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. g . . < 3 < 3 L . .
vertex W, _, € V(ei-2)’ with W, _, ¢ U{V(ej). 1<j<t, §#i-1,i-2}

Wi_2 = Vi-2’ since Vi—%_;s the only vertex V satisfying

Vevie, ,) and V¢ i V(ej).
Thus, V:.L € V(ei) - V(ei_1),

Vi—1 € V(ei)n V(ei_1),

Vip € Vleg y) = V(e;),

and the result follows.

page 138, lines 6 and 13:

1 1 -
In each line, for " kln (e)l+In (f1)1 2 read
n oy Int(e) i+t (£)1-3 o
page 138, line 15:
~ for " In'(e)l+In'(£)1-1 " reaa " 1In'(e)l+ln'(£,)1-2" .
page 147, line 17:
for " 1<i<m " resd " 1 <ic<m M.

Max 1978



ABSTRACT OF THESIS

"HYPERGRAPHIC MATROIDS"

by
R.A. Main

Faculty of Mathematics, The Open University

May 1977

A method of defining a matroid on the edge-set of a k-uniform
hypergraph (a k-hypergraph) is defined, which is a generalisation of
that used for defining a matroid on the edge~set of a graph; the
matroids so defined are called "hypergraphic matroids".

Analogues are found in hypergraphs of the concepts of trees,
forests, circults, cutsets and components; we show ﬁhat two genersl-—
isatioﬁs are necessary of the concept of a vertex ig augraph - a
vertex, and é (k-1)-subset of Y?rtices of & k-hypergraph; .we call
‘such a subset.a node. The class of'hypergraphic matroids is not
closed under contraction, but may be enlarged to the class of
gegeralised hypérgraphic matroids, which is the closure of the clsss
of hypergraphié matroids under the operation of taking minors. ;nese
matroids. are defined in an anslogous way to hypergraphic matroids, but
a particular type of submodular function is necessary, instead of the
cafdin;iity function used for hypergraphs.  We show that no finite
set of forbidden minors exists to characterise either hypergraphic or
generalised hypergraphic matrecids.  There is, however, a lattice

characterisation of hypergraphic matroids.
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matroids are representable over every characteristic, an
- generalised hypergraphic matroids are graphic.
The graph-theoretic notion of series-parallel extension is gener-

.

alised, motivated by hypergraph considerstions, to a new operation
. b gy &



ABBURACT CONTINUED

called generalised series—parallel extension. This operation has many

es-parallel extension. Generalised series—

I

properties similar to ser
parallel networks are defined, and characterised by a set of six for?
bidden minors. An extension of this result characterises ternarﬁ base-
orderable matroids.

We show that the matroid of a hypergraph can be used to derive
weak and strong colourings of ﬁhe nodes, and that,'under obvious
necessary conditions, all such cclourings arise in this way. Connected-
ness and paths are iﬁvestigated, but the results obtained for hypergraphs
are less satisfactory than those for graephs, largely because the

concepts of "node’ and "vertex" do not coincide for general k~Lypergraphs.
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4 CHAPTER 1

INTRODUCTION, DEFINITIONS

AND TERMINOLOGY

INTRODUCTION:

It has long been known that a matroid can be defined on the set of

édges of a graph. Indeed, one of the principal reasons for studying
matroids is that, in some senses, they are abstractions of graphs -
preserving some, though no% all, of the structure of graphs. Attempts
have been made in the ﬁast to extend the definition of a matroid on the
edges of a graph to a matroid on the édges of a hypergraph. Such
attempts have met with mixed success; some potential definitions may not
lead to matroids, while other definitions may fail to reduce to the
definition applicable to graphic matroids when the hypergraph is in fact
a graph. N

Our purpose is two-fold. firstly, we shall define a matroid on the
set of edges of a uniform hypergraph which avoids the above-mentioned
difficulties, and we shall examine various properties of the class of
matroids so produced. Secondly, we shall investigate what, if any, of
the structure of a hypergraph is preserved by the matroid on its edges
and, if any structure is preserved,\what can be learnt about the hyper-
graph from the matroid.

A desirable property of any loopless matroid on the edge-set of a
graph is that twc edges should be parallel in tic matroid if and only if
they are parallel in the graph. In a loopless graph, two edges are
parallel if they have the same vertex-set. We say that two edges of a
hypergraph are parallel if and only if they have the same vertex-set -
i.e., for'most practical purposes they are indistinguishable. A
desirable property of any matroid on the set of edges of a hypergraph

should be that two edges are parallel in the matroid if and only if they
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are éarallel in the hypeggraph. This property is not possessed by many
of the definitions of a matroid on the edge-set of a hypergraph.
Loépless graphé are in fact uniform hy?ergraphs. It is not, therefore,
unreasonable that any definition of a matroid should be applicable only
to uniform hypergraphs. We shall show, howéver, that our definition
can be extended to the case of non-uniform hypergraphs.

Looking ahead briefly to the results of future chapters, we find
analogues of many of the concepts of graph theory, such as trees, forests
‘cutsets and components. We also find on sevgral occasions that two
generaliéations of the concept of a vertex are necessary when we pass
from a graph to a k-uniform hypergraph. These are a vertex in the
hypergraph, and also the complement, within the vertex-set of an edge,
of a vertex of that edge. This latter generalisation we call a node.
In the case of a k-uniform hypergraph, the nodes have cardinality (k-1).
The use of (k-1)-subsets in the study of simplicial complexes has long
been accepted, but appears to be a rélatively new idea in hypergraph
théory. The nodes of a hypergraph can be uéed to‘define paths? are
partitioned by the components of the hypergraph, and, under certain
cifcumstances, can be coloured uéing techniques derived from matroid
theory.

The class of hypergraphic matroids is not closed under the operation
of contraction, and this leads us to define a larger class of matroids -
the generalised hypergraphic matroids -~ which is élosed under the
operation of taking minors. It transpires that there is a sense in
which an edge contracted in a hypergraph is contracted to a node; this
compares favoﬁrably with the contraction of an edge of a graph to a
vertex.

Various forbidden minor conditions are investigated, and it is

shown that no finite set of forbidden minors exists to characterise
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'hyﬁérgraphic or generalised hypergraphic matroids.

We generalise the notion of series-parallel extension to an
oﬁeration calléd generalised series—parallel extension. This leads to a
class of matroids called generalised series-parallel networks, which can
be characterised by a set of six forbidden ﬁinors. An extension of this
result leads to a forbidden-minor cﬁaractérisation of ternary base-
orderable matroids.  Finally, a characterisation of hypergraphic
matroids is given, in>terms of the existence of a family of flats

satisfying certain conditions.

TERMINOLOGY AND DEFINITIONS:

SET_THEORY :
We begin by defining some set-theoretic notation we shall be using.
Fbr-typographical convénience; set difference will be denoted by ﬁ—".
A W;ll be used to denote symmetric difference. Thus ,

AsB = (A-B)u(B-A).

The notation {x1,x2,...,xn}¢ means that x, # X; for. i # J.

If (Ci: ie I) is a family of sets, and J ='{i1,i2,...,in}¢ c I

u(, = u{Ci: ieJt= Cl Ci .. uC
§Ci = nll:ieca=( rc rcl :
ﬁ ;i = A{Ci: ieJg}= Ci ACi A...ACi .

1 2 n :
If (Mi: i € I) is a family of matroids on disjoint sets, then,

. . = « 9 € = . B -
with the same notation, St) Mo =@M : 1€ J) _Mi1® Mig@.. @_M_ln

If | and F' are sets defined to be isomorphic, and F = {e1,...,en}¢,
then, unless otherwise stated, ' will be defined as {e{,eé,...,eﬁ}#,

and the isomorphism 6:F - ' with e(ei) = el will be called the obvious

bijection (or obvious isomorphism) between F and E'.
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A k-set is a set of cardinality k.
If Vis a set, and ¥ ¢ Vwith |[WF| = x, ¥ is said %o be & k-subset

of V.

MATROIDS:

Our matroid terminology will be sténdard -.see, for example, Harary
’énd Welsh [12] or Wilson [30]. However, as we shall need to refer to
many of the definitions,-agiqm systems and properties of matroids, we
give a summary here. | |

A matroid (independence structure) M on the finite set [ is an

ordered pair (F,¥ ) where I is a set of subsets of E satisfying the

\

independence axioms:

(11) ¢ e I . |

(12) 1f X ¢ and Y < X, then Y ;I;

»(13) If X,YeI anda [X|= |Y] + ..1 ,t then there exists x e X-Y suﬁh that
(Yuix}) eI )

The set [ is called the set of independent sets of M.

A maximal independent set of M is called a Qggg.of‘ﬂ.
- A set which is not independent is called dependent.
A minimal dependent set is called a circuit of M.
A single element of [ which is a circuit of M is called a loop of M.
If {x,y}# < E and {x,y} is a circuit of M, then x and y are said to

be parallel in M.

A simple matroid is a matroid without loops or parallel elements.

It can be shown that all bases of M have the same cardinality. A
matroid on the set [ is determined uniquely not only by its independent

sets, but also by its bases or circuits.



Base;Axioms:
A set B of subsets of [ is the set of bases of a matroid on Fif
an& only if |
(81) B# ¢ |
(B2) 1If B1,B2 e B and there exists b, € B1—B2, then there exists

b, € B,-B, such that (B,-{b})ulv,) R

Circuit Axioms:

A set € of subsets of [ is the set ofrcircuits of a matroid on Eirf
and only if |
(e 1 C,uC, € € and C; = Cy» then (, = Cs
(CZ) If C1,C2 e € with CT‘# C2, and if x € C1n 5> then there exists

_ C3 e € such that C3_E_(C1UC2)‘{X}-

The rank pA of a subset A of F is the maximum cardinality of indep-

endent sets contained in . Thus, oA = max{|X|:X c A ana X eI }.

The rank of the matroid M, denoted by rkM is equal to pF.
The closure of\ of the set /| is the set {x: p(fuix}) = pAl.

A closed set or flat is the closure of some set. Tt can be shown

that F.E_E is a flat of M if and only if of = F. A j-flat of Mis a
flat éf.M of rank j. |

A point of M is a 1-flat of M.

A line of M is a 2-flat of M.

A plane of M is a 3-flat of M.

A hyperplane of M is a flat of M of rank rkM - 1,

-A trivial j-flat of M is & j-flat of M which is independent.

1t X,Y <k ana YS oX, then X is said to span Y. The span of X
is the set oX.
A matroid can be determined uniquely by its hyperplanes, rank

function or closure operator.



Hyperplane Axioms:

A set I of subsets of F is the set of hyperplanes of a matroid on [
if and only if
: | | L
(51) 12 Hi>H, e Hana H, < H,, then H, = Ky |
(H2) 1If H'T,H2 e b, and if x ¢ H1 UH2 and y € H1—H2, then there exists

H3 e [ such that y é‘H3 and H3 E (H1 nH2)U{X}.'

Rank Axioms:
A function p: 2E +Z is the rank function of a ﬁlatroid on F if and
only if‘ ‘ \
(R1) 0 < oX =< |XI5
(R2) If X< Y then pX < poY;
- (R3) (Submodularity of the rank function)

For any X,Y < E, oX + oY = p(YuY) + o(XnY).

Closure Axioms: . : . ~

A function o: 2F + 2F ig the closure operator of a matroid on E
if and only if
(k1) X g oX for all Xc E;
(k2) 1f X< Y, then o)X c oY;
(x3) q(OX) = oX;

(k4) If x e o(Xuly}) and x ¢ oX, then y e o(Xulx}).

Where we are dealing with several matroids, the sets of independent
sets, bases, circuits and hyperplanes of M will be denoted by IM), B(M),
C(M) and H(M) respectively. The rank function of M will similarly be

denoted by pM.

The dual of the matroid M = (F, B) is denoted by M*, It is the
matroid (E, B¥), where B* = {E-B: B e B}. Clearly (M¥)* = M,
It can be shown that ( is a circuit of M if and only if F-( is a

hyperplane of M*.
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A circuit of M¥ is also called a co-circuit of M, a base of M¥
is called a co-base of M and so on. In particular, a loop of M* is
called a co-loop of M. A co-loop of M is an element of | which is
an element of every base of M or, equivalently, of no circuit of M.

The rank function of M* is denoted by p*. If A c [, then

o*A = Al + o(F-A) - oF.

Isomorphism of Matroids:

M, o= (ET’ 11) and M, = (E2, :{2) are said to be isomorphic, written
M, 2N, if and only if there exists a .bijection <1>:E1 > E2 such that,
for {x1 sXps e e ’Xm}¢ c E1 R

.{x1 ,x2,_...,xm}€ 11 if and only if {4?X19¢X290--:¢Xm} € 12'

Operations on Matroids:

RESTRICTION:
Let T < E. Then the restriction of M to T, denoted by Mx], is the
matroid (T, J') with set of independent sets J' = XeI: XcTh.

r T

of X from M. If e is a loop or one of a pair of parallel elements of

E-X for some X E E, we often refer to Mx] as the deletion

M, the deletion of {e} is called an elementary simplification of M.

If M is a non-simple matroid, the simplification of M is the simple

matroid obtained from M by successive elementary simplifications - i.e.
the simple matroid (.. (MX(E—{e1}))><([_-__—{'e1 ,82}) )%, . .><(E—{e1 seeese 1)

where e is a loop or one of a pair of parallel elements of

A
A

2€5-1 i<m).

Mx(E-{e ,..vse; 1), (1

CONTRACTION:
Let T < .  Then the contraction of M to'J, denoted by M.T, is the
matroid (T, I") with set of independent sets I", where

I"={X eX: XuA ¢TI for some maximal independent subset AcE-THX
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"If T = E—-X for sdme X < E, we often refer to M_T as the contraction

or conmtraction out of X from M. -

It is easy to check that (Mx])* = M*,T..

Let M" = M.(E-X). Then, for A < F-X,

A = o (AN = oK.

A minor of M is a matroid obtained from M by a sequence of
restrictions and contractions.

If X and Y are disjoint subsets of E, then

(x(EXD) - (E-O0V) = (. (EVI=(E= (X))
In other words, the matroid obtained from M by the deletion of ¥ and the
contraction of Y is independent of the order of the operatiohs of
- deleting X and contracting Y Thus, every minor of M may be written

as (MxA).B or as (M.X)xY for suitable sets A, B, X, Y < E.

The "scum theorem" of Crapo-Rota [6] states the following:
Irf M1 is a simple minor of the simple matroid M, then
Mooz (MA)B where.rk(M1) = rk(M.f\) for some A,B c[.

A set of forbidden minors for a class fti of matroids is a set

f of matroids such that M ¢ m if M contains a minor |

isomorphic to a member of f.

TRUNCATION:

Let M be a matroid on [, and let t+ < rk(M). Then the t=truncation
' (t) . . (t)y . oo
of M, denoted by M"~’, is the matroid (E, I'~’), with set of indep
endent sets I(t) = {Xel: [X]|= t}.

Our method for obtaining truncations is that used by Piff [21].

DIRECT SUM:
Let M, = (E1, }:1) and M, = (Eg', 12), where E1nE2 = ¢. The

direct sum of M, and M,, denoted by M, @ M,,is the matroid (E, 1), where



E=E b |
I-= ; - T
o2 {I1U12. 11 € I,I, 12 € 1.2}.
A matroid M is said to be connected if, for every representation
M=M @M, with M, and M, as above, either E,l = ¢ or E2 =

A connected component of M is a maximal subset [' c F such that MxE'

is connected. Equivalently, the matroid M on the set is connected
if and only if for every pair of elements {X’y}i‘é <k, {x3yYe C

for some ( ¢ €(M). It is easy to show that

PM1 @_1\_/{_2(/\) = pM1 (‘AnE1) + DME(AnEz), for any A < E.

DILWORTH TRUNCATION:

Let M be a matroid on [ with rank r, and let ! denote the set
' _pr+l .
of (k+1)-flats of M (0 < k < r, where F* ! is defined to be $).

Then the level-k Dilworth truncation of M, denoted by Md’k, is the
d,k

matroid on the set F , where a set A c Fkﬂ 1s 1ndependent in M
if and only if either A= ¢ or

p(v@) = |G| + k for each non-empty subset G of A, where
vG denotes the supremwﬁ in M f the flats §J ¢ G -"i.e‘. that flat of
M which contains each § ¢ G as a subsét, ana which is minimal with
respeét to this propezji;y. For a pr‘bof that the above definition does

define a matroid, the reader is referred to Crapo-Rota [6].

Special Types of Matroid:

UNIFORM MATROID:
Let M = (E, L) ve the matroid on F, with I= {X c E:|X| < r}, for

some r < |[E|. Then M is called the uniform matroid of rank r on

the set E. It is easy to see that all uniform matroids of rank r

on sets of n elements are isomorphic; the notation Ur n is used to
b

denote the uniform matroid of rank r on n elements. The uniform
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matroid of rank r on the n-set X is denoted by U, n()(). The free
’ b .
matroid on [ is the matroid Un,n(E?’ where n = ,E!

FANO MATROID:
This is the matroid on seven elements {a,b,c,d,e,f,g}é with
circuits {a,b,f}, {a,c,e}, {a,d,g}, {b,c,d}, {b,esg}, {csf,g}, {d,e.f)

and all b-subsets of {a,b,c,d,e,f,g} containing none of these.

NON-FANO MATROID:
This is the matroid on seven elements {a,b,c,d,e,f,g}#,with
circuits {a,b,f}, {a‘:cae}s {a,d,g},'{b,c,d}, ‘{baeag}s. {c,f,g} and

all ll—‘.s‘ubse’t;s of {a,b,c,d,e,f,g} containing none of these.

REPRESENTABLE MATROIDS:

A matroid M= (E,T) is said to be linearly representable (or

representable) over a field F if there exist a vector space V(n,F)

of dimension n over F, and a function ¢':E + V(n,F) such that, for

any subset {x1 sXpsees ’xm}# < Es

<

{x1,x2,.. .,xm} € J if and only if {¢x1,¢x © 30X} is linearly

2, .0
independent in V(n,F).

M is said to be representable over the characteristic g if there

exists a field of characteristic q over which M is linearly rep-

resentable. The characteristic set of M is the set

{q: Mis repfesentable over characteristic q}.

A binary matroid is one representable over GF(2).

A ternary matroid is one representable over GF(3).

" BASE-ORDERABLE MATROIDS:

A matroid M = (E, B) is said to be base-orderable if, for each

vair of bases B1,B2 € B, there exists a function 6 Bi > Bos
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depending on B1 and B2, such that

(i) o is 1-1;

(ii) for each b ¢ B1’ both (B{—{b})u{eb}‘ and (B24-{eb})0{b} are bases of M.

A matroid M= (E, B) is said to be fully (strongly) base—orderasble

if, for each pair of bases B1 ,Bge B, there exists a function (9:]31 + By»
depending on B1 and Bgv, such that

(i) 0 is 1-1;

(ii) for each X c B1, both (B,I—X)U{ex: x ¢ X} and (Bg‘-{@x: x e XHuX

are bases of M.

TRANSVERSAL MATROIDS:
Let | be a finite set, and let A= (Ai: i ¢ I) be a finite family

of subsets of . A partial transversal of A is a set {x;:iedc I}#

of elements of [ such that X, € Ai for each i € J.
It can be shown that the set of pé,ftial transversals of A forms the

set of independent sets of a matroid on E. Such a matroid is called

the transversal matroid on [ associated with the family A.

An important theorem (seg, for example, Mirsky [20] for a proof of
this) states that if r is the rank of the transversal matroid M
associated with the family A, then there exists a subfamily A' of A
such that (i) each partié.l transversal of Ais a partial transversal of

A
(ii) there are .exactly r members of the family A'.

If‘X < |, we shall use A(Y) to denote the subfamily
(Ai: X € Ai for some x € X).. |

TWO results we shall be using 1ater (see Mirsky [20] for proofs)
are:

If M is the transversal matroid on F associated with the family A,

and X < [ is independent in M, then, for each subset Y € X,



| &) = |Y]

If X c E is a circuit of M, then >]E¥X)! < |X]-

GAMMOIDS:

Let T be a directed graph without.multiple directed edges on the
vertex-set V, and let By c V. Aset BV is.said fo be linked into B,
if there exist pairwise-vertex—-disjoint directed paths from B to B
such that each element of B is linked by one such path to an element of

B It can be shown (e g Piff [21] ) that the set of subsets of V

0
vhich can be linked into BO forms the set of independent sets of a

matroid on V. Such a matroid is called a strict gammoid. A gammoid

is a restriction of a strict gammoid. The properties of gammoids that
we shall be using are:
(i) a strict gammﬁid is the dual of a transvérsal matroid;
(ii) the class of gammoidsfisAclosed under fhe operafion of dualising;
(iii) the class of gammoids is closed under the operation of taking minors;
(iv) the class of gammoids is the class of contractions of transversal
matroids;
(v) gammoids are representable over every characteristics
(vi) gammoids are base-orderable;
(vii) gammoids are fully base-orderable.
Proofs of these results can be found in Mason [17], Piff [21] and

Ingleton and Piff [15].

WHIRLS:

This class of matroids was introduced by Tutte in [2T7]. For n > 3,
the whirl Wn is defined to be the matroid on the set
En = {8gs8y5+ 58, _15bg,b.5 "’bn—1}¢ with circuits

Ci = {a;,8; 4505} (mod n) (0 < i < n—1), the minimal members of
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< pe1).
~1’ai} (0 £i < n-1)

{%Ci: I ;{0,1,2,...,11—1}} and the sets {by,b,,...,b

It is casy to check that Wq is a gammoid for n = 3, that WP is

ternary, and that Wn is not binary.

SUBMODULAR AND SUPERMODULAR FUNCTIONS:

Submodular functicns play an important part in matroid theory,
‘and especially so in the theory of generalised hypergraphic matroids.

Let [ be a finite set. A function wu: oF 7 is said to be
submddular (called semi-modular in Crapo-Rota [6]) if, for each pair of
sets A,B =B, A + uB = u(AuB) + u(AnB).

A function w: 2F > Zis Said*to be supermodular if, for each
~ pair of sets A,B E_E, vA + uB < u(AuB)+ u(AnB) .
| A function u: oF +Z is said to be modular if,‘for each pair of
sets A,B = E, wA + uB = u(AuB) + u(AnB).

An example of a submoduiar function is the rank function of a

A~

matroid. An example of a supermodular function will be given in

Chapter 4 - the v-function. The cardinality function is an example

of a modular function.

GRAPHS AND HYPERGRAPHS:

The terminology of graph theory is fairly standard, and we shall
not reproduce it here. Full details can be found in Wilson [29]
or Harary [11]. Note, however, that Harary does not allow loops
or multiple édges (his graphs are simple graphs); when dealing With
matroids, it is préferable to allow these, and so we shall not restrict
ourselves to simple graphs. A graph with loops or multiple edges is
called a pseudo—-graph by Harary.

The terminology of hypergraph theory is far.from standard - indeed,

each author seems to have his own definitions, and may even change his
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definitions from paper to paper. We therefore present our basic
definitions here. Other definitions, whose motivgtion will becone
clearer in later chapters, are postponéd until then.

“In essence, a hypergraph is a get of vertiées, together with
a collectién of subsets of vertices, called edges. This definition
is used by many authors, but will not.be_entirely suitéble for our
purposes. We shall need to allow "multiple edges" - i.e. different
edges which have the same vertex-set - so ﬁe define a hypergraph by

means of an incidence relation as follows:

DEFINITION 1.71: A hXEefgraph H is an ordered triple (V,F,$) of sets, where
V is a finite, nonempty set of elemeﬁts called vertices;
F is a finite set of elements called edges;
VoE = ¢;

and $ is a subset of VxE called the incidence relation of the

hypergraph.

A vertex V e V is said to be incident with e ¢ F if and only if

(V’ e) € $-
Two edges e1 and e, are sa1d to be adjacent 1f there exists

V € V such that (V,ei) e$ (1i=1,2)..

Notation:

‘Where possible, we shall use the following conventions in
connection with hypergraphs, as has been foreshadowed by earlier
definitioﬁs:

Upper—Cése Roman letters will denote vertices - e.g. A, B, A]’ Bn"
Upper-Case Italic leﬁters will denote sets of vertices - e.g; v, W.
Lower-Case Roman letters will denote sets of edges, or elements Qf

a matroid - e.g. e, a, b1, X
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Uppér—Casé I.B.M. Orator type—fécé letters will denote sets of edges,
orvsets of elements of a matroid - e.g. A; X; E;

Those symbols to which special meaning are attached will not be
used iﬁ the above connection.

Where several hypergraphs are.being_discussed together, the
vertex-set and edge-set of H may be.denoted,by V(H) and E(H? res-

pecfively.

‘The vertex-set in H o% the edge e, denoted by VH(e) is the set
{VeV: (V,e) € $3. |
" If A c |, the vertex-set of }| in H, denoted by VH(A) is the
set i{VH(e): e e A}. '
It is often more convenient to describe H in terms of its
vertices, edges'and the vertex-sets of its edges.‘ If this is done,
$ is understood to be defined as {(V,e): V ¢ VH(e), e ¢ Es.
Where there will be no confusion, the subscript H will be dropped.

The set A c | is.said to span W c V if W c V(7).

If |V(e)| = k for cach e ¢ F, H is said to be a uniform hypergraph

of cardinality k, a k-uniform hypergraph, or simply a k-hypergraph.

The value k is called "rank" by Berge in [1], but this term is
unsatisfactory when we are also dealing with matroids.

H is said to be simple if V(e ) # V(e,) for e, # e,

If H is a simple hypergraph with |V]= p and {V(e): e « Ey is
equal to the set of all k-subsets of V, then H is said to.be the

complete k-hypergraph on V, denoted by Ki.

IfE' ¢ F and §' = {(V,e) € $: e ¢ F'}, then (v, F, $;) is

called the strict subhypergraph of H induced by L', With the same

notation, (V(E'), E', $') is called the subhypergraph of H induced

by E', and is denoted by HE,; Note that Berge calls our "strict

subhypergraph" a "partial hypergraph", reserving the term "subhypergraph™
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for a hypergraph obtained in a particular way from»a subset of V.
We prefer to use the name inspired by graph theory.

If V' < V, we define Epr to be'{é e F: V(e) ¢ V'}, and
>$V' to be {((V,e) € $: e ¢ EV'}' Then (v, EV" $V') is called the
resfriction of H to V', and is denoted by H|V'.

A cycle of the hypergraph H is a sequence of edges and vertices
of H (Vo’e0°v1=e1='"=Vn-1’eﬁ—1’vo) such that

V; e V(ei)nV(ei_1) (mod n)

Viv¢ Vj for i # j

W

e; # e for i # j.

The edge-set of the cycle is the set {éo,e1,...,en_1}.

‘Hypergraph isomorphism has been defined in several ways; we shall

be concerned only with the following:

DEFINITION 1.2: The hypergraph H, = (Vi,;E1, $1) and the hypergraph -
H2 = (V,, E2, $2) are said to be isomorphic if there exist
bijections <I>:V1 > V2 and G:E1 > E2 such that

VH2(ee) = {¢V: V ¢ VH1(e)} for each e e .

To assist in the presentation of matroids and hypergraphs, we
shall often use pictorial representations. For matroids, we shall use
Euclidean fepresentation (in which 3 dependent points lie on a liﬁe, ete.).
‘For hypergraphs, we shall adept the method used by Crapo-Rota [6], in
"Which edges are rcpresented as shaded-in faces of a (not necessarily
plane) graph.

For example, the hypergraph with edge-set {a,b,c,d}, where
V(a) = {A,B,F}, V(b) = {B,C,D}, V(c) = {A,C,E} and V(a) = {D,E,F},

could be shown as the shaded octahedron in Figure 1.



Before embarking on our construction of hypergraphic matroids,
we should mention that Berge [1&2] and Helgason [13] have each
prodﬁced matroids defived from hypergfaphs.

Berge's matroids have as ground-set the vertex—-set V of ﬁhe
hypergraph H, and rank function p where pW = max{|WnV(e)|:e é E}
for ¥ ¢ V. In particular, this gives rank 2 to all matroids
derived from graphs.

Helgason is concerned with colouring hypergraphs. This is a
different approach from ours, and yields a different ﬁatroid. This
follows immediately from the fact that the class of hypergraphs on
which Helgason defines hié matroids (those with "geometric colouring
closure", which we shall define in Chapter 10) does not contain ali
uniform hypergraphs; But, even for a uniform hypergraph which does
have geometric colouring closure, the matroids need not coincide.
For example, consider the hypergraph shown in Figure 1. This has
geometric coloﬁring closure, and the matroid produced by Helgason has
rank 3. But, anticipating Chapter 2, we éan see that the hyper-
graphic matrcid we define has rank L.

Thus the three methods of obtaining matroids from hypefgraphs

do not coincide.
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CONSTRUCTION OF

HYPERGRAPHIC MATROIDS

Throughout this chapter, we shall use H to denote the k-hypergraph

.+, A}, We shall not,

(v, E, $) (x > 2) on the set V = {A1, Ay - 7

in general, assume that H is simple.
We know that if H is'a graph, then the cycles of H determine the

circuits of a matroid on the set of edges of H, called the cycle matroid

'of H.  However, for the purposes of generalising the construction to
hypergraphs, it is mére satisfactory to consider the forests of H, the
set of which is the set of independent sets of the cycle matroid.

Now, a set A of edges of the graph H is‘a forest if and only if
either A = ¢, or |V(G)] > |G| + 1 for each non—eﬁpty subset (3 of A.
Since a graph is a uniform hypergraph of cardinality 2,.we make

the obvious generalisation.

DEFINITION 2.1: TIet H = (V, E, $) ve a k-hypergraph.with k = 2.
A E,E is called independent if and only if either
G oA = e | |

or (ii) [V(G)| > |G| + x = 1 for each nonempty subset § of A.

A set which is not independent is called dependent.

There is a very short proof that the independent sets defined
in (2.1) do form the independent sets of a matrcid on the set F. This

method is used by Crapo-Rota [6] and is a frequently-used technique.

Define a set-function ¥:2FE +Z vy v(A) = |V - (x - 1)
for ACE. Then ¢ is an increasing, integer-valued set-function,
which takes the value 1 on elements of [. Furthermore, ¢ is sub-

modular. A theorem proved by Crapo-Rota shows that ¢ defines a matroid
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(Hl;E the independentvsets of which are those AEEE for which

eithérA =¢ or ¥(G) 2 |G| for each nonempty subset Gof fA.

Tﬁis,is precisely the definitibn of ihdependent sets given in (2.1).
For a simple hypergraph on V, this is equivalent to proving that

the level-(k~1) Dilworth truncation of UPaP(V) is a matroid on the

k-~subsets of the p-set V, and then restricting this mgtroid to the

éubset {vie): e € E} of thié segrofrk—subséts' VHoﬁéver, fhis ﬁethod of

proof does not bring 6ut any of the similarities to graphic matroids.

We shall therefore prove this result again, using an approach derived

from greph theory.

DEFINITION 2.2: An independent set A is said to be critical if

|V(A)| = A+ x - 1.

LEMMA 2.3: If (< F is a minimal dependent set, then:
(1) |v(C)]
(ii) v(()

[C[+ k - 2;

V(C-{e}) for any e € (, and hence every vertex

V e V(() is an element of the vertex-sets of at least two
edges of C;
(iii) C-{e} is critical for any e ¢ (.
Proof: Let e be any element of (. Then, by minimality of (C,

‘fc~{e}!+ k-1

[\

(-{e} is an independent set, so |V((-{e})]

IC] +x - 2.

Also, since ([ itself is dependent, there exists a nonempty subset
A € C for which |V(A)|< |[A] + x - 1. Since this cannot hold for any
proper nonempty subset of C, [V(C)|< |C] +x - 1. .

Combining these two inequalities,
ICl +x~1 >[v(0)] = [V(C-{eD)| = |C] + k ~ 2 ().
Thus, eduality holds throughout, and so [V(()| = |C| + x ~ 2,

V(C-{e}) = V((), and, since this holds for any e € (|, there exists



 Thus, from (3), VOO uv(Y) |
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no V. eV(() such that Ve V(e) for only one ee€ (],
Mso, from (1), |[V((~4e)] = [C-{e}}] + k ~ 1, whence, since (¢}

is independent, (-{ =} is critical.

LEMMA 2.4 Let X,Y < F be critical se
Then !V(XuY)l sl)(uY [ +k - 1.

f, in addition, }yY is independent, then YyY is critical.

Proof: We have, since X and Y are critical, |V({)| = [X| +k ~ 1 (1)

|V

| Y| +x-1 (2)
CASE I: YaY # 4.
Then V()aV(Y) o V(YY) ow, XaY X and so, by (2.1), ¥oY is
independent. Therefore, |V(XaY)| > [MaY|+ k ~ 1.
Thus | V(X)nV(Y)] = |XaY| + % - 1 | _ ' | | (3)
0ASE TT: XY = 6. | | |
Then (3) follows from the hypotheses of the Lemna.
Now, from (1) and (2), [V(X)| + [V(Y)| = 2k + |X|+ |Y| i
e VOOWYY) |+ [V aV(Y) | 2k + [XuY] + |XnY| - 2.
IXoY] *+ % - 1.
But, V(XuY) = V(X)uV(Y), so [V(XuY)| < |XuY| + &k - 1.

I

If, in addition, XyY is independent, the reverse inequality holds,

and so XUY is eritical.

DEFINITION 2,5: If W is a set of vertices of H such that ¥ = V(A)
where A c [ and A is critical, then (¥, EW’ $W) is called a

fragment of H,

LEMMA 2,6: If (U, EU’ $U) and (J, EW’ $W) are fragments of H with
|Unk| 2k - 1, then (UUW, F . 8% ) is a fragment of H,
UuWw  UuW
Proof: Let U= V()) where X € F and X is critical, and let

W=V(Y) where Y < [ and Y is critical,
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Then |[V(X)aV(Y)] = k- 1, and so, by (2.4) [v(XuY)l< IXuYl +x - 1.

If XuY is independent, then, by (2.4) it is critical, and we are done,
since then yuW = V(XuY) where XuY is critical. It

XuY .is dependent, theﬁ there exists a minimal dependent subset of XuY,
T, say. Then, vy (2.3),{V(T)} = ITI +k - 2, vPick e, € 7. Then
;v<T-{e1}) = v(T). et X; = X-{e;}, Y, = Y-{e,}. Then V(X.uY,) = V(XvY).
We claim that lV(X1uY1)I < IXTUY1l +k - 1.

For, suppose not. Then IV(X1uY1)I > |X1UY1I +k - 1, and so, from
VKUY T > X oY+ & =

XYl + & - 2.

IXoYl + k& - 1. (1)

]

the above, IXuY! -+ k = 1 > [V(XuY)I

| V(YY)
We shall show that this implies that XuY is independent, contra- .
dicting our hypothesis that it éontains a dependent subset.
Since |V(X)| = IX] +k - 1 and |[VIY)| = |Y] +k - 1,
VOO1 + 1Y ' XL+ Yl +2x -2
S IV + V0T XY I+ 1KY+ 2k - 2
.". from (1), [V(X)aV(Y)] IXaY] # k - 1 L (2)

CASE I: XnY = ¢. Then [V(X)aV(Y)] =k - 1.

L1}

Let X' < X, Y! S.Y'. Then, by (2.1), both X' and Y' are indep-

endent. Assume X' # ¢, Y' # 4.

Then VXD ]+ (v(Y") | X+ Y]+ 2k -2

- IVOXToY") ]+ VOV (Y ) = 1X'uY' ] + 1X'aY' | + 2k - 2.

Now, X'aY' < XaY = ¢, and V(X" )aV(Y"') < V(X)av(Y).

. VXY ]+ k- SIX'uY'] + 2k - 2

V(XY | Il k- 1 . (3)

If either X' or Y' is empty (but not both), the inequality (3) follows
from the independence of the nonempty set. Since (3) is true for every

nonempty subset of XuY, by (2.1) XuY is independent.
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cASE T1: XY # 6. Then oY is independent, since it is a subset of the
independent set X. Thus, |[V(YXaY)l> IXoY| +k - 1. |
Now, V(X)av(Y) 2 V(XaY), and, from (2), [V(X)aV(Y)| = [XaY| + k - 1.
Thus [V(XY) | = [XoY| + k- 1.
Suppose XuY is dependent. Then there exists a mihimal dependent
subset X'uY' of XY, where X' c X and Y' ¢ Y. Since X and Y.are
iindieprendrent, X' # ¢ and Y' # 6. Now, by (2.3),
VX 0Y') | XY k-2,
LOWOOTE VO OO T = K Y XY 3 - b
L OO+ VOO oY) | | |
=YL XYL+ XX oY)+ 3k - b,
Now, X' < X» 50 V(X') & V(X), and VOXIWO'oY') = VOY').
. |V(V)| + [ V(XeY") | + |V X)nV(X' uY') | ,
= Y1+ KoY L+ [Xa(X oY) | P
S VYOV (XY |+ IV(Y)nV(XUY |+ OOy |
=IYuXoY" 1+1Ya(XoY )|+ [X(X oY) | + 3k - b
T VXY T+ V)V (XeY ) |+ V0 av (XY ) |
| = IXOY1 + IYa(XoY") 1+ [Xa(X oY) + 3% - b,

Therefore, from (1), '

IVY)av(XuY') | + IV(X)nV(X'uY')l ,

| = YalXoY") | + [Xa(X'0Y')] + 2k - 3 (k)
Now, [V(Y)nV(XUY )i = V(YalXoY')) |

' 2]Ya(XuY")| + k = 1 since YAXuY")nY 2 Y' # ¢.

Similarly, [V(X)aV(X'uY')] > > [ Xn(X"Y") | + k- 1.

VYDV (XY 1+ [V(XDav(X oY) |

| 2 YYD F Xa (XY ]+ 2k - 2,

vhich is a contradiction of (). '

Thué, there exist no such sets X' and Y', and so XuY is independent.
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'But, bynhypothesis, XQY is dependent. Thus; |V(X1UYi)|g[X1UY1|+k—1.
Hence, V(Y0¥ )| < IXjo¥,l + k-1 = [XoYf] + Xk - 2. '
Now, either X1UY1 is independent, or it contains a minimal dependeng
subset T1, say. In the latter case; let e, ¢ T1, and write X2= X1—{€2},
Y2 = Y1—{e2}. We now repeat the above procedure, Vith X1aY1 in»place of

X;Y and X,,Y, in place of X1,Y15 to show that e;ther XQUng%S indép_

thus continue to repeat thé procedure, deleting an element from a

minimal dependent subset, as long as XiUYi is dependent.

Now, at stage i we have ]V(XiuYi)ls IXuY] + k = (i+1) (5)
Since |V(XiuYi)[ = |V(XuY) |, the process must eventually stop, since all
sets are finite. Thus, there exists r for which XrUYr is independent

and so ]V(Xqur)|z|XrUYr| +k - 1.
From (5), we have IV(Xqur)]s IXuYI Ttk (r+1) = erUle +k - 1.

Thus, X uY,. is critical, and puw = VX oY) -

$ ) is a fragment of H.

Thus - (0ull> By 850

LEMMA 2.7: Let ] be a subset of the edges of H, and let H' = HA be the
subhypergraph of H induced by A. Then there exists a unique partition

of A into G1,62,...,Gn such that H. is a fragment of H' for each i,

1

with the property that, if (J, EW’$W) is a fragment of H', then EW E-Gi

for exactly one value of 1.
Proof:
(1) Existence of a partition.

Let the fragments of H' be (Ui’ EUi, $Ui)( ieI)
We may partially order the fragments of H' by inclusion of edge-sets - i.e.
(u;» EUi, $Ui) < (Uj, EUj, $Uj) if EUi < EUj . Let us call this order‘

"containment" of fragments. . Let the maximal elements in this partial
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order be H, = (v(G;). Gi, $;) (1 <1 <n).

i
By (2.6), if IV(Gi)nV(Gj)! >k -~ 1 for i # j, then (W,EW, $W) would
be a fragment of H', where W = V(Gi)UV(Gj). Thus, since the fragments

HG are maximal, |V(Gi)UV(Gj)| <k~-1fori#Jj. Hence, in particular,

GinGj = ¢ for i # j, and so the Gi partition . Also, by maximality,
every fragment of H' is contained in at least one of the HG 3 furthermore,

o o o Gy
since iV(Gi)nV(Gj)l <k - ifor i# j, every fragment of H' is contained

in at most one of the HG . Thus, every fragment of H' is contained in
i

exactly one of the H .

(ii) Uniqueness of the partition.

It (W, EW’ $W) is a member of a set D of fragménts of H', then
(W, EW’ $W) is contained in some maximal fragment HG , say. Ir B is‘
a paftition satisfying the conclusions of (2.7), apait from the
uniqueneés condition, then H is contained in a fragment (U, EU’ $U)
which is a member of B. Thuz, A EW’ $W) is“contained in (U, EU’ $U),
and so, by the requirement that every fragment,of‘ﬁ' is contained in
exactly one member of B, we deduce that (W, EW’ $W) = (vu, EU’ $U) = HGr.
Thus, evefy member cof B is a member of the partition described in (i).
Since every member of the partition described in (i) must be contained
in some member of B, and is maximal with respect to containment, B
is the set {H_: 1 <1 < n}.

G;
Thus, the partition described in (i) is unique.

DEFINITION 2.8: The fragments H. = (V(G,), G5 $;) constructed in
i
(i) of (2.7) are called the components of H'.
THEOREM 2.9: If X,Y are independent sets of edges of the hypergraph
H=(V, E, $), ana it [XI= IY| + 1, then there exists an edge

b ¢ X-Y such that Yu{b} is independent.
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Proof:  Suppose first that Y is critical. Then, since
XM=z IXI +x-1=|Yf +k= [V(Y)T + 1, there exists V e V(X)-V(Y).

Pick any edge b ¢ X with V ¢ V(b).  Then Yu{b} is independent, since

(1G] + 1) +k - 1

|Gu{b}| + kX - 1 for any nonempty
subset (3 of Y. ) |

Suppose now that Y is not critical. If there exists V ¢ vOO-v(Y),
then we pick b as in the previous case. Otherwise, consider the
subhypergraph HY of H induced by Y, and let G1,G2,...,Gn be the
partition of Y described (for the set A) in (2.7), such that
{H, : 1 <1 <n} is the set of components of HY.' Let]Gi[ =, (1<i<n).

i ,
Then V(Gi)-3 V(x) for at most r, edges x ¢ X, since X is independent.

A n
Thus, there are at most ,21(ri) = Y| edges x of X satisfying
is ‘

V(x) ¢ V(G;) for some i, 1 <i <n. Since IXI = 1Y] + 1, there
exists at least one edge b ¢ X‘With v(v) é;V(Gi) for any if | (1)
Now, ir Yu{b} were dependent, it'would contain a miniﬁal dependent
subset C. Since Y is independent, b ¢ C. writeY' = (- {b}. Then,

by (2.3)(iii), Y' is a critical set. Thus, HY, is a fragment of HY.
By (2.7), if is therefore contained in a component HG for some r.

In particular, V(Y') E.V(Gr)' But, by (2.3)(ii), :

V(b) ¢ V(Y'u_{b}) =Vv(Y") ¢ V(Gr), which contradicts (1). Thus,

Yu{b} is independent.

COROLLARY 2.10: The independent sets as defined in (2.1) are the
independent sets of a matroid on the edge-set [ of H.
Proof: (I1) follows from (2.1)(i);
(I2) Let X be an independent set, and let Y ¢ X. Then,'either
Y = ¢, or, since IV(G)] = |IG] + k = 1 for each nonempty

subset (5 of X,
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V(@)= |Gl +x ~ 1 fér each nonempty subset 3 of Y.
Thus, Y is independent.

(I3) foliows from (2.9).

DEFINITION 2.11: Any matroid isomorphic to one obtained by the

definition (2.1) is called a hypergraphic matroid. The hyper-

graphic matroid obtained from the hypergraph H is denoted by M(H).

PROPOSITION 2.12: If M is a hypergraphic matroid on the set § ana
S' < §, then MxS' isfhypergraphic.

Proof: Let M = M(H), where H = (v, F, $) is a k-hypergraph for‘some k,
and let ¢: S» F be the bijection which induces the isomorphism.

Let F' = {e ¢ E: e = ¢(s) for s ¢ §'}.

Let H!

(v, E's $'), where $' = {(V,e) ¢ $: e ¢ E'}. Then a set
A' < [' is independent in M(H) if and only if J\' is independent in
M(H). Thus, M(H') = M(H)xE'. So, since MxS'.z M(H)x[E",

MxS' =z M(H'), and so MxS' is hypergraphic.

We have already feferred to the complete hypergraph Ki. The

matroid derived from this, M(Ki), is what Crapo-Rota [6] call the

completed k-truncation of the Boolean lattice Bp (which is the iattice
of flats of the matroid Up,p)' This is because the lattice of M(Kg)
contains all the points of Bp from the k-sets upwards, together with the
necessary extra points to make the lattice geometric (the completion of
the lattice). The lattice point of fiew, however, brings out none of
the similarifies to graph theory, and we believe that it is more
natural to consider such matroids as arising from hypergraphs in the
way we have described. |

In the same way that it is sufficient to consider 1-connected
graphs in the study of graphic matroids, it is sufficient to consider

hypergraphic matroids derived from hypergraphs which are themselves

components. This result is the content of the next theorem.
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‘THEaREM 2.135 If M is a hypergraphic matroid, there exiéts a uniform
hypergraph H" = (", F', $") such that:
(i) M = M(H"); |
(ii) ( P, B, $") is a componenﬁ of H".
Proof: Since E is hypergraphic, there existsva k-hypergraph H = (15 F, $)
such that M EE(H). As in (2.7), partition [ into ’61’62""’Gn such
that H. is a component for-each i {1 <i <n). Form a new hypergraph
H', Whe;e H' has components Héi = (VH'(Gi)’ Gi, $i), such that
H' IVH'(Gi) zH IV (G;) for each i, and Vo (G v (G1) = ¢ for 1 7 3.
Extend the isomorphismtho a bijection between the edges of H' and H.
Then clearly independence in E(H) implies independence in' M(H'). Also,

a circuit of M(H) is mapped onto a circuit of M(H') since, by (2.3),

every circuit ( of M(H) satisfies ( < Gi for some i. Thus, M(H) zM(H').

Now, pick a set W of k41‘vertices in VH'(G%)’ and form a new
'hypergraph H" as follows: ~' :
Let V?, Vg, cees Pg be sets of vertices Withlpgl = IV‘,(Gi)I (1<)
such that Vgnpg = fori#j. Let ' = unvgu---UV;-
For each i (1 <i <n) define H; = (V;, G;, $;) - H'[V(Gi). (1)

Put " = G?UGEU...UGS and let $" = {(V",e"): (V',e') e $'} where i
A ié the image of V" under the'isémorphism (1), e" is the image of e
under the isomorphism (1), and $' = $%U$éu...u$g.

Define H" = (V", E", $"), and define a bijection between [" and ['
by the extension of the isomofphisms (1). |

Now, since !V(Gg)nV(Gg)I =k - T for i # J, HE" is a component
of H". Clearl& independence in M(H") implies indépendence in M(H').
Suppose that X' is an independent set in M(H'). If X' = ¢, then.
ﬁhére is nothing to prove. Assume, therefore, that X' # ¢ and let
A' be a nonempty subset of X'. Denote by A", X" the images of A',

X' respectively under the bijection between " and ['.
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Let'Bé :'A'nGj (1 <Jj <n), and let'{Ai: 1 <1 <m} be the set of
Bj which are nonempty. Then, since V'v(Gi)”V ,(Gé) = ¢ for i #j,
W (A1 = G AT+ T ()] * e+ T, (A

Thus, (using V( ) to denote vertex-sets in H") we have

IV(AJuAZU- - -UAD) | = IV(ATUASU. . UAY) -] 5 v (ATu. . .upD) |

Y

V(A | =

= |V(/.\'1‘)—W| + IV(AS)—WI oo+ |V(A;I'l)—p/| +|Wn(uAg)l

= VAT + VAR + e+ VAT - VAN Rl = [V(AS) W -
= IV(AR) AR+ eV (upL) | . | |

= IV ADT + e+ 1V (AD 1= (VA o] o V(R k)
+ WAV (oA | |

> [A{] +k -1+ .., + IAILI +k -1 (since Ai is independent
'—(IV(AQ)nW1+...+IV(A;)nWl) and nonempty for each i)
(oA | | |

= AL+ . +IA&I + m(k=1) = m([V(uAY)nR]) + [V(UAg)nwl
|M|+“.ﬂ%|}k—m -

Since this is true for each nonempt& subset A" of X", X" is indep-
endent in M(H"). Thué, M(H") = M(H') E‘M(ﬁ) = M as required.

It is therefore sufficient, when dealing with hypergraphic matroids,
tc restrict our attention to hypergraphs consisting of only one

component.

DEFINITION 2.14: A hypergraph H = (V, [, $) is said to be critical

if (V, F, $) is a component of H.

The reason for using the term "eritical" for the hypergraph H
itself, is that every base of M(H) is a critical subset of F, and that
V(H) is spanned by F. From the foregoing results, it is clear that é
‘critical set in a hypergraph is the analogue of a tree in a gfaph.

The motivation leading to (2.1),and the proofs following, show that
an independent set in a hypergraph is the analogue of a forest in a

graph.
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" As an example of the construction of (2.13), consider the hyper-
g;aph H with vertex-set V‘='{A,B,C,D,E,F,G}# and edge-set
E%= :{a,b,c,d,e}i » where V(a) = {A,B,C}, V(b) = {A,B,D},
V(e) = {4,C,D}, V(d) = {C,E,F} , V(e) = {D,F,G}.

This hypergraph is shown in Figure 2.

: ) \ i | _
E%%/%G |

 Figure 2.
This has three components, whose edge-sets are {a,b,c}, {d} and {e}

respectively. The rank-I matroid M(H) is shown in Euclidean represent-

ation in Figure 3.

o€

de

[
Figure 3
The construction of (2.13) first gives a hypergraph H' with
vertex—-set V' = {A',B',C',D',C’,E’,F’,D*,F*,G*}# and edge-set
E' = {a',b',c‘,d',e'}#, where VH,(a')=‘{A',B',e'}, VH,(b') ={A'",B',D'}
VH,(c') = {A',C',D'} VH;(d*)= {C*,E”,F*} and VH,(e') = {D¥ ,F¥ G¥}.
Then, taking W = {C',D'} say,.we obtain the critical hypergraph

H" with vertex-set {A",B",C',D‘,E",F"}# and edge-set F" = {a",b",c",d",e"

where V(a") = {A",B",C'}, V(b') = {A",B",D'}, V(c") = {A",C',D'}
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v(a") = {C',D',E"} and V(e") = {C',D',F"}.  The hypergraph H" is
shovn in Figure 4. It is easy to see that, under the obvious bijection

between the edge-sets F.and [", M(H) =z M(H").

It follows from (2.6) that no subset of V with cardinality k-1
can be contained in the vertex—set of more than one component of a
khypéfgraph; In a sense, therefore, these (k-1)-subsets are
partitioned by the components of the.hypergraph, in a similar way to
the partitioning of tﬁe vertex-set of a graph by the vertex-sets of
the components of the graph. We shall be using these (k-1)-subsets
often in subsequent chapters, and. we give those contained in the
veftex-set of some edée of the hypergraph the name of "nodes". More

formally:

DEFINITION 2.15: Let H = (V, E, $) be a k-hypergraph with x = 2, A
subset N ¢ V with |N|= k-1, and such that § c V(e) for some
e ¢ | is called a node of H. If | c [, the set of nodes
{N:w S.V(e) for some e e¢ A} is denoted by n(f\). We write

n(e) for n({e}). The set of all nodes of H is denoted by n(H).

With any k-hypergraph H, therefore, we can associate another
hypergraph of the same cardinality, whose vertéx;set is the set n(H),
whose edge-set is the set F(H), and an incidence relation "y is
incident with e if and only if ¥ g_VH(e)", We embody this concept in the

following definition:
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DEFINITION 2.16: Let H = (V, F, $) be a k-hypergraph, with k = 2 and

E# ¢. The node-hypergraph of H, denoted by N(H), is the hypergraph

(%ﬁ, Eﬁ? $N), Yhere Vﬁ = n(H), Eﬁ = [ and $N ='{(N,e}: N c VH(e)}.

EXAMPLE: Let H be the hypergraph KS on the set V= {aB,0,D b;-  Then
n(H) is the set of all 2-subsets of V contained in the vertex-set of
some edge of I - i.e., in this case, 8ll 2-subsets of V. N(H) is

shown in Figure 5. Some properties of node-hypergraphs will be
: j 2

' NON-UNIFORM HYPERGRAPHS:

So far in this chapter we have dealt exclusively with uniform
hypergraphs. We now consider briefly the non-uniform case, and show
that, under one possible definition for the associated matroid, no

non—hjpergraphic matroids result; wunder another possible definition

matroids are produced which fail to satisfy the desirable property

mentioned in Chapter 13 a third possible definition, which permits
loops, is one which we shall be using in Chapter 4 - however, every
matroid produced by this definition is either hyvergraphic, or is such
that the matroid formed from it by the deletion of loops is hypergraphic.

Essentially, therefore, no greater generality results.

It would be possible to apply (2.1) to non-uniform hypergraphs by
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droéping the requirémént th@t H be uniform, and teking k to be some
integer less than the maXimum cardinality of V(e) where e ¢ E.
However, if‘e1 and e, were such that V(e1)A= V(e2) and [V(e1)|~? |V(e2)l> k,
we would have'{e1,e2} independent in the resulting matroid which, as
they have identical vertex-sets is rather unnatufal. Indeed, that
such a set should bevdependent was the desirable property that we:
mentioned in Chapter 1.

An alternative, simplér, approach is to regard all edges with
vertex-sets having cardinality less than the maximum of |V(e)]| for
e € E as being loops; this is equivalent to dropping uhe requlrement
that H be uniform inv(2.1) and taking k to be the maximum cardinality
of V(e) for e € E. This is the extension we shall make in Chapter
L, in order to allow loops.

The compromise between these two extremes is to vary the value

of k, depending on the set of edges under consideration.

DEFINITION 2.17: _Le£ H'" = (v", E", $") be a hypergraph. A set
A" < E" is said to be independent if and only if either
’ (i) A"= '
or (ii) [V(G")I 2 IG"] - 1 + min{|V(e")]: e" ¢ (3"} for each nonempty

subset (" of A".

It can be proved directly that the set of independent sets
defined by (2.17) is the set of 1ndependent sets of a matroid on [".
However, we shall prove this in another way, which shows that no matroids

result which are not hypergraphic by our earlier definition.

