...(C(U )'̂ ’1x F'^)x.....)‘̂ ’1x fk,
P P)P

where denotes the set of j-flats of U (O < j ^ p).■ ' PsP' ■ :
If r k( M ( K ^ )  ) 2, then clearly M(K^) is representable over every

characteristic. If rk(M(K^) ^ 3, then, by (T*l) and the above 
relation, M(K^) is representable over the same characteristics as 

U , since representability over a characteristic is preserved under 

restriction. But U is representable over every field, and hence 

over every characteristic. Thus , M(K^) is representable over every 

characteristic.

COROLLARY T.5: If M is a generalised hypergraphic matroid, M is

representable over every characteristic.

Proof: Let M ’ be the simplification of M. Then, by (4.5), M' is

isomorphic to a minor of M(lf ) for some k,p. Thus, since represent-
P

ability is preserved under the operation of taking minors, M' is 

representable over every characteristic. Now, M can be 

represented over the same fields as M', so M is representaole over 

every characteristic.

COROLLARY 7.6: The Fano matroid and its dual are not generalised

hypergraphic matroids. ’

The question of which generalised hypergraphic matroids are 

representable over which fields remains largely unanswered.

We have, of course, Tutte’s result on forbidden minors for 

graphic matroids, which ensures that the class of binary generalised 

hypergraphic matroids is the class of graphic matroids. A direct 

proof of this for other than complete hypergraphic matroids is still 

to be found. Although the condition that there should be only three 

points on any line is certainly necessary, it is far from sufficient.
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as the examples in Figures 14 and 15 demonstrate. Each, of course, 

contains  ̂as a minor, and so cannot he graphic, although each is 

hypergraphic.

Figure 14 Figure 15

Clearly, a complete ternary hypergrauhic matroid is either
■ ' k ' 7U„ , or graphic, since M(K ) contains U„ (a forbidden minor for 

. ternary matroids) unless either k = 2 , or k = 3 and p = 4.

No necessary and sufficient conditions are known in terms of 

forbidden_minors for representability over GF(q) for q > 3, so this 

approach cannot be used to examine representability over such fields 

for generalised hypergraphic matroids. We can, however, put an 

obvious lower bound on the size of q such that a complete hypergraphic 

matroid should be representable over GF(q) as follows :

For any point x in M, where M is the complete hypergraphic matroid 

M(lf ) of rank r = p-k+1 , there are (r-1 )k points which are elements
^ : yof nontrivial lines of M containing x. All other points of M form

. / X q^-1 .trivial lines with x in M. In PG(n,q) there are q z y , lines through

any point. Thus, if M is to be representable over GF(q), we must have

,P~k_ 1
q - 1 (̂ ) - (p-k)k - 1 + (p-k)

(̂ ) - (p-k)(k-1) - 1
o ^

M(Kj-) can be represented over GF(4), as we shall see in Chapter 10,
' . ' '. ' . /. ' 3(a case in which equality holds in the above), but M(Kg) cannot be :
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represented over GF(3), although q = 3, p = 6 and k = 3 do satisfy 

the above. We therefore need at least the extension of this to count 

the number of (m+l)-flats containing a given m-flat of the form 

{ e : V( e) c_ F ’ c_ F} , where | F ‘ | = k+m. This leads to the requirement

that 3 for each m with 0 < m < p-k-1, 

^  ^   ̂ ,p \  _ ,k tm(5 - - (p-k-m) ts> - ’) .q - 1 : k m

I do not know whether this condition is also sufficient for

complete hypergraphic matroids; even if it is sufficient for

deciding the representability of complete hypergraphic matroids, the

question of representability for other generalised hypergraphic

matroids remains largely unresolved.

We might hope that the obvious analogue of the above - counting the

number of 2-flats containing a given point - might be sufficient for

such matroids of rank 3, but this is not the case. An example of this

is providedr'by one of the forbidden minors for ternary matroids, q.
. , : ’

This is uniform, and hence by (5.1) it is hypergraphic. In Figure l6 ,
: . . ■' 3we show it as a restriction minor of M(Kj-) . However, the number of

'■ . . . . , ' , . 32 - 1 ^ :2-flats containing any point is 4, and 4 = * So, since ^

is hot; i.ternary, the condition is not sufficient.

Figure I 6
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CHAPTER 8 

FORBIDDEN MINORS

bidden minors for the class of generalised hypergraphic matroids.

In [23] and [24], Tutte proved that the class of graphic matroids could 

be defined by a finite set of forbidden minors, viz. (m (K̂ -))*, (m (K^ o ))*» 

the Fano matroid and its dual, and All these matroids are

forbidden minors for generalised hypergraphic matroids, with the 

exception of ^ ("which is transversal, and hence hypergraphic).

Denote the class of generalised hypergraphic matroids by gh.
Then, if gh can be defined by a finite set of forbidden minors, 
this set must include (M(Kr))*, (M(K_ _))^ , the Fano matroid and its 

dual, and a -finite set of matroids all of which contain as a

minor. In this chapter, we shall first find the smallest matroid 

which is not a member of gh, and then find an infinite family of minimal 
non-members of gh.

Recall that, in Chapter 4 , we showed that the matroid of (3.5) 

fwas generalised hypergraphic; it follows from (7.4) that the non-Fano 

matroid is not generalised hypergraphic, since it is not representable 

over characteristic 2. These two matroids are shown in Euclidean 

representation in Figure 17.

The matroid of (3.5) The Non-Fano matroid
Figure 17
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The non-Fano matroid is certainly a minimal non-generalised- 

hypergraphic matroid, and it has fewest elements amongst non-generalised-

hypergraphic matroids. However, it may he that there exists a matroid

on 7 elements with fewer circuits of cardinality 3 which is also 

non-generalised-hypergraphic. Any matroid on T elements which has

at most 4 circuits of cardinality at most 3 can he shown to he 

generalised hyp ergraphic. However, a matroid with one fewer circuit 

of cardinality 3 than non-Fano is non-generalised-hypergraphic, as we

—
THEOREM 8.1; Let S= ̂  x ’,â ’,a^la^ ,ĥ ‘,h^,h^ 1̂ , and let M he the matroid 

on S with circuits 

Cj = { x ’ ,al ,hj } (1 - i - 3)

D-j =  ̂a* ,a^ ,h^ }

together with all 4-suhsets of S containing none of these. Then 

M is not generalised hypergraphic.

Proof: M is shown in Euclidean representation in Figure l8.

Figure 18

Suppose M is generalised hypergraphic. Then, hy (4.30), there

exists a generalised hypergraph K = (7 , $, [{), such that H = (7,

is a critical k-hypergraph for some k ̂  2 , -̂[( = {x,a^,a2 ,a2 ,h^,h2 ,ĥ } .
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and M = M(k) , where the isomorphism is induced hy the ohvious hijection 

between S and E“K-

By (4.31 ), pV(E) = tV(E-K) = k + 2  (l)

Denote hy D  s D- the images of C- , D* respectively. Then, hy(4. 1 8 ),

PV(G-) = ]iV(Di) = k+1 ( 1  < i < 3, j = 1,2) (2 )
" ' - '

Thus, hy (4.28), <V(C.)>n<V(C.)> = <V(x)> (l < i < j < 3 ) ̂ J
<V(Di)>i<V(D2)> = <Y{-b^)> (3)

<V(C-)>n<V(D-)> = <V(C-ii)-)> (1 S i < 3, j = 1,2 )
 ̂ J  ̂■ •> '

W rite  J '=  <V(x)>,  A. = < V (a . )> ,  B. = <V(b . )> ,  C. = <V(C-)> and 

B, = <V(D, ) f  Then
J . J -

C.= XuA-uB-uV- (1 £ i  s 3)1 1 1 1

1 (4)

^2 = V  W " ' ' 2
where n ( ) = (̂.

Then : from ( 7. n7. - 7. r#. - 7. (1 < i j 3 ). . ' ' ‘ ' "1 J 1 1 2. Z

By (4.26), vC. + vC.
^ J

= |JuA.uB.u7. I + |JuA.uB.u7.1 - 2k - 2
1 1 1  J J J

|ZuA.uA.uB.uB.u7.u7.1 - k-2 + |Z( \  k (i f j) from (3)1 «3 1 J 1 t)
> v(ZUi4.uA .uB.uB.u7.u7. ) + vZ hy (4.27)

1 J 1 J 1 J
> \)C. + vC.. hy (4.7).

^
Thus, equality holds throughout, so v(C'.uC.) = |C.uB.| - k-2 (iŷ j) (5) 

Thus, v(C^uCg) + vBg

|ZuA^uAgUB^uBgU7^u7g| + iB̂ uBgUBgUR/gl - 2k - 3 

= |ZuA^uAgUB^uBgUBgU7^u7gU)7^ I - k-2 + iB^uB^ | - k-1 from (3)

> vfC^uCgUDg) + \>ac^uC^)rD^) hy (4.27)

> v(C^uCg) + vDg hy(4.7)

Thus, equality holds throughout, and so

v(C'iUC'3UB2) = IC^uCgUBg) “ k - 2  (6)
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Thus, vCC^uCgUBj) +

= \ C ^ C ^ B ^  * ] D ^  - Zi^3

= IC^uCgUD^uDgl  ̂k-2 + i^̂ uBj) - k-1 from (3)

& vtC^uCgUB^uBg) + vCCCiUCgUBgJnDi) ty (4.27)
> v(C^uCgU»2 ) + VB^ by (4.7)

Thus 5 equality holds throughout, and so

u(C^uCgUD^uD2) = IC^uCgUD^uDgl - k - 2 (7)

Thus, vCC^uCgUB^uDg) +

- |C2UBgUB^uB2 l + IC2I - 2k - 3

= IC^uBgUBgUD^uBgl - k-2 + IXuAgUZ^I - k-1 from (3)

& uCB^uBgUCgUB^uBg) + v((C^uBgUD^uD2)nC2) by (4.27)

a ^(B^uBgUB^uDg) + vCg by (4.7)

Thus, equality holds throughout, and so
 ̂ • ; tit- ■ ; .

vCZuAgUBg) = IZuAgUBgI - k - 1 (8)

Froà (6)&(8 )̂ ' + v(ZuA^uB^)

= UuA^uAgUB^uB^uSgUF^uygUr/^l + IZuAgUBgj - 2k - 3

= IZuA^uA^uAgUB^uB^uB^uF^uFgUP/^l - k-2 + IZuB l̂ - k-1 from (3)

> vCZuA^uAgUAgUB^uBgUBgUF^uFgUÎ/^) + vCZqBp hy (4.27)

> vfC^uCgUDg) + v(ZuAgUBg) hy (4.7)

Thus, equality holds throughout, and so

vduBg) = IZuB^I - k - 1

Similarly, using the sets and

v(ZuA ) = IZuAgI - k - 1

(9)

From (3), nB̂  £ So, ^ 2 ^ 2 - ̂ 3^2 ~ ̂  (from (3)) (10)
Wow, since equality holds in the inequalities used to derive 

(7), hy (4.8) there are no edges e e |( with V(e) c C.uC.uB.uB. and1 o 1 2
V(e) I and V(e) ^ and V(e) i B^ and V(e) ^ B .̂

Thus, for each e e |( with V(e) £ ZuA^uB^,

V(e) £  (ZuAgUBgO nĈ  or V(e) £  or V(e) £ (ZuA^uB^) nB̂



: t : ' v :  . t -  i  ■

or V.(e) £ (ZuAgUBg) nBg-

i.e. V(e) c X or VCe) c Z or V(e) c or V(e) c g .-  ̂ -  2 -  2
Thus certainly V(e) £  ZuA^ or V(e) £ ZuB^, and so, by (4.8),

vCZuAgUBg.) = u(ZuAg) + v(ZuB ) - vZ, (11 )

since, from ( 10), (ZuA^) h(ZuB_) = Z.

Row, from (9), u(ZuAg) + u(ZuB_)

= IZiMgl + IZuBgl - 2k - 2

= IZUA2UB2 I - k—1 + (ZI - k — 1 from (10)

= \)(ZUA2UB2) + vZ - 1 from (8)

which contradicts (11). Thus, there exists no such K, and so M is 

not generalised hypergraphic.

We now proceed to the second objective of this chapter. Rather 

than simply pull the family of matroids out of a hat with no apparent 

reason for choosing than, a little explanation may help. The search 

was originally for a family of matroids which were generalised 

hypergraphic, but which had non-generalised-hypergraphic duals. An 

obvious starting-point was the matroid M(K^), shown in Euclidean 

representation in Figure 19(a). A slight modification to this 

produced a matroid which was still hypergraphic, and turned out to 

have a non-generalised-hypergraphic dual (Figure 19(b)). Attempts to 

generalise this matroid failed, but a slight modification, including 

the deletion of the point e and increasing the rank did produce a 

matroid suitable for generalisation to an infinite family of matroids. 

The duals of these matroids are defined in (8.2). The matroid .

^  is shown in Euclidean representation in Figure 20, to assist the 

reader in following some of the proofs.
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(a)
Figure 19

Figure 20

CONSTEUCTIOH 8.2 : Eet .. ,â ,xj ,ŷ  ,y^,... ,y^}^

(n > 3). Put [1 = (1 < i < n )

Di = >̂ 2 >'

Bijm (O < i < j < m < n)

Xiim ̂  (l < i < n, 0 < j < m < n,
^   ̂ ■ j,m # i)Yijm = tKi'y!.x!.yj,s/; (1 f i < j < n, 0

1,0 r m;
(f> (if n = 3)

< m < n.

ZJ.
■fx! ,yi ,x! ,y[,x',y'} (1 s i < j < m < n

J J “ “ n > It)
and let be the set of subsets of ^  defined to be
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{Cj: i < : ' n } u { D j °  - i < j < ^ - n}u

u{)^._: 1 < i < n, 0 < j < m < n, j ,m f i}u{Y|.„: 'Ô in̂ n, ijfmlu' ̂ J-JIU
 ̂" i < j < m < n} 5 together with all (n+2 )-subsets of 

containing none of these.

PROPOSITION 8.3: The set C ’ (n  ̂3) is the set of circuits of a

matroid ̂  on the set 2 .̂

Proof: By construction, C ’ satisfies circuit axiom (Cl). It is

therefore sufficient to check axiom (C2). This is routine, and we 

omit the details.

THEOREM 8.4: M is not generalised hypergraphic for n ^ 3.
' . ■ :  : _Proof: Suppose M is generalised hypergraphic. Then, by (4.30),

there exists a generalised hypergraph K = (F, [, $, K) such that

H = (y, E, $) is a critical k-hypergraph for some k ^ 2,

E“K = , ’̂ n ’̂ 1 ’̂ 2 ' • * * ’̂ n ’̂ 1 ’̂ 2 ’ * * * ’̂ n^ and such that
M 2 M(K) , where the isomorphism is induced by the obvious bisection n
between and E“K- Denote the images of ^ijm' ^ijm

Bljm ty q ,  Di> Xij„. Yijj,. Zi_ĵ  and respectively, and let

te the set of circuits of M(K). By construction, ^  has-rank n+1,

and B] and Bg are hyperplanes of

By (It.31) pV(E-K) = pV(E) = k+n (1)

By (4:18) pT((\ ) = pV(B^j^) = k+1 (2)

pV(Bi) = k+n-1 (3)

=kt2 : V (i.)

yV(Yijm) = k+3 (since n > 3) (5)

if n > 4 (6)

Write >1̂ = <V(a^)>, = <V(x^)> and = <V(y^)>,

and let i4 = <V( {a^ ,a)j ,â })>



From (3) and (4) , k+2 + k+n-1 = yV(X^Q^) + yV(D-] )

^ yV(I)., uX- „ ) + yV({a„ ,x. }) since y is increasing and
\  submodular

> k+n + k+1 ; by (4.27)

Thus equality holds throughout, and so yV({a„,x. }) = k+1 (7)
U 1 V,

Similarly, yV({aQ,y^}) = k+1 (8)

Since {a ,x. ,y.} is independent for all i,j,
J

yV({aQ,x^,y^}) > yV({aQ,x^}) + 1 , so, by (4.28),

<V(ag)> = <V({ag,x^})>,n<V( {a^,y.})> , and, similarly ,

<V(aQ)> = <V({aQ,x^})> n<V({aQ,x^})> (i ^ j) 1  (9)

<V(aQ)> = <V({aQ,y^})> n<V({aQ,y^})> (i 7̂ j)

Write <V({a_,x. })> = A^uX.uU. where #. nZ. = = (|)0 1 u 1 1 1 1 1 0
<V({a ,y.})> = 74 uY.uF. where F. n7. = F. = #0 1 1 1 1 1 0

Then, from (9),1 [/. and F.nF. 5/4. (i ?̂ j).

Since U. o4 = F. n4̂  = rU. = F. nF. =  ̂ (i ̂  j )
1 0 1 ° 1 J 1 3 -

Similarly ,ny. nF. = ?/.;n7. = F. rZ. = #
1 0  1 J J 1

and U. rX. = F.-n7. = 61 J 1 J
(10)

Also, from (9),

Write = <V(D^)^ = A^uZ^uZ^u.. .uẐ uZ/̂ uI/̂ U'. .uI/̂ uP/̂

Dg = <V(Dg)> = A^uF^uYgU. . . uY^uF^uFgU. . . uF^u#2

where = J7̂ nẐ  = W^rU^ = W^rA^ - W^oï^ = nF̂  = <|)

From (1), (3) and (8), yV(D.j u-Câ  ,y. }) ̂  yY(D.j ) + 1, so, by (4.28),

<V(D^ )> rxV({aQ,y^})> = <V(aQ)>.

Thus, F. hPA = * 1
1 " ' . : < 11)

Similarly,  ̂ J

Since {aQ,a^,...,a^^x^}, has rank 3 for all i, 1 ^ i ^ n, 

yV({aQ,a.j,... ,a^,x^}) 5: k+2. By repeated use of (4.29), 

yV({UQ,a.j,...,a^}) = yV({aQ,a.j,a2}) = k+1 (from (2) ).

Thus, yV({aQ,a^,...,a^,x^}) > yV( {a^ ,a.j,... ,â }) + 1 , so, by (4.28),

<V({aQ,x^})> n<V({aQ,a.j,... ,a^})> = <V(aQ)> (12)
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Thus, Z. n4 £ Aq and similarly J. rA S A^ (13)

Also, since is a hyperplane of M(K),

V( Î u {aQ,a|,... ,â } ) = k+n = y V(II ) + 1 , so, from (4.28),

d . M  - a . (14)

By (It.26), vD +VA
' ■■ Cl / .

= 1̂ 1 } ~ k-n+1 + (A 1 - k-1

= iD̂ uAI - k-n + ]Aq I - k

^ v(D^uA) + v Aq by (4.27)

> + vA by (4.7)

Thus, equality holds throughout, and so

v(D^uA) = iD̂ uAI - k - n  (15)

Put C . = < V({ a. ,x. ,y.} )> - A .uZ .uJ .uT. , where T.rA. = T.fZ. = T.nF. =1 ^ i’ 1 1 1  i’ 1 1  1 1  1 1
Then, since D • is a hyperplane of M(K), 

y V(B'U{ a. ,x. ,y.} ) =k+n=yV(D.) + 1, so, from (4.28),0 1 1  1 d
D ̂ ̂ i"”“ "̂ i '■ ( l6)

(IT)
Thus, T . rA n = T. nZ. = T.nF. = T. rP/. = T . (7/ = A>1 0 1 J 1 0 1 1 1 2
and T. rU ■ = T-nF. = <f> (i r j ).1 J 1-0
Since y. e a({a^,a.j,... ,a^,x J  ), by (4.29),

<V({aQ,a.j,.. . ,a^,x^,y^})> = <V({aQ,a^ ,.. . ,a^,x^})%

.*. k+1 + k+1 = y<V({aQ,a.j ,... ,â })> + y<V({a^ ,x^,y^> )>

> yV({a_,a.,... ,a ,x. ,y.}) + yV(a.) since y is increasing
and submodular

> yV({aQ,a.j ,x^,y^}) + yV(a^) since y is increasing

= k+2 + k from (4)

Thus, equality holds throughout, and so

yV({aQ,a^,...,a^,x^,y\}) = k+2 (l8)

Also, by (4.28) , C.cA = A. (19)1 1
From (18), k+2 + k+1 = y<V({aQ,a^,...,a^,x^,y^})> + y<V( (â  ,x̂  ,ŷ  })> •

> yV({a_,a.,...,a ,x.,y.,x.,y.}) + yV(a.) since y is increasing
 ̂ ‘ n 1 1 J J J submodular

> yV( Y - ) + yV(a.) if i?̂ ô form r i,j since n ^ 310IÜ 0
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= k+3 + k from (5)

Thus, equality holds throughout, and, hy (4.28),

<VC{aQ,a^ ,... ,a^,x^,y^})>CT({a^ ,x̂. ,yj)> = <V(a:;)> (i 7̂ j) (20)

(i r j)
(21)

(22)

Thus , in particular,

Therefore, T.nT. -  ̂ (i r j)
.J .

From (15), v(D^uA) +

= iD ûAI - k-n + - k-1

= iD^uAuC^i - k-n + jZ ûA^l - n-1 from (16)&(19)

> y(D^uAuC^) + v(Z^uA^) by (4.27)

> vCD^uA) + by (4.7)

Thus, equality holds throughout, and so 7 . . . V

v(X^uA^) = U^uA^l - k - 1

u(D^uA^uC^) = iD^uAuC^I - k - n

Let P. = C7uC_u...uC. (1 < i <'n).1 1 2 ■ .1
We shall show by induction that v<Z}..uAuP ) = (P. uAuP ) - k-ri

—  - . 1 . ■ 1 , 1.- :

By (22)5 the induction starts. Assume the result is true for

j , where 1 < j < n. Then -v( P. uAuP. ) + vC.,.1 J J"*" I
= ' (P^uAuPjl - k-n + I - k-1 :

 ̂ |Pĵ uAuPjUCĵ :| I - k-n + | - k-1 from (l6) ,(19)&(2l)

> v(P^uAuP.uCj+^) + v(Ẑ .̂jUÂ .̂j) by (4.27)

> v(P^uAuP^ ) + by (4.7) ;

Thus, equality holds throughout, and so

v(P̂  uAuP.uC'... ) = IP.uAuP.uC.I - k-n -L J 0+1 1 0 0 + 1
Since P. . -P.uC. v(P. uAuP. . ) = (P.uAuP. . ( - k - n  0+1 0 0+1 i 0+1 1 0+1
Thus, v(P^uAuP^) = iP^uAuP I - k - n  (23)

Wow, P nP_ = (A_uZ. u uZ uP.u...uP uY. ) r(A„u7. u... uY u7. u...uF u%_)J. z u 1 n JL n ± u 1 n j. n z
= from (10) and (11) (2k)

Thus, since and are closed, A-u{W rW ) is closed. (25)
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Also, Pg n(P^uAuC^u. . . )u.F̂ u... .

From (23), v(P. uAuP ) + vP... 1 n ,. 2 ... ■
= jP^uAuP^I - k-n + jP̂ ] - k-n+1

= iP^uPgUAuP 1 - k-n + JAqUF^u. . .uT̂ u( P/̂ nP/̂ ) j - k-n+1 from (26)

> : v(P uPgUAuP_ ) + \)( A^üF^u.. .ul̂ u( P̂ riP̂ g)) from (3 ) and (4.27)

> v(P,uAuP ) + P_ by (4.7)1 n z
Thus, equality holds throughout, and so

v( .. .uY^uC <Wg ) ) = |AgUY^u...uj^u(P/^Afg)| - k - n  + 1 (2?)

Now, since equality holds in those expressions used in the

derivation of (23), by (4.8), there exists no e e K with

V(e) c P uAuP , but V(e) P. , V(e) 5̂ A and V(e)^ 6 . (l < i < n).J- n ; —' J- ' . 1
Thus, there exists no e e K with V(e) £  (A^uF^u.. .uF̂ u( P/̂ iiF̂  ))

= P^KP^uAuP^) 

but V(e) ±  P., V(e) £  A and V(e) 4  C. (l < i < n).

Thus, there exists no e e K with Y(e) c P„n(P uAuP ) '—  A ± "'li
but V(e) ^ Pgf̂  ̂and V(e) 4C^rD^ (l < i < n) ; i.e.

V(e) ^ AQu(p/̂ nP/g), V(e) ^ A^ and V(e) ^  F̂  (l ^ i ^ n).

So, certainly there exists no e e [{ with V(e) £ P̂ nC'Pĵ uAuT̂ ) 

but V(e) and V(e) Y A^uF^ (l < i < n).

Therefore, by repeated application of (4.8), 

uCAQU]^u... uJ^u( P/̂ ) ) :

.= v(AqU-F̂ ) + ... + v(AqUI^) + v(AqU(^P^iW2)) - nvA^

^ + " '  + - k-1 + |AQu(f̂ f̂iP/2)|

- y( AgU( P/̂ ) ) - nlAgl + nk from (8) and (4.29)

= IA^uF^u... ui^u( fiP/g ) I - n - y( AQu(P̂  ̂fWg))

But, from (27),

v( AqUF^u... u^u( nYg ) ) = |AqUF^u ... u l̂ u( r#2 ) 1 " n -k+1

. . -y(AQu(P/^nY^)) > -k+1, so k-1 ^ y(AQu(P/^r#^)).
But p(AqU( I/̂ nŶ )) pAq = k, which is a contradiction.

Thus, ^  is not generalised hypergraphic.
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We next prove that is generalised hypergraphic for each 

n > 3. In doing so, we shall demonstrate a technique for identifying 

the circuits of a generalised hypergraphic matroid which will he much 

used in subsequent proofs.

THEOREM 8.5: M* is generalised hypergraphic for each n ^ 3.

Proof: Let K =  (F, E , $, |(), where F = ZuF, ZnF = %

|Z| = n andF = k = h+2,

E “ { ,a.j , . . . ,â  ,X..J 5 • • • 9^^ ,y .j 5 • * * ^ 3 K { 9

(1 < i < n)

and;i > V(x^) = { A,A^}uZ

V.(y.) = {B,A.}uZ1 1
V(a.) = {A. ,B.,}uZ 

VCa^) = {A,B,B.j,B2 ,...,B^}

V(e) = {X,Y,B.| ,Bg,. .. ,B̂ } 9 where {X,Y} , £  Z.

Denote by x the set {x. : i e I}'̂  and use similar notation for other

letters. Let W = {1,2,...,n}.

Suppose C = X uy.rUa„ is a circuit of M(K) , where I,J,T £  N. Then,-L cl 1
provided I,J ^ V(0) = {A,B}uA^uAjUA^uB^uZ.

So, provided T ^ H, yV(Q) = 2 + jluJuTj + (T( + n

= k + lIuJuTi + |T(. '

Since [ is a circuit, by (4.l8), yV(C) = iCl + k - 2 = [ll + lJl + |T{+k-2 .

.*. |i; + jJ| + )T| + k - 2  = k + lIuJuTi + |T{

.*. |IuJ| + llrJl - 2 = jluJuTl

.'. jIf>T| - 2 = lIuJuT! - lIuJl > 0

IlnJl > 2

But C’ = {x. ,y. ,x. ,y.} is a circuit of M(K) for any 1 < i < j < n, since 1 1 J J
(i) V(C' ) = {A,B,A. ,A. }uZ and so liV(C') = k+2 = k +|Q’1 - 2 , and

J
(ii) Q- is minimal with respect to this property.

Thus, if T f N, T =4> and I = J, with |I| = \J\ = 2 Cl)
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If T = W, ̂ vC ) = k + I IUJUtI + jTj - 1

ji! + )Jl + iTj >  liujuTl + It! + 1.

So, since i Tj - ] lUjUTl = n. 1 11 + 1 j1 “ n+1.

Therefore j lu Jj + I InJ| = n+1. Now, C is a circuit so, from (1 ),

llnJj < 1. T h u s ,  jinj] = 1 and I uj = N (2)

Suppose now that J = . Then, if Cis a circuit, I r so

V(C) = { A}:uÂ UÂ uBg,uZ

So, if T Y N, yV(C) = 1 + IiutI + I t ! + n = liujj + I t ! + k - i.

Since Q is a circuit , y V(C) = jC | + k - 2 = {Ij + | Tj + k - 2 .

.' . Ill + )T| + k - 2 = lluTl + It! + k - 1

• *. Ill = IiutI + 1 , which is impossible.

If T = N, yV(C) = IiutI + ItI + k - 2, whence III = IiutI = n.

Thus, x̂ ûâ  is a circuit of M(k ). (3)

Similarly, y,̂ .Uâ  is a circuit of M(K). (4)

Now suppose D = XjUyjUa^u{ â } is a circuit of M(K) , where 

I,J,T Ç N. Then V(D) = {A,B}uB^UAjUAjUA^uZ. ;

So yV(D) = 2 + n + IiuJutI + n - 1

= k + llujuTi + n - 1.

since |} is a circuit, yV(D) = IDI + k - 2 = ill + Ij| + It I + 1 + k - 2. 

.'. HI + jJ| + |T| + k - 1 = llujuTi + n + k - 1

.V. lIuJi + IlnJl + |T| = Ii u j u tI + n

.*. JIuJuTl + IlnJi + |Tn(luj)| = llujuTi + n 

.*. IlnTl + |Tn(luJ)| = : n.

Now, since is a circuit, by (1), 11 nil < 2.

If IlnJl = 0, iTn(luj) | = n, so T = N = luj.

If |InJ| = 1, |Tn(luj)| = n-1, so, for minimality, It I = n-1 and lUJ = T.

Thus, the circuits of M(K) containing a^ are those of the form 

{a^luxjuyjua^, where either |TI = n-1, luj = T and llOlI = 1 (5)

or T = N, lUj = E and llOjl = 0. (6)
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By minimality in (6) , I ,J 4 4), since otherwise x^ua^ or y^ua^ would he 

properly contained in ]).

Thus, the set of circuits of M(K) is the set 

Hx.jy. ,x.,y.}: 1 < i < j < n}u(x.^uyyUa^: |InJ| = 1 and IuJ= N>u1 1 J J J. d n

u{Xj.juaj,j3 yjjua^luHaQluXjuyjUa^: |TI = n-1, ïuJ = T and jlnJj = l)u

uCCaQlux^uyjUa^: J = N-I, I,J ^ *1.

