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STATEMENT

In Chapter I the concept of factorizations (which is 
central to the whole thesis) is original. The rest of 

Chapter I is expository.

Chapter II is based on my own ideas. Dr. Pride had 
obtained a description of the subgroups generated by pairs 

of elements of finite order in small cancellation groups.
I was originally interested in describing the two generator 
subgroups of torsion-free small cancellation groups. The 
methods I used were then improved to obtain results for 
small cancellation groups with torsion. The methods were 
most successful in dealing with subgroups which cannot be 
generated by a pair (w,u) with one or both utV of finite 
order. Dr. Vella and Dr. Pride subsequently refined the 
techniques to deal adequately with the case that % or v 
has finite order. Our results are combined in a joint paper 
[14] In the original proof of the main result of Chapter II 

the length of a pair of elements was assumed to be minimal. 
Dr. Vella suggested that we assumed that the length of a 

factorization was minimal. This has both improved and 
greatly simplified the work in Chapter II (and Chapter III). 
Development and use of Dr. Vella's idea are my own. The 
idea of extending the techniques to Theorem 2.4 is my own.



(ii)

Chapter III is my own work except where results are quoted 
and these are acknowledged in the text. Some oi the results 

of Chapter III will appear in [13]. Further results will 
appear in a joint paper "Commutators, generators and 

conjugacy equations in groups", with S.J. Pride.
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ABSTRACT

3
Two main topics are studied in this thesis.

3 The first concerns the 2-generator subgroups of small cancella­
tion groups. If G is a finitely presented group satisfying 
certain small cancellation conditions, we show how to compute 

3 a finite set S of pairs of elements of G so that the 2-generator
subgroups generated by pairs in S include all the isomorphism 
types of 2-generator subgroups of G, We describe an algorithm 

3 for which given a pair (w,2 ) of, elements of (7, finds a pair
which belongs to S and generates a subgroup isomorphic to the 

subgroup generated by (w,z).

3
The second topic is motivated by a well-known property of the 

free group of rank 2. Nielsen has shown that has the 
3 property (called here Property A) that there exists an element c

of.^such that u ^uv is conjugate to e or c  ̂ if and only if 

(m,u) is a generating pair. W© consider this and related 
3 properties for small' cancellation groups and one relator groups

with torsion. In particular, we show for a 2-generator group 
G = <a,6 ; R> where R satisfies the "right" small cancellation 

3 conditions that u ^ v  ^uv is conjugate to {a ^ab)~^ only
if u,y is Nielsen equivalent to a,b. Pride has shown that a
2^generator one-relator group, where the relator r is a

n3 proper power of form S  ̂ n > 3,has Property A. We provide
examples of 2-generator one-relator groups where the relator 
is a square which do not have Property A.

3

3



3

3

3

3

(V)

In addition to these main topics we show that if F is the 

free group of rank and G is an m-generator one-relator 
group, M > OT  ̂ 3, then is residually G» This result 
has a slight connection (which is explained in the thesis) 
to the second topic.
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NOTATIONS AND DEFINITIONS

We adopt the usual notation in set theory 
R U  S is the union of sets R^S

3 /? O «S' is the intersection of sets RtS

R C S or S D R means that R is a subset of «S'

r € F means that r is a member of the set R
3 IF I denotes the cardinal of a set R

denotes the unordered n-tuple 
denotes the ordered n-tuple.

3

When referring to properties of the natural numbers we use 
the standard notation. Let n,m be integers, then 

3 n\m means n divides m
(n,m) is the HOF of n and m.
<j)(m) denotes the Euler function, 0(m) = 1 if m = 1,

3 {̂ïïi) = the number of distinct values of &, where

0 < k < and (k,m) = l,if m > 1. 
e ,e ’(and variations of these) denote the integers +1 or -1.

3 ^  denotes the integers '
Z.'*' denotes the positive integers.

3 If (f) is a map then if 4> is an element of a group we write
({) on the right of the element it acts on. Other functions 

(e.g. (}» in " 4) (m) " ) will be written on the left.
3

The notation used to denote terms in group theory is similar 

to that of [27].
3 1 represents the trivial group

denores the cyclic group of order n

3



3

3

3

3

3

3

( vii )

<X> is the free group with basis X

Let Y be a set of words in F = <X>. Then
<Y> denotes the normal closure of Y in F. 
sgp{^} 'is the subgroup of F generated by Y .
<X\Y> is either the presentation with generators % e X, 

relators y e Y, or the group defined by such a 

presentation.

Let GfH be groups. Then
sgp^f^} denotes the subgroups of G generated by a 

subset of G.
G ‘ * H is the free product of G and F ,
G * H is the free product of G and H amalgamating sgp^{^}
Q—b
■ with sgp„{F} under the isomorphism g ^n

Aut(G) is the group of automorphisms of G,

F is a free group
F^ is the free group of rank M.
Let a,6 be elements of F. Then

h -1a denotes 6 o.b,
[a^b] denotes a ^b ^ab

If G is defined by means of a presentation < X ; R > ,

then a primitive of G is an element which forms part of a

generating |Y|-tuple of G.

-1Let X be an n-tuple, and f/(X) the set of words in Y U  X
Let 1 denote the empty word. Then we do not distinguish
between the elements of f/{X) and the elements of F.= <X> 
they represent. We use the following notation:- 

= denotes equality in J/(X)
= denotes equality in F

3
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(viii)

= or =„ denotes equality in G = <X; F>, where F is the(j N

normal closure of R in F. 
denotes conjugacy in F

or denotes conjugacy in GG N
If a\b are words in Ĵ (Y) then we say that a is a subword of

b If b = waz for words WtZ e  W{X)• We say that w & Wix) is
—  1 —  1reduced if it contains no subwords xx or x x-

We say that w e W{X) is cyclically reduced if all cyclic

permutations of w are reduced.
We say that f e F is a proper power if for some e e F

nf = e f where n is an integer > 1.

The following notations and definitions are introduced in the 

text. The number in brackets refers to the pages where the 

notations are introduced.

L,Li Length functions (4)
C(p), c'(X), c'(X), T(q) Small cancellation conditions (5)
No,Ni,N2,N^,N-, N Generalised elementary transformations

3 ; . . (7)

Factorizations (8)
sî, , Factorization transformations (45)

3
S^^, Factorization transformations (46)
G G

Higher commutator (15)

Subconjugate (11)
3

root-closed (34)

Property A (16)
Properties B^ (16)N
Properties (16)

3
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CHAPTER I 
INTRODUCTION 

SECTION 1 THE PROBLEMS

Let G be a group given in terms of generators and defining 
relators. This thesis will be mainly concerned with two 

questions.

I, What can be said about the isomorphism types of

two generator groups embeddable in G?

II. Let G be generated by two elements. Then does

there exist an element c in Q so that the elements (%,%)
-1 -1 .are a generating pair of G if and only.,if u u wu is

-1conjugate to c or c ?
Problems I and II are related, for they both involve trying 

to obtain information about the subgroups of G generated 

by pairs of words in (7.

In relation to I, it follows from the Ni elsen-Schreier 
Theorem [30 p.95'] that if G is free, then G has at most three 
isomorphism types of two-generator subgroups, namely, the 
free groups of rank 0, 1 and 2. If G is a one-relator group
with torsion, tnen the two-generator subgroups of G have 
been described in Pride [4Sj. In this thesis we investigate 
Problem I in the case that & is a small cancellation group.

We show that if G has a finite presentation satisfying a 
"suitable" small cancellation condition, then G has finitely 
many isomorphism types of two-generator subgroups. We will 
give precise statements of our results in Section 2 below.

3
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A general survey of what appears to be known concerning 
subgroups of small cancellation groups can be found in

When considering II, we use the following definition:
A two-generator group has Property k if G possesses an
element Ç/, so that (utv) is a generating pair of G if and

- 1 - 1  -1 only if w v uv is conjugate to c or o. .
It has been shown by Nielsen [34] that , the free group 
of rank 2 has Property A. Other groups have also been shown 
to have Property A :-

2 2 2 <7( 1 ) The Fuchsian group a , 6 , c , d ,abcd>i

where q > 1, (2,gj = 1. Then this group can be generated by

the two elements ah, act ^35j\ [soj and has Property A.
(See Kali a and Rosenberger , [21]j .

(2) <a,b\ n > 1. Then Rosenberger, [ss], has
shown that this group has Property A.

(3) <a,b,tj R li a, b) , Rz( a, b) t  ̂atb>. Pride
(unpublished) has shown that under certain conditions, this
group has Property A.

«(4) <a,b\ R ‘>, in ^ 4) , R not a power of a primitive. 
Pride has shown that this group has Property A. (see |l4]).

Dicks [d] has verified an analogous property to A .for the 
free algebras of rank 2 over a field. He has shown that if 

k is a field, then u and v generate y> (as a /i-algebra)
if and only if uv-vu is a non-zero scalar multiple of 

xy-yx-
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In Chapter III of this thesis we study problem II for small 
cancellation groups. In addition we give examples of 
groups <a,b; E > (where E is not a power of a primitive) 
which do not have Property A, (this should be viewed in the 
light of (4) above). A more detailed account of the contents 
of this chapter, and statements of our results are given in 

Section 2 below.

3
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SECTION 2 SURVEY OF THESIS

We begin with some definitions.

Let Y be an alphabet, and let W{X) denote the set of words 
on Y, that is, the set of expressions.

z ^ , m ^ 0 , E . = ±1 , X. £ Y,(i = l,2 ,...,m).1 ^ Tfi % u

Equality in f/(Y) will be denoted by =. An element of \J{X) 
will be called reduced if it does not contain an inverse 

pair x x ~ ^ , a ^%(z&Y), and it will be called cyclically 
reduced if all its cyclic permutations are reduced.

A length function on f/(X) is a function L :
f/{X) i— i satisfying L(C/7) = L(U) + L(F), L{U) = L{U~^),
for all UtV € W{X) • Therefore a length function on W{X) is 
completely specified by its effect on Y. If j ^ i x e X  is 
a set of non-negative integers, we define a length function

L , where L(%) = and L{x^ x^ ' ''^m  ̂ ~ i = L ^'x.'

The particular length function obtained by defining = 1 

for each x € X will be denoted by L^.

If F is the free group on Y , and w is a word in W{X), then 
we do not distinguish between w and the element of F 

that it represents. Equality in F will be denoted by =. 

Conjugacy in F will be denoted by

3
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Let E be a subset ot W{X) , and F the normal c losure of 7?
in F, then equality (mod N) is denoted by = or = , where

N G

G - <Y;F>. Similarly conjugacy (mod N) is denoted by
or . If w , is a subset of P/(X) , then we

N G 1 L
write s g p ^ ( , . . . , )  for the subgroup of G generated by
(w^Nt*.* ,w^N) t and we use the expression {w^,..•,w^) generates

G when we mean that ( , . . . , generates G*

The symmetrized closure of E is the smallest subset of 
W{X) which contains E and is closed under the taking of 
inverses and cyclic permutations. If E is the symmetrized 
closure of itself, then we say that E is symmetrized. If 
ut̂  ,ut^ are distinct elements of E, then % is a piece 

(relative to F).

For E a symmetrized set; p,q positive integers; x , a positive

real number; and L, a length function we define the small 
c a ncellat ion 
hypothesis as follows:-

C(p): No element of F is the product of fewer than p pieces

"~-lT(q) : Let 3 ^ If r^ , . . . , « F , where ^ Pg '
1 “ 1 >2 t fg" ,...,r^ # r^ , then at least one of the products

^1^2* ^2^3 ’ * * * ’ ̂ Tz^l ̂  ̂  reduced without cancellation.

Cj^(X): If wt € F , and w is a piece, then L(w) < XL(wt).

3
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^ In common with standard practise we write C'(X) instead of
IC (X ) . If E satisfies C(p) and G = <Y;F> then we often 
1

call G a C(p) group (With similar abuses of terminology for
^ other conditions). If F satisfies C(p), T(q-) where

1/p + 1/g = 1/2 (that is ip,q) = (6,3), (4,4), or (3,6),

then F is called a small cancellation set, and G = <X ;E>
-N is called a small cancellation group.

A word t is called a pr^remnant (with respect to F ) if 

tvL̂  , , ,u 6 F, and are pieces.1 p 1 * ' p

Let F = (%T,...,% ) be an n-tuple of words in f/{X) ,
1 n

We define two types of transformations on V :

-11. replace some u . hy u .

2. replace some u. hy u .u , where j i (1 $ < n)7, It/
In both cases it is understood that for h ^ i remains 
unchanged.

Any finite product of these transformations we call a 

Nielsen transformation, het V = (u^,...,v^) be another 
n-tuple in N\X), , Suppose 7 is obtained from F by a 

Nielsen transformation. Then we say U is Nielsen equivalrent 
to 7, and say that F, 7 lie .in the same Nielsen equivalence 

(NE) class of n-vuples. If Fis a generating set for a 
group G, then 7 is also a generating set for {?.
(See [30, p. 121] ) .



3

3

3

- 7 -

^ By [30,p.131] any generating n-tuple of
is obtainable from ( z _ , . b y  a Nielsen transformationi n
Thus F - has 1 NE class of generating n-tuples. n

Suppose F , 7 are generating n-tuples of a group F , then we 
say that they lie in the same 'I-system it'

^ is Nielsen equivalent to ( , . . . , ) , for some e e Aut (F).

The main work of the thesis begins in Chapter II. This 
chapter is composed of three sections. In the first section 
we state the main theorems concerning the two-generator 

subgroups of small cancellation groups, and derive some 
consequences of these results. We prove the theorems In 
the second and third sections. The method of proof is 
described in Section II.2, but a complete list of cases 

can be found in Section II.3.

Before stating the results of Chapter II, we need to make 
some further definitions.

Let iu,v) be an ordered pair of words in F(Y). Define 

elementary transformations Tmod N) as follows. —

Ng : (%,u) I— t (y,w)
N \ : (w,u) ^  ,v)

N 2 : ( w , u ) iuvtv)

N ^ : i u t v )  I—  ̂ i k  ^ u k , k  ^ v k ) , k ç W { X )

N : iu,v) I— > iu,v), u u, V - „ vCr G G
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3

2) Now il" (%',%') e((u,%), (% ^,u), (w%,%), (% ( w , V )}
then (w,u) and (w',i>') generate conjugate subgroups of F.
In particular (%,u), (w' ,u') belong to the same NE class of

^ generating pairs of F if and only if can be
obtained from (m,v) by a finite sequence of elementary 

transformations. (See [30 p.121]). The transformations 

2) N c, N 1 , N 2, N ^ , N^ we call free elementary transformations.

^ In addition to these elementary transformations, we need a

2̂ further transformation.

N^: iu,v) I— > {u^,v), where w = Uy= ,

sc^eR.^y >1 and ( a i y ) = ( a i > Y ) •

We call (N u elementary transformations^, the generalised F
elementary (GE) transformations (mod N). As sgp {%,%}F
and sgp {%!,%} are both generated by the pair (2̂ °'^^,%)
tnese subgroups are equal. Therefore if iu',v') is obtained

from iuiV) by a sequence of generalised elementary
transformations (mod F ) » sgp {%',#'} is conjugate toF
sgp^{w,u}.

A triple (f,g,h) of elements of f(Y) is called a factorisation 

of iu,v) if either
(i) u = f ^ g t V = f h *  or

(ii) u = f g f , ' V = h *

If (i) holds, then we say that the factorization is of Type I 
while if (ii) holds, then we say that the factorization is of 

Type II. If in either case, / = 1, then the factorization is 

said to be trivial.
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3
We can describe these two types cl' factorization 
geometrically. Any word in iu,v) can be considered as the 
label of a closed path in the 1-complex K consisting of 
two closed paths n ç joined at a single vertex ir :

—  1 —  1where the label on n is m, i^isv. If u = f g, v = f  h,

then we can identify the initial paths of n C  labelled 
«-1 so that we get Kĵ

where the labels on y,v,Ç are f,Qth respectively. If
u = f gft V = h, then we can identify the initial and

“ X ■terminal.path of n , labelled by f /respectively, so that 

we have ^jj *
K

Thus if (/,#,&) is a factorization of Type «7, {J = I or II)
end if ^ is a word in (w,y), then W is the label of a clo.sed
path w in # whose initial and terminal vertex is W .

J

Let W .if t g >h) be obtained from by cancelling
—  1 —  1adjacent letters /,/ or / ,/ in {0 < i < N ) .

Let Wo 5 Wif'^gtf^^h) or W(f~^gfth) (depending on the Type 
factorization J ) . Then there is a sequence ‘
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D

D

{y = = y*}■ M
where J7* is reduced in the letters Now each

is the label of a closed path to. in % whose initial'i d

(and terminal ) vertex is tt . We show this by induction on i, 
for it is already noted that W = Wo is the label of a closed 

path in Kj • Consider W^ = UV = = Uff or Uf ^fV.

-1 -1 I^ Then the subword ff or f fis the label of a closed path
^  which is a subpath of Deleting this subpath we oDtain

0). whose label is W. and whose initial and terminal vertex
are the same as w . _ . Thus if w . , begins and ends at ir,2) -2,-1 t-l
then Ü) . also begins and ends at n. ̂ ■

We call the labels of the subpaths n,v,Ç of to* (the path
whose label is W*), f~»g~ cind h-subwords of W* respectively.
The g- and %-subwords of W* are called F-subwords of W*•
We call the label of any subpath of to*, starting at tt or -rr, 
and ending at ‘nr or ïï̂ , an F^-subword of W*, Such a label

is a word in the elements (/,^,&).

Suppose g,h are non-trivial, and
(a) iftg$h) is a non-trivial factorization of Type I, and
- 1 - 1 - 1  . g gf h is cyclically reduced, or
(b) iftgih) is a non-trivial factorization of Type II,

- 1 - 1and g,h cyclically reduced, f gfifhf reduced, or
- 1 - 1(c) iftgtb) is a trivial factorization, and g h ghi

g^h cyclically reduced.
Then we say that the factorization is reduced.
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3 By a suhoonfugate of a set J of words in W(X), we mean a

cyclic permutation of a subword of an element of J.

D The main results proved in Chapter,II are:-

(THEOREM 2.3) Let R satisfy C (1/14) or C (1/10),T(4)L L
^ f or.'jS ome L, and let H be a two-generator subgroup of G, Then

either

(i) B is a free product of cycles^ or

) (^i) if (Wjz) generates H, then (w,z) can be transformed

by a finite sequence of GE transformations to (UiV) where

^  and there exists a reduced factoriza-

) tion (fsgjh) of (UiV), so that either, for certain integers

El,Eg,Eg of modulus 1, the elements of the set 

are disjoint subwords of a sub conjugate of R, or (fsg^h)

) is a non-trivial factorization of Type I and

sgp{%,%} - <UyV; u ^ ,(u~^v)^> where l,m,n 4 0,

) (THEOREM 2.4) Let R satisfy C_(l/16), or C! (1/12), T(4)1» L
for some L and let H be a two-generator subgroup of G, Then 

either

Î (i) H is a free product of cycles, or

(ii) if (w,z) generates H, then (w,z) can be

transformed by a fznite sequence of G'E. transformations to 

iu,v), where sgp^{u,v) ^  sgp^{w,z}, and the elements of a 

reduced factorization of (u,v) are pieces.

If R is finite and satisfies C (1/14), or C (1/10), T(4) 
then, by Theorem 2.3, there are only a finite number of triples 
iftgth) whose elements or their inverses are either = 1 or
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subwords of a subconjugate of R. Hence there are only 
finitely many conjugacy classes of two-generator subgroups 
of G which are not free products of cycles. However, as there 

is a bound on the orders of elements of finite order 
[27 p.261], the number of isomorphism types of two-generator 
subgroups which are free products of cycles is finite. There­
fore we have the following result.

(THEOREM 2.5) Let G = where R is finite and

satisfies C^(l/14) or (1/10),T (4). Then

(i) G has finitely many conjugacy classes of two-

generator subgroups whose members are not free products

of cycles,

(ii) G has fvnitely many isomorphism types of two-

generator subgroups,

I ILet R, be finite and satisfy C (1/14)or C (1/10), T(4)
(resp C^(l/16) or C^^l/12), T(4) Let { ( w,, y,) , . . . , 

be the smallest set of pairs of elements which contains 

(/ (/ ’̂gf^h) and (p^%), where range over
every subword of a subconjugate of #,(resp. where f,gth 
range over every piece relative to R), Then by Theorem 2^3, 
(resp 2.4) {( M/, y,) ,...,( )} includes a set of generating
pairs for the representatives of the conjugacy, classes of 
two-generator subgroups which are not free products of cycles. 
(Note that the number of pairs, A:, depends on the presentation). 

In the proof of Theorem 2.3, (resp. 2.4) we will describe an 

algorithm which takes any pair iwtz) and obtain from it a 
pair iutv)* If ( w , y )  is not one of the above list then



0

D

3

3

3

3

3

— 13 —

the sgp^(w,y) ( sgp^(w,2 )) is a free product of cycles

Suppose |%| = 2 and no element of R is a power of a primitive
in G, Then a sequence of GE transformations on a generating
pair of G is a sequence of elementary transformations. If,
in addition, R satisfies the small cancellation hypothesis
C_fl/14) or C_(l/10), T(4), then by Theorem 2.3, any L L
generating pair (w,a) of G is Nielsen equivalent to (w,y), 
where (w,y) has a reduced factorization w^ose elements 
(or their inverses) are subwords of a subconjugate of i?.
If R is finite, there are only finitely many such pairs, so 
that we have established the following:

(THEOREM 2.6) Let G = <a,b; R> where

(i) R is finite

H i )  R satisfies C^(I/14) or (1/10), T (4), and

(Hi) no element of R is a power of a primitive in G,

Then G has finitely many NE classes of generating paiTS,

Using a variation of the method of proof of the main theorems 
Pride has shown that condition (iii) is not necessary.
(See [14]). However the condition (i) that R is finite 
cannot be lifted. This is illustrated by the following:^

Let k be an integer and R be the symmetrized closure

of {r^,i = 1,2,... }, where 

r . - ab'^a b'̂  • * •a^b'^b » i = 1,2,...

and let G = <a,b; R>, Then R satisfies C'(4/%), T(4)
and G has an infinite number of NE classes of generating

pairs represented by {a,b'^ i i = 1,2...}
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^ We have conjectured that if G = , 6 ; /?> where each element
. of i? is a proper power, but no element of E is a power of a

I . ‘primitive, and satisfies C^(X) for ,suitably small X ,
. G will have one NE class. This conjecture is false if

the condition,that no element of R is a power of a primitive 
is removed, as the following example shows.

Let k be an odd integer, k >18, and for i = 1,2,.. . ,n 
r  ̂ = {ab^)^

Let R be the symmetrized closure of {r.; i - 1,2,..,??}
J 'V

(n may be « j, and G = <a,b; R>. Then R satisfzes C'(2/%),
T(4), and has n NE classes of generating pairs represented 

i 2 . ' ̂ by {((a& ),&); % = 1,2,...,%.}

The question as to whether a gioup has a finite number of
 ̂ NE classes arises when considering the nature of Aut(c),

(see [48],[49]). Let p , be the free group of rank 2, #
a symmetrized subset of F^,N the normal closure of R, and
G = F /N, Let n(#} be the group of automorphisms of F 

) ^ 4

such that = R, Each element (() of n(#) induces an auto­
morphism $ of G where , {w g F^)

) - ~
By Pride [48] if G has I NE classes of generating pairs, then

IAut G: n(#)| ^ I,

Therefore if G is a two-generator, finitely related, small
I Icancellation group satisfying C (1/14) or C_(l/10), T(4),L L

then it follows from Theorem 2.6 and the remark that follows, 
that Aut(G) is finitely generated (resp, presented) if and



D

D

3

3

3

- 15 -

/V
only if n(#) is finitely generated (resp. presented)

We finish Section 1 of Chapter II with an application of 

Theorem 2.4. We construct a two-generatort one-retator 

group which is not free, hut has every proper two-generator 

subgroup free.

Chapter III has five sections. The first is mainly expository 

and we state our results, which are proved in the remaining 
four sections.

Let G be a group, generated by %, and let be a
set of elements of G. We say that an element of G is a 
higher commutator on g^,,,.,g^ if it is an element of the 
set { [ g i g ^]} i where {[^ ^ ,...,^ ^ ]} is defined inductively 

as follows:
■ 1 •" 1[9i\ = and [g^,g^] = g^ g T  g^g^, (%,J = 1,2,...,Z)

If 2. > 1 then {[g • • • y g = {h;h = [h-^yh^ y

^2 ^  ̂[ 9-̂ * ••• y } * ^2 ^  ̂ ^  ̂ ^ ̂

Let y be a set of \ x \ elements of G* We investigate those 
sets y which satisfy one or more of the following conditions.

a) y belongs to the same NE class, or T-system of Gas y.

b) y generates G
c) A higher commutator on Y is conjugate to a higher

commutator on X or the inverse of such a commutator.
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Our main interest is in the case | % | = 2. In this case 
we will write X = Ka,b), T = {u,v). Until further notice 
we assume that G is a two-generator group. Then a,, b , 

c become:
a) iu,v) and (a,&) belong to the same NE class, or 

T-system of G.
b) {u,v) generates G.

±1C ) [UyV] [ayb] .