THEOREM 2.18: Let H" = (V", E", $") be a hypergraph. Then there
exists a uniform hypergraph H' = (V', E", $') such that A" < E" is

independent in M(H') if and only if A" is independent according to (2.17).
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Proof: Put k = ﬁax'{lV wle™ ] e" e F"L . Let{ A1’A2""’AK’B1’B2}¢
be a set of vertices disjoint from V', and let V' = DﬂU{A1’A2""’Ak=B1=Bg}
Define H' = (7', F", $') to be the (k+2)—hypergraph where
VH,(e") = VH"(e")ﬁ{Ai: 1<i <k ;vIVH"(e"X}u{B1,B2}
Then IVH"(G")IZ IG*] - 1 + mih{lVﬂ"(e"X: e" ¢ ("} if and only if

vy, (67) 12 1671 + (w42) = 1
Thus, (2.17) defines the set of independent sets of a matroid M on>E";
and M = M(H'). We therefore obtain no new matroids satisfying
theAdesirable proﬁerty that two edges ﬁith the same vertex-set should
be parallel in any matroid obtained from the hypergraph.

Note that (2.17) has been included to show that it is possible .
_ to extend the definition of hypergraphic matroids to non-uniform
hypergraphs without requiring all edges with less than maximum
cardinality to be ioops. We shall not be using‘definitiéﬁ (2.17) in
future chapters, because it does not allow loops in the resulting
matroid. Our definition of independence ﬁill therefore continue to

be (2.1), until we modify it in Chapter L.

" We end this chapter by noting the connection between our definitions
and those of Berge [1]. Berge defines a hypergraph to be connected

if, for any two edges eqse of the hypergraph, there is a sequence of

t

edges of the hypergraph (e1,e ..,e,) such that e; and e. are

22 t 1+1

»adjacent for each i (1 £ i < t-1).

A critical bypergraph is connected in the sense of Berge, 5ut
there are hypergraphs cbnnected in the sense of Berge which are
not critical. For example. consider the hypergraph H on the set of 6
vertices {A,B,C,D,E,F}75 with two édges a and b where V(a) = {A,B,C,D}
and V(b) = {C,D,E,F}. This hypergraph is shown in Figure 6.
It is clearly connected in the sensé of Berge, but it has 6 vertices,

2 edges and cardinality 4. So WWE)N =6>2+h-1=]|F]+x -1,
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Hence H is nct critical, since M(H) has rank 2 and [ is a base of M(H).

A circuit ( necessarily‘contains the edge-set of a‘cycle, since, by
(2.3), every veftex in V(() is contained in the vertex—seté of at least
two elements of (. However, not every cycie is such that its edge-set
is dependent, and the hypergraph shown in Figure 6-pro§ides a suitable
" example. This also gives a reason why the cycles of a hypergraphrare
not appropriate as a starting-point for matroids. We have, in the
hypergraph of Figure 6, fwo edges which together form the edge—set of
a cycle. Thus, if any matroid were possible starting froﬁ the cycles
of the hypergraph, these edges would be parallel. But they do not have
the same vertex-set, which is contrary to the desirable property we
mentioned in Chapter 1. Our requirement for iﬁdependence ensures that
two edges are parallel if and only if they have the same vertex-set.

Another good reason for not using the cycles of a hypergraph to
attempt to define the circuits of a matroid is that there exist.
uniform and non-uniform hypergraphs, the edge-sets of whose cycles do

<

not satisfy the circuit axioms (C1) and (C2).
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CHAPTER 3

ELEMENTARY PRCPERTIES OF

HYPERGRAPHIC MATROIDS

In this chapter, we shall prove variqﬁs properties of ‘hypergraphic
matroids, and use these to sho{r that the Fano matroid and its dual are
not hypergraphic matroids. We also produce a generalisation to hyper—
graphs of the notion of a cutset in graphs, and show that the set of

cutsets of a hypergraph H is the set of circuits of the dual of M(H).

PROPOSITION 3.1: Let H = (¥, F, $) be a k-hypergraph. If A c E, A # ¢,
then | V() | - (k-1) 2 oA, where p is the rank funétion of M(H). |
If HA is a fragment of H, then (A - (k—i) = o/ |

Proof: Let A < | and let Bbe a maximal independent subset of A

Then p\ = IRl. Also, since B'is independent, by (2.1),

V(B |

L v(y |

If HA is a fragment, V(J) = V(]) for some critical subset ) c A

[\

;|Bl+k— 1. since V(A >V(R),

VRl =2 Bl +Xx -1 = pA+Xk - 1.

v

Therefore, pA+k -1 < V() |= (] I

i}

IDI + ¥k = 1 since ) is critical

A

IBl + k = 1 since Bis a maximal independent

subset of [

DA +k - 1.
Thus, equality holds throughout, and the second half of the

proposition now follows.

PROPOSITION 3.2: Let H = (V, F, $) be a k-hypergraph. If
C = {e1,e2,e3 }# is a circuit of cardinality 3 in M(H) then, under a
suitable labelling of the vertices, V(e1) =" {A,C}ul, V(ez) = {B,C}uW

and V(e3) = {A,B}UW, where {8,B,C},nF =¢ and {4,B,C}ul < V.
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Prodf: Since ( is a circuit, by (2.3), |V({e1,e2})l = V()| = x+t.
Since H is a k-hypergraph, IV(ei)!= k. (1 <i<3).
So, [V(ej)nV(e,)| =k = 1. Let V(e,) nV(e,) = U. Then V(e ) = {A}uU

and V(e2) = {B}UU under a suitable labelling of the vertices. Also
by (2.3),‘V(e3) cVv(() = V(e1)UV(62) = {A,B}uU.
Furthermore, since every vertex in V(() is contained in the vertex-sets

of at least two elements of (, {A,B} < V(eg).  Thus V(e = {A,B}UF

3)
for some subset W ¢ U with |W] =k - 2. Let {C} = U-W. Then

| V(e,) = {A,ChuW, V(ey) = {B,CIuW and V(e,) = (A,B}u.

PROPOSITION 3.3: Let H = (V, F, $) ve a k-hypergraph. If ( is a
circuit of cardinality 4 in M(H), then, for any e ¢ (, there exists
e' € C sﬁch that IV(e)nV(e')l;= k - 2, and V(e)uv(e') = V((). 7
Proof;. Let ( = {e,e1,e2,e3}¢. Then, sincg C is a circuit, by (2.3),
V)
Iv(e)l

i

IV({e?e1,e2,e3})| = k+2. Since-H is a k-hypergraph,

]V(ei)l =%k (1 <i<3). Thus, IV(e)nV(ei)I > k-2 for each
i, 1 £1i <3, If striet inequality holds for each i, then, since ( is
a.minimal dependent set, IV(e)nV(ei)l =k -1 for each i.

' Suppose this is so. . Since‘{e,eT,ez} is critical (by (2.3)),
IV({e,e1,e2})l =k + 2. Thus, there exist vertices Ve V(e1),
v, € V(e2) such that V, ¢ V(e)UV(eZ) and V, ¢ V(e)UV(eT).
But, by (2.3), {V1,V2} < V(e3), $0 !V(e3)nV(e)l < k-2, which is a
contradiction.  Thus, there exists e' e ( satisfying |V(e)nV(e')| = k-2.

But then |V(e)uV{e')| = k+2, and so V(e)uv(e') = V(().

(3.2) and (3.3) are not of any great interest in themsslves
(except that they mirror the behaviour of circuits of similar sizes in
graphs), but they are of considerable use in constructing hypergraphic
presentations of matroids, if such presentations exist, or in proving

that certain matroids are not hypergraphic.
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g Tt is routine to check that all matroids on at most six elements

are hypergraphic.

TﬁEOREM 3.4: Let M be a matroid of rank 3 on the seven-element set
E= {a,b,c,d,e,f,g}#. If theiset of circuits of M contains
{a,b,c}, {a,d,e};'{a,f,g}vand no other sets of cardinality 3
containing a, then M is not hypergraphic.
Proof: (1) We prove first that M is simple.
Since each of the seven elements of [ is contained in a circuit
of cardinality 3, M is loopless. Suppose M has a parallel pair of
elements, {b,d}, say. Then, by (C2), there exists a circuit of M
contained in‘({a,b,c}u{b,d})—{b} ='{a,c,d}; This circuilt cannot be
{a,c,d}, since this is a set of cardinality 3 containing a. It
cannot be {a,c} or {a,d}, since both of these are properly contained in
circuits of M. it must therefgre be {c,d}. But theh b and c are
parallel, and so {b,c} is a circuit, which is impossible, since it is
properly contained in the circuit {a,b,c}.
| A similar argument applies to.other possible peirs of parallel
elements. Thus, M is simple.
(ii) We now prove that M is not hypergraphic.
‘Suppose M is hypergraphic. Then, by (2.13), there exists a
critical hypergraph H = (V', E', $') of cardinality k, where
[V'] = k+2, and M = M(H). Let [' = {a',b',c',d‘,e',f',g'}¢, and let
the matroid isomorphism be that induced by the obvious bijection between
F and f'. Then, since {a',b',c'} ié a circuit, by (3.2), V(a') = {A,C}yw
V(b') = {B,C}uw and V(c') = {A,B}yy, for a suitable labelling of the
vertex-set y', where |y|= k-2. Then ]V({a',b',c'})| = k+1, so there
_is exactly one vertex D, say, witﬁ De V'—V({a',b',c‘}).
Now, since none of d',e',f',g' forms a circuit with {a',b'}, D is an

element of each of V(d'), V(e'), V(£f') and V(g').
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Also,Asince’{a',d',e'}_and‘{a',f',g'} are circuits, we have
IV( {a',d',e'})| = k+1, and so V({a',d',e'}) = {A,B,D}uW. Similarly,
V({a',£',g'}) = {A,B,D}ui. |
Thus, V({a',d',e',f',g'}) = {A,B,D}ul, so, by (3.1), the rank in
M(H) of {a',d',e',f',g'} is at most 2. But, in M, the rank of
{a,d,e,f,g} is 3, which is a con£radiction. * Thus, M is not

hypergraphic.

A'/
/

I

PROPOSITION 3.5: The ﬁatfoid M on the seven-element set
E= {a,b,c,d,e,f,g}% with circuits {a,b,c}, {a,d,e}, {a,f,g} and
all k-subsets of F containing none of these is the simplest'non—
hypergraphic matroid, in that it has fewest elements, and, amongst
all non-hypergraphic maﬁroids on seven elements, it has fewest
circuits of less than full rank.

Proof: That M is not hypergréﬁhic follows from (3.4). That M has

fewest elements amongst all non-hypergraphic matroids follows from the

facf that every matroid on at most six elements is hypergraphic.

That any matroid on seven elements with at most two circuits of léss

than full rank can be shown by routine check.

. PROPOSITION 3.6: The Fano matroid is not hypergraphic.

Proof: (3.4).

THEOREM 3.7: Let M be a matroid of rank 4 on the seven-element set
F = {a,b,c,ﬂje,f,g}#. If the set of circwmits of M contains
{a,b,c,d}, {a,b,e,f}, {a,c,f,gland {a,d,e,g}, and no other circuits
of cardinality 4 containing a, then M is not hypergraphic.
Proof: (i) We prove first that M is simple.
Since each element of [ is properly contained in a circuit, M is
loopless. Suppose that M contains a pair of parallel elements.

Since no such pair can be a subset of one of the U-sets given in the
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hypofheses of the theérem, such a pair can be only {b,g}, {c,e} or {d,f}.
Considef, for example, the pair {b,g}. If these are parallel, then, by
(C2), there exists a circuit contained in ({a,b,c,d}u{b,g})~{b}, i.e. in
{a,c,d,g}. This circuit cannot bé'{a,c,d,g}, since this is a lL-set
containing a. It cannot be any of thé pairs of elements in the set,
since no such pair can be parallel. It cannot be a triple containing a,
since any such triple is properly contained in a circuit of M. It must
therefore be {c,d,g}. But then we have o({a,b,c,d}u{c,d,g}) = p({a,b,c,d})
and so p({a,b,c,d,glu{a,d,e,g}) = p({a,b,c,d}), and |
p({a,b,c,d,e,g}u{a,b,e,f}) = p({a,b,c,d}). Thus, r&M = p({a,b,c,d}) = 3,
which is a contradiction of the hypothesis thatvM has rank k.
A similar argument holds for other possible pairs of parallel
elements. Thus, M is simple.
(ii) We now prove that M is not hy?ergraphic.
Suppose M is hypérgraphic.r Then by (2.13), there exists a critiéal
k-hypergraph H = (v', E' $') with|V'| = k+3, such thaf M = M(H).
Let f' = {a',b',c',d',e',f',g'}¢, and let thg matroid isomorphism be
induced by the obvious bijection from F to E'.- We note that the set
of circuits given in the hypotheses of the theorem is symmetric in b,c,d
in thét, for any permutation of b,c;d, there is a corresponding
permutation of e,f,g which preserves the circuits listed in the
hypotheses of the theorem. Now, by (3.3) applied to the circuit
{a',b',c',d'}, there is an edge x' in {b',c',d'} such that
[V(a')uV(x')| = k-2. By the symmetry referred to above, we may
assume without loss of generality that x' = b'.
Thus, |V(a')uV(b')| = k+2. Now, by (2.3), |V({a',b',e',£'})| = k+2,
since {a',b',e',f'} is a ciréuit. Thus, V({a',b',e",£'}) = V({a',b'}).
Hence [V({a',b',c',d',e',f'})| = k+2 and so, by (3.1), in M(H);

’{at,b',c!,dl,el,f'} has rank at most 3. But, in M,'{a,b,c,d,e,f} has
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rank 4, since it spans [ in M, and M has rank 4. Thus, M is not

hypergraphic.
COROLLARY 3.8: The dual of the Fano matroid is not hypergraphic.

kPROPOSITION 3.9: Let H= (v, F, $) be a k-hypergraph. Let
Cesbiely e F If fab) and {a,c} are critical seﬁs, and if‘fb,c}

is independent and not critical, then V(b)uV(c) 5 V(a) 5 V(b)av(c).

" Proof: Since {a,b} ;é critical, IV(a)@W(b)| = k+1. So |

V(b) = (vV(a)-{a))u{B} for some {4,B), c V. Similarly, since {a,c}

is eritical, V(e) = (V(a)-{cHu{D} for some {C,D}, < 7.

(V(a)-({a}n{CH)) u({B}u(D}) o (1)

(v(a)-({aute])) ol (B3aD)) @

Therefore, V(b)uV(c)

V(b)nv(c)
Now, {b.c} is independent and not critical, so [V(p)u(c)| > k+2.

Thus, since |V(a)| = k, from (1), A # C and B # D. Theréfore,

- V(®)uv(e) = V(a)u{B,D} and V(b)a¥(c) = V(a)-{A,C}. Fence .

V(b)uv(e) 2 V(a) > V(b)av(c).

PROPOSITION 3.10: Let H = (V, F, $) be a k-hypergraph, and let

>A.5 [ be a critical set. If e ¢ F-/ and V(e) c V(A), then

/
‘Aule} is dependent in M(H).

i

Proof': IV(Aule])| = V(A uv(e) | [V(A)| since V(e) c V(A)-

1}

[Al + kX = 1 since /| is critical

A

IAU{e}( +k -1 since e ¢ A-

Thus, Aule} is dependent.

éROPOSITION 3.11: Let H = (v, E, $) ve a k-hypergraph, suéh that
"M(H) is simple. Let F' ='{a,b,c,d,e,f,g,x,y,z}¢ c E be such that
the set of circuits of M(H)xE' contains {a,b,c}, {a,d,e}, {a,f,g}
“and no othey circuits of cardinality 3 containing a. Subpose

further that, in M(H), x ¢ o({b,a})no({c,e}), v ¢ o({b,f})nc({c,g})
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and z € 0({d,f})n0({e,g}).r Then {x,y,z} is a circuit of M(H).
Proof: Ve ndﬁe first that M(H)xF' necessarily has rank2l4, since, by
(3.4), M' = M(H)x{a,b,c,d,e,f,g} cannot have rank 3, and the requirement
that M(H)xE' has only the given circﬁits of cardinality 3 containing a
precludes the possibility that M' has rank 1es§ than 3.  Furthermore,
by an application of the rank function, we see that M(H)xE' has rank at

most L, since p({a,b,c}V{a,d,e}) < p({a,b,c}) + p({a,d,e}) =1 =3 (1)

A

A

and p({a,f,g}U{a,b,c,a,e}) p({a,f,g})+p({a,b,c,d,e})-1 <k (2)
~ and p({a,b,c,d,e,f,g,%,y,2})=p{{a,b,c,d,e,f,g}), since
x e o({b,d}), ¥ € o({b,f}) and z e o({a,r}). , |
Thus, equality must hold in the inequalities (1) and (2).

Since {a,b,c} is a circuit, by (3.2), V(a) = wu{a,C}, V(b) = Wu{B,C}

1l

and V(e) = Wu{A,B} for a suitable labelling of V, where | = k-2.
{a,d,e} is a circuit, so, by (2.3), V(a)uV(a)uV(e) = wu{A,C}u{D} for some
D ¢ V-{A,C}. Since, in M(H), p({a,b,c,d,e}) = 3, by (3.1),
1V({a,b,c,d,e})| = k+2, so D £ {A,B,C}ui. By (2.3), D e V(a)av(e).

Since {b,d,x} is a circuit, |V(b)uv(ad)uV(x)| = k+1. Since
V(b)uv(d) 2 Wu{B,C,D}, we must have V(b)uV(d)uV(x) = wu{B,C,D}.
Thus, V(d) c (V(a)uv(a)uv(e))n(V(p)uv(a)uV(x)) = wu{C,D}.
Since |V(d)| =k = |W] + 2, equality holds, so V(d) = wu{C,D}.
Similarly, V(e) = Wu{A,D} and V(x) = wu{B,D}.

Again, using the circuité {a,f,g} and'{b,f,y},\

v(f) = wu{C,E}, V(g) = Wu{A,E} and V(y) = Wu{B,E} for some

In

E ¢ {A,B,C,D}uK. Thus, V(z) c (V(a)uV(£))n(V({e)uv(g))

({¢,D,E}uW)n({A,D,E}ui) = {D,E}ui.
So, since |V(z)| = k = |W| + 2, equality holds, and V(z) = {D,E}uW.-
Thus, V(x) = {B,D}uW, V(y) = {B,E}ul, V(z) = {D,E}ui and so

{x,y,2} is a circuit of M(H) .
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.- This theorem is avspecialisation of Desargues' theorem. Translated
into a geometric interpretation in the Euclidean representation of M(H),
(3.11) states that if bdf and ceg-afe trianglés, such that the lines
be, de.and fg are concurrént at a, then thé points x,y and z formed
by the intersections of corresponding sides of the triangles are
‘collinear.

The proof of (3.11) shows that, up to the common set ¥ of vertices,
the allocation of vertices is the same as the allocation of vertices to
the edges of a KS; the matroid M(K5) is, in Euclidean reprgsentation,

the Desargues configuration without coincidences in three dimensions.

PROPOSITION 3.12 (DIRECT SUM)$ Let‘gg,yb be hjpergraphic matroids.
Then M, ® M, is hypergraphic. . |

Proof: Let H! = (Vi, Ei,'$i) (i = 1,2) be & ki—hypergraéh such that

y& E{M(Hi). Without loss of generality, suppose k%:z k'; and put

Let V1,Vé,W be disjoint sets of vertices such that

= I
k k1.

vl = v} (i =1,2) and |W| = k! - k Let 6, denote a bijection

1 1
1 2°
between V. and i (i =1,2).

Let H, be the k-hypergraph (V1, E1, $1) where

VH1(e) ={Vev:oVe VH;(e)}, for each e ¢ .

Let H, be the k-hypergraph (VQUWa Eos $5)s where

VHD(e) = {V e Vi 8,V ¢ VHé(e)}UW’ for each e ¢ Eg.

Then M(Hi) z M& (i = 1,2). Let H be the hypergraph (v, E, $), where
V= Vv, B o= ;;‘.IUE2 and ;$ = $1U$2.  Then M(H) = M(H1_) (-D_M(Hz).

For, let Ai-E Ei be a nonempty set Zndependent in M(Hi) (i = 1,2).

\%

Then IVH.(Gi)l
. 1
N (Al

‘and so Ai is independent in M(H). Write G = G1UGZ' Then, if 61,62 # ¢,

lGiI +k - 1 for each nonempty subset Gi of Ai'

v

IGi[ +k - 1 for each nonempty subset G; of Ai’
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v

|VH(G_)[ = !VH(G1)l + lVH(Ge>| 1611 + 1621 + k-1 + k-1
.3 |Gl + k=1 sincek 1.

Thus, writing A = A1uA2, if Ai is independent in ﬁ(Hi)_(i = 1,2),
A is independent in M(H). |

Conversely, suppose f| is independent in M(H). Write Ai =;AnEi.
vThen, if Ai # ¢, ]VHi(Gi)l = IVH<Gi)| > lGil + k-1, for each nonempty
subset Gi of Ai’ and so Ai is independent in'M(Hi).

Thus, M(H) = M(H,) ® M(H,)= M, ®M,, and so M, @ M, is

hypergraphic.

PROPOSITION 3.13: Let M be a matroid of rank r on the set E and
suppose X ¢ F is such that x is an element of né circuit of M of
cardinality.less than (r+1). Then Mx(F-{x}) is hypergraphic if
and only if M is hypergraphic. _ |

Proof: Assume M is hypergraphic. Then, by (2.12), MX(E;{X}) is

hypergraphic.

Now suppose Mx(F-{x}) is hypérgraphic. If x is a coloop of M, then
M= (Mx(F-{x}) ® U1~,1({x}), and hence, by (3.12), M is hypergraphic.

If x is not a coloop of M, write [' = {e': e ¢ £}, and let H' be the

criticalbk—hypergraph (v', E*-{x'}, $') with M‘H').g Mx(E-{x}), where

the isomorphisg is that induced by the obvious bijection between [ and

E'. Choose a set W' of |V'|-k vertices disjoint from V;, and put

V= TuRt, B = {e": e € E}.

Let H" = (v", E", $") be the hypergraph with V_,(e") = VH,(e')UW'
if e" # x". and VH"(X") = y'. Then H" is a uniform hypergraph of
cardinality |V'].

-Let A" < E"-{x"}. Then A" is independent in M(H") if and only if
either A" = ¢, or !VH"(G")] > |G"} + |v'] - 1 for each nénempty subset

‘Gn of A"‘ |
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But this is eQuivaleni; to IVH,(G‘) | 2 IG'1 + Xk = 1 for each nonempty

subset (3' of A’ Thus, A' is independent in M(H') if and only if "

is independent vin M(H"), where A" < ["-{x"}. Hence M(H")x(F"-&"}) =M(H').
| Now let A" _c ', with x" ¢ A".. If ‘|A"; > 2, then VH,,(A) = 7,

so there are no circuits of M(H") containing x" of less than full rank.

However, since H' is critiecal, r = |V ]| -k+1. By (3.1),

rkM(H")

IA

ERD)T- |7+ 1= |W|+1 =r; also, from the above,
i‘kM_(H") > rkM(H') = r.  Therefore, M(H") has rank r.

Let B" be any base of M(H") not containing x". Then {x"}R" is a
crircuit of M(H"). Conversely, if {x"}uB" is a circuit of M(H"),

B" is a base of M(H"). 'I‘_herefore, M(H") = M, the isomorphism being that
.‘induced by the obvious bijection between [" and .  Thus, M is

hypergraphic.

COROLLARY 3.1k: Let M be a matroid of rank r on the set 'E, and suppose
that XyoXgse e Xy .e E are such that none of them is contained in a
circuit of M of less than full rank. - Then M_x(E-I-F{xPxQ,. .. ,xs})
is hypergraphic if and dnly if M is hypergraphic.

Proof: Repeated application of (3.13).

DEFINITION 3.15: Let M be a matroid of rank r on the set E, and let
x ¢ .  Then the matroid on the set Fu{x}, whose set of bases is
the set B(M)u{Ju{x}: |]| = r-1 and [ ¢ I(M)} is called the

free, rank-preserving one-point extension of M by x.

If XoE = ¢, the matroid on FuX whose setv of bases is the set

{(oY: Ye Xo W<z, 1]l =2 - IYl, [ € (M)} is calied the

free, rank preserving |X|-point extension of M by X.

COROLLARY 3.16: If M is a hypergraphic matroid on the set Fand x ¢ E,
the free rank-preserving one-point extension of M by x is

hypergraphic.
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Proof: Let M, be the free, rank-preserving Qne—poinﬁ extension of M

by x. Then x is contained in no circuit of M, of less than fuil rank -
i.e. in no circuit of cardinality less than rk&1 + 1.  Thus, by

(3.13); M, is hypergraphic if and only if-M1x(E}ﬁx}) is hypergraphic.

But M1X(E}{x}) = M, and M is hypergraphic, so M, is hypergraphic.

Note that the one-point extension of (3.15) is a very particular
one-point extension, in wﬁich the point x is placed "in general pos-
ition" in M. It is not true that placing x elsewhere in M will
necessarily give a hypergraphic matroid.from the hypergraphic matroid M.
For example, consider the matroid M = E(Kh), shown in Euclidean repres-
entation in Figure T(a). A one-point extension of M placing x in the
flat 0({c,e}) gives the ﬁatroid shown in Euclidean répresentation in
Figure T(b). By (3.4), this is ﬁot hypergraphic.

Loy

(a)

Figure T

PROPOSITION 3.17: Let H = (v, E, $) be a k-hypergraph, and let
{a,b,c,d}# <E. va{a,b}, {a,c},'{a,d},'{b,c} and {b,d} are
critical sets of edges, and if no threé of these edges together
form a circuit, then {c,d} is critical. |

Proof: Sincé'{a,b} is critical, we have V(a) = {A}uw, V(D) = {B}uw

for a suitable labelling of the elements of 7, where |y| = k-1.

Then V(a)uV(b) = {A,B}ul. Since ¢ does not form a circuit with {a;b},

V(e) ¢ V(a)uV(b), and so there exists € e V such that C ¢ V(e) and
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C ¢ V(a)UV(b). Thus; V(a)uv(c) o {A,C}UW, '.Sincef {a,c} is éritical,
equality holds. Similarly, V(b)uV(cl) = {B,CIuW. ‘fhus, since
v(e) vg (Vv(a)uv(e))n(V(b)uv(c)) = {é}uw and |V(c)| = k, equality holds
here, and V(c) = {C}ul.

Similarly, V(a) = {D}ui, where D ¢ {A,B,CJul.

Thus V(c)uv(d) = {C,D}uW, and so {c,d} is critical.

PROPOSITION 3.18: ILet H = (V, F, §) be a k-hypergraph, and let

{(V(Gi), Gi’ $i): 1 <1 <m} be the set of components of H. Then, if

p is the rank function of M(H),

m
_ = I . N for an < F.

‘DA i-".-T(p(Gl A)) yAcsE
Proof: Let H! = (VJ!‘, GJ!_, $:!L) (1 <1 <m) be k-hypergraphs such that
-_M(Hi) = _M_(H)XGi under the obvious isomorphism, and such that Vian = ¢

> 3 t = l t 1t = [ t - [ P8 | 1
mrl#J.P® vt = viuvhu..rt, &U%m.&@vmdf $1u.. U8l
Let H= (V', ', $'). Then, as in the proof of (2.13), M(H') = M(H).
Also, M(H') = M(H}) © M(H}) ®...@ M(H!).

For, let A:'L ,Ai ,A]'_ be nonempty independent subsets of

1 2 n '

GJ'_ ,Gi ,...,‘J]!- (n = m).
1 2 n .

Then ‘IVHi (Bi.)l > ‘lB]!_jl + k - 1 for each nonempty subset Bij of Aji

J
e v '(Bi UB:;_ u...uBi )= IB; uBi u...uB:!L [+ k - 1, since
1 2 n 1 2 n
VJ{ﬂ,ij_ =¢ forr # s, and k > 1,
r s
Thus A' =

1
n

Conversely, if, with the above notation, A' = Ai UAJ'_ U"‘UA]“_ is independ-
1 2 m '

A]'_ UAi u...uA! is independent in M(H').
1 2 .

ent in M(H') where each A:‘L # ¢, then, for any nonempty subset
) g i .

B! of Ai , |V ,(BJ!“)I > B! | +k -1, since Bi is a nonempty subset
J J j ' ’

1.
J J

of A', and hence



IVH’ (Bi.-)“ > lBi_lf*.‘k’_’]T." =
5 e

Thus, A" is 1ndependent in M(H'y){'
Hence,‘ ‘M(H') = M(H )@M(H )@ @M(H ) and so
um) = M(H')@M(H’)@..@M(H') , r-hus,vforAy_c_E, o

oA = z (p(G nﬁ))

-We:close this Chapter by;examining theeanalogue in hypergraphs -

" of cutsets in'graphs.v_v

’ DEFINITION 3;19* Let (V(G ) G1,$ ) be a component of the hyperéraph
“;(V,'E, $). A subset XcFEis said to sep ate (V(C ), G1, $ )
blf (V(G ). G1 X, $ ) is not a crltlcal hypergraph where P ‘
‘$' = {(v, e) € $ e e G1 X},‘ i.e., there ex1sts no crltlcal set
' A’E.G1”X such that Y(G1 f V(A)-. .- | 7

HpDEFINITION 3. 20' 1 Let H V, E,_ ) be a k—hypergraph ) A cutset ova H:ppp {

is a subset C* < E such that
(1) C* separates some component5of H;

(ii) nd proper subset of (* separa%esvany.componentvof H;p-:f_;f

LEMMA‘B 21: Let H = (V, E, $) be a k—hypergraph w1th components e
(V(G ) G $; ) (1 m),-and let C* be a cutset of H.
Then (* c (; for some i. | , | . ‘pu e
 Proof:  Suppose C*nG # ¢ and C*nG # ¢ where i # J.“ |
' p.‘Thenp (V(Gi), Gi—C* $ ) is not a critical hypergraph .Lef é;:C*nGj.vxv
Then (V(G.)‘ G.—(C*—{c}}, $1) = (V(Gi)’ G;-C*» $7) ,‘s1nee ce Gj‘snd, |
by (2 7) G; nG - Thus, C*;{e} separates (V(G-) G- $-), and so
C* is not a cutset, since there ex1sts a proper subset of C* whlcﬁ"

separates a component of H. But thls eontradlcts the hypothesis that

(* is a cutset. Thus, (* S_Gi for some i.
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;LEMMA’3.22: Let (V(G ) Gi’ $ ) beea COﬂDonent of the k—hypergraph
H,‘f Then' IV(G1)I = pG1 + k 1; ;here p is the rank functlon of ok
M(H) o . s RN
: ‘:Prooff Slnce (V(G1 Gi,~$ ):is”a‘componenﬁ of;H;vit,is'a'fragment of

- 'H. The result nov follows from (3 1)

LEMMA 3.23:‘, Let‘H (V, E, $) be a k—hynergranh and,let C* be a :“ =

" cutset of H. Then E}C* is a hypernlane of M(H) | p -
’kProof::‘ Let {(V(G ), Gl $ ) <i< m} be. the set of components of ;VI:
H. Then, by (3.21) Cx ¢ G for some 1.f Without loss of generallty,':i
. C* . G ‘v, v :._ el 8 v _

Slnce C* separates (V(G1) G1, $ ), p(G1 C*) < p(G1

For, if not, there exists an 1ndependent set A - G,-C* with pA pG{.p
"mmnlvua)|>nNAH >|A1+1<—1 - o6, +E -1 )
But, by - (3 22) lV(G1 [ = [G |+ -1. So A is crltlcal and V(G )—V(A)
But this cg;tradlcts the hypothe51s that C* separates (V(G1) 61, $ )
- Thus, p(G1—C*) <p(G ) Furthermore, since (:“e 1s mlnlmal w1th respect

to separation of (X(G1 G1, $ ) for any'c e C*, there ex1sts a crltlcal
set A c G, ‘(C*—{C}) with V(A) = V(G ); so o(G, (C*-{c})) p(G ) for
»any c e C*.

Slnce the rank functlon is 1ncrea51na in unit steps, we must have

06, c ) = 0(Gy) - 1.

Wow, by (3.18),  oF - I o(G )
- p<e1> v 3 p<G )
o (E-C¥) - 0(G,C7) + K p<G ) since (¥ < 6,

and for any c ¢ C*,;Ap(E—(C*?{c}))' 9(61“(C*;{C})) + _Zzp(Gi)-

o(F)

mus,  e(ECY

‘and, for any‘c e C%, Q(E“(C*—{c}))'

RV



Thﬁs'E}C?Ais a hyperpiase beM(H)}: =

eLEMMA’3 2&-’ tet H = (V;’E; $) bé a thypergréphV' If E' is &

7 hyperplane of M(h) then E%E' is a cutset of H.v" | -

- Proof: Let H have components (V(G&) G& $ )y (1 <:1 <1n) ‘ ‘ '
1 Then, by (3 18) S :‘  ”‘51.2 D(Eﬁ) : :  ff: f AT (T),e"v
VWfite C% =,E%E" - Then E}C# =,E','so p(E}C*) pE - 1. 'iAlso,:fqr:anybtg
c e (¥, ’E-(C*Q{'c})) - S P .

By (3 18) PR  k: p(E%C*)V

.z p(Gl c*) @

and, tor any o < (*, o E-( c*—{cm I p<Gl-<c:+—{c}>> G <3>

i

From (1) and (2) therevexists j such‘that'p(G;~C*) p(G ) - 1, since
. p is an 1ncrea31ng functlon Whlch increases in unlt steps _ o ‘ N
Thus, c* separates (V(G ), G $ ), since . lV\G )1 ——pG1 + k -1 v(by (3.22))  ‘s

i = (G, C*)”k"“ |
ené S0 v(V(G;); G;?C* $ ) is' notra cri 1eal hypergraph |

_ Furthermore, for any c € C” C*-{c} does not separate e

' f” (V(Gi)’ Gi’ $.) for any i. For, from (1) and (3) |
L elGOEe) = elG) O s,i*m>

, se, it A is a maximal i ndependent subset of G (C*—{c}), pA G and

pGi +k -1 lv(Gi)I from (3 22)
LT ER
2 Al + k-1 ‘since A is independent
' So equality holds throughout, and A'S.Gi—(c*;{e})”is'a critical set
with V(A) = V(Gi),-whence (V(Gi), Gi—(c*;{e}), $i)‘is‘a‘eritical
hypergraph. B »
Thus, (¥ separates some coﬁponentlof H,>and C*;{c} separates no

cemponent of H, for any ¢ € (¥. Thus, (¥ = t'is a cutset of H.



»iHEOREM 3. 25' The set of cutsets of the k—hypergraph H= (V E, $)
is the set of c1rcu1ts of a maur01d M*(H) where M“(H) (M(H))*

Pfoof' ‘ rrom (3. 23) and (3. 2&) C* is a cutset of H irf and only if

E-C* is a hyperplane of M(H) : Thus, the set of cutsets of H is the 8

set of4coc1rcu1 s of M(H), and hence uh° set of 01rcu1ts of (M(H))* :

.:’COROLLARY 3.26: : Let H, = (V1, E $ ) e and H, ;(72,'_[‘-:’,*5};2)'55'_
unlform hypergraphs w1th M(H ) = M(H ) Leﬁ the isomofphism.-‘
be induced by the blgectlon 9: .E e-Ez;} r"hz—:-n C* is a cutset of H1
- if and'only‘if.{e(c): ce C*} is a cutsef of H2 o |

',  Proof: ‘ff"C*’is'a cutset,of H1 1f~andfon1y if (= is a coc1rcu1t of M(H )
_ Slnce M(H ) = M(H ) thls is so if and only if {B(c)- c € C*} is a

cocircuit of,MﬁHz) i.e. 1f and only 1f {S(c). c e C“} is a_ cutset of H

~‘EXAMPLW Let H be the hypergraph shown in Flgure 2. The cutsets oflb

C mem2 -

‘iH are uhe sets {d} {e} {a b} {a c} and {b c}
e‘These are the circuits of the matr01d on the dlstlnct elements a, b c, d e
con51st1ng of the two loops d and e, anavthe uhree parallel elements
a,b,c — the dual of the matroid M(H) shown 1n Flaure 3. | |

The cutsets of the critical hypergrann shown in Flgure '} are {d"} {e"}
A{a",b"},‘{a",cﬁ}:and {b",c,}; The 1somorph1sm;between-the ground—sets_
- of the matroids M(H) and.MﬂH")vthue meps‘fhe sets of outsets\of H to

the/eetvofecutsets of H".
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CHAPTER 4

MINORS OF

. HYPERGRAPHIC MATROIDS

It is ﬁell—known thatvany minor of a graéhlc ﬁatr01d 1s“1tself
'v graphlc | However, the class of hypergraphlc matr01ds as ve have deflnedi‘
Sit is not closed under the operatlon of contractlon,ssven 1f we extend thei“‘
deflnltlon to allow 1oo§s 1ﬁ hyonrgraphlc matr01ds . This observation‘si
m1ll lead us to deflne the cTass of generallsed hypergraéhlc ﬁatr01ds.  fm
We flrst modlfy (2.1) to permlt loopsmln a hypergraphlc matr01d. s,
ssDEFiNITION Lo1: 0 Let H (V, c, $) be a hyperg aphand k> 2.an 1nteger"ii :
| mth |V|+1 k‘> ma.x{IV(e)} e eE}. Aset A E is said to be
1ndependent 1f and only 1f elthﬂr o |
| (5) A= ¢s | - RESN
or (11) [V(G)! > [G] +k - 1. for each nonempty subset G of A
The set.of indépendent sets thus.définsd”is ﬁhé set of’indepsndeht.t‘i'
 ’;séts“of a.matroid M(H) on E. Tﬁis follows iﬁﬁediatél&'froﬁ,ﬁhé’cofres—
iponding proof fof (2.1). :Alternativelygbthe method’ussd ﬁy‘Crspo—Rota o‘;

" [61 can be applied;

Any matroid isomorphic'to)MKH) for some H is called a hypergraphic

Fid matrOid. "

 PROPOSITION‘h.2E - Let M be a matroid on the set E" and let.e' 5FE"
b‘voe a loop of M. Then M is hypergraphlc 1f and only 1f “
Mx(E' {e'}) is hypergraphlc | | ‘
‘Pfoof: Let F be an isomorphio_copy of E'. : Suppose'M is hypefgraphic;
Then there exists a hypergraph H = (v, E, $) such tha g_g Mﬂﬁ), %here
the isomorphism is induced by the obvious bijection between | and E'.

Let H' = (v, F-{e}, $'), vhere $* =f{(V,a)‘§'$: a e E-{e}}. Then clearly

M(H') = M(H)x <(E-{e}) = Mx(E' {e'}).
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Conversely, suppose MX(E‘ {e }) is hyp°Vgraph1c. 'Leﬁ
= (V, E}{e} $ ) be such ‘that M(H ) :‘Mx(r' {e’ }) where the
ﬂﬂlsomorphlsm 1s 1nduced by the obv1ous blaectlon between E and E'
Let We V be such that,|w1 = k-1, Where k 2 deflnes M(H') as in (h 1).
Then [Vl IW] > 0. "béfiné'H (V E,_ ) Where $ = $'U{(V e): V € W}':"‘
| Define M(H) using k as in (h 1\ - Then clearly M(H)_ M ‘and so M ‘

is hypergraphlc.

This result is the Jﬁstlficatlon for u51ng the term "hyperciephlc ‘
matroid" to describe a matr01d obtalned either from deflnltlon (2 1)
’or from (h 1) For, a matr01d is- hynergrabhlc 1ﬁ accordance w1th o
v(h 1) 1f and only if the matr01d obtalned from it by the deietlon of
loops is hypergraphlc in accordance w1th (h 1) But, a loopless matr01a
is hypergraphlc in accordance with (h 1) 1f and only if it is hypergraphlc .
in accordance with (2.11) - 1 e. if and onl 1y 1f 1t is 1somorphlc to -
1:M(H) for‘e;;eAunlform hypergraph H Where the irae;endent sets of M(H)
are as defined in (2 1). Thus the only dlfference between the matr01§§
 obtained from (L. 1) and those obtalned from (2. 1) iis ‘that those ;foﬁ‘»ii~
(2. 1) are loopless »whlle those from (h 1) may have looPS-" The eiméle"-
_'underlylng matroids are the_same._' In parvlcular, 1n order‘to prove
'ﬁhether a giveh.maﬁroid ie cr is nct,nypergraphlc, it 1sksuff1c1enteto.de.f 

consider that simplification of the matroid which deletes its loops. :

PROPOSTTION 4.3:  If M is a hypergraphic matroid on the set [ and
E' < E, then MXE' is hypergraphlc |

Proof: (h 2) and (2.12).

PROPOSITION 4.4k: The class of hypergraphic matroids is not closed under
the operation of contraction.
Proof: We shall present a hypergraphic matroid, and a contraction of that

matroid which is not hjpergraphic,-:ﬂ



Cs3-
: Let M1 be the free rank—preservﬂné one—§01nt éxten51on by x
.‘(see (3. 15) for the deflnltlon) of uhe natr01d M(H) where H —'(DQ E: $)
‘rls the follow1ng 2—hypergraph _,;  | |
V“ {A,B,. C ,D E:b
R | Eg{abcdef,g}_l o i :
"V(‘a) {A B}, V(b) = #,C} Vi) =>"'ﬁ{3,'cv}',; v(d) = {A D},vV(e) {B D},V.'V"

v(£)

ia, E} and V(g) =T B, E} - : "'7‘.', ‘ :

Then, by (3 16), M is hypergranh1c~A 1t hés.c1rcults @a'b c},.
{a,d e} {a, f,g},.{b,c da e}, {b,c f,g}, {d e f,g} and all 5—subsets of
Fufx} contalnlng none of these. M1 Therefore has rank h

Contracting x ylelds the matrOWd Mq on the set E'Wlth rank 3 and  F
.clrcults {a,b,c}, {a, d e},_{a f,g} and all h—subsets of E contalnlng i '
none of these.  By (3 Ly M" is not nyporgraphlc. ’- | ‘
| Thus, thevclass of hypergraphlc mgtro;ds falls to be,ciqsé&»uﬁder{!'A
the Qperétiﬁn of coﬁt?aetion; R "1; :’ ::v;5€”fv 2 E

Since everj minor of a hypergraéhicvma£foid ié isomdrﬁhié‘ﬁQ ﬁhé'f; 
‘ COntraction‘of a restriction of a hynercraphic ﬁatfoid"fﬁé:élQSS‘ofJ .

minors of hypergraphlc matroids is the same as the class of contractlons

b,of hypergraphlc matr01ds.

- DEFINITION h.S: A matr01d isomorphic to the contractlon of a hypergraphlc

matroid is called a generalised’ hynergrapblc matr01d

'We,sha11 noW4déri§e a méthdd df’défininé géﬁeraliséd:hypergfaphic
 matroids in terms of a submodular fuaction, vhich is analogbué to that

' described for hypergraphié matroids in Chapter 1. In ordern£d.explain_
the motlvatlon of the method, - consider uhe hypergraph H= (v, E, $) which
consists of K6 on the vertex—set V= {A,B ,C,D,E, F}#, together with an extra
'edge e with Vie) = {A E,F}. The matroid is shown in Euclidean repres—

entation in Figure 8, with the points a € E—{e}labelled by V(a)



If we now éohtréct e, ﬁe,obtain the:matfoid“shbwh in'Euclidéan‘
representationbianigure 9, with the.poihts a € E}{e}iagéiﬁ laﬁeiled,
With_V(a).;m Wevcéh‘see from this that a seﬁ pf parallel eléﬁsﬁté‘§f>this‘: ,
~ .matroid is a sef of'édges whosé.vértex—sets;arebthe‘3—sﬁb§é£s‘6f> . .
{A,E,F,X}, vwhere X € {8,C,D}, excluding {A,E,F} itself, and that the ':
edge with vertex-sét'{A;E,F} has become a 1oop.x1 RV |

. {asE)

. - fpeel

g e

d 5 867

{8,0f Y )
{aADFl

(&7}
Nfong |
X\

iﬂ% :
. > {8,¢,0}
Figure 9

Now, if we are to maintain any sort of hypergraphic structure, we
would expect that, in some sense, the "cardinality" of the set {A,E,F}

shduld now be less than 3. Accordingly, we define a function



u: 2 > Z such that . o R
e Wi "-‘if"“{A E,F} £ W
ulw) = ,

: IW[ - 1 1f {A E F} < W

It is a matter of routlne to check that the matro‘td after the
_contrac’clon has 1ndependent sets A E {e}, where A is 1ndependent 1:E‘
~and only if elther A= q‘) or uv( G) > [G[ + k - 1 for. each nonempty S

.subset G of [\ where, in thls case, k = 3 |
We now proceed to the case of contractlon of a general k—hypergraph
Let H = (v, E $) be a k—hypergra.ph with k > 2..' .Let"

K = {e1,e2,...,e },be an 1ndependent se‘c of M(H), deflned by (2 1)
e " DEFINITION h 6 For wg T/, define \)(W) [{1 V(e ) < W, 'e . K}l

~ PROPOSITION %.7: v is increaSing and stpermédular )

Proof: (i) v is increasing.

e

T4 Viey) e 1, ‘.“,E"K};
[{1 V(e ) < W, ; € K}l

Let U =W cV. Then v(v)

A

v(W)

(ii) v is supermodular. . Let U,W e V. -

‘Then v(yuW) = ;l{i' V(e ) c UUW> e; € K}' o R v
> f‘l{i- V(e ) c U or Vie; ) < W, e, € ‘(H ’ (1)
voaw) = |4 V(e e o, e; e K3 |

- |4 V(e)cUandV(e ) ew, e,eK}l
eov(oew) + v(uaw) 2 l{l V(e;) cvor Vie) c W, e; ¢ K}I

1

[ti: Vey) e v, ei e K]+ |tis Vle) v'_c_.w, es e KM

s

() + v(w)

PROPOSITION L. 8- Let U V.  Then v(puw) + v(UnW) = VU + VW
if and only if, for each e; ¢ K with V(e ) < UuW, either V(e ) ¢ u

or V(e ) c W.



Proof: ( ‘=>"). If \)(UUW) + \;(UnW) \;U +\;W equallty must hold in (1)
of the proof of (h 7) Thus V(e ) c U or V(e ) < W :E‘or each e; € K
’ﬂ(<— ) oIr V(e ) < UUW—> V(e ) e Uor V(e y < W for each e; K,
'4equa11ty holds in (1) of ‘bhe proof of (h.T),' a.nd so
w(UUR) + v(UnW) = W . S
© DEFINITION 4.9: Let v: 2  +Z be defined by (4.6). Define
w2 szby Wo=minflul - Wi WeUe V)
PROPOSTTION 4.10: y is increasing and submoduler, and 0 < ¥ < |X|
~ for each X c V. o

- Proof: (1) pis :anrea51ng.v Let':‘ X < .Y < V o

mln{lU[ - \;U X < U < V}

Then pX

A

mln{IUl - yU! Yc U E’V'} R

= Y . | o ‘

< (ddi) i'bu'is iubmodular. | Let:X, Y < V, and Suppose ‘X =‘~lv-Ul .;Vz}’
Y—IWI —~vaorXCU YCW o | -

| Then_ uX + WY = ol - \)U + IWI ~ W |

| = .>|Uuw| + (warl - (W + o) |

> lvow] + lunw] - (v(UuW) + v(UnW)) by (h 7)

= (IUUM - \,(UuW)) + (IUnWI - v(UnW))

[\

| w(xuy) +u(XnY), since XUY c UUW and an < UnW
(3i1) - X < Ix] | AT o :
W= min (171 - Wl XeYevis lxl - vr s (X

) Do | c

Tet Y 5 X, and let Kr = {e; € K: ’V(ei) < Y3.

Then |K'] = v¥ anda V(K') c 7. Now, K' < K and K is 'indg’ependent‘ in.
M(H), so |[V(K")] = |[K'| + k-1, if ' # 4.
o |¥l 2wy + k-1, if y¥ # 0.

S ]¥] - wY 2 k-1, if v¥ # 0.



S If Y =0, J¥] -~yY =0,

W

Thus, since’ pX = min{ 7] = vy: XgY_S'-V"}, WX = 0. .

e ~PRO'PO.SITTON’111 11 :Let ch”E-K B Then A;’:V(G)v s IGI+ k - 11if and only .
' 1f lV(GUK )] > ]GUK i +k - 1 for °a.ch subset K' ofK ‘
| P?'oof: “ Since K is :Lndependent in M(h) -we have IV(K )I > [K ! + k - 17.
for each nonempty subset K' of K | | |

(i) Assume PV(G) > IGl +k -1, Let K" c K

' \;(V(GUK )) 2 lK'l, S0 u(V(GUK )) < IV(GUK )I - IK I

e IV(GUK )l > (V(GUK )) + IK | ‘
o | ?. uV(G)f'l' lK l since u is 1ncreas1hg
vZ '

‘ lGi + k- '1 + iK'l: by hypothes1s
= lequk—:' gy
(ll) Assume IV(GUK')I 2 lGUK'l + % - 1 for each subset K' of K

 Let U < 7 be-such that V(G) < U end Vuv(G) = |0l -vu.

o

Let K"‘= {e ¢ l\: v(e) cu g SRt (“).i‘.
men VG = V@WK ew @
G = w-w . o

= ey (D)
WG - IR @
> 1G] + k- 1 _"]Kﬂr vy hypothes:.s

= 16l ex-1 sinoe G- 6

‘Since p is increasing, integer—valued and. submodular, _it can be
used to def:Lne a matro:.d on E—]\ in the way 1nd1cated in the follow1ng
deflnltlon. For a proof that this does yleld a matr01d, see Crapo-Rota

[61.

DEFINITION 4,12: ~ With the notation of the previous propositions, define
M"(H) to be the matroid on the set F-K whose independent sets are -

G those A < E-K for which either A= ¢ or_jN(G) > |G+ kk‘ - 1 for



ea.oh nonemp’cy;-subsét G of A

THEOREM k. 13 M"(H) = M(H) (E—K)
: Proof (1) Let A# ¢ be an 1ndepende*1t set of M"(H)
Then pV(G)> }G] + k - 1 for each nonmpty subset G of A
So, by (h.11), ]V(GUK')] ]GUK'] + k - 1 for each nonempty subset |
G of A and each subset K" of K Also, smce K is 1ndependent 1n M(H)
[v(K") | = K"] +k - 1 for each none.mnty su’oset K" of K :
Thus, |V(B)] > ]B] + k-1 for each nonempty subset B of AUK
Thus AuK is 1ndependent in M(H) e v
(11) Suppose AuK is 1ndependent in M(H) wzth A -T‘ ¢ and A E—K
Then 7, V(B =Bl +k-1 for each nonempty subset B of AUK ,
So, 1n 'pa,rticular, .]V(GUK')! > }GUK‘[ + k -1 for each nonempty subset
G of A and each ksnbset K! of K. Therelore by (h 11), uV(G) > |G| +k— &
’—l:E‘or ‘each nor&mpty subset G of A ‘I'has, A is. 1ndependent in M"(H) »
Therefore, A is 1ndependent in M"(H) 1f and only if AuK is 1ndep-
endent in M(H) But the set of A ¢ E—K for whlch AUK is 1ndependent
‘$n M(H) is the set of independent sets of M(H) (E—K)

Thus , M'(H) = n_(H).(E—K)_’.»

# In order to provide a convenient way of describing ‘bhe‘contraction] o

M(#).(E-K), we now introduce an object called a generalised hypergraph.
DEFINITION 4.1L4: - With the notation of this chapter, given a k-hyper-
~ graph H ? (v, E,, $) with k > 2, and a subset K < E independent in

M(H) the generallsed hypergraph Droduced from H by K 1s defined to

be the pair (H,K) = ((y, E, $), K- Slnce the order of the sets in

the brackets will remain fixed,.we shall also write this as

(v, £, %, K).
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DEFINITION 4, 15' If K (V E $ K) is a generallsed hypergraph

the matroid M(K) is deflned to be M(ﬁ) (ﬁ() Where H = (V E $)

N :PROPOSITiON, k.16:‘ OA m'atroi‘»d‘ M is a éer'lie'r_aliséd hypéfgz;aﬁhici mati*bid ' |
if and only if M=z M(K) where K 1s a_genéraiised ,hypérgra;ph.f o
Proof: * If _M_ EM(K):,V then clearly M 1sa “gene;.t;aliséd hﬁergraphié B
'matroid; ‘ | g ke |
| v Cor'xvers'ely, suﬁpose .tha;t M is Oa ’rfeneralised‘}}yl)érg;'apﬁi‘c ma’c'roid;
- Then Ms 'M(H‘) (FE‘-S') vhere H' = (V’ E‘ $'v). and S <c<F. Let L‘
denote the set of loops of M(H') (E’ S') and let K' be a max:Lma:L
'Asu'bset of S' whlch is 1ndependent in N(H') Let H' (( E' S') % )UK
ien H" is a k—hypergraph for some k >2, Where , 1f E(H") # ¢, '
Tk = max_{f H,(e’)l,: e' € Ey Choose x /é E’ 'a.nd let Wbe a set of
- vertices With Wov' = ¢ and lWl = k. Let Lbe a se‘b of || ! dlstlnc’c |
l:.edges d:LS,JOlnt from E'U{x} whose vertey-sets are all equal to W. Put
V= Vo, E= (B-8)-L)ukulute), K= Koge) e
',$={(Ve)€$'.ee(E—I_) {x}]U{(Ve) VeW eeLU{x}} | |
Then H = (V E, $) is a L—hypergraph W‘tth k 2, such that K is 1ndep—'4
endent in M(H), and M = M(H) ([—,{) So, wr;tlpg K = (;T/, E, $, K),t

M(K) , as required.

PROPOSITION h 17 ‘If K = (v, E, $ K-)‘is a&g.er'iefa.lised hypergraph vWibﬁh
K= {e1,e2, ‘1€ }#, then M(K) is “bhe matroid whose :mdependent sets
are those A E-K for whlch A = ¢ or pV(G)>lG|+ K - 1 for each
nonemp‘by subset G orf A, vhere pX = mm{lYl —_ I{:L V(e )c_Y}l XEY <V}

P_roof. (L. 12) (h 15) and (h 13)

PROPOSITION L4.18: With the notation of this chapter, let K = (V, E, $, K)
 be a generalised hypergraph. Then, if C is a circuit of M(K),
wv(C) = ICl+ k- 2.



'Proof Slnce C is dependent in M(K) ﬁhereiexistsya nonempty subset

CreCwita (C) <iClFR-T @
~Slnce'(1) cannot hold for any Droper nonempuy>shbset C' of C (because eaeh
eiysuch C’ is 1ndependeqt),> FV(C) < [C] +k - 1. ', v~,¥eh_ :;'h'ill “‘_(2)
rNow, 1f cel(s C—{c} 1slndependent, so pV(C—{c}, > [C—{c}]+ k -1 x"_.

'Comblnlng (2) and (3), 51nce, by (k. 1OL nis 1ncre331ﬁg,"

w0 = Clrx-2

PROPOSITION L.19: With the notatibn of this ehapter;eif'X_5'V and
WE <k = 1, then wf = |X| | e
 Proof: Let ¥ ¢ v be such that Xy end yx = [¥] - VY-

Then |y] - V¥ < k-1 .'_r”ij;;;f‘- o

Let K' = {ei € k:hV(ei) <y}, Then lK' vybendbv(K') § f; f

So, from (1), |v(K')1— K o< x - 1 T

e T K e

hThus,vif.K' # ¢, K' is not indeﬁendenh’in M(H). 'TBgthfeg K‘ahaﬂKkiS'.
1ndependent in M(H), which is a contradlctlon.;>‘Thﬁs K'h;.é ahdiso -

ly] = ux. Now, ux < IX{ by (4.10), so

'm =

A

1X] < 17| o e'isince_ing_x.f'

»Thus, wx = |x|.