Thus, the set of hyperplanes of (M(K))* is the set

{{aQluXjuyjUajj: |II = n-2}u{{aQ}ux^uyj: |IuJj= n-1 and InJ = 4>lu

uClaQluyjj, {aQ}uXjj}u{x^uyjUa^: T = {t>, If>T = (tl and |IuJ| = n-llu

uCXjuyj: J = W-I, I,JY  4)}.

Let B he a hyperplane of M . Then, from (8.3),

If {aj ,a\} £  H foi i V j 5 then {a^lua^ £  H-

If {a! ,x!} Ç II or {a! ,y!} £ \\ or ixî ,yî> £  H, then {xl ,yl ,a!} c H-

Suppose that {a^lua^ £ H* Then x| € H <=> y^ e H.

Since |-| is a hyperplane, H ={a^}ua^nx|uy| where [Ij = n-2.

Suppose next that a^ e H, hut that a| £ H for i 4 0. Then

xJ e W  <-> yJ  ̂ So, since H is a hyperplane,
F  . '

H 2̂  {a }̂ux|uyj. where InJ = $ and Iiujj = n-1.

Now, if J = 4>5 H 3  7a^}ux| where III = n-1, so, from (8.3) , since

is a circuit of |^ , H £ "(aQlUx̂ J. Since Dj is a hyperplane of

W = {â luxjJ. Similarly, {aj}Uy^ and {aQlUx^Uyj. (l HI = 4*, I,J Y  4> 

and |IuJ| = n-1) are hyperplanes of M^.

Now suppose aJ e \\ for some i r 0» hut a.* 4 H for i j.

Then xJ o ^ <=> y[  ̂Hr x^ e H <=> Yj  ̂H (j r i).

Then H = {aj’luXjUyJ where Ijujl = n-1 and InJ = {il, or

|-j = {alluXjUyj where INJ = à and I uJ = N-{il.
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Now suppose a. 4 H for all i. Then x- ̂ H y* 4 H .
7 ' : I;: . ' -r ; :,

Therefore, B = x^uyj where ]IuJ | = n, I nJ - (j), IjJ r <4

Thus, the set of hyperplanes of (M(K))* is the set of images of the 

hyperplanes of M under the ohvious hijection between E and E '•

Hence M = (m Ck ))* , and so M* = M(K) , and therefore #  is 

generalised hypergraphic.

We next prove ail proper minors of M are generalised hypergraphic 

To do this, it is necessary and sufficient to prove that the minors 

obtained from M by deleting or contracting one point of E^ are 

generalised hypergraphic. It is easy to see that there are three 

distinct classes of point of 7M , viz. l a ’} , (a! : 1 - i - nl and

{XÎ: 1 ^  i <n}u{y.*: 1 < i <n}, which are such that there exists an

automorphism of M which maps any point in a particular class to any 

other point in the same class. We may take asr.representatives of ̂ 

these classes the points a^, aj and x’. Then, in order to prove that 

all minors of M are generalised hypergraphic, it is necessary and 

sufficient to prove that the minors obtained from ̂  by the deletion 

or contraction of one of a^, a.| or x̂  are all generalised hypergraphic. 

The proof of this is the content of the next six propositions. In 

these, sets of circuits of various generalised hypergraphic matroids 

are given without proof. The technique for each proof is essentially 

the same as that used in (8.5), and is fairly routine. We therefore 

omit the details.

PROPOSITION 8.6 : M x(F*“{aA>) is generalised hypergraphic.—n *-n u
Proof: Let H = (F, E, $) "be the hypergraph with

F — {A.J ,Ag, ,Â ,B.j ,̂ 2 , ,B^,X,Y} ^ , and

E “ {x.j ,Xg 3 • • • ,x̂  ,y.j ,y^,... ,a.| ,a^,. • • •

Let A = {A^,A^,...,A^}j then $ is defined by
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v ( a : )  = (À-{A.}>) {X,Y}
, ^
V(x^) = ( ̂ {A.}> {X,B.> 

V(y.) = (5+-{A. })u {I,B, }

(1 ^ i - n)

1 " 1 " ' ' 1
Then, with the notation of (8.4) , M(h ) has as circuits

■{ (\ : 1 < is 1 S i< j < mS n}u

: i < n, 1 j < m ̂  n, j ,m = i }uUT-'hjm'
y{Y: - : 1 < i < j ^u, 1 < m <  n, m 4  i,] }u{Z . : 1 ^ i < j < m <  n}, u *ijin ijm
and M(h ) has rank (n+2). Thus, the (n+1 )-truncation of M(h ) has as

circuits the images of î̂ x ( {a-Q }) und.er the ohvious bijection between

P- {aj } andE • Thus, |^x feg }) = M ( H ) ^  and so, by (4.22),

( E*“ {s-n }) is generalised hypergraphic, n u

PROPOSITION 8.7 :  ̂ {a.j’ }) is generalised hypergraphic.

Proof : Let K = (F, E , $, K ) where

V  — ,A g , ,A^ ,B.j ,B g , . .  ,B^ ,C.| ,^ 2 ,  a'F!, Y , Z} ^ ,

E — i ̂ 05^2 5̂ 3 5 • * * a^n’̂ 1 ’̂ 2 ’ * * *’̂ n ’̂ 1 ’̂ 2 ’ ’ ’ *’̂ n ’̂ 0’̂ 1 ̂  ’’̂ n̂
K = {GQ,e^,...,e^}.

Let A = {A.j,A25 —  ,Â } . Then $ is defined by 

VCUq) = {B^,C^}UA

V(x^) = {B^,B2,>..,B^,Y,Z}
' ■ ■ ■ .

V(y^) = {C^.Cg C^,Y,Z}
■¥(a^) = U-{A^})u{X,Y,Z}

V(x^) = U-{A^})u{B. ,Y,Z}

V(y.) = (A-{A^})u{C^,Y,Z}

V(e.) = U-{A.})u{B. ,C.,X}1 J- X X -
V(eg) = U-{A,})u{B^,Y,Z}

V(e^) = (A-{Ap)u{C^,Y,Z}

Then, with the notation of (8.k), the circuits of M(.K) are 

{(\ : 2 S i s n}u{Bkj^: 0 s i < j < a s n, i,j,m r l)u

(2 s i < n)
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2 < i< n, 0 < j< n, j f 1 , j ,m ilu

ulY*. : 2 < i < j < n, 0 ̂  m ^n, n Y 1 5 m # i,j)u
.

u {% . . : 2 < i < j < m ̂  n , n ̂  4}u {]} ̂ , B _} , together with all (n+2 )- lOm ■ ‘. £
subsets of E"K containing none of these. But these are the images of

the circuits of M x (p »-{ a’}) under the obvious bijection between n *-n J
E“K and E ’-fa’} . Thus, M x (E ap ) is generalised hypergraphic.

PROPOSITION 8,8 : |^x(E^-{x’}) is generalised hypergraphic.

Proof: Let K = (F , E , $, K ) , where

F=={A,^,A2 ,...,\,B^,B2 ,...,B^,X^^^

E “ i s-g )a.j ,ag, 3̂ 2 ’̂ 3 ® ’ ’̂ n 1 ’̂ 2 ’ * * *  ̂^
Let A = { ,Ag,... )Â 1. Then $ is defined by 

\ Ylag) = 4u{Y] ; '

V(e) = Aù{B.j}

V(aJ = (A-{A })u{x ,Y}

V(a.) = (^-{A.})u{X,Y}

(2 S i  < n)

V(y.) = (A-{A.})u{y ,B.}
X  X X

Then, with the notation of (8.4), M(K) has as circuits

{Q : 2 ^ i ^ n}u{B.. : 0 ^ i < j < m < n>u1 xjm ,
u{Xijm: 2 ^ i  ̂n, 0 ^ j < m < n, j ,m Y i)u

ulYf 2 < i < j < n, 0 < m < n, m Y i,j}ufZ. . : 2 < 1 < j < m < n}u{B },xjm , xjm
together with all (n+2)-subsets of E“ K containing none of these- But

these are the images of the circuits of }) under the obvious

bijection between } and p-|̂ . Thus, M^x (EJ-{x ’}) is generalised

hypergraphic.
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PROPOSITION 8.9: M . &Q ) is generalised hypergraphic.

Proof: Let K = (F, E, K) where

V = {X,Y,B^,B^,...,b K uA ,  An{x,Y,B^,... ,B^} - (f and M| = n-2,

E = ,ag,... ,â ,x.| ,Xg,... ,x ,̂y  ̂,J2 ,... ,y^,e}, K = te} and

V(a.) = A u{x ,Y}
7"'

V(x.) = Au{X,B.} ) (1 S i S n)
^

V(y^) = Au{Y,B,>

V(e) = (B^,Bg,...,B^}. :

Then, with the notation of (8.4), M(K) has the set of, circuits

{{a. ,x. ,y.}: 1 ^ i,j 3 n}u{{a. ,a.}: 1 < i < j < n}U
J ' J

u{B^-{a^} ,D2-{a.g}}u{{x^ ,ŷ  ,x̂  ,yj } : 1 £ i < j ^ n} together with

all (n+1 )-subsets of E~K containing none of these. But these are the

images of the circuits of (|^-{aQ}) under the obvious bijection

between E^-{a’} and E~K • Thus, M .(E^-{a*}) is generalised

hypergraphic.

PROPOSITION 8.10: M .(^^“{a’}) is hypergraphic.

Proof: Let G = (F, E, $), where F = {X,Y,Ag,A^,...

E = {&0 ,ag,... ,a^,Xg,x^,... ,x̂  ,yg ,y^,... ,y^}^,

V(ag) = {X,Y}

V(a.) = {X,Y} ■

. V(x^) = {X,A^} i (2 S i < n)

■V(ŷ ) = {Y,A^}

Then G is the graph consisting of n-1 triangles A.XY with common

base XY, together with a further n-1 edges parallel to XY. Then the

circuits of M(G) are the sets

{{a.,x. ,y.}: 0 < i,j < n, i,j Y 1}u{{a.,a.}: 0 < i < j < n , i,j Y 1}uJ- J
u{{x^,y^,x^,y^}: 2 < i < j < n}.

Let M be the free, rank-preserving, one-point extension of M(g )
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by x^. Then, by (3.13), M is hypergraphic. Let M = M(h ) ,

where H is thehypergraph obtained from G by the construction of (3.13)

Since G is critical, H is defined. Let M ’ = M(H' ), where H - is

the hypergraph (F*, p ’, $’), such that F» = V(H) , g ’ = 2(^)u{ yJ ,

and $’ = $(H)u{(V,y.^): Ve  V^(x^)}.
Then M(H’) has as circuits the circuits of M(G), together with- 

{%-] 3y.|} and all (n+1 )-subsets of p ’ containing none of these.

But these are the images of the circuits of F^. (Ê -{ a’} ) under the 

obvious bijection between ap and E ’. Thus , (EjĴ~{ ap ) is

hypergraphic.

PROPOSITION 8.11: M .(E^“{x]}) is generalised hypergraphic.u n I
Proof : Let K = (f, E» $3 |{), where

F = {A.J 3... 3A^ jBg,B^ 3 • • • sB^,X,y}^,

E ~ 3̂-̂ 9 • • * 3̂ 2 3̂ 2 5 • * • 3y-j 3X2 3 • • • *

Denote {A. ,7a' ,... ,A } by A, Tiien $ is defined by "I <=- u
V(a_) = Au{X}0
V(a,|) = V(y,) = Ü-{A,})u{X,ï}

V(e) = {A^,Ag,B2,...,B^} 
V(a^) = U-{A^})u{X,Y} 

V(x^) = {A-{A.})u{X,B}} (2 £ i < n)

V(y.) = (A-{A^})u{Y,Bp 

Then, with the notation of (8.4), M(K) has the;set

{C- : 2 < i < n}u{B- ■ : 0 < i < j < m s n}u1 ijm
ù‘{{y.j ,â  ,a^}: 0 < j < m < n, j,m Y l}u{a^,y^}u

u{)^jm* - ^5 0 < j < m < n, j ,m Y i)u
u{(Xi|m“7a.i })j{y-|): 2 < i < n, 0 <m < n,-mY 1 }u

u{Y: ; : 2 < i < j < n, 0 < m < n, i,j Y m}uijm

of circuits
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n]u{Z^^^: 2 £ i< j< mS n, n 2 U},

together with all (n+1)-subsets of E"Kcontaining none of these.
But these are the images of the circuits of ̂ . (  }) "under the

obvious bijection between E^-{x’} andE -K̂ ^̂  ̂ 7^ 

generalised hypergraphic.

We have therefore proved

THEOREM 8.12: For each n > 3, M is not generalised hypergraphic,

. but every proper minor of M is generalised hyper graphic.
, -  ■■ v ;  : 7  , Y

COROLLARY 8.13: The set {M : n ^ 3) is an infinite set of forbidden

COROLLARY 8 .l4: The class gh cannot be characterised by a finite set

of forbidden minors.
. . . . .  .

Denote the class of matroids with generalised hypergraphic duals 

by gch. Then

COROLLARY 8.15: The class gch cannot be characterised by a finite

set of forbidden minors.

 ̂ Proof: {M*: n >3} is an ■infinité set of forbidden-minor's for gch.

By (8.5), each M^ is generalised hypergraphic. Consider, for

each n, the matroid N = M ©  (M’)*, where M ’ is a matroid isomorphic—n —n —n —n
to M^ on a set disjoint from Then, for any proper minor of

either ̂  is generalised hypergraphic, or (N^)^ is generalised hyper­

graphic (or both). But ^  is not generalised hypergraphic, nor is (N^)*« 

Hence

THEOREM 8 ,l6 : The class of matroids which are either generalised hyper­

graphic or have generalised hypergraphic duals, cannot be charact­
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erised by a finite set of forbidden minors.

We shall make further use of ihe set {!£ : n ^ 3} in Chapter 12
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CHAPTER •9 ' " :

CONNECTION IN HYPERGRAPHS 

AND NODE HYPERGRAPHS

In this chapter, we change the emphasis from hypergraphic 

matroids to imiform hypergraphs and their associated node hypergraphs. 

Connectivity in graphs has been studied extensively by Tutte [25]. 

Connectedness in. hypergraphs is defined by Berge [1], but his defin­

ition of connected component does not coincide, in general, with our 

definition of component given in (2.8), which is also used by Crapo- 

Rota [6]. We therefore begin by seeking an alternative definition - 

of connectedness.

In a graph G, two vertices and are connected if and only if 

,Vg } is a subset of the vertex-set of a tree (i.e. of a critical 

subset of p( G) ). However, we may also speak of a walk (cf. Harary 

[11]) from V| to Vg in G as a sequence of edges (e^,eg,...,e^) such 

that £ V(e^), e V(e^) and e^ is adjacent to e^^^ (i.e. {e^,e^^^} 

is critical) for each i, 1 < i < t-1. and are then connected

if there exists a walk from to V̂ .

Each of these definitions may be generalised from a graph G 

to a hypergraph H, but, unfortunately, the two definitions of connected­

ness no longer, in general, coincide. We must therefore define two

types of connectedness in hypergraphs.

Throughout this chapter, H will denote the k-hypergraph 

(F, E, $) where k > 2 .

DEFINITION 9.1 : Two subsets F. .y c V are said to be weakly connected1 2 —

if there exist edges e.̂ ,e2  ̂E such that F^ _c V(e.j ), F̂  £  Yie^) and

either ê  = e^, or {e^,e^} is a subset of a critical subset of E-



y ■ F  ; V ;  ■

DEFINITION 9.2: , Two subsets F ,F £  F are said to be strong]^
/ : . . Y  ̂  ̂ : :

connected if there exists a sequence of edges (e,j je^,. • • oD ^

such that V  c V(e. ) , y. c V(e.) and either t = 1, or {e. ,e.

is a critical set for each i5 1 ^ i < t-1.

We have already remarked ( in Chapter. 2) that there are two 

analogues : in a hypergraph of the concept of a vertex in a graph - a 

vertex and a node. We shall see that these share the roles played by 

vertices in graphs, but that some properties of vertices in graphs are 

not completely generalisable to the hypergraphic case, because, for 

k > 2, a vertex is not a node.

The types of sets of vertex F.. jF^ in (9*1) and (9.2) that we 

shall consider are single vertices, nodes and the vertex-sets of edges.

We shall then refer to the connectedness as being vertex-, node- or 

edge-connectedness respectively. It is easy to see that vertex- 

connectedness is hot an equivalence relation on the vertex-set. of H 

for a general k-hypergraph H (consider, for instance, the hypergraph 

shown in Figure 2). However, by (2.6) , node-connectedness and 

edge-connectedness are equivalence relations on the set of nodes and the 

set {V(e): eg E) respectively.

f DEFINITION 9.3: If e E are such that V(e^) and V(e^) are

weakly (strongly) connected, then and e^ are said to be 

weakly (strongly) connected.

Edge-connectedness is thus an equivalence relation on the set of 

■ edges of H.

. DEFINITION 9.4: If H is such that every pair of nodes (edges) is weakly

connected, then H is said to be weakly node- (edge-) connected.
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DEFINITION 9.4 (CONTD): If every pair of nodes (edges) is strongly

connected, then H is said to he strongly node- (edge-) connected.

LEMfiA 9.5: H is weakly (strongly) edge-connected if and only if H is

weakly (strongly) node-conneczed.

Proof : Suppose H is weakly edge-connected. Let be two nodes of

H. Then there exist e.̂ ,eg c E such that c_ V(ey) and E. Y{e^).

If V(e7) -• V(e^), there is nothing to prove. Otherwise, since e. and e^ 

are weakly connected, {e^ ,eg} is a subset of a critical set. If 

{e^,e2 }̂  is a subset of a critical set, then and 7̂  ̂are weakly 

connected by (9.1). Since this holds for any two nodes of H,

H is weakly node connected.

Suppose H is weakly node connected. Let {e,j ,ê } / £ E*

V(e^) = vCeg), there is nothing to prove. Otherwise, let £. V(e.̂  )

- and Æg £  V(eg) be two nodes of H. Then there exist edges eg,e^ of H'

with £ Vle^) and £ V(e^) such that either (a) £ A

for some critical set A, or (b) e^ = e^.

If case (a) holds, since {e^}, {e^} and A are critical, by (2.6),

{e.,e^}uA is a subset of the edge-set of a fragment H of H. Thus,
: ' . G

since V(e.̂  ) Y V(eg), {e.̂ ,eg} can be extended to a maximal independent

^ subset of Q, which must therefore be critical.

If case (b) holds, then, since {e^}, {e^} and {e^} are critical, by (2.6),

{e',e_,e_} is a subset of the edge-set of a fragment H of H. Thus,■ I D G
since is independent, {e.| je }̂ can be extended to a maximal

independent subset of Q which must therefore be critical, and so

{e.,e_} is a subset of a critical set. .
1 2

Therefore, in either case, e, and e^ are weakly connected. Since this 

holds for any two edges of H, H is weakly edge-connected.
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Suppose H is strongly edge—connecLed. Let be two nodes

of H. Then there exist edges e^.e^ e E such that £  V(e,j) and

A/g Ç  V(Gg). If v ( e ) = y(eg) , there is nothing to prove. Otherwise,

there exists a sequence (e^=f|,f2 ,...,fi_^,f^=e2) of edges of H such

that {f. ,f._̂.j } is critical for each i, 1 < i ^ t-1. Thus, and ̂ 2

are strongly connected. Since this holds for any two nodes of H, H

is strongly node-connected.

Suppose H is strongly node-connected. Let £ E*

V(e.|) = V(eg), there is nothing to prove. Otherwise, let N^ aiid. N^

be nodes of H with N. £ V(eJ and £ VCe^). Then there exists a

sequence (f 7fg,... ,f̂ ) of edges of H such that £ V(f.,),

# C V(f, ) and either t = 1, or {f. ,f...} is critical for each i,2 t . J- 1"*" ».. ...
1 < i < t-1. Now, either V(e^) = V(f^), or, by (2.4), {e^,f^} is 

critical, since V(e.j)nV(f,,) £ Similarly, Y{e^) = V(f.̂ ) or

{Og,f.j.} is^,critical. If y(e.j) = V(f .̂ ) and y(e2) » then the

sequence (e. ,f_,.. - ,62) shows that e.j and eg are strongly connected.

If V(e^) = V(f|) and V(eg) Y V(f.^), the sequence (e,j ,f2 ,••• 3̂ .̂. ĵ g) 

shows that e,j and eg are strongly connected.

If V(e^ ) Y y(Y*i ) and V(eg) - Y{f^) , then the sequence (ê  ,. .. ;Gg)

shows that e.j and eg are strongly connected.
I f  V(ep Y vCf-,) and V(eg) Y/V(fl)3 tbe sequence (e|,f,j,...,f^,eg)

shows that e. and e_ are strongly connected. Since this holds for any
. ■ 7 :  ' ^two edges of H,7H is strongly edge-connected.

This result is the analogue of that for vertex- and edge- 

connectedness in graphs without isolated vertices. The proviso about 

isolated vertices arises because a node is, by definition, a subset of 

V(e) for some e e Es whereas a vertex V need not satisfy V e V(e) for any

7 e e E.. ' : '



We shall, in future, refer to strong or weak connectedness 

without qualification, meaning node- or edge-connectedness, since, 

hy (9o), these are equivalent.

PROPOSITION 9.6: Let H = (F,£, $) he a k-hypergraph with ̂  = V(£).

Then H is critical if and only if H is weakly connected.

Proof: Suppose H is critical. Then, for any maximal independent

subset £- E ’ A is critical, and V(A) = V(E)* Net e.j ,eg e E*.

If V(e|) = V(eg), then ̂e.̂ and eg are weakly connected. Otherwise,

{e^ ,eg} is independent in M(H). Thus, there exists a maximal 

independent set ç  f with { e. ,Og} c A* But A is critical, so ê  and

Cg are weakly connected.

Conversely, suppose H is weakly connected, and suppose H has 

components (y. , 0-, $. ) ( 1 < i < m). If m = 1, then H = (F^, G-; ? $i)>

since F = V(E). If m > 1, let e| e e Ggr Then, since H is

weakly connectedthere exists a critical set A £  19+ ,eg} . Consider

(V(A) 3 Ey(^) ) Since A is critical, this is a fragment of

H, so, by (2.7), there exists a unique i for which Since the

0^ partition E 3 and since ArGf r (j» and ArG2 ̂  4*3 this is a contra­

diction. Thus, m = 1, and so H is critical.

PROPOSITION 9.7: If F. ,F„ £ F are strongly connected, then F. and F.1 2 ,

are weakly connected.

Proof: since F and F_ are strongly connected, there exists a

sequence (e^,eg,. ..,e^) of edges of H such that F^ £ V(e^), Fg £  V(e^),

and either t = 1 or {e. ,e.,.} is critical for each i, 1 < i < t-1.

If t = 1, there is nothing to prove. Otherwise, by repeated application

of (2.6), iWy Fr73 $7%) is a fragment of H, where Î/= V(e J  uV(ep)u... uY(e. ) 
H v  VI  '

If {ê ,e_̂ } is dependent, then V( ê ) = V(e^) , and there is nothing to 

prove. Otherwise, {e^,e^} is independent, and so it can be extended
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to a maximal independent subset A of E ♦ A is critical since
W ■

0/, E - $ ) is a fragment, so F and F_ are weakly connected.' ; W W 1 ^

COROLLARY 9.8: If H is strongly connected, then H is weakly connected.

The converses to (9.7) and (9*8) are false, as can be seen from 

the hypergraph shown in Figure 1. In this case, iF] - 6, rl^(H) = 4 

and k = 3, so H is critical. Since F = V(E), by (9.6) , H is weakly 

connected. But, taking y = {A,B} and V = { D ,E }  , for example, we

see that y and y are not strongly connected.
i 2 ;

It is .clear that, if a graph G contains a connected spanning 

subgraph, then G is itself connected. The analogous results for 

hypergraphs are given in (9.9) and (9.10).

PROPOSITION 9.9: If there exists a strict subhy^ergraph H ’ = (F,

of H such that H ’ is weakly connected,• and V(E’ ) = V(E), bhen 

- ' H ks weakly connected. ■

Proof: Let y ’ = ¥(£). Then, since H ’ is weakly connected,

(y*, £ ’,'$’) is weakly connected, and so, by (9.6), (F’, E* ; $ ' )

critical. Thus, there exists a critical set A £  E* with V(A) = V  »

Now, E' 5 E and V(E' ) = V(E), so (F', Es $) is critical, since A is a

critical subset of E- Thus, by (9.6), (F', E, $) is weakly connected,

and so H is weakly connected.

PROPOSITION 9.10: If there exists a strict subhypergraph H ’ = (F, E^,$M

of H such that H ’ is strongly connected and n(H) = n(H’), then 

H is strongly connected.

Proof: Let e n(H). Then, since n(H) = n(HV), A / ^ e  n(H’).

If A = Nry, there is nothing to prove. Otherwise, since A/ and A
, i 2 . ■ ■ 1 ■■ . . ̂

are strongly connected in H ’, there exists a sequence (e^,...,e^) of 

edges of H ’ such that £ V(e^), Ag £ V(e^) and either t - 1
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or {e.,e. is critical for each i, 1 ^ i Y  t-1. Since (e^,...,e^)
' ^  ■ . ■ 

is also a sequence of edges in H, A/̂ and are strongly connected in H.

Since this holds for any two nodes A'̂  s^g e n(H), H is strongly connected.

From (9.2) we have a natural definition of a walk in a hyper­

graph. We can therefore define a path in a hypergraph in a way 

analogous to that used for graphs.

DEFINITION 9.11 : Let F^jFg £  F. A naUi from to Fg is a

sequence ( e^jOg ,. . . ,e^) of eciges of H such that F^ £  V( e^ ) ,

Fg £  V(e^) and either t = 1, or t > 1 and, for each 

i,j ,m with 1 ^ i,j ,m ^ t ,
0 if i-j r 0, +1;

ln(e.)Op(e.)| = k if i-j = 0;1 J
1 if i-j = ±1 ;

and'n(e. )nu(e. ) f>n(e ) = $ for i r j Y m. Y 'i .1 J . m , ,

This definition ensures that the edges of a path are all 

distinct, and that a node A is a subset of V(e^) for at most two values 

of i, this occuring only when the values are consecutive, when A is the 

intersection of the vertex-sets of the consecutive edges. The

requirement that n(e. )rva(e. ) rp(e ) = 4> for i Y j 7 Y i cannot be, , 1 . J .m
relaxed, as can be seen by consideration of the star graph

We next wish to define an analogue of a cycle of a graph, 

following on from the above definition of a pabh.^ "cycle"

and "circuit" already have special meaning, so, since our definition of 

path is related to strong connectedness, we call the analogue a "strong 

cycle".



DEFINITION 9•12: A strong cycle of H is a sequence (e^^e^

of edges of H such that either t = 2 and |n(eo)nn(e^)| = k,

or t > 2 and, f o r  e a c h  i , j ,m with 0 < i ,j ,m < t-1,

0 i f  i-j 4 0, +1 (mod t) ;

ln(e^)nn(e.)j k if i-j = 0;

1 if i-j = +1 (mod t );

and n(e^)rh(ej)nn(e^) = for i 4 j Y m Y i.

PROPOSITION 9.13: Let (0^,0^,...,e^_^) he a strong cycle of H.

Then M(H)x ({e^,e^,...,e^_^}) is connected.

Proof: Let the connected components of M(H)x ({ ,e,j ,... ,ê _,j} ) he

Gl' Gs'-'-' Gm- If m = 1. -then is
connected. Suppose therefore that m > 1. Since any H' = (%", E'; $') 

with F’=V(£’.) which is not critical cannot have M(.Hi) connected, for each

i , - ( V(G-) sG-^ • ) is critical. For each i, let A- £ G - he a■ ■ , 1 1; ■ . ■ ■ ■ ■■ . . . 7- ■: ■■■',
critical "̂ et with V(A- ) = V(G - ). Suppose there-exist i ,j with i Y j

and lV(G^)nV(Gj)I ^ k. Then |V(A^)nV(Aj)l ^ k. But

|V(Ag)| = k + lAgl “ 1 for each s, since Ag is critical. Thus,

jV(A^uAj) 1 < k + lA^uAj 1 - 2 ,  since ApoAj = 4> Dor i Y j. But then

A'uA is dependent and so contains a circuit C of M(H). This circuit 1 J
cannot he wholly contained in either A^ or Aj since these are indep­

endent, so C £ G^uGj with C.Y G^ and C Y Gj, which contradicts the - 

definition of the Gg*

Consider now a set G- = {e.: i £ I* £ {0,1,...,t—1}}. Since
;■ ^0 1 Jo

m > 1, JI- I Y t, so there exists e £ {eg,e^,...,e^_^} such that
: Jo . . 1 "7 :7 .. 7 7:7 _

e 7  G- , hut that e is an immediate predecessor or successor in the
7  7  “ 1 : 7  r  ' 7sequence (e„,e ,...,e ) of an element of u- . Let e„ £ b- . ThenU I Tj I J Q 1 1
|V(G- ) ry(G- )| > k-1. since strict inequality cannot hold (hy the

Jq 1̂
previous part), |V(G- ) nV(G. ) I = k - 1 .  , Thus, hy the definition of a

^0 Ji
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strong cycle, no other element of g. is an immediate predecessor
: 7 '7.7-.. 7/.: 7 Yl 7- ' ■ y

or successor of an element of Q • . ±f. IG - uG ; I Y t, then there
7. Jg Jo Jl

exists an element e 7 7  G- uG* which is an immediate predecessor orHg jg
successor of an element of G: and e„ e G (say), where

J*1 ^2 2̂
|V(Q. )nV(0. ); = k-1. Clearly, we may continue thus, until we have

;7 7 ^1 2̂ . .7::.
a sequence 0. , 0. ,... , 0. which exhausts {0. , G g 3- * ' 3 Ĝ J" '

7 "̂ 0 ■ 1 ■ 7 . r
But, consider G • » By the argument,{ V(G- )nV(G- )| = k-1.

^r r r-1
But, since there exists no element e e { e ,. ,e. } -(G- u .. .uG • / ?

