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'STATEMENT

In Chapter I the concept of factorizations (which is
central to the whole thesis) is original. The rest of

Chapter I is expository.

FChapter II is based on my own ideas. Dr. Pride had

obtained a‘description of the subgroups generated by pairs
of elements of finite order in small cancellation groups.

I was originally interested in describing the two generator
subgroups of torsion-free small cancellation groups. The
methods I used were then improved to obtain reéults fof
small cancellation groups with torsion. The methods were
most successful in dealing with subgroups which cannot be
gene?;ted by a pair (u,v) with one or both y,v of finite
order. Dr. Vella and Dr. Pride subsequently refined the
techniques to deal adequately with the casé fhat u or v

has finite order. Our results are cbmbined in a joint paper
[14} In the original proof of the‘main result of Chapter II
‘the length ot a pair of elements Qas-assumed fo'be minimal.
Dr. Vella suggested that we assumed that tﬁe length of a
factorization’was'miniﬁal. This has both improved.and
‘greatly simplified the work in Chapter II (and Chapter III).
Development and use of Dr. Vella's idea are my an. The

idea of extending the techniques to Theorem 2.4 is my own.



(ii)

Chapter III is my own work except where results are quoted
and these are acknowledged in the text. Some oi the results
of Chapter III will appear in [13]. Further results will
appear in a joint paper "Commutators, generators and

conjugacy equations in groups", with S.J. Pride.
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ABSTRACT
Two main topics are studied in this thesis.

The first concerns the Z—generafér subgroups of small cancella-
tion groups. If G is a finitely presented group satisfying
certain small cancellatibn conditions, we show how to compute

a finite set § of pairs of eleﬁents of G so that the 2-generator
subgroups génerated by paifs in § include all the istorphism
types of 2—generat6r subgroups of G. We describe an algorithm
for which given a. pair (w,z) of elements of G; finds a pair
which belongs to S and generates a subgroup isomorphic to the

subgroup generated by (w,z).

The second topic is motivated by a well-known property of the
free group F2 of rank 2. Nielseh has shown that F2 has‘the
pfoperty (called here Property A) that there exists an element ¢
diasuch that u—1v~luv is conjugate to ¢ or c_l if and only if
(u,v) is a generating pair. We consider this and related
properties for smalI’cancellation groupé and one relator groups
with torsion."Invparticular, we show for a 2-generator group

G = ?a,b; R> where R satisfies the "right" small cancellation

- +
1 lb 1ab) 1 only

éonditions that u v—luﬁ is conjugate to (a”
if u,v is Nieléen equivalent to a,b. Pride has shown that a
.Zégenerator one-relator group, where the relator r is a

. proper power ot form én’ n > 3,has Property A. We provide
examples of 2-generator one—relatof groups wherebthe relator

~

is a square which do = not have Property A.



(v)

'In addition to these main topics we.show that if Fn is the
free group of rank »n, and G is'an m—-generator one-relator
| group, n 2xm } 3, then Fn is residualiy G. This result

has a slight connection (which is explained in the thesis)

to the second topic.
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NOIATIONS'AND DEFINITIONS

We adopt the usual notation inbsef theory: -

R US 4is the union of sets R,S

R NS is the interséctioh of éets R,S

R ¢S or SO R means that R is a subset of §
r ¢ R means that r is a member of the set R
|R | denotes the cardinal of a set R

{x ,...,xn} denotes the unordered n-tuple

1

(xl,...,xn) denotes the ordered n-tuple.

When referring to properties ot the natura; numbers we use

the standard notation. Let n,m be integers, then

nim ~ means n divides m

(n,m) is the»HCF of m and m.

¢ (m) denotes the Euler functiqﬁ, ¢(m) = 1 if m = 1,

| ¢(m) = the number of distinct values ot k, where

0.< k < m, and (k,m) = 1,if m > 1.

e,e'(and variations of these) denote the integers +1 or -1.

7, denotes the integers "

z.+ denotes the positive integers.

If ¢ is a map then if ¢ is an element of a group we write
¢ on the right of the element it acts on. Other functions

(e.g. & in "¢(m)") will be written on the left.

The notation used to denote terms in group theory is similar
to that of [27].
1 represents the trivial group

Zn denotes the cyclic group of order =



R

(vii)

<X> ig the free gfoup with basis X

Let Y be a set of WOrdé in F = <X>. Then

<Y>F denotes the normal closure of Y in F.

sgp{Y} “is the subgroup of F generated by Y.

<X5Y>,is either the presentation with generators x ¢ X,
relators ¥ € Y, or the group defined by such a
presentation.

Let G,H be groups. Then

sng{g}‘denotes the subgrqupé of G‘generated by g, a
subset of G. |

G** H is the free product of G and H,

G *hH is the free product of ¢ and H éﬁélgamating sng{g}

A with sng{h} under the isomorphism g i~ #h, |

Aut(G) is the group ot automorphisms qf G.

F is a free group

Fn ~ is the freergroup of rank n.

Let'a,b be elements of F;, Then

ab ' denotes b-lab,

lb-l

[a,b] denotes a ab

If G is defined by means of a presentation <X; R>,

then a primitive of G is an element which forms parf of a
geﬁeratingrle-tuple of G. |

Let X be an n-tupie, and W(X) the set of words in X U X-l.
Let 1 denote the empty word. Then we do not distinguish

between the elements of W(X) and the elements of F = <X>

they represent. We use the following notation:-

= . denotes equality in W(X)

= denotes equality in F
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(viii)
=g or =y denotes equality in G = <X; R>, wherelN is the
normal closure of ‘R in F.
iﬂvf denotes conjugacy in F

f\é or fjv‘ denotes conjugacy in G

‘ If a,b are words in'W(X)‘then we éay that ¢ is a subword of

b if b = waz for words w,z € W(X). We say that w e w(X) is

; . . : -1 -1
reduced if it contains no subwords zxx or g x-

We say that w € W(X) is cyclically reduced if all cyclid
permutations of w aré reduced. |

We say that f € F is a proper power if for some ¢ e F

f = én, where n is an integer > 1. |

The following notations and definitions are introduced in the
text. The number in brackefs refers to the pages where the

notations are introduced.