" Having defined the class of generalised‘hypergraphic matroids so that
it is closed unaer.the operation .of taking minors, itbis natural to ask
whether 1t is closed under other matr01d operatlons, such as truncatlon
or the taking of duals. The questlon of duality will be left to a later

- chapter.  However, the class Lsclosed under the operatlon of truncation,

as we shall now prove.

LEMMA 4.20: If M is a matroid of renk r on the set S, and /A is an indep-

‘eﬁdent suhset of 33 then V(M,(SeA))(t) (t+]A|) (S A) (0 < t < T A)



' “ 51",-,,5). -

Proof: R is a base of M.( A) 1f and only if BWA is a 'base of M.
Thus, Z S—A is an 1ndependent se‘b of (M.(S—A))(t) 1f-a.nd only if IZIV <t
‘ and Z B for some base B of M. (S—A)' 50, Z S—A 1s an 1ndependent se‘t

of M. (S—A)(t), 1f and only if lZUAl <t +1A] and ZUA is an 1ndependent

set of M. Hence / < S-A is an 1ndenendent set of (M (S A))(t) if and only‘ :

if [_UA is an 1ndependent set of M(t+]AI) o 1. -e. 1f and only 1f Z

wHAn(Sm'

-~ is an .Lndependent set of M

WASAM“’~M“”A”<SM

: Thus, in order to prove that eve?'y truncation of a generalised ,
hypergraphlc matroid 1s generallsed hypergraphlc, 1t is suff1c1en‘b to S
p‘f'ove that every trunc:atlon of a hy’pergraphlc matr01d is generallsed

' 'hypergrapnlc .

* PROPOSITION k.21: . Let M be a matroid of remk r on the set S, and
‘let x1 :;:2 e ns ’Xt ¢S (tS r) be distinct elexflents-:: Deflneb_dt
to be the free fra.nk—'preservi'ng t-,point extension bf‘ M by '

_ A o Lt o
{x1 ,xz,...,xt}. Then M(r v) =J_I_itS .

(r-t) are those se’cs I 1ndependent in M w1th

- Proof: The bases of M
’Il = r-t (since t =< r)‘, The bases of M S are those J S such tha‘b

\JU{A1 2Xpse ..,xt} is a base of Mt , Now, by (3.15) JU{X‘I ,x2,...,xt} g

.._:t
(since t £ r). Thus, the bases of M

7 'is a base of M, if and only if J is 1ndependent in M and L_H = r-t

(r-t) are the same as. the bases of

(r-t) _
_MtS and so M = Mtv.S .

' PROPOSITION L.22:  If M is a generalised hypergraphic matroid ‘of' rank r

(r-—t) is genei'a;lised khy’pergraphbic.

0 and t =
Proof: Since M is generallsed hypercranhlc by (h 16) “there exists a
| unlform hypergraph H on the set F such ‘that M = M(H).(E-K), where K is

. independent in M(H). With the noﬁatien of (k.21) , define M_(H)t.



Then, by (3.’1&), M(H),c is "hype'rgr‘aphio. :

By (h.ei) i M(H)(rk(M(H)—t) E\H)tE
| k':'iNéw’ 'rk(—M(ﬁ)')' r + h where h ]K]> so.

w0 .Ii(u>E

e N(H)(l”"h‘“ (B - w®,.D. (E—K)
k M(E 1:-(E"K .

(1(8). (E~K)'}“1"7‘*i—” -
(=) B

n ..

By (k.20), ,_M(Hv)(r‘“l"‘t‘). (E—K)f

mn

. Thus, M(r—t) = _M_(H)t.(E—K) , and so M(r-' 7) is generallsed hypergraphlc.:

'PROPOSITION 1} 23" - If M1 and M are. generallsed hypergraphlc matromds on»:' ‘

. dlSJOlnt sets, then M @ M is E3,eneral:\.sed hyPeI’gI‘aphlc..: Y

Proof: follows from (3 12), (h 16) ::lld contractlon.

pey -

We close thls chapter by develop_ng some propertles of the functlons

| i and v deflned earl:Ler. ,

DEFINITION 4.24: With the notation of ’c'hisv chai)’éer, the (-11-) 'c'iosure'_'
operator < > on V is defined by | A |
K> = {V e Vi u(xu{v}) = uxd.

- A set X of vertlces :E'or Wthh <X> X Wlll be called closed.

. From (k. 10) 1t isc clear ;that wis the ra.nk functlon of a matro:.d. on
V We may therefore use 'bhe results of ma.tro:.d theory to prove some

results about the closure operator.

PROPOSITION 4.25:  With the notation of this chapter, let U,) c 7, and
let X,Y c V be closed sets. Thezi:
(a) U< <>

(b) if U ¢ W, then <U> c <W> ~ (continued on next page)
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Q) s = w
'eﬂd)f>%U5u€W$_E' <UQW?;1
(eQ ' <U>’n€17}> B :,_<VUhW> -
| (£) <xnv> : XnY.
‘Proof H These are. all elementary results in matro:.d.theory and we omlt '

~the detalls. v

i 'vPROPOSITI»Ol\i 4.26:" "With-the'ndta’.cib‘nv of this c}:@apter'? if X is a closed o
L set, then X = |X| —\)X | ‘ . ‘.
Preef' We haﬁre pX—‘Iﬁiﬁ{]Ul - \)U ?C UcVl
’Let Y pe a maxmal set such: tha.t X < Y <V a_nq uX = 17| - vl’
" Then, since W= IYI -vY,- ]JX a.nd H is 1ncreas:.ng, uY = qu.»

IJ(XU{Y}) < uY—_uX. Since X is

IA

Thus, Y_C_ <X>, - -For, 1f Y e*-Y, uX:
closed, X = <X>, so, because ¥ c Y c <X>, y X, a.nd UX IXI - vx.

ey

”PROPOSITION k. 27 With the nota.tlon of this chapter let A be a set of 2
’ edges of the generallsed hypergraph K= (V E $, K | Then S |
wi(h) 2z oA+ k-1, where p is the rank functlon of M(K)
Proof: Let B be a maximal 1ndependent subset of A Then lB[ = pA
and : uv(B) > |Bl+ x - 1. Slnce u is 1ncreas:.ng,“ »

#uv(A) = uV(B) lBl,+k"f1'=‘PA+,k",T-.1."

PRQPOSITiON h"28- With the notation of this -chapter let A,B" be ‘se‘ts of ‘
edges of the generallsed hypergranh K = (V E, $ K) . such that ‘bhere
exist integers t,r > 0 with uwv(pA) = t+r, uv(AuB) = uV(B) + t
- and such that "ch.ere exi.sts C < AnB with wv(C) = . ». Then
<y(A)>n<v(B)> = <v(C)>. | }_
Proof: By (4.25)(c), w<V( A)> star, BV AUB)> = pV(AuB) and n<V(B)>= uV(B).

By submodularlty of Uy (h 10),
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H AR 0 (B L EEG:
: u(v(l-\‘ uv(B)) + <V(A)>n<v(B)>) | sin?é uis iner—
. easing e
. 'u<v(B)> + t o+ p(<V(A) >n<V(B) >
s u<v<A>>+u<v<B>>4r+ }i(<V(A)>n<V(B)>) e
| ;}"r e .u(<v(A)>n<V(B)>z L V:_imﬁ*j,-
| l\low, <V(A)>n<v(B)> >V A)nv(B) :v((;), since C AnB T
| Wby (k. 25)(b) <<V(p >n<v(B) >> o <V(C)>
by (nes)(e) <V(A)>n<V(B)> 5 <v(o> o
But, from (1), ¥ <V(A)>n<V(B)>) <'r.__ Thus, elnee WO =r

v <V(A) >n<V(B >= <V( C)>

v

wy (A >+ ur(B) >

AR

v

N
¥

U

I"RC)VPOSITIOI\f"I.v«‘;??:’ With the notation of thls chapter, 1f a e of A) then
<V(a)> c <V(A)> and WV( Au ) = uV( p- 3
“2Proof:. ’I:E‘ ae s st’hérevis-nothing o prove.u So a.ssume ar é A H Let SR
| B A be such that {a}uB is a ClI‘Culu of M(K) » s s S
Then w(Bufa}) = [Bula}] +k-2 by (4.18) SO
and, sinee B is independent uV(B) > ]B{ +k=-1= lBU{a}‘ + k - 2 (2) ,‘
Thus,%since;u is incfeesing;: w(B) = uV(Bu{a}) e;i,- v : o I *'Q v(3)

B By submodularity of p, _uV(BU{a})’_ + ﬁV(A)Z uV(AU{a-}) + u(V(Bu{a}) nV(A))
R 4 , . o S

> uV(,L\) + UV(B) since u is ‘incr-
, “easing SRR
= uV(A) + uV(Bufa}) by (3)

vThus, equallty holds throughout -and so uV( Au{a}) uV( A)

Therefore, uV(Au{a}) = uV(A) and so <V(a)>c <V(A)>.» A

- For convenlence in many of the :E‘ollow1ng chapters we shall restrlct
our attention ’co generallsed hypergra.phs arlslng from crltlca:[. hypergraphs.'
That there is no loss of generality in doing so, follows from the next

’c_heorem.



. THEOREM h 30:. M 1s a generallsed hypergraphlc‘matrmd 1f and only if "
M M(H) (E"K) Where H (% E Q) is a cr:n_tlcal k—-hypergraph for
| ‘some k > 2 and K is 1ndependent in ’4\?)
i’foof° Suppose M is a generallsed hypergraphlc matro:l.d.‘ k’ th'enw
| M(H') (Er- S ) For ‘some h:y"pergraph H"— (y" E' $ ), S'irc‘E' : ‘
'M(H') is deflned by some k > 2. | Let K' be a :nax:e_mal 1ndependent subset :
of S » e.nd let L aenote the set of loons of N(H ) {(E -—S‘. “I'heri. |
, is a k—hypergraph a_.d so, by (2. 13) there ex1sts

((E'-—s')—L')uK |
a critica,llk—hypergraph H"y‘= (V"f E", S") Wlth M(H") M(H' ((E s ) L )uK )V
where E" = ((E' Sr)- L')UK" and K' is ind p°nden“' in M(H") ~ Choose
x ﬁ E', and define V, "(x) = {A}UW fwhere AL V" a.nd W c il w:u.th
W] =k - 1. Let | bea set of H_'l dlstl“c’t edges, dls,301n'b from
F'u{x}, whose vertex—sets are all equal to ¥ ,,(x) Let H be the .' _v'
: k-hypergraph (V E, $) where V" V"U{A}, EHULU{X} and L |
$ = $"U{(V e): Ve ,,(x), e € Lu{x}} Pu" K K'U{x} Then clearly R
M(H).(F-K) 2 M, and K is :Lndependent in ‘»i(H), and H is a crltlcal |

k-hypegrgraph, since |V(H)| = lV(BU{x}‘)]

| rkM(H) + k 1
where B is & base of M(H"). - Since Ae V(x)—V(B) Bu{x} € I(M(H))
#so Bui{x} is critical. |

The converse is immediate.

 THEOREM L. 31-‘ k= v, E $»K) irhere H '=.(V, E, $) is a crit’ical_
k-hypergraph, then pV: = uV E) pV(E“K) =k + p(E—K) -1, |
7 where p is the rank function of M(z{) _
Proof: Sinee H is critical,k V] =k + rln}(H)‘— 1 and v(E) =
k= 1+ (0 - KD o
k- 1+ p(EK)

Also,‘ by (L.27), uV(E-K) = p(E-K) + k¥ - 1. ‘Since u is increa,eing, |

Thus, W o= |V] - Kl

w 2 wW(E-K), and the result now follows.
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}, CHAPTER 5'

TRANSVERSATL M ATROIDS

. AND GA_Q«'OIDS

- We now turn bfiefly ’C‘o the class of »'tzy'ansversal‘metroidks aﬁd
gammo:Lds. rWe shall prove that transversal maur01ds are hypergraphlc, o

,~vc.nd use a fesult of Ingle’con and PlfI [15] to prove that ga.mm01ds are i
generallsed hypergraphlc. We also show that whlrls are hypergraphlc.

Let M be a transversal matro:Ld on the set S {x1 ,xg,. .o ,x }J

o By a result proved by ersky in’ [20] 1f r is the rank of M, ‘chere is

a presentatlon of the 1ndependent seus of M as ’che partlal tra.nsversale
of & family A= (A <i < r), Whern & Sfor each i. Now, if
x € Sand x £ A. for any i, x is a loop of M. Slnce by (h 2), :

matro:Ld is hypergraphlc if a.nd only if the m:Lnor obtalneo. from 1t by
. deletion of"its loops is hy‘_pergraphlc, At dis sufflcz_en’b to prove that

_b_lI_x( . AL) is hypergraphic.
1=1 B

o THEOREM 5. 1: If M '13‘ a tfansvereal maurouib theo M ‘3.s hynero-raphlc.:

- Proof:.  With the above notatlon, let ' = 1_1 Al We sha_'Ll show that
| _ij_le' is hypergraphlc. By re—numberlng if necessary, let |

» E'= {x1 ,Xz,.v.'. ,x }# Let Ebe an 1somorph1c copy of the set E .

under the obvious blgectlon 0: E -+ E's where e(e ) = X.e.o

i . :
For each i,-1 < i<m, deflne q; I{,J ;€ AJ}‘ - - Then q__L > 1 for each: "
i. For 1 £i =2m, let V be a set of vertlces such that IV l i—1"‘

: _,‘md Vian = ¢ for i # jo Let W be the set {BO,B ’Br}# of vertices,"

10
Whe're'WnV. = L for each i, 1 i <m. Let V= VikuVeuv...UVm.
~Let H = (VuW, E, $) where, for each e; ¢ [,
V (e ) = (V-—V )U{B ; € A }U{B } (1 <is<m).

(i) H is a uniform hypergraph of cardinality at least 2.



For,le(éi)l

L ]yl e

EARY 161\3}1 HB‘OH

|V|—(q—1)+q +1

Wr:Lte k = lyl + 2. ~Then k 2 H

(i1) M(H) = _MXE‘ » the isomorphism being that induced by the bij ection 6. X

‘Suppose {_Xi:’ ie I} is

~ Then, for any nonempty

Hj: xleA for someleJ}l > |J]

If [9] =1, then e; is

"lgV(ei)l:=,lbx('V—Vi)l ¥
S |V|~+ lJI +
= |J| + k-1

v_fThus, {b : 1 € I} lS 1ndependent 1n M(H)

Conversely, suppose that {x:L i€ J.} is a c1rcu1t of NXE' for some .

independent in MxE' for some I ¢ {1,2,....m}.

subéet Jc I,

l'j {Bj§ Xi € Aj'}l '*'.HBQ}I -

[v] + 1G5 %; < Ay for some 1 e 3} + 1

1 ~ from (1)

Gt

: Ic{1,2,3,...,m}. Then, since WE! s loooless, 1] = 2.
143 xleA for someleI}[ < lI]
and's0f|3v(ei)| = v + [{§: x; € A; for some i e I}l +!{B }l
T e
BRI

(1

3.ndependent in M(H), where J = {1} If [Jt 22, 2

Thus, {e.: i e I}{is dependent in M(H). Therefore, M(H) 2 M<E', and so

g is hypergraphic.

Thus, by (4.2), M is hypergraphic..

'We now give two examples of the construction of (5.1).

EXAMPLE 1: Let M = U, h({x‘l 2Xp X3 ,xh}).' ‘Then 'M can be represented

as a transversal matro:.d using the family A = (A :Ag) , where

A1 = A2 = {x],x ,xs,xh}.

" Then a; = 2 for each i, and so we obtain the

6-hypergraph H = ( Vo £, $), where V(e ) = {V2 Vh ,B 2B, B 1,
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' V(e2) = {v1, 3,Vh,B B 8: 3 } v(e3) = {Vi, 2,VH,BO,B1,B2}

;v(eh) = {VT,Vz,V3 BO,B B Y, W {B B1 B }.

The hypergraphlc matr01d M(H) 13'clearly 1somorph1c to U L*

. 2,5
‘;EXAMPLE’2 . Let M be the transversal watr01d whose presentatlon 1s
(Aj, AQ, AB’ Ah) where A {x1,x2,x3,xh} A2 {x1,x2,x3,xs}

Then»q1_= % = 9 = 2;_ Q = a5 = 3. writing VL‘;,{vhi;vhz}’

fana_VS = £V51,V52}, e dbtaln the ,—hypergraph H= (Wi, E, $) Whéféﬁ
V(ey) = {v,, JERR MR 51> 52’B SBsByt | o
-v(egy = v, 3=Vh1’vh2’ 51, 52,13 »B, B, }-;i;
‘V(e3) = {v,, 2°Vh1’vh2’ s1° 52,3 BBy} |

'_ V(e)) _ {v1,v2,x3,v51, 52,3 ,B B3,Jh}

v(es) = {v1, oo 3’Vh1’vh2’30532’3353h}~'

‘ B_Q: 1> 2: 32 )+ : T AR =TS SERESUREE
It can be checked that M(H) f'. Note, however, that although H

is a hypergraph with M(H) = M, 1t is bj no means the only one. . Indeed,

in this case, M is graphlc? be;ng the cycle matrold ofvthe graph shoﬁn S e

“in Figure 10.

Figure 10

In [15], Ingleton and Piff show that strict gammoids are the
duals of transversal matroids, and that every gammoid is the contraction
of a transversal matroid. This latter result shows that gammoids are

generalised hypergraphic matroids.
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PROPOSITION 5.2: If M is a gammoid, then M is a generalised hyper-
graphic matroid. |

Proof: By (5 1) every transversal _atr01& 1s hypergraphlc, and so,

":,by (h 5) every contractlon of a transversal matr01d is generallsed

hypergraphlc.

In his paper'[1T], Mason givés,'as an example of a strict’gammoid,r

. .the matroid M shown in Euclidean fepreéentationiiﬁ Figure 11.

3

Figurev11_,r

s -

Thls has ranh 3, and has 01rculus {h,3 2} {h 6 8} and {h 5 9}

(and others) and no circuits of cardlnallty three contalnlng the elementv_ 

4 except the three stated. Thus, by_(B.h), 53{2,3,4,5,6,8,9},1s not

hypergraphic, and so; by (2.12),;g'is,ﬁot'hypergraphié, Hence

'_F,PROPOSITION 5. 3‘ If M 1s a gamm01d, vhen M is a generallsed hyper- .

graphlc matr01d but not, in genﬂral a hypergraphlc matroid.-

Inv[27];‘Tutte showé that the only‘3—conneétedvmatrqidsﬁin which'  B
every element is eSsentiai_are the wheels and whirls. Wheelé‘are
graﬁhic,fand hencé hypergrapﬁic. i It is easy to seexthat whirls are :
‘gémmoids, and‘hen¢e’generalised hypergraphic. ~In faqt, tﬁeyvéfe

hypergraphic, as we now prove.

THEOREM 5.4: Let M be a whirl. Then M is hy’pergraphic.

‘Proof: Let M be the whirl wn,of order n on the set $ defined as



{Db ,b1,...,bn_1,ao,a1,... - ]}J, wnvre M has c1rcu1ts

{al,a b’}v(modfn):(1 'i’S‘n—I), the symmetrlc dlfferences of

i+1°71
séts of these given inVChapter 1, and uhe ‘sets {bO’b1""’bn~1’ai} for
cach 1.  Let E = {eo’e1"‘?’en—1’xc’x1"’f’xn+1}¢,and et
o: £+ S e defined by e(e.) = i; e(x;) = a; (0 $_i S'111‘1):‘
Let 4 = {A 0’ 1, 'f’ n- 1}#, B= {B B1""’Bn—i}# be dlSJOlnt ‘ |
sets of vertlces, and let V = AUB.  Define H (v, E, $) to be the ;{f '"

, hypergraph with

V(x;) = {a;}uB S = -(d é:i n—T).‘

A ~444

| ' v(ei) = {A;,4; ’}u(BL{B;})(moa n) (0 = i”é'n—1)_»
Tt is easy to check that M(H) =M. : "4 |
For example V({x X L1,e }) = {4;, ., }UB :(mod n) :
| | | *='v<{x.,x. ) = V(e S

= V‘({x 1,e J)

s and séy{x X +1,e } is a c1rcu1t of M(H)
The symmetrlc differences’ of thase given in Chapter 1 are also
circults, and the proof is of the'same_;orm.‘: | |
IV({e : i I})l 2n + Iz} for each noneméty set i S:{O;f,.;;;ﬁfi}g N
‘  and so {eo,e1,...,e }iis 1ndependent in N(H) _ Also, sincé | |
» V({éo,eT,...;en_1}) v, {eo, 1,...,9 1} is spannlng in M(H)
“jv;‘, Now,w X cannot form a_clrcult {Xi}u{ej: j e J} for any
J_with IJI <n, since, for any such J, there exists jJed with
V;V(e.)lg. V({X.}U{e tme J-{j}}). Thus,i{eogéT,;,:,en_1;xi}

is a 01rcu1t for each i, and so M(H) = M.

We therefore have the interesting result that the three-connected
matroids in which every element is essential are all hypergraphic

matroids. This result will be used in Chapter 11.
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DUALITX _
| The tltle of thls chapter is slléhtly mlsleadlngu Oﬁr object isj
to use the results of Chapter 4 to show that nelther (M(K ))* n§f 

(MKKS))? 1s‘genera11sedvhypergraphlc. We use this result to make A

various deductions. -

3 THEOREM 6.1: (M(K ))*r is not a generallsed hypergraphlc matr01d._

‘Proof: The graph K3 3 is shown, sultably labelled in Flgure 12.

Figuie'12

The circuits of (M(Ké 3))*, with the above labelling, are:
R .

C) = {x].x ,x3} : »}Cé“ - {x)xg%5} C3 ="v {x%,xé;xg'}'

i

D {x] ,xf‘,x-'?}‘ Dk = {xp.xsxgy Dy = {x3-%8>%g}
and all minimal symmetric differences‘of'setsvof these.

Suppose (M(K3 3))* is generalised hypergraphic. Then, by (h 30),

there exists a generallsed hypergranh K = (V, E, $ V) such that

. E K = {X1,X2,...,X9}, lV(x)] = k for each xef, H=(V, E, $) is a
crltlcal k-hypergraph for some k = 2, and (M(K3 3)).*‘ M(X) , where the

. 2
isomorphism is induced by the obvious map between EK and
,{x{,xé,...,xé}.v Denote the imagesvof Ci, Di by Ci’ Di ?espectively.
By (k4.18) uV(Ci) = uV(Dj) = k+1 1£i,j3 ' (1)

and pV(CiADj)’= k+2 1<1i,j< 3 - ' (2)
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.and pV(CADJA(;n) pV(DiACgAQn) L+3 '1' <i'-<'m .<. 3, 155 €3) (3)

!Slnce H is critical, by (1# 31) uV(E-K) = uV(D k+3 - (_’4)’

' ’V:S:ane C_L D] CG(C_LAQ')) by (!4 29), uV(CiUD) = pv( CAD—) 30, fI‘Om (2),

,,-;.;E#m’_-e,,.f_u(gli‘(c uD, )) lin and C n(CQUD } 2 X

, TR uv( Ci“%) w2 : (1 =i 3 <3) L (5)
‘ ',MSJ.mllarly, w( Gl U(;n) = pV(DluCa u%) k+3 (x s,'iﬁ‘s) L ‘,.-'(6)
Write ¢ = <V((;_)>, D, = av(]l);. (1 <1 <3) |
'vand X_-L"<V(X)> R (1 <i <9)

From (1) and (5), using (1¥ 25),

k+1 + k2 = uC + p<C uDlz
= WGy +ulun) e (h 25)
= ',u(cluC'QuDl):+'p(C'1n’(VC' UD ) by (h 10)
2’ p(01UC2UD11) + kquL o ‘since is increasing
s e : by'(6) | .
Thﬁs, équélity hoids .throughout,'so; ' C n(C UD )~~ X | " (7)

In particular ClnDl };1 5 and. s:.mllarly for other sets. : R (8) '

g Results sn_mllar to (7) ‘hold for other sets C D a.ndC

%

Thus , <V(C > v= “V(x, )>u<V(x )>U<V(x ‘)>UVf . - (9)

bfor some set V < there T/ n<V(x )> = ¢ for i =1 2 3,

n<V(C > =9 for i

1l

2,3 and V, n<v(D )> = ¢ for.g =1,2,3.

‘Then (9) becomes 01 = Xiquu/{suvi L s R ‘(170) :

Similarly, = C. = U{X s x. e (s w1 o T
—— . .b ul. . o o o

- | X U{XJ ’.eD} |
where V.nX. = V.ol = ¢ (1 2i,m<3;,1 <j<9).
iJ im § -
and | Vian = Winwj =¢ (1 =1 <kaS 3)
By (L.26) ‘:’ \)Ci = i ]Cil - uci

- n

(12)

and s1m11arly N vD; [U{Xj; x5 € Di}uwil - k‘-_. 1
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fvl'hus,‘ » v C;L fvpi* lXiuXQUX:%U,Vi,l"% 'lv‘&f’iUXuUX7UW1[ —-.21':-2

i

| ,|x1ux2uxspx4¢;g7uy1u;711 k=2 + |X, | —. 1¢ by (7)
’ Thus? equality:holdé fhroﬁghout;.and:éo'Qg?iUDl)>=<|Ci9Di[A-k%2>v e
A siiilar resulﬁ_holdskfor‘othef‘seééj- i;é;‘ e | |
| v (C; uD, ) | '-;lci'upjly—_k - 2; b (1 s‘i’,'ji_és),‘ : ";‘. ’_, ‘(1'3) :
ow, (CUDIN(C,D,) = (€D NCu((Cud D)
o Ex, o mmo
Write Xy = y; end X = 2’1UX-2U..H.VUX9.- TR AR )

v(C,uD,) + v (CuD,) :”—*-,._'X{.1,2‘,3,‘4,‘7}."?14“’1*; B kv—'ée‘ S

‘ | | o X 1,2,-4,5,'8}UV2.“’WQI‘_ i,k‘"' 2 from @.3')'.

= "X{:L,2,3,4,5;6,'7;S}AUViVUT,jzt,’Wi,‘.’Wzl: 3 k— 3
+ XK, ] -k - 1 S e s

QUD:}.UDQ

\)(CluDl.) + ,vn(‘c2up2‘)“ :‘;' e : by ().;,"() . :

v

v(C,ue b) +»V((CiUDl )‘p(‘CQUDQ.))b‘y "(6)836-.'(1;1%‘), i

v

~ ThusjéQuaiity holds throughout,~and_$o L
V\’(01U02UD1UD2_) =,»[Ciu6‘2uDluD2l - k— 3 - : R _ (15)

A similar result holds for other sets Ci and.Dj. S v

= IX{1’2,3’4’5,6’7,8}UV1UV2UW1UW2I — k-3

Li_ly(.(,'luc2l1.D1uDQ:) + v03
| ot MEg g UVl mE T

| X7, UV UV, U Ul ] k3 1XpuXg] — k-1 b:y’>(8_)

v (Clu02ucsuDluD2

v(C,uC,uD,uD, ) + VC, R vby:(hé?) .

v

)+ v'(X7uX8)' -

v

o , 1Y42%1 %2
Thus, equality holds throughout , and so ‘ ‘
vv(XuvlpV20V30W1UW2) = ]XUViquuVauﬂltJVQl -k -3 o, (16)

similarly, v(XUVluV2uV3UW1uW3) =‘-IXUV1UV2UVV3UW1UW3I-‘1£ -3




Coeme-

1% 1 i)
- lXUViuV2uV3UP/1qW21 T k34 -';XU.VluI(QuVSu;/igWBI k3
[XQI’/:].UVQUV3UW1UW2UW3{ - k-3 v’f‘;v‘v}XquuVQUVsule}] - k-3

So, \; (VXUV1UV2UVA3UW1UW2)‘ +v (XuVi‘UV29V3UIV1UDI

\’»_}‘(XuV‘quQUV3uw1up{2qu) Ty (J{qviuyépvsuwi ) by 6)

v (XUV, UV, UV W, Uy ) + v (XUV, UV UV Ul ) v (hT) o

\"

v

Thus, equality holds throughout, and so

= \’(XUV1UV2UV3UW1?_ = | XuV UV oV Ui | -k 3 i

dee. v(CUCLUCLUD, ) = lciuczucf?)uz)l? “k=3 (‘17)_"" |

R T AR S tron (7)

1,4,7} S : 58 T
‘v(CiuCQUDl) + "Di L Prom (j)' and (4) o
oz \’(CilJDl) + v(C’QUD1..v) ,, o ;;fr'oﬁ; (hT) , ;

Y

| Thus, equality holds throughout, and so T
;v(01u02uD1) o = ,]-("1U02UD1I'~R.__F 3,_ - B e LT 4-(187) :
- and similar results hold for other choices of Ci’ Cj/and'Dm.
. Now, v(C’iuCQUDl) +k y(CBUDi)

vle_UCzUvD:Ll - k—3 + ,lcs"D:L' - k2 by (18) and (13)}

= lCiuC’zuCSqul - k-3 + i_Dll -k-1 ."“1 - by -(7) i
= lXuV1u72uV3uW11 - k3 o+ !Di‘l - k"? ‘»1__ SR :
= v(CuC,uCguD,) + v((C uCuDy IN(CauD ) - 1 from (1T)

Thus, by (%.8), there exists one e € K with V(e) £ XUV, uV,uV, ul, ’

. Sxo’, ‘since ‘equality

such that V(e) is not a subset of Ci" C?, Cy or D1

' holds in the derivation of (16), V(e)k must be a subset of D,, and, by
similar reasoning, of Dé. |
But,  DynDy € Dyn(Cyubg) € €y (vy (8)) |
which is a contradiction.’

Thus, there exists no such XK, and so (M(K3 3))* is not generalised -
. ) ) 2 . .
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hypergraphic. 

The method of ‘proof used here - ’chat of bulldlng up a set of
veﬁtlces from closed sets in dlfferent ways “and show1ng that there
are then-1nconsistenc1es in. the resultlng founctlon B 1s~Very,
Dowerful and we shall use it often L ‘ | |

It is not p0581ble to show that a matf01d is not generellsed e.{k
h&pergraphlc merely by u31ng the ;uneoloﬁ u, because allvwe know
about M (notvinvolvihg V) iskthat it iéinereasiﬁg and submoduler; and
(A '

uv(x)

[\

A +x-1 for each nonempty subset A of E-K,

0]

koo ~1v.{:k for each x € E—K such that {x} is 1ndependent
and uV(C) lbl + k - 2 for each 01rcu1t Ce E—K
But we can take uV(A) A + Xk -1 for each A E—K with A F ¢,>

and #¢ = 0, -and satisfy these conditions.

It is necessary to explore beyona the sets V(A) 1nto the subsets of V'f; B

and brlng in the functlon v to produce a contradlctlon.‘
We next prove, by a method similar to that of (6 1) that

(M(K ))¥ is not generalised hypergranhlc.,

THEOREM 6.2: (M(K ))* is not a generallsed hypergraphﬂc matr01d.

is shown, suitably labelled in Flgure 13

, Proof: The graph K5

With the above labelling, the circuits °ff(M(K5))* are
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Cv
'Ch = {xg,x3,x8,x } ‘C‘ = {X3’Xh’x6’XT},

{XO’Xh’X x } ‘:’C' ’ {XO,XT,XT,X8} ‘ C' = {x1,x2,x5,x6}

: ,and all svmmetrlc dlfferences (1n palrs) of these.

Suppose (M(K ))® is generallsed hypergraphlc."eTheﬁ ‘by‘(h 30);1
‘there ex1sts a generallsed hypergraph K = (V E, $ K) such that .
EK = {xO,x1,x2,...,x } lV x)l = k for each xebk, H (V E $) 1s f,u
a critical k—hypergraph for some k 2, and (M(K ))* 2 (H), where the‘" 7>‘:

1somorphlsm is 1nduced by the obv1ous bl]ectlon between E}K and | :
'{Xo,x1,...,x 1. Denote the 1mage of C' by C F(T-_ i< 5).

500w

. Then, by (L. 18) ‘uV(Ci) =% + 2 *\,_ -.(1 <3<
:a.nd o uv(CiACj)v= k-+Vh " "(1_5'1 <J5 5) _ '(2);" |
© Since H is critical, by (k.31), uv(E—K) uV(E) =ws5 - (3)
From (2), since (;nC; < a(C;AC;), by (4.29), WV(C,uC;) = el Cm

Now, 42 + k2 11<V(C )i N<V(C )> -

: =z D<V(C UC )> o+ u(<V(C )>ﬂ<V(CJ)>)by submodularlty -
PR ST 9 orw o
2 U<V(CiUC~)? +,B<V(C-ﬂc.)>~, since M is incre- -
' 3 . v351nc . o
= kit +k - from (h)

Thus, equa.llt'r holds throughout “and so

W(CVIC)> =VCoC)> e RO

Write <V(x;)> = X, . (0=is=9)
X, = gxi B c{0,1,...,91
| X = Xquu...-qu T
| <V(C )»=c s . (1=1505)
| Then, from_(i), i U{X x; € Ci}UVi | T ,: . , ‘-(6)
vhere V. SV, Vian = ¢ (1£i<5,0=<3<09)

~and VinVs = ¢ (1<3i<3<5) |
‘It is easy to check that P(CiUCjUCﬁ)'= 6 for 1<i<j<m=<S5,
\ et x.,x.})'= 2for 0Si<js9

p({x, ,x.,x 1))

1°%5% 3for02i<j<m=9

~and p({xi,xj,xm,xt}) = L4 for any subseﬁ {xi,xj,xm,xt} eot one of the




circuits Cs;

Thus, by (k.27), uV(CiUCSUCm) i< 5,<_m < 5) "'(7) :'»‘

2 k+5.;,i (=i
| ‘uV'({x.,x.ﬂ})' 2 1;.+1  o :'(O si<js9) - (8)
Cuv({x, xJ,x b 24k+2 (0 <i<ji<m<9) (9)
: uV({x ’XJ’Xm’X DR > o

‘kH+3 -fbf any subset :

{xi,xj,gm,xt} not equal to one of the c1rcu1ts CS{% Hf> ;§ €* : ‘b”(19)~1
wv(C, )+ uV(C uC4 ) o R
uv(c UC UC ) + u(V(C )nV(C UC )) since u is -

From (4),  k+2 + k+lt

>
 submodular
2 uV(C uC UC ) + uv({xo,x }) : since u is
, increasing = =
= k¢5 + k+1 - 737:’_ o from (T) and (8)  ;/
B ”hus, equallty holds throughout and so L ‘
uf({x X5})= U(XOUXS) K+l e R ".[' (”)}

A result 51m11ar to (11) ‘holds for eny pair {x. ,x Y e Cm for ‘some m.
W(C,UC,) * wv(CCy) |
uV(C UC UC Uch) + u((V(C1UCh))ﬂ(V(C UC3)))

51nce M is submodular

" Now, - kel o+ kb

v

v

uV(C1UC UC UCh) + pV({XO,X2,X5,X }) “since y is.
_ “increasing
L2 k5 + k3  " o from (3) and (10)

'Thus, equality holds throughout and so

‘ : “V({XO’X2>X5’XS}) k+3 S ~ff?",i? R '(12),:
T k1 + k1 = uV({xO,x 1 o+ uV({xz,x 1) from (‘11)
z'uV({xo,xz,xs}) + uV(xs) since ¥ is 1ncre381ng :
g _ and submodular 3
>k +k ~ from (9)

Thus, eqﬁélity'holds‘thfoughouﬁ, and séy | ‘ i
uv({xo,x ,x 1=k +“2 DRRTE - 'i  (13
‘Similarly, uV({xo,xz,xa}) =k + 2 |
-,Thus, k42 + k+2 = uV({xo,x X5 1) + pV({xo,xg,xs}) |
uV({XO,XZ,XS,XS}) + uV({Xo,x 1 sinée p is incrs

, easing and submodular
k+3 + k + 1] from (10) and (8)

v

R\
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Thus, eauahlty holds throughout and so‘
nV({xO,x ) = u(XbUX ) =k + 1 “f'r ”}f‘ Coo _' (1)
A result 51m11ar to (Th) holds for obhnr palrs {x.,x } of elements

' such that {x X }¢ Cm for’ any m.,i_ i

s, from (1) ana (14, w35 = u(X'UX Yo

for amy i,j 0 =i f j<9 .f~1, : f ]ﬁ . »f':f;1:~ e s

o, by (4.28), : <V({X X })>n<V({x X })> =v<V(ﬁi)> ;}'Q>'

where 0 19,0 <j<m 5‘9,71.7 am,

and g0 (GUEa(KUL) =X ey
By (k.26), h v, * 3G,
B lX{o 1,4,5,7,8, 9}“V uv '_" 5 hf lXo' f;k. fh. :]frOm'(5) -
2 9(C,u0,) + Vg c
Cave, e, B vflff‘, L by ()

‘ Thus, equallty holds throughout ana so -

v(C UC )

Now v(C uC, )f+ vC
= ‘X{o 1,4,5,7,8, 9}”V Wl + 1Zg, 2,5,61""3! - k=6

’=-JX{o,i,z,4,5,6,7,8,9}“Vi“V2”’3' k5 + Xy gyl - w01 from (5)

2 (0,u0U0,) + V((CyuCINCy) “from (15) and (5)
> v(CluCQ) + v03‘ L ,~_‘ -;, A'zby(h-f)hb’“"A"
. Thus, equality holds throughout, and so Lo |
V(€ uC,uC,) N »=;‘X{d,1,2,4 .6,7.8 9}“V o, ”V;l“kfs" | f'(18)f‘
Mso ”-(Xia,s}'j B = lxg, | Gl e (19)
:Similarly,luv(X{Q,g}) = 1%, g1~ k-1 end v(X{2 g}) = IX{) g}l—k-1 A(éo)
| VK g T VE (g = X, gyl * ]XEQ,Q}I.- 2k-2
= X, g,gpl ~ k2% IX)-x  from (16) , o
2 VX, g g}t VX, ' - frouA(Q)
>

vX{2,8}+ VX(o. 9} , - by‘(h.T)



19 %¥ioth;

Thus, equallty holds throughout and SO

(21) 

, , u{2,8,9} = Mg 9}]
So‘v, 'froni.(‘lS), | \)(01UC'2UC'3) + vC | » e
=  ,. IX{012L+56789}UVU/U l k5+ IX{2389}UV[k2
= iXuV UV UV uv, | -k-5 + 11’{2 8 g}l k- 2 i »from (16)
z v(01u02u03u04) + \)X{2 ], 9} ' | |
s v(Cyue,00) + N - A o (4.7)
Thus, equallty holds throughout and so : :
v(XuViuVQUV?)UVq) = | X7, UV, qul f k-5 e B (22) B
Now, v(Cluczucsucu) f Ve, it L : |
- ~xur UV2UV3UV)+I k- 5 + IX{s b, 6 7}UV l -2
= | X0V, UV,uV UV, UV | = k- 5+ lx{s 4.6 7}! _.
,2 ’ WCfﬂfﬂéﬂﬁﬂ&-fWﬁ3q_67} '(’ _ |
| > v(CluC'2u03U04) g o by (h.T);'
’ ‘Thus, equall’cy holds throughout and so R o A‘ |
VEig,u,6,7} O ] O (23)
From the calcula‘blon deriving (22) by (k. 8), for each e € K wrth |
ORDIAUA uvsuvu, V(e) € ¢, or V() € 01UC'2uC3. ’» B
From the pre‘v:\.ousv equalties, this implies V(e) < C’l 'flor'sv,ome. i, R
' 1=is ﬁ ' 5}' ; i o ("v‘\: ' f‘iV L : (2%)

= Now, by an argument similar to that used to’de'rive (20), but appliéd ‘

to the sets X{3 43> X{s.s}and- X{S 73>

. - a
LA e B u} ‘X{s 4}l -1, end St
” ' - . o : S A - (2
VXig 6" s, 61! k=1. o S . (25)
Then, as in the derivation of (21),
Mgyt Vet T vX{s w63 T Vs ‘ - (26)
So, YXig3.u.6) * VX3, = Mg ueyl - w2t lX{s 73l — k-1

lX{S,u,B,,,}! - k2 + X5l - k-1



‘ {3 u 6 7} + vX - 1’ from (23).
o Thus, by (L 8) there ex1sts e e K such that V(e) < X{3 4.6 7},

’but V(e) ¢ X, ‘and V(e) ¢ X{3 7}

{3,4,6} | |
"~ So, applylng (h 8) to (26) V(e) [ X{3 4},_V(e) ¢ X{3 6} and
- V(e) ¢ X{3 7} | . . | o
But, from (2h) V(e) < Qi for some i; 1;s'i’s'h.' ‘

Thus , V(e) < C nC . for some i; 1;5 i S'hskv v

- Thus, V(e) © X or V(e) = Xg or V(e) < X or V(e) < X3, whlch

,contradlcts (27). Thus there ex1sts ‘no such K and so

k@(KE))* is not generallsed hypergraphlc,'
 We have thus proved

(COROLLARY 6.3: The'ciass of generzlised hypergraphic matroids is

not closed under the oneratlon o? matr01d duallty.

COROLLAR?ME.A:j kif_ﬁ is¥é generaliséé hjperg#aphicfmatgéid,»and.Mi”i
is regular (i.eQ>representaBlé‘ovef eéery'fiéld),.then M:ié
graphic. ' | T

Proof': By a proof in [233, M is regular 1f and only 1f M does not

contain any minor 1somorph1c to U2 h’ the’ Fano matr01d or the uual of

the Fano matroid. 7
By (6.1); (6.2) and (L.5), if Mis géneraiised hypefgréphic,

then M contains no minor 1somorph1c to (M(K3 3))* or (M(K ))#. f‘Thus,

by a proof in [2&], M is graphlc.

We shall show in the'next chapter that generalised hypergraphic
" matroids are representable over any characterisfic. 'In particuiar,
this impiies that the Fano haﬁroid and iﬁs dﬁal are ﬁot generalised

hybergraphic matroids.  (Alternatively, this can beiﬁroved using the‘

methods of this chapter). We therefore have the following theorem:

en



THEOREM 6.5: If M 1s a blnary geév%axlqed hypergraphlc matr01d
‘then M is graphlc. ‘

 ProoI U, N is the forbldden anor for blnary matr01ds ([213 et allbl)

:The result now follows from (6 h) and the above remarks.

COROLLARY 6.6: If M is transversel and binary, then M is isomorphic
 to the cyélebmatroid of a.planar graph. = :

COROLLARY 6.7: 1If M is a gammoid and M is binary, then M is -
- isdmorphicrto-the cycié“matro€5'b" a planar graph.

Proof of (6.7): ((6 6) is a spec1al case)

By (5.2), a gamm01d is generalwsed hypergraphlc The dual of o

' gamm01d is a gammoid ([15] [21]) and is representablg over the same
fields. Thus, by (6 5), both M ana M* are graphic, and so M is 'vfi =
'isomorphicuto the~cycle mair01d.of a planar graph.

Der eanwn “

Corollary (6.6) is one of the_main results of de Souza and

welsh LT1.



- REPRESENTABILITY OF GENERALISED

 HYPERGRAPHIC MATROIDS

It is well—kpown that grap ic matfoi&s“are rebreSenﬁable over
every fﬁeld However, 51nce the fo*01dden minor for blnary maur01ds ‘_,_,‘
 »15 U2 4 (a transversal matr01d), th-s reault cannot hold for the.
class of hypergraphlc matr01ds '-..ndeed 1t 1s a conseqpenee of (6. h)
that a hypergraphlc matr01d representable over every fleld is in fact

graphlc.

In this chapter we shall use a'result of Mason [18] foeshow that

complete hvpergranhlc matroids (thefﬁethidesoflthevcohplete hypergraphs)e
are‘representable 6Vef.every charaeéefis%ic;; :Since every simple e
“ generallsed hyperg%aphlc matroid 1s a mlnofvof a complete hypergraphlc:
matroid, this 1mplles that generwlwaed hypergraphlc matrOst are ;:

representable over every'characterlstlc.

THEOREM 7;1 >(Mas'on [183): L_ei-, M be a matroid on the s‘e‘lv',b E with fank
at least h', Then M is representaﬁle‘over charecterietic q‘ifz;e 
and only if MF,T iserepfesenteble over characterietie-q{, ‘

» Thevmethod of proof isibasea on an,obser&afiop‘by Crapo-RoiaeEGJQ
if M is embedded in e'projective space P, the~§oinhs'of Mq’1 can

be 1dent1f1ed with the 1ntersecy10ns of the llnes of M in the

embeddlng with a hyperplane of P external to M and in general

position with respectuto the points of M in the embeddlng. Mason s

. proof in fact uses a vector space rather than a progectlve space, but

the method of proof is similar. .

LEMMA 7.2: LetA < Fk+2, and'let b, denote the rank function of ok,

Then Dk(]\";A) = mm ( z;(pA_L - ;:)) where (IL\1 A ,...,A ) is a

Fk+2

partition of A 1ntp subsets ot v[\-.denotes.the supremum
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a,k '

in M °° of the‘ eleménts of A, end pAl? b'(vAi‘:).v
| Proof: For each A eA, let B; and C *l be.such that
B C A : and B AC : ;Th_en" VA = 5( BUC), where‘.v
B= (B A cA, €= (C: A AL o
By a result in Crapo-Rota [6],' ’
pk(v(ﬁuC)) = I,q;?‘(ii‘]"(:psi - k) o M
lwhere ((51 ,62,. .. ’Gn ) is a partition of the set G V=>B‘UC K

.n.l

: Nov, bsi;ppos‘e‘:r.that,_ féf sonie Aii s‘A ,  | Bi and Ci .aré not coﬁta..i%ied
in the same inembéi' of the partition ‘GT ,G yeos ’Gm at whiich’th.e mlnlmu.m |
in (1) is rea.che’d.' .‘.Suppose B € (? and C .2, say | N
Then (VG IA(¥G, D= o (B;nC;) = S
Now, pG + pG p((vG )V@Gz)) + p((vG )A(VG ))

 Thus, (pG - k) + (pG - k) 2 (p((VG W VG ))—-k) + (D(VG )A(VG )—k)

p((VG /V(VG ) - k

o

Thus , if G G geoe ,G is a par ul‘tlon ofG at Whlch “bhe minimum -

of (1) is achieved, and Bi € G ‘and C , then uhe mlnlmum is also
" achieved at & uGQ, 3 pees ’an . We can continue uhus, comblnlng sets in
the pa:c-tltlon, until we reac:h a par“ltlon G GZ" .o ,\y such that for R

;'a.ny Al c A, Bl and Ci are members'OI Gj for some j. Clearly, with

each such G! we can associate_ the subset A5 of A, where
{A B C € G' Furthermore, VGJ!7= _vAj'.
Thus , (VA) = Z (pA ) |

Now, with any partltlon A1 AE"" ’Aq ofA we can assoc1ate a.

partition G'{,GS,...,G& ‘where G‘.‘ = {B_ ,C.: Ai eAj}, and each of the

i)artitions is such that ( Z (pG" - k)) ( Z (pG' - k)), since

the rlght-hand side of thls 1nequa.11ty is the minimum Dossz.ble.

. . n A : . . B ‘
ok ., 0r » . o
Thus, pk(vA) = m‘:,LTn (iET (pAi - k), where (A1 ’Aa""’An")_ is a partltlop
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ROREM T. 3% Md k1 ( s k)d )1 .Fk-vl-2"

Proof:  Suppose A = {A‘: ie I}-‘c Fk~ is mdependent in ( d k)d 1

For each nonempty subset Jc I, le’c A {A : i€ J}

Then - Pk( A ) > lJI + 1. for ear'h nonempty subset J < I.
From (742):, Pk(vv.ﬁ-)‘ = m:tnv(la(pl; _))’ vhere v(A1_°AgI"."sA ) is a
partition of AJ. ' e U

- 8ince (1) holds for each nonempty subset J c I, Als 1ndependent in

Md_ k+1
. Conversely, suppose Ac Fk+2 1&; a c1rc:u1t of ( d k)d >
Then p(VA)<lI|+1where“—{l\ 1eI} |
A_:_NOW for some partltlon A1 Ay"'z‘?‘m of ,‘.\’ : ‘ il A
pk ; A ) - j___1(p%. B 1?) ; | (2) )
Suppose m > 1.  Then eacsz is independeﬁ 1n ( d k)d 1 and 1s
nonempty, so, from (1), pAJ > IAJI + Xk + 1. i
S z (bA; - k) 2 1l +m > lI' 1> p,(VA )

J-—
which contradicts (2). Therefore, m = 1, and so
kaA ) ‘pA—k and hence pA < |I] +x + 1.
Thus, A is dependent in Mél kﬂ

Since the elements of _Md’k !

are the elements of Fk 2 ‘
a,k+1 _ - (o a, k)d 215 pi+2 '

M

THEOREM T.k4: _M(Ki) is representable over every characteristic.

Proof: We have, from earlier remarks (or definition (2.1)), that
- yd, k-1
M Kk k=1
| MK) = PaP) _ |
Thus, by repeated application of (T7.3),
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,M(Kk) (o, DTS P B R

b

: Where F denotes the set of j-flats of U (Oﬁs i < p)-

P

If rk(M(Kk)) <2, then clear¢J M(Kk) 1s representable over every'

- characterlstlc.‘; If rk(M(Kk) 3 thvn by (7.1) and the above

>relatlon, M(Kk)ls representable over “the same characterlstlcs as

Up p® since representablllty over a characterlstlc is preserved under,'
> -

: restrlctlon; But Ub o is representab_e over every f1e1d ‘and hence

>

‘over every‘eharacteriStlc." Thus, M(KL) is representable over every ;

characteristic. =

COROLLARY 7;5:’1:If M4is a generaiised:hyéeigrephic maffbid;;g is
“repreeentable ovef every characteristic:‘ R

Proof: Let M' be the 51mp11flcatlon of M kThen, 5y (h.S), gy'ise_

1somorph1c to a minor of M(Kk) for some k,p kThus,-sinee fepresentfe"

ability is preserved under the operaulon of taking mlnors, M' is-

aurs P

-representable over -every characterlstlc. Now, M can be

represented over the same fields as M', so M is representable over

every characteristic.

COROLLARY 7.6: The Fano matroid and its dual are not generalised

hypergraphic matroids.

Proof: Both are representablevonly’ever fields of characteristic 2..

The questlon of whlch generallsed hypergraphlc matr01ds are
representable over which flelds remains large 1y unanswered.

We have, of course, Tutte s result on forbldden minors for
graphlc matr01ds which ensures that the class of binary generallsed
hypergraphic matroids is the class of graphlc matroids. A direct
proof of this for other than complete hypergraphic matrqids is still

to be found.  Although the condition that there should be only three

points on any line is certainly necessary, it is far from sufficient,
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~as ‘the examples in Figures 1k and 15 demonstrate. » Each”, of course,
c:on"ca.inst‘2 )y as a minor, and so cammot be graphic, although each is

hypergi'ejphie .

>Figure.1)+_ e . AR ">Y-Fi_gure 15

- Clearly, a complete ternary hypergranhic ’matroid is eithyer v

/ 2 h or graphlc, since M(K ) con'calns (a forbldden minor for

2 5
ternary matr01ds) unless elther k = ,‘ or 3 and p L.

No necessary and sufficient cona:.tlons are known 1n terms of .

. forbidden_minors for representability over GF(q) for g > 3, so this

- approach caﬁnot be used to examine represefxte,bility ox.rer'su’cbh";fi‘.‘eldev '_'7
for generalised hypergra_;phic matroids‘. " _ﬁe cén‘,"hoﬁeve‘f,rpﬁ“t an
obvious 1ower ‘bound on the size of’o_ such»that a cemplete hypergraphlc
matroid >should berrepresentable over GF(a)v as fOilOWS' | | .

For any p01nt x in M, where Mis the complete hypergraphlc matro:.d

: M(Kk ) of rank T p—k+1 there are (r—1)k points whlch are elements
~of nontrivial lines of M containing x. A1l other po:LntS of M. form |

- trivial lines with x in M.‘“ In PG(n, 0) there are LT 11nes through' |

any point. Thus, if M is to_ be representable over GF(q), we must have

P—,k._r]' P ‘
-‘1————-(1._1. > (1) - (p=k)x = 1 + (pk)

(B) = (p=k)(1=1) = 1
M(Kg) can be represented over GF(4), as we shall see in Chapter 10,

(a case in whichequality holds in the above), but _Iﬁ(Ké) cannot be -
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represented over. GF(3), although qa=3, p 6 and k = 3 do satlsfy
~the above We therefore need at leasz the exten51on off thls to count
- the number of (m+1) ~flats contalnlng a glven m—flat of the form
'{e V(e) c V‘ c V}, where |V | = k+m; ThlS leads to the reqplrement

‘that for. each m w1th 0<m< p—h— ‘ B :
fz_lil - 1 : 2 (p) (k+m) ~ (n—k—-m) (( ki ay _1) k.'» L
I do nofrknow whether this condition-is:also sufficientlfor
"complefe hypergraphie metroide;; even7lflitiis Sufficient<for )
deciding rhe representabilif& of eomplete’hypergraphiezmatroids? ﬁhe
lqﬁeSfion Of representebility for other'generelieed nypergraphic‘e
,i’matr01ds remalns largely unresolved. | 5v e | |
We mlght hope that the obv1ous analogue of the above —'countlng thev‘
number of 2—flats contalnlng a glven p01nt - mlght be sufflelent for 7
such matroids of rank 3, but thls is not the,case. An example of thls
l,ls prov1dedfby one of the forbldden minors for: ternary matr01ds, 3,5f;“
This is unlform, and hence by (5. 1) it is hypergraphlc.'f In Flgure 16,7f'f

we show it as a restr1c»10n mlnor of M(K ). : However the number of

____;L '
3-1 ¢

is hotuternary, the condition is not sufficient.