If G is free (G = F = <a,&>) then (u,v) satisfies a. if and 
only if (u,v) satisfies b . Nielsen [34] has shown that 
iu.v) satisfies c, if and only if (%,u) satisfies b,(and so a. )

Thus if G is a free group, it satisfies the following properties
±1A': [uyV] [ayb] iff (%,u) generates G

+ 1
(resp B,j,) : [u,v] ^  [a,b] iff (w,%) and {a,b)

belong to the same NE class ( resp. T-system),
, (resp C,̂ .): iu,v) generates G iff Ku,v) and (a,6)

belong to tsrthe same NE class (resp T-system).

Properties and can be shortened to saying,G' has one 
NE class (resp.T-system) of generating pairs. In general if 
G satisfies any two of the Properties A,B^,C^ then G satisfies 
all three. Similarly if G satisfies two of the Properties 

then G satisfies all three.

We discuss the following two questions:

3
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Question 1: Are there groups which satisfy one of the

Properties A,B^, or hut not all three? Similarly, are 

there groups which satisfy one of the Properties A,B^, or C^, 

but not all three?

Question 2: Can we show that certain types of groups

possess Property AjB^jB^/C^ or or if possible all five

properties?

In answer to Question 1, we show by means of examples that 
there are groups which satisfy one of A,B^,C^ but not all 
three, and there are groups satisfying one of B^,C^ but not 

Â . No example has been found of a group which satisfies 

Property A, but not B^ or C^.

We consider Question 2 mainly for the case of small cancella­
tion groups. Using methods similar to those of Chapter II

Iwe show that if G = <a,b; R >  is a Ĉ  ̂( 1/16 )-group or a 
C^(l/12;, T(4) -group for some L, then G has Property B^.
Property C has already been discussed in Chapter II.N ,

Ix should be pointed out that the results on Property B^^. 
mentioned in the previous paragraph have recently been 
generalised, in joint work with S.J. Pride [l 5 ]. In fisl 

using geometric techniques, we show that if G = <a$bi R> is 
a C(15) -group or a C(12), T(4) -group then G has Property B^ 
In addition, with regard to Property C^ we have recently 
established (using the results of Chapter II) that if

IG = <a,&; i?> is a C^(l/20) group, where for all r 6 R

3
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a) r is not a power of a primitive in G.

b) . r = > 5,
then G has one NE class.
(Note that we do not require R to be finite for this result.)

Work on Question 2 has been done by Pride for one-relator 
groups with torsion. In [44] he has shown that if 

G .= <a ,b ; 2̂  >, {m > 1) then G has Property (unless r is a 
power of a primitive - in this case,G may not have Property 

, though it has Property He has also shown that if
m > 3 then G has Property B^,(an account of this work is given 

in /[l5f). It is natural to ask whether the condition m > 3 

(in this latter result) can be replaced by m > 1. We give 
examples with m = 2 to show that this is not the case.
(The situation for m = 3 remains unresolved.)

It is natural to consider ways in which Property A might be 
generalised. One way would be to choose a fixed but arbitrary 
pair ia,b) from a group G , (so that {a,b) need not generate G ) 

and thus consider

Property A': [u,v] [a,b]  ̂ iff sgp^{w,u} is

conjugate to sgp^{a,Z?}

However even if G is free. A* need not hold [2 3 .

Another possibility is to consider more than two generators. 

We ask the question:- If G is an ^-generator group with
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fixed generating %-tuple ( a ^ , . T h e n  is there a word 
on M-variable such that the solutions of

' '
( 1 ) W {.X y X W i CL 2̂ y ••• y O.̂ ) y

are precisely the generating n-tuples of G?

Rips [51] has shown that when G = F = <a^y...ya > andn 1 n
IV is a higher commutator, then all solutions to (1) are
generating %-tuples of G . However not all generating
M-tuples are solutions. In fact it is well known that if
n > 3, and G = , then there is no word W as described
above. For if W were such a word, and w = Wia^y»*»a^)

+ 1then wa would be conjugate to w for each a € Aut F .
It is well-known that no such non-trivial word w exists 
[27], [30]. To show how bad things can be, we prove:

(THEOREM 3.4) Let F be a free group of rank n > 3,

and let N-be the normal closure of w in F , w ^ 1, Then

No. = 1 

a € AutF

It follows immediately from Theorem 3.4 that if
G = <x^yX^y . . . yX_^;W> then F^ is residually G. Since any
free group of rank greater than n is residually F , [36],n

we have :

(THEOREM 3.5) Let G be an n-generator, one-relator

group with n ^ 3 ,  Then any free group of rank greater than 

or equal to n is residually G.
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Residual properties of free groups have been studied in

several papers ([11],[22],[23],[36],[37],[38],[39],[63j). In
kparticular. Pride [39] has shown that if G = <a,b; r > yk > 1,

then Fr. (and thus F for n > 2) is residually G, unless r is 2 n7conjugate to [a,i>] for some t ^ 0. (If r is conjugate to
7[a,£i] , then Pride (unpublished) has shown that Fg is

residually G ) . The following question remains open: If
G = <a,i>; r> where r is not a proper power and if G does not 

satisfy a non-trivial law, then is F^ residually G?
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SECTION 1 PRELIMINARY RESULTS

In this section we introduce some of the results of small 
cancellation theory which will be used in later chapters.
The results in this section may be found in [25], and [54] 
unless otherwise stated. Wherever possible the notation will 
be the same as that used in the book [25, Chapter V] by 

Lyndon and Schupp'.

The following theorem is the fundamental result of small 

cancellation theory.

THEOREM 1.1 (Gveendlingers LemmaX Let F be a free group.

Let R be a symmetrized subset of F, with N the normal closure

of ,R. Assume that R satisfies the hypotheses C(p) and T(q)

where (q,p) is one of the pairs (6,3),(4.4) or (3,6).
If w e N, w ^ 1, then for some cyclically reduced conjugate

R7* of W, w * e  R or has the form - u^s ̂ . . . .u^s^ where each 
is an ■nemnein.t. The. n u n h e r  n of the,

and the numbers i(s^) satisfy the relation.

Z [p/? + 2 - s^) ] >
k — \

#

We do not apply Theorem 1.1 directly, out use the following 

two corollaries.

3
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COROLLARY 1.1 Let R satisfy and let w be

cyclically reduced.

Then either (1) w s R

or some cyclically reduced conjugate of w contains one 

of the foil-owing :

(2) two disjoint 1-remnants

(3) three disjoint 2-remnants

(4) four disjoint subwords, two 2-remnants, 

and two 3-remnants

(5) five disjoint subwords, one 2-remnant 

•' and four 3-remnants,

(6) six disjoint 3-remnants,

.
COROLLARY 1.2 Let R satisfy Q{A),T{A) and let w be

cyclically reduced,

Then either ( 1 ) w 6 i?
or some cyclically reduced conjugate w'̂  of w contains one of 

the following:

(2) two disjoint 1-remnants

(3) three disjoint 2-remnants

#

In particular we observe that if p satisfies C(6) then w 

contains at least one 3-remnant, and if R satisfies 0(4),

T ( 4 ) It? contains at least one 2-remnant.

The next result classifies the torsion elements in small 
cancellation groups, (see [27]).

3
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2) THEOREM 1.2 Let F he a free group, and let R he a

symmetrized subset of F s a t i s f y i n g o r  0(4),T(4). Let 

N be the normal closure of R, and G = F/R,
^ Then if w has finite order in G, there is an element

r Ç. R which is a proper power in F, say r = s , n > 1, and 

w -3̂ 3 where m is an integer, Moreover, w has order *

2) n/ (m,n) in G,

#

3 The following propositions concerning subwords of R are

needed in later chapters. They are originally due to 

Lipschutz, [24],[25].

PROPOSITION 1.1 If r = sxs ^y, then s is a piece relative

to the symmetrized closure of r.

—  1 — 1 — 1 — 1 PROOF: If s is not a piece, then sxs y = sx s y

Therefore x = y = 1 and r is trivial.

#

PROPOSITION 1.2 If r = isx)^sy, m > 1, then either

(1) {sx)^ is a piece relative to the

symmetrized closure of r,or

(2) sx,{sx)^ ^sy, r are all powers of a

common element, and r is a proper power.

PROOF: If {sx)^^^s is not a piece, since both {sx)^sy and
{sx)^^^sysx are cyclic permutations of r they must be identical
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Therefore {sx)^ ŝy and sx commute. As commuting elements in 
a free group are powers of a common element, (sx)^ ^sy,sx 

are powers of a common element 2 , and thus r = sxisx)^''^sy 

is a proper power of s.

#

In Chapters II and III we use diagrams to prove results 

concerning conjugate elements in small cancellation groups.
A diagram over a group F is an oriented map M and a function 
4) assigning to each oriented edge e of Af as a label, an 
element 4) (e ) of F such that if e is an oriented edge of M, 
and e  ̂ is the oppositely oriented edge, then 4>(e  ̂) = 4>(e)  ̂

If a is a path in M, a = ...,e^, then define
4) (a) = 4>(e^),...,4>(e^). If F is a region of Af, a label of D 
is an element 4> ( a ) for a a boundary cycle of D.
If R is symmetrized subset of F , an F-diagram is a diagram 
Af such that if 6 is any boundary cycle of any region D of Af, 
then 4> ( 6 ) 6 F.

LEMMA 1.1 Let N be the normal closure of R in F.

Then for any w in F , w  ̂ R if and only if there is a connected, 

simply connected R-diagram M such that the label on the 

boundary of M is w, (see [27, Chapter V]).

#

Thus connected, simply connected diagrams can be used to study 
membership of normal subgroups.
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An annular map M is a connected map such that -Af has 
exactly two components. Let Af be an annular map. Let K 
be the unbounded component of -Af, and let # be the bounded 
component of -Af. The intersection of the boundary 9M of Af 
with the boundary dK of K we call the outer boundary. 
Similarly we define the inner boundary, A cycle of minimal 
length (that does not cross itself) which contains all edges 
in the outer (inner) boundary of Af is an outer (inner) 

boundary cycle of M, The next two lemmas show that annular 
diagrams can be used to study conjugacy in F/N,

LEMMA 1.2 Let M be an annular R-diagram, If y is

a label of an outer boundary cycle of M, and z is a label of

an inner boundary cycle of M, then either y and z are

-1conjugate in F/N or y and z are conjugate in F/N,

.
LEMMA 1.3 Let y and z be two cyclically reduced

words of F which are not in N, and which are not conjugat e 

in F, If y and z represent conjugate elements of G, then 

there is a reduced annular R-diagram M containing at least 

one region such thati

If a = e^,,,ep and x = f^,,,fj^ are respectively outer and 
inner boundary cycles of M, then the product ^ { e^),,, ̂ {e 

is reduced without cancellation and is a conjugate of y 

while the product *(f^)...*(f^) is reduced without 

cancellation and is a conjugate of z~^,

3
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We call M a conjugacy diagram for y and z\ When i? satisfies
the small cancellation condition C (1/ 6), or C (1/4) andL L
T(4) the next theorem describes the geometry of the conjugacy 
diagrams.

THEOREM 1.3 (The structure theorem for suttabte

annular R-diagram^, Let R satisfy either

( i ) C^(l/6)

C^(l/4) mnd T(4).

Let M he a reduced annular R-diagram, Let t he

respectivelyi the outer and inner boundaries of Af. Assume
. . . . .  - 

that if D is a region of M with a, - dDna connected then

l Ia?'(<̂ \.)) is not >l/2L(^(D)). Assume the same hypothesis with

a replaced by x,

( 1 ) If 'M does not contain a region D such that 9 D
contains an edge of both a and x, then M has the form (a) 

if R satisfies C^(l/6), and form (b) if R s a t i s f i e s  C^{l/A) 

and T (4).

(a)

a

(b)

a

(the number of layers is always 2, however^ the number of 

regions per layer is variable,)

y

D
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(2) If M does contain a region D such that 9Z)

^ contains an edge of both a and t, then M has the form.

0
a

0

(the number of 'islands' and the number of regions per 

'isLand^are variable),

D
#

Note: In [27 pp.252-259] this result is proved when L
Z) is the usual length function Lĵ . However, as observed by

Pride, the result can easily be proved for a general length 

function.

In Chapter III we make use of the strengthened form of 
the Freiheitssatz [58]. This is a single theorem which 
strengthens both the Freiheitssatz of Magnus[27 p.104] for 
one relator groups in general, and Newman's "spelling theorem", 

[27 p.109], in the torsion case.

THEOREM 1.4 (The strengthened form of the Freiheitssatz)

Let G = where r is cyclically reduced. Write

r = z^i n where z is not a proper power in the free group

on (a,bjCi,..). (Elements of the symmetrized set r^ 

generated by r thus have the form (z*)^ where z* is a cyclic 

permutation of z~^). If an equation u = v holds in G, where 

u and V are freely reduced words^ and v omits a generator
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which occurs in both r and w, then u contains a subword 

t of an element of r* such that t = and S’ contains

every generator which occurs in r but not in v,

,
If n = 1 ,  then t is simply s.
In the case y = 1, s contains every generator that occurs 

in r.

3
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CHAPTER II

TWO GENERATOR SUBGROUPS OF SMALL 
CANCELLATION GROUPS 

SECTION 1. SUMMARY
It has been shown that small cancellation groups satisfying 

C(4) and T(4), or C(6), with certain trivial exceptions, 

possess a free subgroup of rank 2.
(Collins [4], A1 Janabi [20]).
In this Chapter we consider the isomorphism types of non-free
2-generator subgroups of small cancellation groups. However,
in order to obtain results, we restrict our attention to
small cancellation groups satisfying C’(1/10) and T(4), orL
C'(l/14).L ;

There are two similar theorems which we prove in Sections 2
and 3 of this chapter. One of them applies to small
cancellation groups satisfying C» (1/10)and T(4), or C'(l/14),L h
and this is used to derive certain general results concerning 
these small cancellation groups. The details can be found 
towards the end of this section. The other, although 
satisfied by a smaller class of small cancellation groups 

( C ̂ (1/12) and T(4), or C^(l/16))is useful, in particular, when 
dealing with applications of the results to specific groups. 

An example of this is also given.

The method of proof of the theorems is algorithmic and given 
a finitely presented small cancellation group satisfying 
the required small cancellation hypothesis, provides a means 
of determining the nature of any 2-generator subgroup defined 

by a given generating pair.

3
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In order to present the theorems, we need to make some 

3 definitions.

Let X be an %-tuple , and Wix) be the set of words in X 

3 Let Fix) be the free group freely generated by X; R a
symmetrized subset of cyclically reduced words on X\

jp
R = <R> , the normal closure in Fix) of R; and G = F/N.

3

We denote equality in Wix) by = ,

equality in Fix) by = ,
3 and equality mod # by ÿ  or ^ .

Similarly we denote conjugacy in Fix) by ,

3

3

and conjugacy mod N b y o r  ^  .
. G N

Let i u , v )  be a pair of words in W i x ) .  We define the following 

elementary transformations (mod#) on (w,u):

No : iu i V ) iv,u) ,

Ni : iu,v) iu  ̂,v) ,

Nz : i u t V ) h i  Kuv,V) ,

N^ : iUfV) {k^iik, k" ̂ vk) f where &: 6 #(%),
N^ : iu,v) iü,v) if u = Ü, V V .

In addition to these, we need to define a transformation
3

which can only occur when one oi the elements of R is a 

proper power:
N^ : iu,v) h-̂  iui,v) , where u = x ^ , w , = x^^ ,

r = X r e  #,Y>1, ( a , y ) = ( «i * Y ) •
kWe call the transformations No , N% ,N%,N , N N

^ g eneral^ sed elementary transformations (or GE transformations )

mod N.
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If no element of /? is a proper power, then there are no 
possible transformations of type N^. In this case, a 

sequence of GE transformations (mod #)is the same as a 
sequence of elementary transformations I mod #). The 
transformation No,Ni ,Na,N^,N^ are called free elementary 

transformations.

A factorization of (u,v) is a triple if,gth) of words in 

W{x), where either
(i) u = f~^g, V = f~^h, or

(ii; u = f gf ̂

In the first case, we say that the factorization ^s of Type J, 
and in the second case we say that the factorization is of 

Type II, If f = 1» then we say that the factor^zat^on is 

trivial.

We assume that sgp {w,î>} is not cyclic so that at least two 
of the elements of a factorization of (w,y) are non-trivial, 
and if the factorization is of Type I I ,  then g and h are 

non-trivial.
Suppose ^ and h are non-trivial, and iffg,h) is
(i) a non-trivial factorization of Type I and 

g^^fh ^gf ^his cyclically reduced, or
(ii) a non-trivial factorization of Type II and 

f~^99fhh is cyclically reduced, or
(iii) trivial and g~^h~^ gh, g and h cyclically reduced, 

then we say that (f,#,&) is a reduced factorization of (w,%)

We will show in the next section, (Lemma 2.3) how {u,v) can
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be mapped by a sequence of free elementary transformations 
to a pair ) with reduced factorization )

where hif\g^,h^) ^  L{f,g\h).

Until further notice let (u^v) be a pair of words with a 

reduced factorization(fjgjh) of Type J, (J = 1 or 11),

In the algorithms described in this Chapter, we shall, in 
each step use a sequence of GE transformations which maps 
the pair iu,v) to a pair with a reduced factorization of 
shorter length. This can be repeated until we obtain a pair 
of words in #(%) with a reduced factorization, and which 

satisfies one of the three properties defined below.
In order to define two of these properties we shall need to 
use the following set 5, where each element is conjugate 
to an element of /?, and depends on the factorization (f,g,h) 

and its Type J. .
ALet S be the set of all words such that

(a) each element of S is a proper power, and freely 
conjugate to an element of i?, and
(b) if is of Type I, then each élément of S

has the form

^  0, a ^ 0

and if,g,h) is a permutation of if,gth);

2) if if,g,h) is of Type II, then each element of § is freely

equal to the forms

(f ^g^fh^ or ih^f ^g^ e' = ± 1 ^
2) 0 ^ 0 ,  a ^ O .

3
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We say that the pair (w,y) has Property 1 if 
 ̂ # n sgp{w,%} is the normal closure of S in sgp{w,y}.

We say that the pair (u,v) has Property 2 if either 
^ (i) for certain integers ei,e % ,c 3 = ±1, the non-trivial

elements of the set { ^ ^ ^ ) are disjoint subwords of a 

subconjugate of an element of R, or 
^ (ii) The triple is a non-trivial factorization

of Type I, and N n sgp{w,y} is the normal closure of

(9"'%)"
^ for certain integers >1.

We say that (w,v) has Property 2* if the following hold:
^ (a) There exists an r e. i? so that the non-trivial

elements of the triple {ftg,h) are pieces relative to the

symmetrized closure of r.
3 (b) For any r e R, r ^ S', for which there exists a

reduced word W* equal to a word in (w,y), and a subword t 
of W* , which is a p-remnant of r , the non-trivial elements 

3 of the triple (/,#,%) are pieces relative to the

symmetrized closure of r.
(where P = 2 iflR satisfies T(4), and P = 3 otherwise).

3
The two main Theorems proved in this Chapter are the 

following:
3

THEOREM 2.1 Let R satisfy (1/14) or (VlO), !T( 4 ) .

Let (UjV) be a pair of elements of F, where sgp^{w,y} is 

3 not cyclic.

1
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Then (u,v) can he transformed hy a finite sequence of

3 ■ . . ■ .GE transformations (modN) to a pair which satisfies Property

1 or Property 2,

3

3

3

3

We say that (w,y) is root-clo sed (rel R) if for all
^ i?,n>l, is not conjugate in G to an element of a

generating pair of sgp^{w,y}, for all m € 25 .

THEOREM 2.2 Let R satisfy or c|̂ (l/12), t(4).

Let (U3V) he a pair of elements of F 3 where sgp^{w,y} is 

not cyclic. Then

(a) (%,%) can he transformed by a f i m t e  sequence of 

GE transformations {modN) to a pair which satisfies Property

1 or Property 2 *̂ —
(b) if is root-closed {rel R ) 3 then either

can he transformed by a finite sequence of elementary 

transformations {-modN) to a pair which satisfies Property 2^, 
or sgp^{%,%} is free.

In.order to use these results, it is important to say 
something further about those pairs that satisfy Property 1.

LEMMA 2.1 If (u.v) is a pair of elements of F with

reduced factorization {f3Q 3h) arid either

(i) satisfies Property I 3 but not Property 2  ̂ or

(ii) satisfies Property I 3 hut are not all pieces.

Then sgp^{w,y> is a free product of cycles.

This Lemma will be proved in Section 2.2.
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Now if the pair (w,z) of words in W(x) is obtained from the
 ̂ pair (u,v) by a sequence of elementary transformations No,I^^

k ■■Na, N , N_, then sgp_{w,y} sgp {w,g}. This can be seenCr U (7
by considering each of the elementary transformations in

■N :■ turn.
In fact this is also true of N ^ , for let N^(u,v) = (uj ,v) 

where u 5 a:®, Wi = 1 , r = x ,r € R , and (a ,T) = (oi.r)
 ̂ Then the pair generates both sgp {w,y} and

sgp^iw,,V).

3 Using Lemma 2.1 and the definitions of Properties 2 and 2*

we have the following:

■V , ITHEOREM 2.3 Let R satisfy C^(l/14) 3 or C^(l/10),

T(4) for some length L and let H be a two-generator subgroup

of G, Then either

3 (i) E is a free product of cycles 3 or

(ii) if {W3Z) generates H 3 then {W3Z) can he transformed

by a finite sequence of GE transformations to (w ,%;) where

3 sgp^{w,u} hJ sgp^{w,z}, and there exists a reduced factoriza-G G

tion if3g3h) of  ( % , r ) ,  so that either for c e rt ain integers
' ' ,

E , E *  equal to ± 1 , the elements of the set if3g »h } are

3 disjoint suhwords of a s ub co njugat e of  /?, or ( f , # , % )  is a

non-trivial factorizat ion of Type I and

sgp{w,y} = <u 3V;u^ 3V^ 3 {u ^v)^ where 4 0»
3

THEOREM 2.4 Let R satisfy C^(l/16), or C^(l/12),
T(4) for some length L and let H he a two-generator subgroup

3 of G. Then either

3
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(i) H is a free product of cycles, or

3 (ii) if iWfZ) generates H, then (w,z) can be transformed

to iUfV) where sgp_{w,y} sgp_{w,a}, and the elements of
Lr Lr

a reduced factorization of {u jV)are pieces.

The usefulness of Theorem 2.3 is demonstrated by the following 
results.

THEOREM 2.5 Let G = <X;R> where R is finite and

satisfies C (1/14) or C (1/10), T(4). Then L JL
3 {i) G has finitely many conjugacy classes of 2-generator

subgroups whose members are not free products of cycles,

(ii) G has finitely many isomorphism ftypes of 2-generator

3 subgroups. %

In order to see this, note that by Theorem 2.3, for each 
3 conjugacy class of two-generator subgroups whose members are

not free products of cycles, there exists a factorization 
where two of the elements are subwords of elements o f R \  and

3 the third is a product of at most two words, each of which is
a subword of an element of R,  Since R is finite, there are

only finitely many such factorizations, proving part (i).

By (i) there are only finitely many isomorphism types of two- 

generator subgroups which are not free products of cycles. 
Also since R is finite, there is a bound on the orders of 
elements of finite order in G [27,p281], so only finitely 
many isomorphism types of 2-generator free products can occur 
as subgroups of G,



3

3

3

3

- 3 7  -

A result, similar to (i ) cannot be obtained for 3-generator 
subgroups. In [49] Rips shows that given X>0, and a finitely 
presented group 4, there is no exact sequence.

Iwhere B is a finitely generated C (X)-group, and C is 
generated, as a group, by two elements Ci, Cg. In a letter 
to S.J. Pride, Rips has pointed out that C is not free. Thus 
if A has an infinite family € I) of pairwise non­

conjugate cyclic subgroups, and if h is an element of B, 
mapping onto a generator of D.jii e Z), then the subgroups 

sgp{B^,C l ,C 2}» a  € I ) , are non-free and pairwise non­
conjugate 3-generator subgroups of B.

Suppose a group G is defined by means of a presentation 
<X;R>t then a primitive of G is an element which is a member 
of a generating |%|-tuple of G.

THEOREM 2.6 Let G = <a,b;R> where R is finitej and no

element of R is a power of a primitive of C, and R sati sfies

C (1/14) or C (1/10) , T(4) . Then G has finitely many NE L L
classes of generating pairs.

3 (The result is well-known if C is a free product of cycles). 
As no element of R is a power of a primitive in C, a 
sequence of GE transformation (mod N) on a pair of generators

3 of C is a sequence of elementary transformations (mod N) ,

Thus if G is not free, by Theorem 2.3 each generating pair 
(w,z) of G is in the same NE class as the generating pair 
iu,v) of Gt and a factorization of {u,v) is such that two of

3
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the elements are subwords of R, and the third is the product
3 of at most two words, each of which is a subword of R, Since

i? is finite, there are only finitely many such pairs.