'L,Ll . ‘ Length functions - (4)

1 ] . . .
c(p), C (xr), CL(A), T(q) Small cancellation conditions (5)

k -
’NG’V N

G Generalised elementary transfdrmatidhs

No,Ny, N, N .
~ | (7)

h
-t

Propertles CN' CT

(f}g,h)Ip(f;g,h)II Factorizations (8)
S}, kSIZ, Sg, §; | . Factorization tfansfofﬁations (45)
SII}‘kSIIZ, SéI, §;I Factorization transformations‘(46)

[g1se--194] . | Higher commutator (15)

Subconjugate (11)

root-closed (34)

Property A (16)

Properties BN' BT (15)

(16)
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CHAPTER I
INTRODUGTION

SECTION 1 THE PROBLEMS

Let ¢ be a group given in terms of generators and defining
relators. This thesis will be mainly concerned with two

questions.

I. What can be said about the isomorphism types of

.two generator groups embeddable in G?

II. Let g be generated by two elements. Then does
there exist an element ¢ in G so that the elementsv(u,v)

are a generating pair of ¢ if and only. it u_lv uv is

conjugate to ¢ or et oo

Problems I and II are related, for they both involve trying

to obtain information about:the subgroups of ¢ generated

by pairs of words in G.

In relation to i, it follows from the Nielsen—Schreier
Theorem [30 p.95] that if ¢ is free; then G has at moet three
isomorphism types of two-generator subgroups, namely, the
free groups of rank O, 1:and 2; If ¢ is a one-relator group
with torsion, tneﬁ the two-generator sebgroups of ¢ have

been described in Pride [hsj. In this thesis we investigate
Problem I in the case that g is a sma;lkcancellation group.
We show that if ¢ has a»finite presentation satisfying a
"suitable" small cancellation condition, then ¢ has finitely
many isomorphism types of two-generator subgroups. We willl

give precise statements of our results in Section 2 below.
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A general survey of what appears to be known concerning

subgroups of small cancellation groups can be found in

fasl,

When considering II, we use the following definition:

A two-generator group has Property A if G possesses an

element ¢, so that (u,v) is a generating pair of G if and

only if u_lo_luv is conjugate to é'or'crl.

It has been shown by Nielsen-E34],that F2, the free group
of rank 2 has Property A. Other groups have also been shown

to have Property A:-

2

(1) ‘The Fuchsian group: <a, b, c,d; a2,b2,c ,dq,abcd>;

where g>1, (2,q) = 1. Then this group can be generated by

:the two elements gb, ac, ISSL, [50} and has Property A.

(See Kalia and Rosenberger [21]).

(é) <a,b:,Ea,b]ﬁ>,‘n'> 1. Then Rosenbergér, [53j, has
shown that this group has Property A. |
(3) | <a)» br t; Rila,b), R:(a,b), ...,t—latb>.- Pride
(unpublished) has shown that under certain conditions, this
group has Property A.

(4) <ayb; B'>, (n > 4),R not a power of a primitive.

Pride has shown thatTthis group has Prbperty A. (see Ii4]).

‘Dicks [b]'has verified an anaiogous property to A.for the

.free algebras of rank 2 over a field. He has shown that if

k is a field, then y and v generate k<zx, y> (as a k-algebra)

if and only if yv-vu is8 a non-zero scalar multiple of

xy-y



In Chaptér IIIvofthis thesis wekstudy problem II for small

- cancellation groups; Iﬁ addition we give examples of.

groups <a,b; R2> (where R is not a power of a primitive)
,whidh do not have Pfdperty A,’(this should be viewed in the
light of (4) aone). A more detailed account of the contents
of this chapter, and_stétements of oﬁr results are given in

"Section 2 below..



SECTION 2 SURVEY OF THESIS

We begin with some definitions.

Let X be an alphabet, and let W(X) denote the set of words

on X, that is, the set of expressions.

corm "m0, e, = 21, @i € X, (4 = 1,2, 000,m).
. Equality in W(X) will be denoted by =. An element of W(X)
will be called reduced if it does not.cbntain an inverse
pair xx—l, x_lx(xeX), and it will be called cyeclically

feduced if all its cyclic permutations are reduced.

'

A length function on W(X) is a function L:
W(x) — z satisfying L(UV) = L(U) + L(V), L(U) = L(u-l),

for all U,V € W(X). Therefore a length function on W(X) is

completely specified by its effect on X. If jx:xesx is
a set of non-negative integers, we define a length fuhction
€y €o" €m m, '

L, where L(x) = j,» and Lz, "2, "eeex ) = iel in.

The particular length function obtained by‘defining jx =1
for each x € X will be denoted by Ll.
If F is the free group on X, and w is a word in W(X), then
we do not distinguish between w and the element of F

that it represents. Equality in F will be denoted by =.

Conjugacy in F will be denoted by -~ .



Let R bé a subset of W(X), and N the.normal closure of R

in F, then equality (mod N) is denoted by = or = , where
B N G

G = <X;R>. Similarly conjugacy (mod N) is denoted by

~ .
Aﬁ orﬂ‘G . If wl,...,wZ

write Sng(wl""’wZ) for'the subgroup of G generated by

is a subset of W(X), then we

'(QlN,}3¢,wZN), and we use the expression (wl,...,wz) generates

G when we mean that (wlN,;..,wZN) generates G.

The symmetrized closure of R is the smallest subset of

W(X) which contains'R and is closed under the taking of
inverses and cyclic permutatibns. If R is the symﬁetrized
closure of itself, then we say tﬁat R is symmetrized. If"
utl;utz are distinct eléments ot R, then u is a piece

(relative to R).

For R a symmetrized set; p,q positive integers; i, a positive

real number; and L, a length function we define the small
cancellation ‘ : :
hypothesis as follows:-

‘C(p): No element of R is the product of fewer than p pieces
o | ~1

T(q): Let 3 < h < gqg. If rl""frh < R, wherg rlv# r,

’fz #* fs- ,...,rh # rl-l, then at least one of the products

riT5 rzrs,...,rhrl is reduced without cancellation.