^r+1 ! ^ . ^0 r-
some element ' of G- Tls also an immediate predecessor or successor 

of some element e £ G* Dor some s < r-1. But then
1V(G. ) nV(G- ) | = k-1, and, since (e^ ,e.j ,... ,ê _., ) is a strong cycle,

^r Y’s
V(G- )nV(G* ) Y V(G. )nV(G. ). Consider the sequence

^r-1
0. , G- 3 .. . 3 G- 3 G. ' have V(G- ) = V(A- ) for some critical
I’s ^s+1 7̂  r-1 Jr '̂ i
subset A; £  G; V

IX 1 ..
• |v(Ai )1 = lAi 1 + k - 1 

i i
|V(A, uAi u...uA; )l < lAi u.'.uA. I + Cr-s)(k-l)-(r-s-l)(k-1)

>)s '’s+1 ‘'r-1' ‘'s •'r-1

= lA; u.J.uA; I + k - 1.
‘'s ■'r-1

|v(Ai u...uA< uA: )l = l7(Ai u...uA. )l +lv(Aj )l7 . Jg- . Jf-I Jr ‘̂ s ‘̂ r-l

- |y(Ai )nV(A* u..;uA- )1
-’r ‘̂s ^r-1

< lA: u...uA' I + k-1 + lA; I + k-1 - k
Js Jr-1

Thus, (A- u...uA- ) is dependent. Since each A. is independent, this
',7 . : 7 :  \

contradicts the definition of the G^ as the components of 

M(H)x({eg,e.j,...,e^_.j}). Thus , m = -1, and M(H) x( {e^ ,e^,... ,ê __.j })

IS connected.
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Tîie converse to (9•13) is fause. Consider, for exaniple, the 

hypergraph H = (F, £  , $) , where F = {A,B,C ,D,S}^, E = { a,! ,c ,d} ̂  and 

V(a) = {A,B,C} , V(h) = {B,C,D} , V(c) = (C,D,E} and V(d) = {A,D,E} . 

Then {a,b,c,d} is a circuit of M(H) , whence M(H)x ({ a,b,c,d} ) is 

connected, but no sequence of elemenss oi E j-ornis a strong cycle.
It is easy to see that the element-sets of the strong cycles 

of a hypergraph do not, in general, satisfy the circuit axioms for a 

matroid. The axiom (Cl) is satisfied, but (C2) need not be, as can 

be seen from the following example.

Let H = (F, E, $) , where F = {A,B,C,D,E}^, E = {a,b,c,d,e}^ and 

V(a) = {A,C,D} , V(b) = {A,B,C}, V(c) = {A,B,D} , V(d) = {B,C,E} and 
V(e) = {B,D,E} . Then (a,b,c) and (b,c ,e ,d) are strong cycles of H. 

However, there is no strong cycle whose elements are all contained 

in {a,c ,d,e} = ({a,b,c}u{b,c ,e ,d} )-{b} .

The nodes of a hypergraph have several of the properties which 

are possessed by the vertices of a graph. The following results are 

easy to prove, and we omit the details.

PROPOSITION 9.14: Let H = (F, E, $) be a simple k-hypergraph with

k ^ 2. ■ Then :

(i) If e.,e. eE and e. 7 e., V(e.) nv(e.) £  A/ for at most .one1 J 1 J ^ J
: - # e n(H)>

(ii) If £ n(H) and c V(e), f/g £  V(e), then, for any e’ with

V(e') £ and V(eV) £ A/g, e’ = e;

(iii) If (F- , G-, $.) is a component of H, and e £ E is such that

V(e) HG- £ N for some N e n(H), then e £ G. ;

(iv) If (F,, G., , $|) and (Fg, Gg, Sg) are distinct components of H,

then n(G^ ) (^(Gg) = 4).
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For reasons which will hecome apparent shortly, we shall use 

the form of vertex-connectedness defined hy Berge Cil for connectedness 

in node—hypergraphs. We shall use n(A) to denote the set of nodes

in H of the set A E, even when A is being regarded as a set of edges

of W(H).

DEFINITION 9.15: / Let H = (F, E, $), and let N(h) be the node-hyper-

graph of H. Then two vertices of are said to be

V-connected if there exists a sequence of edges (e^.,e^) of 

N(H) such that € n(e^ ) , 1̂ 2 ̂  n(e^), and n(e^) On(ê _j_̂  ) 0

(1 < i < t-l). If each pair of vertices #^,#2 of N(H) is

V-connected, N(H) is said to be V-connected.

DEFINITION 9.16: A V-cycle of N(H) is a sequence (e^ ,ê  ,... ,ê _-j ) of

edges of N(H) such that either t = 2 and !n(ê )̂nn(ê  ) I = k,

or lb > 2, and for each i ,j ,m with 0 < i,j,m ^ t-1,

0 : if i-j 7̂ 0, t1 (mod t ) ; ;

|n(e.)ob(e.)I 1 j k if i-j = 0;

1 if i-j = + 1 (mod t);

and n ( e . ) f i n ( e . ) n n ( e  ) - ̂  for i T j r m r i.

^ This definition ensures that the V-cycles of N(H) form a clutter -

i.e. if Cl, Co the element-sets of two V-cycles of N(H) such that

C-, 5  Cg, then = Cg.
The similarity between (9.16) and (9.12) is clear, and prompts the

following proposition:
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PROPOSITION 9.IT: Let H = (P, E . $) ’°e a k-hypergraph with k & 2.

(i) N(H) is V-connected if and only if E is strongly connected; ,

(ii) C is a V-cycle of N(H) if and only if C is a strong cycle of H;

(iii) If C is a circuit of M(H) that does not contain the element-set 

of a strong cycle of H 5 then C contains the element-sets of no 

V-cycles of N(H).

The proofs are routine, and we omit the details.

We call a circuit of M(H) that does not contain the. element-set 

of any strong cycle of H as a subset, a weak circuit of H. A circuit 

of M(H) which is the set of elements of a strong cycle of H is called 

a strong circuit of H. Since the set of elements of a strong cycle 

is necessarily dependent, every circuit of M(H) is either a strong 

circuit of H or a weak circuit of H.

DEFINITION 9.18: Let H = (F, E, $) be a k-hypergraph with k ̂  2.

A pair of edges ê  ,eg e E "with ^ e^ is said to be V-cycle-

connected if there exists a V-cycle of N(h),(fQ,f^,...,f^_^)» 

such that ê  = f^ and e^ = f^ for some i, 1 ^ i ^ t-1.

N(H) is said to be V-cycle-connected if every pair of distinct 

edges is V-cycle-connected. By convention, a node-hypergraph 

with a single edge is V-cycle-connected.

DEFINITION 9.19: Let H = (F, E, $) be a k-hypergraph with k ^ 2.
A pair of edges e ,eg e E with ê  f e^ is said to be strongly

2-conneçted if there exists a strong cycle (f^,f^ .,f^_^) of H

such that ê  = f^ and e^ = f. for some i, 1 < i < t-1.

His said to be stronglv 2-connected if every pair of distinct 

elements of E is strongly 2-connected. By convention, a 

hypergraph with a single edge is strongly 2-connected.
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The similarity between (9.18) and (9.19) is to be expected in

the light of previous remarks.

DEFINITION 9.20: : Let H = (F, E, $) "be a k-hypergraph with k > 2.

A strongly-connected comnonent of H is a hypergraph H ’ =

such that E' a  E, H' is strongly connected, and, for any 

E" ^  E "with E’ s E" 5 H_„ is not strongly connected.

A V-connected component of N(h ) is N(H’) where H* is a strongly 

connected component of H.

A strongly-2-connected comnonent of H is a hypergraph H ’ = 
such that E' £ Es is strongly 2-connected, and; for any ■

E" £ E with E* S E"s H_„ is not strongly 2-connected.

A 2-V-connected component of N(H) is N(H* ) where H ’ is a 

strongly 2-connected component of H.

We shall later need to distinguish between two types of node - 

those contained in the vertex—set of only one edge, and those contained in 

the vertex-sets of two or more edges. We therefore make the following 

definition :

DEFINITION 9.21 : Let H = (F, Es $) be a k-hypergraph with k > 2.

If // e n(H) is such that V £  V(e. ) for some ê  e Es and thereA- - - \ .

exists e. e E with e. ^ e. such that iV V(e - ), then A7 is called
J J — u

a valency node of ê . A valency node of N(H) is a valency node

of e. for some e. € E.
- ^  : / ' ; : r"; :
A loopless graph has the property that each edge has at most two 

valency nodes. This prompts the following definition, which will be used 

in the next chapter:



DEFINITION 9.22:  Let H = ( 7, [ ,  $) be a k-hypergraph w ith  k > 2.

I f ,  fo r  each e e Es ® has at most two valency nodes in  n (li) ,

then H is  said to  be s t r ic t ly  nseudo-graphic.

I f ,  fo r  each strongly 2-connected component H ' o f H, H ’ is  

s t r ic t ly  pseudo-graphic, then H is  said to  be pseudo—g raphic.

With the d e f in it io n  of strong 2-connectedness in  (9-19)s  we 

might hope to  derive analogues o f re su lts  in  graph theory on the  , 

existence o f cut—v e rtic e s  or cut—nodes. We define a cut—node in  the

obvious way:

DEFINITION 9 .23:  Let H = ( F, Es $) "be a strongly-connected k -h yp er-

graph. Then e n(H) is  said to  be a cut-node o f H i f  e ith e r

(i) /i/ is the unique valency node in n(H) of some e € E, or

( i i )  H ’ = (V(E' ) , E ' , $ ' )  is  not strongly connected, where

" ' / E i = E: f  = { (V ,e )  e $: e; e E’ }. '

A cut-node o f H is  thus e ith e r  a c u t-v e rte x  o f N (H ) , o r an 

a r t ic u la t io n  vertex  o f N(H) — i . e .  a vertex  N o f N(h) such th a t  the  

removal from N(H) o f ^  and i t s  in c id en t edges leaves a node-hypergraph 

which is  not V-connected, or a v e rte x  N of N(H) such th a t  # is  th e  unique

—
PROPOSITION 9.24: If H is strongly 2-connected, H has no cut-nodes.

Proof: Immediate from (9.19) and (9.23).

The converse to  ( 9 . 2U) is  fa ls e . This is  most e a s ily  seen

by consideration o f the node-hypergraph shown in  Figure 21. This has

no cut-nodes, but there  is  no V -cycle containing e  ̂ and e^.
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Recall from (V.9) that if K = (7 , [, $,K) is a generalised, 

hypergraph, aiid e § 2 then pV(e) ^ h—1. From (U.I9) it follows that 

^Y(e) = k-1. There is thus a sense in which the contraction of the 

edge e contracts it to a node. In the node-hypergraph, this could 

reasonably be described as identification of the nodes of e. This 

certainly is the definition of contraction in graphs.

Consider the following simple hypergraph H = (F, E, $) where 
V = {A,B,C,D,E}^, E = {a,b,c,d}j and V(a) = {A,B,C}, V(b) = {A,C,D}, 

V(c) = {A,D,E} and V(d) = {A,B,E}. E(H) is shown in Figure 22.

N(h) is a V-cycle of cardinality A, and E is a circuit of cardinality 4 

in M(H). The generalised hyper graph K = (V, E, $, id)) is such that 

E“{d} is a circuit of cardinality 3. The identification of the nodes 

of d in N(h) would produce a V-cycle of cardinality 3, as can be seen 

from Figure 22.  ̂.........q

^igure 22
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. With this as motivation, we define contraction in a node-hyper­

graph as follows :

definition;9.25: Let N. = (7, £, $) he a k-hypergraph, and let e e E* .

Then the contraction of e in N is defined to he the identification 

of the vertices in N of e.

DEFINITION 9.26: Let K = (7, E> K) ^ generalised hypergraph.

Then N(k ) is defined to he that hypergraph obtained from

It is easy to see that N(K) is well-defined.

(a)
(oA ÙA fed fpjd

Figure 23

It might he thought that M(E) could he derived directly from N(H) . 

That this is not so c a n  h e  s e e n  f r o m  the node-hyper graphs shown in 

Figures 23(a) and 23(h). Although the node-hypergraphs are isomorphic, 

the matroid corresponding to that in 23(a) has rank 3, whereas the 

matroid corresponding to that in Figure 23(h) has rank 4. A possible 

way of avoiding this type of anomaly would he to define a canonical 

method of obtaining a matroid from a node-hypergraph. - , A

We could, for instance, require that the V-cycles of N(H) should 

he circuits of the matroid. However, not only do these cycles not, in 

general, satisfy the circuit axiom (C2), hut also there are node-hyper-
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g r a p h s  (e.g. those of the complete hypergraphs) which uniquely

determine their node-hypergraphs. and fail to satisfy this condition.

An approach via independent sets would yield a condition of the 

form: " A is independent in M if and only if either A = (p , or 
I V(G )| ̂  (k-1 )|G| + 1 each nonempty subset G of A .

However , if k > 2, this does not, in general, give the indep­

endent sets of a matroid (see, for instance, Crapo-Rota C 6 1, Chapter 7) 

We are therefore forced back to our original hypergraph H and its 

vertices to define M(H) , and to derive N(H) from H.

COMECTIVITY

In [271, Tutte defines connectivity for matroids in terms of a 

function called the Ç-function. The motivation for this comes from 

graph theory in the following way :

DEFINITION 9.27: A graph G is said to be K-separated, where k is a

positive integer, if there exist complementary sets of edges 

, Eg of G with lÊ l ^ K, and such that

|v(Ei)nV(Eg)| =>•
G is said to be c-connected if there exists a least positive 

integer k for which G is K-separated.

Tutte then defines an analogous concept for matroids :

DEFINITION 9.28: Let M be a matroid on the set E. For every subset

Ï Ç  E, define C(M; T) = p(M><X) + P(|f̂ (E-T) ) ~ pE + 1 •

Then M is said to be k-separated, where k is a positive integer, 

if there exists T f  lTl - lErTl - and such that

C(M; J) =
M is said to be K-connected if there exists a least positive 

integer k for which M is k—separated.



The relationship between Ç (M; T ) an(i k( Ej )nV( ̂ )! can be seen 

as follows: for a connected graph C-, | v(G)| = rlM(G) + 1.

Thus 5 provided E, T and E^T are all connected,

I v(r )nV(E-T)| = I v(T)| i + I vE-T)l - lv(E)l

= pT (̂ E"T̂  - pE + 1

=  Ç(M(G);T).
It is easy to see that, in the case of graphs, the minimum value 

of K always occurs when X  E— Ta^d. E are connected.

In the case of a critical k-hypergraph H = (F, E , $), a critical 

subhypergraph H satisfies I V(G ) I = PG : + k - 1. Thus , if H, and
G ^

H are all critical,
E-G Iv(G)nv(E-G)I - Iv(G)I + Iv(E-G)I - lv(E)l

= pG + p(E"^) - pE + k - 1

= : Ç(M(H) ; G) + k - 2.

Ç(M(S); G) thus attempts'to give a measure of the vertex-connect- 

ivity of a hypergraph in that, provided H , Hg and Hg_Q are all critical, 

^(M(H); G) + k - 2 is,the number of vertices common to and ll£_0 .

The analogue of (9.27) for hypergraphs would therefore be

DEFINITION 9.29: A k-hypergraph H = (F, E, $) with fc ̂  .2 is said to

be K-senarated.iwhere « is a positive integer, if there exists

T 5  E such that lj| > lErTl^ ^ and

lv(T) n7(ErT) l = K + k - 2 .
H is said tn be K-connected if there exists a least positive 

integer k for which H is K-separated.

Consider the critical hypergraph H = (F, £> $), where

F =  {A,B,C,D,E,F,G},, E =  {a,b,c,d,e}^, V(a) = {A,B,C,D},

V(b) = {B,C,F,G}, V(c) = {A,B,E,F}, V(d) = {A,C,E,G} and

V(e) = {A,D,F,G}. Then the only H with G e E which are criticalG
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are those with IGI ” 1 , iGl and jGI — 5* it is easy to check that

|V(G)nV(E-G)l = 4 if IGI- 1 / a n d ^ ^  5 if 1G1= 2.
Thus; there exists no k for which E is K-connected. However, M(H) is 

2-connected. Thus, the relationship between connectivity in H and 

connectivity in M(h) is less close than the corresponding relationship 

in the case of graphs.
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CHAPTER 10.:

COLOURING HYPERGRAPHS

In  th is  chapter, we examine the ways in  which the  m atro id o f a 

hypergraph gives r is e  to  colourings o f the hypergraph, which are gener­

a lis a tio n s  o f the vertex-co lourings o f graphs. .We s h a ll he concerned 

w ith  only two o f the possib le g e n e ra lisa tio n s , because these a r is e  

n a tu ra lly  from m atroid considerations. These are the weak and strong  

colourings defined below. In  f a c t , we s h a ll f in d  th a t  the m atro id  

gives colourings o f the node-hypergraph ra th e r  than o f  the  hypergraph 

i t s e l f .

The two types o f colouring we s h a ll be using are defined as fo llo w s :

DEFINITION 10.1 : A hypergraph H = ( F , E , $) is  said  to  be s tro n g ly

(vertex -.) colourable w ith  q co lours , i f  th ere  ex is ts  a p a r t i t io n

Y = F u . . . u7 o f F such th a t 1 V(e)P^. I -  1 fo r  each e e £, 1 . q 1
1 r  i  -  I *  -

Any such p a r t it io n  is  c a lle d  a strong (v e r te x - ) q -co louring  o f H , 

and H is  said  to  be strongly (v e r te x -)  coloured w ith  q colours i f

such a p a r t it io n  is  given.
: ' . . \  .

The strong chromatic polynomial P (H; 1 ) o f  H is  th a t  polynom ials  ̂  ̂ .

whose value fo r  each in te g er A'  ̂ 0 is  the number o f strong v e rte x  

colourings o f ,H w ith  A colours.

DEFINITION 10.2: A hypergraph H = ( 7, E , $) is  said  to  be weakly

(v e r te x -)  colourable w ith  q co lours , i f  th e re  e x is ts  a p a r t i t io n

, F = F. u . ....uF o f F such t h a t , fo r  each e £ E th e re  e x is t d is t in c t  1 1
in tegers  i ^ ( e )  and i g ( e ) , w ith  1 i^ (e )  ^  q, such th a t

|V(e)nl^_(e)l a 1, j = 1,2.
Any such p a r t it io n  is  c a lle d  a weak (v e r te x -)  q -co louring  o f H, and



H is  said to  be weakly (ve r te x - )  coloured w ith  q colours i f  such a 

p a r t it io n  is  given.

: The weak chromatic polynomial P(E ; A ) o f H is  .th a t polynom ial whose 

value fo r  each in te g e r A > 0 is  the number o f weak v e rte x  colourings  

o f H w ith  A co lours.

In e ith e r  case, th e  set { i :  1 < i < q} is  re fe rre d  to  as the  set 

o f colours o f the v e r t ic e s . The ve rtex  V is  sa id  to  be coloured w ith  

colour i  i f  V £ y..

A strong colouring o f H is  thus a proper colouring o f the under­

ly in g  graph o f H -  i . e .  the s im p lif ic a tio n  o f the  graph (F , E ’ , $ ' )  , where
k ^E' = : e^ e [ sad m = (g)), ^ unless i = r

and j = s, and ) ,V(e^g),... ,V(e^)}j = {{X,Y}£ V(e^) }j.

In  g en era l, many d if fe re n t  hypergraphs w i l l  have the same underly ing  

graph, and so i t  may be expected th a t the hypergraphic m atro id  w i l l  be

o f l i t t l e  assistance in  answering questions about strong colourings.
o ' :  o : X  :For example, both and less one edge have as their underlying 

graph, but have hypergraphic matroids i|. and  ̂respectively.

Weak colourings have been studied by many au thors , inc lud ing  Berge 

[1 ]  and Helgason [13 & 1^]. Helgason has shown th a t  in te g e r polym atroids  

^(see Dunstan [8 ]  fo r  a treatm ent o f th ese ) ,  which he c a lls  "hypermatroids". 

are the appropriate concept fo r  c a lc u la tin g  weak colouring  polynom ials in  

general hypergraphs. The reader is  re fe rre d  to  h is  paper [14]  fo r  

fu r th e r  d e ta i ls . We s h a ll be using Eelgason’ s re s u lts  to  show th e  . 

re la tio n s h ip  between the m atroid o f a k-hypergraph and th e  co louring  

polynom ial o f i t s  node-hypergraph. /

We begin by examining ways o f colouring graphs, to  see which methods 

•are s u ita b le  fo r  g e n e ra lisa tio n .
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It has been shown (e.g. by Crapo-Rota C6]) that the problem of 

vertex—colouring a graph is equivalent to the critical problem for its 

matroid — i.e. the problem of finding a minimal set of hyperplanes of 

PG(n,q) whose intersection with an embedding of the matroid is null.

That this should be the case is quite remarkable; it depends on the 

facts that :

(i) graphic matroids are binary ;

(ii) there is a 1-1 correspondence between the hyperplanes of

PG(n,2) and the hyperplanes of M(K^^2 »̂
(iii) there is a 1-1 correspondence between the hyperplanes of

—  ̂̂ n+2 ̂ the part it ions of the vertex-set of i%to

two nonempty sets.

For a general k-hypergraph H = (1̂ % E, $) where k ^ 2, we have:

(i) M(H) is not, in general, binary. Indeed, it follows from

(6.5) that M(H) is binary if and only if M(h) is graphic.

(ii) It may be possible to embed M(h) in a minimal projective 

geometry P such that the embedding is affine - i.e. there

exists a hyperplane J of P such that J {  = . As an example
; V. 3

of this. Figure 24 shows an embedding of M(Kj-) in PG(2,U).

^ PG(2,V) is the minimal projective geometry in which M(K^) can
:  ̂  ̂ . . 3be embedded, since, as we have seen, ^ is a minor of M(K^) ,

from which it follows that M(k |) is not binary or ternary.

The numbering of the points in Figure 2U is that used in the 

table of Hall ClO], and it is clear that the embedding is affine, 

because the hyperplane (1,11,1^,15,20} has null intersection

ŵith E(K:;p .
(iii) lihile it is true that a partition of V(K^) into two sets

W. and with If/. 1 > k and \W. nl7 \ = k-2 does correspond to the1 1 Ï ^
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3

a
Figure 2^

hyperplane {eg ^ ) - V(e) c_ ,v̂ or V(e) c_ p/̂ } of M(K^) , and 

that a subset p/ ç_ y with }p/{ = p-1 does correspond to the

hyperplane {e £ £(K^) V(e) c_ P/} of M(K^) , for many values of
_ ® _

k and p there exist hypernlanes of M(KT‘) vith more than two
3^components. For example, consider on the vertex-set 

{A,B,C,D,E,F}^. Then it is easy to check that if a,h,c are 

edges of Kg, with V(a) - {A,C,E} , V(h) = {B,C,D} and 

: - ' - V(c) = {A,B,F} , then:' {a,h ,c} is a hyperplane, of M(K^), hut
',iV --(K̂ ) r -u T has three components.6'{a,h,c}

It is, therefore, not surprising that the results on graph, colourings 

obtained from the method of intersecting hyperplanes do not extend to 

the case of vertex-colourings of hypergraphs. It is possible to use the 

method to colour the vertices of a hyper graph, but the colourings are not 

particularly well-defined. However, for completeness , we give the 

construction here.

PROPOSITION 10.3: Let H - (y, E, $) be a simple k-hypergraph with k > 2

: and |y| = p. Embed H in the hypergraph K^ on F, and letP
5 Jg,... , be a set of h\^erplanes of M(KT) whose intersection

with the embedding of H in is null - i.e. .

J i n J gn...n« J n£ = 4>. Then H can be coloured in the following way,
; ■ "SO that H is weakly vertex coloured:



. For each hyperplane J of M(Kf), let V^(J), Vg(J),...(J) denote

the vertex-sets of the components of (K^)^ . ; If ij  ̂ 1, then

v , ( J)U.. .uv. (J) = y. If 1 = 1, set V (J) = F-V.(J). With each

y  e y, associate the vector V = (â  * • >s,̂ ), where V e ( J^).
- ^

If, for a particular value of i, V  ̂y^(J. ) for more than one value of 

j, set a. to he any one of these values. Wow associate a different

colour with .each distinct vector cotained in this way and, for.each 

V e W, colour V with the colour associated with V. Partition y into 

sets of vertices coloured with the same colour. Then this partition 

IS a weak colouring of H.

The proof is straightforward, and we omit the details.

If H is a k-hypergraph that is not simple, we can use (10.3) 

to colour the hypergraph H V which is the maximal simple strict 

subhypergraph of H. Then this colouring is clearly a weak colouring 

'of H . ' - -V-"' : . ' - -

As an example of the method of {10.3), consider the hypergraph
O :

H = (y, E, $)) where F = {A,B,C,D,E}_,, and H H K^. Let

{a,b,c,d,e,f}^ 2 E where V(a) = {A.,B,C} , V(b) = {C,D,E}, V(c) = {A,B,D} ,

V(d) ={A,B,E}, V(e) = {A,D,E} and V(f) = {B,D,E}. Then J. = {a,b} and

Jg = {c ,d,e,f}jare both hyperplanes of M(K^) with Jy ^Ü2^E “ 4̂»

We can take V^(Jy) = {A,B,C} ) = {C,D,E}

(Jg) = {A,B,D,E} Vg(Jg) = {0}

So A = (1,1), B, = (1,1) , Ç = (1 ,2) , D = (2,1) and E = (2,1) (say).

So, associating the colour 1 with ( 1,1 ), 2 with ( 1 ,2) and 3 with (2,1) , 

we obtain the colouring F^uFgUFg of H, where F̂  ={A,B} , Fg = {C} and

V, . ID.,).
.D m .  I. m .  ,  < ...3,

and the fact referred to earlier that, for many values of k and |F|,

M(h ) is affine , the method of intersecting hyperplanes cannot be used
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to obtain a formula for the chromatic polynomial for the weak vertex- 

colourings of the hypergraph. However, a "chromatic polynomial" can, 

•under certain conditions, be derived from. M(H) which is meaningful in 

terms of vertex-colourings, but of W(h ) rather than of H.

We recall that, for a graph G = (y, [ , $), the chromatic polynomial 

P(G; a ) satisfies :

P(G-; a ) = P(G' ; a ) - P(G"; a ) , where G/ , G" denote respectively the 

graphs obtained from G by deleting and contracting an edge e which is 

not a loop or coloop of M(G);

A ) = P(G,jA )p(G2 ; A) if Ĝ  and Gg are disjoint;
1

' Gg ; A) = -̂ (G.j ; A)P(Gg ; A) where V(G^ )nV(Gg) - {v} and denotes 

union with identification of the common vertex.

The chromatic polynomial of G is thus defined uniquely by 

P(L; a ) and P(C; A) where L and C denote the graphs with a single edge 

' which is respectively a loop and coloop.

The chromatic polynomial of a graph is a special case of a more 

general polynomial in graph theory and matroid theory. This poly­

nomial is due to Tutte [26] , is denoted by T(M; x,y) and is called the 

• Tutte polynomial. We use it in the form 

^ T(M; x,y)

where M is a matroid on F with rank function p.

We then have T(loop; x,y) = y and T(coloop; x,y) - x.

Furthermore, P(G; A) = (-1)^^AT(m (G); 1-A,0) for a connected graph G.

The Tutte polynomial has properties similar to those of the 

graphic chromatic polynomial. For reference purposes, we embody them

in a proposition, the proof of which can be found in [26].

PROPOSITION 10.1|: Let M be a matroid on E, and let M. and M„ be
■ . . . .  •• :■ ^  ■ matroids on disjoint sets. Then:

(i) T(M; x,y) = T(M'; x,y) + T(M"; x,y) where M ’ = Mx(E-{e})



and M" = M. ( E~ {e }) for any element e £ E ̂ ot a loop or coloop

(ii) T(M*; x,y) = T(M; y,x) ;

(iii) T(M.j © M g ;  x,y) = T(M|; x,y)T(Mg; x,y).

We seek a chromatic poljmomial for a hypergraph H which is derived 

from T(M(H) ; x,y) in a way similar to that in which P(G; X ) is derived 

from T(M(g) ; Xjy) - i.e. such that the chromatic polynomial we obtain is 

of the form (-1) X^^^^T(M(H) ; Xjy) where x and y are polynomials in

X depending only on k, and o<h ) and 6(H) are integers depending on H, 

to be determined.

Before continuing, we need to establish what is to be coloured in 

the case of hypergraphs. The Tutte polynomial is defined in terms 

of deletions and contractions, so contraction needs to be defined for the 

hypergraph. As we have already . said, contraction of an edge e of . 

a hypergraph is meaningful only in N(H), since the identification of 

the nodes of e in H , implied by the definition of P, cannot be achieved 

in a satisfactory way for k > 2. Thus, the chromatic polynomial of H 

will, if it has any meaning at all in terms of colouring, be a measure 

of the number of ways of (vertex) colouring W(h ).

Consider a single edge e £ E ^ot a loop or coloop of M(H) . Then 

the number of ways of colouring n(e) in N(H) with -' X colours is equal to 

the number of ways of colouring n(e) with X colours without restriction, 

less the number of ways of colouring n(e) with X colours after the 

identification of n(e) caused by the contraction of e. Thus, the 

number of ways of colouring n(e) in N(H) is X -X. But, this is the 

number of weak X—colouvvngs of n(e). Thus, the chromatic polynomial will, 

if it has any meaning at all in terms of colouring W(H), be a measure of 

the number of weak coZouvings of N(E).

Now consider a hypergraph H which has a strong circuit A   E.
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Let B = A “ {a } for some a e A , and let K = (î̂  , B ). Then M(k) is a 

loop, and N(K) is seen to be an edge with (k-1 ) vertices. The chromatic 

polynomial of N(K) is this X. This compares favourably with the

graphical case. ¥e therefore define the chromatic polynomial of a loop 

to be

From the preceding comments, therefore, P(N(loop) ; X ) - a'" - X

and P(N( coloop) ; x ) = X " X Thus ,

T(loop; x,y) = (-l)^Ox^O (X^ >) and

T(coloop; x,y) = (-l)^^X (̂X'̂ -X), whence 

X = (-l)^lx^l(x^^x) and

y  =  ( - 1  )^°x^Q ( x ^ ^ - x  ) .

We shall usé P(W(K) ; x ) to denote the weak chromatic polynomial of N(K).