3 Using a modification of the method used to proVe Theorem 2.6,

Pride [14} has shown that the restriction that no 
element of i? is a power of a primitive of G in the above 
theorem is not necessary. However, the following example 

shows that the condition that R is finite in Theorem 2.1 

cannot be omitted.
3

EXAMPLE 2.1 Let k be an integer, K :̂ 16 . For i = 1,2,3

let ’

, -L ,2, 7% & 7% ,r . = ab a o •••,a b b

Let R be the symmetrized closure in F = <a,6> of{rr,i = 1,2,...} 
and let G =<a,b', R>. Now R satisfies T(4). In addition R 

satisfies C_ ( 4/fe) In order to see this note that the largest 

pieces contained in a cyclic permutation of r. are 

6^ 6^ + 1 a and b'̂
I

Therefore /? satisfies C ( \) where

/\./k ̂  max{2i + l + k , k+i + 1, and 2k+i-3}. / {ki + l+{1 + 2+, . ,+k)
t ;In particular, R satisfies C (1/4).

We will show that G has an infinite number of NE classes of 
generating pairs, represented by {(a,6^); i = 1,2,...}.

In C , b~^ = a b'̂  6^ ,,.a^ 6^, so that
{a,b^) generates G. We show that for i , (a,&^), (a,B )
are not Nielsen equivalent.
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By Nielsen [32] it suffices to show that [a,B^J, [a,6^]^,
(e = ±1) are not conjugate in However (by Theorem 1.3)
if they were conjugate in C, since they are cyclically 
reduced, but not freely conjugate, there would be a reduced 
B-diagram Z?..

or

with the label on the outer boundary [a,B^J and the label on 
the inner boundary [a,6 ] . Now any subword of [ a , 6 j or
[a,B^] which is also a subword of an element of B is a piece. 

Thus all edges of regions of D are labelled by pieces which
Icontradicts the fact that R satisfies C (1/4).

ë

We have conjectured that if C = <a,6; R> where each element 
of R is a proper power, and where no element of R is a power

Iof a primitive, then if R satisfies C (X) for suitably small 
X, G will have one Nielsen equivalence class of generating 
pairs. The following example should be noted in connection 

with this conjecture.

EXAMPLE 2.2 Let k be an odd integer with fe^l2, and
for i = l,2',3...1et

Then each is a power of a primitive in F = <a,b>. Let 

R be the symmetrized closure in F of i =1,2,3...,^}
(n may be «>) , and let G = ca,6; R > , Now R satisfies T(4).
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Also the largest piece contained in a cyclic permutation of
7* 7* Ir . is b ab , and so H satisfies C {2/k). We show that G

7,

has at least n Nielsen equivalence classes, represented by 
= 1,2 ,...%}.

Let k = 21+1. Then so { { a b ^ , b )  generates
G , Now for j, {{ab^' ,b) are not Niel sen

3 —  equivalent. To show this, it suffices to show that the

cyclically reduced forms of and [.{ab^)^,b]^
that is U = a ^b ^b ^ab'^ab and V = {a ^b ^b ^ab^'ab)^

3 (e = ±1), are not conjugate in G» But if they were conjugate,
since they are not freely conjugate, there would be a reduced

^-diagram D:

or

with the label on the outer boundary U and the label on the 
inner boundary 7. (See Theorem 1.3)
Now any subword of G or 7. which is also a subword of an 
element of R is no more than 2 pieces. Thus each internal 
edge of D is labelled by pieces, and each boundary edge is 
labelled by at most 2 pieces. This contradicts the fact that 
R satisfies C {2/k),

#

The question, whether a group has a finite number of Nielson 
equivalence classes arises when considering the nature of 
Aut{G),
Let Fg be the free group of rank 2, F a symmetrized subset of 

F g , N the normal closure of R, and G = F^/Æ.
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Let U{N) be the group of automorphisms 4) of such that

 ̂ N<p = N •

Each element <}) of n(#) induces an automorphism $ of G where

wN^ = W(^N (w e Fg) .

 ̂ By Pride [48] if G has & Nielsen equivalence classes of

generating pairs.
lAut(G): n(N)^ ^  & .

^ Therefore if G is a two-generator, finitely related, small
» »cancellation group, satisfying C^(l/14) or C^(l/10), T(4), 

then it follows from Theorem 2.6 and the above remark that 
 ̂ kut{G) is finitely generated (resp. presented) if and only
—  if Jl{N) is finitely generated (resp. presented). Some

results concerning n(F) can be found in [48], [49].
3
" We finish this section with an application of Theorem 2.4.

3 THEÇrREM 2,7 There exist two-generator, one-relator

groups which are not free 3 but which have every proper two- 

generator subgroup free,

3
To show this we construct the following group 
Let ii be an integer, with k ^ 3 1 .  Let

.k ,k+i n'lkr = ab ab ,,,, ab

3 and let G = <a,b; H>, where R is the symmetrized closure of
r in F, ( F = <a,b>). Then R satisfies T(4) and C (1/12) 

(since the largest piece contained in a cyclic permutation 

3 of r is b^^~^ab^^''^) ,

3
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Let iwiz) be a pair of elements, of G, where sgp^{w,2} = H 
is a non-cyclic, non-free subgroup of G, Then as no element 
of H is a proper power, all pairs of words in G will be 

root-closed (rel /?). Therefore, by Theorem 2 .4 ( i i ) , (w,z)

is Nielsen equivalent in G to a. conjugate of the pair {u,v), 

and the elements f\g,h of a reduced factorization of (u,v) 

are pieces.
Since H* = sgp_{w,y> is non-free, H* contains a non-trivialG
word w = 1. By small cancellation theory (See Corollary 1.2),(j

2j- will contain a 2-remnant of i?. But any 2-remnant of R must 
have a subword z where

2 = a h ^ a b ^ ^  aĥ '* ab^^ a

for distinct J 3 , J ̂ , J 5, and where + ï for some
i, l^  /< 5 .  Note that 2 is the product of no less than 6 

pieces.

We use the result that f,gth are pieces, and the fact that 

any piece is of the form {b^^ab^^)~^ or ( <7 , <7 1 , <7 2̂  01
to give specific expressions for f,g,h, namely

f = (6®'‘ g = (b"'' ^, h = (è”‘

3 where 61,62,63 = ± 1 ; 8 , X , ̂  = 0 or 1; 1 t Iz i ,rn 2 jn i ,n 0 .
 ̂ yBy examining the maximum powers, g, of b in words of form ab^a,

where ab^a^is a subword of a word in (%,%),we show that as a. must • 

also be a.subword of a word in iu,v) ,f= il,g = c T ^ é b~^ as required.'

We first show that iftg,h) cannot be a non-trivial factoriza­
tion of Type II. For if this is the case, as 2 is a positive

3
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word in {a $b), z must be a subword of or f ^g^,

cx 6(a, $ > 0). We assume a is a subword of g fh , for the other
case is similar. Then z is a subword of

However, there can be at most four distinct integers j, such

that ab^a is a subword of the above word, and this contradicts

OUT definition of 2.

Suppose the triple {ft g, h) is a factorization of Type I.

Then as H* is non-cyclic, at least two elements of the set 
fftgth} are non-trivial. It can be seen that the triples 

( f^ , g^ , ) , {g^th^*f^)t ( • f^ t ) are reduced factorizations
of Type I of pairs of elements that generate subgroups 
conjugate to H* • Thus we may assume that g, h are non-trivial, 
and if f is non-trivial we can choose { u, v) and its factori-

_ Xzation so that e % = e 3 = 1. If f is trivial, then as (1,g %), 
(1,#,% {l,g ^ t h ^ )  are reduced factorizations of {u^tV)t

{UtV ^), (% respectively, we may still choose ( w, y)
and ( f , s o  that 6% = e 3 = 1. If A = M = 0, then iftgth) 

is not reduced. By the symmetry between g and h we can assume 

A = 1. Thus 2 is a subword of a positive word in

We have four cases to consider, depending on the values of 

6 and y.

(a) Suppose 9 = M = 1. Then there can be no more than
■jfour distinct integers j where aZ?'a is a subword of a word

in { Ut v) t namely Ag+Mi.Mz +&i,  ̂z+mi t mi +&i, which contradicts
our definition of a*
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(b) Suppose e = 1, |i = 0. Then there can be no more
than three distinct integers g where ab a is a subword of a 
word in (%,y), namely Ag+Mi+Mz+Ai, Ag+mi.mz+Ai, - a contra­
diction of 2 .

(c) Suppose & = 0, y = 1. Then there can be no more
■fthan four distinct integers g where ab a is a subword of a 

word in (w,y) namely m 2 + A ̂ + A 2+% i , % 2 + ® 2 i » m^ + Ai + Az+mi, 
% 2+Ai+A2+M; - a contradiction of 2 .

(d) Suppose Ô = y = 0. Let A1+A2 = A, %i+%2 = j
(A ,% > 0 ) .  If ab a\ab- a are subwords of a positive word

in {b^b^f ab^^ tb^b^) t then g = m 2 + (A+ n)a +A+oti,
j+1 = ^2+(A+%)ai+A+m1. • -
Therefore A+% = 1. However, we assumed h is non-trivial, so 
that A = 0 and % = 1. Thus

f 5 1, g = b^^ab^^, h = b. -

If nil m 2 0, then iftgth) is not a reduced factorization 
So it follows that (f,#,&) = (l,a,&), and (%,y) = (a,6 ) as 
required.

#

3
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SECTION 2 PAIRS OF WORDS AND FACTORIZATIONS
In order to prove Theorem 2.1 and Theorem 2.2 we need 
to start with an arbitrary pair of words (%,y) in {/(a;), 
and describe the transformations which will map (%,y) to a 
pair of words that satisfy Properties 1,2 or 2*. However, 
instead of working directly with the pair (w,y) it has been 
found to be simpler to use a factorization of (w,y) and 

^ transform the factorization using the factorization transforma­

tions defined below.

So that we can reconstruct a pair (w,y) from a factorization 
it is convenient to write or

according to whether iftg,h) is a factorization of Type I or 

II respectively. We say that the factorizations 
if,g,h)^ are equal if and only if either J = J' or f = 1,
( J,f7' = I or II).

ILet {ftQth.) be a factorization of (w,y), then we define the 

following factorization transformations:

I
{ fi g, b)^ ((f ^,2̂ ,%^)%)^, where n permutes

( f , <7 , ?z) , e = tl.

I kgi* I

T gl
{f,ff,b) G , {f',g',b')t where /' f, g' h' b

— I
(ftgtb)^ ^G . (f-,g^,h^), where = died )^ ,

fi~^= d(cd)^^, g = {cd)^c, g^ = (cd3^'c, ;

Yr (dc) , T>1. r e. R; H , V , H ̂  ̂ > 0;
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(K+T + 1 , ^ )  = (fi+Vi + l,T)

In the second transformation ^S^^, if %(or A) = 1, then
we write sî ( or ^S^).

I IA IWe say that Sq, S , are free faotorization transformations 

(of Type I).

For example, let (ftPth)^ = (a ̂ Z>,i>,a)^ where a,& €. X so that 
u = b ^abt V = b ^a^. Then 

■ I
(a ^b ,b t a)^ ^ V  (a,&,a a factorization of (a ^b^a ^b)

/ -1, , \I , -1, , 2,1 , , , 2 , I(a b-tbta)   ^ (aa b,ab ,a ) F  ̂ (&,ab,a ) , a

-1 - 1 2  rfactorization of (b ab,b a ) and if a € Z?, t> 1, and is

-1 Ian integer such that (ai,y) = 1, (a Z?,Z),a) ______ f
—  I

(a ^,l,aZ?  ̂  ̂  ̂ (a ^,aZ)  ̂ ^ , which is a factorization

of (a“ ‘.a^fe~^).

Note that in each case, if ( / 1 , <71 , Zz i ) ̂  is the new factorization,

-1 -1 -Ik - 1 - 1sgp{fi Qitfi fi, j ^  sgplf g,f h} , except in the last case

when sgp{.fi ^gi,fi ^h) ~  sgp{.f <̂7»/ ^h}, ^

If (/,<7,Z?.)^  ̂ is a factorization of (u,v) then we de'fine the 
the following transformations.

where ■

E 1 , e 2 = +1 or -1.

T T Z(_ I I A _ - __
(f.p.h)   ^  {kfl,kgk~,li.~hll) , k,l e W  (x)
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TT IT
if,g,b) G ^ (f ' ) where f /' , f?' . b %'

-II
 ̂ where # = <7i - c^':

r -/ c'^;r e a, Y>l;K,Ki>0; (f,?) = (Ki,?).

In the second transformation, if &(or &) = 1, then we write
silt (or ksll).

We say that Sq^, are free factorization transforma­

tions {of Type II).
For example if (f,#,%)^^ = {h,a,o^b) so that u = b ah t 

2y = a 7?, then
II

(Z>,a,a^b)^^ ^ °  ̂ ( Z?”  ̂, a^Z?, a) , a factorization of {ba'^bb ,a)

b 11
( 7>. g . a^b )  ̂  ̂ ( Z?̂  , Z)gZ?~̂  , ĝ Z? ) ̂ ^ , a factorization of

{b~^bah"^b^ ,a^h) , ‘ if g'^e i?,Y>l , then if (oi,Y) = 1, we
— II

have (fe,a,a^i)II . (fc,a“ ‘,a &) a factorization of

Therefore as in the previous set of transformations, if
* 1(f 1 » i » Zz 1 ) i s the new factorization, sgp{/ gf*b} r>j ,

sgp{.f 1 , Z21> except in the last case when sgp {f,^gf^'h^r^:■

sgp {f 1 1 . Zî 1 }. ^

In general if eZ = I or II, we only apply factorization 
transformations Sj,, , S^ , S^ to a factorization of Type tZ.
However, as the trivial factorization can be regarded as a 
factorization of Type I or Type II, we can apply any of the 
factorization transformations to it. Any factorization^^ 

(ftPtb)^ can be mapped by means of and to a trivial

factorization of the same pair {u,v), so that by this device
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we can change from a Type I factorization to a Type II 
factorization, and vice versa.

We say that the factorization {f^gth) , ( f
are weakly related if there is a finite sequence of factoriza­

tion transformations mapping (f,p,%) to ( f . If .
— I — IIthis sequence excludes transformations of types and S_ ,G G

j Ithen we say that (f,#,%) , ( f  are related..

A transformation of type will map {f,g,h)^ to 

( ( f ̂ , <7  ̂, ) if) ̂  , E = ±1, n a permutation of if,gth). Thus
Ithe transformations of type form a group of order 12.

(That is, the group is isomorphic to the direct product of
and Fg the symmetric groups on 3 elements.) A transforma- ■J. o

tion of type S ̂ ̂  will map (f,#,%)^^ to or
1 p T X(,f ih^^tg M  , E 1 , E 2 = ±1. Thus the transformations of 

IItype S 0 form a group of order 8 . (That is, the group is 

isomorphic to the direct product of three copies of Z  ̂ )

We say that the factorizations (f,gth) , ( f ,#',%') are 

equivalent if
if.g.h)-^ 0 = (f' ,g< ,h'f' —

and Q is a sequence of factorization transformations of types
I IIS 0 and So only.

Let S be a factorization transformation, where 

 ̂.f ’ <7 ’ Zz ) ~ ^ ̂ '

Let ( / . g i Z i ) ' ^ »  (fi . <71 » Zz 1 be f actori zat i one of (%,% ) , and 
(w 1,y 1) respectively.
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J  - T J
Suppose S is of type S\ ,■ If {f,gth) S = ihfftg) 

then (wi,yi) = (y ^ ,y %). However
-1 -1( W f y ) N 1 , N 2 , N J , N g , N J = ( y , y u )  •

If {f i g 1 h) S = {f t g t h ) then (%i,yi) = (fg » fh ) 

However (%,y) N ̂ , N „ , N ̂ , N ̂  ̂ ^ ) ,

Suppose S is of type S,^. If if,g ,h)^^ .S^if,g~^^h)^^'

then iuitVi) = if ^g f̂$h) However (w,y)N, = iu ^,y)
If ift9th)^^ S = if ^yhtg)^^ then iu^tV^) = ifhf

•f—X f — 1However (%,y) NpN;' = (.y' ,u) .

y I g y  i i P  ISuppose S is of type S or S . Then if,g,h) B 

. = ikfA. kgt.khl)^ or (.f,g,h)^^ S = A k f t  ,kgk~'^
t lIn both cases iui-Vy) = iu,v)' = (w,y)N .

Thus if S = Sg^ or , there exists a sequence Nef transforma­

tions of types Np,Nj,N2,N'̂  so that 

iUfV)^ — iu I, V I ),

If s = s 3̂  or S then it can be seen directly from theG G
definition that there exists an elementary transformation N
of type N or N respectively, where G G

( U , y ) N = ( M 1, y 1 )

rTherefore If if,g,h)^ is related (or weakly related) to
J(fi'Pi'^i)  ̂ then there exists a sequence of elementary 

transformations (or GE transformations) which maps iu,v) to 
iuitVi)* In fact, as we shall show in the next lemma, the 
reverse situation is also true. That is, if a sequence of 
elementary transformations (GE transformations) maps iu,v) to 

( y 1, y ] ) then if,g,h)^ is related (weakly related) to ( f i » <7 j * Zz i ) *



3
- 50 -

^ LEMMA. 2.2 Let ( g and ( he factori-

■' ; ' - . . ■ , /  . zations of (UyV) and (Ui,v,) resvectively, Then (fjgfh,)
' Jand (fi f Oi shy ) V are related or weakly related in G if and.

^ only if Tu,v) can he transformed to (ui,Vy) hy a sequence of

elementary transformations in G, or GE transformations in G,

X r espectively,

^ The sufficiency of the condition has already been noted. ' In
order to see that the condition is necessary, we can assume 
that is obtained from (y,y) by one of the transfprma-

^ tions N Q ,N ^ ,N 2, ,  we treat each of these in turn.

( 1 ) ( y 1, y 1 ) = ( w » y ) N J,

^  ̂ (l.h.wll d . r . y l '

( 2 ) ( y 1, y 1 ) = ( y , y ) N 1

T / “ I q e Z  q  e7 Y  Y  q l ^  1 T
i f , Q , h V  ^ ' F  ̂ ( i , y , y )  ° . ( i , y  ,y)  '

(3) (y 1,y 1 ) = (y ,y)Nz

f-l f  J TT ,11 -I I
(1,%,%) ° ■ ( l . u  \ v ) \

ft
^ " I q I  _  -I _  "I 1 T  T f  ï l  c  ^  l J

^ , (u ,v w ,1) , (1,%%.%) ' ’ F ' ‘

( 4 ) ( y  1 , y 1) = ( y , y ) N ^

T .f-lqcZ q CZ 7 S ^  J
i f , a , h r  ^ ' ^F . ( l . y . y ) -  , ( l , % , , y i )  '

1 s*̂  1 s ^ I J
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(5) {u y ,V y) - (y,y)N Ĉr
II

7 TT q T(f,g,hr ^  ̂ (l,y,y)II . (l,y,,y,)^i

, Y  1 C*Z 1 qtZ 1 T

3---------------- -------
Ywhere y = c “ , y ̂ = c “ i; r = c , Y>l,r € F;(a,T) = <ai,T)

D ^

We will now prove the main results described in Section 2.1. 
First we will establish Lemma 2.1, which is the link between 

Theorems 2.1 and 2.3, and between Theorems 2.2 and 2.4.

PROOF OF LEMMA 2.1
Suppose (y,y) satisfies Property 1. Then if sgp^{y,y>

/\is not a free product of cycles, since each element of S 
is a power of some element which is one of a generating pair 
of sgp{y,y},F must contain at least two elements Si and Fg.

AIf iSytSz) is a generating pair of sgp{y,y}, then S must 
contain a third element F g , where F^^ is not conjugate to

Fi or F z •

J
Suppose (f,g,h) 'is a factorization of (u,v).

Then for all F. € F, let F. s (/ ”^̂ 7 (.f ."̂ /z . ) )̂ ’̂* , where
(/\,(7^,/z^) is a permutation of if,g,h),&^^ 0. We can arrange

that B, i^l, and if F 3 exists, we can also arrange
that B 3 ̂ 3^ 7̂ 1 » 2 . For convenience we drop the suffix 1. We

examine the various possibilities for F and F 2.

Case (1) B>0, B 2>0 .
Then F contains f~^,g and h as subwords, and f  ̂ is
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a piece since (/ Zz ) ̂  (if ^h)^f ^g)^»

To show g and h are pieces, we consider the six possible 

values for F % separately.
(a) F 2 5 if ^gif Then <7 and Zz are pieces,

since as B 3 2 *
and

(b) S 2 = ig ^h(g : Then g and h are pieces, since

(grI%(grIf)G!)F: Z (g'lf and

(c) .92= {h~^fCh g)^^) : Then g and A are pieces, since
and

(d) g 2 = (f I?î(,f Then g and h are pieces since

B and B 2 are not both equal to 1, which means that
^ iihf~^ )^gf~^f and

(e) g 2 = (p fig Then g and ft are pieces since

ig~^f(g'^h)^n'‘̂  $  g~^fih~^f)^ f  - and

(f) g 2 5 (h Ig(k Then g and h are pieces since

{p/"I(/î/"I)7)'° and 

ih~^g(h~^f)^^)'’‘ $ (ih~^f]^g~^f)^
K

Case (2) B>0, = 0.
Then f g and Zz are subwords of S» As 
if~^hf-^g(f-^fi)^-^)>’ # i(f-^h)^f-^g/

f~ h is a piece. However 6 2 = 0 » so that the only possible
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values for Fg are (f (g {h

(or their inverses). We consider these separately.

(a) F 2 = Then as (.f ^h,f ^g{f is a
generating pair of sgp {y , y } , F 3 exists and =  ig^f)^^ or

— I P
{h #) *, so that 0 is a piece.

(b) F 2 5 (#"^f)^= : Then as igf ^  (gf ^{hf \)^)^,
# is a piece,
(c) F 2 = ih Then as igh. # (gf  ̂ihf ̂  ,

g is a piece.

Case (3) B = 1, B 2 = 0 *
Then .f” ^, ĝ  and h are subwords of F. As f ^gf ^ f ^hf ^g,

f is a piece. However as B 2 = 0, the only possible values for
F 2 are if~^h)^^,ig~^f)^^, (h'~^g)^^ (or their inverses;. We

consider these separately.
(a) F 2 5 {f~^h)^^i Then (f ^h,f ^gf ^h) are a

generating pair for sgp{y,y}. Thus F 3 exists and
F 3 = or ih~^g)^^ (or their inverses) so that g and h

are pieces.
-1 p

(b) F 2 = ig f ) ^: Then as F is symmetric in g and h ,

the case is similar to (a).

(c) $2 - ( Zz  ̂g)^ ̂  ' Then g and Zz are pieces.

Case (4) B = 0, B 2 = 0.
—  I p  — 1Then we can arrange that s = if g) , F\ = if h) » and

S = ih~^ g)^ ̂ , so that f,g and h are pieces. Since B was
assumed to be maximal, these are all the possible values of

5 , so that (y,y) satisfies Property 2.

3
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11
Suppose (f,g,h) is a factorzzation of (u,v)

A — 1 6 7 (7 3/ P "2,Then for all S. £ F, let F. = if g fh ) orz z
= ^ E^,ô^ = ±1; 3>0. We can arrange that

3i>3 2^G" > i ^  1, and if Fg exists, we can also arrange that 
3 3 ̂ 3. It f 1,2. By the symmetry between g and Zz we can assume 

F, = Cf gfh ' ) .
For convenience we drop the suffix 1. We examine the various 
possibilities for 5 and F ̂ , and where necessary F 3. Note 
that by replacing s^ by a conjugate of F ^ , we can arrange

that E . = 1.
z

Case (1) 9>0, 3z>0'
Then f,g, and h are subwords of F. As 

f is a piece.
To show g and h are pieces, we consider the possible values 
for F 2 separately.
(a) F 2 = if  ̂g/Zz ̂  ̂ ̂  ̂ Then g and Zz are pieces, since

^ 3 so that
1,P, and

lb) g 2 = (hf Then g 2 is in the same farm
as the Fj in case (a) with g and Zz exchanged.

Case ( 2 ) 3>1, *3 2 = 0.
Then f, g and Zz are subwords of F. As 

f h ^ r ^ g f  fh-^r^g-^, and h r ^  g h ^ ^  i h ^ r^gf,

^ f and fi are pieces. However 3 2 = 0,^so that the only possible
values for F 2 are f ^g^^f or Zẑ .̂ We consider them separately

3



- 54 -

Suppose (f,g,h)^^ is a factorzzation of (u,v)
A _i E/ p/Then for ail S^ € S, let S^ = if g fh ) or

= i}i f~^ g^'^^f)^\ , ôj = ±1; B>0. We can arrange that
/ .31^3 2^3 - » i I » and if F g exists, we can also arrange that

^ /
3g>3. f 1,2. By the symmetry between g/and h we can assume

S, = /
/For convenience we drop the suffix 1. yWe examine the various

possibilities for s and Fg, and where/necessary F g. Note
/

that by replacing 5^ by a conjugate/of S , we can arrange
that e . = 1. /^ /V
Case (1) e>0, 3 2>0.
Then f, g, and h are subwords-^bf F. As

f 18 a piece.
To show g and h are pieces, we consider the possible values

for F 2 separately. /
/

(a) F 2 = if  ̂gf'h  ̂ Then g and A are pieces, since

4è 2 3 so that y/
and

( % * =:r gf; " : if' i k Ifjf ) P '
(b) = ihf Then is in the same form

as the S^ in/case (a) with g and h exchanged.