, ,
CL(A): If ut € R, and u is a piece, then L(u) < AL(ut).
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In common with standard practise we write C'(1) instead of

]
CL (r). .  If R satisfies C(p) and G = <X;R> then we otf'ten
1 .

call G a C(p) group'(With similaf abuses of termindlogy for
ofherHCOnﬁitionS). If Rsatisfies C(p),'T(q) where -

1/p + 1/q = 1/2 (that is (p,q) = (6,3), (4,4), or (3,6),
then R is called a smcll cancellation set, and Gré iX;R$

is called a small cancellation group.

A word t is called a pwremnant (with respect to R) if
tul...up ?‘R, and uly.,up are pieces.
‘Let U = (ul,...,un)‘be an n-tuple of words in W(X).

We define two types of transformations on U:

1. replace some u by ui‘l
2. replace some u, by uiuj where g # 7 (1 £, € n).

In both cases it is understood that uhAfor.h ¥ 1 remains

unchanged.

’Any finite produét of thesé tranéfqrmations_we call a
Nééiééh transformation.uLeﬁ V = (ﬁi....,vﬁ) be another
'ﬁ—tUple‘in W(X’., Supposé V.is obtained f£§m,U by a |
Nielsen transformation. ' Then we say U is Nielsen eqﬁiva%eni
to V, and’say that U,V lie+in the same Niélsen equfvalence
(NE) class of n-tuples. If Uis a generatihg set for a

group G, then V is also a generating éet fpr G.

(See ESO,p.lZl]).
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By [30,p.1311 any'generating‘ﬁ—tuple of F, = <xl....,xﬁ>

is obtainable from (xl""’xﬁ) by a Nielsen transformation.

Thus Fﬁ has 1 NE class of generating ﬁ—tuples.

Suppose U,V are generating ﬁ—tuples of a gfoup G, then we
say that they lie in the same T—systemiif (ul.---,uﬁ)

is Nielsen equivalent to (vie,...,vﬁe),'for,some o € Aut (G).
The main work of the thesis begins in Chapter Ii. This
Chapter is composed of three sectionsf In the first section
we state the main theorems concerning the two-generator
subgroups of smallhpancellation groups, and derive some
consequences oif these results. We prove the theorems in

the second and third sections. The method of proof is
described in Section II1.2, but a complete list of cases

can be found in Section II.3.

Before stating the results of Chapter II, we need to make

some further definifions.

Let (u,v) be an ordered pair of words in W(X). Define

eZemeﬁtary transformations (hod V) as follows. ' -
N,: (u,v) = (v,u)

N,: Cwew) & T

N,: (u,0) = (uv,v)

NE (o) = har kT hok)  kew(0)

N : (u,v) — (uv)y u =, u, v =, v

G G



=10y, (uvw). (K tuk,kTiok), (2,003

Now it (u',v'),e{(v,y),-(u
then (u,v) and (u',v') generate conjugate subgrdups of G.

In particular (u,v), (u',v') belong to the same NE class of
generating pairs ot G if and only if (u',v') can be

obtained from (u;v) by a finite sequence of elementary

transformations. (See [30 p.121]). The transformations

k
NyyN,,N,,N ,N_

F e call free elementary transformations.

In addition to these elementary transformations, we need a
further transformation.
NG: (u,v) = (u,,v), where u = x~, ulzvx. )

aﬁeR}y >1 and (a,y) = (a,,y)-

We call {N U elementary transfbrmatiqnss, the generalised

G
elementary (GE) trahsformations’(mod N). As Sng{u,v}
and sng{ul,v} are both generated by the pair (x(a’Y),v)
tnese subgroups are-equal. Therefore if (y',v') is obtained
from (y,v) byka sequence of generalised elementary

transformations (mod y), sng{u',v'} is conjugate to

Sng{u.v}~

A triple (f,g,h) of elements of w(x) is called a factorization
of (y,p) if either

(1) u

i

-1 S |
f g»v =f h, or

-1
f gf9 ‘0 o= he

If (i) holds, then we say that the factorization is of Type I

(iij u

while if (ii) holds, then we say that the factorization is of

Type II. If in either case, f = 1, then the factorization is

said to be trivial.



We can describe these'two'types ot factorization
geometrically; Any word in (u,v) can be considered as the
label of a closed path in the l-complex K consisting of

two closed paths n. ¢ joined at a single vertex m:

=

where the label on n is y, ¢ is v. If u = fﬁlg, v = f—lh,

then we can identify the initial paths of n, ¢ labelled

1

f 7 so that we get KI:‘ -

T :

where the labels on u,v,t are f,g,h respectively. If
u = f_lgf: v = h, then we can identify the initial and
terminal .path of n, labelled by f_;f respectiyely, so that

we have KII?

Thus if (f,g,hk) is a factorization of Type J, (J = I or II)
and if W is a word in (u,v), then W is the label of a clased

path w 1in KJ.whose initial and terminal vertex is 7.

Let Wi(f,g,h) be obtained from %; (fyg,h) by cancelling

1

adjacent letters f{f_l or f—l,f in Wi— (0 <2 < N).

1
Let W, = W(f_lg,f—lh) or W(f—lgf,h) (depending on the Type

s

factorization J). Then there is a sequence



W = Wﬁ.Wl,...,WH,s W*}

where W* is reduced in the letters f,g,h. Now each W,

is the label of a closed path . in KJ whose initial

(and terminal ) vertex is m. We show this by induction on <7,

for it is aiready noted that W = W, 1s the label of a closed

W. = UFf v or ur lrv.

path in KJ . Consider Wi = UV i-1
Then the subword ff_l or f-lfis the label of a closed path

which is a subpath of w Deleting this subpath we obtain

Z-1"
mi whose label is Wi and whose initial and terminal vertex
are the same as we_ e Thus if we_q begins and ends at w,

then W also begins and ends at w.

~We call the labels of the-subpéths sV, & of w* (the path
whose label is W*), f-,g- and h-subwords of W* respectively.
The f-, g- and h-subwords of W* are called F-subwords of W*.
We call the label of any sﬁbpath of w*, starting at = or w,
and ending at-m or ﬁl, an F*-subword of W*, Such a label

is a word in the elements (f,g,k).