We shall assume that W(H) is V-connected (if not, we can consider

each V-connected component of N(H) separately). We than have the

result of Helgason [1^] that

P(W(H); x ) = E (-1)*^^ where Y (H) is the number
ASE

of V-components of N(H,)., which in this case is equal to 1, and r is the 

chromatic hyperrank function defined by

r(A) = In(A)l - y (H^).
It is easy to show that

r(A) = (k-1 ) lAl if A is independent in M(H) ,

r(A) = (k-1 ) lAl - 1 if A is a strong circuit of H, and
i"(A) = (h-1 ) lAl if A is a weak circuit of H.
PROPOSITION 10.5: Let H - (F, E, $) be a k-hypergraph with a weak

circuit. Then there exist EV E and 2 E' such that, if

K = (H ,, K' ), then 
E

P(N(k); x) 7̂ (-1 )^^^^X^^^^T(M(K) ; x,y) where x and y are as 

defined above, for any integers a(K) and 3(K).

Proof: Consider the weak circuit A ̂  E? end let B ~ A~{^} *̂0̂  some
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a e ft . Let K = (H .,B ) • Then M(k ) .is a loop, and N(K) is the

hypergraph consisting of an edge with k vertices and m O) isolated

vertices. Thus, the chromatic polynomial of IT (K) is X (X -X ).

. X" l) " )*̂ X̂ y for some integers a and 3 .

But we know that y = (-l) ̂ X - (X^ — X) for some integers ctg and 3q.

Thus, X^( X~X ) = (-1 f °  (X^ ^-X). But this must he an 

identity in X, which is impossible.. Thus, if H contains a weak 

circuit As ^ “ ) ^ A) s then P(n (k ) ; . X) is not equal to
(-1 ^^^T(m (K) ; x,y) for any integers a and 3 , where x and y are

as defined earlier.

In order for the chromatic polynomial P(IT(H) ; X) to be such that ,

for any K = (H _ , K' ) vhere [' 2 E and K' is independent in M(H),E ' ;
P(N(k ) ; X) = (-1 X^^^^T(M(K) ; x,y) where x and y are as defined

earlier, we must therefore restrict our attention to those hypergraphs 

H in which every circuit of H is a strong circuit.

LEMMA 10.6: Let H be a simple, strongly 2-connected k-hypergraph, in

which every circuit of M(H) is a strong circuit. Then H = ( F,Es$) is 

strictly pseudographic if and only if there exists a graph

G = (y , E, $') such thab Vjj(e) = V^(e)u(F-7») for each e a E.
■■■■" ' - ■ ... 

Proof: If such a graph G exists, then clearly H is strictly pseudographic,

since every edge of H has at most 2 valency nodes.

Conversely, suppose that H is strictly pseudographic. Consider a

strong cycle (e^,eg,...,e^) of H, and let [ = {e^,eg,...,e^}. Then C is

a circuit of M(h ) , and therefore lv(Ql = k + I Cl ~ 2, and

I V( Q’ ) 1 ^ k + 1 Q’ I - 1 for each nonempty proper; subset C  of C*

Since Q is a strong cycle, 1 V(;{ê  ,... ,ê }) 1 ^ k + r - 1 for each r < t.

Thus, |V({e.,...,e })| = k + r - 1 for each r < t. Since H is simple,

t 2 3, so, for each i, 2 < i < t-1 , |v(e^)-V( {e.̂ ,... ,ê _̂  )) | = 1.

Let V. = V(e.)-V&e:,.. .,e. . }) for 2 < i < t-1. Then V. e V(e. ).1 1 I 1-1 ^
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If ^ V(e._̂ .j), then V(e^)nV(e^^., ) = V(e^)-{V^} = V(e^)nv(e^_.j ), so 

there exists a node comnion to three edges of C , which is a contradiction. 

Thus, £ V(ê )nV(ê _j_.j ), and so, for 3 ^ i ̂  t-1 , {V^_^ ,V.} ̂  ̂ (e^).

Now, 1 (Y(e^)-{V_.j ,V^})A(Y(e^_|)-{V^_2 ,V^_^})j = k-2 , so

Y ( e . ) - { Y ._ Y ,Y , }  = Y { e . _ . ) - { Y . _  ,Y._ } .  Thus, fo r  3 ^ i -  t-1,ZL 1 1 1  1 1 X J- •
Y(e^) = %u{Y^_^ ,Ŷ } where \X\ = k-2.

Now, %u{Yg} Ç  VCeg), since I (%u{Yg,Y^})nY(eg)l = k-1. Therefore,

Y(eg) = Xu{Y.j ,Yg}, say, where Y.J /  Y ( { e ^ , e ^ , . . .  , e ^ _ | } ) .  S im ila r ly ,

Y(e.) = X u {Yq ,Y^}, where Yq V  VHe^je^,.
Now, I Y(e^) n(Xu { Y.^_g ,Y^_^} ) I = I Y( e^) n(Xu { Y^ ,Y^} ) I = k-1 , and so

Yq e Y(e^) , and Y(e^) = Xu{Y^^^ ,Yq} .

A s im ila r  re s u lt  holds fo r  any other strong cycle, o f H. Since H 

is  s trong ly  2-connected, and each edge has at most 2 valency nodes,

X ĉ  Y(e) fo r  each e e E* Put Y^(e) = Y (e ) -X .  Then G = (F -X , E 5 $ ’ )> 

where $ ' = _{(Y,e) : Y c V^^e), é £ E ) ,  is  a graph satisfying the 

conclusions o f the lemma.

PROPOSITION 10.7; Let H = (F,  E, $) t e  a sim ple, s tro n g ly  2-connected  

hypergraph in  which every c ir c u i t  o f  M(h) is  a strong c i r c u i t .  

Then, i f  H is  not strictly pseudographic, th e re  ex is ts  a sub­

hypergraph o f H, and a generalised hypergraph K = (H^ K' ) 
such th a t P(N(K) ; X) 7̂ ( -1 ; x , y )  where x  and y

are as defined e a r l ie r ,  fo r  any in tegers  a(K) and 3(E) .

Proof:  Suppose H is  not s t r ic t ly  pseudographic. Then there  e x is ts

an edge e £ E w ith  a t le a s t th ree  valency nodes . Since H is

strong ly  2-connected and sim ple, th ere  is  a Y -cycle (e ,e^‘, e g , . . .  ,e.^)

( t  > 2) o f N(H) such th a t ~ Y(e^)nY(e) and ~ Y(e)  nY(e.j ) .  Consider

a path ( e , f ^ , f2 , . . . , f ^ )  in  H such that Y(e) nV(f^) = and

n ( f  ) n n ( { e i , e _ ,  ,e })  ^ Such a path e x is ts ,  since H is  s tro n g ly
m I 2 r

2-connected. Now, there  ex ists  a le a s t i  fo r  which
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n(f£)î n({ e.̂ ,... ,ê } ) 7̂ (|). Let E ’ — /( ̂ŝ -j j • • • 5̂ 4.5̂*1 9 ♦ * ♦ 9

K ' = {fg,.. . ,f̂  ,ê  ,v. . ,e^X, and let K = (H^,, K ' ). Then M(K) is a 

matroid on the set {e,f'} consisting of two loops. N(K) is-a hyper graph 

with two edges, each with at least two vertices, and with two.vertices in 

common. From Helgason [ 1W  , we have that the chromatic polynomial 

P(H(K); X) = x(xla'(e)l+ln'(4t)l-2 - -2 _ xln'(fi)l-2 +

where n*(e) and n'(f^) are the vertex-sets in H(k ) of e and fy respec­

tively. Suppose P(N(K) ; A ) = (-1 ^^'T(M(K) ; x,y) where x and y :

are as defined earlier. Since M(k) is a matroid with two components, 

each of which is a loop, by (10.L)(iii),
2T(M(K); x,y) = T(loop; x,y)T(loop; x,y)= y . 

ï % u s ,  (-1)"(KtG(K)x2G0(xk-l_x)2

So, since this is an identity in X, (-1)“^^' = 1; $(K)+23q+2 = 1, so 

3(K) + 23q = -1 ; -1 + 2(k-1) = In’(e)l+in’(f,)I-1 ;

-1 + (k-1) + 1 = In’(e)1-1 = In’(f^)1-1.

But this is a contradiction. Thus, >

P(N(K); X) ^ (-1 )^^^^X^^^^T(M(K) ; x,y) where X and y are as 

defined earlier.

PROPOSITION 10.8: Let H = (F, E 9 $) oe a simple,, strongly 2-connected,

^ strictly pseudo-graphic k-hypergraph such that every circuit of

M(h) is a strong circuit. Then, for each E' 5  E 9 each 

K* — E* such that is independent in M(H the generalised 

hypergraph K = (H ,, K') is such that 

P(n(k); X) = (-I)^^^^X^(^^X^(^^T(M(K); x,y) where 

a(K) = rkM(K), 3(k) = (k-2) ( 1E’-K’ “̂^kM(K) ), Y(K) is the number of 

V-connected components of N(k) , x = 1-X^ - and y = 1-^

Proof: Suppose H satisfies the hypotheses of the proposition. Then,



ky ( 10.6), there exists a granh G = (7', E*s $ ' ) such that 

Vjj(e) = V^(e)u(y-7’) for each e e E* Now, to each generalised 

hypergraph K = (H_,,{(’), there corresponds a generalised hypergraph 

(G ,, K’)* But (G_; , K' ) is a graph G’, and N(K) = W(G") where
h  ■ ■ .V^iX^) - V^, (e)u(7-7’) for each e e E'** furthermore,

M(K) = M(G’) ^ M(G") . For a strictly pseudographic hypergraph H in . 

which every circuit of M(H) is a strong circuit, it is not difficult to 

check that r/\ = p/\ + (k-2 ) Iftj for any A £ E> vhere. r and p are the 

chromatic hyperrank function of W(e) and the rank function of M(H) 

respectively. In addition, r"A = P"A + (k-2) IAI for any A 5 E", 

where r" and p" denote the corresponding functions for the hypergraph G". 

From Helgason's result [14],
P(N(K); X) = P(H(G"); X) = xX^^' t „(-1 )'^1 ;^r"E"-r"A

- A h .,
= z )lAl ,P"E"+(k-2)lE"|-p"A-(k-2)lAl

A=E"^ ij A

xY(K) (-if''E" r ,,(-i)P’'E""lAl ;.P"E"-Ck-2) IE"I ^-p"A-(k-2) Ia I 
AEE

^ ĵ e(K) ̂ y (k ) (_i)a(K) J. (_|)P"E"-P"A ;^(k-l)p"E" (_i)P"A-lAl^-p"A-(k-2) Ia I
A5E"

= (_i)“(K)^e(K) ^y (K) % _ (_^k-1)(p"E"-p"A) (_^-(k-2))(lAl-p"A)
■ ASE

= (-i)“(K) ̂ e(K) ^y (k ) 5,(m (k ); X,y) where x = 1-X^"^ and y =

THEOREM 10.9: Let H = (7, Es $) he a simule, strongly 2-connected

k-hypergraph. Then :

(a) for any generalised hypergraph K = (H ,, K*),
2

P(N(k ) ; a ) .= (-1 )^^^^ T(M(K) ; x,y) where a(K), 3(K) ,

y(K), X and y are as defined in (10.8), if and only if

(b) H is strictly pseudographic, and every circuit of M(H) is a strong

: : : : :  \  \  ; -  : 7

Proof: (b)=> (a). If H is strictly pseudographic, and every circuit of 

M(h ) is a strong circuit, then-, by (10.8), every generalised hypergraph
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K = (H , , K’) satisfies (a).

(a) => (b). We shall show that, if (b) is not satisfied, then (a) does

not hold. '

(i) If H has a weak circuit, then, by (10.5) , there exists a generalised

hypergraph (H ,, K’) for which (a) does not hold.
: E - V

(ii) If every circuit of M(H) is a strong circuit, but H is not

strictly pseudographic, then, by (10.7), there exists a generalised 

hypergraph (Ĥ , , K* ) for which (a) does not hold.

Since, if (b) is not satisfied, (i) or (ii) (or both) must hold, we have

that, if (b) is not satisfied, then (a) is not satisfied. This 

completes the proof.

COROLLARY 10.10: Let H = (y, E, $) oe a simple k-hypergraph (not

necessarily strongly 2-connected). Then:

(a) for any generalised hypergraph K = (Hp,, K’),
'

P(N(K); X) = (-l)^(^) ^T(M(K) ; x,y) where a (K) , 3(K) ,

y(K),x and y are as defined in (10.8), if and only if

(b) H is pseudographic, and every circuit of M(H) is a strong circuit.

Proof: (b) (a). If every circuit of M(H) is a strong circuit, and

H is pseudographic, then the edge-sets of the 2-V-connected components of 

R(h ) are the connected components of M(H) . Thus, each generalised 

^ hypergraph K = ( H_,, K’ ) corresponds in the node-hypergraph to a set of
:: E - .

subsets of the edge-sets of the 2-V-connected components of N(E). Let 

these subsets be ' (^^y) each 2  snd is the

edge-set of a 2-V-connected component of M(H) . Denote W ( K ) b y  N(K^).

Then. P(W(K) ; x) = .n P(R(K. ) ; X), where
. a , . . .  ' :

y’(K) = . E |n( (C ) I - |n( K-1 u... uf̂ ) I.
1-1  ■

Now, by (10.9), P(N(K^); X) = (-1)^ î X^^^i ^T(m (K^) ; x,y)



. -. P(M(K) ; X ) =  X"  ̂ x,y)

Since M(k ) = :(M(K><K̂  )\© . .. ®  (M(k XK^) , by (10.4),

PCh Ck ); X) = X X ^ ^ ^ ’̂ ^4(M(K); x,y)

= (_T)“ (K) x ®^^(x^^^^î (K':<); x,y).

For the converse, we shall show that if (b) does not hold, then , (a) 

cannot be satisfied.

(i) If H has a weak circuit, then, by (10.5), there exists a generalised 

hypergraph (H ̂  , K *) for which (a) does not hold.

(ii) If every circuit of M(h ) is a strong circuit, but H is not

pseudographic, then there exists a 2-V-connected component of N(h ) which 

is not strictly pseudographic, with■eagé—set E ", say. But then, by

(10.7), there exists a generalised hypergraph (H^, , K') with E ' 5_E"

for which (a) does not hold.

- Since, if (b) is notosatisfied, (i) or (ii) (or both) must hold,

we have that, if (b) is not satisfied, then (a) cannot hold. This 

. completes the proof.

THEOREM 10.11: Let H = (F, E, $) be a k-hypergraph (not necessarily

simple, not necessarily strongly 2-connected). Then:

(a) for any generalised hypergraph K =(H KM ,
P(N(K); X ) = (-1)“^̂  ̂X^^^^ T(m(k); x,y), whereva(K), 3(K),

y(k) , X and y are as defined in (10.8), if and only if 

(b;) ) H is pseudographic and every circuit of M(H) is a strong circuit.

Proof: (b) => (a). If H is simple, this follows from (10.10).

Suppose H is not simple. Since H is pseudographic, every-edge of H has 
at most 2 valency nodes. But, a pair of parallel edges {6̂ ,62} of H

has n(e^) = n(e2), so we must have | n(e.| )j = | n(e2 )j = 2. Thus, k = 2,

and (a) follows, since H (and hence K) is a graph.
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(a) => (b). We shall show that if (b) is no t  satisfied, then (a) 

cannot hold.

(i) If H is simple, this follows from (10.10).

(ii) If H is not simple, and k = 2, then (a) is always true, and there

is nothing to prove.

(iii) If H is not simple, and k > 3 ,  consider a pair {e^,eg} of edges of

H, with V(eJ = V(e„). Let K = (H,  ̂, , {e }). Then M(K) isI !- 1 s-j 5̂ 2/ V-
a loop, and N(K) is an edge with a single vertex. Thus, P(N(K) ; A) = G

for any A- Now, T(m (K); x,y) = y = 1-a“^^“^^. Thus, since k ^ 2,

(a) does not hold for K = (H, _ -, , {ep}).
. / V y , ^

Since, if (h) is not satisfied, at least one of (i), (ii) and

(iii) must hold, we have that, if (h) is not satisfied, then (a) does 

not hold. This completes the proof.

It can he shown that, apart from strictly pseudographic hypergraphs,

the only■ strongly-connected; hypergraphs in which every circuit is strong

are the suhhypergraphs of k > 3, with, possibly, isolated

vertices. In this case, M(h ) s Up for some n. It is easy to 

calculate P(W(H); A) for such a hypergraph, but, if n > 4, it does not 

bear much relation to T(M(H) ; x,y).

We now turn from an investigation of the weak chromatic poly­

nomial of the node-hypergraph to a study of the weak chromatic number

of the node-hypergraph. Helgason, in his paper "Geometric Hypergraphs’ 

[13], proves that the members of a restricted class of hypergraphs all 

have weak chromatic number 2. To demonstrate just how restrictive this 

class is, we state his result, and then show which node-hypergraphs 

satisfy his conditions. We shall then consider the weak chromatic number 

of more general node-hypergraphs.
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DEFINITION 10.12 : Let H = (y , [ , $) be a k-hypergraph. Then the

covering closure of a set f\ c_E. is the. set 

A = ( G €,[ : V(e) Ç V(ft )} .
The operator is said to be geometric ii it satisfies the matroid 

closure axioms (K1) - (k4).

A hypergraph is said to be covering-geometric if its covering . 

closure operator is geometric.

THEOREM 10.13 (Helgason [133): Let E = (y, E, $) he a connected (in

the sense of Berge [1]), covering-geometric hypergraph such that 

n{V(e): V e V(e)} = {V> for each V e F. Then, either H is a 

(one-connected) graph, or H is weakly 2-colourable.

Proof: see [13].

THEOREM 10.14: Let H = (F, E, $) he a simple, strongly-connected,

. . k-h^ergraph. Then _ . -

(a) N(h ) is covering-geometric if and only if

(b) either (i) for each e c E, there exists a node of e which is

not a valency node of e; 

or (ii) H S

Proof : By (9. IT) , H is strongly connected if and only if N(H) is

V-connected (i.e. connected in the sense of Berge [1]).

(b) => (a) is easy to prove, and we omit the details.

(a) => (b). Suppose N(H) is covering-geometric, and that (b)(i) does

not hold. Then there exists e e E such that every node of e is a 

valency node. For each node il/. V(e) (1 < i ̂  k) , let a. c E — {e} be 

such that il/, c V(a-). Since each 77. is a valency node of e, there 

must exist at least one such a- for each i. Furthermore, since H is 

simple, and N(h) is its node-hypergraph, V(a^) V(a.) for i ^ j , and

V(a^) 7̂ V(e) for any i. Let /\ = (â : 1 < i < k).



Then e e A> and so, since N(H) is covering-geometric, for each i 

(1 < i < k), a. e (A-{a.})u{e}. Thus, each node Æ e n(Au{e}) is a

subset of the vertex-sets of at leaso tvo elements of • Therefore,

|n(Au{e}) |x2 < (k+l)kh Hovever, since h is simple, each edge can

have at most one node in common with each other edge, so

ln(Au{e})| > ik(k+l). Thus, equality holds, and so each node is a

subset of the vertex-sets of exactly two edges of Thus,

H, -r 1 = • ¥e note that, therefore, H , h -, is symmetric in theAuie> k+1
elements of Ad{e}.

Now suppose there exists e" i l\u{e}. Then, since N(H) is 

V-connected, there exists e\  ̂Aute) such that n(e')nn(Au(e}) f <{>.

By the symmetry referred to above, there is no loss of generality in.

assuming that n(e’)On(e) = N .. But, applying the above argument to
: ■

the set (A-{a'})u{e,e’ }, we obtain })u{e g,} ~ ^ + i  * ^nd. so

V(eV). - V('a', ) which, since H is simple, is a contradiction. Thus, 

there exists no such e’, and H = .

For case (b)(i) of (10.1U), the condition n{n(e) : N £  V(e) } = N

for each Æ e n(H) is not satisfied, and so the conditions of (10.13) 

are not satisfied for N(h ). Thus, the only node-hypergraphs which 

satisfy (10.13) are for k >  2,

For general node-hypergraphs, therefore, we do not have the 

conditions of (10.13) satisfied. It is thus not surprising to find that 

the conclusions of (10.13) do not hold for general node-hypergraphs.

In order to demonstrate this, we first observe that there is a 

convenient representation of N(K ) which simplifies the proofs somewhat.
P



PROPOSITION 10.15: , Let H = (F, [, $) = ^. Then there is a 1-1
.... ^

correspondence 0 between F and n(lĈ ) such that 0 gives rise to 

an isomorphism between the elements of the non-trivial 2-flats

of M(H) and the edges of KT . : ,; - .. . : P
Proof : Let H' - (I'', F', $') = KT ; let '/= {¥. : 1 £ i S p}' P ■ ■ .1 ■ T
V' = { VÎ : 1 < i < p} /, and let \p be the obvious bisection between

^  ^  .t ■ ■ . ■

P and y ’.

Then, for each e e 2 ) (4; (V) : V e V(e)} e nCüOj and, for each e n(H’) , 

{i[) ( V  ) : V' e N'} e 2* Thus, ij; gives rise to an isomorphism 0 between 

2 and n(HV). The non-trivial 2-flats of M(H) are the sets 

{e 6 2 : V(e) £ I/, \W\ = k}. Thus, {e: e € p} is a non-trivial 2-flat 

of M(H) \ if ; and only if : V e V(e) for some e e p} = V(e' ) for some

Let us distinguish by a capital letter the non-trivial lines 

of M(H), and call them "Lines" of H. Then, by (10.15), a ,- 

weak q-colouring of N(K ) is equivalent to a partition of the edges of 

into q classes so that no Line is contained wholly in one class.

In the particular case k = 3, we recuire a colouring of the edges of 

K with q. colours so that K has no monochromatic triangles. Berge 

[1 ] calls this a good q-colouring. The problem of what values of q 

will give a good q-colouring of K is essentially a Ramsey-type problem;
/ _ v"Kj- has a good 2-colouring, but Kg has not.

-DEFINITION 10.16: Let Q = {p-, aEo>• • • be a partition of E(K )

into q classes. Then Q is said to be a k-good q-colouring 

of  ̂ if no Line of if  ̂ is a subset of 2,- for any i.
. p ; ' p.// - -

We shall prove that, for any q ^2, and any k > 2, there exists -

p such that K has a k-good q-colouring, but not a k-good (q-l)-col-
■ ^ . '■ . /  ouring. From ( 10.15) and the discussion following it, this is
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equivalent to the statement that has weak chromatic number q.

The generalised Ramsey theorem that we require is

THEOREM 10.17 (Ramsey) : Given an integer h and a set { p. . ,P }

of integers 5 none less than h, uhere exists a finite integer

R^(Pya . . . ,P(̂ ) such that , if % is any set with

. 1% I > R̂ (p:,,... ,Pq ), then, for any partition { , Tg,... , 1^

of the set i^(X) of h-subsets of X , there exists a class T  and

a set 1 X sùch that lÂ i = P^ snd î XAj; ) f,

We define n, (q) = R, X k,k,_. ,k)-1 ; then n^(q) is the
q terms

: V-1 ■■ ■ .maximum value of p for which K has a. k—good q—colouring.

Berge [1] proves that has a 3-good (q+1 )-colouring,

but no 3-good q-colouring. An analogous proof holds for k > 2.

THEOREM 10.18: if") x . has a k-good (q+1)-colouring, but no

k-good q-colouring.

Proof: By definition of n^(q), )+i no k-good q-colouring,
. .. ' k

but y \ bas\a k—good q-colouring. Let Q, be a k—good q—colouring of

: } ; ' '

H = K ; V, and let V e V(H) , W f V(H) be two vertices. We shall now

form a hypergraph if on V(h )u{w >, and produce a k-good (q+1 )-

colouring of it. Let H' be such a hypergraph, and identify e e g(H) 

with that e" € 2(HV) with V^(e) = V_,(e"). For each e e £(H’) with 

V^, (e) £  V(H) , let e ’ e [(H' ) be the unique edge with

V (e‘ ) = (V„(e)-{V})u{W}. Colour the edges e and eV with the colour
^  V . H ■ . iyry.yv..
of Q used to colour e in H. For each f £ E(H' ) with {V,W} ̂  Vjj,(f), 

colour f with a new colour ( q+1 ). Then it is easy to see that the 

resulting colouring is a k-good (q+1)-colouring of H/.



î .
but not with q colours.

COROLLARY 10.19: N(K^ can be weakly coloured with (q+1) colours.

COROLLAHY 10.20: N(N , ■,) has weai. chroaatic number (q+l) for q È 2.

Proof : By ; (1 0 .18) ,  n^(q) > n^(q -1)+1, ^° ^ ^ (q)^ can be weakly

coloured viith q colours, but not with ( q-1 ) colours.

COROLLARY 10.21 : Given integers q > 2 ,  k > 3, there exists an integer

p such that N(K^) has weak chromatic number q.
... P

We have remarked several times that the components of a hyper- 

granh partition the nodes, in the sense xhat, if (H : 1 ^ i ^ m^ is 

the set of components of H, and »7 e n(H), then 7 c V({^) for exactly 

one value of i. It is therefore possible that an adaptation of (10.3) 

to the node-hypergraph might yield a well-defined colouring.

■ THEOREM 10.2 2 : Let H =- ( f, Ev $) ;be a simple k-hypergraph with
' . " : - kjprj = p. Embed H in the hypergraph on the set F of vertices,

and let , J g , . be a set of hyperplanes of M(K^) such that

J] n . n E = 9-
For each hyperplane J, let (^) ( j] ( 1 <i <m ) denote the

( ' ' components of (if )̂  , and let //. (J) — n(G^(J)) ( 1 — T —  ̂'

Let {#.(J): m,+1 < i < i.}^ denote the set .
a J - J r . .

{# € n(lf): N  ̂  V(G.), 1 3 j ^P J ^ '
With each yY e n(H) associate the vector Y = , where

N e N (J •)• Now associate a different colour with each distinct
f:, *1 1 : .'

vector so produced, and, for each // e n(H), colour with the 

colour associated with Partition n(H) into sets of nodes

coloured with the same colour. Then this partition is a strong 

colouring of N(H).



Proof : Let e e [. Then, since J ... nj ̂  n [ = cj) , there exist s

i for which e V J-- For definiteness, suppose i = 1 .  Now, if
 ̂ y ' ■ ■ y; ; % ' .■ v;-■.

ln(e) fW . (J ) 1 > 2 for any j , 1 - j ^ ra, , hy (9.1^) V(e) V(G • (J ̂ ) ) •. J ‘ . , . J p.;, ^
But (K^) f \ is a complete k-hypergraph, so this implies that

P Gj^J-1 )
e € G • (Ji ) É. Ji 5 '̂̂ kich is a contradiction. Thus , in(e)f^.(J.| ) I - 1

0,1 ■ :■ ■ .-k, ^
for each j, 1 ^ j k m  . Since F7 (J )1 = l for each j with 

■ - 1 ■ . ■ 
m, +1 ^ j ^ i , , we have ln(e)n7.(J )1 < l for each j, 1 - j - i, •
Jl J-j Y 1
Let the k nodes of e be %ken the first components of

the vectors ( 1 ^ j k) associated with the k nodes of e are all
. ■’ ' V

different, and so each vector is associated with a different colour. 

Thus, the k nodes of e are all in different colour classes, and so e; . 

is strongly coloured. Since this holds for each e ^ E , N(H) is 

strongly coloured.

It is not possible to obtain every strong colouring of N(h) by the 

method of (10.22). For example, let H — (F, E , $)) where 

V = {A,B,C,D,E}^,E ={a,b}^, V(a) = {A,B,C,D} and V(b) ={A,B,C,E}.

Let Q be the colouring which colours the nodes {A,B,D} and {B,C,E} 

with the same colour, and colours all other nodes of H with different 

colours. Then, if this colouring arises from (10.22), {A,B,D} and 

{B,C,E} are subsets of the vertex-set of the same component of each of 

the hyperplanes J,,J_,...,J used to obtain the colouring. But this
. ■ ■ . t  1  3

is impossible, because any complete subhypergraph of _ _  on K whose

vertex—set contains {A,B,D} and {B,C,E} as subsets must contain every

vertex of on F,. and hence must be on V.

Again, consider H = (F, Es $), where F = {A,B,C,D}^, E = (a,b ,c ,

V(a) = {.A,B,C}, V(b) = {A,C,D} and V(c) = {A,B,D}. Let Q be the

colouring which colours {B,C} and {3,1*} with the same colour, and

colours all the other nodes of H with different colours. Then this

colouring cannot arise from (10.22), since every component of a hyper-



plane of M(K^) whose vertex-set contains {B,C} and {B,D} necessarily 

contains {C,D} as well, and so {C,D} would have to be coloured with 

the same colour as {B,C} and {B,D}.

We next prove a necessary and sufficient condition on the strong 

colouring Q of W(H) for Q to be derived from a set of hyperplanes by 

the construction of (10,22).

THEOREM 10.23: Let H = (T, Es $) be a simple k-hypergraph with

I El > 1, and let Q = {A^,A2 ,... ,A^} be a strong colouring of 

N(h). Let I y I = p. Then
■ ^

(a) there exist hyperplanes J.J , J^ 5 .*• , J^ of M(K1) such that Q is 

derived from ,.. ., by the method of ( 10.22)

if and only if

(b) for each I {1,2,...,q} with jlj >2,

E|V(A.)j < juV(A.)| + (k-l)(|I|-l)-1, where 
I  ̂ I ^

Proof: Without loss of generality, assume that Q is such that

jÂ j > 1 for 1 < i < q’, and that |Â | = 1 for q’+l < i < q. Let H be

embedded in on F (this is possible, since H is simple), and define
P :

Yi = {e e E(Kp): V(e) c V(A^)} (l < i < q'). Let Y = Y - | •

(a) => (b). Suppose Q is derived from the hyperplanes by

the method of (10.22) . Then Y = JyOj^n. . For, if e e Y,

V(e) w V(Y-) for some i, and so e e J. for each j (l < j < c). If
1 ■ , J

e d ^ V(Y-) for each i, so there exists j for which e  ̂J..

Thus, Y i s  a flat of M(K^) . Since |E( ^ F, Y r  E(K^)- %  the

construction of (10.22), each Y• is the intersection of a component of

each of the J., and so, since each H is complete, the H^ are the
■  ̂ ■' ̂  : : bk :

components of Hy. If I jL {1)2,...,q} with jlj > 2, let

I.J = In{1,2,...,q'} and I^ = I n ( q ' + 1 , . T h e n ,  if |I.|1 > 2,

Z |V (A . ) |  = Z |V (Y - ) |  + I  ( k f l )  = Z (p(Y<) + k -  1) + j l p i ( k - l )
T 1 Ii  ̂ lo Ii ^
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=p(Ü Y;) + lll(k-l)
Tl

<|v(u Y. ) I - (k-1) + |l|Ck-l) 2 , and so H ^ is not
y . ill  ̂ i- critical. b I' i
= 1u V(A.) | + (k-1)(Il 1-1)
Il ^

<|u V(A.)1 + (k-1)( Il 1-1).
If = {1:̂ }, say, let ig £ Ig. Then

Z|V(A.)I = |V(A. )| + |V(A. )I + (k-1)(Il 1-2)
I Y- 1̂ 2< iv(A. UA. )1+ (k-2) +(k-l)(|lj-2), since, by the construction 

■i ^1 '\ ̂ 2 : i 
Of (10.22), if |V(A. )nV(A. ) | > k-1, A. = A .