Case ( 2 ) /3>1, 3 2 = O'
/ ' 'Then fyg and h are subwords of F. As

f h Y / f f ^  fh-^r^g-^, and é h ^ r^gf^

f and }z are pieces. However 3 2 = 0 , so that the only possible
/ I P  pvalues for F 2 are f g or h. We consider them separately

7

3
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(a) Fz = Then as  ̂ ^ (gfh^f

g is a piece.
(b; F 2 = Then h and f ^gfh^ are a generating pair

-1 P)for sgp{M,y}, so that F, exists, and as 9, = 0 F, = f g f. 

Thus as in case (a), 0' i s a piece.

Case (3) 3 = 1, 3 2 = 0.
Then f,g and h are subwords of F , and f is a piece (since

fhf ^g # fh ^f~^g~^)* As 3 2 = 0, the only possible values
for F 2 are f^^g^^f or h^ ̂ . But {f ^gfh,h) and if '^gfh»f ^gf)

are generating pairs for sgp{%,y} so that in both cases
exists. As 33 = 0, F, = f ^g V  if  ̂ , and S ^ = h  *

_1 P 2 „if - f g J. It can be seen that, in both cases,
± 1 ± 1F,F, ,F are not conjugate, so tnat g and h are pieces.

Case ( 4 ) 3 = 0 , 3 2 = 0 *
Then S = f ^g^f, S^ = h^^, As 3 is maximal, sgp^{y,y} is 
a free product of cycles.

,
In the remainder of this section, we will show that if an

c7arbitrary pair of words iu,v) with factorization if,9 ,h)^ 

does not satisfy Properties 1,2 or 2*, then if,g,h)^ is 

weakly related in G to (f',g',%')^ where L( / ' , g * , Zz ’ ) <L (/’, g , Zz )

First we consider transformations in F only.
If, in a word in u and v, cancellation occurs, apart from 
the obvious cancellation between f and f ^ , then we will show 
in the next lemma how if,g,h)^ can be mapped to the factorization
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J i
if* *9 ' thy) with shorter length,

7LEMMA 2.3 Let (f,g,h) be a factorization of fu,vj

where 1 and where either
-1 -1 -1(i) J = 1 and g fh gf h is not cyclically reduced or
-1 -1(ii) c7 = II and f gfsfhf , gg or hh is not reduced or

— 1 -1(iii) / = 1 and g h gh,g or h is not cyclically reduced.

Then there is a sequence of free factorizat ion transformations 

mapping (f^g^h)"^ to (fyg'th')^ where L ( f ' ,g ' ,h ' ) <L ( f , g ,h ) 

and either J = J* or f = 1,

( i ) Suppose ( 7 = 1 .

Then at least 2 of the elements of if,g,h) are non-trivial.
Suppose f and g are non-trivial, and f g is not reduced.
Then either fiovg) is itself not reduced, in which case using
IS^ we can replace fior g) by a shorter word, or there exists 

a word 1, where

9 = kgz' f = 2'
Thus we have the following sequence of transformations.

I Zc I g ̂ _ 2 —I _ 2 I S ^  “ 1 I
if*g*h) ______ ^ ik kfgtk kgs*k h) F y (fz'gz'% h)

■ __iBut Liÿ^,g^,y 7% ) = ^ » L ( 7: )

. '' < Lif,g,h)

ITransformations of typé S ̂ do not alter the length of a 

factorization. Thus as the pairs ig,f ^),ih ^tf)tifih ^ )*

ig th) t ihtg  ̂) can be obtained from if ^g) by means of a
1 Itransformation of type S ̂ acting on if,g,h) $ part (i) of

the lemma is proved unless f,g or % = 1.
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 ̂ Suppose J = I but f = 1,0 and h reduced, gh not reduced.
Then there exists k ^ 1 where
g 5 ĝ  k~ ^ , Zz = kZz,

II
 ̂ so that (l,F.Zz)^ = (1,#,%;II ^0  ̂ (l,g"^,%)^^

li -X I
' '

But L(Zc“ ^,<7~^,Z2 2) = L(l,^,Zz) - h{k)

</L( 1,0-, Zz;.

D As the pairs ( Zz, 0 ; , if ,g) , ( Zz, f ; can be obtained from the

pair ig ,h) by means of a permutation of (/,g,Zz), part (i)
of the lemma is proved.

3
(ii) Suppose J = II.

Then 0̂ and Zz are non-trivial. I f f ^ g  or Zz is not reduced, 
]) then using S^^, we can transform (f,g/zZ^^ to a shorter

factorization.

If g is reduced but not cyclically reduced, then for some

3 k ^ 1,
0 = kg 0

Therefore we have the following transformations:

y
But L ( Z: '^f,g^,h) - L(f,0 ,Zz) - L(%)

3 < L(f ,0 , Zz) .
If f and 0 are reduced, but f ^g is not reduced, then 
there exists k ^ 1 where 

3 9 - hg J, jT = kf ̂ .
Therefore we have the following transformations:

3
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ïr-l„II , 1 TT qll TT
(f>g-h) . (k ‘■kf, ,k~^Kg,k,h) . if,.g,k,h)

But L ( f 2 , 02 7c ,7i ; = Xif^g^h) - Lik)

< l>[ f , g , h) •

IITransformations of type S ̂ do not alter the length of a 
factorization. Therefore as the pairs {f ^,g ^ ), if,h),

-1 _i
ifth ). ihth) can be ootained from {f , g) or (0 ,0 ) by

II IImeans of a transformation of type S ̂ acting on if,g,}i)

part (ii) of the lemma is proved.

(iii) Part (iii) follows from parts (i) and (ii). For
If f = 1 we can regard the factorization to be of Type I or

Type II, so that if g ^gh is not cyclically reduced, by
part (i), we can map (1,0',Zz)̂  to a shorter factorization, and
if 0 or Zz is not cyclically reduced, by part (ii), we can 

IImap ( 1 , 0 , Zz) to a shorter factorization.

#

J
Thus a factorization if,g,h) , which is not reduced can be 
mapped to a reduced factorization ( f  ,0 ' ,Zz' )*^ where 
L ( f , 0 , Zz ) >L ( / '  , 0 ' , Zz ’ ) by means of a sequence of free factoriza­
tions. For any given factorization, the sequence can be 

constructed using the method described in Lemma 2.

Therefore we only need to consider a pair {u,v) which has a 

reduced factorization if,g,h)^. We are interested in the 

sgp^{y,y}. To obtain the structure of this group we need to 
analyze sgp{w,y}AN.
We will assume
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(a) sgp^{y,y} is not cyclic, so that two of the triple 
(/,g,Zz) are non-empty, and if the factorization is of Type II, 

then 0 and h are non-empty.
(b) sgp {u tV} is not free so thar sgp{ w ,y }a N 9̂  1.

G
Note that if sgp^{w,y} is free, then (%,y) satisfies 
Property 1 and the Theorems 2.1, 2.2 are proved.

Let 9{x^y) be a word in two variables. Let J/* be the word
obtained from V{u,v) by freely reducing in terms of the 
generators of F . Note that P/* is obtained by cancelling the 

letters from adjacent subwords f ,f  ̂ and f tf • Thus W*

can be partitioned into subwords 9 or h , We call
t h e s e  f - ,9 -,or h-subworcLs of W* respectively. We call an

f_,0 _, or %-subword of W* an F-subword of g*.

I f  ■'Ŵ  pi I defines an element of N, then by small cancellation 
theory, contains a p-remnant (p = 2 if F satisfies T(4),
and P = 3 otherwise). Let t be any p-remnant which is a
subword of a freely reduced word w* equal to a word in (w ,y ) ,

does not necessarily belong to N). We define below 6 
properties ({i},{ii},{iiia},'{iiib},{iva},{ivb}) on the set 

{u,VfW,t). By analyzing the position of t in relation to the 

y_,0_,%_subwords of W*, we will show that the set (u,v,W,t)

(a) possesses at least one of the properties

{i) , {ii} ,{iiia} ,{iva} , and
(b) possesses at least one of the properties

{ i) ,{ii} ,{iiib} ,{ivb} .

The properties { i} , {ii}, {iiia}, {iiib},{iva} and {ivb}are 

defined as follows:

3
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{i} There is another word f/, ix,y) so that
P/, (w,y) =A^ W{u,v), (where F is as defined in Section 2.1), 
and if g* is the freely reduced word equal to Wy, then 
L(^i*) < L(W^).

{ii} There is another pair (w',y') of elements of F
T 1

with factorization (/• ,h' ) , where L(/' , Zz ' )<L(f ,g ,h)
and if',g',h')^ is weakly related to if,g,h)^» If (%,%) is

T I T
root-closed (rel r), then ( _f' , 0 ' , Zz ' ) is related to if,g,h) . 

(iiial A subconjugate of t contains disjointly,
for certain integers , e % , E g of modulus 1.
{iiib} The elements contains, disjointly, the F-subwords

f  ̂  ̂  ̂ ** jZẑ ®, Zẑ  ® ( 6^ = -1, l^i-^6), and f,g,h are
pieces relative to the symmetrized closure of r , where t is 
a subword of r e F.

{iva} L(t) < max{(l/2,(2p+4)X,(3p+2)x)L(r)}
{ivb} Lit) < max{(l/2,(p+8)X,(2p+6)X,(3p+4)X)L(r)}.

Suppose iu,v,W,t) has property {i}. Then iu,v) is not 
root-closed (rel F) and P/* Wi*, where L(W\*)<L(#*),

^ I* = 1 f and Wy is a word in ( y; y ) . We can repeat this - process
until we have a word which cannot be reduced any further 
by this method. We say that such a word is F-minimal. Thus 

if is F-minimal, then iu, V, W, t) does not possess 
property {i }.

Suppose iu,v,W,t) has property {ii}. Then i f,g,hf can be 
replaced by a weakly related factorization (/' , 0' , Zz' ) *̂ ,

where L ( ,/'»0 ',Zz') <L (/, 0, Zz) . If the factorization if,g,h) J

3
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has minimal length, that is for any factorization
T

weakly related to if,g,h) , L{f,g,h)<Lif',g',h')t then 
iu,v,W,t) cannot possess property {ii}.
Note that by the definition of weakly related factorization,

if (y,y) is root-closed (rel F ), and if,g,h) , (f’,g'fh')

el (7 *are weakly related factorizations, then if,g,h) , {f',g',h')

are related factorizations.

If (w,y,P/,t) has property (iiia), then g has Property 2.

If g satisfies the hypothesis of Theorem 2.1 then iu,v,W,t) 

cannot possess property {iva}. In order to see this
Isuppose F satisfies C^(l/14). Then X = 1/14, p = 3, so 

that

L(t )> 11/14 L(r).
If we substitute for p,x and L(t) in the inequality in {iva} 
we get

11/14< max {1/2,10/14,11/14} 
which is not possible.

IIf on the other hand F satisfies C (1/10) and T(4), thenL
X = 1/10, P = 2 so that

) > 8/10 L(r ) _
If we substitute for p , X  and L (t ) in the inequality in {iva} 

we get
8/10 < max {1/2 , 8/10,8/10 } 
which also is not possible.

Therefore, in order to prove Theorem 2.1, it remains to show 
that iu ,v ,W ,t ) possesses one of the properties {i }, {ii }, {iiia }, 

{iva}.
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Suppose iu,v,W,t) possesses property {iiib} then G has 
Property 2*.

If g satisfies the hypothesis of Theorem 2.2, then the 

inequality in {ivb} is not possible. In order to see this,
Isuppose R satisfies C^(l/16). Then X = 1/16, p = 3 so that 

Lit) > 13/16 Lir)
If we substitute for p ,X and Lit) in the inequality in {ivb} 
we get
13/16 < max{l/2, 11/16, 12/16, 13/16}
which is not possible.
If on the other hand F satisfies C^(l/12) and T(4), then 
X = 1/12, p = 2 so that 

U t )  > 10/12 L(r)
If we substitute for p,X and L(t) in the inequality in {ivb} 
we get
10/12 < max{l/ 2 , 10/12, 10/12, 10/12}

which is not possible.

Therefore, in order to prove Theorem 2.2, it remains to show 

that iu,v,W,t) possesses one of the properties {i}, {ii},
{iiib} or {ivb}.

The inequalities in {iva} and {ivb} are obtained by considering 
I as the product of a number of subwords. We will show that 

if {u,v^W,t) do not possess one of the properties {i }, {ii},
{iiia} (or {iiib} for Theorem 2.2),then the length of each of 
these subwords of t is bounded in size by xL(r) or pxL(r), 
depending on tne subword and the method used. In order to 

obtain the inequalities for the length of i, we add the
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3

3

bounds on the lengths of the subwords.

There are four possible methods to show that these subwords 
are bounded. We call these methods A,B,C and D , and 
according to the method used, we refer to each of these 
subwords as of types A,B.C or D respectively. (This notation 
is only needed in Theorem 2.2).

J
We will show that unless there is another factorization

of (w',y'), where (f*,0 ',F')^ is related to 
2) and L (/' , 0 * , Zz ' ) *̂ <L (/, 0 , Zz ) *̂ , then a subword of

Type A is bounded by pXL(r).
Subwords of types B and D are shown to be pieces.

^ A subword of type C is shown to be a piece unless (y,y) is
not root-closed (rel F ), and either there is another 

factorization (f',0 ',%)^ of (y',y') where (f',0 ',%)^' is 
weakly related to (f,0 ,7z)'̂  and L (/* , 0 • ,/z * )'̂ ' <L(/,0 ,Zz) ,
or W* is not F-minimal.

^ In assuming that either f is a subword of F or ,Zẑ ^
are not distinct subconjugates of t, (or 

7ẑ ®» are not distinct subwords of t), we restrict the 

possible positions that t can have in relation to the f-subwordsJ
of W* .
Each position, relative to these F-subwords of W* provides 

 ̂ a possible case. In addition to these cases we will consider

the case when i , f ̂ 2 ̂ 0  ̂3 , 0  ̂•* , Zẑ  S  Zẑ  ® are all distinct 
F-subwords of t, and show that unless f,g. and bare pieces 

 ̂ (relative to the symmetrized closure of r) the set (u,v ,W * t)

possesses properties {i ) or (ii).
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However because of the number of cases, (even after factoring 
out similar cases) needed for Theorem 2.2, we provide only a 
guide to the proof for each. This is done by writing t as 
the product of A - ,B- and C-type subwords, and indicating the 
type of subword, and therefore the corresponding method by 

writing the letter (A,B, or C) above the subword.

A complete list of cases, and a shortened proof for each

case in Theorem 2.1 is given in Section 2.3. A complete
list of cases and a guide to the proof for each case in
Theorem 2.2 is also given in Section 2.3.

The following examples provide a detailed description
of the methods used, and how the inequalities are obtained.
In these examples, and in all the detailed consideration of

cases in Section 2.3 we let 
-1

tp = r , r B •

Then as t is a p-remnant, L(p)<pX L(r).
In each example we begin with a diagram which shows the 
position of t relative to the , g- and %-subwords of W* •

We say that " {i] occurs” to mean that {u,v,Wtt) has 
property {i }, with similar abuses of terminology for the 

other properties. ^
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In the first 6 examples, the factorization is of Type I. 
Example 1

, h  ft, .
|_----- — r---- — ----- 1 r-

—  1
h = hihz, f = f if t B f  I ^

-1Then h ̂ = fip, and =_ /z ̂ p . Using the first of these,
Cr ' Lr

I I Ithe transformation maps {f\g,h) to Then

the transformation ^  maps this to (/i ^f»fi ^9ifi

and then will map this to ^0,p%z)^' In a similar
way, using the expression for f^, we obtain

I
if,g,h)^ ^g. (ft.p"lf:,g,ft)I

^  , (ft,"ift,p"if2,ft,"^g,ft,"ift;i (p~\f,.ft,~^g;ft,)^
I *“ 1 ITherefore if,g,h) is related to (/2».fi fftph^) and

( p
But L(f,#,%) = L(fz,f ^0 ,p%2)-L(p;+L(& )

= L(p ^2 )“L( P )+H/i )
IThus if if,gth) is not related in G to a factorization 

with shorter length L(p)>L(.fj) and L ( ?z ̂ ) , and as a 
consequence

Lit) = L(^ )+L(%j) $ 2L(p) < 2pXL(r).

#

This example used ‘Method A', and shows that unless 
Iif*9 *h) is related in G to a shorter factorization, then 

the length of /j, and the length of h^ are less than 

pXL(r). We call f\ and h^ t A-subwords of t .

3
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For the remainder of the examples,the transformations 
I IIS^, Sp, (that is cancellation jwithin the elements of a 

factorization) will be used without specific reference to them 
Example 2

-1

-1

Then / hg^ 9,ff,< 'h = q f9, ^d~^pg,, 9,9^ =ç p9

Using the expression for /, we have the following 
I

 ̂ {hg\'^Ÿ

-, - 1  ■ - 1  - l . I
 ______(P )

Using the expressions for ?z, we have 

 ̂ (f,&;f#4 ^^0 ^P9\)^

_ 2 _ 1 I
_______' ^ (l,9\f g,9o,&o p)

 ̂ , -1 -1 -Ivl______ ^ (#0 , 9 s,P )

Using the expression for g s have

I I ̂  1
^ G , (f»9 3p9 4 % ^ (1,9,P9\% )

— ( i , 9 sP9 4 ^ ^   ̂^ » g 3 P g It >

Therefore it can be seen that if (f,g,h)^ is not related to 
a shorter factorization, then 

L(p)^L(f ) , L(h) , and L(p^).
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If is non-trivial and is not a piece, then as t is a

subword of r,
— 1 —1 _  1 *  — 1 — 1

9^f P 9c = <74 ̂  f 9*. 9c F
which is not possible. Thus either ift9tf^) is related 
to a shorter factorization, or 
L(t) = 2L{g^)+Lig,)+L(h)+Uf)

<(2+3p)XL(r).

#

The words, y, , 7) are A-subwords of t. However we call 
a B-subword of t, and the above argument used to show that 
g^ is a piece is called Method-B.

Example 3 ,-l -1

-1

f = fif\y h = & 1& 2, t = fi-^hf

Then h = fiph^ f =_ h^p ^h. Using the first of these,U * Lr

^ we have
I I ■f“ 1

if,g,h)^ ^g.  ( f . g . f . p / i ,  ~ \ f ) ^  ^
11

D = f,p^,
^ —1 1

and using the second of the expressions, for /, we get

(^iP V i  ^ (%iP V i  ^'1)^

D
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f  ^ (% 1» / i P I :
Therefore if is not related in G to a factorization
with shorter length, L ( p ) j ) and Lffg).

U

However we cannot place a bound on L(t) until we know the
-1maximum permitted length of /j h[.

—  12) Suppose jfj /2 i is not a piece. Then by definition of a piece
- 1 - 1  -1 - 1 - 1 - 1  -1 

fi hf hip = fi hiP fi hf 2 = T ^ R-
This implies that ^^iP  ̂ and 2  ̂ commute. But
commuting elements in a free group are power of a common 

2) element, so that r is a proper power, and is not
root-closed (rel i?) .

•—X “XIf r is a power of f^ hf^ , then as
2) L(t)> 3L(p), p  ̂ :* so that {f ^h) £ R , and therefore- 1 2  A

{f h) € S. From the diagram it can be seen that 
- 1 - 1f hf h is an F*-subword of ; and therefore

= U/ '̂ hf I/7.V, where U, Va re words in (w v)

<s>  ̂ ^
and UV is a word in (w,y), L(9\*)<L(#i),
so that {i} occurs.

-1 -1If on the other hand, r is not a power of f^ hf^ ,
then a>(a,y), where f ^h = , r x ^ ,

Thus .f 1 = d(cd)^ t h = icd) c, where dc = x^
and y+v+1 = a. Therefore we have the following transformations

^ ° , (d'^.o.g)^

But so that p or v>l and Hf , g , h ) >  L(d ,a,g).

Thus (f,g,h)^ is weakly related in 9 to the factorization 
{d Ij,#)! which has shorter length.



— 6 y —

D

D

j

As a consequence if {i} and {ii} do not occur,

L(t) = 2L(f, ) + L(%i)
< (2+2p)XL(r)

#

In this example, .f 2 snd h 2 ar e A-subwords of t, but we used 
a different argument to establish a bound on L(.fi ^%i).
We call this Method-C, and say that f is a^'subword of t.
Example 4

-1 -1 /
9 = 939o94, t = #4f 93, 9 4 # 1*

-1  -1  -1  -1  ' -1  -1 Then = p<7 3 fh f, j&4 P» % = /9 4 Ÿ9^ f

Using the first expression (for gt̂ ) we have 
I

(f.g.h)^ (f.g,g,pg,~'^fh~^f,h)'^

_____ ». (I'gsgopg, ^,hf

( i . g - g . p g ,  ^ f h ' ^ . h f  1 ) 1 :  ( i , g ; g . p g ,  1 ) : :

= (l'9,9oP93  > (%f ^' 9 s 9 o P 9 3
IS — 1 "“X I  "“X — X II
° > (l'939op93 »%.f ) = (l'939oP9d »%/ )

■93-15:: , -1
__________ ^ ( 9 3  » 9 0 P » %/ /

Note that we finish here with a different Type of factorization 
to the Type with which we started. Using the expression for g^, 

a similar set of transformations will map 

to (<7 4 ” !, p 9 o , %.f 1 )

D
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Finally, using the expression for , we have
I

 ̂ ( .f. 9 > f9 4 ip93 If):

gIf-1
-------- > {i,gf :,f#4 :p93 1): = (i,9f :,f94 :p9 3

^°  ̂ (i,9f :»93P 1 9 4 / :):: = (i,#f :,9^p
93-lgIf94 1 -1 -1 - I I
  ^ ( 9 3  f94 ,9o,p )

1Thus either iftgth) i s related to a factorization with 
shorter length or L (p )>L ( ̂ ^ ) , L(^,) or L(%).

Suppose f is not a piece, then by definition of a piece 

f - : % f - :93p-:94 ? f " : 9 3 P ~ : 9 4 f " : %  «

It can be shown using Method C that in this case (u,v) is 
not root-closed (rel i? ) , and {i } or {ii} must occur. However 
in this case there is a simpler argument, that provides a 
stronger result. For by the above identity, <7  ̂ and f have 
a common terminal subword which is non-trivial provided g^ and 
f are non-trivial. However we assumed that g^ and h are

non-trivial, so that gh /̂*, and therefore (f,0',%)l is not
3 -1reduced, a contradiction. Thus f must be a piece.

Therefore if (f,0 ,%): is not related in G to a smaller 
factorization

L(t) = L(9\) + 2L(f) + L(%) + h{gi) *

< (2 + 3 p) L (r ).

#

The argument used by this example to show that f  ̂ must be 
^ a piece is called Method D, and f  ̂ is called a D-subword of t

3
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D

D

Example 5

-1, .-1 -1

Then f gf^ ^g^ ^h, 9 =q fh ^giPfz» h 9 iPfz9 ,
and using the first of these we have

-1 -1
T -1 -1 ,“1 -1\I

( f  . 9. k ) :  ^  _ _ ! _ ______» ( f :  P .% P . . P ,  )

Similarly using the expression for g^ we have

.II -1 II -1 -1 I

kglfz-l
^  (%fz ^ > 9 iP > f i ) ^ •

Similarly, using the expression for %, we have 
I

(f,#,%)^ (,f ,#,#1 pf^ g V  ) ̂

  > (l'#f ^>9 iPfz9  ̂  ̂ = (l'#f ^^9 iPf.2 9_

. I I
^  (l,f# ^*9iPfz9 = (l,f# ^

9 2-1
^ ^9zfi ^>91 V x » p ) ^

Thus ei ther (/, <7 , ?z i s related to a smaller factorization, 

(and therefore {ii} occurs), or L ( p ):̂ L ( ̂9’j ) i L(/\) or L(%).

-1Now g 2 and g^ are both subwords of r, and therefore 
02 is a piece.

3

Suppose f ̂ is not a piece, then
■p —  “ 1 S' —  1, f, —  1 — 1, — 1
f  2 fi 9f ̂ p9 ̂ h = f  2 pf7i 2 '
which is not possible since are non-trivial, and
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qh  ̂ is reduced.

TTherefore either {f\g^h) is related to a shorter factorization, 

or
L(t) = 2L(#i) + L U )  + 2 (fz) + L(fi) +

< (4+3p)XL(r)

#

In this example are A-subwords of t, is a
B-subword of and is a D-subword of t.

Example 6 -1

-1 -1 -1 -1& = f'̂f fff f̂ f 93-
-1 -1 -1 -1 Then 9 fh fg^ pg^ fh f , and using this we have

(f,g,h9

. il.fh-^f9r'^p9r^fh-\fh-h^^ 

= (1,fh~^fg^~^p9 3~^f^~^’

1 1 _i _i I
_f ^ ( V  .-f'l” fffi p9, .1)

D
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/-. -1 -1 .f-l\I , -1 -1 - 1 ; - 1 , 1= F 93 'f ̂  ^ (f ’,9'- p.93 )
IThus unless \ftg>h) i s related in 9 to a factorization

3
with shorter length, L(p)>L(^o)-

If 9 ^/ ^9 3 is not a piece, then

9U~^^.f~^9/‘~ ^ ^ / ”’^93p~^ = 9‘*f~^hf~^g-,p~^g^f ^hf ^9 3 ^ 0  = r 
and ^hf commutes with ^hf ^93p ^ . But
commuting elements in a free group are powers of a common 
element, so that r is a proper power, and (%,u) is not 
root-closed (rel E).