Suppoée gsh are non-trivial, énd

V(a) (f,g,h) is a non-trivial factorization of Type I, and
‘g-lfh_lgf—lh is cyclically reduced, or |

(b) (fyg+h) is a non-trivial factorization of Type II,
and g,k cyclically reduced, f_lgf,fhf—l reduced, or

(c) | (fig,h) is a trivial factorization, and g_lh_lgh,
"gsh cyclically reduced.

Then we say that the factorization is reduced.
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By a subconjugate of a set Y of words in W(X), we mean a

cyciic‘permutation of a subword of an element of Y. .

The main results proved in Chapter II are:-

' ' )
(THEOREM 2.3) Let R satisfy C (1/14) or C (1/10),7(4)

forisome L, and let H be a two-generator subgroup of G. Then

etther
(7) . H is a free product of cycles, or
(17) if (w,2) generates H, then (w,z) can be transformed

by a finite sequence of GE transformations to (u,v) where
,sng{u,v} ~ sng{w,z}, and there exists a reduced factoriza-

tion (f,g,h) of (u,v), so that either, for certain integers

€2 €3

" €15€,,e5 of modulus 1, the elements of the set {fs‘,g sh 1}
are disjoint subwordS'of a subcongugate of R, or (f,g,h)
is a non-trivial factorization of Type I and | |
sgplu,v} = <u;v;'uZ,vm,(u_%v)n> where Z;m,n # 0.
(THEOREM 2.4) - Let R saiisfy CL(l/lG), or c£(1/12), T(aj

for some L and let H be a two-generator subgroup of G. Then

either
(z2) ~ H s a free product of cycles, or -
(i1) 1f (w,2) generates H, then (vw,z) caﬁ be

transformed by a fihite sequence of GE transrormations to
(u,v), where sgp,{u,v} ~ sgp {w,z}, and the elements of a

reduced factorization of {(u,v) are pieces.

] !
If p is finite and satisfies CL(1/14), or CL(l/lo), T(4)
then, by Theorem 2.3, there are only a finite number of triples

(f1g,h) whose elements or their inverses are either = 1 or
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subwords of a subcohjugéte of . Hence there are only
finitely many conjﬁgacy classes of two-generator subgroups

ot G which are not free products of cycles. However, as there
is a bound on the orders of elements of finite order

[27 p.281], the number of isomorphism types of fwofgenerator
subgroups thch are free pfoducts of cycles is finite. There-

fore we have the following result.

(THEOREM 2.5) Let G = <X;R>, where R is finite and
satisfies C£(1/14) or C;(l/lo?,T(4). Then

(z) -G has finitely many conjugacy classes of two-—

generator subgroups whose members are not free products

of cycles.

(ii) G has finitely many isomorphism types of two-

generator subgroups.

Let R be finite and satisfy'ci(l/l4)or CL(l/lO); T(4)

(resp C;(l/ls) or CL(l/;2), T(4)  Let {(upy),..ey (up,Vp)}
be the smallest set of pairé of elements which contains
(f_lgaf-lh). (f;lgf,h).and (gs%), where f,g,n range over

every subword of a subconjugate of p,(resp. where f,g,hk

range over every piege relative to R). Thén by Theorem 2.3,
(resp 2;4) {(u“qf,...,(ukﬂ%)}includes a set of generating
pairs for‘the representatives of the conjugacy classes of
two—geﬁerator subgroups which are not free products ot cycles.
{Note that the number of pairs, k, depends on the presentation).
In the proof of Theorem 2.3, (resp. 2.4) we will describe an
algorithm which takes any pair (w,z) and obtain from it a

pair (y,v). If (u,v) is not one of the above list then
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the sgpc(u,v) (AISgbG(w,zﬁ is a free product of cycles.

Suppose |X| = 2 and no element of R is a power of a primitive
in G. Then a séquence of GE transformations on a generating
pair of G is a sequence of elementary transformations. If,
in addition, R satisfies the small cancellation hypothesis
‘CL(1/14) or C;(l/lo), T(4), then by Theorem 2.3, any
generating pair (w,z) of G is Nielsen equivalent to (u,v),
where (u,v) has a reduced factorization whose elements

(or their inverses) are subwords of a subconjugate ot R.

If R is finite, there are only finitely many such pairs, so

that we have established the foilowing:

(THEOREM 2.6) Let G = <a,b; R> where

() R 78 finite

(27) | R satisfies CL(1/14) or CL(l/lO),_T(4), and
(i27) no element of R is a power of a primitive in G.

Then G has finitely many NE classes of generating pairs.
Using a variation of the method of.proof of thé main theorems
Pride has shown that condition (iii) is not necessary.

(see [14]). However the condition (i) that R is finite

cannot be lifted. This is illustrated by the following:

Let k be an integer >18, and R be the symmetrized closure
Of'{?i:i = 1, 25... }, Where
k.7 .=

e 2
r. = ab’a pY eedptps 4 = 1,240,

and let G = <a,b; R>. Then R satisfies C'(4/k), T(4)
_and G has an infinite number of NE classes of generating

pairs represented by {a,bz ; 1 = 1,2...1}
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- We have conjectured that if G = <a,b; R> where each elemeht
Qf‘R is a proper power, but no element of F is a power of a
primitive, and satisfies CL(A) for suitably small 'A?,i

G will have one NE class. This conjecture is false if

the condition that no element of R is a power of a primitive

is removed, as the following example shows.

Let k be an odd integer, k >18, and for 7 = 1,2,...,n
' 7.k
r. = (ab ™)
Let R be the symmetrized closure of {r.; 2 = 1,2,..,0}
(n may be =), and G = <a,b; R>. Then R satisfies C'(2/k),
T(4), and has n NE classes of generating pairs represented

by (((ab®)2B); 7 = 1,2,...,m.1

The question as to whether a group has a finite number of

NE classes arises when considering the nature of Aut(g),

(sée :48],[49]). Let F,, be the free group of rank 2, R

a symméfrized subset of F2,N the normal closure of R, and

G =.F2/N. Let fi(VN) be the group of automorphisms of F2

such that N¢ = N. Each eiement ¢ of nN(N) induces an auto-

morphism $ of G where wN§ = wolV, (w ¢ F2)

By Pride [48] if G has I NE classes of generating pairs, then
| Aut G: H?N)I < L.