2 2 1̂ 
If - (|), then, since Iv(Â ) |= k-1 for each i e Ig, and V(Â ) f V(Â )
for i,j £ Ig, i Y 5 , (b) follows immediately.

Thus, in each case, if I Ç {1,2,...,q} with |l| ^ 2,
Z|V(A.)I < |uV(A.)I + (k-l)(lll-l)-1.I I
(b) => (a). For each i, 1 < i ^ q’ , let £  Y- be a critical set 

such that V(A- ) = V(Y* ) . Such a set exists since is complete, and 

hence critical. Now, for each i, let Bb £ A.; with B; Tnen, for

any I £ {1,2,...,q’} with III - 2,
0 s ZlV(Bi)l " luV(Bĵ )!  ̂ZlV(Ai)i - luV(A.)l since B^ £ for each iel,

< (k-1)(ll1-1)-1 by hypothesis.
|üv(B.)l > zlv(B.)l- (k-i)(IH-i)+iI  ̂ I

> zlB:l+ k.I 1

> ZlK IB*lbk-l) - (k-l)(ll|-1)+F since each B*>
I  ̂ is nonempty and independent

Since this holds for each I £  {1,2,...,q’} with III - 2a and for each

nonempty subset By £ A^. and since each B* £ A^ is independent in M(K^),

uA. is independent in M(K^). Conversely, if uA: is independent in 
I 1 ■. P I 1 ..

M(I^), each l\̂  is independent. Thus, M(K^)xY = M(K^)><Y^@* * .@M(lf )xYq̂ ,,

and so the Y • are the components of M(K̂ )><Y ( 1 ) •

Now let e £ o(A.^uAgU...uÂ ,̂ )-(A^uAgU.> .uÂ , ) , and suppose that

{e}u(u{B. : i £ J}) is a circuit, where Bj_ r 4» for each i £ J, the B^

being as defined above. Then, since each is critical,
 ̂ J ^

critical, since, by (2.3), if C is a circuit, V(Q £  V(X) for some



b ' " ’ b, F

critical set X» and, by (2.6)V if two fragments (i/, Er/> $r;) and
(̂ 5 Er/î $ry) have a common edge, then (;£/ü,V, Er/ rrs $Tr r,) is a fragment.

UUiv uillv

Thusy |uV(Ay I = IV(uY-) I = |V(u/\.) I = k +  |uA-I - 1
J J “ J ^

-
= k - 1  + Z|V(A^)j - IJI(k-1)

= Z;V(A.)I - (k-l)([J|- 1),
J

which is a contradiction of (h) if [jj >2. Thus, (J| = 1, and so

a  ̂aCA-j u.., uA , ) => e e aCA^) = Y_- for some i. Thus, Y is a flat
' , ■ ' , ' y .  - v - y i  -  y  i f

of M(K^). No w, Y cannot he a flat of m CkT ) of full rank, since, if it

were, from ( 1 ) we would have V( ) = 7. Now, q > 1, since IE { ^ 1 and

Q is a strong colouring of N(h ) . Thus, there exists A„ Y  A_ f Ai,.
: ::.:F ■'

Tben, by (h), |V(A^)| + |V(Ag)| < |V(A^uAg)| + (k-2), whence |V(Ag)| <(k-2), 

which is impossible. Thus Y is a flat of M(K^) of less than full rank, 

and so there exist hyperplanes J ,J ,...,J^ of M(K^) such that 

Y = J-j It .is easy to see that Q is derived from

by the method of (10.22).

It is clear from the results in this chapter that we are

dealing with two essentially different methods of colouring N(h );

one which gives weak colourings, and one which gives strong colourings. .

From the matroid point of view, therefore, these are the natural

generalisations of the vertex-colourings of graphs.

Since weak and strong colourings coincide in graphs, it is not

surprising that there is a relationship between the methods in this

case. As has been shown by Crapo-Rota [6], the connection is uYa the

critical problem for representable matroids. As we noted at the

beginning of this chapter, there are several facts which are crucial

to this result, and these facts are, in general, not true for hyper-

graphic matroids.

Even if it were possible to find a formula for the number of

hyperplanes of M(K^) whose common intersection with the edge-set ofP
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an embedding of a hypergraph H is empty, this still would not give a 

strong chromatic number or strong.chromatic polynomial for N(h) because, 
for many values of k and p, the number of components of (K^), for a

hyperplane J of M(K^) is not constant.
As a final result on colouring node-hypergraphs, we give a result

due to Grunbaum [9]. Although his result is given in terms of

simplicial complexes, he uses no properties of these not possessed 

by the edges and nodes of uniform hypergraphs. We first define the 

notion of embedding a hypergraph in Euclidean space.

DEFINITION 10.2)4: Let H = (F, Es $) be a simple k-hypergraph.
(3_ ■'

Then H is said to be embeddable in Euclidean d—space E— if

there exist distinct points a^ (V e F) of E such that, for 

each e e E, and each P/ 2. V(e), dim(coV) > jP/j - 1, and, fOx 

any subset {e.: i el} £ Es

n(co(V(e.)) = co(n(V(e/))), where co(%) for % c F is the

convex hull of {â : V e X }.

THEOREM 10.25: (Grunbaum [93)• If H is a s i m p l e  k-hypergraph

that is embeddable in E^, then there exists a strong colouring 

o f  N(h) in 6(k-1) colours.
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CHAPTER 11

: ■ A GENERALISATION OF . /

SERIES-PARALLEL EXTENSION

In this chapter, we shall use ideas uerived from hypergraphs to 

generalise the notion of a series-parallel extension. Since the 

, definition of series—parallel extension is motivated by graph—theoretic 

considerations, this is a reasonable approach. The chapter falls

into three main sections. In the first section, we shall introduce 

an operation of matroid union which we term "pointed union’'. Dr.

J.H. Mason has pointed out that this operation has been described

previously by other authors, including Bixoy l33* In the second 

: section, we shall define generalised series-parallel extension, and 

compare the properties of this operation wiun those of series—parallel 

extension. In the final section, we define a generalised series-parallel 

network, and characterise the class of generalised series-parallel 

networks by a set of six forbidden minors. An extension of this leads . 

to a characterisation of ternary base-orderable matroids.

POINTED UNIONS: ' y- :

it is clear that, given two graphs G.̂ and Gg, we can form a new 

graph by identifying one edge of G.̂ with an edge of Gg, provided neither 

edge is a loop, but otherwise keeping the vertex-sets and edge-sets 

disjoint. The pointed union of two matroids is the translation of this 

operation into matroid theory.

DEFINITION 11.1: Let M.J, Mg be matroids on the sets E-jU{x},

respectively, where E-; {p " 9) %  ̂E-)̂ E2 ^ is not a loop or

coloop of M.J or Mg. Then the pointed union of M.j and Mg, denoted 

by M^ùMg is the matroid M = ( E.|UEpU{x}, B) with set of bases
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B = {BiUlg: Bi E IgUfx} E BCWUjlu
"{BgUli : Bg f . I,u{x} eB(M.,)}.

The deleted pointed union of and Mg, written M.jû 'Mg is the

matroid (M.̂ ûMg)x ([.jUEg/ *

PROPOSITION 11.2: With the above notation, M.̂ijMg is a matroid on

the set EiuEgUfx}.

Proof: Routine verification of the base axioms.

PROPOSITION 11.3: With the above notation, the set of circuits of

M.liM_ is given by ■ I — 2
C(M^uMg) = C(M.̂ )u C(Mg)u{(C^ACg): e CCjb) and x e C^, i =1,2}.

Proof : Routine verification.

Although there is a superficial similarity between the definition 

of pointed union and the "series connection" defined by Brylawski 

in fact the-ooncepts are quite different; for example, the "series 

connection" of two matroids M^ and Mg has rank rkM.j + rl-^2, whereas the 

pointed union of M.̂ and Mg has rank rkM.̂  + rkMg - 1.

PROPOSITION 11.%: PROPERTIES OF THE POINTED UNION.

Let M.J, Mg be matroids on E.jU{x}, where E-ĵ E2 = 4>9‘

X  ̂E-jUEp X is not a loop or coloop of or Mg. Then:

(a) M.ÛM is representable over the field F if and only if M.j and Mg 

are representable over F;

(b) M.uM^ is base-orderable if and only if and are bas e-orderable ;
\ : ::'■

(c) M. uMp is fully base-orderable if and only if M, and M are fully 

base-orderable;

(d) M.J uMg is hypergraphic if and only if and Mg are hypergraphic.

Proof: Since each of the properties mentioned is preserved under the

operation of matroid restriction, and since (M.^uMg)^(E^u{x}) (i = 1,2)

one half of each equivalence is trivial.



The converses are proved as follows:

(a) Assume Mi and M„ are representable over F. Let j.u{x} be a 

base of M. (i = 1,2) . Let V be a vector space of dimension 11 J+i I pi‘’"V 

over F , and let {Y( e) : e e x}} be a basis of :V. Let be the 

subspace of V spanned by { V( e ) : e a J.u{x}} (i == 1,2). Then, since

M. is representable over F, there exists a map 0 : F_.u{x} V. such that
: y .

for any {x.̂  ,Xg,... ,x^}^ c_ E^u{ x} , {x.,̂ ,Xg,... ,x̂ } a I(M^) if and only if

{eiX.j , ^iXg, ... , A fX̂ } is linearly independent in V^, and such that

0 .e= V(e) for e a %., and 0 .x = V(x). Define 1 a 1

I 0 (̂s) if s a E^u{x}
e(s) = I  y ; _

0g|s) if s a EgUCx}

Then it is easy to check that 0 is a representation of M.jûMg.

(b) and (c) follow from routine checking of the various possibilities

for two bases in a base-ordering or full base-ordering.

(d) Suppose that M. = M(H.) (i = 1,2), where H. = (F. , [duix'} , $•)
1 • 1 ■ JL .•!. • J- "b

is a k.-hypergrap]) and the isomorphism is induced by the obvious

bisection between p . . s n d  p.’yCx^}. Suppose, without loss of
•-1 ' *-1

generality that k.̂ > k^; ■ let y’ be a set of cardinality k^-kg 

disjoint from F. and F , and define Eg = (F^uFgV, by

V^,(e')\= V (e)uF_\ for each e' a E^uixV}- Then ^Hg) = M(H^).
^2 2 : ■■ '

Let Vg (x) = Z, and let Hg = ( F”, E^u{x’}, $g) be a hypergraph
■ '1  ̂ , - , i .

isomorphic to H ’, with F"nF( = Z, and Z = V„„(xO. ; Define
. V  ^ : : : 2 1 . : , ; “2

H = (F, E', $) , where F = F^uFg, pV = £|ugu{x'}, and

Tv (e') if e' a P(u{x'}
Vg(e') = «1

Then,clearly, C  c E’u{x' } is a circuit of M(H) if and only if C  is a 

circuit of M(%)ùM(ïÿ . Now suppose that £  [j uE^uIx'} but f  E^u(x' ) 

and 0' é E^uFx'}, and that is a circuit of M(H). Let
= C’n(Eju{x'}) (i = 1,2). Then [j is independent in M(H).
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Therefore, | V( Q ) j > - 1 (i = 1 ,2) (1 )

Thus, |V(C|)j t |V(Q}| > iquQi

. '. : I v(qhQ) I ^  I Y(c; ) hvc^ 2k^ - 2

Since Q’ is a circuit, | V ( 1 = 1 F(Q’ ) I = 1 Q’ I + k.̂ - 2 ,

so |V(q) nV(Q)l > k.j. Since |F̂ ’nF̂ ( = k̂  , equality must hold, and 

therefore V( Qj) nV( (g) = Z.

Now, X V Cl and X V Cg since, from ( 1} and ' (2)
|y(Q)[ == jQrj + k.̂ - 1, and hence Q^u{x’} is dependent (i = 1,2).

Also, since Q' is a circuit, for no proper subset Q* of C[ is Z£ V( (T),

so (Yu{x’} is a circuit for i = 1 ,2, and so 0’ =" ( Cjufx’) )a ( Qu{x’} ).

Thus, by (11.3), 0’ £ C(M(H.̂  )uM(Eg).

The proof of the converse to this, that if 0’ is a circuit of 

M(H^ )û#Hg) , and : 0' ̂  ^u{x'} for i = 1  ,2, then 0’ is a circuit of 

M(H), is trivial, and we omit the details.

Thus, = M(H.j )0M(H2) e M(h ) , and so M.jU^ is hypergraphic.

PROPOSITION 11.5: Let M.j , Mg be matroids on E-;U{x} and ^u{x} resp­

ectively, where “ 4> ’ ^ Y Ê  ̂̂  and x is not a loop or coloop

of M.J orviL. Let y £ E-] + where y is not a coloop of M^. Then:

(a) (M.jU’Mg)* = M* O' M|;

( V V r (M.x ( E^-{y} )û’M if X is not a coloop of
^ Co) (x,û%)x(EiuE2-(y» = j ( , -1 '

I (Mjx ( Ej'-{y} ))© (MgX^) otherwise.

Proof:

(a) B((M.|O’0 ) )  ={ BjU ]̂ : X ^ € B(M^), a B(^))u

ui^u I.J : X /B g aB(Mp), I.jU{x} aB(M.j )}.

. '. B( (Mji)’Mg)*) = { ( Ê -B.j )u( y  : X V  £ B(Mi; ), IgU{x} aB(M2 )}u

u{(^-^)u(E^-I.j): X ^ ^  a B(A^), I.,u{x} eB(M^)}. 

Write = ]|, ^ “ li Then Çu{x}a B(M^), g | £ B(M|)

X Thus,



= {Bgull: X Y Bg « B(M;), B(m|)}u

u {Bful*: X / Bt £ B(ifi|) , I|u{x}, e:B(M|)> :
= B(M* u ’ ^). . since X is not a loop or coloop of M* or

(b) B( (M| G ’ Mg)x (E.uEg-Ly} ))
= { u12 : X ,y  e B ( ) ,  IgU{x} e 8 % ) }  u

u{B2uI^ : X  ̂B 2  6 B(Mg) , y 7 I^u{x} e B(M^ )}
“ {Biulo* x Y  B € B(Mi^(^EbGc})-{y}))},Lu{x}eB(Mp)} since y is not

; : : a coloop of
uEBpuIi : X  V  Bp e B(î^) 9 I^u{x}; £  B(M.jx((E.,u{x})-{y}) ) }

[B((M.jx(E-|-{y} )û ’|^) if X is not a coloop of M.j y y

{ B g u lr  Bp b  B (^ x E 2 )9  I-j £ B(M.jx(E^-{y})}  otherwise

(M.jx(E^-{y})u'Mg) if X is not a coloop of M.jX (E-,“{y} ) V

K(M^x(E^-{y})) ©  (MgxEg)) otherwise.

PROPOSITION 11. 6: , PROPERTIES OF THE DELETED POINTED-UNION.

With the notatioçL of ( 11.%) 5

(a) If M.J and Mg are representable over the field F, then M̂  Û* 

is representable over F;

(b) I f  My and’Mg are base-orderable, then M.̂  û ’ Mg is  base-o rderab le;

(c) If M.J and Mg are fully base-orderable, then My ûi Mg is fully

base-orderable;

(d) I f  M.J and Mg are hjrpergraphic, then M.̂  D’ Mg is hypergraphic.

Proof: The properties of representability over a field, base-orderab-

ility, full base-orderability and hypergraphicity are all preserved 

under the operation of restriction. The result now follows from (11.%).

PROPOSITION 11.7: I f  M = M^uMg, there exist matroids M^ and ̂  such ;

that M = M’ Ll' M l.

Proof: Let M̂  be a m atroid on E-]U{x}, Mg a m atro id on EgU{x,}, where

X i E-iuEps E-jUEg “ 4> and x is  not a loop or coloop o f M̂  or Mg, and le t  

Y i EiuEgUlx}. Define M̂  to  be the  m atroid on E-|U{y}' isomorphic to  M̂
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■under the map which is the identity on and maps x to y; define ^  

to he the matroid on E^iy} isomorphic to "under the map which is the 

identity oh Eg and maps x to y. Put - Mg u g({x,y} ). Then

clearly M == M ’ Û ’

DEFINITION 11.8: . Let M he a matroid on the set E* IT there exist

matroids Mi, M^ such that M. is a matroid on the set E<u{x} , 

where IEr| > 2 (i = 1,2) such that M = M^ 0' Mg, then M is said 

to he pointed reducible. A matroid which is not pointed reducible, 

is said to be pointed irreducible.

PROPOSITION 11.9: A connected matroid M on the set £  with rank

function p is pointed reducible if and only if there exists a 

partition J, £-J Of E such that jjj > 2 , jE“Tl - ^

pT + p(E“T) = p E + 1'
Proof: Since M is connected, for no partition . Ei s. E“Ei Qi E^^OGS

pE-j + p(E“Ei) =' pE* Thus, for every partition E^, E“E-i E,

pE i + p(E-Ei) ^ pE + r- (T)
Suppose M is pointed reducible. Then there exist matroids My, Mg on 

sets Eiu{x}, E2u{x}^respectively, such that M = My 0* Mg, and |Eyl - 2 

(i ? 1,2). Now, a base of M is of the form B-uI-, where 

X Y  By £ B(My) and I^u{x} £B(|b) (i = j), so rkM = rkM^ + rkMg - 1.

Now, rkM. = pE-J since if, say, rlMy = pE.j + 1 and rkMg = pE2 >

we would ha"ve pE = pE-| pEg; which contradicts ( 1 ), and if

rkM. = pE- + 1 (i = 1,2), we would have pE - pE-i + pEo + 1» which is

impossible. Thus, taking J = E-j snd E“T “ E25 bhe result follows.

Conversely, suppose there exists E-j £  E such that pE-j + p(E~E-|) “ pE 1»

where |E-j | > 2 and lE-E-; I ^ 2.
Since pE-j + p(E“E-|) ~ pE + "•> p( ( oE-, ) n(a(E-E-j ) ) ) - 1 »



159 -

A special case is where M is not simple. Since M is:-connected, there exists

a parallel pair {a,h} c_ E' Choose x ̂  E? and put ^  (E"l̂  ) ;

= b-j g({a,h,x} ). Let he a matroid on (E"Fa,h} )u{x} , isomorphic

to ML under the map which is the identity on E”{ s.,h}, and mapS; h to x. 

Consider M’ = m  u ' K .  Then clearly M' = M. FPt. T =

then, since |E| = lE'Eyl'̂ IE-ii - ^̂ 5 |E“T1 ^  snd pj + p(t*-T) “ pE 1.
For the general case (where M may he simple) , write Eg “ E“E-j *

Let Gy E B(#Ei ) ) Jg Slid Xg he such that Gyujg e B(M) and

Jg(j{Xg} £ B(^Eg) ' Define M£ = ̂  (E^uJgU{Xg} ). (E-jU{Xg} ) . Then, for

X Ç  E-)V PM'X " p(XuJ2 ) - pJp = pX, since G-|Ujg € i(M) and Gy-:£ B(MxE^).
1 ' p- . ■ : - . 'Thus, M ’xE^ = #<Ei . Also, from the definition, rkM^ = rk(MxE^ ).

Similarly, let G2 £ B(I^E2 ) » J-j and he such that

G2uJ-j £ B(M) and J^u{Xy}e B(MxE^). Define

= M x(E2uJ.,u{x |}).(E2U{X i})-  Then i^xEg = MxEg and r k ^  = rk(MxEg). 

Choose X  ̂E-j UE2 ’ and let My he a matroid on Eyu{x} isomorphic to M^ 

under the map which is the identity on E. and maps x. to x. We claim 

y M = M̂  Û*

For, let B-juIg (say) be a base of Û' Mg, where x Y B-j  ̂B(M^ )

and Igu{x} e B(l^). Then Bf £ B(MxEy). Now, IguCx^} e B(l^), so

Igu{x^}uJ is independent in M. By hypothesis,

^ p E =  pEi + pEa - 1 = Uiu{xp| + llguCxpl - 1 = IJ^uIguCxpU

Thus, JyuIgu{Xy}e B(M). Thus, uj^ulguix^ } spans E in M. Now,

J-j u{x^ } JÇ E-j 5  .a(B-j ), so B-, uIg spans E M, But |B̂  uIg | = pE,
so Biulp £ B(M). a similar result holds for a base of M^u*-Mg'of the form

Conversely, suppose B £ B(M) ' Det ly = B'̂ Ey (i =1,2).

Then IIJ + |]g| = |B| = pE = pE-] + PE2  " \ and pEy^ | ly| (i = 1,2).

Thus, either (i) pE-| = 11-] I aad p[g = |Ig| + 1

or (ii) P02 = II2 E pEt = UiI +
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Suppose that ( i ) holds . Then J ̂ e B(M̂ E-]  ) ? so I ̂ e B(M-]  ) *

Now, for any base 3 ’ £ BCF^E-i ) 5 Ig is independent in M, since

1-jU I g and hence Ê u I g spans £ in M. Thus, in particular,

€ B(m ), so I^{x^} and so IgUlx} £ B(Mg)*

Thus, l-ju lg £ B(M^ J ' Mg). A similar result holds for (ii).

Thus M = M| 6 ’ 1^, and, by hypothesis , | EJ > 2 and | E^E^ | ^ 2.

PROPOSITION 11.10: Let M be a matroid on the set E* Then

(a) M is 2-connected (in the sense of Tutte (9.28)) if and only if

(b) M is connected and pointed reducible.

Proof: (a) => (b).

Suppose M is 2-connected. Then M is not 1-separated, so, for no J 5_ E 

with IY I >1 and |E“T| 2 1 do we have pT + P (E"T) “PE* Thus, M is 

connected. Since Mis 2-connected, M is 2-separated, so there 

exists T 2. E such that IXI > 2, |E-| | ^ 2 and

pT 4- p (E~"P' ” pE b 1. Thus, by ( 11.9), M is pointed reducible.

(b) => (a).
Suppose M is connected and pointed reducible. Then

(i) for no J E with |J| > 1 and |E"T1 ̂  1 do we have pX + p(E“T) ” pE;

(ii) by (11;9) there exists X E . E with |X| 2 2, 1E“T| - 2 such that

p X  + p(E“T) = p E  + 1 •
Thus M is 2-separated but not 1—separated, and so, by (9-28), M is

2-connected.

(a) If M is K-connected, M* is K-connected;

(b) If M is K-connected, and Mx(£-{x}) is k ’-connected for some x e Ea

then K ’ > K-1;

(c) If M is K-connected, and M. (E~{x}) is K"-connected for some x £ E) 

then k" > K-1;

(continued overleaf)



(d) If M is not ;|c-connected for any K > 0, and Mx(E-^x}) is ̂ '-connected

; for. some X e Ebiid some k’ ^ 1, then ]E| = 2k ' + .1. ; ^

Proof: :
(i) pT + P(E"T) - pE + - 1 for some positive integer % if and only

if p*(E“T) “ iE“Tl + pE + p̂  1 - ITI + pE = pE +  ̂~ i

i.e. P*(J) + P*(E“T ) P*Œ) ^ - 1 •
Thus, M is A-separated if and only if M* is X-separated, and so 

M is K-connected if and only if 13 K-connected.

(ii) Suppose that M^(E“ :̂̂ )̂ ) is A—separated. Then there exists 

J £  (E“{x}) such that I J| > A, I (E“{^})“T1 - A and

pT +p((E"{x})"T) = p(Er{x}) + A - 1•

Suppose I Ej > 2X + 1. We have

pX E“T) - 1 ^p((E-{x})-T) ^ p (E“T) (1 ̂

and pE “ 1 -p(E“{^}) - pE
If the upper equality holds in (1), then the uppef equality holds in (2). 

Since ]E"'{̂ } | ^ 2A + 1 , we may assume, without loss of generality,

that |X| > A+r and I (E-{x})-Tl ^ A. From (l) and (2),

r pT + p(E“T) - I i : : if the lower equality holds in ( 1 ) , 
pE + A - 1 “ V  and the upper equality in (2)

[ pT + P(E“T) otherwise,

f pE + (A+1 ) - V
Thus, pT + P:(E-T) =y _ /r\A  pE + Ay- 1 . (%)
where (3) holds if the upper equality holds in (2) and the lower in ( 1 ) ,

and (%) holds otherwise.

Now, since IT|^ A+1 and 1E“T| ^A+1 , M is either A" or (x+1 )-separated, 

depending on which of (3) and (%) holds.

Suppose |E| = 2A+1 ; then, without loss of generality we may assume 

that in = A+1 and |E-T| = A. If (%) holds for some T with |T| = A+1 

then M is X-separated. If (3) holds for every J  with |T| = A+1, then

M is not \-separated. Since j Ej ~ 2x+1 , M is not x'—separated for any

X' > X. Clearly, if #(E-{%}) Fs x-separated, | E| > 2x+1 •
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If M is K -connected, M is K -separated; if Mx(E“{ x} ) is tc '-connected, 

Mx(£-{x} ) is k ’-separated, but not (k'-1 )-separated, y Thus, k*> k -1.

/ (iii) follows by the application of (i) and (ii) to M*.

(iv) If £>(£-{x} ) is K'-connected, and M is not K-connected for any

K > 0, then, from the proof of (ii), | El = 2 k ' + 1.

DEFINITION 11.12: Let M be a matroid on E, which is K-connected.

Then xe p is said to be essential if Mx(E"{x}) and M.(E“ {x} ) are 

both ( ; 'k ' - 1  )-conhected.

THEOREM 11.13: (Tutte [27]) : Let M be a 3-connect ed matroid on the set

E ^^Gh that every x s E Fs essential. Then either

M =p| (n 2 3), the whirl of order n, or
V: ' yM = W (n 2 3), the wheel of order n.— "~—n . . .

..... (11.13) will be used in the proofs of.the characterisation of

generalised series-pr-rail el networks by a set of six forbidden minors.

GENERALISED SERIES-PARALLEL EXTENSION:

A series extension at ec E oT the graph G - ( F, E, $) is effected 

by placing a new vertex at the mid-point of e, thus dividing it into 

two new edges. Conventionally, one of these edges is still labelled e.

We believe this to be somewhat unsatisfactory, and so we shall label the 

new edges with two new labels (ê  and e^, say). It is easy to see 

that the series extension at e of G is then obtained from G and a triangle 

e,e. ,ê  by identifying the edge e in each graph, and then deleting it.

The series extension at ee E of a matroid M on E is commonly .defined 

in terms of the bases of the resulting matroid - the set of bases being 

{BiKo} : e J  B € B(m) >u{Bu{e'} : B e B(M) } , where e' ^E- Again, we 

believe this to be unsatisfactory, since the element e is used as an 

element of the new matroid as well as of M. It is, however, clear, that



provided e is  not a loop or coloop o f M, the series  extension a t e o f M 

is  isomorphic to  M j  ' Ug ^({e,e.^ ,eg}) , where e\j ,eg E* W ith th is  

as m o tiva tio n , we make the fo llow ing  d e f in it io n :

DEFINITION 11.1%: SERIES-PARALLEL EXTENSIONS.

(a ) I f  M is  a m atroid on the s ing le  element x ,  then the  elementary

series  extension o f M at x , w ritte n  Ms ( x ; x . ,Xg)  , i s  defined hy

t U „ ( { x i , x ^ } ) . . i f  X is  a loop;1,2 : 1 2

Ug g({xy,Xg})  i f  X is  a coloop.

I f  M is  a connected m atroid on the set where x Y E 9̂ (|), th e  -

,elementary series  extension o f  M at x is  defined to  he 

Ms(x; xL,Xg) / =  M O' Ug _ ( {x ,x^ ,Xg})  where x^,Xg  ̂ E*

I f  M = M. ©.M„ ©  . .  . ©  M where each M. is  a connected m atro id  on the  

set E- 5 then the elementary series  extension o f M a t x is  defined  to  he

. # ( x ;  .Xg) = @ X 1 E j ,  %i,Xg i

and N = { 1 , 2 , . . .  ,n}.

The elementary p a r a l le l  extension o f M a t x , w r it te n  | ^ ( x ;  x , , X g ) ,  

is  defined to  he (M*s (x ; x.̂  ,Xg) ) * .

(b) A m atro id  o f the form Éy', f y " i -, y ,

( .  * . (—s(x-|o; ,x-|g) )s(xgQ; %21 ’^22^ * ' * mil '^m2^ where

M is  a m atroid on E &nd x . _  ̂ E Tor each i ,  2 ^ i  ^ m is  c a lle d  

a series  extension o f M a t x ^q , w ritte n  Ms (x ^q ) *

A m atro id  o f the  form (M*s (x ) ) *  is  c a lle d  a p a r a l le l  extension o f  

M a t X , w r it te n  ^ ( x ) .

(c)  A series  extension o f  M, w ritte n  s(M), is  a m atro id  o f  th e  form

’ ( . . .  (Ms (x - ) ) s (x o ) . . .  )s (x  ) where M is  a m atroid on £ and x . e £ ,
, '--L 1,:̂ , 2 . ny ;  ̂ ..

(1  ̂ i  ^ m).

A p a r a l le l  extension o f M, w ritte n  p(M), is  a m atro id  o f the form 

( . . . ( M p ( x ^ ) ) p ( x g ) . . . ) p ( x ^ ^  where M is  a m atro id  on E and Xy e E ,

, (1 < i £  m).
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(d) A series-parallel extension of M,; written sp(M), is a matroid

obtained from M t>y a sequence oi series and parallel extensions.

(0) A connected series—parallel network is a connected matroid which is

a series—parallel extension of a matroid on a single element.

(f) A series—parallel network (sp network) is a direct sum of connected 

series-parallel networks.

If we consider an operation on a k-hypergraph H = (F, E, $) , similar

to that outlined at the beginning of this section for the graph G, we , 

see that two generalisations of the triangle e,e^,eg are possible.