2-flats containing any point is L4, and h = So, since U

3,57"
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CHAPTER 8 =

- FORBIDDEN MINORS

‘We shoWéd in 'Chai)ters 6 »'a.nd T bth'at certeih'matreids were for-
~bidden mlnors for the class of generallsed hy-oergraphlc matr01ds
In [23] and [2&] Tutte proved that the class of gra'ohlc matr01ds could

))_*,‘

" be deflned by a flnlte set of forbldden minors, viz. M‘(KS)) s (M(K3 3

" the Fano matr01d a.nd 1ts dual, and- U2 h All i:hese matroids arek”
' -forbldden minors for generallsed hynev'graiahlc ma'b”01ds, m.th the
: exceptlon of U2 lL (Whlch is transversal and hence hynergraphic)
| Denote the class of generallsed hypergra’ahlc matroids by gh
Then, if gh can be de:f:‘:Lned by a flnlte set of lor’oladen mlnors, o
this set must include (M(K ))*, (M(K3 3)) the Fano maoro:Ld a.nd 1ts I8
"bdual and a, = 1n1te set ‘of matro:.ds all of Whlch contaln U bh as a
minor. In this chapter we shall flrst flnd bhe smallest matr01d
which is not a member of gh and then find an vnflnlte fa.m:Lly of m:r.nlmal
non-members of gh. P ;
, Reca.ll ‘bhat, in Chapter h we showed that the matroid of (3. 5)
“swas generalised hypergraphlc; it follows from (7. h) tha:b the non-Fano
matroid is not generalised hy'pergraphlc, since it is not representab_le

over characteristic 2. - These two matroids are shown in Euclidean

representation'kin Figure 17.

a —y 4 2
" The matroid of (3.5) The Non-Fano matroid
Figure 17 ‘
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 ‘The non—Faﬁo matroid is'certainlj a‘misimal ndﬁ—geheralised~
'hypergraphic,iatrOid,-and is‘has feweStselemesﬁs_emongst non—generalised—
v hYpergraphic maﬁfdids;' However, ‘it:ﬁaj be thetsthere.exists.a matroidA
-on T elements Wluh fewer c1rcu1ts of cardlnallty 3 whlch 1s also g
non—generallsed—hypergraphlc. Any.matr01d on 7 elements which has’ -:?i
at most h c1rcu1ts of cardlnallty at most 3 can be shown to be
generallsed hypergraphlc. kHowever, a’matr01d thh»one fewer circuit i
’sof cardlnallty 3 than non—Fano is non—generallsed—hypergraphlc, as we

now prove,

IEEOREM 8 1: Let S= {x ,a1,a2,a3,b1,bé,b':§ and let M'be the matr01d

on S w1th c:1rcu1ts

| N

1

{x',a.,b'} (15 i 3)

.Di_.= { aT,a' b }
~ Dy = 1pybyngd

together with all L- subsets of‘S contalnlng none of these. Then_~
M is not generallsed hypergranhlc.bl

Proof: M is shown in Euclidean representation in Figure 18.

- Figure 18

Suppose M is generallsed hypergranhlc. ‘Then, by (hQBO) there

exists a generallsed hypergraph K = (v, E $, K), such that = (V, E: $)

'is a critical k-hypergraph for some k > 2, K ='{x,a1,a2,a3,b1,b b3},
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and M = M(K), where the isomofphisﬁ ié.indﬁéed by‘thekobvious bijection
‘between S and E—K;,:: | ‘ | v Az‘ v | :
By (3.31), w(b) = w(E-K) = w2 S " . | A
‘_Denote by‘ci; Di the,iQ?geSka Ciﬁ'Di‘”£GSEECti{élyf'  Th¢n,'by(h.18)5,',

wr(C;) = “V(Djj =_,k"*" PN si<3, j=1.2) @
Thus, by (h;28),-{V(Ci)>n<v(cj)> = (1< 5_3)"A_
VD> av(@y)> = <vlog)> 2 (3)
<‘?(Ci)>n%v(Dj)> = <V(CinDj)>";(1 <13, J Z 1’2(); S

. e . } T _ S ;_? S ‘ .
Write X'= <v(x)>, A, g<V(ai),> . B, = <V(b,) ?»Ci = v(Ci) and.

Py = vlyx men

. = XUAiUBiUVi, | '; ?>; f ‘;<1f$vi’si35:‘.
"'D1 = A1UA2uBguWi - «4 ‘~ﬂ  ?'--;1 ;fi f f~ | oo
D, = BuBuRWH, i G | S
whers Vin!li':»VinBi = W&rKAiUA2U335'= Wén(81UBéUB3> =A§;: 
*”Then;from'(37?5VinV5'='Vinwl5= Vi, = ¢ (1

| By (4.26), vCi + ycj

|Xvd.uB.uV.| + |XUA.uB.uV.| - 2k - 2
iid 373035

= lXuAiuAjuBiquuViuVﬁl — k—2 + x| - k (1‘# J)>?rom (3)v.,,
> ’.v(XuAiuAjuBiquuViuVs) + VX e by (gfeT),v’

o > vC. + VC.. S L vy (WT).

» 1 dJ ’ Y()

Thus, equality holds throughout, so v(CiUCS) = ICiUle - k-2 (i#3) (S)Y .

Thus, v(Clucs) +AvD2’

= IXUAiuAguB UBSUViUVél f 131932uB3UW2I - 2k,— 3

1

= IXUAluASUBiUB2u33UV1UV3UW2| - k=2 + |BjuB | - k-1 from (3)
> v(01UC3UD2) + v((CluCS)nDQ)V by (k.27)
= v(C uCy) + vD, A ; by(h-7)~

Thus, “equality holds throughout, and so

-k-2 | ‘ ‘--(6)

v(C uC,uD,) = 101U03UD2]
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Thus, V€, uC,uD

4UC5UD,) + VD,

= leyucgw,l + D] - 23

= '101“C3°D19021" k-2 +~inp33];e k=1 from (3)

> W(C,uC,uD,uD,)  +.\»J(-(CiucauDé)n-Z‘Ji»)v"',  ‘. by (h.z’fj) |
= vv(CiucsuD‘) + “Di;ﬂk o ’,"‘ff.il b?‘<4-7>”ff
Thus, eq_uality hoids throughout', énd svcra_' 2 ‘ v s
, v(ciUCSUD1Ub2> : lciuce'UDlUvDQI,_:k.‘_v‘é" . _f_ ‘ (T) :
"'Thus,  ,'~V(CiUC3uD1UDé) + V¢, | ”;' RN
= leyucgup w,l + Ic,l - ok - 3;,,"H e
= : ;CluczuCéquusz :—‘ky-g + IXUAQU‘B"Qi;:—kk-’I _k “ f‘_‘r“o.m'(3)
= v(CiuC2UC30DiUD2)’f V((Cqu3QD1UDé)n¢2) _'u  by'(y;27)j-
ER 5&(01UC3upiuDé)_+ v, ‘, ,;7; eh j iby’(hﬁ7). -
Thus, equality ‘holdsbthrough_‘ou;t,- and vso : x .’ |
L Mgy = IXUAQQBQI:—‘k -1 kk‘;f:;. f‘ﬁv' 1hv'f o (8) 1[
V‘"Froﬁf(6)&(8}§fv(6iuCéuDé)'+ v(XuA2032) ‘ ;'7";'k¥f‘f_"” B
| = IXUAiUA3uquBQLlB3u71uV39I~! [+ lXquule - gk 'r_-.'3.:- "
= lxmfmjmﬁmfmfgwny%m51Fiv2+lmwQI{kq"g:ﬁm(3f_
> v(XuAluAQUAsUBluBzuBéuViuVSUWQ) +v(XgB;)a  :?;  by (k)
2 V(CUCLuD,) + W(XUA,UB,) “_. ‘vf- ..‘-fli,r'*"bY.(h.f)

" Thus, equality holds throughout,'and so
; v(XuBQ) = IXuB2|. - k,_— 1 | < -
Similarly, using the sets () -Cy and Dy o Lt B ‘ - (9)
| 'v(XuAQ), = lXqul -k =1 o o |
kFrom (3), AQr\B2 c Bs. So, . A2n32 c BB“BQ <X (fz‘:'o.m’ (?)) . - (10). -
Now, since equali’cy; holds in the inequalities used to derive

(7), by (4.8) there are no ed‘gesA e ¢ K with V(e) ¢ 61UCBUDiUD2 and

V(e) £ ¢, end V(e) ¢ Cy and V(e) ¢ D, and V(e) ¢ D,
Thué, for each e ¢ K with V(e) < XUAQUBQ,

V(e) c (Xud,UB,)C, or V(e) < (Xud,uB,)aC, or v(e) < (Xud,uB,) MW,



: o£VV(e) < (XUAQUB')nD ' :

i.e. V(e) < X or V\e) < X or V(e) < 4, or V(e) < B

Thué certalnly V(e) < XUA or V(e) < XUB ~and'so, by (h.8);_
- v(XuA ) = v(XuA ) + v(XUB ) = vX R g i  . : .(i1)  '1

since; from (10), (XUA )r(XUB ) =

Now, from (9), v(XUAQ) + v(XuB )
= IXuAQI + IXUB2] -2k -2 |
= |Xud,uB,| - k-1 + IXI -k - 1 -~ from (10).
= v(XquuB ) + VX -1 i v“: § from (8) -

which contradicts (11).- Thus, there exists no such K, and so M is -

not generalised hypergraphic;

" We now proceed fonthe second ooJect ive of thls chapter. M'Ratherbi.
than simply pull ﬁheﬁfamily of matroids out of a hat w1th no apparent ;
”i reasogvfor choqsing them,‘é 11ttl° explanatlon may help.  ;The-search;j V
was ofiginally for a fémily of matroids ‘which were generalised
hypergraphlc, but whlch had nov—generallsedrhypergraphlc duals. Ank’"'v
obvious start;ng~p01nt was the ma$r01d MIKS),}shown'ln‘Euclldean |
.‘representation in Figure 19(a). A slight modifiéation fo'thi§ |
produced a ma+r01d which was still hypergraphlc, and turned out té
have a non—generallsed—hypergraphlc dual (Figure 19(b)) Attempts to
generallse this. matr01d falled but a sllvht modlflcatlon, 1nclud1ng
the deletion of the p01nt e and 1ncre351ng the rank did produce a
matroid sultable for generalisation to an 1nf1n1te famlly of matr01ds; ‘
»The duals of these matr01ds aré defwned in (8 2).  The matr01d

MB 1s‘shown in Euclidean representatlon in F1gure,20, to assist the

reader in following some of the pfoofs;'
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Figure 19 5

CONSTR_UCTIONB.Z: Le’c En {ao,a seessa) ,X1 ,xe,...,x ,y1 ,yz,...,y }J

(n > 3). CPut C
_ .

Db = {8hs¥)shse-e 0}

{a.x!,y!} (1214 x< n)

"

{Vaéb,x{ ,Xé,". .o ,_xr'l} :

i<j<m<n)

1 = t

Bijm {al’a’J ’am} (0 .s

!’.-—v'{xyaa}(1si n0<,3<m"<n"'

i jm 17i1°%5°%m R

J J jom# i)

Y:ijm= {5y} x! ,ya,am} (1 Si < J<n, 0<m<n,

:JTm) s

K - (if n = 3)

Gty toxs oy 5oyt (1
n

vV IA
=
S’

and let € be the set of subsets of EL; defined to be
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{1 1 s»i s;p}u{D%,DE}U{BiJm: 0 { i< J <m< n}u N
| H{Xijm?vj s‘i san,O s'j <ms<an, J,m # 1}u{Yt g 1éi<jsn.josm§n i,j#m}U
| '.U{Z:‘:jmé‘ 1 ’S: i <3 < m <. n}, togetner w1th all (n+2) subsets of En

‘containing none of these,

PROPOSTTION 8.3: The set €! (n = 3) is the set of circuits of a
matroid M on the set EA |

Proof: By construction, ! satisfies circuit axiom ‘(_01); S It is

therefore sufficient to check axiom (CE); ~ This is routine, and we

omit the details.

| THEOREM 8.k : y_n is vn;)t ‘ge_a.n"eralised hypergfé,phic for n 2 3,

Proof: ’ Supposé M i’s geﬁe'ralised hypergfaphic., Then , by. (h.BO) .

there exists a generallsed hypergraph K= (V, E $ K) such that |
= (v, E, $) is a crltlcal k—hypergraph for some k=

E K = {ao'v:,a1 s ,a ,x1 ,x2,.;. 2X. oY1 ,ye,.;. ,y } and’ such that |

B_dn S M_(K) , where the isomorphlsm is 1nduced "by the" obv:.ous blgeéti'on‘

1
sz

between E;x and F-K.  Denote the mages of C‘ D' Xl;]m i RS

. :
and Blgm by C D Xlgm 55me ZlJm and B respectljely, and leﬁ_ |
’Cn be the set of circuits of _M(K). By construc’cion', y{n has -rank n+1;
and ]! gnd D} are hyperplanes of M . £ - | BRI
By (.31) WwW(EK = w(E) =k (1)

By (4.18) w(C,) = W(B;s) = B4 R0 @
WD) =ktw-1 . (3)
»vuV(Xijm) = k+2 L S - 5 | p S '(ﬁ)‘ i
“V(Yijm) =k+3  (since n 2 3) R : i . (5):‘
W(Z;5p) = kb ' ifn 2k (8

Write 4, = <V(ai)>, X, = <V(x3.‘)>andbi’i = <V(yi)>,

and let. 4 = <V({a, ,‘31 senes 1)
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(4), k2 + kin-1 =
‘,From (3) and (14),‘ k+2. k+n 1 | uV(Xlom) + uV(D ) |
> pV(D1 UA10’11) + uV( {aO ,y }) . since yu is 1ncreas:|.ng and
» submodular
> kfn o+ kH g by (h 27) '
»'Thus equallty holds throughout and S0 uV({aO,X }) k+1 - (T)
Slmllarly, wWl{agy; D=kt : (8

‘ Slnce {ao,x ,y } is 1ndependent for all 1,,] > v

: .uV({aO,xi,yj}_) > uV({aO,x 1) + 1, so, by (h 28)
<‘7(ao)>? = <V({aO,X })> n<V({ao,y })> a.nd, smllarly, | |
<V(ag)> = <V({a, ,X.})>n<V({a 530> <1 # J) B N )
<V(ag)> = <V({ay.y; }>>n<v({ao,y > (1#35)
Write <V({a0,xi})§ = AOUXiUUi 'Wher,e-Ui.nXi = Ui 040 = ¢
o Vleguy 2> = AQUEUT;  where Vinly = Viody =4
Then, from (9), Vgl s Ay (G # ) @nq,-yinvj :‘AO '(i“% .
:S3.nceUn4—Vn4-¢,U.nU an-cp(i#j)’w -
Slmllarly, U nV = Uixﬂﬁv= V. nX = ¢ : _ ; : e T
and » U;nX. - V_;ny, = ¢> . S \ : f % S :(10)‘
i i , o T : R A
Also, from (9), XnY <S4, , )

ert? D1 <V(D )¥ = A UX1UX U...UX WU, ul,U. - 00, Ul

| D, ’<v(D2)> AOUY1U.Y2U...UYanlquu..TUI’npwz &

where WAy = Wk, = Wy = Wyt = Hynt, = Wy, = ¢

From (1), (3) end (8),  wv(D,ulayy;}) = wv(D)) + 1, so, by (k.28),
<V(:D1 )> n<V({aO.,yi})>’ = <V(ao)>.r :

Thus - ‘ Vi W:L

k (1)
Similarly, U. rW = ¢ :
Since {ao,a1,... ,an,xi},has rénk 3 k‘for rall i, 1 S 1 <n,

uV({aO,a.l,...,an,x.}) > k2. By repeated use of (4.29),
_Uv({aosa-]:"'aa }) = uV({aO,a1 ,a2}) k+1 (:E‘rom'(2) )
Thus, pV({aO,a1,...4,an,xi}) uV({aO,al,...,a 1)+ 1, so, by (h 28),

<v( {.aO ;xi})>'n<V({aO 2850 e ,an})> = <V,(?’O)_> o ( ‘(2)
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Thus, X M s 4, ‘and Similarly Y.nA'C 4, PR (13)
- Also, since Di is a hyperplane of M(K)

"VvHV(Q_U {30531'9-- ,a}) kn = UV(H) + 1, so, from (h 28)

By (k. 26) S vD1,+V\}A'-',
= Iyl -+ e
= ID,ua] - Ken + lA l - x -
> v(D,u) tvag L mpen
i '..vpi ros S e
Thus, equalri;cy"holds'th:c;oughout, and so i » L o -
gbv(DUA)—lDuAI—k—n B : ,’('15).’

&0 e = W, = T.¥, =6
Pp.tCi <V({ ;x5 ,y})> AUXUYUT,whereTnél =T, Ty =

‘The'n, since D ~is a hyper plane of M(X),

uV(DjU{ai,xi,yi}) k+n = uV(D ) + 1, so, from (h 28)

‘«'D1'rCJ;-.~.~=.XiV andD rC £

=T, f =T.¥.=T.0W, =T. 3 = o E
Thus, Tir)40 T.nX TlﬂYJA TlI‘W,[ ,Tlrwe (17) :
and TrU=TnV= ¢ (i#3).
Slnce y e o({a 282"+ + 28 X5 }) by (LL 29),
' <V({a0,a1,...,a ,x 3 })> = <V({ao,ai,...,a X })> '
R R e I u<V(1ao,a1,...,a 1) +u<v({a XysY; })
> pV'({aO,aP... 28 5Xs 5V s 1) + uV(a ) since 1 is 1ncrea51ng
_ 4 . and submodular
2 UV({ao:a1=Xi ,yi}) + uV(ai) " “31nce U is 1ncree.51ng
= kt2 +k :  from (1&)
- Thus, equality holds throughout , and so"_ ‘
w{agsays. a0y, 1) = k2 | i - (18)
Mso, by (+.28), = C;od = 4, - | o o (19)

From (18), k+2 + k+1 = p<V( {ao,a1 o oo ,an;xi,yi})> + 11<V(_{aj X35 5 H> -

> uv( {agsaqseen08 X7 X355 }) + w(a.) since 1 is increasing
n>r )
and submodular
P4 'UV(Y ) + ],lV(a ) if 1'7"-‘,] fOI‘ m rri,j since n 2 3

13m
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= k3t k : R  from (5)
Thus, equality holds thrqughqut,‘and,'by (hf28)>:

'-<V({a

O,a],--.,én,#l,yl})>.n<V({aJ,,XJ ,YJ})? ‘<}V(a3)} "‘(1,7- ) = (2_0)‘
Thus, in particular, TC&(C.'E_A;~Vvfa(i,#;j)" S
S A R B e (21)
 Therefore, b : igfﬂh =¢  (1#]) o
From (15), i ‘v(DluA) f\)C1
= [DyuA] - kn t lCll‘f’k—1~ 3 L .
= ID1UAU01I - k-n + ]X1UA1I j:nfT; fram’(?6)§(19)
2 WDyuAuC)) + WX udy) S by (k.27) |
=2 VDyuA) + vC, by ()

Thus, equality holds throughout, and so ‘ 
v _"(XiUAi) = “IX1UA1VI: _’- M | (2‘2) -

v(DiuAluci) = IDiuAuC‘il —k—n T

Let Pi = ‘01U02U”,'U0i (1 =1 sf-’n)..u | B PRT

: Wé shall show by ,‘:iPdUGﬁion ‘that M DyuduP.) = v!DLgquji_I f -k -

By (22),rthe induction’starts. Assﬁme'the result islfrﬁe:fof

J» Wher§ 1<J<n. Then \)(D:LUAUPj )+ vC’J._H

R AU e R [N

= lDiuAUPquj+1[_i g—n + IXj+1UAjf1[ - 3—1: ;_frém'(16),(19)&(21)
= V(D UAUPLUC, ) + (s uds )i S by (%27) g
> _v(DluAtu) NCa Fooo! by‘(h:T) ‘

Thus, Y. equality holds throughout, and so
v(DluAUPJ. UC‘j +1) T lDiuAtu UCj +1 :[ - kmn
. Since Pj+

= Pjucj+1’ v(DiuAUPj+ ) = ]Diu.l;UPj+1! - 1/:_— n

1 1 : . ,
Thus, v(D,UAVP ) = [DjuAvP | -k -n B R - (23)
Nowv, DD, = (AjuX u.. .q}{nuUlu. - -UU U, ) (AUY, U, . UY U, u. : ;'UVHUWQ)

A, Wl,) - from (10) ang (11) . (24)

Thus, sinée D, and D

, are closed, .tlou(F/‘1 nW2) is closed. R (25)
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Also, -D2n(D_1uAU6'1u. . .uC'n) = Aoq( W, PWQ)U’Y:LU’, . .U}’n )

From (23), v(DluAUPn) + VD,

n

- ]DiuA‘uPnl f'k—n + _11.721 —'};fg+]

!

oz .‘_“\)(DIUDQUAUPH_) + V(Ao“fiu"'PYnU(Win’Vg))- ~ from (3) and

> ' ‘ ’ ‘ . b_ - x< Y

= v(DuAvP ) + D, S by (L.T),_ '

Thus, equality holds throughout, and so k

’ V(AOUY:LU?.-U«YHU(WlﬂWz))‘ = ‘[AOUYlu...U.YnU(Wi rWQ)I —‘k - n + 1
Now, since equality‘holds'in those expressions used in the

derivation of (23), by (4.8), thereybex'ists,no‘ o€ K with

_V(e) g_DluAuPn; but V(e) ¢ D, V(e) £_4 and v(e),g ¢; (1 =i <n).

. Thus, there exists no e ¢ K -with V(e‘)‘ < (Z(V)UYlU". . .U,Yﬁu( Wihﬁ/z))

| | o ) -=_}D2‘n(DluAUP_n)
but V(e) £D,, V(e) £4 and V(e) £ ¢, (1 <i <m).

. i"{"‘rThus;"tﬁerg;"éiist’s.,",no e e Kwith'V(e) o szl‘(plL’AU,Pn) 5

A

but V(g) ¢ D2nDi, Vie) ¢ D2n4' g.nd v{e) _9_5..70.1{\02 | (1 <1

i 'Sbn).:

A

V(e) ﬁAOU(WanQ), V(e) _¢_AO and V(e) £ Yi (1. o
So, certainly there exists no e € Kwith V(e) ¢ 02 n('DiuAUPn)

but V(e) ¢ AOU('erIWZ) and V(e) ¢ AOUYi' | (1 S. i

SO

n).

Therefore, by repeated appliéation of (‘h.8) ,

'vGAOU.yiu...vu.Ynu(erWQ)) g | | | |
= WAQUI) e+ WAE) F VAT 7)) - nvAg .
VR A I R SR VRGP VRO AT

- WA u(W, 0,)) - nldyl +nk k. from (B)Aal‘ld (4.29)

= . IAOU.Y:IU». . .u.'ifnu(lsl1 rWé)l -n <—"1i(A0U(W1 nWQ)‘)‘

But, from (27), B

‘_\)(AOU.Y:LU...U.YHU( Wlnwz))' = ]Aoui’lu...ui’nu( WinWQ)l - n -k+1

S WA ) 2 ke, Bo k=1 2 WAGUCH, ).

But w(A u(W, W,)) 2 pd = k, which is a contradiction.

0

Thus, M—n is not generalised hypergraphic.

i01u02ugupn|i— kn + 4,07 Uf¢.uYﬁU(W1nW2)l - k-n+1 from (26)

(x.27)

n); i.e.
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We next prove that Mﬁ is geheralisedﬁhypergraphic for each
n> 3. In doing S0, We shallldemonstfate‘a’teghnique for identifying
the circuits of a genéralised'hypergraphib matfoid.whichbwill be much

used in subsequent proofs.

 THEOREM 8.5: M* is generaliéed'hypé*graphié for each n = 3.
Proof: Let K = W t,$l@,wmwe/~Xﬂ,Xﬁ Q’

l-Xl =nrand-Y:{A:BaA1av23'- 12 2:"':

A ,B.,B B }#, k= n+2
E'= "{aO’a1""’aﬁ’X15X2";‘?Xn’y1’y2’f’f?Yﬁ’e}#? K f {e},.
enal “V(x;) = {AAJuX - L
yy) = (Buagdux  p  (1sisn)
V(ai) = {'Ai .B;BuX |

V(ao) {A,B,B,,B, ,...,B}

1’

V(e) = {X,Y,BP paeeesB b where {x,¥}¢ c X.
- Denote by XI ﬁheset‘{x.:'i e I}, and use simiiar.nbtatibn for other

Suppose C = XI

~provided I,J # ¢, V(E) = {A,B}UAIUAJUATUBTUX.

uyJua is a c1rcu1t of M(K) where I J T < N.'- Then,

2 + |TyduT] + [T} +n

 So, provided T # N,  uV((C)

k + |TuguT] + |T].

n-

_Sincé C is a circuit, by (h.18), pV(C)_=-lCl k- 2‘ =FIII+lJl+lTI+k42.

k + ]IuJuTE + ITI

e I+ I+ T k-2

L T+ I - 2 = |TuduT]
L I -2 = |TuduT| - |Tud] = 0
e [Ing] 2 2

But (' = {xigyi,xj,y.}»is a circuit of M(K) for any 1 <i < j <n, since
(1) v = {A,B;A AsJux and so uv(C' =k+2 =k +|('| - 2, and
(ii) (' is minimal with respect to this property. |

. Thus, if T # N, T ¢>and I=2J,with |I] = lJ[ (1)
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IfrT=N, o) =k + Iyt + |7 -1

e l‘il_+1‘Jl-+,;lTl

n

Jmarl ol “+e1.?"

So, since ]'le = ]IUJﬁT] =n, TI] + ]d’ = n+1.'4""

- n

Therefore lIUJ] + IInJI n+l. _ Jow, C is a c1rcu1t so f’rom (1)
[Ingl < 1. Thus, I 03] = 1 sndIUs=N (@
Suppose‘now that J =¢ Then, if (Cis a circuit, I # & so -

V(C) —{A}UA UATUB ux

So, if T# N, wv(() =1+ lIUTl o +n Twgl + lol o+ x - 1.

'.'SinceC is a circuit, ‘uV(C) = [C] +k-—2 [T} + |T| +k-2

lIum! +ITl +k—1"

) + 17l +x -2

el ' lIUTl + 1 Wthh is mpoSsible. :,

If Tk=_N uv(C) lIuTl + lTl +k— 2, whence III lzur] =

-"Thus, X.N ay is a circuit of mx). RRTLR N (3)
Slmllarly, ' yl\,UaN is a. c1rcu1‘t of M(K) R S (h) o
Now suppose D = x UyJUaTU{a } is a c:.rcult of M(K) where =
I,J,T €< N. Then V(JJ) = {A,B}UkBNU‘AIUAJUATUX .

So o wv(D) =2 +n+ |1uaur| +n - 1

]

k + |T0JuT] +n - LB

‘Since ]) is a circuit, wV(D) = IDI +x - 2 lIl + IJ‘ + lT[ + 1 +k - 2.

ST+ 13 E T+ k- 1 lIuJuTl +n ik - 1 '

&

o lTudl o+ jTagr] o+ T IIUJUTI +n

ll

7o JTuduT] + 1Ia7] + [Ta(Tug)| = |TuguT| +n
. 1Iar] # ITa(Tud)l 0 = on.
Now, since D is a circuit, by (1), _lIﬁT! < 2.

- If |In7]

]
]

0, ITn(Iud)| = n, so T = N = IuJ.

If I ITn(1u7)| = n-1, so, for minimality, IT| = n-1 and TUJ = T.
Thus, the circuits of M(X) containing a, are those of the fbrm

1 (5)
0. ~(6)

1l

T and 1107l

1l

'fao }UquyJuaT, where either "lTI = n-1, IuJ »

or . T=N, TUJ

N and JI07!
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By minimality in (6’) I J # 7 gb, smc=> otherw1se XNua'\I or yNua.N would be
' properly contalned in D '
. Thus, the set of c1rcu1ts of H(K) is the set
'{{x V- ’XJ s }:1 <4< J < nlulx uyJua.N lInJl 1 and IuJ N}u
. . = e h
U{.XNUaN, yNugN}u{‘{ao}uquyJuaT. ]ﬁI‘] =n -1, IUJ T and iInJi - 1}u

p{{aO}UXIQyJUaN: J = N?I,>I,J # é}i

: Thus, the‘se% of hypefplahes'of,(M(K))* is'thé set‘

¢}u

]

‘ f{{go}uxluyluawz 1] = n—2}u{{a }ux Suy g |IuJ|- n-1 and TnJ

I

Jdla oturys fagtuxgtulxuyguag: T = {4}, I = {f,} and ‘IIqu

u{x

n-1}u

IUyJ J =DN-I,I,J%# ¢}

Let H ve a}hypérplane of M i Then from (8 3),:':
If {al, a } e H for i # 3, then {a }an c H..: S 7‘
".If {a!,xi} < H or {a ] } < H or {x SY3 } < H, #hen {x ,y 583 } < H'_l: ‘  
Suppose that {a! }UaN F ~Then x € h <=> y € H
S‘lznce His a hyperplane, H {a'}u UXIuyI Where [I! = n-_—2.v | o
Suppose next that aé ¢ H> but that al £ H for i #0 Tk’l’eni,
x! e H <= vi é H- So, sin’ce' His a hmefplane',
H > {a'}Uxiuy& vhere I®J = ¢ and ,]IUJI = n—fl.r - | B
- Now, if J = ¢, H_g' {aa}u;;j}, where |I] = n-1, sd, from (8.3), 'sin“c‘:e
Dy 1s a qi;'cuit of M—n"» H> {’ac',}'Uxﬁ Slnce D' is a hypernlane oi‘ M
H = {a(')}uxﬁ.» Similard ,  {ajtuyy end {a'}uXIUyJ (In:r ¢ I 3 # ¢
‘and |IuJ] = n—j)' are hyperplanes of M .
Now suppése ad ¢ H for some‘i #‘O; but aj ¢ Hbfbr'i ¥ j.
H <= Yj'ﬁH(j%i).

n-1 and I = {i}, or

m

- Then x4 e § <> y! e}, and xj'

{a{}UXny& where l1TUT]

Then H:

H

1l
]

{afduc]Uy] where 'TW = ¢ and TUT = N-{il.
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Now suppose a £ Hfor all i.' Then X5 € H <=> Y £ H

Therefore H = where |Iudl IA = b I J# &

X Wy
Thus, the set of therpla,nes of (i(R))* is the set of images of the -
.hyperplanes of M under the obvious bi Jection between E and E'

Hence M o= ( (K))’f, and so Mg E,I_/X(Kv)», ‘and theheiere M;’l is

generalised hypergraphic.

) »We ne};t prove‘al.l, proper ’mino‘rs*eif:Mn are genei;alised hfnergraphic; :
To do thi’s, it is necessary and sufficient to picove that the minors
obtained from M by deleting or contracting one point of E. _s.re" -
: generalised hyp_ergraphic. It is ea’sy‘ to see ’_j:haf there are three
‘distinct classes of point’of'Mn, viz."i{a(’)} ,‘{'ai: 1 Si.é n} and
'{x!: 1 <1 }U{y si <n}, ‘iarhich are such h.hat .there exiSts an'_

., automorphism of M which maps any po.n*t in a particular class to any :

other po:Lnt in the ‘same class. o We may take as. representatives of R NI

—vrs aa

. these classes the p01nts ao, aa and x1.v.Then, in order to prove‘that
'all mlnors of M are generalised hypergraphic, 1t is necessary and ,
sufficient to prove that the minors obtained from Mﬁ by the deletion‘
or contraction of one ef aé, a{ or x% are all genefalised hypergraphicf“
The proofrof thisMis the content ef the next six propositions.’ ln |
these, Sefs cf circnitsvof various generalised hypergraphic matroidsb
are given without proof. 7 The technique for each proof is essentially 1
the,same'as thaivused‘in (8.5), and is fairly routine. We therefore

 omit the details.

PROPOSITION 8.6: M x(E' {ao}) is generalised hy'pergraphlc.
Proof: Let H = V E $) be the hy‘pergraph with

V= {A A B Be,.‘.,Bn,X,Y}# , and

2,..., 12
E= {Xq2X5500 - ’Xn’y‘l ’Ye"'»' 5V p 221 ,sz,... ,an}# .

Let 4 = {A1,A ,...,An}; then $ is defined by

2
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V(al) = (A{A;}) {X,13
5 V(ii) = (A{A IV {X,B;} (15 i< n)
Vp) = Geth i 30 |

v Then with the 'not;ation of “'(_8.&)‘, M(H»)_,havs‘kas 'cix"c‘git”s

:{(\1'. i< 1< n}U{BlJm 1< iéjg»msun_'}u i i Sl

l'J.[Xijm: < irs, n, 1< j< mySI n, ,j’,m Filu

U{Yi;'jm: 1<7i <J s:d', 1< mv.<_>'n_, m #1i,3 }U{Z 5 1< 3 < m < n}
and M(H) has rank (n+2). vThus, the’ (n+1)—‘cruncat10n of M(H) has as
ci‘rcuitvs 4therimage$ 'of‘ I‘_/Inx ( En— {a.d N lkmder.’the obv1ous b:;gectlon between
E {a'}andE Tﬁus, M x ('E{l—"{a’l)»r-' M(H)(n-FU and so, by (1}».22‘),

M x( E' &g} ] is generallsed hypergranuc-

YPROVPOSI‘TION 8.7:  Mx(P- {a',}) is gener alis»ed h&Péx“g‘raphic.’
.Proof: Let K= (V,E, $, K)Where | L |
Cy= {-A1,2,.. A 131,}32’”_’3 Cng,»..,C XYZ}, ;
. E {ao,ag,a3, Y 3X1’X2° ..,x ,y1,Y2, ..,y ,eO,eP‘__,e}#
K= {90391, .. en}. ‘ ;

‘Let 4 = {A, A2,...,A} Then $ is defined by

V(ao) ? {B, ,01}UA ,

| V(xy) = {B,By,0e 0,8, ,Y,7)
v(y,) = {0'1,02,.'. .,Cn’,Y,Z} '
V(a;) = (A-{ADU{X,Y,2} )
Vix;) = (A_'{Ai})“{Bi’Y»’z} i esical
Vy;) = (A-(a3)uie vz} SR
 Wley) = (A—:{Ai})Lj{Bi ,C; X1 |
v(eoj = (4-{A,})u{B, LY, %)

V(e1) = (A“{A1})Q{C1 .Y ,2}
Then, with the notation of (8.4), the circuits of M(K) are

’{(_:i:'-t2 <ic< n}U{Bijm: 0<i<j<nc n, i j.m # 13U



- 'i.OlL'- -

U{Xijm: 2< i< n, 0= J< m< n, j,ﬁ #1, j_;m'#'i}u
 “Yﬁm?2$i? j<n,08m Sn,m#1,mn#i,jh
. “-’{Z:‘ij’ 2< i< j< ms< n, n= 'h}U{D;,D Y, :tog‘ether with all (n+2)-
subsets of FK contalnlng none of thase. But ,thé'sé are the images of

‘the circuits of M X(E —{a'}) under t the obvious olgectlon between

EK ban‘d‘En—{ a{}. Thus, M X (E —{a’}) is generallsed hy'pergraphlc. :

PROPOSITION 8.8: D_/In X (Er'l'—{ x1'}) is .gener'a.lised hy@ergfé.phig. -
Proof: Let K = (V‘ E‘,,$, K), where » . |
V—{A1,A2,...A 31,32,...,3 XY}#, | o
| E = {a.O,a.1 o s ,y1 ,yz,...,y ,e}_T‘, K»——f’{e}'.,

2
V(a ) —~Au{1}

',vLetA = {A Bpseeesh }. Then $ is defined by

]

-~ V(e) Au{B }

Ve = (""{A })U{x Y}

v.’V(y1) = {B, By, ..,B Y}

V(ag) = (A-{A;1)u{X,1} |
Vix) = (A-(a)ulx,B) | (254 <)
V(y;) = (4-{a;})u{y,B.}

Then, with the notation of (8.14), M(K) has as circuits’ .

’f {C.:251zx n}U{Bijm: 0

1

IA

i<j<ms<nly

n, j.,m # i}U .

A

v . <i<n < 1<
U{Ai,jm'z i€n,0=Jj<m

"

u{Yijm:,z <i< j <n,0zxm

n, m # l,J}U{Z 2 <3< j < m s.‘ﬁ}U{DZ},
‘ together w1th all (n+2)-subsets of E~K contalnlng none of these. But |

these are the images of the circuits oi‘ M X(En {x }) under the obv1ous
: leectlon between En~{x1} a.nd E—K Thus, M X En {x }) is generallsed

hypergraphic.
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" PROPOSITION 8.9: M .(EA— a' ) is generelised hypergraphic.
Proof: Let'K (V E $, K) where

14 {XYB ,B

vll

..?Bn}#UA An{xz B ;.,Bn} = ¢ and |4] = n—?,

125p2° 12
F= {a1,a2,...5an,x15x2,...,x ,y1,y2, ,.,yn,e}, K»;’{é} end.
CW(ay) = Auix¥} 2 o |
CV(x;) = AU{VX:,Bi} | (1:s i"vs’ n)
RCART N B

V(e) = {Bangs"'

,Bn}.'_ e
Then, with the notation of (8.&);:M(K) has the:set of eircuits
.1 <35 <t 21 <4i<3 <nju
{{ai,xj%yj}. 1 21,3 n}u{{ai,aj} 1 1‘<‘q n}u’ |
'U{D 4{ai},D 4{a'}}U{{x.,y.,x.,y.}: 1 <1 <'j < n} together with

all (n+1)- subsets of E~K contalnvng none of these. -But these are'the

1mages of the circuits of M (En {a }) under the obvious blgectlon

_ between Eﬁ—{a } and E—K ‘Thus, Mh. E%—{aé}) is generallsed:' e -

» hypergraphlc

PROPOSI‘I‘ION-BJO: M .(El'l—{a;}) is hypergraphic.

Proof: Let 'G = (v, E, $), where V = {X,Y,A 3= ..,A }i?'.ﬂ

E=  {oga%ga By gan e ,ye,y3,---,y b4

V(ao) = [X,Y)

' V(a;) = {X,Y}

.’v(xi) = {X,Ai} (2 <is<n)
V(y,) = {Y’%Ai} | |

Then G is the graph consisting of n-1 triangles AiXY with common
base'XX, together with a further n-1 edges parallel to XY. Then the
~circuits of M(G) are the sets
‘{{ai’xj’yj}: 0 <1i,] <n, i, # 1}U{{ai’aj}: 0<ic<j Skn, i,d # 1}u

U{{xi,yi,xj,yj}: 2 <£1<J <n}.

Let M be the free, rank-preserving, one-point extension of M(G)
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oy % Then, by (3 13), M is hypergr phlc et M= M(H),
where H is thebyp‘“rgraph obta1n°d from G by the construction of (3.13).
Since ’G is critical, H is deflned. »Leu M! M(H ), where H' is
fhé hjpergraph (/AN $ ) such 'chat V' »V(H) , E' = E(H>U{ yi} >
and §' = $(H)uf (V,y1) Ve v (x 2. | ‘ | |
Then _M_(H') has as circuits thé k'circuitvs. 'k:of _‘M(G)v,'v'bbgether"w’i‘th-'.
- {X1 ;y1} and all (n+1 )-subsets of E" éor;ﬁaining honé'of th‘esve.' | |
But these are the images of the 01rcu1ts of M En—{ a'}) under the
obv‘ious bijectign between El'l'—-{ ai} and E‘ Thus , - I_ﬂrl'f.(En—{ a{}) is

 hypergraphic.

'PROPOSITION 8.11: E'—{x1}) is generallsed hypergraphlc. :

‘Proc.;f: Let K = (V, F> $. K), where

<t
II

‘{AT, . 32,}33, . B XY}#,

"rn

= {a ,a ,...,a ,x ,x ,...,x ,y ,y ,...,y ,e}_l,K—- {e}
027120 2°737 1 2 :

T ‘i)enétc T'I,AZ,,..; A - by A, Then $ is deflnea oy

V(a,) = AU{x}

Va,) = Tly,) = GieEA Db{x,1)

V(e) = {A,,4,,B,,. ..,Bn} ‘

V(s;) = (4-(4;DUKY} p
Vix;) = (4-{8; DulX,Bl} ¢ (2 =i<n).
Vy;) = (A ) ulr,B} |

" Then, with the notation of (8. by, M(K) has the set of c:chults
{Ci-? <i <n}U{B13m,‘ Svl <j <m n }u o
U{{y1,a , m} 0<j<m<n, jmo# 1.}U’[a1 2V }u

U{XlJm

_u'{(‘Xi'j-}m—.{a:1 })J:{y‘j}i 2 <i sn, 0 $n; .s‘n;—»m# Th

IA

i<n,0<j<m<n, jm#Filu

n, i,j # mlu

IA
A

u{Y.Jv:J:m:’E i<j<n,0<m
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’«'U{(Y‘ {a })U{:Yj} 2< i< J<n}u{z :2% i< i< msS n,n2 h},

7Jm

together with a1l (n+1)- subsets of EK contalnlng none of these..

.But these are the 1mages of the circuits of M (En—-{x‘}) under the

4 4

obvious ’bl,}ectlon betweenE —{x } anc.E K “Thus, _n.(EI'l—{xn}) is

generallsed hypergraphlc .

We have 'the"::“efore proved

THEOREM 8.12:  For each n= 3, M is not genera.lised hypergraphic,

- but every proper minor of Mn

is g’eneralised hypergraphic.

COROLLARY 8.13: The set {Mn :'n 2 3}is an in_fvi_.ni»t‘e‘b'set of forbidden -

minors for the class gh.

COROLLARY, 8.14%: The class gh cannot be characterised by a finite set

~of forbidden ‘min'ongs. o

L e

Denote the class of matroids *ﬂth generallsed hypergraphlc duals
by gc‘: Then e
COROLLARY 8.15: The class gch cannot be characteri_s’ed'by a finite
- set of forbidden minors.

Proof: {M: n >3} is ‘an‘infihité set of forbidden minors for gch.

* By (8.5), each M* is ‘generalised hypergraphic.  Consider, »for'

' each‘n, the matroid N' =M @ (M')*, where M is a matroid isomorphic

to M on a ‘set dlSJOlnt from Fn Then,'for any proper minor N' of N ,

‘elther N! is generallsed hypergraphec, or (N‘)* is generallsed hyper-—

'graphic (or both). But N is not generalised hypergraphic ,. nor is (N Y.

Hence

TewOKkM 8.16: The class of matroids which are either generalised hyfper—

~graphic or have generalised hypergraphic duals, canvnot‘ be charact—



- 108 -

erised by a finite set of fordidden minors.

‘G*Wé shéll maké'fUrther use of ﬁhéLSE€ {LJb n 2 3} in Chapter 12.
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' CONNECTION IN HYPWRCRAPHS

AND NODE 1*YPERGRAPI’IS

In th1s chapter we change the emnhasws from hypergraphlc f'vff

'matr01ds to unlform hypergraphs and nelr assoc1ated node hypergraphs. mﬁdix,*
"Connect1v1ty in graphs has been studled exten81vely'by Tutte [25]

»Connectedness in hypergraphs is deflned by Berge [1], but hlS defln—“f'f];il‘f

1»1t10n ‘of connected component does not c01nc1de, in general w1th our tq‘.f;”'

1,_def1n1tron OL component glven in (2 8) Whlch is also used by Crapo— ;fvf.f,

Rota [6].  We therefore begln by see&vnv an altﬁrnau1Ve deflnltlon e

~of connecgedness..'

2

= In a graph G, two vertices'V and V .are‘COnnected if end only'ifgt“fs'
'f{v1,v } is a subset of the vertex—set of a tree (1 e. of a crltlcal

" subset of I3'»(G)) B Howefer We may a_so spean of a walk (cf. Harary

2

t[11]) from V1 to v 1n G as a sequence of edées (eT,eZ,...,e ) such
‘that Ve V(e ) v, e V(e ) and e; is adgacent to’ e. (1 e._{e.,e.+1}r

is crltlcal) for each i, 1,5 i s4t—1;iv v and V .are then connected e :

1 c 2
if there exists a Walk from‘V1 to V 4

Each of these deflnltlons may be generalwsed from a graph G

to a hypergraph H but, unfortunatelj, the two deflnlulons of connected—»,llf
'rness no longer 1n general, 001n01de. we must therefore deflne two i

fttypes of connectedness 1n hypergrapha. 5"

Throughout thls chapter H w1_l denote the k—hypergraph

i (V E, ) where k > 2.

‘vDEFINITION 9.1: Two subsets V V < V are sald to be Weakly connected

if there ex1st edges e1,e E such that V < V(e ), : < V(e ) andl:h:é

. either e, = ey, OF {e1,e2} is a subset of a critical subset of E']
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DEFINITION 9.2: ~ Two subsets V.7, c ¥ @re said to be strongly
"_connected 1f there ex1sts a sequence.of edges (e1,e2,...,et)vof H
.3

vsuch that V c V(e1) V c V(= ) ana oither t'é 1,"or"{ei,e‘i+1

oy
,i is a cr1t1cal set for each 1, 1'$ni $>t?1Q

”,wé have elreedy remarked (15 éhepner 2)‘tnat there‘are two»s.v'o
g-analognes 1n a nyperg aph ‘of the concepu'ofva verten in a graphrsba

‘lvertex and a node.;» We shall see that these share the roles played by'illll°
vertlces in graphs but that some propertles of vertlces 1n graphs are;f

not completely generallsable to the nypergnenhlc case beeause, forvi,fﬁ;:nsn

bk > 2 a vertex 1s not a node.

1n;\9 1) and (9 2) that we

The types of SEuS of vertex V,,V

lffshall con31der are 51ngle vertlces, nodes“end the vertex—sets of" edgéé..,fj&;
"We shell uhen refer‘to the conneczednesswas belng vertex—;;node— ‘or i
o:edge—connectedness respectlvely | :lu 1s.easylbo see that veftex— ”‘v
";eonnectedness is not an equlvalencerrelatlon Ou‘the vertex—senbof H -

,i for a general k—hypergraph H (con51a=r, iof ;nstance 'the hypergraph :lv_k“,t
»eshown in Flgure 2) However, by (2 6), noae—connectedness and |

"kedge~connectedness are equlvalence relatlons on the set of nodes and the }:

‘set {V(e): ee E} respectlvely.b

bl’liDEFINITION 9.3: If e1,e € E are such that V(e ) and V(e ) are

weakly (strongly) connected,,uhen e1 and e2 are. sald to be

’-’Weakly (strongly) connected.'

Edge—connectedness is thus an equlvalence relatlon on the set of

"°edges of H.

.”; DEFINITION 9‘h° If H is such that every paﬂr of nodes (edges) is Weakly'

- connected then H is sald to be Weakly node~ (edge ) connected.-
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DEFINITIOV 9 h (CONTD) If every neiriofbnodes (edges) is strongly

connected then His sald to se strongly node— {edge—) connected.

'LEMMA 9 5 H 1s weak_y (strongly, E ﬂe—connected if_and‘only'if His
Weakly (strongly) node—connec,ea.,;f;ﬁ"'uﬁ o

f,.Proof ‘ Suppose H 1s weakly edge—co_n cted'j} Let N N be two nodes of ,tjjt
H. Then there ex1st e1,e2 € E such tn ,Ii c V(e ) and N2

';If V( 1) V(e ) there is nOthlng to prove.tf Otherw1se, since 81 and eQ;HQﬁf

Kad V(e )

“are Weakly connected {e1,e2} is a sibset of a‘crltlcal set.vi'lff :
~vu{e1,e2}# is afsubset of a crltlcal sec,’tnen N and N are Weakly
connected by (9.1),_ Slnce thls h i ’fbr any two nodes N N of H
lin is‘neakly node‘connected,ll o . . t;'> L
‘”Snpnose_H:is neeklyvnodewconnectedti% Let {e1,e }¢ = E If

,V(e ) = V(e ), there is nothing to. y_ove.'; Otberw1se let N1 c V(e ) jiE

,zand N V(e ) be two: nodes of H., :Thsn tnere ey1st edges e ,eh of H}f
7w1th N < V(e ) and N c V(eu) such that elther (a) {e ,eh}¢ c-A

, for some crltlcal set A or (b) e3 = eL.{tfd‘A o 5

If case (a) holds, since {e 1}, {ee} 2nd A are:crltlcal by (2 6)

{e1,e2}UA is a sdbset of the edge—se- of a fragment HG of H.I Thus,iflffjﬂiif

since V(e ) # V(e )s {e1,e } can be extended to a max1mal 1ndependent
B subset of G, whlch must therefore be crltlcal. ﬁ;;'h i _
If case (b) holds, then, since {e } {ez} and {e } are crltlcal by (2 6)
{e1,e2,e3} is a subset of the edge—set of a Iragment HG of H.‘i Thus,vFiJ A"
‘251nce {e1,e2} is 1ndependent {81’82} can’ be extended to a max1mal 5
llndependent subset of,G whlch must th lef.re be crltlcal ‘and.so-'
v~‘ {e1,e } 1s a subset of a critical set.
..Therefore, 1n elther cese, e{ and e, kare Weakly connected. :iSince this.ﬁ

holds for any two edges of H, H is "eaily edge—connected.



Suppose H 1s strongly edge—ccnneCued.<J Let N N e two nodes
of H. . Then there ex 1st edges e,.egl E such that N < V(e ) and
bkaQ < V(e'). If V(e ) V(e ) ne“e is no»hlng to. prove. : Otherw1se, .

”?chere ex1sts a sequence (e f1,f2,.L ,fﬁ‘i, ) of edges of H such
‘;‘that ff 3 } is crltlcal for each i, 9 s‘v t 1 Thus N and N
-are strongly.connected. ' Slnce thls holds for any two nodes of H H
‘is strongly node—connected j | ':,H ‘ “ ﬁ |
’ Suppose H is strongly noae—eonnected.fl Let {e1,e }# < E If
HﬂfHV(e1) = V(e )5 there is nothlng to nrove.f~ Otherw1se let N 'and N
© be nodes of H w1th N < V(e ) and N c V(e ) | Then there ex1sts a'H;i

sequence (f,. f ) of edges of H. sucn that N < V(f ),x,

1° 2,...

‘7N2-c V(f ) and elther t = 1,‘or {em‘f +1} 1s crltlcal for each 1, Gl

kivs isg t—1, ' Now, elther V(e )‘" y(f ) or, by (2 h), {e1,f } 1s i

'fcrltlcal, since V(e )dv(f ) EN A | Dlmllarly, V(e ) V(f ) or 1f T

L {eyHEy) s critical. If v(e ) = v(" ) end V(e ) = v(f ), then the
' sequence (e1,f2,..., m 1,e ) sho WS Lhab e1’and e2 are strongly connected ;[f

‘?If V(e, ) = V(f ) and V(e ) # V(f ), uhe sequence (e1, 2, ."ﬁt’eg)th

_shows that ey and e2 are stroqgly connected.
“If V(e ) # V(f ) and V(e ) = V(f ), uhen the sequence (81’f1""’f--1392)1iﬁfH
,.shows that e1 and 62 ‘are strongly COﬂnecbed.f'){>55,; . o2 S el

*o1e V(e, ) # v(f, ) and V(e ) 4 (£, the sequence (e1, 1> ;;',ft,e )
:'1‘shows that e1 and e2 are strongly connected,v, Slnce thls holds for any

:two edges of H H is strongly edge—connected. ’

o ‘ ThlS result is the analogue of that for vertex— and edge—

- connectedness in graphs w1thout isol ated vertlces. ' The prov1so about

L

"“;'1solated vertlces arlses because a node 1s, by deflnltlon a subset of

V(e) for some e € E, whereas a vertex V need not satlsfy V € V(e) for any L

e eE-
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.‘We shall, in'future"refe*’to strong or weak cOnnectedness
w1thout quallflcatlon meanlng node~ or edge—connectedness, since,

' by (9 5), these are equlvalent.“

- PROPOSITION 9.6:  Let H (V E $) be 2 k—hypergraph with V = V(E)
N Then H 1s crltlcal if and onl v 1f Hvls weakly connected e -
'_PfOOft ',Suppose H is crltlcal._ Then, for any max1mal.1ndependent,1;7L515}f:
subset A\ ¢ > A is crltlcal ‘and V(A) V(E) Let e1,e € E B
' If'V(e ) = V(e ) then ey and ey ¢ are Weaﬁly'connected Otherw1se, S
i{e1,e2} 1s 1ndependent in M(H) R Thus, uhere ex1sts a max1mal
'T ;1ndependent set A E w1th {eT,e } C'Ae But A is crltlcal, SO e1 angn;dylee
‘ e2 are Weakly connected ' R ‘ L
Conversely, suppose H is Weanly connected and suppose H has__if: [
"sVCOmponents (Vi’ Gi’_$i)‘( ’5 i s.m);fﬁvlffm‘u 1, then H= (V1, GT’ ?fgffd
since ¥V = V(E) If'm > 1, let e, € GT’ e € 62 ’ Then, since H 1s ?fﬂ;'5f”
‘feiweakly connected there ex1sts a cri t;caw set A > {e1,e } "Con51der;tf”:;sw
Je(V(A) EV(A), V(A)) ‘Since A is crltlcal this 1s a fragment of S
~H, so, by (2.7), there ex1sts a unlcue i for whlch A G Slnce the “7-'“
‘Gi Part1t19n ES end~sdnce AFG1 ¢ and ArGQ 7 ¢, thls 1s a contra—:;:;ff: -
diction. = Thus, m = 1, and so H is crltlcal. 1 5 |
- PROPOSITION 9.T: = If V1 V2 <V are st-r-on y'conh'éctea; then Vi’ana v,
are weakly connected. ' e
:‘Proof' : Slnce V1 and V are strongly connected there ex1sts a
sequence (e1,e2,...,e ) of edges of H such that V < V(e ), V c V(e ),
. andzelther t = 1-or {e.,e } 1s crltlcal for each 1,'1.5 ; < t 1
If t = there 1s nothlng to p”ove.'z ‘herw1se by repeated appllcation |
o of (2 6)’, (W, EW’ $ ) is a fragment of H, where W = V(e )UV(e )u...UV(e ).
If {e1,e } is dependent then V(e ) = V(e ) ‘and there is. nothlng to

prove. Otherw1se, {e1,e } 1s 1ndenendent and so 1t can be extended




to a max1mal 1ndependen+ subset ﬁ of E . A is critical since
» W ‘ B
‘(W E %V) is a fragment, 50 7, and Tﬁzare weekly connected.

TCOROLLARX,Q;Biv;lIf:H_is_strongly connected;“then H is weakly connected.

_ The converses to (9 7) snd (9 8) are. Talse, as’ can‘hekseen from
'bthe kypergraph shown in Flgure 1 In thls case, IVI = 6 rkM(H)
| and»k = 3, so H is crltlcal.b, Slnce V VKE) by (9 6) H 1s weakly:fil;hlk
‘ ?connected. ~ But, taklng V1 {A.B} and V = {D Eﬁ for example we ;:
see bhat V and V are not strongly connected.n~ .
Tt is clear’that,'lz a graph G conta cs a:connected‘sbannlng

AOOVSubgraph then C is 1tself connected,,, The apalogous results for

_hypergraphs are glven in (9 9) and (9 10)

»PROPOSITION 9. 9 If there ex1sts a strle subhypergraph H"F (V E $ )ftf

of H such that H' 1s weakly connected and V(E ) V(E) then:?iff5f'°

H.Ls Weakly connected

~ Proof: Let V' V(E) Then, 51nce H' is weakly connected

E 2 $ ) is weakly connected and so, by (9 6), (V , E' $ ) is Sk

crltlcal. Thus, there ex1sts a crltlcal set A E' w1th V(A) = V'
Now, E' < E and V(E' ) = V(E), so (V s E, $) is crltlcal, 51nce A is a -”R‘
. eritical subset of E. Thus by (9 6) E $) is Weakly connected

: fand S0 H is weakly connected

o PROPOSITION 9 10: If there exlsts a strlct subhyperéraph H' = (V E' $ )
- of H such that H' is strongly conneCued and n(H) = n(H ), then‘
'H is strongly connected.