Therefore if G is a two-generator, finitely related, small

cancellation group satisfying C£(1/14) or C;(l/lo), T(4),

then it follows from Theorem 2.6 and the remark that follows,

that Aut(G) is finitely generated (resp, presented) if and
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only if n(N) is finitely generated (resp. presented)

We finish Secfion 1 of Chapter II with an application of
Theorem 2.4. We construct a two-geﬁerator, one-relator
group which 18 not free, but has every proper two-generator

subgroup free.

Chapter III has five sections. The first is mainly expository
and we state our results, which are proved in the remaining

four sections.

Let G be a group, generated by X, and let (gl,...,gz) be a
set of elements of G. We séy that an element of G is a
higher commutator On gyseees9gy if it is an elemenf of the.
set {[gl,...,gz]}, where {{gl,...,gz]}'is defined inductively

as follows:

‘ ‘ -1 -1 ..
[9;,1 = g, and [gi,gj] = 9; 95 995 (2,d = 1,?,...,1)

If 1 >1 then tlgyreeergylt = {hsh = [hl’h2]’

hl € {[gr,...,gm]}, h2 € {[g ,...,gZJ},Z >m > 0}

m+1

Let Yy be a set of |X| elements of g. We inyestigate thqsg

sets Y which satisfy one or more of the following conditions.

a) k Y belongs to the.same NE class, or T-system of gas X.
b) Y generates G
c) A higher commutator on Y is conjugate to a higher

commutator on X or the inverse of such a commutator.
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OQur main interest is in thévcase x| = 2. In this case
we will write X = \a,b), Y = (u,v). Until further notice
we assume that G is a two—generatér group; Then a,, by
c: become:

a) (u,v) and (a,b) belong to the same NE class, or
T-system of G.

b) (u,v) generates G.

c) lu,v] ~ [a,b]il.

If ¢ is free (G = F = <a,b>) then (u,v) satisfies a. if and
only if (u,v) satisfies b . Nielsen [341 has shown that

(u,v) satisfies ¢, if and only if(u,v) satisfies bjand"sbva ) -

Thus if G is a free group, it satisfies the following properties:

+ .
]_1 iff (u,v) generates @

1

A lu,v] ~ [a,b

B (resp BE) : |lu,v] ~ [a,b] iff‘(u;v) and (a,b)

N.?

belong to the same NE class ( resp. T-system).

N

c (resp QT): (u,v) generates ¢ iff (u,v) and (a,b)

belong to te:the same NE class (resp T-system).

Properties»CN and CT‘can be shortened to saying,G: has one

NE class (resp. T-system) of generating pairs. In general if
G satisfies any two of the Propertles:A,BN,CN then G satisfies

all three. Similarly if @G satisfiés two of the Properties

A,B,,Cp, then ¢ satisfies all three.

T

We discuss the following two questions:
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Question 1: Are there groups which satisfy one of the
Properties A,By, or CN but not all three? Similarly, are
there groups which satisfy one of the Properties}A,ET, or’CT,

but‘not all three?

Question 2: Can we show that certain types of groups
possess Property A,ﬁN;BT,CN or CT? or if possible all five

properties?

In answer to Question 1, we show by means of examples that

there are groups which satisfy one OfﬂA’BN’CN but not all

-three, and there are groups satisfying one of BT,C but not

T

A. No example has been found of a group which satisfies

Property A, but not BT or CT.

We consider Question 2 mainly for the case of small cancella-
tion groups. Using methods similar to those of Chapter II

. v
we show that if ¢ = <a,b; R>is a CL(1/16)-group or a

] - . B ) .
CL(1/12), T(4) -group for some L, then ¢ has Property‘BN.

v

Property QN has already been discussed in Chapter II.

N

mentioned in the previous paragraph have recently been

'generalised, in joint work with S.J. Pride [15]. In f151

using geometric techniques, we show that if ¢ = <a,b; R> is

a C(15) -group or a C(1l2), T(4) -group then ¢ has Property BN

In addition, with regard to Property bN we have recently
established (using the results of Chapter II) that if

]
G = <a,b; R> is a CL(1/2O) group, where for all y» ¢ R



a) r is not a power of a primitive in G.

b) r=Sn;Tl'>5l

then G has one NE class.

(Note that we do not require R to be finite for this result.)

Work on Question 2 has been done by Pride for ohe—relator
groups with torsion. In [44] he has shown that if

G = <a,b;1ﬁ>,(m > 1) then G has Property C. (unless r is a

N
power of a primitive - in this case,G may not have Property
CN’ though it has Property CI)' He has also shown that if

m > 3 then G has Property %w(an account of this‘work is given
in [157). It is natural to ask whether the condition m > 3
(in this latter result) can be replaced by m > 1. We givé

examples with m = 2 to show that this is not the case.

(The situation for m = 3 remains unresolved.)

It is natural to consider ways in which Property A might be
genéfalised. One way would be to choose a fixed but arbitrary
~ pair (a,b) from a group G, (so that (a,b) need not generate G)

and thus consider

. + .
Property A': S lu,v] v [ac,b]"l iff sng{u,v} is

conjugate to sng{a,b}
However even if ¢ is ffee, A' need not hold [2] .

Another possibility is t6 consider more than two generators.

We ask the question:- If ¢ is an p-generator group with
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fixed generating n-tuple (al,....an). Then is there. a word

W(@l,~--,¢n) on n-variable such that the solutions of

N . o R T
(1) W(xjyl,...,xn) ~ W(al'.,...,an) ,

are precisely the generating n-tuples of G?