D
If r is a power of g^f "̂ hf ^g^gof then as L(t) >3L(p), 
p”  ̂ 5 go9 ^f~^hf~^g3 , so that (f ^hf ^g)^ e E and therefore 
(f ^hf ^g)^ € S. From the diagram it can be seen that 

gf '̂ hf g is an F* subword of 9*, and therefore 
{/* 5 U p ' / " w h e r e  U/,V are words in (w,%)

= g> U/;2"^/V = I7^(w,v) = 9,*,
W h e r e . i s  freely reduced, and L ( * ) <L ( 17* ) , so that { i } occurs

If, on the other hand, r is not a power of 9// ^hf 

then a>(a,Y) where / ^hf 5 r ^  Thus

/ = dicd.)^thf g  = where do = and^y+y + l = a*
Now L(p) ^ L(/z), or gh ^ , and therefore (/,p,%)^ are not 

reduced. Thus we can assume L(p)>L(%), and so L(p)>L(c)« 
However we have:
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l f - 1

But as L(/)>L(J) and L(#)>L(c),
L((i ^tC,h)<L{f,g,h), Thus is weakly related in G
to a shorter factorization.

As a consequence if {i } and {ii} do not occur, 

L(t) = 2L{g^f ^hf ^#3)+ L(<7o) < (2 + p)\L(r).

#

These last examples, 5 and 6 are needed for Theorem 2.2. 
They illustrate the fact that although the method is 
essentially the same, because of the greater complexity of 
the expressions for t, the details are lengthier.

In the next 6 examples, the factorization is of Type II. 

Example 7
A3 Ao K  A3 ho A4.

'-------------------  ' - w - ---------- ^  '
p~^

Then A 3 = A „ ^ p , A  ̂ = _ p A 3 ^ . Using the expression for A 3 ,

A = A 3 A 0 A 4 , t = A 4 A 3 .

G -a

we have:

D
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In a similar way, using the expression for /z „ , we have:

TT C ̂  ̂  _1 TT qll^g T T

Therefore ( f , # , i s  related to ifhi, and
II(f%3,#*%oP) ' But

L(.f,<7,/z) = ^,&,p%o)-L(p)+L(b,), and
= L(f/î3 ,.g,7zop)-L(p)+L(7z^ ) .

11Thus if iftgth) is not related in G to a factorization
with shorter length, L (p )>L(^ 3) and L(%%), and as a consequence

L(t) = L(%3)+L(&,)32L(p)<2pXL(r).

The argument which is used to show that h^ and are bounded 

in length by pXL(r) is called Method-A and ?z 3 ,/z ̂ are 

A-subwords of t.

3

Example 8
-1

-1
f ~ f 3 f 0 f k 3  ̂ = f of k •

Then =g pf,h h f , 'f^ 'pf,.

Using the expression for we have:

11 S11 -1 11 Sllh 11

and using the expression for h, we have:

11Thus it can be seen that if i s not related to a
shorter factorization, then
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3

3

L(p)^L(fo) and L(/\,?z)

As and  ̂ are subwords of r, if they are not pieces 
f khf 0 = fkh ^fo which is clearly not possible

Therefore either is related in G to a shorter
factorization or
L(t) = L { f J  + L{f\h)+Lif^~^)<{l + 2p)\L{r),

#

In this example  ̂and h are A-subwords of t, and is 

a B-subword of t .

Example 9

3

h = 3 t = hoh:,h^h^.

Then h  ̂ p/Zo - ^ h  ̂ . Using the first

of these we have:

and similarly using the expression for ^ 3̂ 0 we have:

Therefore if is not related in G to a shorter

factorization, L(p)%L(%3) and

Before we can place a bound on the L(^), we need to determine 

the maximum permitted length of ^0 • Suppose is not a 

piece, then
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h oh^h sh oP  ̂ 5 h^p oh 3 = r .

This implies that h  ̂ and 7z o P  ̂ commute. But commuting 
elements in a free group are powers of a common element, so 

that r is a proper power, and {u,v) is not root-closed 

(rel #).

If r is a power of hoh^h^.then as L(t)>3L(p), p  ̂ = h^h^ so
2 2 that h  ̂ R and therefore h & §• From the diagram it can

2be seen that h is an F*-subword of W*, and therefore 
2W* = Vh V where U,V are words in (w,v)

= UV E P/, = W\*, 
and UV is a word in (%,%), so that {i } occurs

If on the other hand, r is not a power of hoht^h^ then 
a>(a,Y), where h = , r • Therefore we have the
following transformation.

But a>(a,y), so that L ( /, ̂ ,/z ) >L ( /, ̂  ,jc ̂  ̂ . Thu s

is weakly related in G to the factorization {ft g , x̂ °^ * t

which has shorter length.

As a consequence if {i } and {ii} do not occur 

L(t) = 2L(/zo) + L(%3) + L(/z4)"

< (2+2p)XL(r)

In this example, and /z4 are A-subwords of t , and ho is 

^ a C-subword of t .

3
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Example 10

i 1h 1 h t

-1 - 2Then =g phi h , and we have

^  (fip II

7 I ITherefore unless is related in ^ to a factorization

with shorter length, L(p)>L(fz)'

Suppose hhI is not a piece, then 

hh ih 2h ip ^fz = hh ip ^fzh €, R.

Therefore as fz and h are non-trivial, the elements fz and 
h have a common terminal subword,and hf ^ , and therefore 

is not reduced.

Therefore if ifiQih)^^ is not related in G to a shorter 
factorization,

L(t) = L{fz)'^l>{hh^) +L(/z)<(2 + p)^L(r) .

3 In this example fz is an A-subword of t, and h,hhy are 
both referred to as D-subwords of t. *'■

3

3

Example 11

9 = P,#o94,  ̂ = 9^fhf~^ 9fh~'^f ̂ 9f.

3
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g ^9 * and we have:

fhf-l^llh-1 _i _i II
 > (f*&4 P93 •h)

II .Therefore unless (y,#,%) i s related to a factorization 
with shorter length, L(p)>L(j^o).

- 1 - 1Now j>}i and h f are both subwords of r , and therefore by
— 1Method-B, fh is a piece. Similarly fh is a piece.

Suppose <73 is not a piece, then

gfh <̂7 3P ^g^fhf  ̂ = <?3p ^gfh ^

which is not possible or = 1 and therefore h
Similarly is a piece.

=  1

11Thus either if^g^h) is related in G to a shorter 

factorization, or
L(t) = 2L(9,)+2L(9t)+2L(f%)+2L(f)+L(9o)

< (8+p) X H r )

#

-1In this example <7p is an A-subword of t, fhtfh are 

B-subwords of t, and g^tg^ are D-subwords of t.

Example 12

g = # 3# o#4  ̂ i = g ^ g ^ f h f  ^ gfhf  ^.^3.^0• 

Suppose <7 of? 3.̂ 0 is not a piece, then
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- 1 - 1  -1
r  = g.g^fhf  gfhf g.g^p

- 1 - 1  -1= 9 ^ g J M  &3#op g^gj'hf g,
-1 7 -1 This implies that g^g^fhf g^g^^fand g^g^fhf g^ commute.

But commuting elements, in a free group, are powers of a
common element, so that r is a proper power, and {u,v) is
not root-closed (rel E).

If r is a power of gog^f^f ^^3. then as
L (t ) >3L(p ),p“  ̂ E g^fhf~^g^, so that {hf~^g € R and
therefore {hf ^gf)^ € S» From the diagram it can be seen 

-1 -1that gfhf gfhf g is an F*-subword of and therefore

W* = 'dgfhf ^gfhf ^gVt (where Uf,f are words in (w,y))
- 1 - 1  V  V = W\(%,%) =

and L(W\*)<L(^*), so that (i> occurs.

-1If, on the other hand r is not a power of g ̂ g ̂ fhf g^i
^ _ 2

then a> ( a , Y ) , where f gf h = , r ^  • Now either
L(f ^g) or L (//z ) >L ( a: ̂  ̂̂ . For if L(f then

L{fh)>L{x^^*^^) and vice versa.
However if L(/ ^g) = L{fh) = then f ^g =

( ct *y ) ""1fh = X  ’ , so that / E 1 and g h:. is not reduced, vand
IItherefore the factorization if,gfh) is not reduced.

If L{f then consider the following sequence
of factorization transformations: ^

— 1 — 1 T C % _1 T
= (l.f gf.h ) _! ^ ih,f ^-gfh,!)^

D / (l,f~^gfh,h)^ =

3
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Then the factorization is weakly related
IIto iftg,h) and has shorter length.

Similarly if L (f ) >L(a;^  ̂̂ )

As a consequence, if {i} or {ii} do not occur,

L(t) = Lig^gufhf ^g sg o)+^igkfhf ^#3^0)
< 2XL(r)

#

-1 -1 In this example g^g^fhf and g ^,fhf are both
C-subwords of t.

D
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SECTION 3. DETAILED SURVEY OF CASES
INTRODUCTION:
In this section we will list all the cases described in 
Section 2.2. The method of proof we shall use, depends, not 
only on the size of t, but also on its position in W*. Cases 
are defined so as to take account of this.

In order to define the position of t in Î/*, and so that its
position and size (relative to the , ?z-subwo^rds of ) are
limited for a particular set of cases, we work with F*-subwords
of which are products of F-subwords of W*, For example

if W* = fh^^f  ̂; (%, G 1 , B 2 ^ 0, then hf ^g,fh,g^fh are
F^subwords of W*, If k is an F-subword of f/*, then W* = U&V,
where U,V are F*-subwords of W*. If t is a subword of W * , and

t = tiktzt W* ^ Uitiktz'^zi F*subwords of f/*, then we
say that k is an F-subword of t (relative to W) , If is an

-1F-subword of t or t , then we say that k is en F-subword of 
tOt ^.

For example, if f/* = fh^f ^g^fhf  ̂ then we can illustrate these 
definitions with the following diagram.

D -1

D
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-1Then y^tX,y^ are F*~subwords of , k = f i s an F-subword 
of W* and of t. However g and h are F-subwords of W* but 

not of t.

Let F be an F*-subword of f/*, and let Q be a sequence of
I IIfree factorization transformations of types S ̂ and S ̂

c7which act on iftgth) . Then Q acts on the F-subwords of F.
Let FQ = F j , then we say that F,F% are similar. By showing 
that the factorizations and are related,

(that is

where T is a finite sequence of factorization transformations

of types and S^, then the factorizations (/, , ĝ  , ̂ )

and (f',0',%')^ are also related. Similarly if
and (/' , <7 ' , ?2 • )^ are weakly related, then ( / ̂ » .9'̂  ̂ ^ ̂ and

( f a r e  also weakly related.

In both cases, as L{f^,g^,h^) = Lif^gth) if
L(f',9 ',%')<L(f,9 ,%), then L ( f ' , # ' )<L{f,,g[,h,)•

Therefore by proving the result for those cases which arise
when considering t as a subword of F , we have also proved
the result for all similar cases, obtained by considering t

±1as a subword of F^

In most cases, the Types of factorization J and J' ^are equal 
However, in certain cases, the Type of factorization can 
change. These cases are marked with an asterisk. This is 
necessary, because in the next chapter, we will make use of 

some of these results and we need to make certain that in 

these cases the Type of factorization is unaltered.

3
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Where, in the details of a case, the Type of factorization 
changes, then instead of writing

• • • • •  ̂ (If^tZ/) — ( 1 * ̂   ̂ •••••

for certain elementary factorization transformations and 
S , we shorten this as follows:

 ^  ̂( 1 » ̂  » 2/ )  ^ .....

Note that we can only do this where the factorization is 

trivial.

I IIThe transformationsSp, Sp ( that is cancellation within the 
elements of a factorization ) will be used without specific 

reference to them.

LIST OF GASES FOR THEOREM 2.1
The cases are considered in two sections, according to the 

Type of factorization of
A. Let (f,g,h)^ be a factorization of Type J - I.
We assume that no cycle of a subword of t contains the subword 
g~^t for the cases that arise by assuming that no cycle of t 
contains the subwords f~^ or h~^ are similar. Therefore 
t or t is a subword of either

or g g~^ ,o.> 0

where g = 9 x9 2 * In general let

f = fxfz = / 3/ 0/ -;  f 2 , ^ 3 , f t  t 1

9 = 9x9z E #2'&3'&4 ̂  ^
h = ^ I

3
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Suppose, first, that f,^, and h are not F-subwords of ^ .
If t is a subword of / /z, either
1. t is a subword of f  ̂ or %, or
2. t c f~^h, t = .

If c gf ^ , f ^g,hf  ̂ or hg ^ , then the cases are
similar.

3 -1Secondly let f be an F-subword of t , but h and 9 not
-1F-subwords of tut . Then we have the following three cases

3. t c hf'~'̂ h, t  ̂ ht,f hi
3 -14. as for 3, but t = hohnf h^ho

-1 -15.  -t c hf 9 , t =' h^f 9i

— 1If t c 9f 0', then the cases are similar to 3 and 4. 
+ 1 + 1If f,9 ~ or h~ is the only F-subword of t, then the cases 

are similar.

Lastly, let h and f be F-subwords of t, but 9 not an 
F-subword of t.
(i) Let t begin in /  ̂ and end in %,

then t c f  ̂{ hf  ̂hi o.'̂l and we have the following cases:
6. = 1, t =

7. a 1 > 1 ,  t 5
— 1 ■If t begins in h and ends / , then the cases are similar.

(ii) Let t begin in f  ̂and end in f~^, ^

1 1 1‘then ’t c f (hf )^^hf , a,>l and we have the following cases:

8. a,= 1. t =

9- o, > 1, ' . t = =

10. a,> 1, t E f.-l f,-l
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If t begins in h and ends in then the cases are similar.
(iii) Let t begin in # and end in /z,

“1 — 1then t c g{f h)^^f 7z, and we have two cases:

11. a, = 1. t =
12. a.'.> 1,

-1If t begins in h and ends in g , or begins in /* and ends in 
-1g , then the cases are similar.

“ 1(iv) Let t begin in g and end in .f ,
then t c gif ^h)°'f ^ , a^l and we have two cases:

13. a, = 1. t =
14. o, > 1 ,  t = g2(f~^h)'^'f2~^-

— 1If t begins f and ends in g , or begins in h and ends 
-1in g , then the cases are similar.

(V ) Let t begin in g and end in #

then t c gif and there are two cases:
15. a = 1, t=gogt,f~^bg^~^

16. a .>1, t = g o g n i f ^ h ) ^ g t , \  -
- 1 - 1If t begins with g and ends with g n g ̂ , then the cases

are similar.

(vi) Let t begin in g and end in

then t c gif ^h)^f ^g^. a>l and as no cycle of a subword of t
contains the subword g we have the following two cases on*ly :

17. a = l, t = g I, f hf g i , g ^ 1
-1 -118. a O  ;1 f = g t* if h)^f #3,#4 # 1.

B. Let (fig,h)'^ he a factorization of Type J = II.
We assume that no cycle of a subword of t contains the 

±1 ±1subword f or g  ̂ for the cases that arise by assuming 
that no cycle of t contains the subword h~^ are similar.
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Therefore t ( or t ) is a subword of either

Sji?,' ^9i< gfh°f ^g

where a > 0 , g  = g , g

In general let

f = fxfz = fifofk* fz'fs'ft ^ 1
9 = 9x9 2 = 9\9ix9t,'̂  9z'9,'24 ^ ^
h = %1%2 E ^ 1'

-1Suppose, first, that f^g and h are not F-subwords of t u t 
If t is a subword of fh or hh we have one of the following 
cases :
1 . t is a subword of f or h

2. t c fh, t = f \ h1

3. t c h h , t = h^h^

4. As for 3, but t = h^h^h ̂ h^ ,

If t~^ c hf  ̂,gf ,.f ^,9'or^^then the cases are similar.

Secondly let h be an F-subword of t, but f not an F-subword 
-1of t u t ,

(i) Let t begin in h and end in h ,

then t c 7z° , a>2 and we have the following cases.
5. t o  hhh, t E ^

6. t C /z/z“ ̂ ?z, a 1 >1, t = h ^ h ^ ^ h s

7. t c hh^ ̂ h t o. x>^ ft i h f̂h î ĥ  ̂ h ̂ h Q

(ii) Let t begin in f and end in h,

then t c fh^^h, a^^l, and we have two cases:

8. a 1 = 1 , t = f ̂ hh ̂

9. a 1 > .1, t = f^h^'h 1

3
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—  1If t begins in /z and ends in / , then the cases are similar.
(iii) Lett begin in f and end in / ^ ,

■ ■■
then t C fh^f , a>l, and we have two cases:

10* a = 1, t = f ^hf ̂

11- a > 1 ,  t = f ^
-1 -1If t begins with and ends with , then the cases

are similar.

Suppose, f is an F-subword of t, but g and h not F-subwords 
of t^t ^ . Then there is only one case:

12. t c gfh, t = g^fhi

If f is an F-subword of t, but # and h not F-subwords 
-1of tot , then the cases are similar.

Lastly suppose f and h are F-subwords of t, but g is not an
-1 -1 F-subword of tot . Then t must begin or end in g or g

(i) Let t begin in g and end in h,

then t c gfhf^h, o. ̂ >0, and we have the following cases:

13* a, = 1, t E gifhh^
14 t E g^fhf^h^

If t begins in h and ends in g or g , then the cases are 
similar.

(ii) Let t begin in g and end in /

then t c gfh^ f i a>-l and we have the following two^ cases:
15. a = 1, t E gzfhf ̂ ̂

16. a > 1, t E gzfh^fz'^-
If t begins in f and ends in g~^, 

then the cases are similar.

(iii) Let t begin in g and end in g ,

then t c gfff'f  ̂g , a^l and we have the following two cases

3
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17. a = 1 ,  t = 9o9Hfhf ^#4
18. a :> 1 t = g ^g^fh^f ^g^

- 1 - 1If t begins with and ends with g^ g^ , then the 

cases are similar.
(iv) Let t begin in g and end in g,

then t c gfh^f g a>l and as no cycle of a subword of t 
contains the subword g^ we have the following two cases only:

19. a = 1, t = 9 ^9^
-120. a >. 1 t  5 g ^ f h ^ f  (7, .

THE PROOF OF THE CASES REQUIRED FOR THEOREM 2.1
c7A. Let (fs9 ih) he a fact or iz at'ion with J = 1

1. t c f  ̂ or h. If h = h ith ̂ then is
Irelated to (f ::i9 th ŷ ph ̂ )̂ , which has shorter length, unless
— 1L ( t ) <1/2L(r). If t c f , then the case is similar.

2. . t = =Q p ' Then this case is described in
Example 1 of Section 2.2., Thus, unless {ii} occurs 

L(t) = L(f\,%i)< 2L(p)< 2p%L(r).

3*. t = h\^f 3 p. Then
— i -1“N T o 1 1 Y h 3 „1.h If _ -I — 1

^ if,g,h) G ̂ jh 3 P~ hi,,g,h)    ^ (p,%3 ghu ,%o) •

But unless L(f)fL(p), L(f,#,%)>L(p,%3 ^,%o).
^ In addition,

if,g,h)^ (f,P,%,%oP%3 (l,ff"l,%3%op%3-l)I

, -1 .11 
3  > (%3'Pf '%oP)

D
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(Note that the Type of factorization changes). But unless 
L(%^) ^ L(p), L(f,p,%) > Similarly for
Thus, unless {ii} occurs,

L(t) = Lih ̂ i f i^h 3 ) 3L(p) <3pXL(p).

4*. t = hoh^f ^h3ho P ' Then

2  g T  _ i  1
iftg>h) G y ( A 3 ?z 0 P h oht, t g *h)

% o - l % 3 - l g T & 4 - l  _ i  - 1  - 1  - 1  . 1
^  ( p ho *ho % 3 ghi, . 1 )

1

11
^ °  ̂ (l.P ^h3ho)^

1?Z 0 “ 1

But unless L(f)>$ L(p), L{f,g,h)> L ( A o * p 4 ̂  ^ ^3) 
In addition

I
( /, g , h ) ^  ^G . ( f , # , % 3 P&o ^ ̂  3 .f ) ̂

^  ( l , # f  ^ \ %3P%0 3

/, -1 , -1.11 > (%3'#f 'P&O )

(Note that the Type of factorization changes). But unless 

Lih„) 4 Lip) , L{f,g,h) > L( A 3 • P/zo  ̂ ' Similarly for
Suppose fp is not a piece. Then

r = ^^3^oP  ̂ = ^oP ^&o%4f 7%3
-1 -1 -1 so that ApP and hoht,f A 3 commute. Thus r and hoh^f A 3

are powers of a common element, and r is a proper power.
Thus iu,v) is not root-closed (rel R).
If r is a power of hoh^f ^A, then as hit) > 3L(p),

P  ̂ = ht,f ^A;. Thus if ^A)^ 6 /?, which implies if ^A)^ € S.
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But hf is an F*-subword of J/*, so that 
-1

W* 5 UA/ AV where U and AV are words in iutv)

•“1However U/V = U/A AV is a word in (w,y), and L(#^*) < L(#*)
Therefore {i} must occur.

If, on the other hand, r is not a power of h ^, then
a>(a,Y), where / “ /̂z = , r v . Thus = d{cd)^,

A = [cd)^c, where dc = and y + v+1 = oc. Therefore
we have the transformation

But a>(a,Yj ^ 1, so that u or v > 1, and

L-iftÇth) > h(d iCig)\ Thus (ftg^h)^ is weakly related
in G to the 1 actonzation {d ,Ctg) which has shorter
length .

As a consequence, if {i } and{ii} do not oc cur,

L(t) = h (h 0 ) h.M i f * A 3 , A 0 )  ̂ (2 + 3p)xL(2’).

-15. t - Agf =2 P- Then

But unless L(/) ^ L(p), L(f.g,h) > p~^ .g , g ~^h ̂ ) •

In addi tion

I 1
(f>g,h) — G_ _̂(f'g'&ipg, f) ________^ (l.gf ^th^pg^  ̂)

, -1 -1 -1 - I I  ----> (gi -ffa/ >P A 1 ) .

But unless L(%,) ^ L(p), L{f,g,h) >^(g .g .p ~ ^ h )
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Similarly for

Thus unless {ii}occurs,

Lit) = LlAg,/ ^,#1) < 3pXLlr)

- 1, -16, t = fi hf A 1. Then this case is described in
Example 3 of Section 2.2. We have shown, that unless
{i} or {ii} occurs

L(t) = L(/i ^hitfi ^hithi) < (2+2pjXL(r).

7. t = ^{hf a>l. Then if
^)“  ̂ ^fi ^A1 is not a piece, using the same method

as that used in the previous case {6.), it can he seen that
{i} or {ii} occurs.

If (/i ^A/2 ^)“  ̂ ^A1 is a piece, then ^hfz  ̂ is also
a piece, and

Lit) = LI ./i < 2XL(r).

8. t = fa ^hf  ̂ =2 P" Then

.  d v A  V s  p / 4  \ a  ^ g ) ^

But unless L(/o) ^ L(p), L(/,^,A) > L(A,/\ ^P ^,g)
-1 -1If /a Af„ is not a piece, then

S O  that / 3  ^ A / \  ^ p  ̂ and / ,  ^A/^  ̂ commute. Therefore

^ r and ^hf\ ^/o  ̂ are powers of a common element, and
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{u tV) is not root-closed (rel R ), Therefore, as in Case 4 
unless { i} or {i i} occur s ,. f 3 ^  ̂ is a piece.

As a consequence if{i} or {ii} do not occur,

L(i) = <(2+p)xL(r).

9. t = Oi>l. Then using the sam e
method as in the previous case (8 ), it can be seen that if 
ii) andtii) do not occur,
L(t) < 2XL(r).

10. t = p, a,>0. ' Then
using the same method as in case (8 ), it can be seen 
if {i } and{ii} do not occur,
L(t) < 2XL(r).

11. t = g j  ^A/”^A, Then

iffQih)  ̂ ifiQiphi ^fh  ̂ d f ^ ipAi ^fh  ̂» A/
,11

^  lltg'iPAi "/A ",yA ")So , -1 ,-l . - I I

c ̂  ̂ 1 _ "I T cĵ /ï _1 Y
3 ° , (l.cfh, .fh ) Z 1___

But unless l>{g^) ^ L(p}, L(/,^^,A)> L(Aj^»<7i^»/’A 2 
In addition

li.gf

D
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But unless LlAz) L(Pj, L(ftg,h) > Ll^z/ ^,PAi  ̂)
If f ^hi is not a piece, then

-1  - 1 - 1  so that as / Aand g-̂ are non-trivial, / hg^ is not
Ireduced, and if,g,h) is not reduced.

As a consequence, unless {ii} occurs,
-1 -1Lit) = L(g^,f Ai.Az,/ Ai) < (2+2p)XL(r).

12. t = 02 If ^A)°if ^Ai =2 p, a>l. Then
I

j (l.PipA. ^{fà

f  ,g.pM: (fh" ,1)

The last mappings are repeated a-1 times until:

,11

glki
 ______^ (Ai,0ip,fA2 )

As in the previous case (11}, either (f ^A)°^ ^A1 i
a piece or (f,0 ,A)^ is not reduced.
As a consequence, unless {ii} occurs,

L(t) = L(0^,(f ^A)“ i V* ^^1»/ ) < (2 + p)xL(r).