1772

' icIf Nki= N there is nothlng to prove. Otherw1se, s1nce N1 and N

are strongly connected in H' there exists a sequence (e1, L ) of

Proof: = Let N M, e n(H) Then, 31nce n(H) n(H’) N N € n(H')‘

~ edges of H' such that N < V(e ) N < V(e ) and elther £ =1
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or {e ,e } is crltlcal for each 1,31 <1 Syt—1):v Slnce (e1,...,e )
is.also'a'Sequence of~edges 1n’H N and N are strongly connected 1n H.

' ¥31nce thls holds for any two nodes iy ,ﬂ € n(H) H is strongly connected.»'
From (9.2) we have a naturalldefinitioﬁ'of'e”welk iﬁlaohyperel’}]‘
;graph ' We'can'ﬁherefore define aVeatﬁ in:a.hypefgraphlin:é*ﬁayf e
'analogous to that used for. graphs.Jf;,*"ﬁf

DEFINIT‘ION 9'.1'1: , Let Vs C' 'V A 'path from V1 to V 1s a R

""sequence (e1,e2,...,e ) of e:ges 01 H such that V < V(e )

;“V < V(e ) and either t -A1, or t > 1 and for each

”f;ﬂmvﬁhlslgﬂet;;

: ) lfi—j.-rl O‘,: ‘i‘] ; Sl

. ln(véi')On‘(ej") |

et n(egmles mley) = ¢ f i

ThlS deflnltlon 4enveur;e‘s that the eages of a path are all
distinct, and that a node Nis a suoset of V(e ) for at most two valuesl;
. of 1, thls occurlng only when the v_lues are)consecutxve‘ when N 1s thev}fY\

4l1ntersectlon of the vertex—sets of uhe coneecﬁtlve edges.foiThe ie‘v&i.~f r"5

.requlrement that n(e )nn(e )nn(e )= ¢ for i # J # ﬁ’¥:1 cehﬁot beml:l'}'l
f;relaxed as ‘can be seen by con51deratlon oP the star greéh.K1 3

" We next wish to deflne an’ analogue OL a cycle of a graph
;follow1ngvon from thevabove deflnltlon oI‘a path.f The Words: cycle
'f»]and "c1rcu1t" already have spec1al eeanlng,rso, elnce oor deflnltlon offi

path is related to strong COHHECUEdEBSS, we' call the analogue a. stronglA:

‘cycle .



| ‘DEFINITION 9 12 k A'étﬁ:o’ng cycleof*z 1s a ééquéncé (éo,ev...,et_,f), o
- of edges of H such that eltnep L:;'A- 2 a.nd ln(e )nn(e "N o=

or t > 2 a.nd 4 for each 1.,,3k,m w'luh O < 1,3 ,m < 't—1,
| | : G _;:.f i-J # O +1 (mod t)

,‘l‘*?‘?.i?'??*“s?' -

o and n(’ei)nn(ej')nri‘(emv) =4 _;or 1 94 J ;é m # i T e T

PROPOSITION 9 13: Let (eo,e ,..;,Vt 1) vbe’»*a«stmna;-cgy_c;e of Ho

Then M(H)x({e }) is connec*ced. i

0’e1’ e
Proof: . Let the connected componenus of N(H)X({eo,e,l =,...:,et ! ) 'be o

: G1= 625 G . If m=1, then A(-T)x({e ,e }) :\.s L

RS |
connected Suppose therefore that, m > ‘I. Sl*lce a.ny H‘ = (V' E' $ )

"ngth V‘—V E ) whlch is not. crltch ce*mot have M(H ) COYIDECueO_ for each

G (V(G ) G ,$ ) is. crltlcal 'F""-*or each i, 1et A < G be a-
: 1»

crl'tlcal set” wrbh V(A ) = V(G ). qﬂs'm}pose there ex:.st 1,3 WJ.th i # J

vi,'

- and |V(G; )nV(G )| = k- ' Then lV\A )nV(A )I But

_‘ IV(A )| =k + IA | - 1 for each s, slnce A is cr::.tlcal“ Thus, Pt
‘|V(A UA )] <k + iA UA | - 2, since Aer =9 for i # 3 But then
A UA is dependent and s0 con‘balns a "er'LIl"C C of M(P) Thls c1rcu3;£
”cannot be Wholly contalned 1n erthe‘r' Al or A si. nce these are :Lndep—:'
'k‘bendent, SO C G uG mth C ¢ G and C ¢ G , Whlch contradlcts the |

definition of the Gs

Cons:Lder now a set G ,{ei:"i € IJ < {0 1,...,1:. 1}} Slnce
v,m 1, |I. 0I # t, so there ex:Lsts en'1-‘ | {eo,e1,...,et 1} such that | |
_ en é G but».’chat e][l 'is an immediate predecessor or successor in the
sequence (e SSEIRER ) of an element of G Let e & G Then
0°71 -1 JO . B P '

IV(G. v)nV(G. )| = k1. Slnce strict. 1nequallty cannot hold (vy the

prev:.ous part G )nV(G )I -1, '_Thns, hy the ‘deflnltlon_ of a.




"Vsome elemgnt of G 1s also an 1mm=d*ate predecessor or successor
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strong cycle ‘no. other element of G is an 1mmed1ate predecessor
R ) 1 .
“or successor of an element of G . _f lG # t then there'
: : Jo

;'ex1sts an element e d G UG : whlcn is an: 1mmed1ate predecessor or
2 ' s .

“;1, e nz

‘_psuccessor of an element of G : and*e € G (say) where
: |V(G )ﬂV(G k-1. Clearly, we_may Conolnue thus, unt11 we have ;f ;J'”

:a sequence G ‘G. ss e G : whlch =x_au5us {61, 62,...,<Gm};:ﬁ~73,;;ﬁ;ifxﬁfi
Jo” 47 e )
_,ﬁBut, con51der G By the argumenu, IV(G nV(G k—1. T e

: Ir r—1t - & i
But, ‘since. there ex1sts no element en]" {eo,...,e 1} (G- U., UG ),}',):

: r+1 . ’ r i

: oof some element e e G for some s < r—1.‘: But then ¢;e
: S S IR L T e
: |V(G nV(G k-1, and, since (30’81”"’et 1) 1s a strong cycle,»yf{i”'”
R ’ V(G )ﬂV(G ) # V(G )nV(G f). Cons1der the sequence Ci“ k
Gk s G; ",;.., G G.’. we ha re V(G V(A D! for some crltlcal
,_f»Js Jg+t Jr' EE— e 1 B Ji Sl FLE TR
'q?subset A G.-. ' ' S e e

di o i

oL |V(A Rl I'Aj_r"#;kf?-f" 3 o TR
R IV(Aﬁ uAj fu...uAj = lA U--.UA l + (r—s)(k—1) (r—s 1)(k—1)
: g Ys+l r-1" _1 SR D

n:= ‘A U...UA j + k . 1—,‘;:;{;f;3“L

|v(A U,..UA UA )| |V(A u...,A )1 +|v(A )x

I i rf r e
‘ “l. B iV(A )dV(A U ..UA ){l:;£~plwg;,v3.;;

s gy e IS
- «,Jr—j:‘V s ?;pil.”:’.

|A u...uA [+k—2.»

ThUs,»(A. U{.;UA- ) is dependent. , Since-each A.' is independent, this__'ﬂ
' Is r’ : B L . qi o A e
contradlcts the deflnltlon of the Gl as the components of
M(H)x({eo,e1,...,e 1}) Thus, m = 1 and M(H)x({eo,e1,...,et 1})

1s,connected.
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' The converse to (9 13) is false ;\ Considef for example, the

’hYpergraph H = (V E, $) Where V.= {A,B, C D,J}J, E = {a b,c d}# and f'

o V(a) = {ABC}, V(b)~—{BCD} v(c) {CDE; ‘and v(a) {ADE}.

»”Then {a b,c d} is a- c1rcu1t of M(H) whence N(H)X({a b,cC d}) is 1"

: connected but no sequence OL elemenus of‘E forms a strong cycle.ru

' It is easy to see’ that the element sess of the strong cycles
: of a hypergraph do not, in general,vsatlslf thevc1rcu1t ax1oms for a -,sfiﬁ
lmatrold ' The axiom (01) is satlsf1ed but (02) need not be as caﬁ ’11,~'~
>‘be seen. from the follow1ng example. ey ‘V l -‘7 : - e k
| “Tet H = (V E, , where V = {A B C D E}J"E {a b o d e}¢ and_jlfffr

{a,C D} V(b) = {A B,Cl, v(c) {A B, D} V(d) {B c E} a.nd

it

‘V(;é)‘

V(e)

Il

{B D E} Then (a b c) and (b c,e d) are. strong cycles of H
:'However, there is no strong cycle whose elements are all contalned

in {e,c,d,e} =‘({a,b,c}u{b,c d}) {o}

o ewrma

‘The nodes’of a‘h&pesgraph haveiseseral‘of éﬁe'pronerfles Wthh
:are possessed by the vertlces of a graph.l: The follow1ng results arereell"
- easyvto prove, and we omlt,the detalls. :""ﬁ
v_PBOPOSlTION_9;lh:~-.Lef H.‘-°= (V, E, $) 5ele siﬁgle‘k}hypefgfepﬂlwiﬁﬁi
| -k 2l2;: ’Theﬁ:: - A‘ Al ;;,‘ “"A"""“illv
::(i) If e; ,e eE and e; =r‘ es V(e )ﬂV(e ) 2 Z‘J for at most oner"”'-b
. ‘Nen(H):t }, Y
'(ii)__If b, .N, e n(H) and N < V(e) N < V(e),/then for any e’ w1th‘l
V(e ) > N and V(e ) DN2, e' -‘e,,_v“ i , Y |
kv(iii) If (V , G $ ) is a componenu of H, and e € E is such that f'
B V(e)rﬁi g.N forvsome N e Q(H),—then e’e,Gi, e | v
,(iv)ivlf‘(V1, G1,i$1)vand (V5> 62,’$2) are dissiﬁct coﬁponects of H; | B

v.’t':hen_n((‘}1)nn(.(:‘|2)-"= .
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E For reesonslwhlch.W1ll become’ p b*ent shortly; %e shall‘use :
the form of vertex—connectedneSD de?;ned by Berge [1] for connectednese A
*; 1n node—hypergraphs & We shall use n(A) to denote the set of nodes
' f‘iln H of the set A E even when A Wekbelng regarded as a set of edges hh15~i

' of N(H)

s DEFINITION 9. 15 ‘Let -’H' (V E $),' and 1 et N(H) be the node-hyper—“ff:'

‘hgraph of H ‘ ‘Then two VerulC°S N of N(F) are sald to be iff73e
VVFconnected if there ex1sts a sequence of edges (e1,...,e ) of :i“f”y
,v_N(H) such that Ni € n(e ) 4 s n(e ), and n(e )nn(e +1) # ¢

:if(i, t 1) : If each nalr of vertlces N N of N(H) is :;f”

V—connected N(H) is. sald to be V;connecbed

‘DEFINITION 9 16 A V—cxcle of h(H) is a sequence (eo,eT,..., - 1) ;fth¢e1f

S edges of N(H) such that eWuhen‘b = 2 and ln(e )nn(e )

or t > 2 and for each i,i.m wwth 0 Sfi;j,ﬁh§r£f1;f'

0 ':.}'-:Lf i # 0 +1 (mod t)

et = xseee
1 drd-i=a 1 (mod )y
- and. n(ei)ﬂn(ej)ﬁn(em)”= ¢ Tor i £ 3 # m.#ii{  e:7k}

Thls deflnltlon ensures that the V—cycles of N(H) form a clutter}— ;ef
Af C1, C are the element—seus of two VFcycles OI N(H) sucn that :Zfir“
'C1 2? thenc Ce' | e e |
' The 51m11ar1ty between (9 16\ and (9 12) 1s'clear,'andiprompts the

,,follow1ng nrop051tlon



120 -

- PROPOSITION 9,17:_  Let H = (7, E;«é)'ée‘a kfhypefgfaph.ﬁith‘k § 2.
Vv'_ThEn- . L SR . : . :
(1) ‘N(H) 1s V—connected 1f and on*y 1? ﬁ is strengly>conneeted
 (ii)’ C is a‘V;cycle of'N(H)_lz and only'ﬂf‘c 1s a strong cycle of H‘i’lﬂ
(iii)' If C is a 01rcu1t of M(H) Ehab doeelnot contaln.the element ~set f“
| bof a: strong cycle of H then.c coe:a*ns the element—sets of no-vff7r'
" V;cycTes of N(H) | | | e |

'VThe proofs are routlne and we omlt uhe aetalls’_:~:

Ve call a c1rcu1t of M(H) +hau coes not contaln the. element—set.'f .

. of any strong cycle of H as a subseu,Aa weak c1“cu1t of H. A c1rcu1t

iﬂof M(H) which is the set of elements o* a- strong cycle of H is called

a strong<clrcu1t of‘H Slnce ‘the seu of elements of ‘a strong cycle e;f.; a
is necessarily dependent, every 01rcu12 oz_ﬁ(H)-ls eltherka,strong,i*:

circuit of H or a weak circuit of H.

P

DEFINITION 9.18: Let H =‘(V E, $)159 a k—hyn°rgranh w1th k22,

A pair-of edges e1,e e b w1Lh e1 #'eé is sald to be V;czcle-

connected 1f there ex1sts a V-cycle of N(H) ( 1,..., t 1), ii5fk7~€

1>~ f and.e = f for some 1, 1 < i< 4= 1.

-~ such that-e 0 5

N(H) is sald to be Vecycle—co_nQCued if every palr of dlstlnct

‘edges 1s V—cycle—connectea.‘; BJ conventlon a node—hypergraph

.w1th a 51ngle edge is V;cycle—connected.:’ .N

DEFINITTON 9 .19: et H’ (V E $) be & k—hypergraph w1th x 2 2
iA palr of edges e1,e2 € E Wluﬂ e1 #‘eé is’ sald to be stronglx
i2—connected 1f there exists a s»rono cycle (fo,f geses t 1) of H

such that e1 = fo and e2 = f. for some 1, 1< i < t-1.

HlS said to be gtrongly 2-connected if every palr of dlstlnct

elements of E is’ strongly 2—connected. By conventlon a

hypergraph with a s1ngle edg ‘is strongly 2-connected.



- The similerity between'(9,18§;andf(9.19) is to be expected in .

- the light of previous:rémarks;<uf e

e DEFINITION 9. 20- Let H= (V E $, be a k—hypergraph with k = 2. g
A strongly—connected comnone“*‘of H is a hypergraph H' ='HE;  3~
'ﬂsuch that'E' c E H' 1sfstronc_y*connected»-and for anyjﬂn~hf:* o

:E" c E with Ev g E" HE" is not. s rongly CODHECued

A V—connected component of P{l} 1s V(H’) where H' 1s a strongly

vconnected component of H. o

A stronglv—2—connected conponent OL H 1s a hypergraph H"=:H/"" k

hsuch that E' < E H' is sbro lj 2-connected and for any o
B e E with E! 7 E“ E" is not surongly 2—connected- } .e\ﬁfffﬁx“‘*
A 2—V~connected component of T(ﬂ) 1s N(H') where HY. 1s a

:strongly 2—connected componcnt of H.t'_,:'3';;,*‘“7f

We shall later need to d1 t sh between two uypes of node —: i

those contalned in the vertex—seu of orly one edue’ and those contalned 1n
, the vertex—sets of two or more ecces. We therefore make the follow1ng ;*W“'

"deflnltlon:

DEFINITION 9.21: Let H (V E, $) be a k-hypergraph W1th k 2» ST
If N € n(H) is such that N < V(e ) for some ei « E a.nd there P

, ex1sts eJ € E w1th e # e; such that N < V(e ) then N is called 2*,ﬁ

”a valency node of ei. A valency node of N(H) 1s a valency node

: of',e:.L for some ei € E.

‘fj A loopless graph has the Drﬂnerty that each edge has at most tWOf<v
'hvalency nodes. ThlS prompts the‘zo OJng deflnltlon Whlch w111 ‘be used

“in the next chapter
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 DEFINITION 9.22: Let H = V E $) e 2 k-—hypergraph with k S
iLf for each e € E, e has au"wo o valency nodes in n(H)

‘then H 15 sald to be strictly nseudo—graphlc. »

"~If for each strongly 2—conn=Coed comnonent H' of H, H' is

’ strlctly pseudo—graphlc then H 1s sala to be pseudo—graphlc..v 3f~H

_With the deflnltlon of stroqs 2—connectedness-in'(9.19)5'we‘
mlght hope to derlve analogues of results 1n graph theory on the :AA'V’
-'ex1stence of cuttvertlces or cut—noaes.‘}_We deflne a cut—node in the,i;':f -

obvious way:

n DEFINITION 9. 23 1 Let H = (V E $) be a strongly—connectea k—hyper—
VI'graph. Then N € n(H) is sald to be a cut—node of H 1f elther
(1) Vis the unique valency node in n(H) OI some e ¢ E rv :

(V(E'), E’ $ ) is not strongly connected Where

"(‘ii’) H

e

B 'F':~E"E=’_.;{'é ,"é"EA:’ N v(e)},' and_-s' = {(V e) € $- e’e. E'

A cut—node of H is thus elther‘a cut~vertex of N(H),‘on‘en S
artlculatlon vertex of N(H) - i.e. a vertex N of N(H) such thau the'e :
1 removal from N(H) of N and its 1nc1dcnt edges leaves a node—hypergraph
WthhlS not V—connected .or. a vertex N of N(H) such that N 1s the unlquev}g,:

valency node:of some e € E.
~sPROPOSITION 9.2&:” If H 1s strongly 2-connected H has no cut—nodes._ SR
- Proof: 'Immediate from (9.19)'and‘( 23)

The converse to (9. 2h) is false.J; Thls is most ea511y seen’ 7 i

:i;by con31deratlon of the node—hypergraph shown in Flgure 21. ThlS has -

- no cut—nodes, but there is no V;cycle contalnlng e1 and e2
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Recall from (h 9) that if K = (V, E, $ K) is a generallsed

o hypergraph and ec E then uV( ) < kr1:' From (h 19) 1t follows that;;f‘u

v"jﬂV( ).—»k—1. There is thus 'a sense 1n whlch the contractlon of the ffdffd"

;'edge e contracts 1t to a node In vhe node—hypergraph thls could

’reasonably be descrlbed as 1dent1 1catvon of the nodes of e Thisf'.IT

Ncertalnly is the deflnltlon OL contracblonvln graphs ,
Con51der the follow1ng s1mp7e hypergraph H = (V E $) where’?3fi-c*f
V= {A B,C,D E}?é, E ={a,b,c d}__z a..d V(a) = {A B, c} V(b) = {A c ,D},
v(e ) = {A D,E} and V(d) = {A,B,E}. N(H) 1s shown in Flgure 22
| | N(H) is a V—cycle of cardlnallty L and E 1s a c1rcu1t of card1na11ty h
L h,}‘ln»M(H) The generallsed hyper"*"ph K (/ E $ {d}) is such that
| E-{d} 1s ‘a c1rcu1t of cardlnallty 3.»; The 1dent1f1catlon of the nodes':”::;:

Cof a 1n N(H) Would produce a V~cycle of cardlnallty 3, ‘as can be seen

“;from Flgure 22,

(v,e}
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" With this as motivation, we define contraction in a node-hyper—
“graph as follows: =

~ DEFINITION 9 25 Let = (V F_ $) be & k—hy'_pergraph and let eck.
Then the contractlon of e 1n N is dexlnea to be the 1dent1f1caulon »
L 'ofAthejvertices ian;of €.
F;DEFIVITION 9. 26 ‘ Let K (V E $ K) be a generallsed hypergraph.:-;jj7i“lﬁ
Then N(K) 1s deflned to be’ thaz hynergraph obtalned from ‘

N((V, E, $)) by the contractlon of the elements of K

Tt is essy to vse,e _’GhatvN(K) is'-,.—en_l'-iiefine‘a._

(g}cj . {9’33 E | {t,é}“.v (5)5} {3}(} (ﬂ'b} {(_‘ {3 (5 i“}

1IN, 1)
faff (] (o3 04 B f‘W !'% fo {MJ fp 4 f'i'fi

I‘c mlght be thought that M( 5) cou._d be demved dlrectly from N(H)
: »That thls is not so can be seen Lrom the node—hypergraphs shown in
g :Flgures 23(&) and 23(b) Althouch the node—hypergraphs are 1somorphic;i i
the- matroid correspondlng to that in c3(a) has rank 3, whereas theAi:vv>4bw
xmatr01d corresponding o that in 17‘1;5;1>.7.1'e 23(b) has rank h A p0351b1e v
way of avoiding this type o; anowaly would be- to deflne é eanonlcal '
method of dbtalnlng a matr01d frem E node—hypergraph
We could, for instance, requirs +hat the V—cycles of N(H) should
'be c1rcu1ts of the matroid. However, not only do these cyclee not, in

‘general, saulsfy the c1rcu1t axiom \u2), out also there are node—hyper—'



Ygraphs (e.s. those of the complete hypergraphs) Whlch unlquely
determlne thelr node-hypergraphs end fall to sa‘blsfy thls condition.
An. approach via 1ndepende t seus Would yleld a condltlon of the o
‘foz'm A is 1ndependent 1n M if and only 1f ertherA = c{a , or
}V(G)l (k—‘l)]G] + 1 for each n onempuy subset G ofA" - -
However :Lf k > 2 thls does not, 3.n general glve the 1r71dep—i.‘
endent sets of a- ma‘br01d (see Ifcr 1nstance, Crapo—Rota[6 ], Chapter T)
‘_ We are therefore forced back to our orlglnal hypergraph H and :Lts | '

vertlces to deflne M(H) , and ’co oerlve N(H) from H. o .'

99@@92;1@@! S

In [27] ’.[‘utte deflnes comect1v1ty for maur01ds 1n 'berms of a i

_functlon called the E functlon. Tne motlvatlon for thls comes from

graph theonry 1n ‘_bhe follom.ng wa',yi:f

' DEFINITION 9 27 A graph G 1s sald to be K—separated Where K is a E

: p051t1ve 1nteger, if there ex1st complementary sets of eages

E1, E of G w1uh lE l 2, K, and such tha’c
_lY(E1)nV(E2)| = k. | _ el |
. G is said to be k—connected if there, existe' a least po‘si‘tive o

~integer k for which G is x—separated. S
Tutte then .defines, an 'analogoue vconkceptv '_fo_r matroids:

| DEFINI‘I'ION 9 28 Let M be a matrowd on the set E For every sobeet
Te E define E(M T) = D(MXT) + D(MX(E—T) - DE + 1. SR L
‘-'I'hen M is sald to be K—separated Where I is a pos:.tlve 1nteger,
if there ex:Lsts T: E with IT[ [E—Tl > k and such that
gu; T) = . | ‘
R ‘-M is said to be ’K—connected if vthere’existsy_, a least posifc.,ive"

integer k for which M is k-separated.
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".126"

- The relatlonshlp between £ (M; T) and Iv( EI)nV(EZ)I can be seen B
»as follows: for e connected graph €, [V(G)l RU(E) + 1. B
vTth, prov1ded E Ta.nd E-T are all co*mected, _~--?‘

|V(T >nV<E-T>| IV ’)I IVE—T)i - lV(E)I
'PT, o dE—T) — b+ 1
JUCT PR

It is easy to see that, in the case of graphs, the mlnlmum value";kj7"'“

of K always occurs when ]; E—Tand.E are connected.f
In ‘the case of a crltlcal k—hypergraph H = (V E $), a crltlcalafﬂ'}:l
‘subhypergraphvHé-satlsfles |V(G)! PG + k - 1’;’ Thus, 1f H HG and fieff’f

plwﬁnwﬁﬁn

IV@)I+IVE6)!—IWEH
VV'DG E-G) 1_ DE +k-— 1
F,(M(H) G) +k-—2

1.

CE(M(E) 5 G) thus attempts to give a measure o_¢ he vertex—connect— ?~

ivity of a hypergraph in that -prov1ded H, _HGtand HEFG are all Crltlcal fij,f
_E(M(H) G) + k -2 is.the number of vertlces common to HG and HE G |

 The analogue of (9 27) for hypergraphs would therefore be:;yl“

DEFINITION 9S29?‘l k—hypergraph H = (V E, $) with k 2 1e‘ea1d tov o
be_E:éQEQEéEQQaNWhere K is a p051t1ve 1nteger, 1f there ex1st5"ji L
T E such that ITI |E_-”> % e
v nV(E-T)I =§ €+ k- 2.

H 1s sald to be K—ggnnected if there ex1sts a least p051t1ve

) ;1nteger K for Whlch'H is K—separated. ;T

Con31der the crltlcal hypergraph H= (V E, $) where

V—{ABCDEFG}#,E .{abcde}#, v(a)-{ABCD}
V(b)

‘V(e)

(8,C,F,C}, V(e) = {A,B,E,F}, V(a) = {4,C,E,G} and 3

{A,D,F,G}.‘v Then the only Hé with <E whichkare~critical”
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‘-are those w1th IG! IGI h a,nd iGl I’c is easy to check that
VWG = b if lGl— 1, and W(G)nJ(E—G)! if [Gl= 2

'Vl'Thus, there ex1sts no k for whlch H 1s K—cormected. ) However, M(H) is
2-connected Thus, ’che relatlonshwn bétween connécﬁnnty in H and
_'connectlvn.ty’ in M(H) is less close) hﬂ’l the cbrrespc;ndlng relatlonshlp ;o

in the case of-graphs. .




'—128 —‘_ i

CHEAPTER 10

COLOURING FYPERGRAPHS

iInvthié chéptef.rwe examine ﬁhé'ﬁayé!iﬁ Whiéﬁﬁfhélmétféid of:é i;
'nypergraghglvesxuse to colourlngs ol»bhebhyporgraph Whlch’are gener— f
-3 allsatlons of the vertex~colour1ngs Olbcraphs.:, Wé shall be:concerned‘  ~‘i"f“
. leth only two of the p0551ble generalléafions, 5ecauseu£hése arlse o
ﬁaturally from matr01d con31derat10ns. These aré the ﬁeak and sfroﬁé..'
'colourlngs deflned below.k,.In fact w_ shall flnd that the matr01d "h
_»glves colourlngs of the node—hypergrﬂnh rather than of the hypergraph -
lfltself i i ’ :
The two t&pes of colourlﬁg wersﬁall 5é ﬁﬁlng arekdeflned as.follow5'£ L.‘?
'l DEFINlTION 10.1: “A hypergraph H= (V E S) 1s sald to e stronglx

(vertexw; colourable Wlth q colourb, 1? hore ex1sts a partltlon  gﬂ

V = Vu...07 of ¥ such that Iv(e)nV 1= 1 for each eck and .

112 q..

Any such partltlon is called a strong (vertex—) qfcolourlng_of H RN

and H issaid to be strongly (vertex—) coloured w1th q colours if l7'(>
such a partltlon is glven.

The strong chromatic polynomial P (H k) of H 1s that polynomlalbh A

'”Whose value for each integer A2 O.1svthe number of,strong vertex'

g .coloufings'of,HlWith A cblours.f_ S

DEFINITION 10 2: A hypergraph H= ( v, E $) is Sald to be. weak 1

: (vertex—) colourable with q colours, if there ex1sts a partltlon

.V = V U.-.UV of 14 such that for each. e s E there ex1st dlstlnct
jintegers 1 (e) and i (e) with 1 < ij(e) < q, such that
"IV(e)nV (e )l._ 1, .J =1 2

J .
Any such partltlon is called ‘a week (vertex—) q—colourlng of H, and B
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i is said td be~weakly {vertex—) coloured with q colours if such a
h:Partlclon is glVen,» el S

,The weak chromatlc polynomlal P{ E; l) 01 H 1s that polynomlal whose

value for each 1nteger A 0 is~th number of Weak vertex colourlngs

of.H,w1th Avcolours.._::

TIn elther case the set {1 , éviié q} 1s rexerred to as the set

~of colours of the vertlces.‘ The vert V 1s sald to be coloured with a:-‘?,._

- colour i'if-V‘esVi.'

A strong colourlng of H is thus a Droper colourlng of the under— g

"lylng graph of H —_1 e. the s1mpllflca:1on of the graph V E" kX )s wheref; hl

Er = UHe11,e,2,...,e1m}f{ . € E and m ( )} e # e ;“unless 1_5”rf'7"'

>TmmJ-s,mdww_)we)rnﬂwlnlguxncwenwaf
In general many - dlfferent hyper raohs Wlll have the same underly1ng77v.

ihgraph and so 1t may be expected that th ’hypergranhlc maur01d Wlll be-

~Nof little asslstance in answerlng qLew 1onsfabout strong colourlngs:iu‘&d
For example both Kh and Kh less one" eaoe have Kh as thelr underlylnvi
| ‘graph but have hypergraphic matr01as J h and U2 é respectlvely.i'7‘>
‘Weak colourlngs have been studled by many authors, 1nclud1ng Berge
7 [l] and Helgason [13 & 1h] , Helgason has shown that 1nteger polymatr01ds'“
o y(see Dunstan [8] for a treatment of thcse), whlch he calls "hypermatr01ds
h are the approprlate concept for calcu_atlng weak colourlng polynomlals 1n'ik
general hypergraphs.v‘ The reader is ref rred to hls paper [1&] for :‘jl
further details. We shall be u31ng nelcason s results to show the f
‘relatlonshlp between/the matroid of a &—hypergranh and the colourlng
E polynomlal of 1ts node—hypergraph. | E
We begln by examlnlng Ways of col ourlng grephs, tolseevwhichfmethods-

-are sultable‘for generallsatlon.
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It has been shown (e g. by Crapo Rota’ [6]) that the problem of
vertex—colourlng a graph 1s equlvalent to the crltlcal nroblem for 1ts
:matr01d - i.e. the problem of flndlng mlnlmal sepvof hyperplanes of
'PG(n,q) whose 1ntersect10n w1th an embeddlng of the matr01d 1s null. VI‘hb“
: f‘That’this should.be‘the casells qnlte remarheble; 1t depends on theb

" facts that:

(i) graphlc matr01ds are~b1nary,,‘
(ii)  there is a 1 1 correspondence between the hyperplanes of E

PG(n 2) and the hyperplanes 01 M(K +2)
(iii) "there is a 1 1 correspondence between the hyperplanes of _p*fi

'MKK ,) and ‘the partltlons ol_tne vertex—seu of X j2 Into

"two'nonempty.setsf

For a general kfhypergrapn H E, $) where L 2, we have."h).?ffe;fff

‘Aﬂi) ‘ M(H) 1s not, in general bln,ry Indeed 1t follows from

-wr

(6 5) that M(H) is blnary 1f and only 1f M(H) is graphlc..epa,_:plffef
(ii) It may be poss1ble to embed yKH) in a mlnlmal progectlve 1~;¥:iﬁ'“'
| .lgeometry P such that the emoeadlng is afflne ~‘1 e. there‘flzgﬁsi;aﬁff
“ex1sts a hyperplane Jiof P such that JE = ¢ As an exampleh:?{hfrl:f
| of thls, Flgure 2h shows an ombeddlng of M(K ) in PG(2 h) ‘
PG(2 L) is the minimal progectwve geomeury in whlch M(K“) can
- be: embedded,‘51nce as we. have seen, U ’5 is a mlnor of M(K ), pfi;l’f
‘from whlch it follows that (K ) is not blnary or ternary.
“The numberlng of the p01nts 1n rlgure 2h is that used in the
':table of Hall [10] and it is clear that the embeddlng is afflne,
,because the hyperplane {1, 11 1h 15 20} has null 1ntersect10n .
l*w1th E(K ). ; o v :
(iii) Whlle it is true that a partition of V(Kk) into two sets

- W, and W2 with IW&I % and W, nW | = k2. does correspond to the ‘
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hyperplane {e ¢ E(Kk) V( ) < @ O;,V(e) c W } of M(Kk) and nxﬁih};/
vthat a subset W cV Wlth ]ﬂ{-— n—: uoes correspond to the
1 hyperplane {e € E Kk V( ) < W} of M(Kk) for many values of

.k and 2 there ex1st hyperolanes o‘ F(K’) w1th more than two

components. f For example, con51der 42 on the vertex—set

’{A B,C,D,E F}# Then 1t is easy to check that 1f a, b c are s

edges of K6’ with V(a) = {A.C } V(b) {B C ,D} and
*;V(c) = {A B F} then! {a b,c} 1s a nynerplane of M(K6) but

'7(K6){a b, } has three comnonenfs.‘f : > >"'

It 1s, therefore, not surprls g uhat uhe results on graph COlOurlngs;;ﬂ?

obtalned from the method of 1ntersect1nc hynerplanes do not extend to

the case. of vertex—colourlngs of hvne* Dha. It 1s 90551ble to use the T_eﬁf

method to colour the vertlces of a- hyne ranh but the colourlngs are not i
partlcularly well—deflned. However,J-or comnleteness, we glve the

construction here. -

_ PROPOSITION 10.3: Let H = (_V,‘ E, %) ve a :.mnle L—hypergraph Wlth k=22 .

" end || = p. Embed H in the Rypereresh Kk on ¥, and let
:{J1?.Jé,.,., Jc}# be abeetvof h?gernlenesvof,M(Kg) Whosellntersection :
: Withvthe embedding of H in Ki‘is null 4»i.e;fj | | B

J1 nJén..,ndJéwa = é.' Then H can bebeeleurednin the followinngaj; ?' ”

"so that H is weakly vertex coloured:




-~

) - 132 -

For each hyperplane J of M Kz . let V (J) J (J),..., (J) denote

‘ o
; the vertex—sets of the components of (K ) If id > 1, then .
v, (J)U (J) = T,,sez VQ(J),= 7-v,(J). With each

~th ¢ V, assoc1ate the vector V= (= 1,;9, ..,a ) where V € V (J

lrIf for a'pertlcular value of i, ¥ "’ V (J ) for more than one value of -

"J, set a to- oe any one of these llhes Now assoclate a dllferent ‘:Pi'
l , colour Aw1th each dlstlnct vec‘bor co‘ualned 1r.17 ’chls mm:’yr a.ndv fof .eacn
Ve V vcolour VVW1th fhe colour assoc1a£ed w1th‘V. ‘ Partltlon V 1ntoA;€;'
sets of vertices coloured w1th the same‘colour.» Then thls partltlon f;fi_li‘
15 a weak colourlné of F; T | B

~ The proof 1s stra1gh+forward and we omlt the detalls

If H is a k—hypergraph that 's not 51mple we can use (10 3)
;to colour the hypergraph H' whlch 1s the max1mal 51mple strlct
', subhypergraph of H. Then.thls colourlng 1s clearly a weak colourlng ;T5li°

Ciof He e

As an example,of the method of.(10.3);'conSiderfthe:hyéergraph ﬂ;;}x"'

(V E, $), where V = {4,B,C,D E},, and H= K; . Leﬁ l'-fif"

{a b,c,d,e f}?é c [ where V(a) = {“,B c} V(b) {c D E} V(c) = {A B, D}

'lv(d) —{A B,E}, V(e) = {4, D. E} and v( ) = {B, D E} & Then J % {a b} and

e Jp = {c d e, f};are both hyperplanss of M(K ) with J nJ, o ?;¢4:
VWebcan take RANN =_{A,B,c} [‘151 v, (J ) = {c D, E} o

"v (J2 - a,BDE To(dp) = {C'}[:' |
‘SO A= (1 1) = (1,1, c'=‘(1‘2 2= (2 1) and E = (ékijl(égy)

i So a55001at1ng the colour 1 w1th (1 1) 2 Wlth (1 2) and’ 3 w1th (2 1)

ewe obtaln ‘the colourlng Vv, UV of H, where v, —{A B} V = {C} and

= {D E}
‘Because of the lack of uniqueness in the colouring produced by (10.3);.’
‘and the fact referred to”earlier that;ifor‘many values of k and,[Vl,

"M(H) is affine, the method of intersecting hyperplanes cannot be used o
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tb~obtaiﬁ a“formula;for'thé chrcmaéiéféoiyﬁéﬁi#W for the weak veftex—
 éolourings>of tﬁé hypergrabh V.Fo%éféf,téx chromatic pélynomlal" can,._ o
.ﬁnder certaln condltlons, be derlved from‘M\H) Whlch 1s meanlngful in g
_}terms of'veruex—colourlngs, but of N(H) rather'+han of H

We recall that for a graph G = (V E $) the chromatic pol&nomlai?‘f
G l) satlsfles 7 ’ :  ~ ' : G ‘  :7 e
| P(G A) P(G' ) - P(G" A) wéere C'- G" dencte feséeétlvely tﬁe |
“ graphs obtalned from G by deletlno and contrncu1ng an edge e Whlch 1s W

not a loop or coloop of M(G) | - e e : |

P(G1UG 5?‘) }=V P(G1, )\)P(GQ, A) if G and G are . dlsgo:mt

1 2

A) P(G1, )\)P(G 3 ;\) vhere V(G )nV(G ) = {v} and o denotes

2)

union with 1dent1f1cat10n of the common verbox.f ‘vaf

*P(GG

The ch”omatlc polynomlal of G ‘is thus aefwned unlouely by

P(L k) and P(C ‘A) where L. and C denote the granhs with a 51ncle edge i

';f;whlch is rﬂspectlvely a loop and c0100p.,‘ffF7 f?ifiﬁ'J7f3’i

The chromatic polynomlal of‘a graph is a2 snnc1al case of a more £
general polyhomlal in graph theory and matr01d heory : Thls poly—
nomial is due to Tutte [26], is deno»ed by T(M x,y) and is called the i

- Tutte: polvnomlal We user;t in the form,","'

Tt ) AEE}X"' 1)PEPAG AIeA

»where M is a matr01d on F Wlth rank funct on §;  7
| "We then have T(loop, X,y) = J and T(coloop,r ,y) = x..vr_ |
:‘Furthermore P(G A) (- T)Q AT(M(G) 1- -2 O) for a connected graph G. i
The Tutte polynomlal has propertles s_mvl to those of the o
'“igréphlc chromatlc polynomlal. For reference.purposes, we embodyﬁthem ‘

in g propos1tlon, the proof qf which qéﬁ be found in_[26j. v

- PROPOSITION 104 Let M’bek a matroid on |, a.na lét M, and M, be
‘matroids on disjoint sets. ’Then% |

(1) ,T(_M; x,y) = T(M'"; %,¥) + T(M"; X,y) where M' EX(E‘{G})



/v ~and Mj' =M.(f-{e}) for any elementv e € | not a loop or coloop

orMy |
(i) T(M*; x,y) T(M y,X) , o
(iii) . T(M"l @ 9 XaY) (M-l; Xa})l(\dga X:Y)

We seek a chremat ic polynomlal for a hyoergraph H whlch 1s derlved e

;‘L‘rornv T(g@(H) ; x,y) :Ln ka_wa,y' 51m1_le,1~ tc that 1n Wl"lch P(G A ) is derlved : ".:'::‘ £
,fro*An T( M(‘Gv).; : ‘,Vy) — EN sucn thau: the . hromatlc polynomlal we obtaln 15
of the form (~ 1) a'H) 8(H)T(M( )5 | y) where x and y are polynomlals 1n
A dependwncr only on k, a.nd OL(H) and @\H) are 1ntegers depenchng on H s
' ‘go be determlned. . A e |
Befo*f'ev contlnuing, we need to est abilsh whet ‘1sv ‘to .be coleuz.'ed in-
’che case of hy’pergraphs. The 'Tutte nolynomlal 1s deflned in terms g

of d91 etlons and contractlons, s0 conuraulon needb ‘GO 'be deflned for the' S

hyyergraph. As we have already sald COIIt""aCblOH of an edge e of

-

a hypergraph is meanlngful only :1" DA(H) ,' si nce‘ the’ 1dent1f1cat10nlef
“the nodes of e in H mplled by ‘bbe aeflnitlen ef 11, cannot be achleved ‘
in a sa‘blsfactory way for k > 2 "’hus, t e . chromatvc polynomlal of H |
' -w111, if :L’c has any meanlng a‘b all in terms of colourlng, be a measure £
of the number of ways of (vertex) colourlng N(H). e |

Conslder a 51ngle edge ec¢ E nOu a loop or eoloop ‘of M(H) | ’_VI;"henv» S
the number Vof ,ways »of“ colourlng n(e) in l\l(H) wrth Acolours is equal to

‘the number of wayé of co'louring n(e) mth h colours w:u,hout restrlctlon, B
4 1ess the number of ways of colour:.ng n( ) w1th )\ colours e.fter the o

1dent1f1cat10n of n(e) caused by vhe con’cractlon of e. -:ﬁ’ Thus, the

number'of ways of colourlng n(e) in u(rI) is Ak—l But thls is the
’  ’ ‘number of weak l—coloum,ngs of n(e). Thus, the chromatlc polynomlal Wlll
’:Lf it has any meanlng at aJ.l in tems of colourlng N(H), be a measure of
‘the number of weak coZourmgs of u(}‘)

Now cons1der a hypergraph H which has a sm"ong c1rcu1t A E



LetB A {a}for some ae A -and leu K= -‘ B\' , Then M(K‘) is a
loop, and N(K) 1s seen to be an edge Vluh (“—1) vertlces 'Thevchromaticn.j

polynomlal of L(K) is this 7}{ 1-— A "V’i’nis comnares favourably w1th the

v :graphncal ca.se. We tnerefore defin _the chromatlc polvnomlal of a loop .

tobe K-

’ Ffom the precec’lingb ';:omments ,Therefore SP(H(IOOP): )» )=}1\{ _1— )\
and-P(N(coloon), X) = %_- on Thns;': f1 e o B e
T<1oop, y) = (- 1)%50( k-1_ » and
 leotoops xy) = (- ”al?\Bl(}\ A) | w}héncé N
x = (- 1)0‘1;\81 (A _}\) and
PR T

We shall use P(N(K) }\) to denote uhe weak cbromatlc po'lynomlal of \I(K)
We sha.ll assume uhat \I(H) 1s V——r*onnected (11. not we can cons:Lder

each V—connected component of N(H) se“arately) We tha.n have the S

' result of Helgason [1&] that

P(N(H) \) = )\Y(H)A~E( )IA! vE rA | wrereY(H)lsthe number

of V—components of N(H):, which in 'Bhls case1s equa.l to -1 andr 1s the
chromatlc hy'_perrank fu.nctlon deflned by
(A) = In(A)] - - v(H,).

It is easy to show tha.t s '

» :

"I‘(A) = (k~1)lAl : 1f /—\ is 1ndependent in \I(H),

r(p) = (k-T)IAI -1 ifrfisa strong. c1rcu1t of H and
NI‘_(A):, (k—1> lAl ' ;f.A is a weak ‘c1rcu1t~ of d ek ,: P S

PROPOSITION 10. 5: et = (7, E, $) vea k—hypergraph with a iééak
“circuit. Then there. ex1st E' c E and K' < E! such that, 1f
K = '(Hé, , K'), .then L

(1>()B(K)

- P(N(K) ; A) # T(M(K) 3 x,y) where X and y are as -
defined above, for a.ny integers o(K) and B(K).

' Proof: Consider the weak circuit A fvE,'and let B = A;-{a} for some



 v,; j36>~ ‘ec,

a€ef. }Le+ K = (II B ) Then M( i.i§7$fﬁeos,‘and N(K) ié the
’hype ph cons1st1ng of an edge w1thkk‘vert1cesand m. (2 0) iSOiaﬁed'
’t;vertlces.? Thus, the chromatlc poWynomlal o? h(K) is A (A A ).

’Q?. im( ﬁ = ( 1) kBy for some 1ntegers o and.B.. ' |
‘;_But we know that y (- 1) OA O(A —A) ror some int egers<xo‘snd_ By
1[vThus, A ( A—A) = ( 1) +a0 B BO(Ak'T )-ff But tnls must oe éﬁf; :
f’1dent1ty in A, whlch 1s,impossible. | Tﬁﬁs, 1f H conualnsra ﬁeak
_ocrrcult A, and K = ( A A {a}) (a € A then P(N(K) A) 1s‘not equel tosi;jff"
';( )a(K) B(K)T(M(K) ,y) for any 1ntegers a and B, where x and y are :

‘as deflnedvearller.~

In order for the chromatlc polynomlal P(N(H) l) to be such that

for any K-— UIE K ) where E' c E ana!(‘ is’ 1ndependent in M(H),v

'v?eP(N(K) A) = (- 1)G(K) B(K)T(M(K) ,y) where x and y are as’ deflned

iearller we must therefore restrlct our attentlon to those hypergraphs‘ -

Lr

‘ H in whlch every 01rcu1t of H is a strong c1rcu1t.

: LEMMA 10.63 - Let H be a s1mp1e, strongly 2;connected k—hypergraph, in
which every c1rcu1t of M(H) is a strong Clrcult Then H = (V E $) lS'ei
’strlctly pseudographlc if and only if there ex1sts a graph |
= (V', E» $ ) such that V (e) V (e)U(V—V') for each e e E
b Proof it such a graph G ex1sts, then clearly H is. strlctly pseudographlc,‘f;f
151nce every edge of H has at most 2 valency'noues | | '
Conversely, suppose thax H is Surlctly pseudographlc“;ccoﬁsider aff:
ostrong cycle (e1,e2,...,et)»of H,Vand 1eu C = {e1,e2,...;e£}. ef$hen:C ié?;“;i/
& circuit of M(H), and therefore lv(C)l k+ 10l -2, ana f' i i
"elV(C')l z k + IC'I - 1 for each nonempny proper subset C' of C
,Slnce C is a strong cycle, lV({e1, ..,e })l k + 1 - 1 for each r f t.
'Thus, lV({e v,.,er})l k+r- 1 for each r < t. ‘ Since H is simple,v
£ 3? so,‘for each i, % < i-g ]V(e )- V({e ,ei_j})l = 1.

.} for2<ic<t-1. Then Vi‘e v(e;).

Let V, = V(e;)-Vle s o058 o
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If v, ¢ lv(eiﬂ), then V_(':e‘ai)‘r‘]\‘f.(/eiﬂ?;: ,v(‘e-’)-{v.} = v(e;)nV(e'.f 1), so |

there exists a node common to three ed es 01 C whlch is a conuradlctlon.v

»v,Thus',’ v.‘:E,V(e_;)‘nv('. ), snd. so, for’ 3' | ‘S‘ — , {Vl 1, c v(e )
- Now, | (Vle;)={Vy .Y })n( V(e 1)"{ i oo 1})l 2, so
V(e )-{V;_, ,v } = v(i e;_ 1=) {vi_z,vi_-1}-”' Thusa for 3 ,Sy,fc—ls‘

‘-V(‘ei) = Xu{V,_ ,V;} where |X] = k2. 7 » |
Now, XU{V } c- V(e ), since l(KU{Vz,V3})ﬂV(e )] = k 1. f‘T£erefbre;;:*?
_V(e ).— XU{V V }, say, where v, d V({e3,eu, .5’ t 1}) , Slmllarly, k

V(e ) =4XU{V 2V }, where V ¢ V({e ,e3, ..,e 1})

'Now, IV(e )n(XU{ -2Vt 1})l = lV(e )n(Xus v })l = k-1, and so
Vg € V(e ) and V(e ) = XU{'Vt A }
A 51mllar result holds for any other stronCr cycle of H 'Since\H ;f;ff1f

:15 strongly 2—connecbed and each edge has at most 2 valency nodes, ,'
X c V(e) for cach e e E Put .V, (e) V(e)—X Then G = (VX E $ ),

*_;,Where $' = {(V e) V € V (e) e € E} is a graph satlsfylng the J;;ﬂf 

-

. cénclu31ons of the lemma.
PROPOSITION 10.7: Let H = (7, E, ‘$): 5e a .s'im‘j)le»,'r étiéngiy 2{—;;'onnec‘t‘éd;,:5:,‘_ .
hypergraph in which every c1rcu1t of M(H) is a s»rong 01rcu1t.v ;fJ
Then, 1f H is not strlc*lybpseﬁdograpnlc, there ex1Sus a sub—a ‘ 5i
4 hypergraph HE, of H and a generallsea.hypergraph K = (H ) K )
such that P(N(K), A) # (- 1)u(h) B(K)T(M(K) ,y) Where x and . y“ 
are as defined earller,‘for any 1ntegers a(K) and B(F)
"~Proof; Suppose H is not strlctly pseudogranh1c.1 ‘”hen'thergiex1st$; 
S »an edge e < [ with at least three valency nodes u, A A Since HlS G
vv, strongly 2—connected and 51mple there is a V4cycle (e e1,‘é,...,é )‘
’(t‘2'2) of’N(H)‘suchrthat'N1,= V(et)nv(e) and m, }='V(e)nV(e ). 00351a¢r,; "'
a path (e f1,f2, ..,fm) in ﬁ Sﬁchkthét V(e)nV( ) 32 and | | 0
' 'n(fm)nn({e1,¢2,.f.,et}) # 9. Such a path ekists,_slnce H is sﬁronglj "1; A

2-connected. Now, there exists a least i for which




n(f )”n({e1, ..,et}) # o Let Er= 5,31,,;,,e f1,..f 9 }

fK' = 2,...,f e1, ,.,et}ﬁ, and let K- ( K ) Then M(K) is a

-Ei,
: matr01d on the ‘set {e £, } con31st1ng o;v two loopa. N(K) 1s -a hypergranh
;leth two edges, each Wlth at least two Ier 9 3;_and w1th two vertlces in »
 :,¢§mmon5 »'Ffom Helgason [1&]; we haVe.unéov;ﬂe chroﬁatlc éolynomlal | o
P(N(K)' )) }\(kln (e)l'*'ln (f )|"'2 - I'Il__"(e)ri._’:??v _ )\!fn'-(fl.)l_--2 + 1), o
| Where n’(e) and n (f ) are the verfex—sets ;2 4\K) of e oﬁd fb feépoc—':!iff“flo
.‘--tive'ly Suppose P(N(K) 7\) = (- 1)a(‘<‘XB(K’T(“(K), ,y) Where x and Y
are as deflned earller Swnce M(K) is g ma rO’d v1th two components,oj?ﬂQf

veach of whlch is a 1oop, by (10 h)(lll)

| (M(K) x,v) T(loop, ,y)T(loop,. ,y)
'Thus, (;1)a(K)AB(K) QBO(Ak 1 A) BT

a(x‘n (&) +n' <f1>l¥2 k. in'<e>i4é""-15*(f3>l42'73{3:

,So,v31nce thls is an 1dent1uy in A “(—1)a(K’-— 1 (K)+280*2 = 1,‘so

B(K) - 230 = 5,'“1 + 2(kf1) ln (e )!+|n‘{1 )I— 13 fif

S e1) 1= I <e)|— ln (£, )1-;...
But this is a contradlctlon. v“mhu53 9fo;ffﬁ f}}‘ ;€jﬁngff—x._
pn(k); ) # (-1 >”<K> B(K)T(M(K), .y) where x emd y areas

. defined earlier.

PROPOSITION 10.8:  Let H (V E $) be a Qmple, strongly 2—connectéd
='*'. strlctly pseudo—graphlc k—hynerrraph such that every c1rcu1t of ’AoQF
_ﬁH) is a strong c1rcu1t ‘ Then, fo* each E‘ < E and each ‘ ro:E1.§H'5
K' < E' such that K' is 1ndenenoent in M(PE,) the generallsed RERSIEN
k 'hypergraph K= (H s K ) is sucn‘ahaui-io’_ e e
‘” ooP(N(K) l) = (- - o(K) B(K)AY(K)"(H(K) x,y) where .
| a(k) = rkM(K), B(K) = (k-2 ( !E' }(' ]—m;M(K)) Y(K) is the numbev ofi
vovfconoected components;ofAN(K), x = 1—lk i and y ; 1—Kf(k—2).

Proof: Suppose H satisfies the hypotﬁeées of the proposition. ~ Then,
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by (iO 6), there ex1sts a granh é E'- $i) such‘th;t'

v (e) V (e)U(V;V') for each e ¢ E 1;50@,_u0 each generallsed
hypergrapq_K‘é g K ) there correa%o ds a D'enera]_lsed hypergrdph :
k":(GE,, K').‘  But (G s K ) is a g”anﬂ Gf, and N(K) = N(G") where
‘_,ch(e) (e)U(V—V’) for each e e E“ ; ‘raruhermore,, - f :

MK) = M(G') = M(C") For a strlc*T?'oseudosrapnlc hypergréph H in :f n

' which. every c1rcu1t of- M(H) ‘is a: stforg élrpuit. 1t 1s not dlfflcult to O
'.check that A = pA + (k—2)|AI for any A E where T and p. are the _}IJtTk‘
' chromatlc hvpe”rank funcfloﬁ of N(B) end. oha rank funcflon of M(H)
respectlvely. In addltlon, ‘ 'A-— p A + \5—2)!A{ for any A E"v B
Where'r» and p’ denote the corresnondlng ;uﬂCtlons for the hypergraph G"‘k; if;

‘;From Helgason s result [1&],
AY(K)

'P(N(K), A) D(N(G");,X) AgE"k T)tA[ r"E"‘r"A T
(®) 1Al Lo" E"+(k~2> lE"1-e "A-(’——z) IAI
= A ACE"( 1) ) A

>LY(K) (- Tl? E ( 1)9 E" Ial kp E"*(k-z)!E"! A p A-(k—2)!A!

AB(K) AY(K) (- 1)“(K)

A_En( 0 e ‘k‘”""E" ‘< 1)" A"N —p"A-<k- );‘A’_
(- 1)oc(K) B(K) AY(K)ME (2K 1)(p"E"-p"A) ( - (g—e))(fm p"A)
= (k 2)

= ( 1)(1(K) B(K) XY(K) T(M(K), ,y)where X=1"Kk and y'__ T A

T et BT (V E $) e ’~Simpié¥‘ngbnéiyfé—¢°ﬁée¢£éd ff‘::'
k-hypergragh. Then., B S

..(aj, ,’for any generallsed hYPergraph & = (HE" K ). . |

PN(K); 2) = (1)°‘(K) \B(K) AYK{) (2 I(K) ,y) vhere a(K) B(K)QIV

Y<K) X and Yy are as deflnea in (10 8), if and only it 4 Gt

Lir(b);;v‘H is,sﬁr;ctly pseudographlc, azd evérj;clrcult.of,M(H) 1é'a‘Sf;ong

e circuit{" | ‘v EEE R P R o -

: Proof (b) (é). E Iffﬁ'is strictlv é eUQOg*aphlc, nd é#ery cirenit Of.‘ f.

, M(H) is a strong circuit, then, by (1u 8), evgry generallsed hypergraph
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K = (HE;,‘Kﬁ) éatisfigé (a)fz'r L |
(a) » (b). Wé:éhéll.show.that,vif {b)_i§ nof saﬁisfiéd; then’(a)kdéeSf

‘not hbld = o ) 4" Ak' " :

v(i) If H has-a weakvc1rcu1t then bv (10\5) vthéré ex1st$ a generallsedfbﬁ.