One is a hypergraph with edges e and Cy ( i. < i - k), where V(ey) - iVulYy} , 

such that \N\ — k—1 , il/nF = 4̂ nnd Y{ e)  — {V^ ,Vg,... Using this as

a definition of generalised series extension, and mimicking (11.1%) 

accordingly, leadstto a definition of "generalised series-parallel 

network" which defines a subclass of the ciass 01 series—parallel 

networks. The alternative is to generalise the triangle to a hypergraph 

H ' with edges e and e. (1 ^ i ^ k) where (cy) = Zl/yUtV.; such that

{#. : 1 < i < k} is the set of nodes of e and V Y  F. This definition does .

give rise to a new class of matroids, since M(H’) = Ug and, for

k > 3, this is not graphic. Mimicking ( 11.1%) would then lead to a 

class of "generalised series—parallel networks" that was not a subclays 

of the class of series-parallel networks. In general, we shall not 

wish to restrict our definition of generalised series extension to a 

particular value of k, but only require that k > 2. We therefore make 

the following definition, analogous to (11.1%), of generalised series 

and generalised parallel extension. /

DEFINITION 11.15: GENERALISED SERIES-PARALLEL EXTENSIONS.

Let M be a matroid on the set Ed{x} where X E*

(continued overleaf)



matroid ]^s(x; )() = •<

/ y ' -  ,;:'v
(a) If M  is a matroid ori; the single element x, then the elementary 

generalised series extension of. M at x hy X is defined to he the

Ui ^(X) if X is a loop

Ug (X) if X is a coloop

where x X and |Xl = k > 2.

If M is a connected matroid and E ri 9, then the elementary

generalised series extension of M at x by X is the matroid .

î^s(x; X) = M O * Ug ^^y(Xu{x) ) 5 where Xf^(Eu{x} ) = ^ and

iXl = 'k > 2. . . . . . .

If M = ©  M. where each M. is a connected matroid on the set E - ,
: \  then the elementary generalised series extension of M at x by A

is defined to be the matroid

Mgs(x; X) - ( ©  M. ) ©  (M.gs(x; X} ) where x £ E., and X {  = 4>.
: I-ljT̂ .. J ■. . ■ J

: : The elementary generalised parallel extension of M at x by X is

defined to be the matroid ̂ p ( x ; X) = (M*gs(x; X))**

(b) A matroid of the form' (. . . (|^s(x. ; X|))gs(xg; Xg) . . . )gs(x^; X^) 

where Xy-Y  E (2 ^ i m) is called a generalised series extension 

of M at X , written y^s(x).

A matroid of the form (M*gs(x))* is called a generalised parallel 

extension of M at x , written Mgp(x) » .•

(c) A generalised series extension of M , written gs(M)^is a matroid of

the form (... (|^s(x.} )gs(x^) )... )gs(x), where x.  ̂ E, 1 -  i - m.
' ' ' _A generalised parallel extension of M, written gp(M),is a matroid of

the form (... (l%p(xy) )gp(x_) )... )gp(x ), where x. £ E, 1 - i - m.I C. m , J.

(d) A generalised series-parallel extension of M, written gspCM), is a

matroid obtained from M by a sequence of series and parallel 

extensions.

(e) A connected generalised series-parallel network is a connected matroid 

which is a generalised series-parallel extension of a matroid on a 

single element.
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(f) A generalised series-parallel network (gsp network) is a direct 

sum of connected generalised series-parallel networks.

LEMMA 11.16:

(a) Let M be a series-parallel network.. Then M* is a series-parallel 

network, and M is graphic.

(B) Let M.be a generalised series-parallel network. Then M* is a

generalised series-parallel network, and M is hypergraphic.

Proof: The first parts of (a ) and (b ) follow from the definitions

(11.1%) and (11.15), and the duality result (11.5)•

The second part of (A) follows from the forbidden minor conditions (11.25) 

proved in [%].

The second part of (B) follows from (11.15) and (11.%), since, by (5-1) , 

uniform matroids are hypergraphic, and, by (3.12) and (%.2), a direct sum 

of hypergraphic matroids is hypergraphic.

LEMMA 11.17: Let M^ be a matroid on [y (i = 1,2,3,%). Then

(a) M^ Û ’ (Mg Û ’. M^) = (My Û ’ Mg) u ’ %  ̂

(b) M̂  Ù’ (Mg @ M̂ ) = (M̂  u ' Mg) @ M̂ ;
whenever the operations indicated are defined.

Proof : Routine verification.

(11.17)(a) shows that the use of brackets in strings of deleted pointed 

unions is unnecessary, and we shall therefore omit them in future.

/ LEMMA 11.18: If M is a connected gsp network with more than one

element, then M = M. O' M_ û ’ .. • û* H, for some n, where M. is- -1 -2 . . : / ;
isomorphic to (r. > 2) or Up „ (r. > 3) or U _g _ (r. 2 3)1,r̂  1 £:,ry I tl ^'^1

J 7 (r. 2 2), and each M. (i > 2) is isomorphic to
=4 -1'^1 1 -i;or U

%2,r.
Proof: From the definition of generalised series and generalised

parallel extension (11.15) and the duality result (11.5).
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(a ) If M- and Mg are series-parallel networks on E-|U{x} and EgU{x} 

respectively, where % V E-juEg; E - j “ 4> and x is not a loop or

: coloop of M, or ̂ , then My û ’ Mg is a series-parallel network.

(b) If M.J and Mg are gsp networks on E-jUix) and EgU{x} respectively, 

where x V  E-juEg, E-j nE2 = 4> and x is not a loop or coloop of My or 

Mg, then My Ù ' Mg is a gsp network.

Proof : (A) ; follows from the forbidden minor conditions (11.25) proved

in [%]; alternatively, a proof similar to that used for (b ) can be used.

(b ) By virtue of (11.1T) and (11.18) , it is sufficient to prove this 

result for the case where My is connected, and Mg is isomorphic to

(a) y  ̂  (r È 2); or (b) (r > 3); or (c) (r 2 3);

V l , r  ^ 2).
(a) M| Û' Mg = Û' EgUfx}) (lEgl & 1)

' Mjp(x;- x:| ,x| )p(xj ; Xg,xp :. -p(x^_g ;Xĵ _g ,x^_g). : .

P ^ y - 2 ’ ^2 = and

(xj,...,x^_g}^n(EiuE2u{x}) = «S’, if lEgl ^ 2;

ML, where M' is . the matroid on ( E. -(%} ) u{x. isomorphic
' ' yto M.J under the map which is the identity on [-.j-ixj-,

, and which maps x to x., if E2 ” }.

Thus, M.J Û’ Mg is a gsp network.

(b) My Û’ Mg = M.̂ Û* Ug^(E2u{x}) (lEgl ^ 2)

= M.jgs(x; E2)» so MyCi* Mg is a gsp network.

(c) My û r ^  = M.j G' M _ 2^^(E2U^x}) (lE2 r M  2 )

; -  (^ Ù' Ug^^(EgU{x}))* (by;(l1;5))

and so, by (b) and (II.I6), :M̂ Ci’ Mg is a gsp network.

(d) My u’ Mg = M̂  Û’ Vl,r^E2u{x}) (|E2l >  D

= (M* Û’ U.J ^(EgUlx}))* (by (11.5))

and so, by (a) and (I1,l6), Msj O' Mg is a gsp network.
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LEM.IA 11.20:

(a) If M is a series-parallel network, and M' is a minor of M, then 

M' is a series-parallel network.

(b ) If M is a gsp network and M' is a minor of M, then MV is a gsp 

network.

Proof: ' (A) is proved in [%]; alternatively, a proof similar to that

for (b ) can he used.
(B) It is sufficient to prove this result for M connected, and for a 

minor of M formed hy the deletion or contraction of one point. Further­

more, since, by (11.16), M* is also a gsp network, and: M* is connected 

if M is connected, it is sufficient to prove the result for M connected, 

and M ’ formed from M by the deletion of one point.

From (11.18), we have M = M Û’ Mg ÙL ... O' where is an

elementary generalised series or generalised parallel extension of a 

matroid on single element, and each;.M._ (i > 2) is_isomorphic to

or U ^ (r. > 3). Let M. be a matroid on £2 and let M be
’̂ i ^i ’̂ i  ̂ ^

a matroid on £. We shall show that, for any x e £, ^ (£-{%} ) is a

gsp network. The proof is by induction on m and j £ [ '. Clearly the result

holds 'ff m =11 or 2 , for any |£|. Suppose the result holds for m ^ n-1 and

for all {matroids ;On àt most |£|-1 elements. Let M = M. û '... û'M where the M.

are as above. Assume without loss of generality that £. n£,r 4» for 1 ^ i ̂ t ,

and £.rEy = ^ for t < i < n. Let = {Xy} (2 < i < t ), and put

N. = M. Ù’ M. Û' ... O' M. , where E* n(E- uE- uE; u". \ uE- ) f 4>,
^  “ ^1 ' L  /"r  ̂ V i  ] 2  _ • r-1 ■

i > 2 for each i , and W. is maximal with respect to this property. ,

Then each N. is a connected gsp network on a set p., where p. - Ix.},

and M = M: Û' N. u' ... O' N. V

CASE I: Suppose x e E-j • We shall show that Mx(E~{x}) is a gsp network.

M. is isomorphic to (a) U. (r > 2); or (b) (r > 3); or—  I  ̂,r
(c) Ur-2,r (r " 3); or (d) (r > 2).
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Therefore, M^x(^-{x}) is isomorphic to

(a) (r £ 2); or (b) (r > 3); or (c) (rs 3);

or (a) (r > 2).

>?

(a) By (l1i5),J^(E-{x})= (M^x (E-{x})) Û» Np O' ... O ’ if r> 3, 

and. hence \^(E-{x} ) is a gsp network;

If r = 2, then : clearly

M. and. the result- follows by applying (b) or (d) to

Ng. This also applies to the: case r = 2 -in (d).

(b) By (11.5) 5 if r = 3,

i^(E -{x} ) = Uq (F )) ®  (F g-{x^} ) ). By the inductive

hypothesis, -each term is a gsp network-, so Mx(E~{x}) is a gsp network.

If r > 3,

#E-{x}) = Li’ Ng 0’ ... Û’ and so is a gsp network.

(c) By (11.9),

{-{X}) Û' Ep u’ . . . h ’ Et- ahd so is a gsp network.

(d) By (11.9),

Mx(E-{x}) = (Ngx(p2-{Xg})) ®  (Egx(F^-{x^})) @  ... ®  (Etx(F:^-{Xt})) ®  E,

where II : = U _ (F .-{x,Xp,... ,x }). So, by the inductive : hypothesis ,r t ,r V I ^ "
E^(E“{x }) is a gsp networks, if r > 2. For the case r = 2, see (a).

CASE II Sunpose x i £-, • Then x e £ . for some i > 2. So, if M. E U

V ty (11 .$), ^E-{x}) = M.J Û’ ... D’ û'(FLx{:p-{x}))û'»"*û' % »

Now, M.x E-'~{x }) is isomorphic to (a) U „ (r. > 3); or1 1 -/ ̂  ‘
(b) Ur.-2,r.-1 ^3). :1 1

If r. > 3, then M.x£ .-{x}) is a gsp network in which x. is not a
:::/ : ^  : : . 1- ,loop or coloop of M^, and so the result follows from (11.19).

If r. = 3, then, for possibility (b), since M.xE-“{x}) is a 
 ̂ : . : _ ^

gsp network in which x- is not a loop or coloop, the result follows from

(11.19). If M. = U ((a) with r. =3), then the result follows.1 ' 2,0 - .,  ̂ '
from (11.9) in the same way as for Case I(b) above.

Thus, m  ̂ -{x} ) is a gsp network for any x £ £ .



Before continuing with our investigation of gsp networks, we 

shall prove some properties of generalised series-parallel extension, and 

compare them with the corresponding properties of series-parallel 

extension.

PROPOSITION 11.21:

(A) . Properties of Series-Parallel Eictension.

1. If M is hase-orderahle, sp(M) is base-orderahle.

2. If M is fully base-orderable, sp(M) is fully base-orderable.

3. If Mis representable over the field F, sp(M) is representable over

the field F.

If M is a gammoid, sp(M) is a gammoid.

(B) Properties of Generalised Series-Parallel Extension,

1. If M is base-orderable, gsp(M) is base-orderable.

2. If M i-s-'fully base-orderable, gsp(M) is fully base-orderable.

3. If M is representable over characteristic p, gsp(m ) is representable 

over characteristic p;

U. If M is a gammoid, gsp(M) is a gammoid.

Proofs: (A)1, (A)2, (A)3, (b )1 , (B)2 and (B)3 follow from the

definitions (11.1 )̂ and (11.19), and the properties of deleted pointed 

unions (11.6).

Proof of (B)U: {(a )U is a special case. ). Bet M be a matroid on the
set £. By the duality of the definitions for elementary

generalised series and elementary parallel extensions, and the fact

that the dual of a gammoid is a gammoid, it is sufficient to prove that

if M is a gammoid, ^s(x -X) is a gammoid. Let B^x be a base of M and0 : G
let r be a directed graph inducing M from B-C^ith restriction of the 

vertex-set if M is not a strict gammoid). Form a new directed graph 

r' on the vertex-set V(r)uX, with X = ,x^,... ,x^}^ and X nV(r) = (j).
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where the set of directed edges of TV is the set

{(V.J 5V2) : (’V-j ,V2) is a directed edge off }u {(x̂ . ,x̂ ) : i-j = +1,0 < i,j ^ k},

Let gu{x^} he the distinguished set of vertices of f ', and let M" he the 

strict gammoid induced from Bu{x^} hy f *. Let M' = M"x(£uX ).« -

Then the hases of M ’ are the sets Su{x. } (S £ B(M) , 1 < i h k), together 

with the sets Iu{x^,xy}; ( Iu {2g3 € B(M), 1 < i < j ^ k).

Thus, clearly, MV = M -û (Xu{Xq}) • Therefore, M 0 ’ (Xu{x^})

is a gammoid. Since Mgs(xg ;X) ” M û ’ (Xufxg]), Mgs(x^ ;X) is a

gammoid, which completes the proof.

In [9], Crapo investigates the properties of a matroid function, 

called the 3-function, defined as follows :

DEFINITION 11.22 : Let M he a matroid on the set £ with rank function p.

Then the function 3 defined hy

3 (M ) = . , (  -1  ) . Z_ ( - 1   ̂̂ ^ PA - - '■ ■ ASb'
is called the 3-invariant of M. -

PROPOSITION 11.23: Properties of the R-invariant. With the above notation:

1. 3(M)= 3(M. (£-{e})) + 3(Mx(£-{e})) provided e is not a loop or 

coloop of M.

2. 3(M) = 0 : if and only if M is not connected.

The proofs are routine, and we omit the details ; alternatively, see 

Crapo ' s paper [5].

PROPOSITION 11.24

(a) The 3-invariant and series-parallel extension.

1. r 3(M) if M is not a coloop
3(Ms (x ; X, ,Xp) ) = <
' I 0 if M is a coloop.

3(m) if M is not a loop
2. 3(Ep (x ; x . ,x ) ) =

'0 if M is a loop.
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PROPOSITION 11 .2k (COï ïTD):

( b ) The 3-invariario and generalised series-parallel extension.

Let 1X1 2. Then:

(>-1)3(M ) i f  M is  not a loop or coloop

k-2  • i f  M is  a .coloop' ' v, : -

1 ■ : . i f  M is  a lo o p . I  -

1. 3(^s(x; X))

2 . 3(Mgp(x; X ) )

(k-l)3(M) if M is not -a loop or coloop

i k-2 Vyif M is a loop
1 ' if M is a coloop. \ y

Proof: The results in (A) are proved hy Crapo [9] . However, some of

his proofs do not apply to the case wnere M is a matroid on a single 

element; the proofs in this case are easy, and we omit the details.

(B)1. If M is a coloop. Mgs(x; X) = v’ ^nd, hy (11.23),

= k-2.
If M is a loop, Mgs(x; X) - ky ( 11.23) , 3(U^ ̂ )̂ = 1. : -

If M is neither a loop nor a coloop, hy (11.23), for y e X 5 

3(l^s(x; X)) “ 3(Mgs(x; X) '(EuX"̂ y)̂ )) g(r^s(x; X)^(EGX"fy^))

= 3(Mp(x;x.^ ,Xg)p(xg;x^,x^)--- ) + g(Mgs(x; X"{y>))

= 3(M) + 3(Mgs(x; X“{y^)) from (A)(2)

(hy iteration) = (k-2)3(M) + (Mgs(x; X"Y)) -̂̂ kere Y 5. X .̂nd IX“Y1 “ 2

=  (k-2)3(M) + 3(M) from (A)(1)

= (k-r)3(M).
(B)2. The proof follows the same lines as (b ) 1 , and we omit the details.

The operation of generalised series extension on a hypergraph H,

mentioned earlier, has an easy geometric interpretation in N(h ).

Essentially, the edge e is replaced oy k edges e.j ,ê  ,••• where

V(e.) = ^.u{V}, and {#. : 1 ^ i < k} = n(e). The nodes of the new

hypergraph are then n(H) u{(il/'*n/7. ) u{V} : 1 < i < j < k} . Now, in N(H) , ̂ J



consider liV* : 1 < i f k} as the seo oi veruices of a K^. Place the 

new vertex ( / l / . f # - ) u { V }  at the mid-point of the edge joining N ^  and. N  

for each j , and join up the vertices produced as necessary. We give 

two examples of this operation in Figure 25.

■\ Figure 25

The operation can he thought of as replacing e in N(rî) wiuh 

k "half-size" edges ; this is consistent with the usual idea of a 

series extension, in which a new vertex is placed at ohe mid—point 

of the edge e, thus dividing it into two "half-size" edges.

GENERALISED SERIES-PARALLEL NETWORKS:

It can he shown that the class of series-parallel networks can he 

characterised hy a finite set of forbidden minors.

THEOREM 11.25: M is a series-parallel network if and only if M does

not contain any minor isomorphic to or /.

Proof : see Brylawski C^].
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Our purpose in this section is to prove an analogous result for 

generalised series-parallel _networks. , Since ^  is, a gsp network,

hut M(Kj )̂ i s  n o t , the set- of-forhidasn minors contains M(K^) and 

certain other matroids, all of which contain ^ as a proper minor.

LEMiA 11.2 6 : Let M he a matroid of rank 3 on the set Then

(a) M is a gsp network, if and only if

(h) M does not contain a minor isomorphic to any member of

9 =/CU, g, MCKij), Lg, Vg, Æg}, -.-here g, Lg. Vg ^ 6

are the simple matroids shown in nuclidean representation in 

Figure 26.

G

Proof: (a) => (h). It is easy to check that no memher of g  is a

gsp network. T h e r e f o r e , hy (11.20), if M is a gsp network, M contains 

no minor isomorphic to any memher of g.
(h) =>(a) : It is easy to check that any matroid of rank at most 2 is

a gsp network. If M is a matroid of rank 3 that is not connected, or is 

connected and pointed reducible, then, oy the above remarks, (11.15) and

(1 1.19), M is a gsp network.

If M has at most 5 elements, then M- has rank at most 2, so, hy 

the above remarks and (II.16), M is a gsp network.

Suppose that M is of rank 3, pointed irreducible and connected,

contains no minor isomorphic to a member of g, has at least 6 elements and
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is not a gsp network. We shall prove that this is impossible.

Since M  is pointed i r r e d u c i b l e i s  simple. If M has no 

non-trivial 2-flats, then M contains  ̂as a. restriction minor, which 

is a contradiction. Therefore, M has at least one non-trivial 2-flat, 

1̂ , say. Since M is connected and pointed irreducible, 1 E“Li ~
Consider p (E~L) * if p(E'”L^ = 2, then pL + p (E~L) = pE  ̂) so, by
(11.9)5 vM is pointed: reducible, which is a contradiction. So, since 

M is simple, p(E“L^ ” 3. Thus, there exist three distinct points , 

x,y,z £ 2"E such that p({x,y,z} ) = 3. Let { a,b ,c}^ 5_ L* Then 

H< ({ a,b,c ,x,y ,z} ) is simple, and so is isomorphic to L^, T^, or 

M(K^), which is a contradiction.

T^ such M exists, which completes the proof.

THEOREM 11.27: Let M be a matroid on the set E' Then

(a) M is a gsp network if and only if

(b). M contains no minor isomorphic to a member of g, where

9  = L g ,  V g .  T g .

Proof: (a) => (b). Suppose M is a gsp network. Then, by (11.20),

every minor of M is a gsp network. Since, by ( 11.26), no member of

is a gsp network, M contains no minor isomorphic to a member of g.

(b) => (a). Suppose ^  is a minimal non-gsp-network on the set p.

Then N is not a gsp network, but, for any x e p, both W^(p-{x} ) and

H. (p-{x}) are gsp networks. Since N is not a gsp network and is 

minimal, N is connected and pointed irreducible. Thus, ^  is not 1- 

or 2-connected. Therefore, by (11.11) , if N is k-connected, we must 

have K ^ 3 , and so, by (11.1l), Nx(p-{x}) and H.(p-{x}) are connected

for any X e p. If H is not K-connected for any k > 0, but

Hx(p“{x}) or N.(p-{x}) is 1-connected for some X e p, then, by (11.11), 
|p| = 3 , which is a contradiction, since any matroid on 3 elements 

is a gsp network. Therefore, either
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(l) Ih (p-{ x} ) and N. (p-{ x} ) are 2-ccnnected g-sp networks for any x e F ,

or
(II) there exists x e p such that ^  {‘p-i x} ) or (F~( x} ) is a pointed 

irreducible gsp network.

(I). If Nx (p-{ x} ) and N. (p-{ x} ) are 2-connected for each x ̂  P , 
and ̂  is K-connected, by (11.11) ve rust have k = 3, so, by . (11.13)

^  is a whirl (n 2 3), or a wheel (n - 3) • But contains

as a minor, and ¥ contains M(K, ) as a minor, so N contains a minor 

isomorphic to a member of g.

If ¥ is not K-connected for any :< > 0 , then, by (1 1.11), I PI = 5, 

which is a contradiction, since any ratroid with 5 elements is a 

gsp network.
(II). Suppose there exists x e p such that ^(p-(x} ) or N. (p-{x} ) is 

a pointed—irreducible gsp network- A marroid is a pointed—irreducible 

gsp network if and only if it is iscrorphic uo ^ ^ ^ 2 r for some.

r > 3, since both U '  and U ^ are pointed reducible for r > .̂

Now, since N is not a gsp network, irj ^ 6 j so, since, by hypothesis, 

Nx(p-{x}) or N.(p-{x}) is a pointed irreducible network,

Nx(p-{x}) or N. (p-{x}) is isomorphic to 0^-2 r ^2,r some r ^ 5*

(a ) Suppose N.| = Nx(p-{x}) E ^ for some r > 5-
Then, if rkN = 3 , N is 1-comiected, which is a contradiction. 

Therefore, rkN= 2, so, since N is simple (because it is not 1- or 2- 

connected) E  = ^2 r+1 ' so N is a gsp network, which is a contra­

diction. .. ■

(b ) Suppose N. = Nx(p-{x}) k  ^ for some r > 5*
:v :Then , N* = N*. (p-{x}) H b* ^ for some r > 5- „

Since N is not 1-connected, rkN” = 3. If N* has no non-trivial 2-flats 

then, since r > 5 , N* contains U_: < as a minor, and so N contains U_ ^ 

as a minor. If K* has a non-trivial 2-flat, L, say, then, since H* is
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p o i n t e d  i r r e d u c i b l e  a n d  c o n n e c t e d ,  p ” ( p - L )  = 3 . S in c e  ^  i s  s i m p le ,  . 

X  / L -  L e t  { a  ,b  , c } ^  L  a n d  x  , y  , z  £ F “ L  b e  s u c h  t h a t  p * ( { x , y , z } )  =  3 .

T h e n  N * x ( { a , b , c , x , y , z } )  i s  s i m p le ,  a n d  h e n c e  i t  i s  is o m o r p h ic  t o  L ^  o r  

V ^ .  T h e r e f o r e ,  N *  c o n t a in s  a  m in o r  i s o m o r p h ic  t o  L ^  o r  V ^ ,  a n d  s o  

N c o n t a in s  a  m in o r  is o m o r p h ic  t o  L ^  o r  ( s i n c e  t h e s e  m a t r o i d s  a r e  

b o t h  s e l f - d u a l ) .

(C )  S u p p o s e  Ng =  N . (p-{x}) = Ug ^  f o r  som e r  ^  5 .  T h e n ,  b y  t h e  

a rg u m e n t  o f  ( B )  a p p l i e d  t o  i n s t e a d  o f  N * , a n d  t o  N  i n s t e a d  o f  

N * ,  N c o n t a i n s  L ^  o r  a s  a  m in o r .

(D )  S u p p o s e  N_ =  N . ( p - { x } )  = U p _  f o r  som e r  ^  5 - T h e n ,  b y  t h e  

a rg u m e n t  o f  (A) a p p l i e d  t o  i n s t e a d  o f  , a n d  t o  h* i n s t e a d  o f  

N ,  w e o b t a i n  a  c o n t r a d i c t i o n .

T h u s ,  i f  K  i s  a  m in im a l  m a t r o i d  n o t  a  g s p  n e t w o r k ,  N c o n t a i n s  a  

m in o r :  i s o m o r p h ic  t o  a  m e m b e r o f  g, a n d  s o ,  s i n c e  n o  m e m b e r o f  g i s  a  

g s p  n e t w o r k .  N e g, w h ic h  c o m p le te s  t h e  p r o o f .  -

We c a n  u s e  a  s i m i l a r  a rg u m e n t  t o  c h a r a c t e r i s e  t e r n a r y  b a s e - o r d e r a b le

m a t r o id s  b y  a  f i n i t e  s e t  o f  f o r b id d e n  m in o r s .  We s h a l l  n e e d  a  f e w

p r e l i m i n a r y  r e s u l t s .

PRO PO SIT IO N  1 1 .2 8 :  L e t  M b e  a  c o n n e c te d  m a t r o i d  o n  t h e  s e t  p ,  w h ic h

i s  p o i n t e d  i r r e d u c i b l e ,  c o n t a i n s  T ^  a s  a  m i n o r ,  a n d  c o n t a i n s  n o  

m in o r  i s o m o r p h ic  t o  U_ ^ , U_ j- o r  M (K i ) .  T h e n ,  e i t h e r  M i s  a

w h i r l ,  o r  t h e r e  e x i s t s  x  t  p  s u c h  t h a t  M x ( p - { x } )  o r  M . ( p - i x } )

i s ,  c o n n e c t e d ,  p o i n t e d  i r r e d u c i b l e ,  a n d  c o n t a i n s  T g  a s  a  m i n o r .

P r o o f :

( l )  S u p p o s e  M i s  K - c o n n e c te d  f o r  som e K > p .  T h e n ,  s i n c e  M i s

p o i n t e d  i r r e d u c i b l e , k ^  3 . T h u s ,  b y  ( 11.11 ) M x ( | ^ - { x } )  a n d  M . (p— { x } )

a r e  c o n n e c te d  f o r  a n y  x  e p.

( a ) S u p p o s e  t h a t  k > 3 . T h e n ,  b y  ( 1 1 . 1 0 )  a n d  ( 11. 1 1 ) ,  f o r  a n y  x  ̂  E,
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^  (E“{x} ) . a n d  M. ) a r e  p o i n t e d  i r r e d u c i b l e  a n d  c o n n e c te d .

Thus, since M ('because Tg is S-connected) , there exists x c E
such that MX (E-{x} ) or M. (E-{x} ) contains T^ as a minor.

(B) If k = 3 5 and, for every X e E , (p-{x} ) and M. (E-{x} ) are

p o i n t e d  r e d u c i b l e ,  t h e n ,  b y  ( 11 . 13 ) , M = W o r  M =  W f o r  som e h ^  3 .
  ,~ n

S in c e  M d o e s  n o t  c o n t a i n  M(K^) a s  a  m i n o r ,  M Ë W ^ , a n d  so

M = W for some n > 3.
— -  -” n

(C) Suppose that-K = 3, aud that, for some X e E, Mx(E-{x}) or
M.(E“{x}) i s  p o i n t e d  i r r e d u c i b l e .  I f  î^(E~{x}) i s  p o i n t e d  i r r e d u c i b l e

and contains no minor isomorphic to T^, then by hypothesis, Mx(E“{x})

c o n t a in s  n o  m in o r  i s o m o r p h ic  t o  a  m em ber o f  g  a n d  s o  M x ( E - { % } )  i s  a

pointed-irreducible gsp network. Thus, Mx(E“{x}) is isomorphic to

U „ o r  U ^  f o r  som e r  ^  3 . S in c e  M c o n t a in s  T ^  a s  a  m i n o r ,. 2,r r-2,r , \ /.
|E| ^  6 ,  s o  r  S: 5 .  B u t  M c o n t a in s  n o  m in o r  i s o m o r p h ic  t o  ^  o r

^ , w h ic h  i s  a  . c o n t r a d i c t i o n .  . . v...

A  s i m i l a r  a rg u m e n t  h o ld s  f o r  t h e  c a s e  w h e re  M.(E“{x}) i s  p o i n t e d  . 

i r r e d u c i b l e  a n d  c o n t a in s  n o  m in o r  i s o m o r p h ic  t o  T ^ .

( l l )  S u p p o s e  M i s  n o t  K - c o n n e c te d  f o r  a n y  k  > 0 . N o w , f o r  a n y  x e p, 

Mx(p-{x}) o r  M.(p-{x>) i s  p o i n t e d  r e d u c i b l e  i f  a n d  o n l y  i f  i t  i s  

2- c o n n e c t e d ,  w h ic h ,  b y  ( 1 1 i 1 1 ) ,  i m p l i e s  ]p| =  5 ,  w h ic h  i s  a  c o n t r a ­

d i c t i o n .  S o ,  f o r  a n y  x e p, Mx(p-{x}) a n d  M.(p-{x}) a r e  p o i n t e d -  

i r r e d u c i b l e  a n d  ( b y  ( 11 . 11) )  c o n n e c te d .  T h u s ,  s i n c e  M à W ( s i n c e

is 3-connected) , there exists X £ p such that Mx(p-{x}) or M.(p-{x}) 

is pointed-irreducible, connected, and contains T^ as a minor.