13. t E g^f =g p. Then

D
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_ 1But unless Lf#,} < ^ip), > L(%f% »0iP»/i)
In addition

(/'0'%) ^ > d /2 P 02'0'AJ

A-lsl02 -1 - 1 - 1  -l.I
  ____   ^ \/2 P >h 01 »02 I

But unless Lif^) 4 L(p)/ Ll/.^^A) > L(/z"^p ^ , A ^0 it02  ̂) 
In addition

X 3^
l/*0'%) — -<?-> (/'&'/#2 P/2)

n  .-1 - 1 ' y l l
------------ ^  ( ! ' /  0 ' » ^ 2  P / 2 )

02g^/  ̂ -1 -1 I
  > ( # 2/* '^1 /I'P )

But unless L(a) ^ L(p), L(/,^,A) > L (^2/ 2”^ » 01~^/»P)
If /gis not a piece, then

— 1 —1 — 1 —1 — 1 — 1 — 1 — 1 _
fi fl hfz P 02 E f 2 p 02/2 /l A ,

— 1 1 — Xso that as f Aand are non-trivial, / A02 i s
Inot reduced, and thus (/,#,A) ië not reduced.

As a consequence, unless {ii} occurs 

L ( t ) = h ( ^ 2 > / 2  »/i *h t f 2 ) < (2 + 3p)XL(p).

14. t = 02 (/ A )“'/2 ' P ' Then

iftgfh) (/'0ip/2(A ^/)“*>A)^
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^ . (h.g.pfzCk lf)°\l.f)l

These last four mappings are repeated a-times, until:

I g l ^ 2~1 _ i  I•(/.0ip..f 2 .A) V (f i .^iP. A/z J

But unless ^  L(pj, L{f,g,h) > L(fj,0,p ,A/ 2 ^ )
If (f ^A)°i ^fz  ̂ is not a piece, then using the same method

Ias in Case (11), we find that (f,0 ,A) is not reduced - 
a contradiction.
As a consequence, unless {ii} occurs,

L(t) = L(.g^,if~^h)°'fr^)) < (2 + p) L(r).

15. t E PoP.f" =Q p. Then this case is described
in Example 2 of Section 2.2. Thus unless {ii} occurs,

-1 -1L(t} = hig g f hg ) < (2+3P )XL(r ).

16. t E 0004//  ̂A ') °̂ 0 4 ̂  =2 P" a>l. Then
I

(f»0'»A)^  ̂ (/,#3p#4(A ^/)°,A)^

(/.g,p.9d?!"V)“

These last four mappings are repeated a-1 times, when we have 

But unless L(0 o) ^ L(p), L(/,0 ,A) > L(/,03p0 % ,A)
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2) If (/  ̂ is not a piece, then
f l.vOi — 1 —1 _ , l .a — 1 — 1 — 1 1,( / A )  0 4 P 00^4 = (/ A) 04 P 0004/ A,
S O  that as f  and are non-trivial, g , ^ f  A is not

I2) reduced, and thus (/, 0 , A ) is not reduced.
If 04 is not a piece, then # 4/ ^A 5 ^^A which is not

possible.
2) As a. consequence, if {ii} does not occur,

L(t) = L(0 o ,04 , (.f ̂ A ) “ ,04 ) < (4+p) L(r}.

2) 17*. t = 04/ ^hf ^03 p. Then this case is described
in Example 4 of Section 2.2. Thus unless {i } or {ii} occurs, 

L(t) = L(04,/,A,/,03) < (2+3p}XL(r).

18*. t = g^if ^A)“f ^03 =2 P' Then
I

(f,0,A)^  ̂ (/,03.^opP'3~^(/A~^} f,A}^

-1,_7 -1.0 , ̂ -l.II^  (1,^3.^0P^3 (/'A ) , A/ )

, ( l , 9 3 9 o P 9 3 " ^ ( / A " ^ ) * , / A  1 ) 1

^  ̂ (A/"^,030oP03 ^ i f h  ^ ) “  ^ , 1 ) ^

These last mappings are repeated o-l times until

Thus in this case, the Type of factorization changes.
— X “ XBut unless 1(0^) < L(p), L(/',0,A) > L(0j ,0oP,A/ ).

Similarly for 03.

By the same method as in case (17}, as (/,0 ,A)^ is assumed 

to bè reduced, (/ ^A}°* ^f  ̂ is a piece. As o>l, f ^A. is
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also a piece.
As a consequence, unless {ii} occurs,

L(t) = < l2+2p)XL(r)

c7B. Let (f^g^h) be a factorization with J - II.
1. t C f or h, then h = h^th^ h^ph^ or

II/ = fitf^ /spA^. In both cases, (/,0 ,A) is related to a 
smaller factorization, unless L(t) < l/2L(r).

2. t = fzhi =g p. Then

TT q11 _1 TT qllAl II
( f , 0 , A )  g , ( f i p A i  , 0 , A )    ^  ( f i p , 0 , A , A j

But unless hifz) 4 L(p}, L(f,g,h) > hifyp.g.h^hy)

In addition

II s^l -1 II gll/z  ̂ -1 II
l / , 0 , A )  g , ( f . 0 , / 2  p A , )   __________^ ( f i . g . p A z f :  )

But unless H A ^ )  < L(p}, L(f,0 ,A) > hifytg.ph^f^ ^ )
As a consequence, unless {ii} occurs,

L(t) = Lif^thy) < 2p\h{r),

3. . t = A\Ag p. Then this case is described in
Example 7 of Section 2.2. Therefore, unless {ii} occurs, 

L(t } = L(A, ,A, ) < 2pxL(r) .

4. t = A 0A 4A 3A 0 = p . Then this case is described
G

in Example 9 of Section 2.2. Therefore unless {i} or {ii} 

occurs,

Lit)  = L f A u ' A t ' A a ' A o )  < ( 2+2 p ) x L ( p ) .
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5. t = A 4AA3 f • Then
' II

( f . q . h ) l l  , ( f . g , / i .  lp%, 1)11

-1 -1But unless L(Ao) L(p), L(/,#,A) > L(f, 0 ,A4 pAs )

If A 4A, is not a piece, then 

r E A 4A 3A 0A 4A 3 = A 4A 3A 4A 3A 0,
so that A 4A 3 and A 4A 3A 0 commute. Thus r and A 4A 3A 0 are 
powers of a' common element, and r is a proper power. Thus 
iu,v) is not root-clQsed (rel i?) . Therefore, as in the previous 

case (4)/'{ i} or{ii} occurs. As a consequence, unless {i} or{ii} occurs 

Lit ) = L ( A4A 3 , Ao ,A\A 3 ) < (2 + p )XL(r ) .

6. t = A^A^^As, Oi>l. Then as in the previous case

(5), if (A^AjAo)^^ ±s not a piece, {i} or {ii} occurs.
Thus unless {1} or {ii} occurs,

L(t) = Li ihi^h yh^h .̂ ĥ ) < 2xL ( r )

7. t = AoA^A^^AgAo, 0^ 1. Then as in case (5), if
(AqA4 A 3 ^Aq is not a piece, {i} or {ii} occurs. Thus,
unless {i} or {ii} occurs,

L(t) = L((AqA^A3 A o ,AoA4 A 3) < 2xL(r).

8. t = fzAAi P" Then

But unless L(/z) ^ L(p), L(/,0,A) > L ( / ̂ p , 0, A j A ̂ ) .

In addi ti on

D (f.gd)ll \ f , 9 . f 2  -ip̂ ri)ii _ffLL(f..g.p/:.-%-i)ii

D
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But unless L(A2> < L(pj, L{f,gyh) > L(/i,0 ,pAi ^ )
if hi is not a piece,

-1 -1 
hihzhiç fz = hip fz'hihzy

so that A and fz are non-trivial, hfz is not reduced,
IIand therefore ifygth) is not reduced.

As a consequence, unless {ii} occurs,

L(t) = Lifzthithzthi) < (2+2p)xL(r).

9. t B fzh^^hi p, Oi>l. Then this case is
described in Example 10, with a, = 2 .  Thus unless {i } or 
{ii} occur s ,

Lit) = Lifzih^^ ^hythzhi) < (2+p)XL(r).

10. t = .fo/«,A/4  ̂ p. Then this case is described 
in Example 8 of Section 2.2. Therefore unless {ii} occurs, 

L(t) = L(/o,/4,A,/4) < (2+2p}XL(r).

11. t = P ' Then

.II , -a .II S^I% .II(faPf-A >0 »A)    >(/3p/4'0'A)

But unless L(fg) L(p}, L(/,0 ,A} > L(f,p/^,0 ,A}
If f 4 is not a piece, then A = A  ̂ which is not possible^

-1 11If A“ is not a piece, then as in Case 8 , (/,0 ,A) is not

reduced. ^
As a consequence, unless {ii} occurs,
L(t) = L(/'o ,f 4 , A“ ,/^ ) < (4 + p)xL(rj.

12*. t = gzf^i =Q p ' Then

II , -1„-1 , .II ^ ^-1 , -1 , .II
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(Note that the Type of factorization changes).
-1 -1But unless L(0 z) < L (p), L (/,0 ,A ) > L(Ai,f 0 ip,Aa ). 

Similarly for A,.
In addition

, . ,.II S ^  . -1 , -1 ,.II 9^gIlAi II(f,0 ,A) G . (0 2 pA 1 ,0,A)_____________ ( p ,020'i . AjAi )

But unless L(/) < L(p), L(/,0 ,A) > L (p ,0 z01,A 2 A ,)
As a consequence, unless {ii} occurs, 

L ( t ) = L ( 02, / , A i ) < 3pXL(r).

13*. t = gzfhhy p* Then

, (h.f-lg,ph.-1.1)1

(l,%,f-lg,pk,-l)ll , (l,%-l.f-lc,p%,-l)l

si%' ,, , -1 --1 .1
--------->. (Al'Az ,f 0ip)

(Note That the Type of factorization changes). But unless

^ ( 0 2 )  <  L ( p ) ,  L ( / , 0 , A )  > L ( A ^ , Ag  ^ , /  ^ 0 1 p )

In addition

, , .II . -1 . -1 -1 .II 92S^I%% / .II(f'0'A) G y ioz pA 1 A »0.A) . ______ ’ g z - g i  ’ AjA i V

But unless L(f) $ L(p}, L(/,^,A} > L ( p , ̂  20 i » A 2 A i ) • >v 
Also

sllf'l , -1 - 1 - 1 , 1 1________ ». (1'9'F: P ^ i  /  )
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(Note that the faccorization Type changes.) But unless
— 1 — 1L ( % 2) < L(p), L(/,0 ,A) > L (02 ,gi'/AiP )

If Al is not a piece, then
-1 -1A 1P gzfh E A 1A 2A 1P 0%/,

- 1 - 1so that as /A and g zf are non-trivial, g zfh f is not 

reduced.

As a consequence, unless {ii} occurs, 
L ( t ) = L ( 02,/,Ai,A2»Ai ) < (2+3p)XL(rj.

) 14. t E 02/A° \A 1 p, a,>l. Then

)

lA

D

these last three mappings are repeated Oi-l times until:
D

(l,.f"^0ipAj "1, A)II ^ -1 %-l)I

3 (Note that the Type of factorization changes). But unless
L ( 0 g ) ^  L ( p ) ,  L ( / , 0 , A )  > L ( A j , . f  ^ 0 i p , A 2 ” ^ )  

In addition

0,_IIA°'A

D
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But unless L(.f) L (p ) , L ( f , 0 , A ) > L (p , 0 jg i t A 2 A i )
XXAs in the previous case (13) since (/,0 ,A) is reduced,

-1  ‘A  ̂ A is a piece, and therefore A is also a piece.
Thus unless {ii} occurs,
L(t) = L(0 2 A“^A 1) < (2 + 2p)XL(r}.

15*. t = 02/A/2  ̂ =2 p. Then

TT qll 1 TT /"Iqll 1 I T T
(f,0,A)Il ^3 , (/.0iP.f2A .f" »A)“  _ l _ ^ ( l , f  0iP/:A-l,A)^^

IIS -1 -1 -1 I° , (l,f 0,P/\A \ a

qIA T
 ^ (A,/ 0 1Pf 2 » 1)

ql _1 T T /aqllA _ i TI
P i P / 2 , A)  ,  ( f 2 , f ,  P i P . A ) ^ ^

But unless L (0 ) L(p), L(/,p,A) > L (f^,/^ ”^0 ̂ p , A )
In addition

I,)"
3 But unless L(f^) ^ L(p), L(f,p,A) >L(p/j»P 2^1 » A )

Also
II

(f,0,A)^^ _îg ^ (f'0,f ^P2

(l,0'P2P/i ^

f'fl» (P,.P."',Pf

(Note that the Type of factorization changes.) But unless 

L(A,/^) <: L(p), L(/,p,A) > L(p^,p^ ^,p/\ ^)*

3
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” 1If fz is not a piece, then h = h , which is not possible 
As a consequence if {ii} does not occur 

L(t) = Ligz,fI ,f2 $h yfz) < (l + 3 p }XL(r).

16. t = g zfh^f2 =2 P* oi>l. Then
II

) ( f . gi Pf,h~°f

, ' T

These last three mappings are repeated a-1 times, until:

-1 II 1 2^ -1 II
(I'f PiP/z'A)  ______^ (f 2 PiP'A)

But unless L(p^} < L(p), L(/,p,A) >L(/2»/i ^9 iP*h)

In addition

^11
(/,p,A}"" (p2 "P/2A ",p,A)II s: , -I . .-a ..II

' :__' •r> (p/2 P 2P 1 » A)

But unless L(/ ) ^ L(p), L(/,p,A) > L(pf2»P2p i » A )•
3 If is not a piece, then

A^/g ^P ^02.f= A“ ^/z ^p ^Pz/A»
so that as A and /^are non-trivial, A is not reduced,

"Y IIand thus (/,p,A) is not reduced.
As a consequence, unless {ii} occurs,

L(t) = L ( 02 » / i  »/ 2 » A ^ ^ , / 2 ) ' < ( 2 p + 4)XL(r).
3

3
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17*' A E goQnfhf ^0 4  ̂ =gP - Then
II

(f,0,A)^^ ^g  ̂ (/.P3PP4/A"V"^.A)^^

„-l .v-1 , .II^  ( I , /  f fsPQufh , A)

(l,/~^0,P04fA

—  1 T
 ». (&,f ffiPff»/.!)

fgl -1 II° ) (l,f g:PP»f,%)

, ,.II ^ (/»P3P p 4 » A)

But unless L(0 o)^ L(p), L (/,0 ,A )>L(f,0 sP04,A )
In addi ti on

II

P4gII/-IP4-I -1 -1 -1 - I I
) (I.Po P3 0 4 ,00 P)

, -1 -1 .I
_______ ^ ( 0 0 ,  Ps 0 4  ,p)

(Note that the Type of factorization changes). But unless

L ( A , f )  ^ L(p) , L ( / , 0 , A )  > L(0o,03 ^04 ^ , p )
— 1 ■If 04/is not a piece, then A e A , which is not possible. 

As a consequence, unless {ii} occurs,

L(t) = L(0 o,04/,A,04f ) < (2+2p)XL(r)

18. t E 0004/A*/ ^04 pi .Then
II

( f , 0 , A ) ^ ^  ,̂ ,,g___^ ( / ' 0 3 P 0 4 / A  * /  ^ , A ) ^ ^

/-Iqll _ TT
_______ ^ ( I , /  P3PP4/A ^ 'A)

^( I , /  ^P,P04/A °‘,A  ̂ ^0



— 1 0 6  —

2 %
Repeat these last three mappings a-1 times until:

\ (.f.g.pg.d)” .
: . .

But unless Lf#*) < L(p), L (/,p ,A ) > L (/,pjpp4,A ) .
If A*  ̂ is not a piece, then
,01-— 1 — 1 — 1 - _ ,a — 1„— 1 — 1 — 1 -,A f 04 P 000-/ = A f 04 p 0004/A,
so that as A and 04 / are non-trivial, 04/A  ̂ is not reduced,

IIand therefore (/,p,A) is not reduced.
As a consequence, unless {ii} occurs.

Lit) = L(0 of04/,A*,04/) < (4+p)XL(r)

19. t = 04/A/ 03 p. Then,-1^
3 II ^

, (i.f ^g,g,pg, ^

O  1A _ T  _  n j
 __^ (A,/ 030OP0S /, 1)

3 T

g, I/3II _i II
 : ^ (03 /,0oP,A)

3 — 1But unless L(p^) ^ L(p), L(f,p,A) > L (03 /,0 oP,A)
Similarly for p , . In addition,

. -1 -l.II________ ^ (1,0'04 P03: )

3 , (1,0"1,04"^P0,~^)^

3
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. ' -1 . I> (040400 ,p)

But unless L(A,/) 4 L{p)y L(/,p,A) > Lfp^pg.po.p)
If f is not a piece, then A = A , which is not possible. 
Therefore if {ii1 does not occur,

L(/) = L(04,/,A,/,03) < (l+3p)XL(r)

20. t = g^fh^f ^03 =g, P' Then

( / , 0 , A ) ^ ^  ...^  ( f ' 0 3 0 o P 0 3  V a  , f

f-1 II _ _ _ II
> ( I ' f  0  3 0 o P 0  3 / A  “ /A)

fj^_»(i,/-'0,0oP0,-'/A-*,A"i):

(A,/-i030oP0,-\rA-*+i,i):

fj^(i,/-'0,0oP0,-'/A-*+i,A)::

These last three mappings are repeated a-1 times, until: 

(I'f ^0 3 0 ,P03 V»A)^^  ___________^ (03 V»0oP,A)^^

— 1But unless L ( 0 4 )  < L ( p ) ,  L ( / , 0 , A )  > L ( 0 3  f , 0 o P , A )

Similarly for 0 3

If / is not a piece, then h = h ̂ , which is not possible.
If A*  ̂ is not a piece, then

1 — 1 _ , a —1 —1 —1 .
A /  0 sP 04 /  = A /  03 P  04 / A

and as and A are non-trivial, p^/A  ̂is not reduced, so
that ( / , 0 , A ) ^ ^  is not reduced.
As a consequence, unlessfii} occurs.

Lit) = L (04,/,A * ,/,03) < (4+2p)XL(r)
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A GUIDE TO THE PROOF OF EACH CASE REQUIRED FOR THEOREM 2.2

Because of the exceptionally large number of cases it is not 
practical to provide a detailed proof in each instance.
However a simple coding system will indicate, in each case, 
the strategy required so that the reader may fill in the 
details, following the methods described in Section 2.2.
For each case, we divide t into subwords where
t = 1 1 ta . . • t-Ti,. Then it can be shown that if P/* is S-minimal

T
(so that ii} cannot occur,} either (f,p,A) is weakly related 
to a smaller factorization, or the lengths of the subwords 
t, , ta , . . . , t>j are bounded in size. The precise limit depends 

on the method used. We indicate which method should be used 
by writing A ,B or C above each subword. These coincide with 

the detailed description of the methods in Section 2.2. For 
convenience we do not make use of method D. This is because 
method C can always be applied in those cases that could 
(under certain conditions) be covered by method D.

In particular, the length of a subword of type A is either 
bounded by pXL(r), or (/,p,A)^ is related to a smaller, 
factorization.

A subword of type B is always a piece.

If a subword is of type C, (1 i^n) , then is a piece 
unless (w,y) is not root-closed (rel R) and either
(a) W* is not S-minimal and {i } occurs, or

(b) (/‘,0,A)J is weakly related to a smaller factorization,
so that {ii} occurs.
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We assume is S-minimal (rel E)

By assuming that (/,p ,A ) is not weakly related to a smaller 
factorization or if (%,%) Is root-closed (rel /?) , by 
assuming (/,p,A)^ is not related to a smaller factorization, 
we can find, for each case defined below, a total bound T on 

the length of t. This is obtained by adding together the 
individual limits on the lengths of the subwords 1 1 .

We will use a similar notation to that used for Theorem 2.1. 
That is, if Y is any word in VJ{x) then we write 

y = YiYz E y,y,y4 , where 72,13,14 jÉ 1.
We use a,a 1,02 to denote non-negative integers, and e ,e i , e 2 ,
E 3 to denote +1 or -1.

The cases are divided into two parts according to the Type J 

of factorization of (/,p,A).

A. The factorization J = 1

We do not list below those cases which are similar. For 
it is possible to construct from each of the expressions 
listed below, 11 further unlisted expressions by means of

Ithe transformation S^. These expressions can be found by­

replacing the elements of the triple (/»p»A) by the elements 

of a permutation of (/^,p^»A^)*

We consider in the first 20 cases the possible values for t,

where t is a subword of #*, and where p is not an F-subword
of t^t ^ . The cases obtained by assuming A or / is not an

-1F-subword of tut are similar.
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—  1Suppose first that / ,p and A are not f-subwords of tut , 
then t or t  ̂ is a subword of f ^ , f ^A,A/ gh ^

or A ^p, and this gives cases A1 and A2 of Theorem 2.1.

“1Secondly let / be F-subword of t, but A and p not F-subwords
— 1 — 1 — 1 *of tut” . Then t c hf A, hf g or similar F*-subwords of

This gives cases A3, 4 and 5 of Theorem 2.1.

In the third place, let A and /  ̂ be subwords of t, but p is
— 1not an F-subword of tut . This gives cases A6 - 18 of 

Theorem 2.1, and two additional cases, 19 and 20. These 
extra cases arise when p is a subconjugate of t, but not an 
F-subword of tut ^ . The value for T in these cases shows 
that the conclusion for Theorem 2.1 is in a sense maximal, 
and in fact these are limiting cases for Theorem 2.2.

3
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C A O  AC A C
19. t = poPkf ^hf  ̂ PsPo, T = (3p+4)XL(r)

C A C C A 0
20. t = PoP4(.f"̂  A ) V “ ^A/”  ̂ p,Po, T = (2p + 4)XL(r)

We consider in cases 21-24 the possible expressions for t
-1 _iwhere f ,p,A each occur as F-subwords of tut only once

““1 “ X “ XIn the first instance suppose t c f  hf gf

C A C A C A C
21. t E f ~^ T = (3p+4)XL( r)

C A O  C A C
22. t E f\ V s  .̂f„ , T = (2p + 4)XL(r)

-1, -1 -1 Secondly suppose t c p hf gf

3 B A C A  B A C
23. t = Pi fz  ̂ .fl  ̂ Pipzfz  ̂ , T = (3p + 4)XL(r)

- 1 - 1 - 1  Lastly suppose t e g  hf gh

3 B A B A B A B
24. t 5 Pi ^hihzf ̂  P 1P 2A 2 ^ 5  T = (3p+4)XL(r)
We consider in cases 25-36 the possible expressions for t 

^ where p and A each occur as F-subwords of tut ^
only once, and f occurs at least twice as an F-subword of 
tvt ^ .

-1^ In the first instance suppose f is an F-subword of t on-Ly

twice.If t c f ^Af ^pf then
C A C A C C

25. t E f r ^ h , h 2f~^gf~^hi , T = (2p + 4)xL{r),

If t c f~'^hf~^gf~^g, then 
C A C A C

26. t E g,g 2f~^ <7i. T = (2p+4)xL(r)

If t c jj then

3



3

- 112 -

B C A C B A C  C
27. t = T = (2p+6)AL(r),

If t C p " ^ A f " W ^ 0 »  then

28. t = p3~^Af"^030uP4f ^0300, T = (2p+3)XL(r) 
B B A C B A C

29. t 5 Po ^03  ̂ hf ^030004-/^03» T = (2p + 5)XL(r),
“1Secondly suppose f is an F-suDword of t at least 3 times
- 1, - 1 - 1  then either t c gf hf gf p, and

C A C A C C
30. t = g„f ^hf ^030004/ ^03, T = (2p+4)XL(r)

31. t = g o g ^ f ^ h f  ^030004/ ^030o» T = (p+4)XL(r)

or t e hf ^hf ^pf ^p and

C A C C A C
32. t E hzf ^hihzf ^piPzf ^01, T = (2P+4) L(r)

Lastly suppose f and f  ̂ are F- subwords of t
-1 -1 -1 then either t e g  fg hf p , and

B A B B B
33. t E 04/^030004/04 ^0 0 ^* T = (p+4)XL(r) 

C B A C B
34. t E P 0P 4/ ^0 3 0 0 0 4 / 0 4 ^ , T = (p+4)XL(rO

- 1 - 13 or t :c gf hg fh, and
B B B A B  A B B

35. t E p 2/ ^hihzgz 0̂,1 ^fh'n ^ , T = ( 2p + 6)xL(r)
-1 -1 -1or t c A /  hg fg , and

C B A C C  A B C— X —X — X — X36. t E hzf A 1A 2 0 2  01 / 0 2  , T = ( 2 p + 6 ) x L ( r )

3
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We consider in the rest of the cases the possible expressions
-1for t , where g occurs as an F-subword of tut only once, but 

f and h occur as distinct F-subwords of t^t ̂  at least twice 

each.

-1First suppose g occurs in tut as an F-subword only once,
-1and t does not begin or end in the F-subwords p or p

-l^.a.EThen t e {hf gif

We get a number of cases here, according to the position of 

t in this word, and the value of c .