! hypergraph (H K ) for whlch (a) doos nOu hold

E"
(11) If every c1rcu1t of M(H) is a7st ong c1rcu1t bu* His not
 str1ctly pseudographlc, then by (10 ), unere ex15us a generallsed o

,hypergraph K! ) for whlch (a) does” not hold

g . SR
'~Slnce if (b) is not satlsfled (1) or (11) (or both) mLst hold - we have B
»that, if (b) is not satlsfled then (a) 1s not saclsfled f_ThiQVR

completes the proof

COROLLARY 10.10: - Let H = (V E, s) ue a smple k—hypergraph (no'b ,
necessar*ly strongly 2—conn°ct°d) Then';”{ o
(a) for any generallsed hypergvaph K ,,, K )

L RMR)s ) = (- 1)"‘(K) B(K? AY(K)L(N(K) x,y) where a(K) B(K)

| Y(K),x and ¥ are as deflned,ln (10 8), 1f and only 1f
~(b) H is pseudographlc, and every c1rcu1t of M(H) is a sbrong c1réu1t.;'
Proof: (b) = (a) \ Ir every c1rcu1t o? M(H) 1s a’ strong c1rcu1t and

H is pseudographlc, thenvthe edge—sets of the 2—V;connected components of f,f
N(H) are the connected components of M(H ) ; Thus;beach generallsed GVVI

’ f»hypargraph'K’— (n E" K ) corresponds 1n the node~hypargraph to a set of
’ subsets of the edge—sets of the 2= V—connected cqmponents of N(H) Let
';these subsets be K1J%P" Kﬁ (say) wnere °ach Kl G and G 1s the

.f'edge-set of a 2—V;connected component of M(H) D note N(K)K' by N(K )

 hen iv(N(K) RO n1 B(u(x, ) A),f’wi;e’re
HCEI R ATEN LRSI o

Now, by (10.9), P(N(Ki); A) = (- 1)o Kl xs(Ki:).: AY(Ki)T(M(Ki)_; ;;,y)




- ,1.,14'1_’—“

20’ KJ_ zéx ) ~LY,(Ki) IIInTT(M(K ¥ ‘,y)
ol

”;('M(K%K.,)__@ ® (1(% )x( )s by (10 u)

(Nm ) =2 ,Y(‘”( 1)

.

s_ince_ _M(K)

w3}« T R 27

1 T(M(K) ,y)

( ]) (K) (K) )\Y(K)—,(‘,r ,y)

For ‘the converse we shall show tnat if (b) does not hold then (a)

ca.nnot ‘be satlsfled

’,(1) Tf H has a weak 01rcu1t then, by (10 5) there ex:Lsts a generallsedz’k_"':',:!.b__

. hypergraph (HE, N K ) for mhlch (a) does not ho“id

(ii) If eve”y c:v.rcult of M(H) is a sa'onrf mrcul’s but H is not .

pseudographlc t‘len there ex1sts a o T-con:xec ed component of N(H) Wthh?;;ﬂ:"v ;

is not strlct.Ly pseudographlc with: eﬂce—sa“ E","_say ._ Bu’c then by
(10 7) there ex:Lsts a generallsea h:,—oero'raph (B e K ) wlthE‘ ‘< E
for which (a) does not hold. e l :
Slnce,»lf, (p) is. not ‘Fatisfi c‘[v» 1; ‘or (11) (ox' both) must hold
we have that, if (b) is .not satlsfied taep (a) cannot hold., Thls b

completes the proof.

THEOREM 10.11: Let H = (V E, $) be a k—hypergraph (not necessarlly
‘ 51mp1e not necessarlly stv'on J 2—connected) Th_en. i &
- (a) For. any generallsed hypergfan:f*1 K = (H E' . K ),

B3 1) = (- -1)*) 58

B(X) x’(ﬂ) T(M(K), ,y) where- a(K) 8K,
»'y(K), x and are as deflned in (10 8) 1f a.nd only if
(b:)} ‘H is pseudographlc and every c1rcu1u of M(H) is a strong c1rcu1t i

Proof: (b) = (a). If H is smple thls follows from (10 10)
:;Suppose 'H is not simple. S:ane H is oseuaogranhlc, every edge of H hés
-at most 2 valency nodes. ~ But, a pair of parallel edges {eAl ,e } of H
has n(e ) = n(e ); so we must have | mo‘)[ = [n(e )} = 2. Thus, .'k =2,

'and (a) follows, since H (and henc %) is a graph.



';b;lrkzi—bsﬁ:’

(2) = (b). We shall show that if (b) is not satisfied, then (a)

»vcannot hold.‘-sbf""A’
(i) If H is 51mple thls follows from (10.:0)

(11) If h is not 51mple,'and k = 2, uhen (b) 1s always true and there :

‘is nothlnc'to prove.

(iii) If H is not simple; and > 3 con51aer a pair {e1,e2} of edges of S

'Hf—‘vwith Vie,) = v(e’).: Let K = '< {e })  Toen M(K) is

{ ey ,€ 2}’
a loop, -and N(K) is an edge with a 51qg1e vertex.r_ Thus,v (N(K) A) = 0
for any A.~ Now, T(M(K); X,y) =y = 1 (k 2) Thus, 31nce k 2,T?ffj:5'bxl'
,(a) ‘does not hold for K = (H - N {e })
o {eqs 2}

Slnce 1f (b) is not satlsflea, at least oone of (1), (11) and
"(111) must hold we have that, if (b; is not satlsfled then (a) does

“not hold Thls completes the proof ,*!’ :

It can be shown that, apar" from strlctly pseudographlc hypergraphs i

"the only strongly—connected hvperg”anqs 1n whwcn eferyic1rcu1t 1s strong;'
are the subhypergraphs of Ki for k 3, wlth, p0351b1y"1solated >
Uz,n Ior some n. It 1s easy to:: f

vertices. In 'this case, M(H)
calculate P(N(H), ) for such a bynergraph but, 1f n 2,&; 1t_does ﬁQtFA:u,ﬁj;

IR

bear much relatlon to T(M(H) ,y)

:We’now tufn from anbimmestfaaslon of the weakbchromatlc poly—jve'
bnomial of the node—hypergraph to a suady of theiweak chromatlc number _il‘
" of the. node—hypergraph.‘ Helgason ‘in hlS papef "Geometrlc Hypergraphs
v [13], proves that the members of a vestrlcted c1ass of hypergraphs all
have weak chromatlc number 2.> To domonstrate Just how restrlctlve thls
‘_class 1s, we state his mesult and then. show whlch node—hypergraphs o
_sabisfy his COHdltlQnS; Welshall then cons1der the weak chromatlc number

of more»general node—hypergraphs.vf~
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: DEFINITION 10.12': | Let H = (V,'F_ $) ‘bé a k—hy'pergreph. Then the
coverlng closure of a set.A E 1S tne set -

A {e ef: V(e) = VG\)}

SL___._...—-—

The - operator ~is sald to e ceo*netrlc it It satlsfles the matrOId

bclosure~ax10ms’(K1) —'(Kh);

Y hypergraph is said to be cover Inc—geometrlc 1f lts coverlng f;fr 

'closure operator is geometrlc.;,,

‘f:THEOREM-1O 13 (Helgason [13]) LEt P (V E @) be a connected (1n ;t}f:,,

 the sense of Berge [1]), cover nc—geometrlc hypergraph such that L

: n{V(e) v e V(e)} {V} for eaCh'V > V.- Then, elther H i a.fﬁg:;.,r
je(one—connected) graph or h is weaxly E—éOlourable. ST

Proof: see [13].

THEOREM 10.1k: Let H = (V: E $) be a1simple,'strongly—connected; fff;'ff'

.. k-hypergraph. Then

(a) N(H) is covering—éeomefric,eifeagd oolj’if;_"”%

(v) éither (i) for each e e’E,'fhereieiistsieynode of:é'ﬁhich;is;f.;xl
| N " not a veiency neae’¢f_é§'f5¢”' . s .

k-Proof: By (9.17), H is strongly connected lf wnd only If N(H) is

'V—connected (1 e. connected in the sense. of Berge [1]) | |

’(b) => (a) ls easy to prove, and we omit uhe.detalls._fe‘ B

‘Q‘(a)v—> (b) e Suppose N(H) is coverlrg—ceomeurlc, and that (b)(l) does-:'

~ not hold. - = Then there ex1sts ‘e e E sucn.that every node of e lS @

. “valency hode. . For eachAnode N < V(e) (1 <i k) let ai € E {e} be

- such that v V(ai), ~ Since each N.‘IS‘a valency node of e,rthere
'must exist at least one such a; for each 1..‘ Furthermore, sioce‘H'is o
:_SImple, and N(H) is Its node-hypergraph, V(a ) # V(a ) for i # 3, and ‘

,V(ai) # V(e) for any i. Let A— {a C1eicud
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A

Then e € A, and 50, 81nce N(H) is co¢er»nc—geometr1c, for each i

A

i S.k);_ a; e‘.Ar{a.})U{e}; ;rus, each node N e n(AU{e}) is ab

, subset of" the vertex—sets of at 1eas _ WO elements)of Au{e} Therefore,

- |n(AU{e})|X2 (k+1) i ﬁomever, s1nce H is slmple, each edge can
‘vhave at most one node rn common With each other edge, so ;;‘

ln(AU{e})l gk(k+1). Thus, equa_1t=tholds, ana so esch node is a-

» _subset of the vertex—sets of exactly +woedges of HAU{ } s Thus,f

K We noze that ther fore, Au{e} is symmetrlc 1n ther;v_

mn

'\e}v k+1° o
elements of AU{e}

‘ Now suppose there ex1sts e é Ap{e} omhén,rsinée'w(ﬁ)’ié'

:1; V;connected there ex1sts e é Aute} such bhat n(e )nn(AU{e})

#fo the symmetry referred to above, tnere 1s po loss of generallty 1n _ff'
assuming that'n(e )nn(e) = N . But, pDTy ng‘the’above argument to

‘the set (A—{a U{e e } We obualn h(A {ak})u{e e } =1 K§+1, and so :

V(e ) VGa ) Wthh since H is 51mpre, is a.coqtradwctlon. Thus, ,fﬁ‘““

" there exists no such e', and H = Kk+1

. For case (b)(l) of (10 11¥), 'che condltlon n{n(e) N C'vV(e)} ZV S
for each NV e n(H) is not satlsfled and so the condltlons of (10 13)
- are not satlsfled for N(H) f Thus the only node~hypergraphs Whlch ffrﬁgﬁ

satlsfy (10 13) are N(K§+1) for k 2 2 i

For general mode-hypergraéhs,‘;nereforeh We‘do not heve‘the :
:‘“condltlons of (10. 13) satlsfled.,/ Tt is uhus not‘sur§r1s1ng to flnd fhat
the conclus1ons of (10 13) do not hold for general node~hypergraphs.”vf:
1‘In order to demonstrate thls we flrst observe that there is a

,convenlent representatlon of N(KP) wach 51mp11f1es the proofs somewhat.,
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Kk_1 " Then fhefe is a 1-1

lll :

PROPOSITION 10. 15: ‘Let H = (V E s)
correspondence e between E a_a n(ﬁh) such that 6. glves rlse to

“an 1somorphlsm between the elements of the non—tr1v1al 2 flats

bit

- of M(H) and the edges of K.
(V'; E' $ ) =

’V’ =o{V!: 1o<‘i' p}#, and let V] b she obv1ous_b13ectlon between :

?a;', e

Proof: Let H' ; 16u V- {V $ P}¢a.

YA =

,Then for each e e E {w(V) V € V(e)} € n(H’), and for each N'FE n(H );
(V'): V'*e '} e E.. Thus, R nges rlse to an 1somorph1sm 6 between{:}:'
pp.*E and n(H ) _ The non—triviel 2—flats of N(H) are the sets e
1{e € E V(e) c W, W = k; A r"hus, {e. e e F} is a non-tr1v1al 2- flat

’of M(H) 1f and only if {w(V) V € V( ) for. some e € F} V(e ) for some. :

-;e' e E'. Thls completes the proof.,

Let us dlstlngulsh by a capltal letter the non—tr1v1al llnes

Tof M(H), and call them ' "Llnes ‘3§'f' Then, by (10 15, e o
weak q—colourlng of N(K ) is equlvalent to a partltlon of the edges Ofl.ﬁi
Kk;1 into g classes so that no Line is contalned wholly in one cless.:e;iy_:ﬁ
In the partlcular case k = 3; We‘reculre a‘colourlng of the edges of

K w1th q colours so>that Kp has no monocnromatlc trlangles.nb;Berge-

- [1 ]calls this a good qrcolourlng, ‘ The problem of What values of q

: Wlllglve a good q—coloarlng of Kp is essentlally a Ramsey—type problem,

11K5 has a good 2~colour1ng, but K6 h*s not. ,;

) DEFINITION 10;16: - Let Q = {E1,Eé,...,E ¥ be a partltlon of E(K

into q classes. Then Q is sald to be a k—good cholourlng pfn

of Kg_1 if no Iane of Kk— ‘e’ uoset of E; for any i.

- We shall prove that for any o 22, and any k > 2 there ex1sts'
) such that_Ki ! ~has a k—good q—colourlng, but not a k—good (q—1)—col*

‘,oufing. From (10.15) and the discussion follow1ng 1t,.thls is
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‘ . o ’ '_'7{ ) . .
equivalent to the statementvthat N_K%)“ha; weak chromatic number g.

The generaliéed'Ramséy.théorem that~we_reguire'isvl‘
THEORLM 10. 17 (Ramsey) f leen an’ 1ﬂueger c and a set {pT, .o 5D }

of 1ntegers, none less than h, ther= ex1sts a flnlte 1nteger or
R : Rh(p1,...,p ) such thau, 1i‘A ;s any set: w1th > |

]X| > R (p,l,.‘ .,p ) then, for any partl’clon { ET’ Té,..f‘,'T}"’

q - KR
of the set P(X) of. h—subseuo of X, there: ex1sts a- class T and_;;?;f;

a Set A < X such that IA | = 3 'g, (A ) < T
Ve deflne n (q) k_1(k,k ,ﬁ) 1 cﬁuhen n (q) 1S the | et
q térms o - e

'jmaximum«valueHOf p for Whlch:ikfi;hésia'kngOd q—Colouring.

e Berge [1] proves that K (
2

”fhasva.B*gOOdf(q+1);colouriné:;ofjfgcv 7
but no. 3-vood qfcolourlng An analocoub prooP nolds for k:> 2.

Q)+l

'.THEOREM 10. 18 Kk

(e ) 1 ‘has a k-good (g+i)-colouring, but mo .

k—goo& qfcolourlng

has no k—good q—colourlng,‘fffﬁ,ﬁ'

. Proof: By deflnltlon of n (q), Ki ;i

but'Kifzq) has a. k—good q—colour g. - Le Q be a k-good q—colourlnﬁ of ;b
k. R e e 4 EARER

i : SR L R
H = Kk_('), and let Ve V(H) W é V\H).ﬁe t%o vcrtlces‘g We‘shall now;r'
’form o hypergraph Kk ( )+i on V(H)ul W} anc produce a k—good (q+1)~' B
"colourlng of 1t. Let "' be>such a nypergraph and 1dent1fy e« E(H)
. with that e" € E(H ) w1th V (e) Ve (e"). { For each e € E(H ) w1th
-‘cAH,(e)'g_V(H),rlet e’-e-E(H be th* Lnlouaveage with | | ' .
k(e') (V (e) {V})U{W} | Colour thﬁ edgas e and.e .w1th the colourl;  o
.of Q used to colour e 1n H. For each T € E(H ) w1th {V W} < (f), ci

,colOur f with a new colour (q+1). Then 1tvls easy to see that the

reéulting colouring is a k-goodk(q+?)—colouring\of‘H'.



COROLLARY 10.19: N( ( 5“) cen be weakly coloured with (q+1) colours,
but not‘vithoq'colours. | |

:COROLLARY 10;20: N(N )) has weak cthJatlc number (q+1) for q 2.

. Proof:  By:(10. 18), n (q)’>~n (0‘1)+i, ;o N(K ( )) can be weakly

--"coloured with a colours, but not ww:h (o-?) colours.;?rf*:'

COROLLARY 10 21" leen 1ntegers Q= :k}zij;'there eXietsfanAiﬁteéerrfe‘:"

p such that N(Kk) has weak chroma tlc'number q.v‘ﬁ )

We have remarked eeveral fimesfthet»the comﬁonents?ofia_hyper?‘;ff

‘granh partltlon the nodes, in the semse unat, 1f {HG ;'1‘5 i< m}kis:i.«f’

~ the set of componenus of H and Ve n(H) then N < V(G:L for exactly

*A~yTHEOREM 10f22:_ Let H =- (V; E, o) oe a s;mnle k—hypergraph Wluh

. one value of 1.‘ It is therefore p0531b7e that an adaptatlon of (10 3) f

ii: to the node—hypergraph mlght yleid a well—deflned colourlng

s

ltﬂ = p. Embed H in the bvnerg“aon Kk on the set D’of vertlces,;:if;“
and let J1“]2,..., 4:~be.a set,o_ hyperplanes of M Kk) such thatjjf'

i J‘p,nJan"‘q’ |

FOI‘ each hy'perplane \J: let (K )G1 (J) (’1 < i sm ) dei’loté‘vJ':-\l'ié:vE :',
!&T,kfcomPOﬁents of (Kk) , and Tet y (J) = n(G (J)) (1 J)"‘
Let {Ni(J): mJ+1 <ic< 1 } denOEe the set
) r N . B
A *y: . <j < }
{Nen(Kl;) ;v_év(GJ), | mJF s |
i’With'eachpN € n(H) associate’uhe vector N (a1,a ,...,a ) where
:,:'N € ZV (J ) ‘Now aeSOCiete'e‘different colour with each dlstlnct
‘,vector S0 produced and for each i € n(H), colour N w1th the '

- colour assoc1ated with E,, Perultﬂon n(H) into sets of nodes
coloured with the same colour. - Then this part1t10n~1s a‘strong l;.:

‘colouring of N(H).



-8 -

[}

Proof: Letve.g E.:VThen,VSiﬁCe'Ji ngﬂ{;{qjih E @,,there exists

1." Now, it

w i for which e ¢ J For deflnﬂceneso;‘suopose i

In(e)m, Ul =2 gor ey 5, 15 5 <y, oy (9. ) V(o) < V(G (J ». S

1,But (K ) (J ) 1s a complete k—hyne"g*aph, so thls 1mp11es thai

“e € G (J J1, whlcn is a contra gliio' ; Thus, ln(e)ﬂN (J Ol = leﬁ;

~ for each 3, 15S’j-5 m Slnce 1” (J )i 1 for each 3 w1th

J
R . 1 _ ‘
m, +1 =3 =i , Ve have !n(e)nJ (J )! »,fo ach J, 1<3%
J1~ J1 v e e J1
T;Let the k nodes of e be N P ,ﬁg;, Thep uhe fler components of
the vectors N ( =3 | k) aSSoc1a:ed w1th the k nodes of e are all fﬁff;fﬁ

dlfferent and (e} each vector 1s assoc1ated w1th a dlflerent colour.ﬂcff

Thus, the k nodes of e are all in c_flerent colour classes, and s0 e;? .

is stronglyfcoloured. ' Slnce thls ﬂolds for each e € E N(H) is

létrongly*coloufed;

A It 1s not poss1ble to obtavn every s*rong colourlng of N(V)vbygfhe,"'"

: method of (10 22) For example, let h = (V E, $) where ‘fﬁ;

‘V—{ABCDE}#E {ab}qé, V(a)-—xABCD} andV(b) —{ABCE}
Let Q be the colouring whlch colours the nodes {A B D} and {B C E}
‘with the same colour, and colours all o»her nodes of H w1th dlfferent
colours. ‘Then, if.fhis’c010urins‘ ses from (10 22), {A B D} and

’t{B C E} are subsets of the vertex—* et of he Same component of each oﬁ rE
H_the hyperplanes J1,J2,...,J used to obtaln the colourlng.‘;lBﬁt‘thlsfs
71s 1mpos51ble because any completc‘suthpergraph of Kg on_V'whose';;“
f“vertex—set contains {A B D} and {B C‘g} as subsets must contsln evefy
;:vertex of K; on V’ “and hence must e Kg on V. “i |
" Again, con51del H= (V, E $), where V'— {A B, C D}#, E = {a,b c}#,
'V(a) {ABC},_V(b) ='{ACD}a.naV(c) {ABD} Let Qbethef
colourlng whlch colours {B, C} and {B, o} with the same colour, and ,3_5

- eolours all thevother nodes of ﬁ‘vzvh dlfferent colours. " Then this

-colouring cannot arise from (10.22}, since‘eVery.componeﬁtlof-a hyper—
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plane of M( ) whose verbex—set cont ins {3 "} and {B D} necessarlly
‘contams {C D} as well and so {C D} wou_d have to be coloured mth
'the same.colour as {B C} and {B D}. -

We next prove a necessary and suf %cieetucOﬁdition‘on”the Stfong 
colourlng Q of N(H) for Q to be derlved from a sot of hyperplanes by j: o

. the constructlon of‘(10.22).

' THEOREM 10.23: Let H= (V E, $) be a s1mole L—hypergraph w1th
I[El =1, and let Q =.{A1, 2,, A } be a SUronv colourlng of
N(H). Let vl = ." Then ’

L_Ki such that Q is

‘-(a) there ex1st hyperplanes J1,J2,’..,Jc of
» derlved from J1,J2, "’Jc by the me*hoa of (10 22)
if and only if ' : v v / ‘
(b) for each T . < Ve 2,.i s} Wlth II; zvé;*oz7ﬁ¢x'
. : %lV(Ai)lys lgV(A )l + (k 1)(II|—x) 1, :byheréckl

. V(A”)'?’O{N e“ﬁ(H) -N € A ¥y

. Proof Without 1oss of generallty, essume tnat Q 1s such that
IA | > 1 for 1 <1 < q', and that !A ! - 1 for. q'+1 <'i S'q.f} Let H be
‘.embedded in Kk on V (thls is p0551ble,r51nce ﬂ 1s 31mple), and deflne 5

Y, = {eeaﬁ)ve>chn (1 s@,'muY ﬂ,ynuY

e (a) = (b). Supnose Q is derlved froc the hynerpTanes 31 Jz"‘f°J by,gff"’

"the method of (10 22)  Then Y J1rd2n..,’J For, 1f eel,

'I/\'

~‘V(e) c V(Y ) for some i, and SO e € J “for’ each (1 < j
e £y, V(e) ¢ v Y ) for each i, so there exists J for whlch e é J
Avléhus; Y is a flat of M(Kk). Slnce ]El E(Kk) - By the |
ﬁconstructlon of (10 22), each Y is the 1nuersec ion of e component 0f 3° 

ieach of the Jj’ and so, ‘since each HY. is complete the HY are the f;
; ' T . o RS Y i =y
components Of’HY. Ir I < {1,2,...,a} Wlthvlll 2 let ‘

I, = In{1,2,...,q"'} and 12>= In{q'+1,. q};  Tneﬂa if II |
§ljgai)| = %1|V<Yi)]v+ %2(k§1) = §7(9{Y >,+.kf— 1) + Ilzl(k~1)

c). ‘If':f'7ff»;x;.



—150—

=p(%iYi)'+‘lIl(k—1)

f<lV(¥-Yi)|h— thj) +7|Il(k41) .LSihce'fI{l z 2, and 'so HU‘Y is not’;

R e ..»-,c_ritical.‘ o T i
luvia )+ x=D)(IT=0) 1
- s!uvv(A.)I,+'(k—1)(|Il-1).
"If‘ I1 =-’{i 1} say, vlet'k12 € 1, '.‘_*he“ M g
zlviy ! = Iv(a; )1+ Iy )l + (k-1)<11t-e)’~‘»~
N - < lV(A )l+ (k— ) +(1§-1)(|Il 2) : Since,;b_y‘ the construction . -
~of (10 22) 1f IV(A )nV(A ) > k- 1,'A., "E?A.-if.-? i 4
ey 11 ) - D S N
- If '1 o, 'then, since !V(A Y= k—1 f‘or each 1 € 12, and V(A ) 79 V(A )

"for 1,3 € 12, i # J, () follows 1mmed1ate1y.. ‘ |
Thus, in each case, ST c {1 2,...,q} w:Lth iII
| ";Ilv(Ai)l | luv(A Nk (k—1)(lIl 1) 1. | i | , ‘
(v) =A>_’(_a')‘. ‘For each 1, 1<4i<q', —_cet A < Y be a crltlcal set

~such that V(Ai '— V(Y }o Such a set ex1sts sn.nce HY 1s complete, and‘ :

s

_hence _critical. Now, for each i,” lEo B C A w th B .‘ ’Fnen :E'or,.-éf"

eny Ic{1,2, ..,q'} with iIl

ZIV A )I - ‘UV(A H smce B < '\ for each ieI

v(B; )l - IUV(B ) é
| - < (k— )(III—1)—1 . by h}rpothe31s
. wB)l = zIvB)I- (k—1)(|I( 41 '
: = z’,(lB |+k—1) - (k-ﬂ(lIl 1)+1 " sinceé each B.
I [ _is nonempty and 1ndepen&ent
> zIB [+ k. ' o .
Since thls holds for each Ic {1,2 ...,q } wrl:h iIi 2, and :E'or each

bnonempt;y subset B < A » and since eaﬁh B C A 1s rldenendent in M(Kk)

UA 1s 1ndependent in M(Kk) Conversely, 1f liA is 1nden°nden'b 1n _ ‘
M(Kk), each /-\ is 1ndependent. ' Thus, M(Kk)XY M(K' )XY @) @bfl(Kk)XY ,, )
and S0 uhe Y are. the components of M(Kk)XY :V T s (1)
B Now let e € G(A U[\ u. ..UA ) (A UA U""Aq')’ and suppose that SioNt

' {e}U(U{B-: i e J}) is a circuit, Where B c.bvfor each i ¢ J the B |

" be:Lng as defined above. Then, since each HY is crltlcal H Y ‘is

i
. critical, since, by (2. 3), if C is a circuit, V(C) < V(X) for some
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critical set X and by (2 6), 1f two ‘ragments (v, EU’ $ ) and

. { T
(W EW’ $U) have a common edge then JUJ EUUU’ UUW) is a fragment.
Thus, uV(A )| lv(uY )l !V(ul\l)l »:+ Tt =1

E | = -1 zlAll

‘_:‘g;'k»—‘1 + zlv(Al)l ~.lJI(k-1)

*i’=“¥zzm ) - <k—1)<w|— 1),
ed

v

which is a conbradlcrlon of (b) if [gf. EQ’EiTh [Jl = 1, and se

e« G(A1U...UA ) = e ¢ G(A ) = Y - ;or some i;;vf Thus, Y is a flati‘ ,;*~>
Qf_M(K;)f " Now, Y cannot be a flabi ffi Kk) of full rank,131nce, ir 1t‘ri
were,efromb(1 we Woulu have V(A; )'—;‘;e‘jNowg q>1, 31nce !EI > 1 and;"h

.Q is a strong colourlng of N(H)"i "has, tnere ex1stst2 # 6, A # A .kev:‘A
- Then, by (1), IV(AJ)l'+ lV(A ) IV(A UA ); £ (k- 2). whence [V(A )l <(k—2)
'whlch is 1mpossible; Thus Y is a flat of M(Kk) of less than full rank r

" and so there exist hyperplanes J ,J2,...,Jn of M(Kk) such that

--;Y J nJ nah.nJ - It is easy to seeboha Q is derlved from

Jysdpse-esd, by the method of (10 22) | ;fqudk.f,:;'J‘

It is ciear from the results in uhlS chapter that We are'~eii f,
k'_‘deallng Wlth two essentlally dlfferen“ methoda of colourlng N(H)
one Wthh glves weak colourlngs, and one wnlch’glves strong colourlngs{elﬁ"
.From the matroid p01nt of v1ew, here?ore; tnese are. the natural { k
'generallsatlons of the vertex—ceiourlngs or graphs. R
Since ﬁeak end strong colourlrgs 001n01de in graphs, 1t is not f L
'surérlelng that tﬁere is a relatlonshlp between the’methods 1n‘tﬁlsv
’ :case. As has been shown by Crapo R ta [6] the connectlon is vta the
g';{crltlcal problem for representable matroids. As we noted at the
beglnning of thls chapber there are several facte Wthh .are crucra%
.to this result, aﬁd these facts ar,; in'gegeral, notbtrﬁe’for hyper;.
"graphlc matr01ds. | |
| Even if it were possible to finﬁva forﬁula forvtﬁebnumberkof

’ hyPerplanes of M(Kﬁ) whose common intersection with the edge—éet of




an embeddlng of a hypergfaéh H 1s eﬁnuy, uuls stlll would not give a‘
strong chromatlc number or strong ch » pOl]nOmlal for N(H) because,
for many values of k and p, tbe number of comnonents of (K.k)J for a
‘.hyperplane J of M(Kk) is not constant. i . x

As a flnal result -on colourlng node;uuuerglaphs,bwe give a result
due to G“unbaum [9]' Although hlS result 1s glven 1n terms of
' $1mpl¢c1al compleues, he uses no properules of these nob possessed
by the edges and nodes of unlform nynergranns.u4 We xlrst deflne the':. -

[fnotlon of embeddlng a hjpergraph 1n,zac11dean space.\ljl'

DEFINITION 10“21;-‘ Let H (V E $) be a sunple k—hypergraph.

Then H is sald to be embeddable in “u" dean d*space Ed 1f

there ex1st dlstlnct p01nts (V € V) of Ed.such that for }5:1"' v
‘each e € E, and each W < V(e), alm(COV) IW] - 1, and for"
any subset {e : i eI} < E,'v | | '

‘_Qﬂﬂ(CO(V(e ) = co(n(V(e ))) vnereAco(Y) fOr X <V 1s:£he ;’“:<

convex hull of {a : V € X}

- THEOREM 10.25: (Grunbaum [9]) Ir H is a s1mple k—hynergraph
vvﬂthat’is embeddable infEk, then there ex1sts a strong colourlng

-~ of N(H) in 6(k—1) ¢olours.'_’5'
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CHAPTEER 11 .

A GENERALlSATIOSfOF'

uSION

SERLES PARALIIL ;x

In this chaptef: we‘éhail use;ideas iegired;fromihyéeréraphs:to tf13€ 1
generallse the notlon of a serles—ca V{lel'eaﬁecéioa.f{ Since £ﬁe77*
’deflnltlon of ser1es~paraileiVextenswoa Ws ﬂotivated‘cf érapheéhecfeticfezf
‘ consvderatlons, thls 1s a reasonao?e °on“oecn.n The chapter falls »

‘ 1nto three maln sections. In the fl*éb eb ticn we shall 1ntroduce 5:iifi,:“
an operatlon of matr01d union whlcn we e’ #*“,coi:ted unlon .e;fo;f

'f_J H. Mason ‘has p01nted out ‘that Ehls onerauvon hes been descrlbed ¢ lf

'f_preV1ously.by other authors, 1nclua1n BlXDJ L33 In the second
.7secticn;“ve shall define’generalised series*g lel exten51on,‘and

compare the pronertles of thls operac on W1uﬂ those of serles—parallel;ir

extension. In the flnal sectlon we <Etefrm a generallsed serles—parallel .*f
network, and characterlse the class of genera_lsed serles—parallel
1'networks by a set of six forbidden minors.. An exten31on o; thls 1eads ;1x”ﬁ°

to a characterisation of'ternaryfbase—orderable'matr01ds. ; .v"” o

"POINTED UNIONS:

| e o s et e et st st

C It is clear that, givenifwo graphs G1 wnd G2, we can form a new

‘a 7graph by 1dent1fy1nv one edge of G1 Wﬂth an eage of G 5 pvov1ded.ne1ther,:‘

edge is a loop, but otherw1se keepwng tae ?e*cey-sets and edge-sets R
- disjoint. The p01nted union of two maur01as is the translatlon of thls'

foperationllnto matr01d theory.

DEFINITION 11.1: Let M1, Mé be matro' on the sets E1U{X} Ezu{x}

respectlvely, where E1rE2 d, X é E1UE2 and X 1s ‘not a loop or

coloop of _D_/I1 ‘or M2.-' . Then the pointed union of M1 and M,, denoted :

by M, UM, is the matroid M= (E,uEuixt, B) with set of bases



{B1u12 B1 e B(Y,) Igu{x} B(M )}u
u{BQUI1 B2 € 112) [.ols} eB(uI )}

PAThe deleted p01pted union of Nf ,nd hz, wrltten M1U'M2 is the‘

=1

‘ matrq:_d (MTUMZ)X(ETUEQ,'

';PROPOSITION-11;2: | with.thé above'ﬁotatibg;j'ggéy%‘is & matroid on
the set E1uE2u{A}

“Proof: Routlne verlflcatlon of the c:se ax1oms. ~

PROPOSITION 11 3:  With the above notaﬁion,]thé'setjof circuits of

M1UM2 is glven by :

- clnin,) = el o €, e ACQ C; e €l and xe (g, 1= 1,20

. Proof: Routlne verlflcatlon. 2 S RETE RS R S FE =
Alth°u€h there is a superflclal a.ﬁll&!Toy between the deflnrtlon f,-f"
- of pointed union and the 'series connecblon deflned by Brylawskl [h]

--in fact - uhenconcepts are qulte d11 eren t _ior,examnle~ the:;serles #

connectlon of two matr01ds M1 and. Le;hee renf,r&ET + rkMé, whereas theff

p01nted unlon of M1 and M has ranx rx) 4 ,frkMé'— 1.

PROPOSITION 11. h PROPERTIES OF THE DOLNT“D UNION.»5

Let M, M, be matr01ds on E1U{X Eéu{x} ‘where E nE2 = ¢’»]

'I’
X é E1UE2 and x is not a loop or culoop of M1 or Mé . Then:

~ (a) M1uMé is representable over tne 1eld F 1f and only 1f M1 and M2 -

are representable over F' | | o » ‘ o

(b) M, UM, is base—orderable if aﬂd onl if MOVand"Mé”are baee—brderableiki

‘ =172 =i
A(e) »M1uMé is fully base—orderable 1T a_d only’lf M1 and M are fully -

base—orderable,]

'i(d) M1uMé is hypergraphlc if and onlj if H1-éhd Mé are hypergraphic._?

 Proof: Since each of the properties menuloned is preserved under the
operatlon of matr01d restriction, and 51nce Mi = (M uM )X(Elu{x}) (1 = 1 2),’

one half of each equivalence 1is trlv“eT



The conversesAaré proved as fdllows
(a), Assume M1 and yé‘are representabl over F. Let I u{x}vbe’a
base of M (1 = 1 2) B Let V be a~ﬁector.space of dlmens1on [I |+lI l+1

~over F, wnd let {V( ): e e I UIQU{\.}1 b° a . basws of V.f' Let_V. be the

: subspace of V spanned by {V(e) I U{X}l (1 = 1 2) f Then, since

M is representable over -F, there ex7=ts & map 8 Fiu{x}-+.V such that fE::

for any {x1,x2, ..,x }# c E u{x} {x.,xg, ..,x }e I(m M. ) if and only 1f
‘;{e ¥ e x2, .;, 0. ;% } is llnearly 1niennneen 1n V and such that
8i8 = V(e) for ec I > and 8% V\x} Defiﬁél‘p:;
: e 61(5) ~ 1f s € E th}
els) = e
’ o epls) 1f s € Eﬁukx}. PN

V VlThen it is easy tO check. that 6 is a renrese“tatlon of M1UM2’ A

(b) and (c) follow from rouulne chec;lnc of Bne various poss1b111t1es”p, B

»for two bases in a base—orderlng or ?ul_ bQSQ-oraerlng

- (a) - Suppose that M H ) = ,_) mne_v,gi_ E'U{x'} $ );;}iikﬁéf

vz’

is a k. —hypergrapb and the 1somorpn153 ﬂs vnduced py the obv1ous ip°
.‘blgectlon between E U{y} and E U{x } Sunpose Wlthoup loss of
vAgeneralitm»that k1 > k2' let V be a: set of cardlnallty k1—k2
. disjoint from v, and Vs and dellne E' (! v '; Eeu{x } $ ) by

H,(e ). = (e)UV ' for each e' € Eéu{x } " Then M(H ) M(H ).
2 2 . o
. Let,V (x) = X, and let H"'— 7" EQU(X } $") be a hypergraph
o Hymoo : : _
'1somorphlc to H2, w1th V"nV = X, and X = II"(x ) : Deflne

5= (7, E', %), wher‘e V= v, > ' = E,uEgu{x },.and |
Ol Vg f(e")‘ ife' e E'u{x i
o Vﬁ(e‘) = { &
' Hn(e ) : € EQ'J{X }
;’Then clearly, C' __E'u{x } is a circuit of N(H) if and only if C' is a
- 01rcu1t'of M(HﬁUM(HQ Now suppose thet C' c E'UEZU{X } but C' E'U{x }
and C' £ E'U{x 1, and that C'is = circuit of M(H) Let

ﬁCi = _C'n(EiU{x 1) (1= 1,2); Then C' is lndependent in M(H)



Therefore, |V((§)g'§1(;| +’g' - I (1 ; 1 2) Lo  "" | :(15
Tmm,rWCWI+|WQg| xgu@t+2» 42}9_ | |

e VICCy) [V(C1)nv((‘,2); >[C'UQ[ + 2k, -2 |
sln}:e ('is a c:!.rcul‘t, [V CluCy)l = IV(C )l = IC'I + X, 2‘

50 IV(C1) “V(Ca)‘ k,. Since 11/ o7, 1 —-kT, ecuall’cy must hold a.nd »_
therefore  V(CPAV((Y) = X. el T ey
"Now, x 4 C1 and x ¢ Cy since, fro”‘(l.) an (2} S R e s

IV(Q_)I :" ICLI + k — , ard aance Cluix’} is dependent (1 =1 2)

-;‘_Also, since C‘ is a c1rcu1t for no nv-oner subse*c Cl' of Cl is XC V(Cl)

80 Ciu{x } is a 01rcu1t for i= 1 2 md so C' el (Qu{x'})A(CaU{x’})
Thus , by (n 3>, C e c(m oME).
The proof of the converse to thls, tna’c ir C’ is a c:chult of S

.vM(H )UM(H ) and C' ¢ Ej_u{x'} for i =1 2 vthen C' is-a c;rcult of o

M(H), is tr1v1al and we omit the deballs. o

M u;_if2 is. hy_pergra‘phic -

) Thus, ,1_41U.M2 = M(H'l )UM(Hg)E_M_(H) > and S0

PROPOSITION 11.5:  Let IV1, Y, be matroids on E1U{x} and EZU{X} resp-
. ectively, where E1ﬂE2 by X 5 E‘i EQ and x is not a loop or coloop‘f-:' S
of M, or:,Mz. Let y e E1 , where y is not a coloop of M1 Then- ,

‘ oM )® %O M. o
“'(a.) (M,0 M) M1U M2,

el

sl SRR (M ><(E1 {y})ﬁv}—% 1f>§ is not alcél;:)op obf |
. (b) (M 81)x (E. uE‘2 b =, R
S | | Mx(aiﬂn@(Mx%)pmema e
Proof: R | S ,   “;“ g
(a) B<(Mu'M )) -{B 12 x ¢ B € B(M ) LU{X} € B(M )}u S
B | -~ uiBul: ng eB(ui ), Lu{x} EB(M )} |
B B((M 5N, )*) = {(E1 B)U(E2 12) x 4 B e B, Iu{x} eB(MZ)}U
‘ u{<E2 BZ)U<E, [):xd B« B(M ), Lutx) By}
Write EL B_L ]1 El ]1 B; Then tiu{x}e B(M*) B* P B(M’f) and
x e_’ B’I ' Thus, '

i
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{B2UI1 X 9-/ B2 € l(MQ;, FU{X} ,g_' B(M*b")}vu S
u {B"UI* x ¢ B B(u ), Ieu{x} e B(M*)}
B(M* 0! M) since x is no% a loop or coloop of M? of ME 1
B((M o _2>X<E ) L e
= (Byly: xv ¢ Be BUY Igu{x} e B(M e =
“{Be‘” x By e BUp). v 4 Lut=3 « By, i e e
= (Bpuly: x ¢ B, < B, x<EU{ DRI Igu{x}eagy_)i ciﬁizﬁffﬁnﬁ
g U{B2U11' x ¢ B, < BOL, ). I1U{x} ¢ BU(EpG) o))
'B«_qx(E1—{Y})G'Mé) if x is not & coloop of M: x(E {y}) V”tf}ﬁ
{Béulaz Bé ¢ B(Mg[g2 1, € By x(a _{y})} othervise

(M x(E {y})u'M ) i x 1s not a coloop of M X(E -{y}) ;;1;;

B( (1,5 '10,)%) —

(! Y\

i

B((rd1x(E1 {y})) ® (M x52>) Cothervise.

PROPOSITION'11.6 - PROPERTIES OF TH'” D..LETF‘D POINTED—UNION. e Ry

Wlth ‘the no‘ta.tlon oi‘ (11 h), f: R Rt

(a) If M1 and Mé are representable over. uhe fleld F then M1.U ,Mé

-

1s representable over’F;
(b) If M1vand"Mé are base—drdefable, then M1 u' Mé 1is base—orderable'?}::'.ﬁ

(e)  If M1 ahd M are fully base orderable then M1 u' Mé 1s fully

”base—orderable,

(d)v If M1 and M are hypergraphlc, ghen M1 o' M2'1s hypergraphlc.v g

Proof  The propertles of representnbllloy over a fleld base—orderab-x '
o 111ty, full base—orderablllty and hynargraph1c1ty are all preserved

'under ‘the operation of restrlct;on. 2 The . result now follows from (11 h):v 
PROPOSITION 1.7: TP M= M1 UM2, there exist matroids M! and n_/xé such

that M = M1"0' M. o B

Proof Let M1 be a matroid on E1u{x}, M a matr01d on Eéu{x} where

x é E1UE2= E1nEé ¢ and x is not a foop or coloop of M1 or M,, and 1et

- E1UE2U{X}, Define M{ to be the matroid on E1u{y} 1somorph1c to M1



under the map whlch is the 1dent1uy on E1 and maps b to y, deflne Mg
. to be the matrmd on EZJ{y} 1somorph1c to 1_2 under the map whlch is the
\1dent1ty on E2 and maps x to y. Pus M : =M'G U 1»'2({x,y})- " Then
- e-~,kA e

: = M 'r;, v
clearlyg M_1 u M_g

' DEFINI’:’IO\I 11 8 Let M be | a matro-e on the se‘b E If there eX:Ls’c
matro:Lds M‘l R M2 such that M is a ma ro:Ld on the set E U{x}

) Where]E l s 2 '(1 =.1,2) such thet M'— ‘_1\_&_1»0' MQ, ’chen M is. sald

to vbe pointed r'eduCJ.ble. : A maorc:ld whlch is not polnted reduc1ble

 'is said to be pointed irreduc1ble.' S

'; PROPOSITION 11.9: f‘A';onnectea matroid M on the‘set E Wlth rank
functlon p is kpo:mted ‘reduclb’l if and only 1f there ex1sts a."b
partltlon T, E T of E such thnt ]Tl !E—Tl 2 and [
o + oET) pE+1-"‘, | ”

'_‘;‘_;,“:Proof° ‘ Slnce M 1s connected for no 'oartltlon E1 5. E E - of:E does
E + p(E"E.])»— pE Thus, for every partltlon E1 , E F_1 "’of E

f" oy + p(E"E1 > oF + A . | i‘v ol f (1)

4Suppose M is po:mted redu01ble. | Then uhere em_st matr01ds M‘I s ‘__2 :bﬁ-:
sets Equlx}, Eeu{x} respectlvely, such that M = M1 2, and ]E I > 2
'_(1 £ 2) Now, a base of M is of the form B UI y. Where R

x4 B; < By) ana I.U{x} B)) (i

~u,

3}) > So rkM = rkM.l + rmv[z ’1 e

NOW, rk M. = ok, since 1f, say, L = PE 1 and rkN EQ"Y

we Would have pE = pE1 + pE2 Wthh contv'adlcts (1), a.nd 1f "‘,,i ,' : 't

' E +1(1=12),wewouldhave pE—pE1-§-pEZ+1 Whlchls'
’j),‘lmpossrnle. Thus, taklng T= E an E—T E2’ the result follows.

" Conversely, suppose there ex1sts E1 c E such that pE1 + p(E E1 pE +1,
- where lE1| | > 2 and |E—E1| > 2. : ‘

 Since pE1 + p,\’.E—E.l )= pE'+ 1, .p(»(dE1)‘ﬂ(cf(E—E1)))>5 1



{
S\
O
|

A special Case 'is fwhere B 1s notb Sirn“ﬁ'e | Since M is. =conneoted.,bllthere‘_exi'sts
‘a parallel palr {a b} c E Choose x &/ E and put M' MX(E -{al}),
M, = ({a b X}) Let M1 be a mau*01d orvA (E—{a 'b} )u{x} R 1somorph1c

"’bO M% wider the. map whlch 1s the 1aent1ty on’ E {a. b} ‘and maps. b to X

": Consider ‘_Ig'_ MT’ _M2 Then clearly P{' 22“.1 Put T = {a b} |
 then, since |f| = !E-t1i+lE > |E—ﬂ é",“and oT + p E—T) F + 10
; For the general case (mhere M may oe s3_~t>le) write E2 E—E1 '
‘ Let "G'l e B I_¢I><E1' , and let J2 a.nd 12 be such tnat. G UJ € B M) a.nd E
: ”’iJéu{Xz} e B(MXEz . Define M‘ MX(E.,UJEU{X }) (E1u{x }) 'I‘hen, for :
X Eq» pM,X p(XUJ2 J = pX, 51nce G1UJ2 e BM) and G1 e B M><E1
Thus, ‘ N'xE.i = MxE1 Also, from t.qe,'d‘f : tion, rkM' : rk(MXE ) -

: | Slmllarly, let 62 ¢ B(MXE2 , and let Jjano _;cl be such that
;%mhelM>maon}e OpE,). Detine fe" j o
= mc(Egudyulxy D (Bputey ) ‘Then E, = 1E, and rkM' ’f.'rk(MxE v>'.“~?"
" ) Choose X é E1UE2= and let M. be a maor01d on Elu{x} lsomorphlc to M‘ e

Lo iy

‘_under the map whlch 1s the 1dent1uy on El and maps x to x. -We“ clalm

M=M M, o W SR o

For,‘ let -B1U-12 (say) be a ba.sbe/":of‘ M1 6 2,' where x é 81 € B(M ) G
and ,ulx} e‘B(Mz). Then B, < B(;V_I_g;ET)'; Now, 12u{x } c B(Mg), so.

fji—pa+peo = Nyt + nue,y-x HUIMXH

Thus , Jyulputx, Je BGD.  Tus, B1 UJ Ulgu{x } 8pans E in M. Now,

| IQU{X }UJ is 1ndependent 1n M. By hypothesz.s, :

b’ JTU{X } e E‘l co B1 , SO B1u12 spans E in l‘f.»_ But]B UI l ‘
~ so B1U12 € g(M) A smllar result holds for, a base of M"'ME' of the form
"VB2UI1 . S eree
) Conversely, suppose B c BM). Let I BnEj_ (1 =1 2) _ '
Then |];] + |I,] = [B] = oF = pE1 oE2 - 1, and pEiz |Ii‘| ,(1; =1,2).
II-]I and DEQ‘ Hzl +1 , »

»OI“ (ii) pEQ = II2|,a'nd pE1 A=, II‘]i +1'

n
1]

Thus, either (i) pE1
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Suppose that'(i) holds. - Theﬁ 1, e B an , SO I e'B(M ).
- Now, fOI' any base B1 € Q(MXE ) Blu 12 is 1'1aenendent in M, since

- I1UI,2 and hence E1UI2 spans E in- - "‘hus din Dartlcular,

If,\hu{x } e B, so Izu{x } € B’M') and so I u{x} e B, ).

*‘;,Thus, I1U 12 e B(M1 U M_Q) A smllar resmt holds for (11)

Thus M= M1 Mé, and by hyjpothesz.s, lE l 2 and !E~E l

. PROPOSITION 11 10 Let M be a matro:s_d on the set E _' Then A

(Va). Mis 2—connected (1n the sense of Tutte (9 28)) 1f and or*ly 1f

(v) M 1s ‘connected and p01nted reduc1ble. f .

,ﬁPx"oof:; ,(a) = (b)
Suppose M is 2—conneetedb.kf; Then FM‘ 1s not 1—senara.ted, so, fo.r no T V E

.Wlth lTl >1 a.nd lE-—T] 2 1 do we have : pT + p(E—T) -pE Thus, M is
cﬁonnected. Slnce M is -2-connected -M is 2— epara.’ced, 80 there j

| exists T<E such ‘that H-I IE—H 2 a.nd ‘

P.T + p»([:"-!:-)r= oF + 1. - Thus,- by (11 9) 5 M 1s §01x‘ted reduc:.ble

(0) = (a).

‘Y'Suppose Mls eonnected and ponﬁ:ed recmcﬂ)le Then : -
(i) for no T ¢ E with |T| E 'l a.nd IE"TI 1 do we have pT + p(E‘T) E; -
v (11) by - (11 9) there exists Te Emth |'|'[ lE_Tl . such o
 TeelEM =BT |

,Thus Mis 2—separated but not 1- sepa.raued and so by (9 28) M is

2—connected.

7_'PRoPoSIT10N,11;1R: et M be a matroid on the set £ Tﬁéﬁlr
(Va)k‘ If M is k-connected, M* is K—connecbed H |
(v) ,If Mis vK—connected and - Mx(E—{x}) is k -connected. for seme xbe E,
| '3.}then ' > 13 e '
(¢) If M is K—’conhected,‘and M. (F-{x}) is K";eennectevd’ for some x e E, i
then K_"bvz k=13 s

(cont inued overleaf)



(a) 1If M;is~uot;k;conueoted féf"” any x > O and MX(E}{X}) is g —connected
| 'forgsome‘xdenEvand somelr‘iéilf‘tne {E} = 2K' + 1. |

"~ Proof': i | | |

i pT + p(E}T) iéi pE + A - 1. for.soﬁe p0s1u1re 1nteger A if and oul&.‘df'
if p*(E%T) - |E'T| pE + o*l - !Tf + pE = pE +A= 1 o ‘
ie. pf T) + p*(E—p p*(E) RN

Thus, M is l—separated if and only 1;'M §s1X—separsted,_sndlso'l1'

S

M is K—connected 1f and only 1; M is_K—conneCted

(11) , Suppose that MX(Er{x}) is l—separaued._ .Theh'there‘exists Ji'-f T

Te (=) such that|T| A I(E—{k})-T' 2 \ and r‘ff;':""i
5 ol +p( EF{X}) T = p(E—{x}) R 1~:»1‘f”' i
,,‘SupPose |El > 2x + 1. We have>‘ | i:h' LT L T
| o(ED) = 1 5 ((E-tx1)-T) p(E—-T) S R )
“'f'and p_ pE'-1 <p(EF{x}) 'pE rfﬁ“fg”=" T y,;y"quk2)f,;

A

.l/\'

"If the upper equallty holds in (1), uhen the upperkequallty holds in (2),7ffs

Since IE—{X}I > 2) + 1, we may as:un , Wlthouu loss of generallty,iv.'

nat || = A+t end [(E-G)-T) 2 Frem (Doemd (2,
o PT + p(EFT) - ll'jllz uhe lower equallty holds in (1)’>' ‘
ipE +1-1 = ,';1apd the upper equallty in (2) o
, . pT + p(E}T) - '-ouherv*se. L ;f'r'gg]‘ L
- B | pE + (A*1) -1 f* ;"’i"‘f;”id' Sk (3)
R E + A =1 ”;1 ,;i} ftryf'-7‘-}a}r’fff i (h);~*7“

‘j'where (3) holds 1f the upper equallty holds in (2) and bhe lower in . (1)

 and (h) holds otherw1se

.}leow, s1nce |T]_ A+1 and >|E4T| él%l dM is‘elpher A?‘or (x+l)—seperefed,lz
dependlng on. which of (3) ‘and (h) holds. o w e

i‘Suppose [El 2A+1 then w1thou* loss of éenerallty we may assumeijd
_thatv|T|.é A+1 and lEﬁT|‘= A '1f (k) holds for some [ with IT] = A+1
'then-M is A—separated.;- If (3) holasvlor every_T w1th_‘T[ = \+1, then -‘vuﬁ
i M is not A- separated Since ]E] 2+, M‘is not A‘—separafed for'any ‘dfr

A' > A Clearly, if Mx E—{x}) is A—separated 'El > 2A+1-,
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_vI:f' M 1s K—-connected M _Ls K separabed ' 11” gul (E -{x}) »is:K"—ccimn'ected',
‘NXIE"{X}) is x —separated but not (K '—1) ated. : vv'Thus, K '> K‘-il .
e (111) follows by the appllcatlon of (_L, and ( ) to M¥.

‘ (1v) If M >(E—{x}) 1s K —connected and M 1s ‘not K—connected for any

K> O then, from the proof of 11) |E’ = 21< + 1

DEFINITION. 11,}12': . Let M be a matrom. cm E mhlcn is K—-connected
Then xe :E",‘i‘s"sald,to be essentizl ‘i" P x(E—{x}) and N.(E—- {x}) are : i

‘both (fk'-—l )—-conn"e’ct_ed;'v'

"THEOREM 11. 13 (Tu.tte [27]) Let M be 3-"onnecbed matr01d on 'bhe set
E such tha’c every x € E is essentlal Then_elther |

: _M s l » the Whlrl of order n, “or T

E ~W ( 3) the wheel of ordec n.