Rips [51] has shown that when G = F = <al,...,dn> gnd

W is a higher commutator, then all solutions to (1) are
generating n-tuples of G. However not all generafing
n—fuples are solutions. In fact it is well known that if
n 2 3, and G = Fn’ then there 1s no word W as described
above. For if W were such a word, and v = W(al,...an)
then wa would be cohjugate to wil for each a € Aut Fn'

It is well-known thaf no such non-trivial word w exists

[27], [30]. To show how bad things can be, we prove:

(THEOREM 3.4) Let F be a free group of rank n > 3,

and let N.be the normal closure of win F, w # 1. Then

m Na = 1

a € AutFr

"It follows immediately from Theorem 3.4 that if

= < o o 0 M > i 3 o 2
G Ly1%ns v,xn,W then Fn is residually G Since any
free group of rank greater than n is residually Fn’ [BéJ,

we have:

(THEOREM‘S;S) Let G be an n-generator, one-relator
group with n > 3, Then any free group of rank greater than

or equal to n is residually G.
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Residual properties of free groups have been studied in

several papers ([11],[22],[23],[36],[37],[38],[39],[63]). 1In

particular, Pride [39] has shown that if G = <a,b; rk>.k > 1,
then F, (and thus F for’n > 2) is residually G, unless r is
conjugate to [a,b]zfor some 1 #°0. (if r is conjugate to
[a,b]z. then Pride (uﬁpublished) has shown that F, is
residually G). The folloﬁing question remains open: If

G = <a,b; r> where r is not a propef»power and if G does not

satisfy a non-trivial law, then is F2 residually G?
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_SECTION 1. - PRELIMINARY RESULTS

In this section we introduce some of the results of small

cancellation theory which will be used in laterlchapters.

The results in this section may be found in [25], and [54]
unless otherwise stated. Wherever possible the hotation will
be the same as that used in the book [25, Chapter V] by

Lyndon and Schupp-.

The following theorem is the fundamental result of small

cancellation theory.

THEOREM 1.1 (Greendlingers Lemma). Let F be a free group.

Let R be a symmetrized subset of F, with N the normal closure
of R. Assume that R satisfies the hy?otheses C(p) and T(Q)
where (q,p) is one of the pairs (6,3),(4.4) or (3,6);-

If w e N, w # 1, then for some cyelically reduced conjugate

W* of w, W* € R or has the form W* = u;s,....u_s_ where each s

is an 7(s,) remnant. The pumber n of the
5% and the numbers i(sk) satisfy the relation.

K

[p/q + 2 - i(sk)] 2 p
1 . .

N 3

We do not apply Theorem 1.1 directly, pbut use the following

two corollaries.
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COROLLARY 1.1 _ ﬁet R satisfy C(6), and let w be
cyelically feduced.
Then either o (l) w €R
or some cyclically reduced conjugafe.W* of w contains one
of the following:
| (2) two disjoint l-remnants
(3) three disjoint 2-remnants
(4) four disjoint subwords, two 2-remnants,
and two 3-remmants
(5) five disjoint subwords, one 2-remnant
‘and four 3-remnants.

(6) six disjoint 3-remnants.

#
COROLLARY 1.2 ‘Let R satisfy C(4),T(4) and let w be
cyelically reduced. |
Then either ' (1) w € R

or some cyclically reduced conjugate w* of w contains one of
the following:
(2) two disjoint l-remnants

(3) three disjoint 2-remnants

"In particular we obaserve that if R satisfies C(6) then w
cortains at least one 3-remnant, and if R satisfies c(4),

T(4)w contains at least one 2-remnant.

The next result classifies the torsion elements in small

cancellation groups. (see [27]).
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THEOREM 1.2 Let F be a‘free»graup, and let R be a

symmetrized subset of F satiéfying C(6) or C(4),T(4). Let
N be the normal closure of R, and G = F/N.

Then if v has finite order in G, there is an element

‘v € R which is a proper power in F, say r = g%, n > i, and
w ~ g™, where m is an integer. Moreover, w has order A

n/(m,yn) in G.
#

The following propositions concerning subwords of R are
needed in later chapters. They are originally due to

Lipschutz, [24],[25].

PROPOSITION 1.1 If r = sxs—ly, then s is a piece relative

to the symmetrized closure of r.

PROQF: If 8 is not a piece, then st—ly = sx_ls-ly_l.
Therefore x =y = 1 and » is trivial.
#.
PROPOSITION 1.2 If r = (sz)™sy, m > 1, then either
(1) - (s2)™ s is a piece relative to the
symmetrized closure of r,or
(2) sx,(sx)m_lsy, r are all powers of a
common element, and r» 18 a proper power.
: ' m-1 . . . m
PROOF: If (sx) s is not a piece, since both (sx) sy and

(sx)m-lsysx are cyclic permutations of r they must be identical.
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-1 ' ' .
Therefore (sx)m sy and sx commute. As commuting elements in
“a frée group -are powers of a common element, (sx)m—lsy,sx

sx(sx)m_lsy'

m

are .powers of a common element 2, and thus »r

is a proper power of 2.
#

In Chapters II and III we use'diagrams to prove results
qoncerning conjugate elements in small cancellation groups.
A aiagram over a group F is an orientedvmap M and a function
¢ assigning to each oriented edge e of M as a 1abe1,'an

element ¢(e) of F such that if e is an oriented edge of M,

1 1

and e—l is the oppositely oriented edge, then ¢(e ) = 6(e) = .
If o« is a path in M, o = el,...,ek, then define

¢(a) = ¢(el),...,¢(ek), If D is a region of M, a label of D

is an element ¢(a) for a a boundary cycle of D.

If R is symmetrized subset of F, én R—diagram is é'diégram

M such that if 6§ is any boundary cycle of any region D of M,

then ¢(68) € R.

LEMMA 1.1 ~Let N be the normal closure of R in F.
Then for any w in F, w € N ©f and only if there is a connected,
simply connected R-diagram M such that the label on the .

boundary of M is w. (see [27, Chapter V]).

Thus connected, simply connected diagrams- can be used to study

membership of\nbrmal subgroups.
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An annular map M is a connected map such that -M has

exactly two components. Let M be an annular map. Let K

be. the unbounded component of —M; and let H.be the bounded
component of -M. The intersection of the boundary 3M of M
with the boundary 8K of XK we dal; the oufer bouhdary.
Similarly we define the inner‘boundary. A cycle of minimal
length (that does not cross itself) which contains all edges

in the outer (inner) boundary of M is an outer (inner)

boundary'cycle of M. The next two lemmas show that annular

diagrams can be used to study conjugacy in F/N.

LEMMA 1.2 , Let M be an annular R-diagram. If y <s
a label of an outer boundary cycle of M, and z is a label of
an inner boundary cycle of M, then either y and z are

conjugate in F/N or y and‘z“l are conjugate in F/N.
#

LEMMA 1.3 Let y and z be two cyelically reduced
words bf F which are not in N, and which are not conjugate

in F. If y and z represent conjugate elements of G, then

there is a reduced annular R-diagram M containing at least

one region such that!