Thus, either M = for some n ^ 3, or there exists x e p such 

that Mx(p-{x}) or M. (p-{x}) is connected and pointed irreducible, and 

contains T^ as a minor.
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PROPOSITION 11.29: Let M be a connected matroid on the set E which

is pointed irreducible, contains T^ as a minor and contains no

minor isomorphic to _ or M(K^). Then

M =W for some n > 3.. — T n
Proof : By (11,28), if M satisfies the hypotheses of the theorem,

either M is a whirl, or there exists x.j £ E such that Mx(E—{x.j}) or .

M.(E-{x.j}) satisfies the hypotheses of the theorem. Let denote

one of #(E"{x,}) and M. (E-{x.,}) which satisfies these hypotheses, 

and write Ê  = E-{Xi} ' Then, applying (11.28) to M̂  , either is a

whirl, or there exists Xg £ p-j such that M.|X(p.j-{Xg}) or . (p.|-{Xg} ) 

satisfies the hypotheses of the theorem. , Let Mg denote one of

Mix(p.j'-{Xg}) .and M.,.(P.,-{Xg}) which satisfies these hypotheses, and 

write pp = p,-{Xp}. Proceeding thus, we obtain a sequence of matroids
Ï.. ■

M. on sets p. which either terminates with some M = If for some r ^ 3,
-1 . : 1
or "continues indefinitely with each M. satisfying the hypotheses of the •

theorem. Since p is a finite set, and |p̂ ( = |"1 for each i,

there must come a time when |p. | < 6. But then the hypotheses of the 

theorem cannot be satisfied, since T^ has 6 elements, which implies that 

each M. is a matroid on at least 6 elements. Thus, the sequence 

terminates with some M s for some r - 3. Consider • Then

either (l) l^_^x(P^_^-{x^}) = for some r ^ 3, or

(II) = some r ^  3.
(I) Suppose l̂ _.jx(P̂ _̂ -{x̂ }) s VL for some r ^ 3. By hypothesis,

M is pointed irreducible, connected, and contains no minor isomorphic

to U Up or M(K, ). .We shall show that this is impossible.2,5 , 3,5 . .A - .
For, suppose that N is a connected matroid on the set p. containing 

no minor isomorphic to Ug , - or M(K[,), such that ix(F-{x}) =

for some r — 3 and some x £ p. We snail show that is not simple. 

Clearly the result is true for r = 3. For r > 3, the proof is by
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induction. Suppose the result ho-ids for all matroids of rank < r—1.

N has rank r, since N is connecteu. Let a! , hi he the elements of p

which are mapped into a- , h. of under tne isomorphism between

Nx (p-{x} ) and W . Let Ç *u{x} be the fundamental circuit of x with

the base {a’,a’,...,a’ of N.0 I / r-1 : - —
(A). Suppose there exists some aî ^ C W i t h o u t  loss of generality,

suppose â _̂  ^ C ’ ♦ Iben N. (p—{b^,.} }x (p-{a .̂| ,b̂ _̂  ,x) = ? and

N’ = F. (p—Cb»_.j} )x (p-{â _̂  ) Is connected. So, by the inductive

hypothesis, is not simple, and so x is parallel in to some aî or.

b! (0 < i < r-2). If 0 < i < r-2, then x is parallel to a! or b!1 .■ ■ ■ „ . ■ ■ ■ ^ ■■ ■■■ ■■■
in N. If i = r-2, then, either

X is parallel in F  to a'_g or b_J_p,

or

{x,a/_2,h;_,} or is a circuit of Ny

If either of the latter cases holds , contract out {a’ ,â ,. .. from

N, to leave a rank-3 matroid with elements ,a^_g,â _̂  , b ^ . ̂ .,b^_^,x}

Then clearly this matroid has a minor isomorphic to Ug Ug  ̂or

M(Kĵ). a similar argument holds for the case i = 0.

( B ). Suppose that C ' = {a^, a ’ ,... ,a^.^}. Contract out

{â ,aĵ ,... ,â _.̂ } and simplify, to give a rank-3 matroid N" on the seven

elements {aj,a|,a^,b^,b|,b^,x}, in which {a^,a’ ,â ,x} is a circuit.

But F"x({a^,aj[,a^,b^,b’,bp) ̂  T^, and so, since {a^,a» ,â ,x} is a

circuit of F", K" contains a minor isomorphic to Ug ^ ^  or M(Kĵ ),

which is a contradiction.

Thus, X is parallel to a! or bî for some i, 0 - i -r-1.

Now, by hypothesis, M _y is pointed irreducible, and so, in particular ,

simple. There there can exist no x e E . such that . . n n—1 . ..

%
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(II) Suppose that for some r k 3. Then,

since If = |f, we may ,apply, the argument of (l) to the duals to show 

that , in N* . , x is parallel to a! or d_Î for some i, 0 < i < r-1.
: : -"-7 Ç ..; , v J:

But, by hypothesis, is pointed irreducible, so is pointed

irreducible, and hence, in particular, simple, so there can exist no

X eE , such that Id :.(F -{x_})= W for some r > 3.n n—1 ' —n— i i n r
Thus , the sequence of matroids My cannot exist, and so 

M S 1^ for some n 2 3.

THEOREM 11.30 : Let ,M he a matroid on the set p. .. Then,

(a) M is ternary and hase-orderable if and only if

(h) M contains no minor isomorphic to U ^, Ug c or M(Ki ).

Proof: (a) => (h) is immediate, since Ug y  and ^ are not ternary,

M(Kĵ) is not base—order able, and both properties are preserved under 

the operation of taking minors.

(b) => (a). Suppose W is a matroid which is not ternary-and-base- 

orderable, all of whose proper minors are ternary and base-orderable, 

and suppose that contains no minor isomorphic to Ug ^ ^  or M(K|^).

Since, by (11.6), the properties of being ternary and of being 

base-orderable are preserved under deleted pointed unions, Î1.is 

pointed irreducible. Since these properties are also preserved under 

direct sums, N is connected.

(I). Suppose N does not contain a minor isomorphic to T^. Then N 

contains no minor isomorphic to any member of g and so, by (1 1.2 7 ) ,

N is a gsp network. Thus, b y  ( 11.6 ), N is base-orderable. Since N 

is pointed irreducible, and contains no minor isomorphic to Ug^^ or

^, N is isomorphic to Ug ^ or U_̂ 2 r  f°^ ^ ~ and so N is

ternary, which is a contradiction.

(II). Suppose N contains a minor isomorphic to T^. Then, by (11.29). 

N = W for some n ^ 3* But is ternary and base-orderable, which
- n
is a contradiction.
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Thus, there exists no such N, which completes the proof.

COROLLARY 11.31: A connected matroid is ternary and base-orderable if

and only if M is a deleted-pointed-union of whirls and ternary gsp 

networks.

Proof: => . Suppose M is ternary and base-orderable. Let

M = M ÙV M 0’ ... u’ M where r > 1, and each M. is pointed irreducible.
V-:, '  ̂ y ~T , 3-

By (11.29), if contains T^ as a minor, then for some n^ > 3.

If does not contain Tg as a minor, then, by (11.27) , is a pointed 

irreducible gsp network. Thus, M is a deleted-pointed-union of whirls 

and ternary gsp networks.

<= A This is immediate, since the properties of being ternary and ■ 

being base-orderable are preserved under deleted pointed unions.

COROLLARY 11. 32 : A matroid M is ternary and base-orderable if and only

- if M is the direct sum of deleted-pointed-unions of whirls and ' 

ternary gsp networks.

Proof : Immediate from (11.31).

COROLLARY 11.33: If M is ternary and base-orderable, then M is

ternary and fully base-orderable.

Proof : Since a whirl is a gammoid, a whirl is fully base orderable.

By (11.6), a gsp network is fully base orderable.

Thus, since by (11.6) the property of being fully base-orderable is 

preserved under deleted pointed unions, by (11.31) a connected ternary 

base-orderable matroid is fully base orderable. Since being fully base 

orderable is preserved under direct sums, by (11.32) a ternary base- 

orderable matroid is ternary and fully base-orderable.

COROLLARY 11.3^: If M is ternary and base-orderable, M is hypergraphic.

Proof: By (5.^), whirls are hypergraphic, and by ( 11.6) gsp networks are
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hypergraphic . Thus , hy ( l1,6), deleted-pointed-unions of whirls and 

gsp networks are hypergraphic, and so, hy (11.31), a connected ternary 

hase-orderable matroid is hypergraphic. Since, by (3.12)&(U.2), a direct 

sum of hypergraphic matroids is hypergraphic, by (11.32) a ternary 

base-orderable matroid is hypergraphic.

: ;This result should be compared with the corresponding result for 

binary base-orderable matroids. A mauroid is binary if and only if 

it contains no minor isomorphic to Up L.' If such a matroid is also 

base-orderable, it contains no minor isomorphic to M(K^), and so it 

is a series-parallel network. By (11.21), a series-parallel network is 

base-orderable and fully base-orderable. Since series-parallel 

networks are graphic, we have the following result:

PROPOSITION 41.35 :

(a) If ,M_is binary and base-orderable, then M iŝ  fully base-orderable.

(b) If M is binary and base-orderable, then M is graphic.

(c) M is binary and base-orderable if and only if M is a series- 

parallel network.

(11.33) is the analogue of (11.35)(a), and (11.34) is the analogue

of (I1.35)(b). However, because TV is not a gsp network, there is no 
^ ■ . ■ . . ..

direct analogue of ( I1.35)(c); we do, however, have the result of ( 11.32),

and it is clear from ( 11,32) that a ternary gsp network is base-orderable,

and, by (11.33) , that it is fully base-orderable.
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CHAPTER 12 :

DUALISM

The purpose of this chapter is to try to find an analogue in 

hypergraph theory of the concept of planarity in graph theory. We 

shall he seeking a purely matroidal definition, in terms of the 

hypergraphicity of the dual matroid. In fact, we shall produce two 

definitions, one involving hypergraphs, the other involving generalised 

hypergraphs.

To generalise our notion of planarity, we introduce the concept of 

dualism.

DEFINITION 12.1 : . Let ITS he a class of matroids with property P. . Then

a matroid M g lYI is said to he P-dualistic if and only if M” em.

Where the property P is embodied in the definition of m, we shall 

say simply that M is dualistic.

Thus, a graphic matroid is dualistic if and only if it is the matroid 

of a planar graph. Gammoids are dualistic, uniform matroids are, 

dualistic, but transversal matroids in general are not.

THEOREM 12.2: Let m  be the class of dualistic graphic matroids. Then

a graphic matroid M; is a member of m  if and only if M contains no 

minor isomorphic to M(Kq) or M(K_ .

Proof: This is a standard result in graph theory. Proofs can be

found in Harary [11] or (in matroid form) in Tutte [24.].

Since a minor of a hypergraphic matroid is a generalised hyper­

graphic matroid, but not, in general, a hypergraphic matroid, we consider 

first dualism in generalised hypergraphic matroids; in other words, we 

consider the class m  of matroids M such that both M and M^ are generalised 
hypergraphic.
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(12.2) shows that the class of dualistic graphic matroids can he 

characterised within the class of graphic matroids hy a finite set of 

forbidden minors. Our next result shows that the analogue of this for 

generalised hypergraphic matroids is false.

THEOREM 12.3: Let m  be the class of dualistic generalised hypergraphic

matroids. Then there exists an infinite family {|L : i > 3) of

generalised hypergraphic matroids, such that M? ^ m  for i > 3, but

that every proper minor of M? is a member of m.

Proof: L e t  M.(ii> 3) be the matroid defined in (8.2) and (8-3).—1
Then, by (8.12), M. is not generalised hypergraphic, but every proper 

minor of M. is generalised hypergraphic. By (8.5), is generalised . 

'hypergraphic, and hence every minor of is generalised hypergraphic.

Thus {M^ : i > 3} is an infinite set of matroids such that ^   ̂m  for each
■ .i > 3;, but every proper minor of each is a member of m.

We now consider dualism in hypergraphic matroids. Clearly, a 

desirable property of dualistic hypergraphic matroids is that a restr­

iction of a dualistic hypergraphic matroid should be dualistic. By 

the duality relationship between restriction and contraction, this is 

equivalent to the requirement that any contraction of a dualistic 

. hypergraphic matroid should'be ‘dualistic, and hence that every minor 

of a dualistic hypergraphic matroid should be dualistic. We therefore 

define a subclass of the class of h^mergraphic matroids as follows:

DEFINITION 12.4 : Let M be a matroid on the set £• Then M is said to

be strongly hypergraphic if and only if every minor of M is 

hypergraphic. ./

The class of strongly hypergraphic matroids is thus, in a sense, 

the "opposite" of that of generalised hj’pergraphic matroids - the latter 

is the smallest superclass of the class of h y p e r g r a p h i c  matroids which is
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closedUnder the operation of taking minors, the former is the largest 

' subclass of the class of hypergraphic matroids which is similarly closed.

We are therefore considering dualism in strongly hypergraphic 

matroids. We shall prove the analogue of (12.3) - that the class of 

dualistic strongly hypergraphic matroids cannot be characterised 

within the class of strongly hypergraphic matroids by a finite set of 

forbidden minors. In order to do this, we shall find a family 

{M : n > 3 } of matroids such that, for each n > 3, M is not strongly 

hypergraphic, every proper minor of M is strongly hypergraphic, and
y '

M^'is strongly hypergraphic. Thus result will also show that the 

class of strongly hypergraphic matroids cannot be characterised by a 

finite set of forbidden minors.

PROPOSITION 12.5 : For n > 3, 1st = ({e'}u{al.: 0 < i < j < n})^,
y

fî = {e'}u{aî. £ p’: i = m or j = m), (O < m < n),.MU ,. ij Mn . : .
and let C" denote the set of all (n+2)-subsets of E ’ containing

no ( 0 < m < n ).

Then  ̂ < n) is the set of circuits of a matroid

M of rank (n+1) on the set F'.-n ■ . h-n
Proof: This is routine verification of the circuit axioms (Cl) and (02),

and we omit the details.

THEOREM 12.6: For each n > 3, ^  is not hypergraphic.

Proof: Suppose M is hypergraphic. Then, by (2.13 ) there exists a

critical hypergraph H = (f , E? such that ^  = M(H) . Let 

E = {e}u{a..: 0 < i < j < n}. and let the isomorphism between M and

M(H) be induced by the obvious bisection between E and E^. Denote by

the image of C/.
Then, for each i, it is easy to see that C- is a circuit and a

ill " : d:. \  ̂ ^

hyperplane of M(H). (1)

Since H is critical, and M(H) has rank n+1, by (2.2) and (2.l4),
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IF| = k+n (2)

Since (i is a hyperplane, p(\ = n; since Q. is also a circuit, 

by (2.3), IV( (V) I =: k-in-1 (3)

Since is a hyperplane, p( (4 <j{x }) = n+1 for any x [4.

Thus, from (l ) and (3.1 ), lv((\ ufe}) | = k+n for each x 4 (4 (4)

Let {A7} = l^V(Q) 0 ̂  i ^ n.

Then, by (3) and (4), A. ¥ A. for i f j , since A. e V((\) for i f j.
 ̂  ̂ ■■ V • ■ . ■ . .

Thus,{AQ,A,,,.:;,A^,,}f^V^^^

Now, V(e) y((i) for each i (0 ^ i n) , so A^ / V(e) (0 ^ i :^n) .

Thus, V(C^) f V(e)u{AQ,A^,... ,Â _., }.

Thus, IV(Qj)I 6 k+n, which contradicts (2). Thus, ^  is not 

hypergraphic.

There is a high degree of symmetry in the definition of IF. In 

fact, tthere are exactly two isomorphism classes of elements - {e'} and 

■ ' If a' and li' are m of the same' class', then there exists

an automorphism of M which maps a' inuo o’ . We next consider ohe 

one-point deletions and contractions of M , and show that these are
■ - h \ y  :all hypergraphic. By the above remarks, it is sufficient for this to 

prove that IFx(E^-{e’}) , I^x(E^-{a^_,j ̂ ^}), ]F.(E^-{e’}) and

M .(Ei“{a’ A- }) are all hypergraphic. These results form the content 
n  11 n*“ I 5X1

of the next four propositions. •

PROPOSITION 12.T: V}) is strongly hypergraphic.

Proof : From ( 12.5), } ) is uniform of rank n+1 on the set

E^_{e’}, Since every minor of a uniform matroid is uniform, 

and, by (5.1), every uniform matroid is hypergraphic, M^x(EV-{e’}) is • 

strongly hypergraphic.
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PROPOSITION 12.8: M x ( E l _}) is hypergraphicXX n XI I 3 XI
Proof : Let H = ( F, E ,

V = u..

: =t{ Aq ,A1 ’ '
A™ == {A?.: 0 < i < jiJ
B =: { B. . : 0^  i <j' iJ
E =\ E F n̂--1 ,n)'
y(e:) = , ,A Î uA u * •

00

Ÿ(a|.) = (a-{A.,A.})u('^;A(4“'-{aA  } ))u(2-(B..J )I J  1  J  ID.—  I 1 J  — ü

I t  is  ro u tin e  to  check th a t the c irc u its  o f M(H) are the  sets  

f  î (0  < i  < n -2 ) and a l l  ;(n+2)-subsets o f £  contain ing none o f th ese .
. V .

B ut, from ( 1 2 . 5 ) ,  these are the c irc u its  o f , and so

% x (E^-{ ^n-1 ,n^ ) hypergraphic.

PROPOSITION 12.9:  M . ( E ' - { e ’ } ) is  hypergraphic.n .... . .

Proof: Let H = ( F, E> $) the hypergraph w ith

F = where these sets  are a l l  d is jo in t ,  and

A = {AQ,A.̂ ,...

= {A?A: 0 < i  < j  ^  n}^
. .'A,

E A  E A fc ' i
V(a!.) = U-{A. ,A . }X j( (a“ -{a“ , }))i j  1  J  m —  I 1 J

I t  is  rou tin e  to  check th a t the  c irc u its  o f M(h ) are th e  sets  

0 ^ -{e ’ } ( 0 < i  <■ n ) and a l l  (n+1 ) -subsets o f £  contain ing none o f th ese . 

B u t,tfrom  ( 1 2 . 5 ) ,  these are the c irc u its  o f ( E ^ - { e ’ } ) ,  and so 

M . ( E ' - { e * } )  is  hypergraphic.

:^A':: ::::y : .. , ;̂ a v a :a .̂ ::':34
PROPOSITION 12.10: M •(EX“ {^Jl_i „ } )  is  hypergraphic.—n n n 1 ,n

Proof: We s h a ll prove, fo r  n o ta tio n a l convenience, th a t  1^* (E^“ ‘(aQ.j} )

is  hypergraphic. From the remarks fo llow ing  ( 1 2 . 6 ) ,  th is  is  eq u iva len t  

to  the statement o f ( 12 .10) .
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From (12. 5)5 the circuits of }) are the sets Q {â.| },

r ’“ {a’ } and all (n+1 )-subsets of F 1- containing neither of these.
' y AAFA A/:. -I A

By (3.114), therefore 5 it is sufficient to prove that

} ) x( (C oUC Î )- {̂ 01 }) is hypergraphic .

Let H = (y 5 E ) $) he the h^pergraph with

F = A^uÀgüB^u...^,^

t  "

h  ( I S I S  n-3).

E = (CquC])- }

V(e) = A2U(“T^(B^-{B^p))

i(a-p = #B(A2-{A. })U(^ïP(^-ë^^A)) (2 ^ i S n).

V(a^A A  3u(^( ])) (2 S i ^ n).

It is easy to check that the circuits of M(H) are the sets

Xq-{a^l >5 C”̂ “ {aQi} aĴ  ̂all (n+1 )-subsets of E containing neither of ■'.

these. Thus, VT. (E^- {aj.,} )x ( (CgUCi)- ). is hypergraphic , and this ,

by the remarks at the beginning of the proof, is sufficient to prove

the result.

PROPOSITION 12.11: Let M be a matroid of rank r on the set E = AuRuC

where these sets are disjoint, lAl = iBI = r , and such that

M has as circuits the sets A» B and all (r+l)-subsets of E

containing neither of these. Then M is hypergraphic.

Proof: If r = 1, the result .iSj trivial. Otherwise, let A = {aQ,...,a^_^}^, 

B = {b^,... ,b̂ _,̂ }̂ .; Let H = (F, A^Bs S) be the hypergraph with 

F = AuBu -pC,!} ̂ , where these sets are disjoint and ,

A = { A o ,Ai ,...,A^_i}^

B ={B,,B^....,B^_^}y

V(a^) = { A^ ,Â_j_i> uBu{ X} (mod r)

V(b^) = {B̂ ,B̂ _j_.j} uAuC Y} (mod r).
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Then A and B are c irc u its  o f M(H) , and the other c irc u its  o f M(h ) are  

those (r+1 ) -subsets o f //E containing n e ith e r A nor B*' Let M’ be 

the m atro id  obtained from M(h ) by the f r e e , rank-p reserv in g , |Q j-po in t

extension o f M(H) by C- Then, by (3114) ,  M’ is  hypergraphic. C le a r ly ,

M H M’5 so M is  hypergraphic.

PROPOSITION 12.12: Let M be a m atroid o f rank r  > 2 on the; set E " A^C

where AoC -  (j) and | A | = r , such th a t M has as c irc u its  th e  set A 

to g eth er w ith  a l l  (r+ l)-s u b s e ts  o f  E not containing A- Then M . , 

is  hypergraphic.

Proof : If |C I < 2, M is not ' connected, and the result follows from .( 3.12 ).

Suppose, therefore, that |C I 2: 2. Let ĉ jjĈ  e C, and let 

A  = {aQ,a  ̂,... ,â _.j }. Let H = ( F, A {c.j ,ĉ  }, $) be the hypergraph with 

F = AuB^uB2u{X} where these sets are all disjoint , and 

A = {A ,A. ,.. . ,A _ £  and |±A | = r-1 (i = 1,2). 

v(a^)  = {Â ,Â _J_.J Wo (I r )

V(c^)  = Au{X}uBg 

V(c2) = Au{X}uB^

Then M(H) has as c irc u its  the  set A together w ith  a l l  (r+1 )-subsets  

o f Au{c.j , 0̂  } not contain ing A* The n a tro id  obtained from M(h) by 

the f r e e ,  fahk-preserv ing  ( |C |-2 )-p o in t  extension o f  M(H) by C-{c.j , c ^ } 

is  hypergraphic, and, from the above, has c irc u its  A together w ith  a l l  

(r+1 ) -subse ts o f E not/.containing A- This m atroid is  th ere fo re  

isomorphic to  M, and so M is  hypergraphic.

PROPOSITION 12.13: Let M be a proper minor o f |L . (n > 3 ) .  Then M

is  hypergraphic.

Proof: Let M = IT  . (E ^ -X ') x( ( E ^ - X ' ) - Y ’ ) = % A ^ - Y ' ) . ( ( ^ - y ) - X ' ) '  where

X' is  independent in  M and X ’ nY’ = d* I f  e ’ c Y' ; the  re s u lt  fo llow s from  

( 1 2 . 7 ) .  I f  IX'I ^ 1, the re s u lt fo llow s by r e s t r ic t io n  from (12 .7 ) - ' (12 .10 )
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Suppose that IX' 1:^2.

(A) Suppose ë’e X'. Then, hy (:T2.9)Ft^^ of
are the sets TI-{ e’} (0 < i 4s n) and ail (n+1 )—subsets of ^

containing none/of thèse. Since |X' { > 2, there exists x’ £ X %  x\ 9̂ e’.
Then X* £ Q î for two values of i, i- ana. ig» say. Therefore,

M . (F e’ ,x’ has as circuits the sets C| W  e’,x’} , C| H e’,x'} and ail: -n Ln y , 2
n-subsets of £^-{ e’ ,x’} containing neither of these. Since

r» p,p î = {e’,x’ }, this matroid is hypergraphic by ( 12.11 ). If there . 
:yt̂ "-i "-2 . : .4 " ' .

exists y* e X*“I e’ ,x’} -, with y ’ ̂  uQI , then s' ,x* ,y } ) is

uniform, and hence strongly hypergraphic. If, for each y ’ £ X ’"'®- ?

y ’ € f-’ ufi , then M .([’-{ e' ,x’ ,y'} ) has circuits C e’ ,x’ ,y’} (say), 
/   ̂ \ -n 1.,
together with all (n-1 )-subsets of £̂ -{ e ’ ,x* ,y’} not containing this set .

By ( 12.12) , this is hypergraphic. If there exists s ’ £ X ’ ^

with z’ £ rî - f î , then M .(F’-{e’,x’,y’,z’} ) is uniform, and hence
' 2̂ ' ^ :y: /-

strongly hypergraphic. If, for .every z ’ £ X'W e’,x* ,y’} , z’ £ Qî ,

then (['"X') has circuits Qj - X' , together with all Cn+2)-|X’ l )-subsets

of F'-y* not containing this set. If | Qh-X’j 2, this matroid is .
^  . ..""I

hyper graphic, by (12.12). If ICI “X*l - 1 , then ̂ .( Eĵ “X ’) has rank au

most 2, and is therefore hypergraphic.

Thus, if e’ £ X'’ - is hypergraphic.

^ (B) Suppose eV ^ X ' het>’ £ X’ v ^hen x ’ = a[,^^ for some i.j ̂ ig"
: 1 ^ -

Therefore, M . (F’-{x’} ) has circuits QÎ -{x’} , H  -ix’} and all
^  .. ./- 1-. A: . 'A^? : :;A:

(n+1)-subsets of containing neither of these. By (12.11), this

matroid is hyper graphic. If there exists y* £ X̂  “W O  with y* ¥ ’
i; A- ■ /.."'a  2then M^.(g^-{x',y'}) is uniform, and hence strongly hypergraphic.

If y’ £ fî (say), then M.(F:-{x’,y'}) has as circuits the set
A  : W  i  A: ;:^' / : . ' A A: A ,

Q* —{x’ ,y’} together with all n—subsets of {x',y*} not containing this
1̂ ■ . set. By (12.12), this matroid is hypergraphic. If there exists

z\£ X'-W',yO such that z' V  \ then M^.(^-{x\,y',z'}) is uniform
1

and hence strongly hypergraphic. If, for all z’ £ X'“W ’,yO,
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z’ f , then M . (F’-Y') has as circuits the set 0Î -X’, together with

all (n+2-lX’I )"suhsets of En“X ’Wiot containing this set. A If ]C£ “X ’ i ^ 2,
, , 1

then, by (12.12), this matroid is hypergraphic. If |[! ~X’ I ^ 1, then

M .(F’-Y') has rank at most 2, and hence is hypergraphic.-n - L-n A ., ,
So, for any honemptyindependeht̂ ^̂ ŝ ^̂ ^̂ ^̂  iii'(E^-X') is hypergraphic.

Therefore, for any disjoint sets X' ,Y ' s  E'> not both empty, and with 

X ’ independent in ̂ ^ . (E^'X^x ((En"Xi)“Y') Is hypergraphic. Thus, 

every proper minor of M is hypergraphic.

COROLLARY 12.l4: (i) The class of hypergraphic matroids cannot be 

characterised by a finite set of forbidden minors.

(ii) The class of strongly hypergraphic matroids cannot be 

characterised by a finite set of forbidden minors.

Proof: M is a minimal non-member of each class, for each n > 3.

We shall now prove that, for each n, #  is hypergraphic ; we shall

then show that every contraction of #  is hypergraphic, and deduce from

this that is strongly hypergraphic for each n ^3- u

PROPOSITION 12.15: M* is hypergraphic for each n > 3.

Proof: Let H = (W, E, $) he the hypergraph with

F = A^uA. u.. .uA-j / -A where these sets are all disjoint, and 0 1 2n(n-3)

A = {A“ . : 0 a i < j a n}, & 1)m ' IJ ■ T

E = E ^ - {e ' )  A I  

V(aij) =
Then the circuits of M(H) are the sets £-Qî (O < i < n), together 

with all (in(n-r1 )+l )-subsets of E containing none of these. Now, let 

M' be the free, rank-preserving, one-point extension of M(H) by e’.

Then, by (3.13), M ’ is hypergraphic, and clearly M ’ =1^5 whence 

1# is hypergraphic.
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PROPOSITION 12.16: ' If X* Is a nonempty independent set in ^

(n > 3), then #.(£^~X' ) Is hypergraphic.

Proof:

(a ) The case n = 3 is trivial, since 2#.(£^-X’) then has at most six 

elements, and is therefore hypergraphic.

(b ) Assume n > 4, and suppose that eVe X ’* Then, hy ( 12.T) ?

M x(F’-{e)}) is uniform. Thus, M Â P ~ { e ' } )  is uniform, and hence—n Hn > V . —a -n
strongly hypergraphic. Thus , M" . ( £!-X’ ) is hypergraphic.

(C) Assume n >4, and suppose that e ’ i X'•

Let I = {i:. X ’̂  C[ = *}) Then,. if I = (j), ^x(E^-X’) is uniform,

and so M^.(E^-X* ) is hypergraphic. If I = {i^}, then the set of

circuits of M x(Ei“C’) I^ the set Q  , together with all (n+2)-suhsets n An , -j
oT P-X' not containing this set . Thus, the circuits of (E^“X' )

are the set (E^-X')~Cj , together wich all (]E^-X' |~n)-subsets of

£7-X’ not njontaining this set. If f(Ej(“X ’)“Q  | ^ 2, then, by (12.12),
. . 1

this matroid is hypergraphic. If l(Ej|~X')“C^ I “ 1 , then
1

l^.(E^-X’) has rank at most 2 , and is therefore hypergraphic.

Since Côy.. .u(]̂  = E^, III 4 n+1, because X' 5̂ Since also,

for each a!, e P,  a|. £ P  nC-5 |I| r n, because X* r <f).ij ij 1 J
Assume, 'therefore, that n 2: 4, and that 2 ^ ill 5 n-1-. Then, the

set of circuits of ̂ x(2^-X' ) is the set{(^: i £ I}, together with all

(n+2)-subsets of Ej|“X* containing none of these. Thus, the set of

hyperplanes of M^x(E^-X*) is the set{()î: i e I}, together with all

n-subsets of E'“X' contained in none of these. Therefore, the set of

circuits of IÇ- (f^-X' ) is the set {(E^-X* )-[7 : i £ 1}, together with

all ( |E'“X' |-n)-subsets of E'“X' containing none of these.
; ^  I'. ■ ^

Put t = rk(#. (E^-X' ) ) ' Then t+1 -|E^“X' |“n.