(11 13) Wlll be used 1n tne proozs oz uh‘° characterlsatlon of

generallsed serles—p-*’allel networ::s by a set, OI 51x forbldden mlnors. S

' GENERALISED SERIES-PARALLEL EXTEN,SION:. “i

A series extension at ee E or tbe granh G = (V E $) 1s effected. S

A by placmg a new vertex at the mld-po.lnu of e, thus d1v1d1ng 1t 1nto
.:two,'new edges. _ Conventlonally, one of these edges 1s stlll labelled e._::l "3;.
o We believe thls to be somewhat unsaolsfacm*'y, and so. we shall label the‘»-:_ 2
n.ew;‘ edges with two neﬂr labels ‘(e‘. and e2 ,' say) | It is easy to see g

‘ that the series extens:Lon at e of G is ‘qen obtalned from G a.nd a trlangle

V ',fe e1 ,e by 1dent1fy1ng the edge e 1n eacn graph and ’chen deletlng 1t. |

N The series exten51on at ec E of a mat*'oui M on E is commonly deflned

in terms of the bases ‘of the result.lnc maurmd - the set of bases belng |
‘1>{Bu{e} e. é B e B(M) }u{Bule'}: B ¢ B N)} where e’ ¢ E .Agaln, we

belleve thls to be unsa'blsfactory, since the element e is used as an

element of the new matroid as well as of M. - It is, however,'clear, that
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provided e is not ’e‘loop”"er coloop of M, the series extens:Lon at e of M
is 1somorphlc to M u! ({e ey eé}) Where 1,e g! E - Wlth thls

as motlvatlon We make the follow:. g flnltlon

‘MDEFINITION 1.1 SERIES—PARALLEL E}mﬁ\rszor

- (a) It M is a matroui on the s:Lngle element x, bhen 'the elementagy

‘serles extens:Lon of M ab x, wrltden Ms(x x1 ,x )’ is deflned by o

ST ({x ,x }) Af x is a loop, .
, G ' 1 |2 1

Ms(x; X, ’X2) o= O

| S e 2 2({x1,x }) 1f X 1s a coloop._‘_' - S

“‘If M 'ls a connected matr01d on the ser, EU{x} Where x ¢ Ef.#'cp,;_théf.;f ok S i

' elementary series extensmn of M at x is qelmed to, be

v - Ms (X, 1:X ) » _M o' U, 3({x,x1,x }) whcre x1 ,x gz E | | i
: If M= IV' > M @ .. ..@ M where each M is a connected matro:.d on the
: set Ei then the elementary series extens:LOﬂ. of M at x is deflned to be

Ms(x,’xv

and N = {1 2,...,n}

) = ge {JSM ) @ (M s(x; x,] ,x )) whe«re x E_EJ’..,.}E

The elementary parallel exten51 on of M a.t x, wrltten _M“p(x x1 ,x )

is defined to be (Mm% s(x, X1 5%5 ))

(b) A matroid vof the f‘orm
(ooo(MS(X 0) X113X 2))S(X O: X 1,X22)--.)S(X O’ -],X 2) Where R

’ FM is a matro:.d on E and x5 9‘.‘ E for each 1, 2 < i's m is’ called

'v,a‘s'eries extension of M at x10, written Ms(x';l'o)‘

A matr01d of the :E‘orm ( '*s(x))"*bivs called e"parallel extension of
M at X, ertten (x)

(c) A series exten51on of M wrltten s(lV) is a: matr01d of the form '

: AHV(...(Ms(x ))s(x ).b..)s(xm) where M is a matr01d en E and xl €E,
(1<ism). | | ' |

A parallel extens:.on of M, wrltten p(M) is a matroid of the form o

(...(_p(;c1))p(x2)...)p(xm) where M is a matroid on E ana X; € E,

(O S,.i < m).
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(a) A sefies—pafallel extension Of_hl'wvltuen sp(M) is a matr01d

~ obtained frOm M’by’a sequence/o erﬂes a@d parallel exten31ons.-

(e) A connected serles—parallel network 1s ‘a connected matr01d whlch is
‘a serles—parallel exten81on of a matrold on a 31ngle element ’j[

(f) A serwes—parallel network (sp netwo*k) lS a dlrect sum of connected W-"”:

ser;es—parallel~networks,_7

J If we con81der an oéeratlonron a‘k—nynsrgraph H“- (V E $), 81mllart_gf{
to. that outllned at the beglnnlng o- uﬁlS sectlon forrthe graph G we .
see that two generallsatlons of the trlangle e‘ei,e vare p0551b1e,1  7‘~:lﬂ
~One is a hypergraph w1th edces e and e (lfg‘ k), where V(e ) NU{V 1,
: »fsuch that iNI NnV ¢ and V(e) = {V”V ,...,V }J.‘ U31ng thls as'fv
F_a deflnltlon of generallsed serles extenslon and,mlmlcklng (11 1h) |
‘accordlngly, leads to a- deflnltlon of "generallsed serles—parallel fij:;}V

Qvnetwork" which deflnes a subclass of the Class of serles—parallel

et .

networks.k The alternatlve is to genera_lse the brlangle to a hypergfapni_lsff;
th' with edges e and ei (1 ¥ k) whele (e ) —‘N U{V; such that |
‘{Ni: 1< k} is the set of nodes o e and V é V. Thls deflnltlon doesf?';lff
give rise to a new class of matr01ds,‘51nce M(H ) = U2 k+1vand for I
3 this is. not'graphlc. Mlmlcklng (11 Th) would then lead to a |
class of "generallsed serles—parallel ne works" tnatwas not a subclass
":of the class of serles—parallel ned works.;tvln general we shall not
w1sh to restrlct our deflnltlon of geﬂerallsed serles exten81on to‘a &
: partlcular value of k, but only requlre uhat k i,[; We thefefore make

'.the follow1ng deflnltlon analogous to (11 1h), of. generallsed series

':and generallsed parallel extens:.on.i

‘DEFINITION 1. 15 CENERALISED SERTES-PARALLEL EXTENSTONS .
Let M be a matroid on’ the set Eu{x} where x é E

(contlnued overleaf)



k'(a)»

—165-

If M is a matr01d on the 31ngle eTement X, then the elementayx

j!

at

% by X,ls deflned to be the

generalised series exten81on of.

- mai_:noid‘ 'i_)j__gs‘(nx : l X) : .
S Ll e 2 k(X) 5
: ’Where b g X and. lX‘v=‘kA2-2.

I M 1» a connected métroid'end

generallsed serles exten51on of

URUME

N gt
.7

M et x

Hy

i

1

B !") :

-x»ls akloop

X 1s a coloop

é;thenlfhe'elemenfer iﬁ-VV‘”

'.Mgs(x X) = M:G- 2 k+1 Xu{x})

(b)

(e)

~ (ie:)

le

waere Xﬂ(EU{x}) ¢ and

If M= €)M where each M. is-a connected matr01d on the set E

is deflned to be the matroid

'then the elementary crenerallsed series exten51on of M at X bV X

’t'Mgs(x X) —» ( ?M ) (-B (M gs(x X)) where X € E . and XnE

The elementary‘generallsed.pavaliel exten51on of M at X bV X is

deflned to. be the matr01d Mgb(x X)

of M at x, written Mgs(x).

extension of M at x, wrltten Ncp(x)

A general1sed parallel extens1on of M wrltten gp(M) is a matr01d ofv

(M*gS(X, X))*

A matrdid of the form ‘(...(Mg:,(x ; X >>gs<x2, xz)... gs(\: ; X )

where x ¢ E (2= S m) is called a generallsed serles exten31on

‘A matroid of the form (M*gs(x))* is: called a generallsed parallel

A generallsed series exten31on of M Wr;tten 5s(M, 1s a matr01d o;j _M:.,M

~ the form (--.(Mgs(x ))gs(x ))...)o‘s(x ), where X; B E im.i -

-

\:Mthe form (...(Mgp(x ))gp(x ))...)cp(x ) where xi.ﬁ E »A,1‘5‘m,:'>-‘

3

‘exten51ons.

A connected generalised serles—parallel network is a connected matr01d

.’matr01d obtalned from M by a sequence of serles and parallel

“ A generallsed serles—parallel extension of M wrltten gsp(M) 1s a

single element.

which is a generalised series—parallel exten51on of a matr01d on a

’o:y X is the matrold SR




(£) A generallsed serles—parallel network gso network) is e direct

sum.of connected generallsed serwes—narallel networks.

LEMMA 11.16:

(A) Let ﬁ be‘a'series—éarallel ngtw§§£.f,irﬁén7gﬁ is,a_seriesfparellel'f
networh’ and Mis graphlc. | | : | S
v(v)“Let M be a generallsed serles—nara_lel network.v :Then‘M*iis:ed;frd |

generallsed serles—parallel netmorx ‘and M 1sbhy§eréraph1c;_;ifcx
Proof‘ The flrst parts of (A) ald (B) follow Lrom the deflnltlons :'
(11.14) and (11. 15), and the dualit ty. resur'(n 5) “
‘The second part of (A) follows from ,ne‘lorbldden mlnor condltlons (11 25)
-'proved ln [h] / .‘ : b, iv . , : o : : |
B The second part of (B) follows from (11 15) and (11 h), 51nce by (5 1)
bunlform matroids are hypergraphlc, ald by (3 12) and (h 2) a dlrecﬁ sum.:llu‘

of hypergraphlc matr01ds 1s hypergrannlc.;:' ¥

ey DL D it

LEMMA 11.17: Let M, be a ﬁatréia'.oﬁ'Ei (

1

=1 92 :3 :-}‘") Then .

(M o' M ) u’ Mét

(a) M 0" (M, 0" M)

we

(o) M, 0" (M, @Mh) = 0 M) @M,

1 1
. -whenever the operatlons 1nd1cated arc dellned.v.

Proof: . Routine-verlflcatlon.

(11 17)(a) shows that the use of bracﬁets in strlngs of deleted p01nted

) unlons is unnecessary, and we shall uherelore omlt them in future. »'{

‘{LEMMA 11. 18 “If M is a connected gsp network w1th more than one

f,element then M M1 0' M o' . 0! ga for some n, where M1 1s
1somorphlc to U1 1’(r > 2) or pz r»-(?l ;3) orvU r 2,r1 (r‘.1 > 3)
or;U (r, =2), and each ! M. (i 2»2).iS'isomorph1c to
k r1~1,r1 1 e S
U : U . 2 3).
2,7 9r  rl_E’ . (rl » 3):

Proof:  From the deflnltlon of generalwsed series and generallsed

parallel extension (11.15) and the duality result (11.5).,



LEMMA 11. 19

(a) If M1 a.nd M -are - serles—parallel networks ovx E1U{X} and Egu{x}

' .respectlvely, where X g’ u ,' 10 ¢ and is not a loop or
_ -1 2 - 2 v ‘

coloop of M or M2 then M1 u' MZ” i a serles—-parallel network
(B) If M1 and M2 are gsp networks on ETU{X} a.na EZU{X} reopectlvely, 2

- where x 9( E1UE2’ E1 nE2 ¢ arvd x is no’c a loon or coloop of M1 or -

2, then. N1 u' M.2 is a gsp netwo‘f'g

'Pro‘of: (A) follows from the. forblddep mlnor condltlons (11 25) proved

:Ln I alternatlvely, a. proof SlIHll?:;" to bhat used for (B) can be used.“"’s?
'(B) By v1rtue of (11 17) and (11 18), 1t is suff1c1ent to prove thls |
rresult‘ for the case Vhere} My is conpe;zed ‘and Mevlsflvsoﬁmorp‘hvlc‘ to

() U1ir' (r 2 2); or (b) Uy (r23) or <c) U '_'

2 :Ln (r=23)

or () U (1'£»(r;2v2);

) w o = 00T Egu{xn (lEEl

g o0 N 1'. R ‘ o
M1p.(x, x1,x )p(x1 5 }-2,3 Y. -.p(x 3, . 2, n_2)

p(x o} X 1% ), where E2 = {x,l,...,x }# a.nd
{x1,...,xn 2}¢n(E UEQU{X}) - , 1f iBl

M{, where M% is. the ma‘cro:Ld on ’ (E {x})u{x } 1somorph1c';‘

to M1 under the map wnlch lS tne 1de*1t1ty on E1 {x}
',[and Whlch maps X to x,, if E2 = {x } .
‘ 'I'hus, 'M_1 :u M2 1s ar gsp network ; |
(b) My 0T My =MD (EQU{X}) e (IE[ e
R = 1gs(x EQ) and so M1 o' M 1s agsp network S
: (C) Mot My =M (EZU{X}) (lEel
e =0 o U (Eeu{x}))* (by,(n.-s))
e and so, by (b) and (11 16) u' ‘M2 is a gsn ne’cwork.
- (@) %ﬁ'%=y1o_ (gdﬂ) »HEI;H

(M o' U, (Eeu{x}))* - (by (11.5))

and so, by (a) and (11 16), M, u' M, is“ a gsp network.



LEMMA 11.20:

(A) If M is,aiserieSfpefallel,network, end M' is a minor of M, then
B is a series—parailel nétwork.lI»

o

(B) If Mis a gsp retwork and M’ is a minor. of g;lthenbyﬁsisea,gsp e

;network. B

'Prodf:_;‘(A) is proved inﬂ[h];‘ elierneﬁiVely,fafprooffSimilar{to}that f;s"”

 for (B)’can be used.
(B) It is suff1c1ent t0 - Drove thls result for M connected and for a' L
‘minor of M formed by the deletlon or contra0ulon of one p01nt ’ Further—;ffa'

more, 31nce, by (11 16), y? is also a gsp netmor&, and MﬁvlS connected

if N is connched 1t 1s SufflCleDt to pv'ova the result for M connected

n;matr01d on g§51ngle element and each % (1 2) 1s 1somorph1c'

. and M' formed from M by the'deletlon oz one p01nu.j~‘“:

= O MUY Lot ML e M3
From (11 18), we have M M1 2 u ces U gﬁ, where M171sran”eihii

'elementary generallsed series or generallsea parallel extens1on of a’

S N e
Ug’ri OrvUri—2,r (rl = 3) Let 1 be a matr01a on E and let M be

a matroid on F. We shall show that for a0y X € E,_MX(E—{X}) 1s a [{vﬂ Pl

. gsp network. | The proof is by induction on'm and IE[ Clearly the result

holds if m =11 or 2, for any IEI Supnose uhe result holds for m < n—1 and :

 for all matr01ds on at most ]EI 1 elemenus.r Let M M U';;.U M Where the M. ;

=1

are. as” ‘above. Assume W1+hout 1oss of genera_lby ohat E nE # ¢ for 1 S ikS,ﬁ;isi

_’and E nE1 ¢ for t < i< n, Let E L1 = {X } (2 ﬁ), and put ; “

N, =M UM 0',;’; ! y%' R where E; n(E uE; UE U...UE ) # by

=T = =i,

1 T J

i = 2 for each ir’ and N. is maximal- w1th respect to thls property. :f

r "

' Then each N. is a connected gsp network om & set’Fi, Where Fidz1 =_{xi},"s

‘ (c) U (r = 3); or (d)'U

and M=M, O' N, 0" ... 0T N

1 =t°

CASE I: Suppose X e E1, Ve shall show that NM(E}{X}) is a gsp. network
M, is isomorphic‘to (a) U (r > 2); or (b) U (r”z 3), or -
(r > 2). |

r-2,r r-1,r



—169 =

- Therefore, ﬁf‘( a‘ix}) is isomorohie to g

Ar > 3‘);" -

(b

" (a).U1 r_T(rz2), or (b) U2 - 1 (* > 3), or (c) Uré - 1
~ or (d) Ur—T’wr 1 (r> 2) e e : | | |
) By (11.5), mE-G)= Mx(E —{x}); SUE, G e u_llb ifre 3,
L and. hence M><(E {x}) is a gsp network; , 3 e
Ifr= 2 then clearly “ | ‘7 LA
M 5 Ngv,r a,nd the result follo“es b a‘oolylng (b) or (d)
Th:Ls also applles to the case T in (d) |
),By(ﬂ 5),1fr—3 _ .V o SN
Mx(E—{x}) = (¢) @(N x(F2 {x ))@ (I x(F3 {x3})) By the 1nduct1ve
: hypothes:Ls, each term is a gsp net'.v'omi, so aix(E—{x}) is a gsp network .
| Ifrs 3, ‘ : ,‘ 77_ ' " e
Mx(E {x}) = (M x(E; {X}) U' N gr... ”—‘t’ a,nd so 1s a.,‘»gspnzvlem'vork
:.(Q) bBy(H 5, e ‘ - _ |
o MeE-{x}) = (M x(E —-{x}) u' N . b.'vu E’c’ a.nd' so is a. gsp netw‘ork‘ -

(@) By (11.5), o L S T
xE-(x}) = (X, ><<F2 {xz})) ® (N xG:3 {x3})) @ @ (N x<F,C {Xt})) @N _-,;jf
where N Y r—t, r-—tE1—{X’X2""” }) So; bj the 1nduc’c1ve hypothes*s,',". ;
Mx(E {x}‘ is a gsp network if r > 2 For the case r = 2, see (a)

CASE II_ Suppose x éE Then x e:]: 'F'o*' some i > 2. So, 3_f _1\111 i U2 3,

by (11.5), Mx(E —(x}) = M, O' ... 02 _El :""(MX(E '-{X}))u'...U' M.

_‘ N . 'A . . . ‘\, . ;» " » : . ‘b-.

Now, ,-Mix(Ei {»x})v:Ls :Lsomorphle to (,a}"'_,U2>ri"1.- (ri"z 3), or

() *Ur -2,r; -1 (fi >3).

"If r. > 3 then M. x(E —-{x}) is a gsp network 1n Whlch Xs 1s.no’o a
'loop"or coloop o:E‘ M and so the resu_t .\.O__lOWS from (11 19)

I r = 3 then, for poss1b111ty (o) since M.x(E.—{x}) is a

gsp network in Whlch x is not a loop or coloop, the result follows from -

mn

(11.19). - If M. ((a) with r.-3), men ’che result follows

U 30

from (11.5) in the same way as fo_r Gase I(b) gbove.

"-Thus, _MxE—{x})_is a gsp network z"or_‘e_ny xe F-
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Before contlnulng w1th our 1nr iuation of gsp networks, we
”shall prove some propertles of genere'lsed serles—parallel exten51on, and_,
compare them Wlth the“correspondlng;properplesfof series—parallel

: extension.

| IVJPROPOSITION 1. 21

'(A) Propertles of Serles—Parallel Eyten51on.:?L,?ojioj'

'1,'e If M is base—orderable,'sp(M) is base—ordefeble;'i :

22.'7 It M is fully base—ordevable, sp(w) 1s fully base—orderable.

3. -If Maisrepresentable over the’11°la F, sp(N) 1s representable‘oéerebg S

'-the fleld F

f'h;‘:LIf M 1s a gamm01d, sp(M) is a ga_m01d

b'(B) ' Propertlas of General1sed Sevles—Parallel Exten51on.'

1. If M is base—orderable, gsp(M) is base orderable.'

1Lé; ‘:If M iz fully base—orderable, gso(M) is fully %ase—ovderable.

.3,._va Mis representable over. characterlstlc p, gsp(M) 1s representabieA;
over character1SUlc D S E |

h, If Mis a gamm01d gsp(M) is a ngn01d ' ,

 Proofs: (A)T (A)2 (A)3 (3)1 (B)2 and (B)3 Follow from the;;v 4

‘definitions. (11 1) and (11 15) -and vhe propertles of deleted p01nted i

'iunlons (11 6). | | |

.Proofvof (B)h: ((A)h is a SPec1al cae b) Let M be a matr01d on the o

set E >.41 By the duallty of - tbe deflnltlons for elementary

~generallsed serles and elementary parallel exten31ons,'and the fact

“vthat the dual of a gammoid is a gamm01dA 1t 1s suff1c1ent to prove that

if M is a gammo;dj Egs(ﬁ3;x) is a SaE391d’ o LEt:BEXO be a ‘pase of M and‘

let T be a_direcﬁed greph indﬁcing‘E from B.(w1thvrestr1ctlon of the -

vertex—set if M is not a strlct gammo;d) .Forhve new directed graph

r! on ‘the vertex—set V(P UX w1th X = {X1,x2,...,x }# and X ﬁV(F)
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where the set’ of d:.rected edges of I" is the set
-{(V Vs ): (V Vs ) is a alrected edée O.LF}U{(X X3 ) 1-—3 = _-_i-_'1,0 <1, < k}.
Let BU {xk} be the dlstlngulshed seu of verulces of T', and let M" be the

’nstrlct ge.mm01d :Lnducef‘l from Bu{x } bv r'. Leu M’ = M"x(EUX)

‘Then the bases of M' are the sets Su{x } (S B M) ” i‘ < ) together
'Wlth the sets Iu{x 5% } (Iu{p%}e B(IT) ij<7j sk) ’

o | B i 31 A e
Thue , clearly, D_/Iv. =M 0 U2 gk Xu{x }) Thelefore M o 2 1{_H(XU{X }) -

_is a gammoid. Since Mgs(-x ~X) M u' U2 k+1 Xu{x } Mgs(xO,X) is a

- ga.mmo:Ld wh:Lch completes the proof
In [5], Crapo investigates the properties of armetryo‘id function,
‘called the g-function, defined as follows:
- DEFINITION 11.22: Let M be a matroid on the set F with rank function p.
Then the function g defineduby | |

(M) u,( T)QEAE (- 1)lAl A ycffl,¢lf,i7,'°'

is called the B—-lnvarlant of M.

 PROPOSITION 11.23: Properfies'of the g-invarient. With the above noff?*‘»i%?"

" B(M) - Bl E"{e})) + B(MX(E“{G})) ‘provided e is not a loop o
’ _coloop of M. ‘

2. B(M) =0 if and onlyv’ if M is not,ccnnected.. '

o _ nep SR : e

,‘ 3' v :B(Uk,n) (k—i)

The proofs are routlne, and we oml'b ‘the detalls, alternatlvely, see '_

7. Crapo_ s paper [5].

'PROPOSITION 11.2k:’

(8) The"B—inve.riant and series?parallel ‘extension.

e R g(M) if M 1s not a coloop
| BMs(x; x5%,)) = & -
N 0  if M is a coloop.
: . : g(M) if M is not a loop
2. ) B(_I‘_QP(X, 'X—] 3X2)) = ’ .

0 . if M is a loop.



PROPOSI‘I‘ION 11 zh (CONTD)

- (B) The B 1nvarlam; and generallsea berles-narallel exten51on '

~ Let ]XI Then g A :
R V .r?f ~(z;i)§(g5}:jf E.is n§£ a:iqbp,oriééiééb:,
s(vgs X>> - ke arMisecoler
L it M 1s aloop
| » , [ 7(§;£)é(§D }if M_ié?ﬁbﬁjéjioop drlééldopaa;
2 sz x>> - {owe atmisalep
» \v"i {j fH3?;1if E_is‘é';oioop;* ;
Proof: Thexrbes“ults 1n (A) are 'pro&ed by Crapo ES] .‘VHowever,‘ some; Of

A"hls PTOOfS dO not apply tO the case xﬂere 4 is a matr01d on a 51ngle‘-“’1 ‘

Lrelement; “the proofs in thls case are easy, and.we omlt the detalls

(B)1. If M is a coloop, _Mgs(x;‘X) U and by (11 23),,,,

EE

s(UZ’k) = k-2.

CreuTe e doom, Mgt ) =
If M is neithér a loop nor a coloop, by (11 23) fbr ye X’::,,:
B(Mgs(x; X) - (EUX—{y})) + B( /Igs(x, X)x (EUX—{y}))

B (M (x,x1 2%, )p(x 2’X3’XL) f") + B(Mgs(x X—{y}))

B(Mgs(x; X))

B(M) +. B(Mgs(x, ~¥h) f‘rom (A)(a)

vy iferation)" (A—Q)B(M) + (Mgs(x, —Y)) whnre Y X and IXJYl

(k-E)B(M) + B(M) “‘rozx (A)(U

(k—1)B(M)

- (B)2. The proof follows the same . l_nes as (B)1 andee'omit tﬁe detailS- f[f
'aThe operation of”genéraliséd se?ies éxtension dnAa'hypefgraﬁﬁ H,
vmentloned earller, has an easy geomezrlc 1nterpretat10n in N(H).

1,eg,... kgfwhere
V(e ) = A U{V}, and n,: s‘i x} = n(e) - The,nodes of the new

Essentlally, uhe edge e is replaced oy k edgeS" >e

- hypergraph are then n( )u{(N nN )U{V;{ 1T <i < < x}¥. Now, in N(H), L
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consider {N‘“ 1 s”iv< k}7as the'set;of-vertiCes'of a Kk; .‘Place the
new vertex (N nN )u{V} at the mla—noznt 0¢ the edge 301n1ng N and.N

- for each 3, and 301n up the vertlces broaaced as necessary. We glve

two examples of thls operatlon in F1~ure 25

. Figure 25

The operatlon can be thought of as repTac1ng e 1n N(H) w1th
k "half—51ze Aedges,, this is con51stent w1th.the usual 1dea of a;:"i-‘

etserles exten51on, in which a new vertex is Dlaced at the mld—p01nt

i 'of the edge e, thus d1v1d1ng 1t into two "half-31ze edges,

GENERALISED SERIES-PARALLEL NETWORKS:

5e'It-can be shown that the class efmseries-parallel networks'can'bef'
characterisedkby a fihite'éet ofeforbidden mindrs.
| THEOREM 1. 25 . Mis a‘series~paralielﬁﬁet&ofk'if'and only‘ifvgidoes N
not contaln any mlnor 1somorbh1c to U b or M(Kh)

Proof: see Brylawskl [h].
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Our purpose in thls sectlon is. i) orove an analogous'result forr
generallsed serles—parallel networks.‘ ,bince U2'-h is a gsp network,
but M(X ) is not, the set of orbwd&eﬂ rinors containva(Kh) and

nfﬁcertaln other matr01ds, all of whlch C“ntaln U2 3 as‘a Proper'minor.-

 TmA 11.26: Let J be & metioid of sec: 3'-o'nzme set £ Then
‘]<a) _ﬁ 1s a gsp network< 1f and: only l"»offlff'f;
(b) 'M does not coqtaln a minor 1somsreh1c to any member Of e
= {UB 63 :M(Kh) 163 V69 T6},/xzhere U3 6, si(Kh), L6’ V6 and 'I‘6

are the s1mple matr01ds shown 12 ;Lclldean representatlon ;n;

fFlgure_26.
. i
e

C 2

1_% ,

Figure 26 -

Proof: (a ) (b) It is easy to c_eﬂg ;hat no member of gyls a R
gsp network. Therefore by (11 20), 1‘ M ié a gsp‘network,~M-confainsAe
no minor 1somorph1c to any member of g | e o |
. (b) =(a): It is easy to check that ary matr01a of rank at‘most 2 isiﬁ
a gsp network. CIf M is a matroid o::rank 3 that is not oonnected or 1s‘u .
,'aconnected and p01nted reduc1ble thon,‘oy the abore remarks, (11 15) and
(11 19) M is a gsp network;. L |

If M has at most 5. elements, tnen‘;f has rank at mosf 2, S0, vby
the above remarks and (11 16) Mis =z ~sp‘networﬁ.

.Suppose that M is of rank 3, p01nt d ir duc1ble and connected

contalns no minor 1somorph1c to a msmter oF g, has at least 6 elements and




is not a gsp network. We’shall-proveuthetlthis’is impossible.

Since M is p01nted 1rreduc1ble, W is simple. " If M has no

’,_non—tr1v1al 2—flats,‘then_ﬂ conta;ns U326 aefefrestriction minor, which =

>

is a contradiction.‘ ’Therefore,vM hes at least one non*trivial 2—flat,kf.‘

ikL,deay.i Slnce M is connected and POlFbeQ 1rreduc1ble, lE—Ll 3.

Conolder p(E—L) If p(E—L) = 2 then pL;+'p(E L) = pE + 1,‘so by

1(11.9) M is p01nted reduc1ble whzch 1s a.contradlctlon._, So,'51nce e

M is 31mple, p(E”L)‘= 3. ' Thus,.ther ex1st three dlstlnct 001nts, -

XY 0% € E B siich that p({x,y,z}) :f; Leu {a b c}# c L. ‘Thend;n

’N&({a b ,C x,y,z}) 1s 51mple, and so is 1somorphlc to L6’ T6’ V6 or i;nﬁﬁffw;“

: (hh)’ whlch is a contradvctlon.b=

*,vThus, no such;M:ex;sts, whlchvcompletes the‘proof:. e
fTHEOREM 11.27: " Let M be a matr01d on tnc set'E.k:vThen_;,;ofn””
(a) Mis a gep network -1f and only 1r ‘

(b).{M contalns no mlnor 1somorphlc to a. memoer of g, where o

G- {U3 6> L6, V6, 62 M(Kh)} ’ |
- Proof: (a) = (b). = Suppose M is a gep netJor&., Then by (11 20)
every minor of M is a gsp network Slnce, oy (11 26), no member of -
is a gsp network M contalns no mrnor 1somornh1c to a member of g. |
(p) = (a) | Suppose‘N is e mlnlmal non*gsp~network on the set F
%>TThen N is not a £sp network but for any x € F bo h NX(F;{X}) and -

N, (F—{x}) are gsp networks. Since X is not a gsp network and 1s» ;,3

: minimal, y_is connected and pointed 1rr°duc1ble.» Thus, E_ls not 1— ;uﬁ

2have K > 3, and so by (11 11), Nx F;{k}) and H (FF{X}) are connected A

for any x € F If N is not K—connected for anj K> 0, but
‘»Nx(F;{x}) or N (F¥{x}) ‘is 1—connectea for some x € F then by (11 11)
]F[ 3, Whlch is a contradlctlon, since- any matroid on 3 elements ‘

is a gsp network. Therefore,'elther

" or 2—connected. Therefore by (11 11), if V is K—connected we must ;“'



|
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|

(I) X (F~H X}) and N.. F-{ x}) are /—~:_.n= tedgsp netwborké for any x € F,
or | 9 |

(IT) there ‘é»xis,fs{x'é F'such::t‘.r‘xai, ':'>< P x} }r_f;orf'_zg."(F—{x}) is a pyc')int.ebd.v
,1rredu01ble gsp netwofk e | | :

().  If M (F—{x}) and N F-—{x;) zrs 2—co*m=*c+ed for each <€ F,

D

"and N is K—connected by (11 11)‘;Df—gszyéa é‘_ 3, so by (11 13)
N is a whirl W (n= 3), or a whes 1 35‘(nz5 éj.  But W contalns T6 :}vw\:‘
as a minor, and W bcontalns M(KL)f é.é .ror; sé N contalns a minor ﬁ5 € '”
.vlsomorphlc to a member of 9 L : | : | | k

If N is- not K—connected for any'< >, O,‘uhen by (11 11) lFl
,Vh1Ch is a contradlctlon, slnce a:yv:é—”01a Jltn 5 elements is a :
;;gsﬁ netwofk. ' ‘ | v |

(11). _'Suppdse there exists'x e F sich that VX(F~{X}) or N. (F {x}) is

a p01nted—1rredu01ble gsp networ ,’~Aiﬁatro d is a povnted-lrreduc1blejf f"
' gsp network 1f and only 1f 1t 1s *SC_OthICin U . or U afor some"":xx'

r 2 r L 2,1’

 'r'2 3, singe both U1'r and U TV;'é‘a 70 1ﬂted reduelble for r
2 | 3% . : L EEE ol E B
Now, since N is not a gsp networl,'igi = 6,vso,.31nce,-by hypothesis,uylﬁw'vﬁ

- Nx(F-{x}) or . (F—{x})-is a pbinﬁﬁi irreducibie network,

F {x}) or N.(F- {x}) is 1somorp_1c to Ur—Z v or Uzar‘fqr somgi?: v§ ;‘
(&) - Suppose N1.— NX(E {x}) U, ;'for:SQmé‘f > 5.
= ; .

Then, if rkN = 3, N is 1 -connec éd wﬁiéh»is a coﬂtrédidﬁion{' o

'Thefeforé,vrkN =2, so;-sinée ﬁ;ié nle (bacause 1t is not 1- or 2;'.3‘
»2 -connected) F = U2b %1’ and 80 E.ié“é;gépt work whlch 1s.a céntra~if#“"

diction. o | | 7 e

*_(B)’ Sﬁppose §4 = NX(F—{X}) é %Aifo édﬁe>r > 5-.,2

 VTben',. ' .v N? = E%'(F‘{X}) = U2’rw‘for some r 2 S;v;,

Since N is not 1-connected, rkN* = 3. If ¥* has no non-trivial 2-flats, -
then, since r > 5, N¥ contains US 5 &s a minor, and so g-contains‘U3 61” I

as a minor. If N*¥ has a non-trivisl 2-fiat, L, say, then, since N¥ is = . =




v[':(C)' Suppose N =M. (F {x})

'»5;:?77o;;n?t
:?binted irredncibie;andvconnectedrecéqiq;y %53?t,,sincepﬁ2,r is Simrle;n:;.
xd L. Let {a b, c}# L and x,y,z < F—L be ‘su‘ch thatvp.*({x,y,z‘})bé 3.,-
_Then N*x({a b c,x,y z}) is- 51mp1e,eend nence’ltﬁiS’isomorphic tolL6ior .
'V6; ’ Therefore N contalns a m*qo* 1somoroh1c to L6 or V65 and so

N contalns a mlnor 1somorphlc to b6 or V} (31nce these matr01ds are

“Doth self—dual)

,;5;';5.‘:”5 e ’(f S
2 T ‘oplsome r ’ 2. L Then by the s
argument of (B) applled to N2 1n=te,d of Vq, ana to N 1nstead of g

oy, :
N N contalns U3 6’ L6 or V6 as a _1nor _

R

p(D) Suppose N = N. (F {x}) .'ffor some r= 5 Then by the -

argumenu of'(A) applied to N*’insteadeof

N5 inst 1, and to N* 1nstead of

N, we obtaln a contradlctlon.

Thus, 1f N is a mlnlmal mat*owc not a gsp network N contalns a T

,minbrrlsomorphlc to a member of;g, 'c,so. s1nce no member of'g 1s a-

e gsP network, N € g, vhich completesiehegproofegec;pé',1;

We can use a similar argument to characterise ternary base-orderable .

 matroids by a finite set of forbidden~minors.';JWe shalltneec:a fewr'f;fptf;

preliminary results.

PROPOSITION 11. 28 Let M be a. connectec,matrold on the set E,>nhrcn. |
» is p01nted 1rredu01ble, conuaW"s T6 as a mlnor, andvcontalns no>l
,5 or M<KL) Then elther M is e;f;}{fu7
whlrl or there ex1sts x e | s¢cn that MX(E—{X}) or M.(Ef{x})

minor 1somorph1c to U2 5,,

is: connected p01nted 1rreca01ole, and contalns T6 as a “minor. A;'?:»"
rvProof' = ' | | ‘ | |
,(I)g Suppose M is K—connected for some K > d.t: Then,ﬂs1nce M is
" pointed irreducible, K > 3.  Thus, ‘by (11 11) Mx(E—{x}) and M (E-—{x})
are connected for any x € E. . L ‘

(a) Suppose that k > 3. Then, vy (11. 10) and (11 11), for any x € E V



H
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mx (- {A}) and M. E -{x}) are pclnuec irredu01ble and connected.

Thus , | 51ncefM~ 6 (because T6 is 3-connected) there exists x € E

vsuch that MX(E {x}) or M. (E-{x}) co:n,alns T6 as a mlnor.b‘..

‘::(B)~ Tf k= 3, and for every x e E E {x}) and M.(E {x}) are

p01nted reduc1ble, then, by (11 13) k N or M W ”for sone n 2}3; _n,}"
181nce M. does not contaln M(Kh) as & nlno : M ‘En,féﬁdlsbfftf»'a o

Mz W for some n 3." | ‘v' b_” :

v'(C)j Suppose that K= 3 and thcu,;LO“ some X € E Mx(E—{x}) or

| (E~{X}) 1s 901nted 1rreau01ole." If MX(E—{X}) is p01nted 1rredu01bleﬁ}?v-
~and contalns no minor 1somcrph1c to T6, then by hypothe31s, MX(E {x})
contalnsbno.mlncr 1somorphlc to a.member of g and S0 Mx E {x}) 1s a }1}_}”
 pQ1nted—1rreduc1ble gsp network.vT mhus, NX(E—{ }) is 1somorph1c to

U or U, for‘some r 2e3.v'_SAnce_g conte;ns T6.as_a m;nor,e:'

2,r r—2.,r

lE] = 6, so r 275}‘ But‘M contains no minor isomorphic to U, sior

_.U3 5 whigh is aﬁccntradictianN
03,57 il e

A similar argument holds for une case where M. (E—{x;) is p01nted
irreducible and contains'no minoxr 1somorph1c to T6 '

(1) Sﬁppdse M is not~K—COnnected for:any»K > O. ;> Now, for any x € E e

o kMx(E—{x}) or. (E—{x}) is p01nted reduc1ble 1f and only if 1t 1s;efi;ilg?."’

. '2-connected Wthh by (]1 11) 1leles IE; = 5, whlch is akcontra;e i'
:dlctlon.‘ So, for any x € E, Mx(E}{x}) and M. (Ef{x}) are p01nted— |
';1rredu01ble and (by (11 11)) conn°0ued. j mhus, 51nce M W (s1nce’

W, is 3—connected) there ex1sts X € E such that MX\E}{X}) or M. (E“{x})’v
*nyls p01nted—1rredu01ble, connected and contalns T6 as a minor. = g
Thus, elther M ‘Lllor some n 3 or there exists xbé E such :

that Mx(Ef{x}) or M. (E}{x}) is connected and 901nted 1rreduc1ble, and

,contalns T6 as a_mlnor.»



|
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PROPOSITION }.11...2‘9': "Let'M be a'corﬁected '_matroidl on the set [ which
is p01pted 1rredu01ble, con ,;lsTé:aS a mihor andveontainsbno
_mlnorllsomorphlc to U2 5,_ 3’. 5»_r(mh) '»Theh g
3 A W for some n > 3.: ' | :
ifroef;v 'By (11,28), if M satisé'ss‘*ze hypotheses of the theorem, =
5 eifherrM is‘a"ﬁhirl ‘or there DXlsoani € E such that NR(E {x }) or't';*'\
| 'M (E {x }) satlsfles the hypotheses 0'1the uheorem.,, Let M1 denote
one of Mx(F- {x }) and M (E {x }) which satlsfles these hyponheses,
and wrlte E1 E {X1,. f Then, apn_jl (11 28) to M1, elther M1 is e
,vwhlrl, or there exlsts X, € E1 suck u“at M x(E {x }) or M (E {x })
satlsfles the hypotheses of the un,or 'ijeﬁsrz denote one of 1 '4
'M x(E1 {xz}) and M (E1 {x2}) WnlcL satlsfles these hypotheses, and ;h&fs'i
v wrlte E2 Eq_{xz}‘ Proceedlng Vth, we dbtaln a sequence of matr01ds:lii B

M. on sets Ei ‘which either terml a‘es w1th some M . H for some I 2 3;};';5

‘”P;or contlnues 1nd=f1n1tely w1th eack M. 1sfy1ng the hypotheses of"theiM

s

theorem. Since F is a finite set a_d.{E [ = IE [ -1 for each l’~f']€}fff
there must come a time when IEi! <,o. But then the hypotheses of the'}g~;?

theorem cannot be satisfied, since T6 has 6 elements, Whlch 1mp11es that

eahhvy% isvahmatroid on at least-6 elements. Thus, the seqpence

Then

_Ltehmlnates‘w1ph’somevyh = wr for some r 3;: Conslder Mh—T'”
1 ' - = ,v:?" (2 - ‘
,elthe? (1) Mh_1x(Eﬁ_1 {Xn}) _‘Wr veo:‘some:h :3,‘ or
IT) M 4 = W 2oz me 7 2 3.
, (I_),Mh_1.(E5_1 {xn}) = kr' 50? some r :3';

f,(I) Suppose M X(Eﬁ -{x }) Hﬁ for-soﬁevr 2‘3‘f’ By hypothes1s, :

‘m'

1v‘_y%_‘ is p01nted 1rredu01ble, conneotei and conualns no mlnor 1somorph1c

‘,‘toU

1

U 52 3 5 OF M(Kh) ‘We shall SFOW'that thls 1s 1mpos51ble.,

For, suppose that N is a connsc:ed maﬁr01d on tbe set F contalnlng :
; 'no*mlno? 1somorphlc to U2,5’ U3’5 or ;XKL), such that NX(F;{X}) .Nr

for some r 2 3 and some x e F. We snall shOW'that N is not 51mple.p’

Clegfly the result is true for r = 3. For r > 3, the proof is by



indﬁction.>f Suppose the'result ho_cs -54 all matfolds of rank-< r—1.v 

N has rank f, s1nce N 1s conneeue f Let s b' be the elements of F"

k whlch:are'mappedslntq ai’ibi ofk!?rﬁnde*‘bﬂe 7somorphlsm between |

',foG:-{x}) aﬁdﬁw .rhyLef'C&U{x}‘bEfth ‘1‘ ;ﬁe‘ al c1rcu1t of x with . =
-the base {aoaa1a;..,a } of N.  ' B T DR L R EI

(A).  Suppose there ex1sts some al- d C' 3; lehout loss of{generality;:?ﬁ; f

.lll

" suppose al_ é C' Lhen N. (F—{D' 1})xd: {a%_i, 1,X?

iN'- . (F- {b' }bdF—{a

- r 1

w e 1 » a‘?ld
)'iSICO~n ted. 0 by the 1nduet1ve £*;;?
hYpothe31s, N' is not s1mp1e and Dobh_is ee*aliel 1n N' to some a; Orf?&,7
bl (Ovs;iis r-2) : Ifko‘ﬁs' < }—2 ta p'glls parallel io’a, o b'v°;”]“
Gn N Ifi-ore, then, either o |

..x.lsepa?allelylelg_to’ar_2 Q; br*gff'“' ;

or
1 1 A n 3
{x,a; 2, 1} or {x br 2’br-.  ; ’4  i
_ If elther of the 1atter cases uqld~, CO“B”QCAV”‘_iW;A; '

N, to 1eave a rank—S matr01d w1uh eleme ts {ao,a 2,
Then clearly thls matr01d has a2 minor 1somornh1c to U2 5, 3 5
2
M(Kh) , A similar argument holds ?or tne cese i O,f;;.f
to— : v a v,.\ . ‘
(B)f Suppose that C {ao,a1,...,ar_1}s: C‘ntract out‘ o

.{a3,ah,..., 1} and 31mnllfy, vO "Ivv-é‘ rank-3 matr01d N" on the sevens

elements {ag,2] »al,b} by b2,X}:,ln which {aO’al’a2°X} is a c1rcu1t.,s_?.»ﬂh

2°°0° 1’
k'But Eﬁx({a ,al,al, bo,b1,b }) = 16, a_d so, since. {ao,a1,a2,x} is a  s”s
‘eircuit ef,Nf’ Nf conta}es a mlnorxlsom 2 hic to U2 s,~ 3 5 or M(Kh)
‘Whlch is a contradlctlon.'
Thus, x is parallel to ai or o' fo* ‘some 1, 0=i*= r—1:,/f'“;
"Now,.by hypothe51s, y%;d

sim@le. There there can exist no x € E such that "'

B0 e e or some x 23,

‘is p01nted ’TIEduulDle and so, in partlcular, 1:i



(II)‘ Suppose that M : (Eﬁ 1 {K })" ﬂ_for some r > 3 Then,-'

since b; yg we may apply the ar~“me1t of (I) to the duals to show

‘ that in N X is parallel to al or o; for some 1, Oes:i <r-1. = .

19
But by hypothe51s, Mh'1
'1rreduc1ble, and hence, in part*o'rar,’31np1e, so there can’ ex1st no s

x‘ ef ﬁ 1 such that M Ea 1~ } 51 g‘for some T 3;p}ﬁ; oo

t—‘h

Thus, the sequence of matrolcsvi cannot ex1st and so

—i

2 Nn for SOme n_Z 3;"

THEOREM 11. 30 Let M be a'-matroid\ on vbhc set E Then
(a) M is ternary and base ordernc f ‘lf and only 1f n‘*

(p) M contalns no minor 1somorphlc to U, 5,_ 5 or M(Kh)
2 e,

is p01 ei rreduc1ble, SO M 1 is p01nted ‘{pf@,f

PTOOf (a) = (b) 1S immediate, since U2 5 and U3 5 are not ternary,;p_\ryf‘

'M(Kh) is not base—orderable, and eotb prop tﬂes are preservea under R

the operatlon of taklng minors.

Dl aems

(b) (a) | Suppose N is a ma*ro*d wh1ch is not ternary—and—basev -

orderable, all of whose. proper mlnors are ternary and base—orderable,,.f o

~and suppose that N contalns no minor. 1somorphlc to U2 5, 3 5 or M(Kh)
Slnce, by (11.6), the propersles of belng ternary and of belng

base—orderablenare preserved under daleted p01nted unlons, E_ls :ri'

pointed irreducible.  Since these propertles are also preserved under ERI

direct suns, N is connected. :
(I).r Suppose N N does not contavn 2 minor 1somorph1c to T6 : Then:N i

contains no mlnor 1somorph1c to a_J member of g and SO, by (11 27)

N 1s a gsp network. ‘ Thus by (1!.6) N is base-orderable.kl Slnce N '"psf

L. is p01nted 1rreduc1ble, and contains no mlnor 1somorph1c to U2 5 ¢ or

3 S’

ternary, Whlcn is a contrad1Cu10n.

N is 1somorphlc to U or U for ‘some rﬁs 4, and so N 1s

(11). Suppose N contains a minor 1somorphlc to T6 Then by (11. 29)
N= Wn for some n = 3. But Hn.is,ternary and base—orderable,_which'

is a contradiction.



Thus;;there exists no such N, whiehieompietes the'proof{

COROLLARY 1. 31 A connected metroid‘is‘ternary =nd base-orderable if .
and only 1f M is. a deleted—p01nted—unlon of whlrls and ternary gsp e

networks.

Proof:, =>’ Suppose M is ternary and oase—orderable.fﬁ;Let;n
M ~§g 'Mé'ﬁ',... u M Where r é 1 an'q each M. 1s p01nted 1rreduc1ble.n'¥'
By (11 29), if M, contains T6 as a mlnor then M.; vwﬁ for some ni}2.3}’

: i
If M does not contaln T6 as a mlnor, then, Oy (11 27), M 1s a polnued

,1rreduc1_b1e &sp network. - Thus, M is a dele’ted—pOlnt°d—unlon of Whlrls e
and ternary gsp networxs.
i<35; ThlS 1s 1mmed1ate, S1nce the Propertles of belng ternary and f3f7% -

’"belng base~orderable are preserved under deleted}p01nted unlons."”

-»COROLLARYi11d32' _ A matr01d M is ternery and base—orderable if and only'f,'

AP M 1s “the dlrect sum of” deletea—pownted—unlons of vhlrlsrand;

P

ternary gsp networks.’

Proof: Immediate from (11.31);

: COROLLARY . 33: - If Mis ternary and base—orderable then M is
ternary and fully base—orderable. ' e i

- Proof': Slnce a whlrl is a gamm01d a Whlrl 1s ;ully‘base orderable.v

o By (11 6), a gsp network is filly base orderable.

"Thus, 51nce by (11. 6) the property of belng fully base—orderable is”
preserved under deleted p01nted unlons, by (11 31) a- connected ternary Iy

1’base—orderable matr01d 1s fully base oraerable.lr Slnce belng fully baset .

B orderable 1s preserved under dlrect sums, by (11 32) a ternary base— S

’ orderable matr01d is ternary and fu_ly base—orderable.

:vCOROLLARY 11Q3h:“‘ If'M isvternary‘and base—orderable;pﬂ_is hypergraphie.f‘:?

‘f‘Proofﬁ © By (5.4), whirls are hypergraphic, and by (11.6) gsp networks afe'ff
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hypergfaphic; Thus, by (?1 6) °’—pointed4unionS~of whirls and 3
' gsn:networksﬂare'hypergraphlc, d co by (11 31), a connected ternary
base= orderable matr01d is hypergrab_lc.. Slnce by (3 12)&(h 2), a dlrect Ef
sum of'hyperg aphlc matro1ds is hyberg*aphlc by (11 32) a ternary :

'vbase orderable matr01d is hypevgra io.,f

Thls result should be compared Wluh uhe correspondﬂng result for ,'353

Tbinary base-orderable matrolds;" A meur01d 1s blnary 1f and only 1f. .
it contains no minor 1somofpﬁlo to U.;t;f% lf buch a matr01d is also A
base—orderable,_lt contains no mlnor 1somorph1c to M(hh) and sollt |

is a serles—parallel network » By \11 21), a serles—parallel network 1Sff ‘i

”VZbase orderable and fullv base—oraerabl Slnce serﬂes—parallel

‘networksrare‘graphicg we'havevthe followlng‘reeu_t;,"ifj"‘" .

‘PROPOSITION 11.35:

-~ (a) If Mis blnary and base—oraeraole, Unen M 1s ?ully base—ovderable."l

(v) If M is binary and base~ova asle then M’ls graphlc.:
o (e) M is binary and base—orderable 1f and onLy 11 M is. a serles-

‘parallel network.

(11 33) is the analogue of (11 35\(a) and (11 3h) is the analogue ;;f ;
of (11 .35) (). However, because T6 is not a gsp networx there is no ."»
direct analogue of (11 35)(0) we do, however, have the result of (11 32),
and 1t is clear from (11 32) thab a te*nary gsp network is base—oraerable,in

and by (11 33) that 1t is fully bese—orderable.



CHAPTER 12

DUALIEM
The pﬁrpose of this Chapterlis o try uO flnd an analogue 1& o
3 fhypergraph theory of the con¢ept~of plana‘i rin graph theory.‘i:We M'f[l
‘Shall be‘seeking a~purely matroidal ue'lnlbwon, in terms of the -
hypevgraph1c1uy of the dual matr01d.Jialn factgbwe‘shall,produce'two - ]
» deflnltlons, one 1nvolv1ng hypergranﬂs, une otner 1n¢olv1ng generallsed : ;ff
hypergraphs.»

To generallse our notlon of plcn ”ltj, W° lntroduce the concept of

:duallsm.

DEFINTTION 12.1: .i,etam be a cléséf of matroids: vi'th' probeﬁy k. ‘_.The,n
- a matr01d M ern is sald to ba P-dﬂa_vstlc if and only 1f M* en1, ;fM’ﬁ»

‘Where the. property P is embodlei Wn,uhu deflnltlon ofrn we shall

say 51mply that M is duallsuvc.;??ifltl.“

Thus, a’ graphlc matr01d 1s dualwsglc if and only 1f 1t is the matr01d fes

of a planar graph._ Gamm01ds are dzal’stlc, unlform matr01ds are'”f;j>f

duallstlc but transversal matroids in general are not._f?wa

: THEOREM 12.é: “Let m be the class of duéllstlc graphlc métf01dv‘ tliTﬁénlf
‘a graphlcvmatr01d M is a:memné* o rhll and only 1f M co&talﬂs ﬁo i
B mlnor.lsomorphlc to M(K ) or u(-3 3) e o ;
MProof: Thls 1s a standard result _n grann thaory : Proofskcan‘be &

' found in Harary D[]or (1n matr01d lOﬁm) ln Tutte Ph}

tlvsinée‘aMminér of gfhypergraphi; ﬁétroid;isla gengraliséd'hypér—
“ graphic»mafroid, ﬁut not, in éénefal;ié7h&péfgféphic matfoid;’we céﬁéide?v’
first duéliém invgeheraliséd:hypergranbié matroidég fin.othér;Wbrds,‘wei ’
- consider the class mof matr01ds M sach.that both M and M” are generallsed j

hypergraphlc.
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(12 2) shows that the class of uUQlTSth graphlc matr01ds can be
‘characterlsed w1th1n the class of‘g ax h_c maor01ds by a flnlte set of
forbidden~m1nors. Our next result shows thau the analogue- of thls for N S

genefalised’hypergﬁaphic matr01d8”13lfalse;‘fr:

TT.THEOREM 12'3§tefﬁebn§le'the class c} duali ie generallsed hypergraphlcilfsT
>"matfoidsll Then there ex1sts en. 1'1 kte famlly {M -bl > 3} of s

generéllsed»hypergraphlc matv01is, sscn that M* érn for i > 3 butji
that everv proper miner of N; is a memoe} ofnnh e

Proof:‘ Let M. (1 3) ‘e the maurOXd de;wned 1n (8 2) and (8 3)

Then by (8 12), M. is not generallsea hynergraphlc, but every proper:°l7Tﬂy~i

minor of M, is generallsed hypergrapzlc. . By (8 5) M is generallsed‘_;;w'fi

| hypergraphlc vand hence eﬁery mlnof o:_;i‘vs neperallsed hypergraphlé.:flteféﬁg

TvThus {M*'kl > 3} is an 1nl1n1£e set onmaUr01ds such that M* élrlfor each :

i > 3; but every proper minor of.each‘gi 1s a.member ofm.

We néw con51der duallsm in hynefgrapnlc mahr01ds. »AlClerarly;"'aj
de81rable property of duallstlc hyperg phik matr01dslls that a restr-il:éia ;?
jlctlon of a duallstlc hypergraphlc xasr.i,;‘; uld be duallstlc.; By £
the duallty relatlonshlp between resurlctvon and contraculon thls 1s’h;15ff2
equlvalent to the requlremenﬁ thau enj conuractlon of a duallstlc‘fﬁf;i K
‘_"hy-_pergranhlc matr01d should “be dua.L_sr," c, a.nd hence J’chat’ every mllnc‘)r\kv

of a duallstlc hypergraphlc matr01d should be duallstlc.': We thexeforeh&lill

deflne a subclass of the class of" h} granhlc matr01ds as fOllOWS'V

DEFINITION 12.4: Let M be a matr01d on uhe set E Then Mis sald toffhff,

“be strongly hYpergraphlc if ang only if every minor of M is fi‘l”‘

| hypergraphlc._:c o T B ::H : éi.r Tv l*,' ‘g:f/7'

The class of strongly hypergr thic matroids is ﬁhus;'in‘arsense, .
the opp051te ,of that of generallsed “ybergraphic matroids - the latter T"

g

is the smallest superclass of the class ;"vpergraphlc matr01ds Wthh 1s f'l




lsubclass of the‘class of hyéergrana;c“mav 5 s*vhlch is 31ﬁ11arly closed.e
We are bherefore con81der1ng acsTﬂsm in strongly hypergraphlc

vﬁaﬁfoids;k We shall prove the anmlo~ue 01 (12 3)'— that the class of'

'duallstlc.strongly hypergraphlc maLr01ds canno+ be characterlsed

w1th1n the class of strongly hyperer.chlcvmetr01ds by a clnite set of‘~a L

‘ ;orbldden'mlnors.u: In order to ‘do: tnls we . shall flnd a Iamlly

',’{Mht n > 3}>ofnmatr01ds such that, for each n 3 M 1s not strongly S
~hYpergraphic, every PfOpEr‘minor'ofjgg is sbrongly hynergranhlc, and i
M* is strongly hypergraphlc.‘h7TauS 7"esult w111 also show that the

class of str ongly hypergraphlc matr01ds cannot be characterlsed by a:

finite set of forbidden mlnors.l

~ PROPOSITION 12. 5 For n > 3 let E’ Qe'ula)s: 0 <4 <jsnb,,

‘and let C" denote the set o; ali \n+2}—subsets;of E‘.contaihihg'

no C' (0 é mH; n):
‘Then C = C"U{ ' 0 < m>é h} fie‘ﬁhe'eet cf;cifcﬁiteeof-;ﬁﬁeﬁroid*;f
' M of rank (n+1) on the set E’ . : S
Proof: This is rout;ne verlflcabion | he c1rcu1t axvoms (C1) and (C2)

 and we omit the details.

i:THEOREM 12. 6 » _For each h >3, M is not h&pergraph;c.hh
Proof Suppose M is hypergraphlc. x Then by (2 13) there ex1sts ar} gih-'
critical hypergraph H= (v, E, $) such. that M = _KH) 7; Leﬁ~ o
~E {e}u{a 7 _5_1_<1j-$ n} and let the 1somorphism between M” and
lﬂ M(H) be 1nduced by the obv1ous hlJeCulon between E and Eﬁ Denote by

Cm the 1mage of Cm 8 | T
v ' Then for each i, it is -easy to see that C is a 01rcu1t and a
_hyperplane of‘MKH). k‘__ ;i B ",":'f  :A,fh'c 'h" *vvh(f);

Since H is critical, and M(H) hes rank n+l, by (2.2) and_(2{1h),
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vl = et ::  - 1 7.  . f_f B ,"‘ f ,:; ERREE )
Since Ci is a hyperplane, p(& = ﬁ, :‘in e C_ 1s.also a 01rcu1t -‘_ :
by (2.3), |v<c1)1 1 T : Ry
since Cg is a hyperblane, Cidtz})-= +1ffor any x £ Cl . |
Thus, from (1) and (3 1), IV Cluﬁi})f _ i ‘T‘or‘ eacb x ,é Cl ; (h) : o

Leﬁ_{Ai}l VLV(C&) o ¢.0 S_l-S .