If o = eje-eeg and t = fi..;fk are respectively outer and

inner boundary cycles of M, then the product ¢(el)...¢(el)

is reduced without cancellation and is a conjugate of y

while the product ¢(fl)...¢(fk) 18 réduced without

cancellation and is a conjugate of zil.
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We call M a conjugacy diagram for y and z. When R satisfies
(] . '

the small cancellation condition CL(lﬁ;6), or CL(1/4) and

T(4) the next theorem describes the geometry of the conjugacy

diagrams.

THEOREM 1.3 (The structuré theorem for suitable
annular R-diagrams. Let R satisfyﬂeither

(1) C£(1/6)
(i%) cL(1/4) and T(4).

"Let M be a reduced annular R-diagram. bLet g, Tt be
respectively, the outer and inner boundaries of M, Assume
that if D s a region of M with o, = 3Dnao connect;d then
L(¢TOL)) is not >1/2L(¢(D)). Assume the same hypothesis with
o replaced by r..‘ ‘

(1) . If'M does not contain a region D such that 3D
‘contains an edge df both o and T, theﬁ M has thé form (a)

if R satisfies C£(1/6), and form (b) if R satisfies C;(1/4)

and T(4).

(a) (b)

(the number of layers is always 2, however, the number of

regions per Zayer 18 variable.)
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(2) If M does contain a region D such that 3D

contains an edge of both o and 1, then M has the formf

(the number of 'islands' and the number of regions per

[ ) .
istand are variable).

#

Note: In [27 pp.252-259] this result is proved when L
is the usual length function Ll.'vHowever, as observed by
Pride, the result can easily be proved for a general length'

function.

In Cﬁapter III we make use_of the strengthened form éf

the Freiheitssatz [58]. This is’a single theorem which
strengthens both the Freiheitssatz of Magnus[27 p.104] for

one relator groups in general, and Newman's "spelling theorem",

[27 p.109], in the torsion case.

THEOREM 1.4 | A(The strengthened form of the Freiheitssatz).
Let G = <a,b,c...3r> where r is éyclicaZLy'reduced. Write
r=2", n >1, where z is not a proper power in the free group

on (a,b,cs...). (Elements of the symmetrized set r*

generated by r thus have the form (2*)" where z* is a cyelzie

permutation of zil). If an equation u = v holds in G, where

u and v are freely reduced words, and v omits a generator
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whieh ocecurs in both r and u, .then u contains a subword

t of an element of r* such that t = (z*)n_lé,.and s contains

every generator which occurs in r but not in v.

# .

if n = 1, then ¢t is simply s.
In the case v = 1, s contains everj generator that occurs

in r.
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CHAPTER II

TWO GENERATOR SUBGROUPS OF SMALL
CANCELLATION GROUPS

SECTION 1. _ SUMMARY
It has been shown that small cancellation groups satisfying
Cc(4) and T(4), or C(6), with certain trivial exceptions,
possess a free subgroup of rank 2.
(Collins [4], Al Janabi [20]).
In this Chapter we consider thé isomorphism typés of non-free
2-generator subgroups of small cancellation groups. However,
in order to obtain results, we restrict our attention to
small canceliation gr§ups satisfying q}l(IO)and T(4), or

‘Ci(}/}4)-

Tﬁere are two similar theorems which we prové in Seqtions 2
and 3 of this chapter. One of them applies to small
cancellation groups satisfying Ci(l/lo)and T(4), or C£(1/14).
and this is used to derive certain general results concerning
these small cancellatibn groups. The details can be found
tdwards the end of this section. The other, although
satisfied by a smaller class of small cancellation groups
(CiﬁUL@ and T(4), or %“lﬂﬁf)is useful, in particular, when
dealing with applications of the results to specific groups.

An example of this is also given.

The method of proof of the theorems is algorithmic and given

avfinitely presented small cancellation group satisfying

the required small 6ancellation hypothesis, provides a means

of determining the nature of any 2-generator subgroup defined

by a given generating pair.
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In order to present the theorems, we need to make some

definitions.

Let X be an n-tuple:, and W(x) be the set of words in X.
‘Let F(x) be the free group freely generated by X; R a
symmetrized subset of cyclically reduced Wbrds on X;

N = <R>F, the normal closure in F(x) of R; and G = F/N.

We denote equality in W(x) by

equality in F(x) by

and- equality mod N by s, or s .
. _ ’ G i
Similarly we denote conjugacy in F(x) by ~ ,

and . conjugacy mod N byrz or A -

Let (u,v) be a pair of words in_W(x). We define the follo#{ng
elementary transformations (modN) on (u,v):

No : (u,v) b (vyu)

Nt () b (u,)

(u;v)Fék(uv,v) ’

N2
N s (u,v) e (k‘ak,k-lvk), where k € W(x),
NG : (u,v)Hb(u,v)if u Z U VLT,

In addition to these, we need to define a transformatipn
which can only occur when one of the elements of R is a
proper power:

- , _ a N-T)
NG : (u,v) (upv), where u = =, u, = x  ,
"P = xY r. € R,Y>lyv (G,X) = (ai’Y)O

We call the transformations No,Nl,Nz,Nk,NG,ﬁG,

generalised elementary transformations (or GE transformations)

mod N.
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If no element of R is a proper power, then there are no

possible transformations of type ﬁ In this case, a

G
sequence of GE transformations (modi)is the same as a

sequence of elementary transformations (mod ¥). The

transformation NO,N,,NZ,Nk,NF are called free elementary

transformations.

A factorization of (u,v) is a triple (f,g,h) of words in
W(x), where either

-1 -1
f g, vs=§f h, or

P 3
f gf, v = h,

(ii) u
In the first case, we say that the factorization is of Type I,
and in the second case we say that the factorization is of
Type II. - If f = 1, then we say that the factorization is

trivial.

We assume that sng{u,v}’is not.cycelic so that at least two
ot the elements of a factorization of (y,v) are non-trivial,
and if the factorization is of Type II., then g and 4 are

non-trivial. .