Let H = (F, E, $) the hypergraph with

F = AqUA^u...uÂ , uBqUB^ where these sets are all disjoint, and 

t ’ = t - III - 1,
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° ^ i < j n} j: (bi > 1)

' 0
Bq = : I'j C I, 1 < j} j

= {b].: 0 < i < j < n, {i,j; n: r

E = M ' H e ' }

V(a!.) = ({A.,A.}:M„)u(B„-fe°. })u(3^-fe^. })u( ^{A^. }))

We first need to show that t ’ > 1.

No-w, X' nO -  ̂ for i e I.

• * • X’ n(uQ)= 4) and so X’ 5 El“('jQ )I 1 . . . . ■ ' '

F'“X’ o uC!) therefore r ■■ I  ̂■
I E^-X' 12: I uqi = i + 1  HI (2n+1-|I| )

t > i|I|(2n+1-|I|)-n (2 < jlj < n-1)

Now, for |I| in the range indicated, and n >H,

ijlj(2n+1-JI|)-n > jIj+2. Therefore, t > jIj+2, and so t ’ >1.

From the definition above,

|7|= jlj + t ’(in(n+1 ))+lB̂  ] + |5H and, using k to denote the cardinality
■ ■ ■ ■

of H, k >  t ‘(in(n+l)-l) + IBq ! + |Bj.

iFj-k+r = |I|+t’+1 >  t.

Now, for 2 _C' {(i%j ) :. a! . eE ̂  wiuh l£j > 2, , ! i ; , , ■

|u{v(a! .): (i,j) e £}| = |(u({A. ,A.}: (i,j) £ £)) o4 j + k + -t’.

Suppose D  is a circuit of M(H) , with |V(D)1 < l7j - 2.

Then there exist. A., A . ( i, j e l) such that A. V(D) and A. i V( D) •
 ̂ J V ^

Thus, T) c {x eE : A-  ̂V(x)>n (x eE  ̂A.  ̂V(x))

= ((E^-X')-C:) n ((E^-X')-q)

= (EA-x')-(ci uq)- -
. . Igl < gn(n+l) + 1 - IXI “ 2n = in(n-1 )-1Xl+1-n 

= t-n+1.

. . since ]Q is a circuit, |V(%)) | < t-n+1+k-2.

Thus, if £ = {(i,j) : a'^j £ Dl,



|u({A.,A.}: (i,j) 6 £)i+ k + t' < t-n+l+k-2 

|u({A.,A.}: (i,j) e £)1 < llj-n, 

which is impossible 5 since 11 ) < n—1. Tnus, for any circuit .]] of M(H) 

with V(g) 9̂ V; )v(]])l = |F| - 1. Therefore, V(D> =/-{A^} for some

i £ I, and so, since ]} is a circuit, ij)l = t. Also, since A^  ̂V(]}) j

D 5 ( E A - X ' T h u s , since KE^^-X'X'I = t, D = (E^-X')-C^.
Thus, the circuits of M(H) are the sets ( ^ ^ - X ' ^   ̂l)5 together

with all (t+1)-subsets of ( E ' ^ X ' c o n t a i n i n g  none of these.

Let M’ be the matroid obtained by the free, rank-preserving one-point

extension of M(h ) by e’. Then, by (3.13), M* is hypergraphic, and,

since M’ = M^.(E’-X'), I#.(E^“X') is hypergraphic.— —n Hq '■ —n n

COROLLARY 12.17: M* is strongly hynergraphic for each n ^ 3.

Proof : By (12.15) and (12.16), Ig.CE^-X') is hypergraphic, where X ’

is independent in M*. Since every minor of is isomorphic to

(M«-.(E'-X’))x((En"X’)-Y’) some disjoint sets X' 5  E^) ^ith

X’ independent in #  , every minor of #  is hypergraphic , and so

M* is strongly hypergraphic.

COROLLARY 12.18: Let m  be the class of dualistic strongly hypergraphic

matroids. Then {M* : n > 3} is an infinite family of matroids ■ 

with the property that Mg m  for each n > 3, but every proper 

minor of M* is a member of m.

COROLLARY 12.19: The class of dualistic, strongly hypergraphic

matroids cannot be characterised by a finite set of forbidden 

minors^ ■ - /

COROLLARY 12.20: The class of dualistic, strongly hypergraphic

matroids cannot be characterised within the class of hypergraphic 

matroids by a finite set of forbidden minors.
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CHAPTER 13

A CHARACTERISATION. OF

HYPERGRAPHIC MATROIDS

:.We have already remarked that graphic matroids can he charact­

erised by a finite set of forbidden minors. It is clear that 

hypergraphic matroids cannot be so characterised, not only because the 

class of hypergraphic matroids is not closed under contraction, but 

also because, in Chapter 12, we found an infinite set of forbidden 

minors for strongly hypergraphic matroids.

There are other characterisations of graphic matroids in the 

literature. . Most are in terms of forbidden minors and a represent- 

ability condition, or its equivalent. These are not particularly 

appropriate as starting-points for generalisation to hypergraphic 

matroids, since.(7.5) shows that hypergraphic matroids are repres­

entable over every characteristic, and (12.1^) shows that there is no 

finite set of forbidden minors for hypergraphic matroids.

We shall use, as. our motivation in this chapter , the character­

isation of graphic matroids due to Sachs [22], which is a lattice- 

theoretic version of the result of 2'IacLane [ 16].

THEOREM 13.1: An irreducible lattice L is isomorphic to the lattice
of a non-separable graphic matroid if and only if there exists a 

family F= {H.: i c 1} of hynemlanes of L satisfying
■  ̂ .. I(i) every atom of L has exactly two complements in r, and no two

atoms have the same pair of complements;

(ii) If J c I, then p(n[-j.) < [I-Ji-1, whenever this is non-negative,
^  ̂ ■ ' y ■ /p '

where p is the rank function of L.

We now re-state this is a modified form, suitable for generalisation
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THEOREM 13.1': A connected matroid M bn the set £ is graphic if and 

only if there exists a family f = {p - :: 1} hyperplanes of

M satisfying

(i): for each e £ F, e V  p. for exactly 2 values of i e I ;

(ii) if J c _ t h e n  p (np. ) < | I-Jl -1 , whenever this is non-negative;

(iii) every 1-flat p of M is the intersection of a set

{p. : i £ l(f̂ ) c_ l} of hyperplanes T-ri-th |l(R)l = 1 ll-2.

The proof of this theorem is by construction. For hypergraphic 

matroids, an analogous result holds.

THEOREM 13.2: A loopless matroid M on the set p is isomorphic to

, M(H)5 where H is a k-hypergraph, if and only if there exists a 

family- f = {p- : i e l} of flats of M satisfying

(i) for each e £ p, e p. for exactly k values of i e I;

: (ii) if I , then p (np^) < | I-Jj- (k-l), whenever this is non-negative;

(iii) (a) for every circuit Q of M, o([) is the intersection of a set

{p.: i e l(C) £ of flats, with )l(C)l = lll-(k-l)-pC

(h) every 1-flat of M is the in-tersection of a set 

{p.: i e ,l(R) £  ll of flats with (l(R)l =' ll!~k.

Proof: (A) Suppbse M satisfies (i) - (iii).

Let III =;p,irand let F = {A. ,A_,£. ,A_}^ he a set of p vertices.
: . - :'t

Let p = {e. : 1 < i h n)^, and let p' = {el: 1 ^ i - he an
■'isomorphic copy pf p. Let H — (F, p', $) he the hypergraph with 

V(e') = {A.: e p., i £ l), where e * is the image of e 

under the obvious hijection between p and p'.

Then, by (i), H is uniform, of cardinality k. ,

Let Q' be a circuit of M(H) , and let Q denote the image of Q’ under 

the obvious bisection between p and p’.

Since Q' is a circuit of M(H) , !v(Q')l = k+j(j’ l-2.
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Thus, there exist p-(k+|Q’|-2) vertices of H not elements of V(C’), 

and so Q £. at least p-(k+lQ|-2) values of i e I.

Therefore, by (ii),

pC spC n(Fi= C £ Fi}) a|I| - |{i £ I: C S  F }̂! ~ (k-1)
<p - p + (k+101 -2) - k + 1

= ICI -1
Thus, Q is dependent in M.

Conversely, suppose Q is a circuit of M. Then, by (iii),

o(C) = Pi 5 vhere |l(C)l = |I)-(k-l)-pC.

By (ii), for J £  1, p np- < | I-J| -(k-l) , whenever this is non-negative.
- :J :

Therefore, if J g l([),
■■ t

pnp- < |I|-|l(C)|-1"(k-l) whenever this is nonnegative

= pCi - T-
Thus., f is the intersection of exactly]l(C)i members of F.

Thus, |V([))| = p - p + (k-1) + pC = k + iCM - 2.

So Q' is dependent in M(h ).

Thus, M = M(H), and so M is hypergraphic. : r

(B) Suppose now that M = M(h) , where H = IF ,  p' , $) is a critical 
k—hypergraph, and the isomorphism is induced by the obvious bisection

between H and p*. Let F — ,A^,... ,A }_/, I — {1,2,... ,p}. For each
■ ■ - ■  ̂ I  2 r À

1 e I, define f. = {e e f  : V(e’) c F-{A1}}, and let fh denote the image of' ' 1 —: / 1 1
p. under the obvious bisection between p and p ’.

Then each pL is a flat of M(h ) , since, for any x V  p|, V(x') ^  V(p^), and 

M(h ) is loopless.

(i) e  ̂p. if and only if A. e V(e'), which is true for exactly k 

values of i (1 < i < p).

(ii) For any J S. 1 , 1V(np.)j < p-[J|; By (3.1),
■■ / '■

p(rpl) < |V(np. )|-(k-l) whenever this is non-negative, so 
, J 1 J ^

p (n p. ) < p - IJI - (k-l ) whenever this is non-negative
J  ̂ ■ ' : ■ ■ ■  ■= |I-J|-(k-1).
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(iii) (a) Let Q ’ be a circuit of M(H). Then, by (2.3),

I V(Q ' )| = k-1+pQ'. 

By ( l t .29) ,  V(oC') = V (C ' ) ,  so IVfaC')l = k -U p C ' .

Thus, (̂* — Fi for exactly p-(k-Hp(^' ) values of i,

80 for exactly 1 il -(k-1 )“pC values of i. Let l(Q) denote this

set; of values.\ Then , from (ii),

pC “ P 9 \p4 - pC so equality holds, and, since a(jis a flat of M,

<  = X ( C ^ -

(iii)(b) Let p* be a 1-flat of M(h) . Then I vCpV)! = k, since M(H) 

is loopless. Thus, £  pf for exactly p-k values of i ( 1 - i - p). 

Therefore, R c_ p. for exactly p-k values of i. Let l(R) denote this 

set of values. From (ii), if j £ I with i J| k  p-k+1,

PjFi “ 9=>\̂ 9 R“ P^Fi* i c i(R) £ i}) where I l(R) I = I ll -k.

COROLLARY 13.3: A loopless matroid M of rank r on the set p is

hypergraphic if and only if there exist an integer k k  2, and a

family F = {R.’; i e 1} of flats of M such that:

(i) for each e •£ p, X / for exactly k values of i e I;

(ii) if J I, p ( np. ) k  I I-Jj-(k-1 ) whenever this is non-negative;
V ■ ■ .

(iii) (a) if f is a circuit of M, af = P p., where
^ ^ K C ) ^

| I (C ) I  = | I | - ( k - l ) - p C ;

(b) if R is a 1 -flat of M, R = Pp., where

IKR) I = |I|-k.

Proof : (13.2).

Note that, in (13.1’), F is a family of hyperplanes, but that ,:.in

( 13.2) it is a family of flats. This is because the construction of the

proof of (13.2) for graphs always yields hyperplanes when M is connected. 

However, in hypergraphs, this is no longer the case, as can be seen from 

the following example.



Consider the hypergraphic matroid M(h) shown in Euclidean repres­

entation in Figure 27. For ease of explanation, we have labelled 

each point e with the vertex-set V(e). M(h) is connected, but the flat 

p2 (with the notation of the proof of (13,2)(A)) has rank 2, and is, 

therefore, not a hyperplanej since M(H) has rank 4.

{Aî A,Figure 27

■ ' ■ The stlWgthening of ( 13.1 ’ ) (iii) to ( 13.2) ( iii) (a)&(b) is ' .

necessary, as can be seen from the matroid of (3.5). Denoting this 

matroid by with the notation of (3.5), let the distinguished family 

F 0:7 flats of M be {{a,b,c} , {a,d,e} , {b,f} , {c,g} , {d,f} , {e,g}}

Then F satisfies the conditions (13.3)(i) and (I3.3)(ii) and. (13.3)(iii)(b),

; with k = 4. However, by (3.5), M is not hypergraphic. This is

because (13.3 Xiii ) (a)-is not satisfied for the circuit {a,f,g} of M.

The situation for generalised hypergraphic matroids is more 

complicated, because of the existence of y and its associated closure 

operator. The example we have just given will illustrate the problem.

The matroid of (3.5) is generalised hypergraphic, as was proved in {k^k).

In fact, it can be obtained as M(k ) , where K = (f , p, $, |{) with

7 = {A,B,C,E,E,F}^, P = {a,b,c,d,e,f,g,x}j , K = {x}, and

V(a) = {A,B,C}, V(b) = {A,B,D}, V(c) = {A,C,D}, V(d) = {B,C,E},

V(e) = {A,C,E}, V(f) = {A,B,F}, V(g) = {B,C,F} and V(x) = {D,E,F}.

The sets p(V) _c p-|( with V(p(V)) _c F-{V} for each V e V are shown
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V E(v) E(v)

A . D {a,d,e,f,g}

\{c,e} ^ E {a,b,c,f,g}

E {a,b,c ,d,e}

Table 1

P(D) , E(e ) and E(F) are not flats of M(K) , but unions of flats; 

indeed,pE(D) = rkM(K). Such a set of unions will, in general, occur 

for each contracted element of a hypergraphic matroid. The only : : :

possible analogue of (13.2) or (13.3) would therefore involve such 

unions of flats, which, we believe, is rather a n  unnatural approach.

It should be noted that the family F defined in (13.3).is far 
from unique, and, indeed, different choices of F can lead to different 
values of k. An easy example is provided by the rank-3 matroid M on 

the set E = {a,b,c,d,e}^, with circuits {a,b,c}, {a,d,e} and all 

U-subsets of E containing neither of these. Two possible choices of 

F are : . . , . , ,

{{a,b,c}, {a,d,e}, {b,d}, {c,e}} yielding k = 2;

{{a,b,c}, {a,d,e}, {b},{d},{c},{e}} yielding k = 3.

Although the conditions of (13.2) and (13.3) can be modified to 

give a characterisation of strongly hypergraphic matroids, such a 

characterisation is of little value, because of the difficulty of 

obtaining the Circuits of a contraction in a suitable form. However, 

we can modify the formulation of (13.2), to replace (iii) with a 

condition on independent sets.
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THEOREM 13.4: A loopless matroid M of rank r on the set E is
hypergraphic if and only if there exist an integer k > 2, and a 

family F = { p. : i e 1} of flats of M such that

(i) for each e e Es G ̂  p. for exactly k values of i e l;

(ii) if: J I , p((̂ -̂) < I I-Jl-(k-1 ) whenever this is nonnegative;

(iii) X is independent in M if and only if, for each nonempty subset Y

of X, Y ^  p. for at leastlYl+(k-1 ) values of i e I.

Proof : (a ) Suppose M satisfies (i)-(iii). Let III = p, and let

7 = { A. ,A^,. . . ,A be a set of p vertices. Let E = i e. : 1 ^ i - n}_̂ j,

and let E ' = { e J : 1 < i < n} be an isomorphic copy of E.

Let H = (7,E*5 $) be the hypergraph with

V(e’) = {A.: e ^ p., i e 1} , where e' is the image of e under the

obvious bisection between E and E ’« Then, by (i), M is k-uniform.

Let C ’ Be a circuit of M(h ) , and let C be its image under the obvious 

bisection between E and E**

Since C* is a circuit of M(H) , I V(C ' ) I = k+l C' I -2. Thus , there 

exist p-(k+|C I-2) vertices of H not elements of V(C'), and so .

C £  for at least p-(k+lC’I-2) values of i e I.

By (ii) , p( n(p. : C sF-) ) ^ ill - |{i s I: C £  P .} I - (k-1 )1 ...... 1 1
- P — P (k+1C * 1 -2 ) — (k-1 )

.i- / /■ ;. = IC'I - 1

= ICI - 1

Thus, C is dependent in M.

Conversely, suppose that C is a circuit of M; let C ’ be the image of 

C under the obvious bisection between E and E ^  • For any c e C,

C“{c}^P^ for at least lG~{c}l+k-1 values of i e I. Thus,

C ^  P- for at least ICI +k-2 value s.. of i e I.

Since C is a circuit, C £  P- for at most lCl+k-2 values of i s I, since 

otherwise, by (iii), C would be independent. Therefore, C £  P. for
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exactly lQI+k-2 values of i € I. Thus, C £ for exactly
p-(k+!Cl-2) values of i e I, and therefore -
IV(C’) 1 ^  1 n{V(F-) : C £  F-5 i  ̂ ^ p-(p-(k+lCI-2))

= k + ICM - 2.

thus , C' is dependent in M(h) . Thus, M e M(H) , and so M is hypergraphic. 
(B) Suppose now that M e M(H) , where H = (7, [' , $), and the isomorphi 
is induced hy the obvious bisection between E and E* . Define F and F 
as in (13.2). Then (i) and (ii) follow from (l3.2)(i) and (ii).
(iii) Let X be independent in M, let Y Be a nonempty subset of X» 
and denote by X’ sY’ respectively, the. images of X and Y under the 
obvious bisection between E and E’•

Then lv (Y ’ ) 1  ̂k+1Y' 1-1. Thus, there exist at most 
p - (k + lY ’ i-1 ) flats F^ G F for which Y’ £  F] .̂ Thus, Y f_ Fj_ f o r  at
least IYI+k-1 values of i € I.

Conversely, suppose C is a circuit of M; let C* Be the image of 
C under the obvious bisection between E and E' -
Then l v ( C ' ) l  = k + IC ' l - 2 ,  and so A.  ̂V(C’) for p-(k+lD 1“2) values 
of i : e 15 and no/more . ' V-.

Q’ £ F* for at least p-(k+IC’i“2) values of i o I,
X' i_ F - for at most IC'l+k-2 values of i o I,
X ’XF* for less than IC'I +k-1 values of i  ̂I. .

Thus, C Y. F- for less than IQl+k-l values of i £ I.
Therefore, X is independent in M if and only if, for each nonempty 
subset Y of X, Y f F< for at least IYi+(k-l) values of i o I.

This formulation leads us to a characterisation of strongly 
hypergraphic matroids.



THEOREM 13.5 : A matroid of rank r on the set g is strongly hypergraphic

if and only if, for each independent set g £  E> there exist

an integer k > 2, and a family T  = {p. : i e I ) of flats of M,
B B J- B

with R c p. for each i e I , such that ^ \ i B
(i) for each e e f-aR, e V  p. for exactly k values of i e l ;

■ . . . ■ ■ 1 :■. B ■■ • .• ■ B ■
:(ii) if J c I , p (np..)-|Bl < II -Jl-(k-1), whenever this is non- 

B J  ̂ B B
negative;

(iii) X 2 B independent in M if and only if, for each Y 5. X ’

Y ^ Y ^  Fi at least|YI-IB(+(^g-^) values of i e Î .
Proof: (a ) Suppose M is strongly hypergraphic. Then, for each

independent set g eg, M. (p-g) is hyper graphic. Denote hy the. set 

of loops of M. (p-g). Let ̂  = M* (E"B)^ ( (E"B)“Lg^ * Mg i^

loopless and hypergraphic5 and so, by (13.^), there exists k - 2, and a

family F" ={pV : i € I of flats of M such that 
B  ̂ B ~B

■ (i) ’ if e_^(E“g)-Lg, e V  F^ for exactly'k^ values' of i e l^;'

(ii)’ if J c I , p ( rpV) < ll-Jl-(k -1), whenever this is non-
B J B B

negative;

(iii)’ Y" is independent in M if and only if, for each nonempty 

subset Y" of X" » Y" ̂  Fi at least IY" I +(k_-1 ) values of i e 1̂ .

Now, let F= {p. - pVuguL_ : i e !_}. Then each F* is a flat of M. r r >*B B
' Furthermore, og = guj_̂  £  p^ for each i e Î .

Write X “ X"ug, Y - Y"^B* Then (i) ’ - (iii) ’ become:

(i) for each e e p-og, e i p. for exactly k_ values of i^e I ;

(ii) if J £ I , p( <f- ) -Igl 3 ll_-Jl-(k_-l ), whenever this is non-
B ; ■■ J  ̂ B B

negative ; , .

(iii) X 2 B î  independent in M if and only if, for each Y £ X; uith

Y ^ B) Y Èl F^ for at least I Yl" ) values of i c
(b ) Conversely, suppose M is such that (i) - (iii) hold. Let B 5  E Be

independent in M. We s h a l l  sh o w  t h a t  M. (P-g) is hypergraphic.
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Let L Benote the set of loops of M. (E-X ) , and let
B • , ■ ■■

M = M. (E-g)>< ( (E“B)“Ln ) * Then M is loopless. We note that 
~~B ■ ; o
oB = BuLg- Let F- = (FÏ = Fi-(BuLg): i e V '  each FV is a

flat of M . Furthermore,

from (i), for each e £ (E“B)“Lg5 s i F- for exactly values pf i c Ig

so e £ pV for exactly k_ values of i. VCt-LUCO Ui J. C. ) .B ■ B  ■ ■ ■ ■

from (ii), if J Ç r , P„ ( nFp = P(çFi) "iBl
“3 < }I -Jl-(k-1), whenever this is

B B
non-negative; .

)^\is7independent in M-if andronly if. X" = X"B is independent in Mg; 

therefore, from (iii), X" is independent in Mg if and only if, for 

each nonempty subset Y" £  X'% Y" F” for at least lY "u B l- lB l+ (k g - l )  

values of i £ I_.

Thus, by ( 13.4), M^ is hypergraphic. Therefore, by (4.2), ; :

Now, if M is strongly hypergraphic, then, by (A), (i)-(iii) hold. 

Conversely, if M is such that (i) —(iii) hold, then M. vE~B) is hypergraphic 

for each independent subset B £ E  • Since every minor of M is isomorphic 

to M. ( E"B) ( E"B)“ D) for some sets B, D, where B £  E is independent in 
M, and grD = 4 , ever);- minor: of Mis hypergraphic. Thus, Mis 

strongly hypergraphic.

(.13.4) can be used to derive a characterisation of co-hypergraphic 

matroids, although the resulting expressions are rather less wieldy.

Some preliminary definitions will be needed to s i m p l i f y  the notation.

DEFINITION 13.6: Let M be a matroid on the set E •

(i) A fully dependent set of M is a set 6 which is a (possibly empty) 

union of circuits of M.

(ii) The nullity of a set A_e E , denoted by <̂ /\is equal to lAj - pAr



THEOREM 13.7: A coloop-free matroid M of rank r on the set p is

co-hypergraphic if and only if there exist an integer k> 2, and 

a family G ^ 6 -  : i e. 3} of fully dependent sets of M such that:

( i ) for each e £ p, e £  g . for exactly k values of i e I;

(ii) if : J £  I, Op - Ô̂ ug. ) <k+1- [j] whenever this is non-negative;
' J ̂

(iii ) X £  E f ̂ spanning in M if and only if, for each Y £ X with Y r Es

Y RL G for at most k+1-|p~Yl values of i  ̂ I.

Proof : M is coloop-free and co-hypergraphic if and only if •M’̂ is

;loopless and hypergraphic.

By ( 13.4), the loopless matroid is hypergraphic if and only if there 

exist an integer k*k 2, and a family F * = {pŸ : i £ l) of flats of M" 

such that

(i)* for each e e p, e y p^ for exactly k* values of i e I;

(ii)* if J c I, p*( ff-|) >  11-Jl-(k*-1 ), whenever this is non-negative;

(iii)* X" S E rs independent in _M* if and only if, for each non-empty
- —  . . . ' -
subset Y* EX^'s Y^ i F'*‘ for at least 1 Y^I+(k*-1 ) values of i  ̂I.

From (13.6) , it is easy to see that g is fully dependent in M if

and only if p-g is a flat of M*.

Write g. = P-P^,(i £ l), k - ill-k* and X = E“X** Then
X  . . A. ̂  - :A

(i)* holds if and. only if, for each e £ E, e i g. for exactly k values

: .//of i £ X

(ii)* holds if and only if, for each J £ I,

p4v( n (p_g.)) < lll-l Ji-( lll-k-1 ) whenever this is non-negative,
J- - X  ■■

i.e. if and onlv if p*(P-(ug. ) )< k-1 j 1+1 whenever this is nonnegative,
J ^

i.e. if and only if p(ug. ) + |p|-1 ug. |-Pp ^ k-Jj 1+1 , whenever this is non-
. . ' A ^A :' -A -negative, i.e. if and only if Sp -ô(ug.) - k-1J )+1 whenever this is 

non-negative.

(iii)* holds if and only if:

(p-X*) is spanning in M if and only if, for each Y ^ E with Y £  (E“X*)
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Y MG' for at least | p-Y I + ! 11 -k-1 values of i el; i.e..if and only if 

X is spanning in M if and only if , for each Y s E with Y £ Xj

Y £ G- for at most ! 11-( lE“Yl 1“^“  ̂) ~ (k+1 )-lE"*Yl values of i £ I. 

Thus, (i)-Ciii) hold if and only if (i)*-(iii)* hold, i.e. if and only 

if the loopless matroid M* is hypergraphic, i.e. if and only if the 

coloop-free matroid M is co-hypergraphic.

Note that, in (13. 7), the value k is not the cardinality of the 

hypergraph H with M(h) - M*, if this were derived hy. the method of 

(13.2). The cardinality of this hypergraph is k*; k has been used 

in ( 13.7) to bring the formulation into line with earlier theorems. ^
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CHAPTER 14 

CONCLUSION

It, is probably helpful to tabulate some of the main results of 

the previous chapters, and to compare, where appropriate 5 the corres­

ponding properties of graphic, hypergraphic and generalised hypergraphic 

matroids. This we do in Table 2, which also references the main result 

for each entry. In Table 3, we compare various graphical and hyper- 

graphical concepts 3 and reference the hypergraphic definitions where 

appropriate. ■ ...

It can be seen from the proofs of (8.5)~(8.1l) and (12.7)-(12.13) 

that the value of k used to give a presentation of. the one-point minors 

of the forbidden minors grows with the value of n. It may be the case 

that, for a fixed value of k, the set of matroids isomorphic to a minor 

of M(H) 5 where H is a k-hypergraph, can be characterised by a finite set

of forbidden minors. Clearly this is true if k = 2. For a value of

k greater than 2, it is likely to be a difficult problem to prove

whether such a finite set exists. For example, taking k = 3, we have

the following necessary forbidden minors;

Fano, the dual of Fano, (m (Kj-) )*, (m (K_ _))* (because all proper
2 ■■■.„ , A.- ,

«"minors of these are graphic);

Non-Fano, and the dual of Non-Fano (because all proper minors of 

these are isomorphic to M(H) for some 3-hypergraph H) ;

The matroid of (8.1) (for the same reason).

I conjecture that M(K^) is not isomorphic to a minor of M(H) where 

H is a 3-hypergraph, but can see no way of proving this. It is clear 

that, for other than very small values of k, the forbidden-minor classes 

are going to be very large, even if they are finite.

It is well-knowi that the lattice of M(K^) is isomorphic to the 

lattice of partitions of a set of n elements. There is a partial analogue
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GRAPHIC CONCEPT HYPERGRAPHIC CONCEPT

Tree Critical Set (2.2)

Forest Independent Set (2.1)

Cycle Circuit (2.3)

! Component Component (2.8)

1 Cutset Cutset (3.20)

Series-Parallel Extension I Generalised Series-
(11.15)Parallel Extension

I Vertex
Vertex

1 Node (2.15)

_ _

Edge Edge

TABLE 3
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of this in hypergraph theory, as has recently heen pointed out hy
VMatthevs [193* The lattice of M(K") is isomorphic to the lattice of

; v . . T ^ '(k-l)-paving matroids which satisfy the conditions of (10.23).

It must he admitted that matroids are not the whole answer to the 

problem of finding a satisfactory abstraction of hypergraph theory.

Nevertheless, as we have shown in the previous chapters, the application 

of matroid theory does give information about the structure of 

hypergraphs, and, in particular, demonstrates the double role of vertex 

and node played by a vertex in a graph. Other authors have used 

other techniques for investigating hjp)ergraph structure; none is 

complete in itself, but most give insights into the structure of 

h^rpergraphs not given by other techniques. In this context, we must 

mention particularly the authors whose results have been used or referred 

to by us in previous chapters - Berge Cl & 2] and Helgason Cl4].
However, as we have seen, the theory of hypergraphic matroids does 

throw light on hypergraph structure in a way not achieved by either of 

these authors.
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g(M) 3-invariant of M. (11.22)

'■H Hypergraph (1.1)

! ■ - "g
Subhypergraph of H induced by Q. p15

’ h |f' Restriction of H to 7'. pi 6 ;

r (H.K) Generalised hypergraph. (4.14)

1 Connectivity pp125-12T

Generalised hypergraph. (4.14)

<
Complete k-hyper graph on -p vertices. . Pl5

' ■ . jp-functiqn T of generalised .-hypergraph. -.. (4.9) j

i “
Level-k Dilworth truncation of M. p9

M(H) Matroid of the hypergraph H. (2.11)

M(K) Matroid of the generalised hypergraph K. (4.15) |

' . V ■ ■ i v-function of generalised hypergraph. (4.6)

N(H) i Node-hypergraph of hypergraph H. (2 .16)

N(K) 1Node-hypergraph of generalised hyper- 
! graph K.

.(9.26) 1

T(M; x,y)| Tutte polynomial of matroid M. pi 33

(F, E, $)|Hypergraph. (1.1) i

(F, E, K)j Generalised hypergraph. (4.14)

, W 1 Wheel of order n (the matroid of the wheel |
. 1 on n+1 vertices). i

W I Whirl of order n. p12 ! ■ n 1 -
1 < > y-closure operator. (4.24)

Ù Pointed union. (11.1)

1 . Û’ Deleted pointed union. (11.1)
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