(]

Then, by (3)‘and (h)5 Ay # Ay Tor i # 3, sinc 'Ajjg-v(cg)ffdr,i £ 5.0

. Thus: {AO’AT’...’ n— V(Ch)

Now, V(e) £ V(Cl) for each i (o= i,ﬁ ;)J»so’Ai;g V(e) (0 i <mn).
'ﬂm& %)DY(QUMOAWV.UA'1L l
Thus, | Cn)l k+n whlch contraalcus (2‘; r"]:11.15 M is not “ef'

‘.;hypergraphlc. L
There is.a hlgh degree ox syﬁmeury in tne deflnltlon of M ._ In T

fact,,there are exactly two 1somorn~1sm classes of elements - {e } and

”!'E;—{e'};7‘if a"and”B'"arefmémber' of the same laSS then there ex1stsf$#3

~an automorphlsm of M whlch maps a‘ 'n*o o' - We.next‘con31der,the- ffjlf

- one-point- deletlons and contraﬂt cna o_ M s and show that these are :’ﬂ
all hypergraphlc.‘ By the above re_ar&s, it 1s sufflclent for thls to'ef“i'e
s M (Eg‘{e }) and ai'f'

M .(Eﬁe{a }) are all hypergrabhzc. "hebe results form the contentf

'prove that M x(Eﬁ—{e }) va(En—ipn.1 ﬁ

: of the next four prop051t10ns.

PROPOSITION 12.7: M X(En {e 1) is sn*onsly hypergraphle. “:v;,-

Probfﬁ From (12 5)’ = ><(En—'{e }) is un1 form of rank n+1 on the set
En—{e }  Since every minor of a un-form.ratr01d is unlform, f f7”

,.and, by (5.1),3every.uniform‘matroidkis,hyper aphlc, M X(En {e }) 1s v

strdnglywhjpefgréphié.k v



PROPOSITION 12.8: M x(E' o)y 1) s hybérgraphic.’

. Proof: ,"Let H = (V E $) be the hyo ercrraph wlth

v ;‘ A UA . ;"'3U - where"’tn ese aeus are all dls;}on.nt and
"‘,:IAO’-—{A 1,..,A}_FH - | ‘ = | |

| A ?'{A‘I;j;: o,_‘s_:i <‘jvvs'n,j(i,j') #:(’néj.;ﬁ)i}%ﬁ;’ - " w

B =~{'Bij‘-°f$’i> <d-=ns3:0) 7 in-i;r%}'}gﬁ{300}_;; '_-;: ;/,,;.,"

R A n}“'f |
CV(e') = {a__,A Yudlu. uAn 3u(B IBOD})

RORE (A—{A A}mn@mm L4 }>>J(B {B })

It is routlne to check that \,ne Cl‘"CU.luS of M H)'h;a'"re the’ séts'?:“,

: C' (o <i < n—2) and all (n+2)~subsets of E contalnlng none of these.k.‘fy’:"ﬁv,'v,_:‘f" 7:

~ But, from (12 5) these are the cn'c.uts of M x(En—{a k I:'1}) and so AN
’ I =

B Mx( a{al_ ) is hypergraphlc. S

o ;’PAI—?;OPOSI'TI'Q}\LH2';'9"" ’ M (['-—{e'}) is ny*oerﬁrabhlc

Proof: Let H= (V, E, $) be the h:y’nergr_mh W:Lth

AUAlu. Lud3 Where these sets" a.re a_'Ll dlSJOIflu, a,nd o -

{A A paeee ot }#

4
=
i

4

A
LR '—"{Ai': 0 $V'ii.<‘,] < n}
E o= Eten % R
* v@§ﬁ = (A-(4; A}b(né(A '})jfj

J.J.

Tt is rou’clne to check that uh‘-“ eircuits: of M(H) are the sets v
| C' {e } (0<i<n ) and all (n+1)—suosets of E contalnlng none of these.
‘ But,‘f:com (12 S) these are the circuits of M (EIl {e'}),‘ a.nd so

(E' {e }) is. hypergraphlc

‘PBOPOSITION 12 10: M (E' {a' }) is hypergraphlc.
Proof: ‘We shall prove, for notatlonal co*lvenlence, that M (En-{am})
. is hypergraphlc. From the remarks °o1lom.ng (12. 6), thls is equlvalent' R

: to the statement of (12 10)



~ From (12. 5), the, c1rcu1ts of M ’E‘ })_ ere the sets CO— {am 1,

]
L -
Boy

€1 By } a.nd all (n+1) subsets of E — 15 v conoalnlng nelther of these.

¥
31

By (3. 114) therefore, 1t is sufflc* et to nrove that

M. E —{am}u«: e - {am D is hyper ;:a"pfagié-‘_jj_ -
. LetH=(,E,$ be the hype s with @
V =’ AluAQUBiu Bn-S‘

= {X,Y},
Ay TR i
4, = §A1 ,~A2,..'. ,‘Aen 1}','

a 1,...,12n_.1 #’
E = '(C C )- {am}
V(e) = Aru’(n“uB(.B -{B }.‘)v)“ S
: .V(aol) = {X}U(A {A })u(n u3(B ﬁ?; (2 51 »S_".n)‘.""’..‘- .
. \‘( i!'i) = {Y} U(A {A })U( _1( B ”{—_ ;;; __1,})) (23 i};lg 2

+11

It 'is easy to check th'a’c the ci’rﬂcuits:io;f M ’) a:k'e, the' ee’cs E

: '“CO {a.01 }, ﬁ"—’{a 1} and all - (n+1)-—su ze "-\:s of'E co*rbalnlng nelther of
these.  Thus, M E’— {am} )>< ((C'UC“—‘ a } ) is hypergraphlc, a.nd thls, v’ 
~by the remarks at the beglnnlng :“ v ’:e ‘D”‘OOI,-lS suf11c1ent to 'orove

‘bhe result.

PROPOSITION 12.11: Let M be a matrola of ra_nk T on the set E AUBUC
w'herevthe-s‘e sets are dls,]on;t, AT = IBI =T, and such that AL
‘M has as circuits the sets A, B a.: dl (r+1) subse’cs of E-

- :cont_ainingvnerj.‘pher of these.' ' “""nen‘__ hyperrrraphlc.
o /:Pr,oq'f: ‘If_ r':='“:1;,'-,the resiﬂ.t-» 1s triv“fall.i‘ 0uﬁerw1 se,. et A ; ‘ ',"a_,;’:_ﬁ#;
’:;bi, 1}# Let H = (V -Au B "lS e :he hypergraph with - |
V = AUBU {X Y}#, where these sets are dleq01gt and v
4 = {AO,A1, ..,Ar_1}¢ B |
B é{ 0° 1,....,Br_'1}# . |
V(ay) = {'Ai,Ai+1} uB X} (mod r)

- 'V(bi) =_{Bi‘k,Bi+1} UAQ[Y} | (’mod'r)».
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‘Then A and B are 01rcu1tsof M(H) ana ;-é 49431« e’ircuiﬁs of M(H) are‘/. i
those .(r+1) subsets of E contalnwng ::;ther A nor B. | Let M' be :

the ma‘br01d obtalned from M(H) by the :-’ree, ra.nx—preser%n.ng, iCl—po:Lnt
exten31on of M(H) by C ' Then 'by (3 ﬂi} M' is hypergraphlc Clearly, |

M ,5M SO M is hypergraphlc

'PROPOSITIOV 1212 Let-M'be’a matro%aTof rank r =2 on theiset E AUC

ea_

where AﬂC (,b andl AI h M has as c1rcu1ts the set A

togethev- w1th all (r—l-‘l) subseus o’ E I_‘lonj c_entalnlng A Then M
is hypergraph1 c. | S
~ Proof: If IC| <2, M is not conne ted, and ¥ the. result follows from (3 12)

fSuppose ~l:he:refore tha‘t ICI ALetvr‘cH‘, ‘3 € C and lec »

‘;A= moﬂq:'wa_TL- La;H—(V,ﬂ{chJ $)betmam@zgﬁ@hvﬁmeer*

/4 = AUB:lUB u{X} whe?'e these sets ‘“ﬁe all dlsgonfc a.nd
LA m A T e *51‘=1‘"( = 52
: V(ai) = {Al A1+1 }UB UB (mod I‘)

V(e,) = AU{X}UB

AU{X}UB

Viey) = | e S
Then M(H) has as c:.rcults the set A together Wlth all (r+1)—subsets

of AU{c‘l »Co } not contalnlng /—\ T"r‘e Za’G"‘Old obualned f om M(H) by

.‘-‘the free rank—preserv:mg ( |C|—2)—Dow_:t'exten31on of M(H) bY C‘{C1 ,c,.} - :
1s hypergraphlc, and from the above, has c1rcu1ts A together w:.th all |

: (r+1) subsets of E not contalnlng A This mauroa_d 1s therefove |

1somorph1c toy_, and so M is hypergrepqlc_. ' ' | i

PROPOSITION 12. 13 ‘ Let M be a proper mner ef M (qn‘ > 3) " Then M ,ilk‘

| G 1s hypergraphlc. | - | | o .
Proof: Let M= I . (Eﬂ-Xv x( En X )- y*) - u x(;-; Y'> “En y') X), vhere
X' is independent in _I\_/In:and X'aY' = 6. _f '€ .Y_' 5 the result _follqws from:"

(12.7). 1If |X'| <1, the result follows by restriction from (12.7)-(12.10).



.' ’Suppose that lX’ ! 2 2.

(a) Squose e'e X' . ‘I‘hen by (12 3), oh" c'ircuit's of M ‘.(EA—{ e'l ) ’

o vare the sets C -{e‘} (0 <17 <n) and all (n+1) su’bsets ofE -{e'}

‘ "_"matr01d is hypergraphlc. , If ‘bhere x:.sl,s y € X'—{x‘}w1th y gz' q UC' :

ontalnmg none of these.r Slnce IX' » = 2 there ex1sts x € X' , X' # ye':o.‘“

’2, say Therefore,

QJ ;

'I’hen x' ¢ C fortwo values of 1, 1.> o

(E ~{e',x' }) has as c1rcu1us tﬂ_e’-

‘m

C -—{ e ,x'} C —{ e ,x'} and all
- S ot _ A
n—subsets of C'-—{ e' '} contalnlng ne"ther oz r,nese. 'j S:ane

C' nC' ={e' ,x },v’chrs ma‘br01d is h_y*oe rrrapbwc by (12 11) : If’fhere
ex:.sts y'e X -{ e_,x'} > Wl'bh y'd C UC' » then M (E —{e X ,y'}) 1s
unlf'orm, and hence strongly hypergrel:ne? i‘. ror each y € X -{ e! ,x '} ‘.
B v'e C"UC' then M .(E —{e ,x y'}) has c:wcults C -{e X ,y'} (say),vi‘;:':'?
1:together Wlth all (n—1) subsets of E —{e ,X ,y'} not co;talnlno- thls set.»;-,‘k".:f’,_:j‘;fkj
By (1 ,..12) thls is hypergraphlc. i If" here ex:Lsts z' € X —{e x y‘} |

with 2’ ¢ C C then M (E —{e >1’1',Zf' ,' }) is unlform and hence

: s’crongly hypergraphlc. If for eve ?t{ ,z' € V"{“' :X ,Y'} z'.€ C' g

then M. (E -X! ) has circuits C‘ —-X‘ tog,ether w1th all (n+2) [X I)-subse*sf.'-_.f
of E -X not contalnlng 'thlS set If ;C' —)/" v 2 thlS matr01d is

f‘hypergraphlc, by (12.12) If [C' -—X I <1, uhen M .(E —X ) has rank au‘
~most 2, a.nd is” therefore hypergraphlc. L |

Thus, if e' € X' M is hypergraoal
#, (B) Suppose e' ¢ X'. Let x'e X' Then x a.%’l fer eeme 11 12.‘_:‘_; B
~ Therefore, M .(En—{x'}) has 01rcu1ts C' -{x'} C' -{x'} a,nd all
(n+1 )-—subsets of E'-{x'} con‘ta:mlng ithe‘f' of these. By (12 11) . thls
- then M (En—{x 2Y }) is unlform, and hence sw:rongly hypergraphlc.i .' S

e y' € C (say), then M (En {x Y }) has as c:chults the set

C' —{x '} together with all n-s ubs=ts of Cn {x y'} not contalnlng this |
set.' By (12. 1"’) thls matro:.d 1s hy'oergraphlc. If there e)_clsts
' ~z' e X'-{x',y'} such that z' ¢ C' , then . En Sy 5y',2z'}) is uniform el

i’
" and hence strongly hypergraphic. I:",, or all z' € X‘ " ,y'}
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c C' then M .(E‘—X’)'has aeecireuiﬁs %he se§'C£1—X', fogether with‘;:'3f”

V-
.';x\)'_;
RRERY }

| all (n+2 ]X 1)~ SUbSets of E'"X' not con a;n-ng ihis set.:j If lC'-—X ]
then, by.(12 12) this matr01d 1s hynerg fé‘ n If ]Cl _X | < 1 thenge"::*
M . E--X has rank at most 2 and hence.le ypergraphlc.l : | ‘
 So, for any nonempuyindependent set X’ E':‘4 .(E —X ) is hypergraphlc.if
‘ The efore, for any dlSJOTHt sets X Y‘.c E'; no; both empty, and w1th
iX' 1ndependent in M M (E —X )x(( —X =Y ) is hjpergraphlc.,f Thus,_,’ f A
 ~.every proper mlnor of M is hypergran“1c.'e E ' [ |
| boﬁbLLARY 12. 1uf, (1) 7The'c1aés,of,hfnénganhic”m;tféias:éénﬁetpé fl‘
| characterlsedvbj a flnlte set of. forb dden mlnors. eZ N

(ii) The class of strongly hypewe*annlc matr01ds cannot be 4

characterlsed by a flnlte set of Lorb dden mlnors,

Proof: M is a mlnlmal non—member of each clas for each n > 3.

We shall now prove that for eacn n, g; is hypergraphlc,_ we shell”ﬁ-f'

——rey

then show that every contractlon of fz is h} ergraphlc, and deduce froml; o f

this that Nﬁ is strongly hypergrabhlc for each-nbz 3r:e

- PROPOSITION 12, 15 »bM*‘is hypérgraphic'for eéch n>3. 0 .

'Proof; Let H = (V, E $) be the hyperaranh w1uh

where these_sets are all:disjoint,eand =

v e= Aougiu-...uA1 ( _3)
A0= {AO’A‘]‘S’.»' "‘$An}7_l ROt
' :,Aﬁ% {A?j: 0<icx< 'j’ < n}% én > 1) 
E = B’ 3

""'j'v(a!".) Ry A}u(zn(n 3) 47 o |
| Then the c1rcu1ts of M(H) are the sets~ E—Ci"(d.gii < ﬁ)’ ﬁQgether_'”’
~*w1th all (2n(n~1)+1) subsets of E contaﬂnlng none of these.'; Now;‘ieﬁe
- M' be the free rank-preserving,- one—001nu exten51on of M(H) by e' |
Then, by (3.13), M’ isihypergraphie, andfclearly M?vs M;, whence

”-M; is hypergraphic.



PROPOSTTION }‘ig"%: lf X’ - F'ois = gonérnpty'indepéndent' set :in_M?l
(ns 3), then (X)) 4o wsergrephic.

Proof: : :‘ 'Zg;v'r,,v‘ | : v: _' s : wy

| h (A) | The’caéebn =.3 is trivial, a‘ﬁ" 4M*.(En X') then has at most six |

- elements, and is therefore hypergraeﬂlc.v‘

'(B) Assﬁme‘n é,h and suppos tha el e X' ‘ Then. by (12 7),.
M x(Eh-{e}}, is unlform Thus, ;g.rF' {e }) 1s unlform, and hence

-strongly hypergraphlc. Thus, M‘.’E; X ) is hyoergrapblc.ft,;sff

(c) ‘Assume n = h and suppose that e! ¢ X‘ v
Let iv X' Ci = ¢}L Then, ?_ ¢, M x Eh X ) 1s unlform,,fh"

- and so b .(Eﬁ X ) is hynergraphlc., 17 I = {1 } then the set of

01rcu1ts Of M X(Eﬁ C ) is the set C' ; uogether w1th all (n+2)—subsets T
I

.of En X' not contalnlng thls set. ,_,nus, the c1rcu1ts of MW (Eﬁ—

are the set (E;—X C' together wit all (|E£ X !—n)—subsets of

“::En X' not containing thls set.v~;f (Eﬁ-x )= C' 2 then, by (12 12),§~f%55
| 1'~r~ Sl iR

this matroid is hypergraphic. ;szi !Eg X ) Cv | < then 5
;fM“ (Eh—X ) has rank at most 2, and is thErefore hyPergraphlc_!i;"’

| Slnce C U"'UCn Eh Izl # Q+" Decause X' # ¢ " Since aiso: ?:fiiihh i
for each a J € En " € C' ﬂC'. 'I§ 7 n because X' % ¢ R

~Assume therefore, that n : h and toaa [Il < n—1. : Then, the SRR T

k”i set of c1rcu1ts of M x(Eﬁ—X’) is ghe set{(:I ie I} together Wlth all

;(n+2)-subsets of Eh X contalnlng ncne of these. Thus, the set of
A,hyperplanes of M x(En X ) is the se+fC;f ie I} together ‘with all V

n—subsets of E'—X‘ contalned in none of these.. Therefore the set of

'.01rcu1ts of M¥. Eh—X ) is the set {( —X ) C': 1 € I} together w1th :

7

~all (lE'—X l—n) subsets of E'—X' cont alnlng none of these.
Put + = rk(*. (E!- X')).  Then t+1'={E“-X |mn.

fet H = (v, E, $) ‘be the hypergraph With_ h

,V =vAOUAlu;'fUAﬂ-QBbUBi whearse these sehs are’all disjoint, ahqi-

gt =t~ [T - 1,



A =145 i € I ;

A ={Alfl.:.0‘g i< J < n}_l (m 2)
21 9J ‘e-:‘b'I:,' i< 'j};z' sk
,81-{3 'og'i; j<m, {1ﬂ, mj%§};ﬂ¢ ,;a"

E oS EXey L e
. V(a::.J) = ({A LA, }FA )b(B —{B })U(B {B })U( li}(Am-{A })) P
‘We first _héeci to sl:qow ;’Ciﬁlaﬁ t ',j > 1. g
CTow, X' off=¢ foriel.

K dCp= ¢ amaso X' < En— uc )

. | ,EIII—X' 5 %Ci, and therefore T
lE;—X'PfiuCgl =1 ekﬂ(21+1ill)
et 2[I|(2n+1—|Il)—n S ! ~fQ;;(2

A

!I! < n-T) PR

I3
v

ANOW, for 1] in the range 1nd1cated a.nd

' |v

3T (2n+1-]T] )—n S |I|+2._f Therefors ,t [I[+2,and sot'_>_1‘

From the definition above,
Cvi= Tl t'(zn(n+1))+lB 1+1B,1
of H, k — t (% (n+1) 1) * 1Byl + IB l

end, using X to denotel the cardinality = -

S VlkH = |I|+t'+1 = t. : |
. Now, for £ 'Efl{(l J)..a e‘.E} Wlbh !Si‘ '2,  x f'_‘ ':_ ‘.~
!U{V(aij)z (i,3) « £}1,= l(u({Ai,AJ (1,3) e £))nA l o+ Pt

‘-,SU'.ppose Dis a circuit of M(H), Wlbh IV(D)I lVl - 2,"‘

<|/\

© Then there exist. A 5 (4,3 € I) such that A ¢ v(D) and_,Aj tv(D.

| : 5 Thus, D < {x eE A é V(x)}n {x eE A é V(x)}

!

<<E'-X'> €D a (( E X )- c )
(En XD-(C} uCy)-

- -lDrf £ zn(n+1> +1 = Xl —‘2n 'i=;%ntn-1)frx|;1;n T

= t—n+1,.
L. since D is a circuit, IV(D) | < t-n+1+k-2.

'Thusa' if £ = {(isj): a'ij € D}s
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uC{A, ‘A-} (1,3) € £)]+ k + t‘ ; t—*+1*k—
ColAAD  (5,9) ¢ £>| S -'z |

which is 1mp0531ble, since iIi <>n—1.;r Tnus, for any c1rcu1t D of M(H) e
‘rrw1th v D) # V IV(D)l lVl - 1., Tger V(D) V—{A } for some j;,f;jﬁﬁ?
e I and so, since D is a c1rcu1t “lDfieif‘f Also,>31nce A ¢ V(D)

D e (EXD- C‘ : ‘I‘hus, since 1 E' \")-c | = D = (E —x ) cv "

"Thus, ‘the circuits of M(H) are the sets (E'—X ) C' (1 E I) together

v w1th all (t+1)~subsets of (E -X' ) {e } conbarnTng ‘none of these.r 

'rLet M' be the matr01d obtalned by the Iree, rank—preserrlng one—pelnﬁi ﬁ’:”
exten31on of M( ) by'e N Then by (3 13) ‘V' is hypergraphlc, and fe}}:{:“i

. _‘ Sin_ce,_lﬁ' : M* (E)_X ), M—)r (EI_X ) lS hwe”g"gph‘rc. : ‘- _‘.n; e

COROLLARY 12. 17 M* is strongly hynergraphlc for each n 2r3fi'ﬂf»'7

. Proof: By (12.15) and (12 16), M“r (En X ) is hypergraphlc where X{;}frl?;>”

K 1s 1ndependent in M* Slnce every w':mor of ﬁ; 1s 1somorphlc to

oy e

(M3 (E' -X"))x(( E' X )*Y ) for some Q‘S’Olnt sets X‘,Y;ic ;

Wlth-':
X' independent in M*, every minor OT M* is hypergraphlc, and so iy

yg is strongly hypergraphlc.

'vCOROLLARY 12.18: Let!?lbe the class of du llstlc strongly hypergraphlc:l ﬂf
.matr01ds. Then {M*'f ”3} is an 1nf1n1»e famllf of matr01ds el
Wlth the property that Mx élT)nor each n 2v3, but‘everyiproper;[ :’

minor of _I!I;; is a member of m.

f COROLLARY 12 19: The class of dua_rsnlc,'ebrongly hyporgraphlcvf_..t;,
v; matr01ds cannot be characterlse by a f lte set of forbldden

-minors.

/

COROLLARY 12 20:  The class‘of-aualistic, st rongly hypergraphlc
matr01ds cannot be characterlsea w1th1n the class of hypergraphlc

matr01ds by a flnlte set of forswdden mlnors.
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 CHAPTER 13

A CHARACTZRISATION OF

| HYPERGRAPEIC MATROIDS .

. We have already remarked that gfaoh*c matr01ds can oe charact—’
'ellsed by a flnlte set of forblddeﬁ ﬁﬂnoﬁs.v It 1s clear that e'fb
hypergraphic matr01de cannot be so cﬂarac+erlsed, not only becaese the :
clasg of hypergraphlc matr01ds 15 no;kclosed under contractlon but
’also because, in Chapter 12, 'we toﬁ_d’an 1n;1n1te setbof forbldden fff:
‘minors for strongly hypervraphlc maurelds; o :

There are other characterlsezﬁons o;,graphle-ﬁatr01ds in the
\.literature-'} Most are in terms oi‘:o*01aaeﬁ mlnors and a repreeent;:: A
'abilityicoﬁdition"Or its equi&alenﬁ;b_ ”ﬁeae are nof partlcularly ?fif'

approprlate as startlng—p01nts for 5e erallsaulonwto hypergraphlc 'jkfﬁff

-entable over every characterlstlc; and (12 1h) shows that there ws no
‘flnife set of forbldden minors Ib; qycergraphlc matrolds. "

“We shall use, as. our mot1vab1en in- uhls cnapter fhe ehafacﬁer~ 5 .5 “e
 isation of graphic matr01d5'due_to Sachs_{22],lwhlch 1s'a lattlee;eeﬂcil

_theoretic version of the result of MacLane [16];'-»

F;'THEOREM 13 1: An irr educible lattice L is 1soﬁorph1c ﬁo ﬁﬁe lattlce‘ T
of a non—separable graphlc ma°>04d if and only 1f there existsra }ﬁ'
jifamlly F-— {H.: ie I} of byterplanes of L satlsfylng | |
fv(i) every atom of L has exactly tuo comnlemente in F, and no twe
7atoms have the same pair of ccmp*ements | | | ‘
(ii) If J < I, then p(nh II*JI— 1, whenever thls is non—negatlve, G

Where P 1s the rank functlon of L.:'

‘We now re-state this is a modified form, suitable for generalisation.



- 'THEOREM 13.1': A connected ﬁetr01e f on’ tee eet E is graphlc if and
onlj if there ex1sts a‘famllr,Fl— IF.,:l € I} of hyperplanes of
eM satlsfylng o | s
(1) for each ee E e 4 F for exe:tl 2’veluesvof ie I;
k’ (11) 1f J'c I then ) nF ) IT—Jl—i Wﬁeneveﬁ‘thlsvle,noﬁ—negaﬁive;:? T
. (111) every 1 flat R of M 1s the 1t:e:;eCu10n of a set .

{F-. i e I R) c I} of thernla_es Wluh II(R)l 11[—2

. The proo; OL thls theorem is %vfconStructlon.',fFor hypergraphie::7 ;;_§

matroids, an analogOus result holds.v}j,;;f

eTHEOREM 13 2: A loopless matr01d H on uhe set E 1s lsomorphlc to B
M(H), where His a k—hypergvaﬂa, 1f and only 1f there ex1sts a
famlly F = {F.. 1 € I} of'" a‘sVéf]g sat;sfylng f 

(1) for each e ¢ E, e é F for. exaet_y X valuesdef‘i’é'I“

't?(ll) 1f Jmc I then p(ﬂF ) lI—Ti— (‘ 1), whenever thls 1s:non—negat1ve,'fi

(iii)(a) for every circuit ( of M U(C) is " the 1ntersect10n of a set
{F;: i eI(C) < T of flats, mta !I(C)! lIl-—(k 1)—pC_.'*
(b) every 1= flat R of Mis th e,_ntersectlon of a set fffjte‘
{F Pive I(R) < I} of flats w—sh MR)I lIl—k.‘ g

© Proof: (A) Suppose M samlsfles ( ) = (Lli . -Vﬂ |

- Let m p,rand let V.= {A A ,...,A } be avs\eu‘of § vertlees. . i

Let E= 1.“1 <is n}J, and let ' = z': 1 su;‘ n} be an

, 1somorphlc copy, of f. Let H= (V E'; 3) be che hypergraph w1th'uff'

ey : V(e’) = {A.. e é Fs ,‘i € I} waere e' is the 1mage of e _1‘_" -

undef ‘the obv1ous blgectlon between E ana E' e |

' Thenb by (1), H is unlform of carc_nelluy k.eiiji o

Let C' be a circuit of M(H), and let denotevthe image of C' under A

the obvious leectlon between E ana E'. S | |

Since (' is a c1rcu1t of M(H IV(C Y= k+lC'| -2.
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Thus, there ex1st p— k+|C |~2) vertlcee of H not elements of V(C ),
and so (< F; for at 1east p— k+]C]—2) values of ie I
Therefore, by (11),:v.» ' ‘
pC o(n{F C F }) <1I| - l{l ¢ I C F }l —'(k-1>
<p - p + (k+|C1—2) -k +1 i

= 1Cl -

"Thus, C is. depeqdent in M

vConverSely, suppose C is a Clrculb of M. ”he1 by (111)
) . where I ){ II} (k—i) C
By (ii),,vfor J“E.I pnF II—J[~(k—1 > whenever thls is non—negat1ve,'~"

‘ Therefore,vif J 3 I(C),

N

'|I|—|I(C)l~1 (k—1) whenever thls is nonnegatlve ;Q; e
oCi- 1.

o Thus, C is the 1ntersect10n of exactlle(CN members of F

o

ef¢Thus, IV(C‘)I p-D+ (k—1) + pC 1%f K+ iC -

-y

' So C' is dependent in M(H).
Thne, M = u(E), and‘so'M is hypergfaphiC-:}7:?t"effni;ﬁiitafeiiixtilb“} t
(B) Suppose now that M. M(H), where H = (V? E‘ $) 15 avcnrtlcel“
vk—hypergraph and the 1somorphlsm 1s‘7nduced by the obv1ous’blgect1en

between t and E' Let V = {A A }J,, I = {1 2,...,p} For each

1? 2"' ‘

ie I deflne F; = {e e E: V(e ) = 7-{A1}}s and 1et F' denote the 1mage of ti'
| F under the . obv1ous blgectlon between E and E' ' .‘ . 59 »t‘ “
.fThen each F' is a flat of M(H), since, for any x é F" V(#y) ég?(Fij;:éndne 15
/ M(H) is’ 1oopless o | i : "' »»’ ’ : 7'-f ek -“iff vl

“i;(' e é F if and only lf A € V(e ) Whlch is true for exactly k :;:l L

‘,values of_i (1< i < p){

(ii) For any J I, ’xv(nF.)l < po1dls By (3.1), fa
p(EFi) < IV(nF )l (k=1) whenever thls is non—negatlve, so
<p - JJ] - (k-1) whenever thls is non—negatlve ‘

p«BFi)
IT-3 [~ (x-1).



(1ii)(a) Tet C be o cireuit of M_(H) Then’ - (2 3)

B RGDE k—1+p(:" |

By (4.29), vec ) = V(e ),so lch ) = k-r@c"

‘A'Thus, VC' < |:' for exacr,ly p—(k-'HpC ) values of 1, a8

so C F for exactly lIl ~(k-1 —pC va;ues o; i. Let I(C) denote this e

set: of valaes Then from (11),A'fff‘

oC ,é I(C)F < pC 50 equallty holds, and since 0C1s a flat of M
oC = F

o I(C)

(111)(b) Let R' be a 1- flat of M(H) Then IV(R )! k, since’ M(H)

s loopless.'z Thus, R' c F' for exaCuly D-k values of 1 (1 = A 1p).; ;E

>;,Therefore, R F for exactly -k values of i. i Let I(R) denote thls ;ff f'

‘.'setofvﬂn%n' an(m),lfJC vahl& : ﬂ&T

n

0 JF = o,- so R= n{F D ie I(R)}_ Ik}k,‘»where' lI(R l III—-k o

'"ﬁ'COROLLARY”13{35'” A loopless matr01d N SL rank T on the set 1s,;

hypergraphic if and only 1f there e“"st an 1nteger k = 2 and a ;’fn'.ui

family F“ {F* ie I} o? flats o M such that

(i) for each ee E x ¢ F for eyactly k values of ie I

(ii) iryei, p(nE ) 1I=- Jl-(k 1) whenever thls is 1on—negat1ve,~‘n“

(iii)(a)“ if C is avc1”cu1t of M,; CC' ’TI(C)  , where
()1 = |I|—<k—1>-pc - | |
(v) :1f R is a 1-flat of M .1R '5'i(§)F 3‘ Wherevi‘;‘

| TR = IIlfk-
1"‘:’Proof _»(13.2);
Note that, in (13 1‘) F is a famlly of hyperplanes, butrthat 1n}v
;(13 2) 1t is a famlly of flats ThlS is because the constructlon of the V;;
proof of (13 2) for gravhs always ymelds hypcrplanes vhen M is connected.‘>:‘;":
However,v in hybergraphs, this is no TOnger the case, as can be seeﬁ from |

therollOW1ng example.
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Consider_tﬁe:ﬁjﬁergrephic matroid M(H)-shown in Euclideen reéres~;
entation'rh Figure 27 For ease of explenatlon‘ we have labelled‘
each p01nt e Wluh the Vertex-set V(e) . N(h) 1s connected but the flat iQ f2”
_F2 (w1th the notatlon of the proof of (13 2) A)) has rank 2, and 1s,gv;">““ :

,therefore not a hyperplane, slnce M(H) has rank h

Pmal

nf Fs ~
(‘ b, 3 (A4 41 - e
Lo - A')ﬂl "‘0‘} R ¥ / A ﬂl e
i : P A Aol
Flgure 27 S E .

" The" sﬁ?engthenlng of (13 1')(111) to (13 2)(111)(a)&(b) 1s
necessary, as can be seen from the maor01d o; (3 5) Denotlng thls:”
matr01d by 1, with the notation of (3 5) leﬁ the dlstlnculshed famlly‘ Tff;o
For flats of M be {{a b,cl, {a a; e} {o f} {c’g} {d f} {e’g}} .vv,m}
Then F satlsfles the condltlons (13 3)(1) and (13 3)(11) and,(13 3)(111)(b),f¥,
‘with k = h.e' However, by (3 5), M is ‘not hynergraphlc..‘ Thls is L
o jobecause (13 3X111)(a)1s notsatlsfved.;or the circuit {a f,g} or M.ﬂ ;eff;f
| The 51tua+1on for generallsed bynergrephlcvmatr01ds 1s more S

fcompllcated, because of;the ex1stence‘0f p and 1tsva55001atedjc103uref HT'

“‘operator._i The example we have just given ﬁ*livillustrate the'problem.'ff7'
The matr01d of (3 5) is generallsed hypergraohlc, as was proved in (h h).’e
In fact, 1t can be obtalned as M(K), where {‘ (V, E $ K) w1th

AR B,C,E,E F}¢, ‘E = {a,b,c,d,e f,g,x}l : K {x} and 2

{A c,D}, V(d) {B c E}

v(a)

{A,B,C}, V(b) {A,B,D}, 'V(C)

It
1]

v(e) {a,B,F}, V()

{A,C,E}, V(f) {3, c F} and V(x) = {D E, F}

The sets F(V) < E%K vith V(E(V ) < Ve{V} for each Ve 'V are shown
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'beloﬁ in Table 1.'

v tw | v W
| Teble 1 i i

E(D), E(E) ‘and E(F) are not flats of M(K) but unlons of flats,

1ndeea,pE(D) = rkM(K). Such a set of unions Wlll, in general oceur o E

:for each contracted eWement of a hypergranhlc matr01d.;k The only

':p0551ble analogue of (13 2) or (13 3) Would therefore 1nvolve such

: unlons of flats, Wthh we belleve, is rather an unnatural apnroach..»fﬂ

It should be noted that the famlly F_d xlpea 1n7(13 3) is far :

-~

from unique, and, 1ndeed dlfferent ch01ces of F can lead to dlfferent :A

.values of k. An easy example is prov1ded by the rank—3 matr01d M on 1

b'the set E = {a b c d e}#, w1th 01rcu1ts {a, b c}, {a d e} and all
L-subsets of E contalnlng nelther of these.p‘ Two p0551ble ch01cee of o
c are; v. , , ,b | v ‘v ~ | e s :
’_»"{{a b 'c‘} {asd.el, {b,d}, {¢ e}} “yiel'dirig 'k:"e”f o

{{asb c}, {a d e}, (o3, {d} {c} {e}} 1eld1ng k= 3. vt

Although the condltlons of (13 2)'andf(13;é);¢aﬁfbé'm6Aifiéde£o;j%'fee-"
glve a characterlsatlon of strongly hypergranhlc matr01ds, such a f"‘?.v
'characferlsaflon is of’llttle value‘ because of the dlfflculty of
obtalnlng the circuits of a contractlon 1n a sultable form Hoﬁevef;"

-~ we can modlly the formulatlon of (13 2) to replace-(lll) Wlﬁh a |

condltlon on 1ndependent sets v
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THEOREM 13.4: A lobp‘iees"ma‘c;r.oi;iﬁ Milgf ra.nk r oﬁihé set‘E is |
hynergraphlc 1f and only 1;‘there‘ex1st anvlnteger L.> 2, and a
:‘ femily F= {F tdie I} of flar,s of M such t‘lat g |
k,-(i)”;for each e € E, e 4 F for exactlf k values of 1 € I
(11) 1f J'c I, p(gF.) II—JI (k—?) mhenever thzs is nonneéat%ve,:fe

'(111) X is. 1ndepe1dent in M 1f and on y lL, for each nonempty subseu Y

“of X Y d F ; for at least|Y§+(k—1) values of 1 e I._‘},.- »
:’Proof (A)M SuPPose M satlsfles (1) (111) ; Let lII.— p, and let L
VVV = {A1,A2,...,A.}J be a set of P verulces.i, Let E = {e ;»‘- n}#,
and let(E' =’{e3. evi,é n} be an- 1somo*phic copy of E "vﬁ& :
" Let 'H = (v E ) be the hypergrapn wnh e S
‘ V(e ) = {A;: e d F ,.1 e T}, where ef 1s't5e>1ﬁage”of‘e ﬁﬁdér thé_;fiﬁwi‘
‘obv1ous leectlon between E and E’ 'e Then bj (1) M 1s k—unwLerm.ﬂ?fﬁ=ﬁ"
‘Let C'rbe a circuit of M(h) and let C be 1ts 1mage under the obewoue ;fﬁ.f}i';

' blgectlon between E and E'

Ll ERERS ':7:,; L

since C' is a circuit of M(H) IV(C')X =k+!C’{—2 ;:Thus, there
exist p—(k+lC I—2) vertices of H not el ements of V(C ), and s0 ":‘»_}j_’.' o

| .C < ‘:. for at least p-( k-i-!C I-2) values of ie 1‘. R

By (i2),  p(alFys CoFy)) < 10 - 1 e T: Ce P - (L—-U

| p—p*(mc f—e)-(k~1)

|Cl—1
ICx—f

fn i m'v|A-

"Thus, C is dependent in M
Conversely, Suppose that C is a c1rcu1t of M;J let C' be the 1mage of
C uﬁder the obv1ous blgectlon between E and E": For any c € C
- C—{c}¢ F for at least |C- {c}|+k—1 values of 1 € I. Thus,’: .
C £ F Ior at least lC++k—2 valueS“of i€ I, .
Slnce C 1s a c1rcu1t C ¢ F for at most |Cl+k~2 values Ofkl € I, 51nee

: otherw1se, by-(111), C would be 1ndependent; Therefore, C‘f Fi for
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exactly lC;+k—2 values Ofrl € i. .eﬁ%: | C=< F for exactly
p-(x+ICl- 2) values of i e I, and thefefore:v*p'u
v )i ln{v(F ) C F , ie 1}1 n—(p-(k+|C! 2))

| % lC' ;,

M(h), and so M 1s hypergraphlc

AN | I/\ .

l I't

" thus, C' isVdependent”in M(H);:fThus;-M

(B) Suppose now that M M(F), Wuere H
Sis 1nduced by the obv1ous leectlon between E and E' l eflne V and F

i’F;IaS in (13 2). t Then - (1) and (11) Pollow fram (13 2)(1) and (11)

V E' and the 1somorphlsm ,;?f_

(111) Let be 1ndependent in M leu Y be a nonempty subset of X,v;_;ﬁ:;"ﬂ“'

and denote by X' Y' respectlvely, the 1maoes of X and Y under the l5ti5:

obvmous blgectlon betweeq E and E' 7‘ i." _b l’_ o o
M V()] ®wrlVelot. Thms, there exist st mst

R k+lY'j—d) flats F' < F for Wthh Y' < F" Thus, Y ¢ F for at ‘iflzlf;:;

least |Y‘+k—1 values of i € I

Conversely, Suppose C is‘a c1rcu1t of’M‘5“

-C under the obvious blgectlonvbetween E and R
mhen IW(CDI = k+lC' 2, endso A ¢ V(C ) fo” p-(k+IC‘l 2) valuesfﬁfi?““‘
'§f'ice’1; and- no. more | , i A lb ; : S T
.;; C c Fi for at least p- (k+lC' —9) values of ie I

Cr ¢ Fi for at most IC |+k—2 values of i € T, -
; for less thanlC J4k—1 values ofﬁl é’Il:
B ri1hﬁs,FC ;le. for less than lC|+k—1 values of i € I.:
Therefore, X is 1ndependent 1n M 1f aud only 11, for eaeh noﬁempty

SUbSet Y of X Y ¢ F for at leas+ |Yl+(k—1) values of i € I.“f:

, This‘formula$ionlleads us to»a‘charactefiSatioﬁ'of'stfongly R

hypergfaphic_matroids;
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THEOREM 13. 5" A.matr01d of rank r on the set E is strongly hypergraphlc.'l
i and only 1;, for each 1ndependent set Be E, there ex1st
-a.n--lnteger kB ; 2 and a famlly F = {F 1_' € I} of flats of M,
w1th B F -for each 1€ IB, such that ’ ‘ | |
g "(‘) for each e e E-dB, e d F for exactly kB values of ie IB

B

negatlve, .

'(11) if J'g_I . nF ) ]BI II —Jl (§B—1) whenever thls 1s non—

- (111) X B is 1ndependent in M 1f and only 1f for each Y X, w1th
 Y2BY ¢ F; for at leastlYl—lBH(k -1) values of ic IB.‘- o
Proof: (A) Suppose M is strongly hVipeI‘grapnlc ’ Then for eac\hv . .
1ndependent set B E,. M. (EfB) is hypergraphlc.,. Denote by LB the set

’of loops of M (E—B) Let Mﬁ = EfB)x(<E%B) LB) Then Méz‘iﬁ-;»utl 'fiﬂ
,loopless and- hypergranhlc, and so, by (13 h), there ex1sts kB z 2, and a
kfamlly F" _{F" ie I } of flats oI EB Sueb that ﬁr I

';{ff(l)" if e-ﬁ(E"B) LB e é F" for exactly kB values of e IB

KuﬁlfJS%sz(ﬁ; lIwFﬁgﬂ mw@?tmsgn@ew
negatlve,
.(iil)' X" is 1ndepeueeut in MB 1f>aud only 1f> for eech nonempsy |
subset Y" of X"" Y" ¢ F" for at leastlY"|+(§B—1) values of ie IB.‘;:'
Now, let F= {F = F"UBu[_B icI}. Then each F s a flat of .
* Furthermore, oB = BULB F; for each ie IB.jy' |
_‘erte X = X"UB Y Y'UB. - Then (1)’ - (111)' become
»(1) for each e € E}oB e ¢ F; for exactly kB values of ice IB =
’(11) if J < I B’ D(rF ) -|Bi lIB—Jl (kB—T), whenever thls 1s non—-l';:foﬁ~
‘ negatlve, } e N ‘i : |
(111) ‘X 2B is 1ndependent in M if and only 1f for each Y X Wlth K;;Tfii?f
Y 2 B Y £ F for at least |Yl—!B|+(k —1) values of i€ IB B 7
(B) Conversely, suppose M is such tbat (1) - (111) hold. Let B E be

independent in M. = We shall show that M. (EfB) is hypergraphlc



Let L ‘denote the set of loops of M E—B) and let |

MB =M. (E—B)x((E B)—LB) Then M is ’3oo*oless Ve i;ete ‘that T
0B =Bul,  LetFl = {F'-' =F —(BULB) e 1) :'.then‘k.eaeh Frise
j"lau of MB : Fu.rthermore, T A

from (i), for each e e (E—B) L ) @ é F : |0'r‘ exactly kB values of i E IB

so. e é F" for exactly kB values of i € I,

’from (ii),:}L‘fJSI , ; (‘nF;:'

B uy §

B
D(FF ) -IBE

!I 'Jl‘(lx "1) whenever th:.s 1s ,: :

<‘|/\ i

non—negatlve, SOEEIE

X__B 1s 1?1\,.ependent 1n M 1f and —only w‘ V" X—B 1s 1ndependent 111 MB
"'therefore’ f”om (111)= X" is lndependen’s in IVIB 1f and only 1f for T
each nonempty subset Y" c X", Y" yf F" for. at least lY"UB[—IBH(k —1)

: values of 1’ I =
Thus, by (13. h) MB‘ is'.fhy‘pergran hic ‘(“’-.,T.herefere, by _(l/+A.2)‘,","E;,;::k S

E—B) is, hypergraphlc

Now, if M is strongly hypergrap:nc then, 'by (A), (1) (111) hold;
Conversely,' if M is such that (i)- (11 1) ‘non then M 'E B) 1s hypergraphlc B
‘for each 1ndependent subset B CE S:ane every mlnor of M :Ls 1somorphlc

.to M. (E-B «((E- B- D) for some sets B D whe e B E'ls 1ndenenden’c in

'M and BrD 4) , every minor:of M is hy'uergvaphz_c Thus, M 1s Sl

strongly hypergraphic.

(13 4) can be used to derlve & char *'acterﬂ satlon of co—hyPergraPhlc

matr01ds, although the resultlng eX‘D*‘eSSlOHS are ra.ther less W:Leldy. L

Some prellmlnary deflnltlons w1ll be needed to smpllfy the no’catlon,‘f S

DEFINITION 13 6 Let M be a matro*&d cn the setE

' ’(1) A fu_lv dependent set of M is a sebG whlch is a (poss1bly empty)
union of . c1rcu1ts of M ' ' ‘

(11) The nulllb;[ of a set A CE deno‘ced by ‘5A1s equal to |A] —pA



THEOREM 13.7: Abcoloop—free ﬁatroie M of‘rank T eu the set | is -
| co—nypergraphlc 1f and only»i h ?enex1st an 1nteger k2> 2, and
‘a famlly (;-{G .:1 €. I} of fullf dependent sets of M such that'
(i) ) ATor each e . E, e Q/_G :f'or exact,ly k va_'l_ues of ie I
(11) if J'c I, 6E &UG ) <k+1— pf'wnenever thls is non—negatlve,
07(111) X E is spannlng in M 1;.end only 1¢,vfor each.Y X w1th Y # E
Y W_G for at most k+1—{[—Y] Values OI ie I.‘ ? f”“w
,Proof' : M is: c0100p~free and - co—hypergraphlc 1f andwonly 1f MT is%i"l
lloopless and hypergraphlc..:fj:‘ | i | o ’”
By (13 h), ﬁhe loopless matr01d ME is hypefgraphlc 1f and only‘lf there
exist an 1nteger k¥ 2 2 and a famlL F* = {F*’ i ekT} of flats of N*:I‘v?;:if
b'vsuch that | | ’ A ‘ e
:(1)*- for each ec E, e é F*‘for exactiy k* velues’ef ; € i-%i

’,(11)* if J c I, *(nF% < lI—Jl-(k*—1) whenever thls is non—negatlve,,ef'M‘

M(111) y* c E '1s 1ndependent 1n M*'lf and only 1f for each non—empvy’:‘

subset Y* c X* Y* g F* for at leagu [Y“|+(k*—1) values of 1 6 I. ;,;ﬂT“
From (13. 6), it is easy to see +hat G 1s fully dependent in M.1f B

~and only if E—G is a flat of M”‘

| erte G; = EfF* (1€ I) ’ l'[—&* ;and X E—X* ’ Then
(1)* holds 1f and. only if, “for each e € E, e ¢ G for exactly h values
Of ie I | | ‘ e ; L v
‘:}‘(11)* host if and ohly 1f for each J < I
: n (E“G ) lII—lJl—(|I!—k—1) 'whenever thls 1s bnon—1‘,'1ega’c‘:|_ve,’;V.‘Av't‘w
'1;>i,e; if and onlv it D*(E—(UG ))<‘ V—lJI+1 whenever fhls is uonuegafiue;fi
dee. df and only if p(uG ) +|E]‘1UG I- QE ; k—|J|+1 wheneverbfhls‘ls noﬁ;;ie7
"negatlve, i.e. if and oﬁly 1f 6[ S(UG ) ?krlJl+1 ’whénever:th;si;é:fff
‘non—negamlve. | ey L
‘ (111)* holds if and only 1f

(E‘X* is spannlng in M if and only if, for each Yv;‘E With‘YLE (E‘X*)




'v"hypergraph H w1th M(H) _ﬁ;vlf thls Were derlved by the method of
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-.'Y G for at least IEfYI+|II—k—1 values of ieI; i.e. 1f and only 1f F

X is spannlnc in M 1f and only 1f for each Y ; E w1th Y X,~ .
Y2 G for at most II[—(IE~YI+III k—1) (k+1)—|E~Y[ values of ie I. 1 
o Thus, (1) (111) hold if and only 1f (1)*—(111)* hold, 1 e. 1f and only,ev
llf the loonless matr01d M9e is hypergraphlc, i. e. 1f and only 1f theii ;:

R coloop—free matr01d Mis co—hypergraphlc

Nete that, in:(13;7) tne value k 1s not the cardlnallty of uhe j;55'l7ﬁlﬂ

(13.2). ‘The cardlnallty of this hypergraph 1s k* k has been used e

in (13 T) to brlng the Iormulatlon 1nbo llne w1th earller theorems..i:[f-“':‘”'

B
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 CHAPTER 1k
flCONCLUSION;fxf?
It is probably helpful to tabulate some of the main results of ],‘“

*the prev1ous chapters, and to comnare, Where aoproprlaue the corres—f

’pondlng propertles of graphlc, hypergraphlc and generallsed hypergraphlc 'ﬂ;fj

maur01ds. : Thls we. do in Table 2 whlch also references the maln result

~lfor each'entry.. ‘In Table 3, we compare varlous.graphlcal and hyper—":pffi;
graphlcal concepts, and reference the nypergraphlc deflnltlons Where :
aPProorlate.v: | e ‘ :-; | e
It can be seen from the proozs of (8 5) (8 11) and (12 T) (12 13)
jshat the value of k used to glve a presentatlon of the one—polnt mlnors f;{r;7:ﬂ
~lpof fne forbldden mlnorscgrows¢W1th.the value of'n.j It may be the case e

that for a flxed value of k, the set of maur01ds 1somorphlc to a mlnor

-

nmesﬂ

of M(H) where H is a k—hypergraph, can be charaCuerlsed by a_f

S 3

”of forbldden mlnors."‘ Clearly thls is true 1f k p.xf For a value orfl

k greater than 2, it is leely to be a dlfflCth problem to pr0ve‘;ﬁv:
.;whether such a flnlte,se+ exists.. For eXample taklng k 3, we have'ff‘pyv
the follow1ng necessary forbldden mlnorS'

Fano, the ‘dual of Fano, (M(K ))* ’(M\K3 5

)j*'v(beé;usélAii §rope£:_7*
mlnors of these are graphlc) e ey

Non—Fano, and the dual of Non—rano‘(because all proper‘mlnors of ffi"
these are 1somorphlc to M(H) for some 3—hyp°rgraph H) |

The matr01d of (8 1) (for the same reason)

'p I conJeCuure that M(Kg) is not lsomorphlc to alnlnor of M(H)‘wnere: }f.

H is‘a 3fhypergraph; butccan See'noiwaY-Ofvprov1ngvthls. STt 1s~clearjvl‘""‘
thaf, for‘otnervthanlvery'smallAvalues'ofpn;LtneIforpidden;ninor classes:A

are going to be very large, even if they are finite.

It is well-known that the lattice‘of‘E(Kn) is isomorphic to the

lattice of partitions of a set of n elements. There is a partial analogue
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Co-el-

.of thls in hypergraph theory, as. has recently been po1nted out by
MattheWS [19] ~The lattlce of N(K‘) 1s 1somorph1c to the lattlce of f)C

(k—1)—pav1ng matr01ds whlch satlsfy the condltlons of (10 23)

It must be admltted that matr01ds are not the whole ‘ansver to the
"problem of flndlng a satlsfactory abstractron of hypergraph theory

;:Nevertheless, as we have shown in the prev1ous chapters, the apPllCatlonif”'

‘ ‘of matr01a theory does glve 1nformat10n about the structure of -

hypergraphs, and,.ln partlcular demonstrates the double role of vertex e

»and node played by a vertex 1n a graph i Other authors have used
other technlques ror 1nvest1gat1ng nypergranh structure, none:ls‘ i“;

'_complete 1n 1tself but most glve insi ghts 1nto the structure of

h’hypergraphs not glven by other technloues. In thls conte*xc+ ‘we- must
‘mention partlcularly the authors whose results have been used or referredf;\“ &

;to by us in prev1ous chapters - Berge [1 & 2] and,Helgason [1h3

SR e

'hHowever as we have seen the theory of hypergraphlc maor01ds does
- .throw light on hypergraph structure in a way not achleved by elther of

these authors.
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 =See also

 Pages L~ 8 for matr01d symbols,' f
Pages 15 16 for hypergranh symbols,ﬁiﬁf‘-v>‘

 Pages 14-15 for -use. of partlcular byne—faces

Symbol . B  ”Desqriptioﬁ> TR - ‘Référenéé_

' B(M) ’ B—invariant'bf‘y. 'Q 3~7  4 :': f}l  ff (11 22)
‘{H | ',”i Hypergrabh 3453’{7;;;?;: ii ;ff:f@;”;ﬁ~A (1 1)
TR Subhypergranh of H 1nduned by G . t ?;' .p151 t£ 
aly M resteiction ot i V' _. :,;1;'it‘; ; {i“ p16 ﬂ1 
«(H,Kb)f.vGenerallsed hypergrapn .ﬂ;;l;;:i:}fi;;; (L. 1&)
bx;‘ ”' f Connect1v1ty ,‘    é' ’1 5 >:~>f;ﬂl‘.  PP125 127‘
K 3 Generallsed hypéfgfabh. r   ;E ﬂ“¥ :,  : (k. 1h)

® o Complete k—hynergraph on ﬁ vertlées.ui 5 915  ny 

v g s pe functlon of g°ne“alwsed Hypergraph fg

>Level—k Dllworuh truncaulou of M ‘v‘}"'?béiiL f?“
ﬁ(ﬁ) v»vMatr01d of the ‘hypergr aph H ‘"V?;L”: fQ L(é;{1y ;
. MKK) »‘ .Matr01d of the generallsed hypergraph K-f (ﬁ€15)€ :v:;_;
v v—?unctlon of genera1lsed hypergraph. ,‘i'thtG)I?i
ﬁ(H) . Node—hypergravh of hybergranh H.  ; » ;; ﬁ(?-ﬁé) “

- N(K) Node—hypergraph of generallsed hyper— " f_(9.26).f
: graph K. : , e R D T
‘.'T(M; x,y) Tutte polynomlal of matrovd M._-:Qf _>»-'vpﬁ33 o

(V E, $) Hypergraph ” f u  ‘f.;.5:l. ;  ff’  '; (1.1)
(V E, $ K Generallsed hypergraph.‘v;‘ 7'7' ;i‘ H,'f(h.Th) ;r
W {Wheel of order n (the matr01d of the wheel

T lon n+1 vertices). -~~~ _

_ Wn ~ 1Whirl of order n. .{ S y,‘,,f-- pl2
<> u—closﬁre,operator,"" . ‘,]:‘ .' _" . i_(h.2h) %

0 | Pointed union. e 4: Lo "' ’_f::_ (11a1)

o' - jDeleted pointed union. ()
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