37. t =(Af 1.. .A/ ^) ^ h f ~ \  / ^p(/"^A),, T = (p+ 3)XL(r) 
C C C A  C C C

38. t E (...A/“^)4 hf  ̂ g f ^ h  (/ ^A...),, T = (p + 6)XL(r)

C C A B
39. t E i . . , h f ^ \ h f  ^hf  ̂ghz ^ , T = (p+3)XL(r)

C C C A B .
40. t E (. . .jr^^A) 4 A/”l p A”l/,, T = (p + 4)XL(r)

C BB A B B C
41. t E (...Af”l)^A/ lpA” lf (A” ^f . . . ); , T = (p+6)XL(r)

Secondly suppose g occurs in t u t  ̂ as an F-subword only once
-1 —and t begins but does not end in the F-subwords p or g

Then either t c gf ^hf ^...Af ^p(,f”^A...f ^A)^ (cases 42-47) 
or t c p ^ A / ^ . . . A / ^ p ( / ^ A . . . ) ^  (cases 47-51)

C A 0 C C
42. t E pz/  ̂ piPzf  ̂ hf  ̂ hif ^A...)i, T = (p+4)XL(r) 

n C A C C
43 . t = P 2/~^A.flpiP2.f-lA(/“TA. . . ) 1 , T = (p + 4 ) x L ( r )

C _______ C C _ A  C  C_
44. t E P 2(.f"^A)“f^A/"^A/'"^PiP2(/“^A...),, T = (p+5)xL(r)
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C B A C C B C
45. t = g,f~^ fh~^ (fh~^ ...),. T = (p46)XL(r)

B C A C B B
46. i = g A f ~ ^ h f f  ^hf~^g,g^h^(.fh~^...), T =  (p + 8)XL(r) 

C C C A C  B C
47. -  t - g Af~^h)''f~^hf~^g,g:l.h~^ f. „  T = (p + 6)XL(r) 

B CC B A  C C C
4S. , t = g ~ ^ h f  ^g,g^f T =  (p+7)XL(r)

B C C B A C C
49. t 5 g, I = (p+6)XL(r)

B B B B A B B C
50. t = g~^hf~^gig^h~'^f(h~^f...)^, T = (p + 7)XL(r) 

B C C B A  B C
51. t = g , ^ \ h f  ^)^hf~^hf If...),. T = (p+6)XL(r)

-1Lastly suppose that g occurs in tut as an F-subword only
-1once, but t begins in the F-subword g or g and ends in

-1the F-subword g or g . Then

t cgif^h)^^f ^gif ĝ; ai + az>l; cx̂ >az,

(Cases 52-55), or

t Ç gif ^gih ^g; ai+az>l; q ,
(Cases 56-59), or

t c gif ^h)^^f ^gif^h)^^g ai + a 2>l; a .^>01 

(Cases 60-63), or
t C g(f~^h)°“ f~^g{h~^f)“^g~^; cLi + a^>l; a,>0,
(Cases 64-67), or A

t g "^ihf ^)^^gif ^h)^^g ai,a2>0 ; cx.̂ cxz,

iCases 68-71), or

t ic. g ^ihf ^)^^gih ^f)^^g ai,a2>0 ; a,^a2i
(Cases 72-75).

C C C C A C C
52. t = g^{f ^%)°' ^f ^hf ^hf (where q 2 = 0) ,

T = (p+6)XL(r)
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C C c A C______C___________C

53. t E
(where O2>0), T = (p+6)XL(r),

C G C C C C
54. t = (where «2 = 0)»

T = 6XL(r) .
C C C C C

55. t E

(where a2>0), T = 5XL(r) .
C C BC C A C B C

56. t E g\,{f '̂ hf \&3, (where 02 = 0),
T = (p+8)XL(r)

C C B C C C C ___ Ç
57.. t =
(where a2>0), T = 8XL(r).

 C C B C__C__C_B __C_
58. t E g^g^if '̂ hf ^9^9^ ,
(where a 2 = 0), T = 8XL(r),

C C B C C B C C
, 5 9 .  t E ^fh~'^(fh 1)°:
(where a 2>0), T = 8XL(r),

C A C C C B
60. t E go&\f"^#3#u&4f ^hif ^g^ ^ ,
(where a, = 0), T = (p+5)XL(r).

C A B C C B 3^
61. t = gi,f ^gsgoffnf ^hif ^g^ ^g^ ^ ,
(where a ̂ = 0), T = (p + 5)XL(r),

C ___________ C  A C_________ C B
62. t E

(where ai>0), T = (p+5)xL(r) ^

C C A B C  C B
63. t E
(where a i > 0 ) , T = ( p + 6 ) X L ( r ) .
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C B A C C C B
64. t E  ̂g i9 z9 ^fh f^fih ^g^ ^

(where a^ = 0), T = (p+6)XL(r)
C B A B  C C B

65. t E

(where ai = 0), T = (p+6)XL(r )
C C A C  C B

66. t =
(where ai>0), T = (p+5)XL(r)

C C A B C C B
67. t E
(where ai>0), T = (p+6)XL(r)

B C C  B A B C C  B
68. t = Qs '̂ hf '^g^g^^g^f  ̂ , t = (p+8)AL(r)

B C C B A B C C B
69. t E

where ai>l, T = (p+8)XL(r)
B CC B B C  B

— X — X — X *̂ X- — X — X70. t E g^ hf g.,g^g\f' hg^' g ̂ . > '

T = 8XL(r) ' .
B C C B B C C B

71. t E h f ^  g ,g ,g f ^ h g  ^'^g ,

(where qi>l), T = 8XL(r)
B BB B A B B B B

72. t = g r^hf~^g  ̂ g ogk'h''^fg f T = (p + 8)xL(r)
f-.-, B C C B A B  C C B

73. t E g,~^(hf~^)'^y^hf~^hf~^g,g,g,{h~^f)'"^~'^h~^fg,  ̂

(where’ai>l) , T = (p + 8)XL(r)

B BB _B B B B B
74. t E go~^9 3 ~^hf ^g,gog>,h~^fgi,~^go'~^ y T = 8XL(r)

3
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3

(where ai>l), T = 8XL(r)

We have listed all the cases where g^f or h do not occur twice
-1as distinct F-subwords of tot . If ^ occurs twice as an

-1 -1 F-subword of tot , then t or t has the subword
gif ^h)^f ^g where a^l

or.gih ^f)°'h ^g where a^l
or g(f  ̂ where a>l

and for each of tnese it can be seen by using method B or C
of Section 2.2 that g is a piece. Similarly if /(respectively h)
occurs twice as distinct F-subwords of t, then f
(respectively h) is a piece. Thi s completes the analysis of

the cases, when the factorization is of Type I.

Part B The factorization (f»gth) is of Type II

As in Part A, we do not list those cases which are similar. 

These cases can be found by replacing the letters (/,#,%) 
in the expressions by f^g^^^h^^ or f where
E 1,E2 = ±1. By this, we can assume that the number of times 

that g occurs as a distinct F-subword of tot  ̂ is less th_an 
the number of times that h occurs.

We consider in the first 22 cases the possible values for t,
where t is a subword of (7*, and where g or f is not an

-1F-subword of tut

Suppose first tnar none of the words ftgth are F-subwords 
of tot ^ , then t or is a subword of fh^, f~'^g^ , hh or
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gg, and this gives cases B 1 , B 2  and B3 of Theorem 2.1.

Secondly let 7z be an F-subword of f, but /(and therefore g) 

not F-subwords of Then t c /?2°‘/*’^, or similar
F-subwords of I/*. This gives cases B5-11 of Theorem 2.1.

In the third place let / be an F-subword of t, but g and
—  1

h not F-subwords of tot . Then t c g f h , and this gives 
case B12 of Theorem 2.1.

Lastly let / and h be F-subwords oi t but g not an
F-subword of tot ^ . This gives cases B13-20 of Theorem 2.1,
and two additional cases, 21 and 22. These extra cases arise
when g is a subconjugate of t but not an F-subword of tut~^.
As in Part A, the value for T in these cases shows that the
conclusion for Theorem 2.1 is in a sense maximal, and in

fact these are limiting cases for Theorem 2.2.
C AB AB A C 

-121. t = ^o^„/ hf T = (3p+4)XL(r)
C A BC C B A C

22. t = g^g^fh hf T = (2p + 6)XL(r)

We consider in 23 and 24 those cases where /, g and h are ̂
-1 -1F-subwords of t, once each. Then t C f gfhf , and

B A B A  BA B
23. t E /,-! 9 /,/o/\% /,"^,T = (3p + 4)xL(r)

B A___^  B A B
24. t = / 0 /j  ̂ g f sf of It h /\ ^/o ^ , T = (2p + 4)XL(r)
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In 25 and 26, we consider those cases, where g and f

are F-subwords of t , once each, but h occurs as a distinct
F-subword of tmore than once. Then

-1 -1t c f gfh.•.hf , and we have
B A B A B C _  C B

25. t = fs ^9 f sf of ..hf It ^, T = (2p + 6)XL(r)
B A B B C  C 5

26. t I / o  ^ 3  ^9f3f,f,h...hfr-^fo~^, T: = (p + 6)XL(r)

In 27-*31, we consider those cases where g and / are
F-subwords of t, once each, but % occurs as a distinct 

- -1F— subword of tot more than once. If / occurs only twice
then t c f gfhf g and we have

B C ABA B C
27. t 5 /i  ̂9i9zfhf  ̂ T = (2 p+ 5) XL(r )

B A B A B
28. t E fr^g,g2fhf~^g^ T = (2p+3;Xl(p)

If / occurs more than twice, then t c h ^ ^ f ^ g f h f  ^g^ 
and we have

C ABA C
29. t = h^f g.g^fh^h^f g^, i = ( 2 p+3 ) xL ( r)

C A B BA C B
 X 2 X30. t = bzf giQifhi'hif'' 9i~ , T = (2p + 5)XL(r)
B A B B A B

3

31. t z hi f g \9 zfh ih ̂ f g z. i T = (2p + 4)xL(r)

In 32 and 33, we consider those cases where h and g are 
distinct F-subwords of t at least twice, but / is an 
F-subword of tot  ̂ only oncq.



- 120 -

Then t c f ^g...gfh ...hf ^ , and we get 
B C C B A B C C B

32. t = fs ^g...gfsfofz h...h /% ? = (p+8)\L(f)
B C CB A B C C B

33. t E /o ^g...gf sf of 2^»•»^f z T = (p + 8)XL(r)

We consider in 34-59 those cases where p is an F-subword
3 — 1of tut only once, but f and h are distinct F-subwords

of tot  ̂ at least twice.
If t begins in the F-subword ht and end» in the F-subword

3 f -l e eh-t then t ch...hf gfh . ..h and this is examined in
cases 34-37.
If t begins in the F-subword , and ends in h^ t then 

^ t c fhf gfh^ . . .h^ (examined in cases 38,40) or
t c fh. . .hf ^gfh^ . .h\exam±ned in cases 39,41).

If t begins in the F-subword f~^ and ends in g^ , then
^ t c f ^gfh...hf ^g^t and this is examined in cases 42,43.

If t begins in the F-subword h^ and ends in the 
F-subword g^t then t c h ^ . . .h^ f ^gfhf ^^^^(examined in 

^ cases 44-47) or tch^...h^f ^gfh...hf ^^^^(examined in

cases (48-51).
Finally if t begins in the F-subword g^^ and ends within

^ the F-subword ^^^then t c  g^^fh°'^ f ^gfh°"^^f ^g^ ̂ where
we can assume aj^a2>0 (examined in cases 52-59). ^

______ C_CB A B C
3 34. t E i.,,h)^hhf  ̂ g f % 3, T = (p + 5)XL(r)

C CB ABC C
35. t {h. . .h) ithf'^gfhih. . .h) T = (, + 6 )xL(r)
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CB AB B; 36. t = i...h)tthhf ^gfh2  ̂, T = ( p + 5 ) XL ( r ) 
C BB A B C

37. t = {, . . h) ithf ̂ gfh ^(...%  ̂) 2, T = (p + 5)XL(r)
3 B CB ABC C

38. t 5 fzhf ^gfh{h.,.)y , T = (p+6)XL(r) 
B C CB AB C C

3
39. t = f zh. . .hf ^gfih. . . /z ) 1 , T = ( p + 7 ) XL (r )

B BB ABB C
40. t = /%%/ ^0/% ^ ( ^ ^ . . . ) i , T = ( p + 6 ) X L ( r )  

B C CB AB B C
3 41. = . fzh...hf ^gfih ^...h ^ )%, T = (p+7)XL(r) 

B A B C  C B B

3

42. t = — 1 — 1 
fi 9 19 zfh^••hf g It T = (p + 6)XL(r)
B A B C  C B

43. t E f 1 ^ g \9 zfh...hf ^gz ^ , T = (p + 5) L(r) 
C C A B C

3
44. t = (%...%)3%/ ^gi9zf hf ^gIt T = (p+4)XL(r) 

C B C A B C
4 5. t E {h .̂../z  ̂) 3% ^gi9 zfhf ^git T = (p + 5)XL(r) 

C CB A B C B
3 46. t E ih...h) shf ̂ g ig zfhf ^gz ^ , T = (p + 6)XL(r) 

C B A B B B
47. t = T = (p+5)XL(r)

3
C C A BC C C _

48. t E ih...h).,f ^g ig 2fh. . .hf ^g^t T = (p + 6)XL(r)
C B C A BC C C ^

49. t E ih ^...h if ^gi9 zfh...hf ^9it T = (p + 7)XL(r)
3 C C A „BC C B

50. "t E (%...%),/ g \9 zfh. . .hf ^gz T = (p + G)xL(r) 

C B A B C  C B B

3
51. t E {h ^..,h ^)if ^g i9 zfh. . .hf'~^g z T = (p + 7)XL(r)

3
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Note that in the remaining cases if e = +1, then * 
is a piece using Method B, and if e =-1, then h  ̂ is a 
piece using Method C. We refer to this argument as Z, 
and use it in all the remaining cases to show that  ̂

and h are pieces.
If e 1 = £2 = 1, then we have

C Z C C A  C Z C
52. t E T = (p+7)xL(r)

c z c c  c_ z c
53. t E T = 7XL(r)

If Ei= 1, e2 = -1, we have
C Z C B A B Z B

54. t E Qitfhh^^ ^ , T = (p + 7)XL(r)
C Z C B A  C_ Z B

55. t E gtgKfhh'‘^~^f~^g,g,g,fh°^^f~^g,~^, T = (P+7)XL(r)

If El = 1, E 2 = 1, we have
B Z C B AB Z C

56. t E g,~^gr^fhh'‘'~^f~^g,g,g,fh°‘^f~^g,, T = (p+7)XL(r)
B Z C C A BZ C

57. t E T = (P + 7)XL(r)
If Ei = -1, E 2 = 1, we have

B Z C B A B Z B
58. t E T = (p+7)XL(r)

B Z C B B Z B
59. t E T = 7XL(rJ

This completes all the cases where g,f or h do not occur 
twice as F-subwords of tut ^ . If / occurs twice as an 

F-subword tut' t then t or t  ̂ has thè subword / ^g^ft

or fh^f  ̂ (ttĵ O), so that / is a piece by method B. If g
-1 -1 occurs twice as an F-subword of tut , then t or t has

the subword gg or gfh^f ^g^ (a^O) as a subword, in which

3
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case, using method C if the subword is gg or e = 1
and method B if e = -1, it can be seen that ^ is a 
piece. Similarly it can be shown that & is a piece if
it occurs more than once as an F-subword of t. Therefore 
if /,0 , and % all occur twice as F-subwords of t u t  ̂ then 

f t g t and h are pieces.
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CHAPTER III 
COMMUTATORS AND GENERATORS

SECTION 1 SUMMARY

PRELIMINARY REMARKS:
A problem that occurs in group theory is that of determining 
whether or not a set of elements in a group, generate that 
group. A related problem is the isomorphism problem.(Given 
a set J of group presentations, is there an algorithm to 
decide for any pair of elements of «7, whether or not they
define isomorphic groups ?). As any isomorphism G ------- ^
sends generating sets of G to generating sets of F, a study

of generating sets is closely allied to a study of isomor­
phism s. We shall examine a connection between commutators 
and generating sets (in particular, for groups of rank 2).

INTRODUCTION:
Let X be a fixed generating n-tu.ple of a group C, and let 
J be an arbitrary n-tu pie of elements of G. Consider those 
sets y which satisfy one or more of the following conditions:
a) y belongs to the same NE class (or T-system) as

b ) y generates G

c ) A higher commutator on Y is conjugate in G to a higher
commutator on X or the inverse of such a commutator,.

For certain types of groups, we will examine the relationship 
between those sets Y which satisfy a),b) or c). For if we 
can show that y generates G iff Y belongs to the same NE class 

or T-system as X in G, or iff a higher commutator on Y is 
conjugate to a higher commutator on X (or its inverse), then

3



0
- 125

2, the problem of determining the generators of G is changed to
that of finding those sets J which satisfy a) or c).

^ Our main interest will be in the case 72=2. In this case we

will write X={a h) Y=( %,%). Then a),b),c) become:7
a) iutV) belongs to the same NE class (or T-system) as (a,6)

^ b) { Ut v) generates G
±1

c ) [utv] ~ [a,6] ,
Until further notice we will assume 72=2.

Consider the following properties (these properties are 

quantified over all pairs (u,v)

-V A : [utv] ~ iff(%,u) generates G
[w,u ] ~ [a,6 ] iff(w,v) and {a,b) belong

3 . T

to the same NE class.
±1B : [utv] - [a ] iff (z/Z ,2; ) and (a ) belong

to the same T-system.
C^: (UjV) generates G iff(u,v) and (a,Z?) belong to

the same NE class.
C„: iu,v) generates G iff(w,y) and ia,b) belong toi

the same T-system.

These last two properties C^,C^ can be shortened to saying G
Ahas 1 NE class or 1 T-system of generating pairs respectively. 

In general if G satisfies any two of the properties (A,#^;C^); 
then G satisfies all three. Similarly if G satisfies any two 

of the properties (A,B^,C^), then G satisfies all three. From 

the point of view of our preliminary remarks, the most 

interesting of these properties is A,
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A well known theorem of Nielsen [34] (see also Malcev[Sl] ) 
asserts that if G is free on a , Z? then G has A. In fact in
this case G has all five properties. We remark in passing
that Dicks [6] has verified a property analogous to A for 
the free algebra of rank 2 over a field. He has shown that 
if k is a field, then u and u generate k<x^y> (as a ^-algebra) 
if the commutator [u,v] = uv-vu is a non-zero scalar multiple 

of the commutator xy-yx.

We will consider the following two questions:
Question 1 : Are there groups which satisfy one of the
properties A,B^ or but not all three ? Similarly, are

theregroups which satisfy one of the properties A,B^ or , 
but not all three ?
Question 2 : Can we show that certain types of groups posess

properties A, Bj^,Cj^,B^ or ?

In dealing with Question 2 we will consider almost exclusively
infinite groups. More specifically, we will consider groups 
which from the point of view of combinatorial group theory 
are known to behave "like" the free group of rank 2.

QUESTION 1:
We can illustrate the question by means of diagrams

B,
B,T
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Then the question is, are the outer areas 1-6 non-empty ? 

The following example shows that 3 and 6 are non-empty. 
EXAMPLE 3.1 (7 = <a ; [a ,Z? ]>
Then G has one NE class and therefore one T-system.

2 ' 2 But {a ,6) does not generate G^ and [a , &] = [a,Z?] = 1.

#

The next example shows that 2 and 5 are non-empty.
16 17 8EXAMPLE 3.2 G = <a,&;a ,b A a b )  >

Then in Lemma 3.1 we will prove that G has Properties and
B ^ , but more than one T-system.
(If one just requires an example showing 2 is non-empty then

5G = <a,b\a >is easier).

#

To show that region 1 is non-empty we have to find a group

with more than one NE class which has Property A. In fact
given p^2, we find a group with exactly 2^ ^ NE-classes which 

has Property A.
EXAMPLE 3.3 G = <a,b\b^ , [a ,b >2,
Then we will show, in Lemma 3.2 that G has 2^ ^ NE
classes and posesses Property A. Therefore for p>2, —

G lies in region 1 of the diagrams.

#

(It has been pointed out to us by J. Wlegold that the 
dihedral group of order 8, which as 2 NE classes, also lies 

in region 1 of the diagrams).

Unfortunately the group in Example 3 has one T-system. For

D
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we will see in Lemma 3.2 that

is a set of representatives of the NE classes of G,

. J .Let 6^ be the map a\— ^aibk—^b , where (̂  ,2) = 1,

and 0<j<2P-i

Then [ a , ] Bv■ = [ a , Z ? =  1
and b ' ^ J  = Z?- = 1 .^ G
Thus By maps the relators in the given presentation to 1 in G 

Also, as iJ,2) = 1, there exists k such that J k=l mod 2.
It is clear that B^ and B^ define mutually inverse 
automorphisms of G . It now follows that G has one T-system.

QUESTION 2
(i) Free products of c y c H c  groups: G=<ajbia ,b >;8,t>l.
Then it is easily shown that G has MN NE classes.

where M = 1 if s = 1 or 2, /̂,<j)(s) if »>s>2, 1 if s= " »
Æ = 1 if t = 1 or 2, %*(t) if »>t>2,.l if t= » .

For by the Grushko-Newman Theorem,[27 ],any generating pair
i dof G is in the same NE class as a pair of form (a , & ) with

(i,s) = (j,i) = 1. If we have two pairs
>Z?̂  ̂) of this form, then they are in the same NE class

iff ]-l.

By the theory of normal forms for free products, this implies 

Ï 1 = ±^2 (mod s) , di 5 ±^2 (mod t).

Therefore G has one NE class if and only if 

Sit é {1,2,3,4,6,*}

However G has only one T-system. In order to see this,

J2) let be the mapping in g i a ̂  tb t-̂ b'̂  *
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where (i,s) = (J,t) = 1. Then this maps the relators
to : tb^^ respectively, and ,b^^ = 1 in G.

Additionally as (i,s) = (7,t) = 1, there exists integers
kfSij where ki = 1 mod 8, Ij s i mod t so that
the identity map. Therefore B.,v i s an automorphism as% Q

required.
As regards Property B^, we have the following result. 

THEOREM 3.1 If G = <a,b; yb^>is,t>l, then G has

Property B ^ .
This result is presumably well known. A proof can be found 

in Section 3.

#

Thus G has Properties A ,B ,B ,C and C if and only ifN T N T
s , t e{2 ,3,4,6,“ }

One can ask about Properties A,B^,B^,C^ and for two - 
generator amalgamated products of cyclic groups.

k &LEMMA 3.3 Let G - <a,b;a - b >, kyl positive

integers, then G does not have Properties 
A,B^ or

3 In order to see this, let d be an integer greater than 1,

such that (ktd) = (&,d) = 1 (e.g. d=kü +1). Then for certain

integers if^,ik = = 1 (mod d ) ,
k I3 Now since a , Z? are central in G ,

= [a,b]
However McCool and Pietrowski have proved [32], that if r ,8 

3 are non-zero integers, ix^jy^) is a generating pair of G

if and only if {r,s) = (r,%) = (8,&) = 1.

3
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Therefore as
(l-t%),(l-J&) = 0 (mod d) and d*l, 

^) does not generate G .

#

It has been shown by Zieschang [64] that when % + & >4, G 
has an infinite number of NE classes, and when  ̂ = 2 = 2 ,  G 

has only one NE class.

(±i) Small cancellation groups : G = <a,b;R>

Using techniques similar to those in Chapter II we will prove 

the following:
THEOREM 3.2. Let G - <a,b;R> be a non-cyclic group,

I I

where R satisfies C^(l/16) or Cĵ (l/12)arz(i 

'^(4) and Where a,b are both pieces.

Then G has Property .
A proof of this result can be found in Section 4.

#

REMARKS 1.; ' If a is not a piece, then G -<a ,b *,{ab^ ,b^>

for certain X,I,m e Z  and this is a free product of cycles. So 
using Theorem 3.1 we could remove the condition that a»2?—both 

be pieces from the hypothesis of Theorem 3.2. However in our
A

proof of Theorem 3.2 we will require that a and b are both 

pieces.

2,~ :■ A new proof of Theorem 3.2 was obtained

recently in joint work with Pride. This proof involves 

considering diagrams on a torus and is similar to work of
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3

Schupp [59]. This geometric technique enables one to prove 
a result similar to Theorem 3.2 with R satisfying the 

non-metric condition C(15), or c(12), f(4).

In Chapter II we have shown that if R is finitely presented 

and satisfies conditions C£(l/14) or C^(l/10) and T (4), then 

G has a finite number of NE classes. We conjecture that for 

the "right" small cancellation conditions, if all elements 
of- R are proper powers, and no element of R is a power of a 

primitive, then G has one NE class.

(li±) One relator groups with torsion : G=<a,h;r^>,m>l 

Without loss of generality we can assume that r is not 
a proper power. We can also assume that r is not empty and 
is not primitive, otherwise G is a free product of cycles 

and so was dealt with above.
It is shown by Pride in [44] that G has one NE class. Pride 

has also proved the following result.(See [l5])«

If G is as above and m>3 then G has Property .
It follows from these two results of Pride that if m>3 then 

G has all the properties A , , B ^ ,C ^ ,C^.

When m = 2 G need not have Property B^:-
EXAMPLE 3.4 Let G^ = <a,b;{(ab ^ab)^{a b a b) } > •

Let u = a, V = b(a~h~'^a-^b)*~^a~^{b~^aba)*'^b~^ab.

Then [%,u] ^  [a.,Z?].For

[u.v] E b{a~h-'^a-^b)^-^a(b-^aba)*-^b-^

ab{a-'^b-^a-h)*-\-^{b-'^aba)*-'^b-^ab

D
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- {ab ^ab)^ (a ^b ^bf b ^aba ^(ab ^ab)

{ a - h - ^ a ~ h } - ^  b-^aba~^ i a b~^ a b)*
t

r~/ a ^ab = [a ,Z? ].

We can show that (w,y) does not generate G. by using theV

following Lemma of Pride [44].

Let B = <a,b; Q^>, where m>l and Q is a non-empty 

oyolically reduced word which is not a proper power. If 

( c L , y )  generates B, then y is expressible in the form

a°"^b~ a^ ̂ for certain integers «i, a %, unless some cyclic
±1 Ipermutation of Q has the form ba ,

Now if by ^a^^b = b for certain integers a i ,a 2, then
*by the strengthened Freiheitssatz,[58], the freely reduced 

form W of the LHS would have to contain a cyclic permutation of 

(ab'^abf (a~^b~^a~^b)*.

In particular W would have to contain at least 4t occurrances
-1 ,-J of b or b i whereas it has at most 4t-l occurrances.

-1 2->j Note that G^ =<&,&; [ a , 2) ab] > and G^is an HNN extension- of

# = <ao,Gi; [ao,Gi]2> A
with stable letter b , and associated subgroups sgp{&o),

3 sgpi^i). It has been shown by Rosenberger [53] that R has

Property A, so E is a group with properties A,B^,C^ and

3
but with a 2-generator HNN extension with only Property 

and €^.

3
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It remains an open question whether Q = <a,b; r^> has
Property when m = 3

GENERALISATIONS

There are two natural ways one might generalise A. In 
the first case suppose one chooses a fixed but arbitrary 

pair (a,&) from a group c(so that (a,b) need not generate 
Then consider

I r T +1Property A : [a.Z?]“ iff sgp{w,i>} is conjugate

to sgp{a i Z?}.

Then even if G is a free group A' need not hold. For
2 2 . ' consider the pairs (x ,y) and (x txy)t then their commutators

are equal, and Burns,Edmunds and Farouql [2] have shown that
they do not generate conjugate subgroups. However, the
pairs are related by a transformation of type

iufv) --- ^ iuisv) where fwis] = 1 .
Hmelevskii [16] asked if all pairs whose commutators were 
conjugate were related by a sequence of Nielsen transformations

together with transformations of type (%,%)  > iuisv)

where '[w i sj = 1. Lyndon and Wicks [29] have constructed an 
example to show that this is not the case. ^

The second generalisation would be to consider more than 
two generators. Thus let g be an «-generator group with
fixed generating «-tuple )• Then ië there a word«

1 f • • • I o n  «-variables such that the solutions of

3
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are precisely the generating «-tuples of G?
When G = F%:= <a^ , . ,a^>, and W is a higher commutator,
then Rips [51] has shown that all solutions to (1) are 
genef&ting «-tuples of G. However when W is a higher 
commutator, « > 2 , not all generating «-tuples of F,̂ ; are 

solutions to (1). For example if F3 = <a^,a 2ia3> and 

Wix^tX^iX^) = [[#1,22] , then {a , a ̂ cl ̂ , a is not a
solution of (1).

We have seen that for % = 2, the free group F = <a,b> 

possesses Property , so that the set of all conjugates of 
• - 1

[a,Z>] and [a\b\ is fixed under automorphisms of F.
However, it is well known that if % ^ 3, then there is no 

element w in F^such that Wa ^  for all a c Aut ( F̂ ,) *
[30,pl64-165]. In fact if we write w as the set of elements 

in F\ conjugate to w, then for % ^ 2 , the orbit of w under 
some element a e Aut(F^)is infinite unless w '~' {ic,z/] ,

and {x,y) generates F^i# = 2,[27 p.44].

2) To show how bad things can be when % > 3, we prove the
following.

2) THEOREM 3.3. Let F be a free group of rank ^ ^ 3,

and let N be the normal closure of an element w in F.
Then

3 a € A ut(F)
No. =

3
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(For the proof of this see Section 5),

It follows immediately from Theorem 3.3, that if 
G - <ai,...,a^; w> then F is residually G. Since any free 
group of rank greater than « is residually F, [36], we 

have :

THEOREM 3.4 Let G be an n-generator, one-relator

group with h ^ 3 .  Then any free group of rank greater than 

or equal to h is residually G.

.
kPride [39] has shown that if G = <a,b; r >, k > 1,

then Fp (and thus F for 2 ) is residually G, unlesstL n

r is conjugate to fa,b]^ for some % ^ 0. (If r is
.< Iconjugate to [a,b] , then Pride (unpublished) has shown

that F- ia residually G ) • The following question remains 3
open: if G = < a i b f ’r> where r is not a proper power, and 
if G does not satisfy a non-trivial law, then is F^ 

residually G?
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SECTION 2 SOME GROUPS WITH MORE THAN 1 NE CLASS BUT 
PROPERTY A;B_ on

LEMMA 3.1. L e t  G  = <a,b; >,then G

G has more than one T-system, but satisfies Properties

®N ®T-
(Note that G is a small cancellation group satisfying 

C (1/15) and T(4).)

(i) G has by Theorem 3.2.
3(ii) The pairs (a,&), (a ,Z?) generate G and lie in

different NE classes.
3In order to see this, suppose ia,b) and (a ,b) lie in the 

same NE class. Then there exists a solution to the 
equati on

From all possible solutions of (1) choose a word z so that 
the cyclically reduced form y of 2” [atbfzla , b] is as 
small as possible. Then as there is no free solution to 

(1),
Y ^ 1. Let z = 2 iW22 where 2 1 ̂  fa , Z?] 2 1 , 2 2 » Z?] ̂ 2 2  ̂ —
freely reduce to give cyclic permutations A,B of [a,Z?j , 

fa^ , Z)] ̂  respectively, and w Aw ,i wBw~^ are freely reduced. 
Then we can assume if w ^ 1 that J = w A w B , If w s 1 

then one may have to perform further cyclic permutations of 

A,B so that y = i4 ’ B ' where >4 ' , B ’ are subwords of A,B 
respectively.

—• 1If w or w has a subword which is more than a half of



- 137 -

, B ( aP )® or (Ba)®, then w is not minimal. Therefore 
the largest possible subwords of a ,(aB)® or (Ba)®in 

y or y  ̂ is a B ^ ^  , (aB) ® or (Ba)® respectively. So Y
cannot contain a 3-remnant, and by small cancellation

3. \ .

theory y = 1, a contradiction.

(iii) The T-systems and NE-classes coincide in G.
(See Rosenberger [53]).

)

LEMMA 3.2 Let G = <a,h; B^ , [a,B^]>, p > 2, then

(i) G has 2^^NE classes of generating pairs, for which

^ a set of representatives is ,a): 0 < a < 2^“^,a odd)

(ii) G has Property A,

^ We note that G is a free product with amalgamation:

2P-I • gP
G = <a, c ; c , [a,c]> * <B; B >

c=h^
3 From the theory of amalgamated products, each element of G

can be represented uniquely in normal form.

-N yj
0 where y is a non-zero integer; d. is either a- or B,

w h e r e  y. is a n  integer, (i = 1 , . .. ,772); d., d. , n o t  b o t h  'I z 'l+l

in the same factor, {i = 1,...,m-l). The number m is
3 called the length of the element.

fir

We first compute the NE classes of generating pairs. For 
3 this we use the following theorem of McCool and Pietrowski

[32].

3

3
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Let G 1 and G 2 be finitely generated groups with normal 
subgroups L^ and La respectively, such that L ̂ and L % 
are isomorphic. Let P be the free product of G  ̂ and Gg 
amalgamating the subgroups L^ and L g . Then any generating 
n-tuple of P is Nielsen equivalent to an n-tuple, each 
element of which has length ^ 1.

From this it follows that any generating pair of G belongs 
to the same NE class as one of the following types:

) (b^^b,

(b^^a , zf")
ib^^b, b^^b)

)

(b^ b,

3 where Y » 6 » y f Ti are integers. But the subgroup generated
by one of the first five forms is abelian, and thus is not 
all of G" Consequently any generating pair of Q belongs 

3 to th"e same NE class as the pair of the form.

Now such a pair is Nielsen equivalent in G to 

3 0 < a < 2^ ^ , a odd, and 2y+l = ±a mod 2^. But (a,2^) = 1 ,
so that for certain integers i,j,ia + j2^ = 2r\,

Therefore is in the same NE class as

G

We require to generate G. Therefore as the sum of
the indices of a in the relators of G is zero, 6 = ±1.

3
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As a consequence, any pair of generators of G is in the same 
NE class as a pair

(Z?°,a)» (0 < a < 2^ ^a odd).

It remains to show that two pairs a) and
(0 < a < 3 < 2^ ^ ; a,3 odd) are in distinct NE classes.

Suppose (6°,a) and (2?^,a) belong to the same NE class, 
then there is a primitive of such that

Uib^ta) = in &. Since all relations of G have exponent 

sum zero in a. iU) = 0, so that av {U) = ±1 and 
Oj^iUib^ta)) = ± a . But any relator of G has the exponent sum 
of 2? divisible by 2^, so we conclude that 3 = ±a mod 2^, a 
contradiction.

Thus the set {(6°,a)f 0 < a < 2^ ^ ,a odd} is a set of 
representatives of the NE classes of generating pairs of

In order to show that G has Property A, let

(2) [a, 2)] ±1

and let C denote the normal subgroup sgp{2? } of G»
Then G/C is the free product of the infinite cyclic^ group 

sgp{aC} f and the cyclic group sgp{2?C} of order 2.
^ Since

[aCfbc]
we deduce from Theorem 3.1 that Uixi^x^), Vix^iXz) is a 

^ generating pair of = <XifXz>* such that U{xC,yC) = aC,

V{xC$yC) = be» Thus Uixty) = Vixty) = b^^b for

D
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certain integers p ,n . Therefore (œ»y) is in the same NE
2 u 2class as the pair (Z? '̂b), which generates G^ As a

consequence all solutions of (2) are generating pairs.

Now any generating pair of G is in the same NE class as a 

pair ,a ) , and any pair of this form is a solution to
(2) . Thus any generating pair of G is a solution of (2) .

#
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SECTION 3 

THEOREM 3.1

FREE PRODUCTS OF CYCLES AND PROPERTY N
If G - <ash; >, then G has Property BN

Suppose [.w , [<3, b] where w are words in the generator

of G, Then by [27,p.254] there exists a reduced annular
^-diagram Af, where the label of the outer boundary o is a

' +1cyclically reduced cyclic permutation of ,
±1and the label of the inner boundary is a cycle of [a,6]

But in this case we can have no internal edges. In addition 
\^a,b\ has only 4 letters, so that there can be at most 4 
vertics on t . Therefore if we draw the subdiagram M* of Af 
consisting of t together with those regions A , where 3Anx 
contains an edge, we have one of the following:

a) b) c)

d) e) f )

D
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In order to prove the Theorem, we use the notation and
definitions of Chapter II. Let (/,#,%) be a factorization

-1of Type I of ( w , u ). { i . e . u = f g t v = f /z ). We assume
that (w,u) is chosen so that L(f,g,%) is minimal for all
factorizations of Type I of pairs of elements which are

Nielsen equivalent to conjugates of (w,u). Then # and h
- 1 - 1 - 1 ,are non-trivial and g fh, gf n is cyclically reduced. 

Therefore a cycle of {g ^fh ^gf ̂ h)~^ is the label on a.

We show that for this (w,u), Af' is all of Af.

Suppose Af' is not all of Af. Then some subpath a, of a 
bounds a region of Af. (The situation is illustrated when 
M' is as in diagram b.)

D

Therefore the label of a contains a subword a~^' or .

In order to show that this is impossible we use the results in 

the detailed cases of Chapter II. . If a~^ or is a

subword of a cycle of g~^ fh~^ gf'~^ h t then a~^ or is a sub­

word of g ~̂ gf ^tgf ^hg ̂ or hg~^ft and
this is shown to be not possible in cases A.1,A.2 and A.5 of 
Section 11^3.
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Thus M is one of the diagrams a),b),c),d),e),f). If A
E Eis a region of M, then the label of SAAx is a or b ,

E = 1 1 .  Thus in b),c), or e) either the exponent sum of a 
in the label of a is congruent to 1 mod m, or the exponent 
sum of b in the label of o is congruent to 1 mod n*
In either case the label on o could not be freely conjugate 

to [w,v], so b j , c) or e) are impossible. From diagrams 

a),d),f) it can be seen that [w, uj is freely conjugate to 

where \i = m-1 or 1, n = n-1 or 1.

We will show that if [%,u] is freely conjugate to
(p,n > 0) then (w,v) is Nielsen equivalent 

(in the free group on a,b) to a conjugate of 

or

Now as ]i = 777- 1 or 1, n = n-1 or 1, ]i is relatively prime to 
777 , the order of a in Gf and n is relatively prime to 
the order of b in G. Therefore (u,v) is in the same NE class 

in (7 as ia,b) as required.

In order to show that (w,u) is (freely) Nielsen equivalent 

to a conjugate of or {a^b^^fb^) we use the

symmetry between a , Z?., so that we can assume 

9

Therefore

9f - G  ̂ b ^a^b^a  ̂ , (y'+y" = y?y' > O', y" > 0)

(2) 5

3
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If y" = 0, then .. _ ....
gf ê

Thus if f 4 1, either / b e g i n s  with the letter a or
/ begins with the letter b ^ . We can assume, (using the
symmetry between a,Z?) that f does not begin with b ^. Then

/ 5 g = and ?z = Z?’̂ , ( y i+ y 2 = v)«
If y" > 0  then by (1) and (2),# begins and ends with the

■ y.-letter a. Therefore ^ is a subword of a . Similarly
— u "% is a subword of a . Therefore by (1)

• ’ . f  = a~'^ f (YiiY2 ^ 0).

However as g and h are non-trivial, and ^/ \ is reduced,

Y 1 .Y 2 = 0. Thus

/ = ■ Z?  ̂ 3 g = = a ^^(yi + yz = u) •
_ 1 _iIn both cases (w,u) = (/ g^f h) is Nielsen equivalent to 

a conjugate of (6^a^i,a^),as required.

,
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SECTION 4 . SMALL CANCELLATION GROUPS AND PROPERTY B

THEOREM 3.2 Let g - <a,Z?; R > be a non-cyclic group,
I I

where R is symmetrized and satisfies C^(l/16) or C^Xl/12), 

t(4), ancZ where a,b are both pieces. Then G has Property

In order to prove the theorem we shall use the notation 
and terminology defined in Chapter II. Let (#,#) be a pair 

of generators of Let /,^,72 be words in ( a , Z? ) • Assume
the length L{ftg,h) is minimal, subject to the condition 
that (%,u) = if~^9 ff~^h) is Nielsen equivalent in G to

(%,%). As in Chapter II, we call (/,#,%) a factorization 

( of Type I) of (w,u). By Lemma 2.3, as [w, p] 1 
g~^fh"~^gf~^h is cyclically reduced.

N

— 1 “1 ““1Let iffpfh) be a permutation of if,gfh) or {f ,g ,h ).
Then i s a Type I factorization of a pair (u,v)

which is (freely) Nielsen equivalent to a conjugate of 

( w , i> ) . Note that as g ^fh ^gf ̂ h is cyclically reduced, 
g^^fh~^gf~^h is also cyclically reduced. As a consequence 
it can be seen that there is a symmetry between the elements 
of the factorization, and the number of cases to be considered 

is thereby reduced.

O
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By definition, (w,u) is Nielsen equivalent in G to (z,y), 

so that
[ z, and therefore [a,h]“ .
But it will be shown in Lemmas 3.4 and 3.5 that if

then [w,uj is freely conjugate to;[a,&)"^, 

so that (w,u) and ia,b) lie in the same NE class.

LEMMA 3.4 Let G,u,v be as defined above. Then

no cyclically reduced conjugate of [u,v\'

(a) has a subword which is a 3-remnant

(b) is the product of two 4-remnants of equal length

(c) is an 3-remnant,

LEMMA 3.5 Let G be. as defined above. Let W be

â word in G such that no cyclically reduced conjugate

(a) has a subword which is a 3-remnant

(b) is the product of two 4-remnants of equal lengtfh

(c) is an Q-remnant,

Then if W ^  [a,b\~'^, W is freely conjugate to ^a,b]~^
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PROOF OF LEMMA 3.4
1 1 By definition u = f g, v = f h and

[uyv] E g '̂ fh ^gf 

where the RHS is cyclically reduced.
(a) From the symmetry between the elements iftgth)

we only need to consider 7 cases. That is, when the 
3-remnant is a subword of m, but not m-l(l ^ m 4. 7) 

elements of But Cases A . 1, A . 2 , A . 5 , A15 , A . 24 , A35

and A.72 of Section II.3 deal with each of these possibilities, 

(although the notation is not always the same). By examining 
each of these cases, it can be seen that as there is no 
change in the Type of factorization (when considering the 
factorization transformation that might map the factorisation 

iffg»h) to a shorter factorization), (a) is true.

(bJ In order to prove (b) we draw ^ ^fh ^gf ^  around

a circle. At least two of the elements of (f,gth) are 

non-trivial, so that since (f,#,%), igth,f)f (%,f,#) are 
equivalent factorizations, we can assume g and h are 
non-trivial and the 4-remnants t t % meet in the subwords 

h and h ^ .

D

9

9'-1

D
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D
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We can assume L(&,) ^ L ( j ) , for if L(%g) < L(%i), consider

the equivalent factorization iftÇth) = {f ^ ^  ^ , 7z ^). Then 
L(%,) > L(%i).

Until further notice, we will assume L(%s) > L (/z ̂ ) , and

h = h 2 = h.ih^ = hihohi,

-1 -1Let tiPi = r 1 , taPz = Pz: Pi, r 2 <S #.
Then

But r,, Pz ep and satisfy the small cancellation condition
Cj-(1/16) so that as (/,p,7z) is reduced, and g,h are non-trivial 1* -1f is a piece. In addition as hi^hi are both subwords of

- 1r 1 , hi is a piece, and similarly as 7 z a r e  both subwords 

of r 2, %4 is a piece.

We have shown in Case A.15 (of Chapter II) that the 

factorizations

(2) (/,p,/z)^, (%%f ^^i,pi ^)^, i g > f >h ip iĥ )̂

are related. But by Lemma 2.2, they are factorizations of 

pairs of elements which lie in the same NE class. Since 

we assumed Liftgth) was minimal,

L(p) ^ L(pi) < 4xL(rj), L(/Zp) ^ L(pj) < 4xL(rj).

Thus, summarizing so far, we have

Lif), Lihi) < L (rJ; L(p), L(%,) < 4xL(r,)

3
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If, in fact p or 7z ̂ is a piece, then g or  ̂ <XL(rj) and 

L(ri) = 2L(%i) + L(p) + L(f) + L(%o) + L(p,)

< 2L(pi) + 4XL(ri)
< 12XL(r\),

Ia contradiction of the small cancellation condition C^(l/12)

-1If /z c is not a piece, then by (1), either is an
—  1 “ Xinitial subword of pi , or p ̂ is an initial subword of

h^f" . But by (a), pi is more than 3XL(ri), so that as
—  1 '

L{h,f ) < 2\L(ri),

-1 -1 • -1(3) Pi = h,f pi

Thus using the first two factorizations in (2), and. (3) 

the factorizations

and (%i,pi  ̂ffh ^

are related.
Similarly using the first and last factorizations in (2) 

and (3), the factorizations

(f,g*h)^, (g\ f*h^p and {gf ^ , 1,/Zjp\)^
Iare related. Thus as we chose if,gth) to be minimal,

L(%g) and L{g) 4 L(pJ) = L(p^) - L(/) - L(7z^)-
But we assumed L(tj) = Lftg), so that L ( 7z ̂ ) = L(Tz^), and
therefore
L(r^) = 2L(%^) + lj(g) + L{f) + L (/z ̂ ) + L(p^)

< 3L(pi)
< 12xL(ri),

which contradicts the small cancellation condition C^(l/12)

3



- 150 -

(e) Let t =h^f ^ghfg
-1where tp = r ,r e /?, and h = h^hz» Then by small 

cancellation theory ftg^hi and hz are all pieces, so that 

L (t ) < 8ÀL(r ) '

,

PROOF OF LEMMA 3.5
As f/ ^  by [27, p.254] there exists a reduced
annular i?-diagram Ml where the label of the outer boundary 

a is a cyclically reduced cyclic permutation of and 
the label of the inner boundary t is a cycle of [a,2?l .

Then by hypothesis (a), M satisfies:

for all regions A of M with Qj = a^9A connected, *(oi) is 
not a ip/q +l)-remnant; and similarly with a replaced by x.

So by Theorem 1.3 (see also [27])M has one of the following 

structures :

(1) <

( 6, 3) )(If(p,9 ) = (6,3))
(If (p,4) = (4,4))

(The number of regions per layer, is variable).

(2)

D
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(The number of regions in each 'island', and the number of 
'bridges' is variable. Every region has an edge on both 
inner and outer boundary, and has at most two internal edges.)

Now M cannot be as in (1). For then the label on a region 
A with an edge on the inner boundary t would be the product 
of at most 8 pieces, (since the label on each internal edge 
is a piece, and the label on 3 A/it i s at most 4 pieces ) .

Suppose Af has the structure as in (2). If A is a region 

of M then the label on 9Anx cannot be a piece, (and in 
particular cannot be a single letter), for otherwise the 
label on 9Ana would be a 3-remnant, contradicting hypothesis 
(a). Hence M can have at most 2 regions. If M has two 

regions, it must look like

(wlog we assume 9A,riT has label b a , SA^nT has label b  ̂) 

One or both of n G could be degenerate, i.e. single points.

D

The labels on 9A iO t, SiAgAx have length 2, (and are each the 

product of two pieces). Thus we contradict hypotheses (a) 

if n or Ç is degenerate.

D
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If n and ç are not degenerate, let ok^td be the labels
-1 , ^-1on respectively, where c,d are a,a ,6 or b .

—  1 —If c or a~ or fc” , then the diagram is not reduced.
2 2 2If c = at d = bt then b a and (ba) are subwords of /?, 

so that 6a is a piece and the label on 3 A is a
3-remnant. Similarly if a =6, d = at then a6 is a piece and 
the label on 3A*Ao is a 3-remnant.- Both cases contradict 

hypothesis (a). If o = d = a or if c = d = b , then ab is a 
subword of the labels of A ̂ and A ̂ . However, if ab is a 

piece hypothesis (a) is contradicted, and if ab is not a 
piece, then the label on A ̂ is a cyclic permutation- of the 
label on A g or its inverse. Thus in this case the labels 
on 3Aiho, SAgAa have equal length so that hypothesis (b) 

is contradicted.

We are left with the case when has just one region. The 

three possibilities are:

( i i )

Now (1) is impossible since the label on 3A/\t is at most 
3 pieces, so the Ilabel on 3Ana is a 3-remnant, contradicting 
(a). Also (ii) is impossible since the label on 9A/iT is at 
most 4 pieces, so the label on 9Ana is an 8-remnant; (using 
the fact that R satisfies C^(l/12)) contradicting hypothesis 

( c ) .

D
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Suppose (iii) holds. Let z be the label on y» then 

a ̂ b'~^abzWz  ̂ is a relator. Now R does not satisfy T(4). 
For r = a ^ b ^ a b z W z ^  is cyclically reduced, so that 
z must begin with a or b •

But if 2 = az then
z~^a ^b ^abazW is a cyclic permutation of r . Let 

= abazWz ^b ^ , r^= bazW^z^^a ^b'^a 

r = a-’̂ b'^abazWz'"^a-l

then all cyclic permutations of r, ^i + 1

andr.r. _ is not reduced for all e ( 1,2 ,3 ) where i + 1 
is reduced mod 3. Similarly if z = 62.
Now using the fact that the label on 9A0t is the product 
of at most 4 pieces, and the fact that the label on y

Iis a piece (and remembering i? satisfies C^(l/16), we find 

that the label on 9Ana is an 8-remnant, contradicting 

hypothesis (c).

SECTION 5 A RESIDUAL PROPERTY OF FREE GROUPS

THEOREM 3.5 Let F be a free group of rank h ^.3,

and let N be the normal closure of w in F, 1. Then

Fa = 1
acAut{F)

-1

Let (#1,...,%^) generate F.
Since F contains all conjugates of F, we can assume F is 
cyclically reduced, and non-empty. By reordering the

3
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generators we assume F involves only {I ^ »).

Consider the set
im: (x^ or (x^x^~^)~^ is a subword of a cyclic

^ permutation of F*,m > 0} •

Then let Af be the maximal of this set, and let €. Aut(F) ,
7 w j-t- M+k M+kk > 0, be the map: x^ n— x.^x^ +

z i— » a:n M
Let F^ be a cyclically reduced conjugate of Fa^ so that 

FFa^ = <F^> . Then F^ involves all of , and any)subword

of a cyclic permutation of F^ which involves a:̂  and x^ii ¥ 1,2)
k -k 'has either x^ or as a subword. Now if U is a non-empty

freely reduced word, and U € Fa^, by the strengthened
Freiheitssatz f5Sj; U has a subword which involves all of

±1, . . . ,a;̂ , and is a subword of a cyclic permutation of F^

Therefore F has length greater than k* Letting k —  ̂ we

deduce Fa^
k=l

and hence D Fq. = 1 « 
k=l ^
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