‘Suppose g and 4 are non-trivial, and (f,g,hk) is

(i) a non-trivial factorization of Type I aﬁd
g_lfh—lgf—lhis cyclically reduced, or

(ii) a non-trivial faétorization of Type II and
f_lggfhh is cyclically reduced, or

(iii) trivial and g_lh—rgh, g and h cyclically reduced,

then we say that (f,9,%) is a reduced factorization of (u,v).

We will show in the next section, (Lemma 2.3) how (u,v) can
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be mapped by a sequence of free elementary transformations
to a pair (u",v' ) with reduced factorization (f*ﬁg',h‘)

whereAL(fy;jf,h15 < L(f,gih)-

Until further notice let (u,v) be a pair of words with a

reduced factorization(f,g,h) of Type J, (J = I or II).

In the algorithms describéd in this Chapter, we shail, in
~each step use a sequence okaE transformations which maps
the pair (u,v) to a pair With a reduced factorization of
shorter length. This can be repeated until we obtain a pair
of words in W(zx) With a reduced factorization, and which
satisfies one of the three properties defined below.

In order to define two of these properties we shall need to
use the following set §, where each element is conjugate

to an element of R, and depends on the factorization (f,g,h)
and its Type J. |

Let § be the set of all words such that

(a) each element of 3§ is‘a proper power, and freely
conjugate to an element of R, and

(b) if (f,g,h) is of Type I, then‘each element of §
has the form | |

(f~

i

a(f 'h)8)e, 820, a £0

and (f,é,ﬁ) is a permutation‘of'(f,g,h);

if (f,gsh) is of Type II, then each element of §is freely
equal to the forms

€

(F Lg% "By or (nSF 5% B %e, o = 1,

]

'8 >0, a # O.
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We say that the pair (u,v) has Property 1 if

N n sgp{u,v} is the normal closure of § in sgp{u,vl.

We say that the pair (u,v) has Property 2 if either

(i) for certain integers e;,éz ,é, = *1, the non-trivial
elements ot the set (fsl,gez,hes) are disjoint subwords of a
subconjugate of an element of R, or |
(ii) The triple (f,g,h) is a non-trivial factorization
of Type I, and ¥ n sgp{u,v} is the normal closure of

S Rl S N e i

for certain integers L,m,n >1.

We say that (u,v) has Property 2% if the following hold:

(a) ~ There exists,ankr e B so that the non-trivial

elements of the triple (f,g,h) are pieces relative to the
symmetrized closure of pr.

(p) For any r € R, r ¢ 3, for which there exists a
reduced word W* equal to a wdrd in (u,v), and a subword t
of W*, which is a'?-remnaﬁt of r, the non-trivial elements
of the triple (f,g,h) are pieces relative to the
symMetrized closure of r.

(Where f = 2 ifi R satisfies T(4), and P = 3 otherwise).

The two main Theorems proved in this Chapter are the

following:

THEOREM 2.1 Let R satisfy C£(1ﬂ4) or CL"(I_/IO),T(4).
Let (u,v) be a pair of elements of F, where sng{u,v} 18

not cyclic.
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Then (u,v) can be transformed by a finite sequence of -
GEAtranstrmations (modN) to a pair which satisfies Property

1 or Property 2.

We say that (u,v) is root-closed (rel R) if for all
s &€ Ry,n>1, s™ is not conjugate_ in G to an element of a

generating pair of sng{u,v}, for all m € Z .

THEOREM 2.2 Let R satisfy C[(1/16) or C (1/12), T(4).
Let (u,v) be a pair of elements of F, where sng{u,v} 18
not cyelie. Then

(a) (u,v) can be transformed by a finite sequence of

GE transformations (modN) to a pair which satisfies Property

1 or Property 2%*. : . : N

(b) if Cu,v) is root-closed (rel R}, then either (u,v)
can be transformed by a finite sequence of eZementqry
transformations EmodN) to a pair which satisfies Property 2%,

or sng{u,v} 18 free.

In. order to use these results, it is important to say

something further about those pairs that satisfy Property 1.

LEMMA 2.1 | If (u.v) is a pair‘of elements of F with
reduced factorization (f,g,h) and either

(i) satisfies Property 1, but not Property 2, or

(ii) satisfies Property 1, but f,g,h are not all pieces.

Then SEP;{UsV} 18 a free product of cycles.

This Lemma will be proved in Section 2.2.



- 35 -

Now if the pair (w,z) of words in W(z) is obtained from the

pair (u,v) by a sequence of elementary transformations No,N,,

Nj, Nk, NG; then sng{u,v} é»sng{w,z}. This can be seen

by considering each of the elementary transformations in

- turn.

In fact this is also true of Neos for let RG(u;v) = (ug,v)
o o, Y

where u = 2%, u, = %1, »r = x  ,r € R, and (a,7v) = (a,,7)
Then the pair (xIQ’Y),v) generates both sng{u,v}.ahd

sng{u],v}.

Using Lemma 2.1 and the definitions of Properties 2 and 2%

we have the'following:

. . 1 ) .
THEOREM 2.3 ~ Let R satisfy CL(1/14), or CL(1/10),

"T(4) for some length L and let H be a two-generator subgroup .

of G. Then either
(i) H is a free product of cycles, or

(ii) if (w,z) generates H, then (w,z) can be transformed

by a finite sequence of GE‘transformations to (u,v) where

sng{u,v} ~ sng{w,z}, and there exists a reduced factoriza-

“tion (f,g,h) of (u,v), so that either for certain integers

>

. 1
e,e' equal to %1, the elements of the set {f',ge,hE } are

o

disjoint subwords of a subconjugate of R, or (f,g,h) is a

non-trivial factorization obeype I and

- L2 m -1
~sgplu,v} = <u,vs;u ,v ,(u " where g ,myn F 0.

THEOREM 2.4 Let R satisfy Ci(l/lﬁ), or CL(l/lZ)s
T(4) for some length L and let H be a two-generator subgroup

of G.. Then either
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(i) H 28 a free product of cycles, or
(ii) : if (w,z) generates H, then (w,z) can be transformed

to (u,v) where sng{u,v} ~: sng{w,z}, and the elements of

a reduced factorization of (u,v)are pieces.

The usefulness of Theorem 2.3 is demonstrated by the following

results.

THEOREM 2.5 Let G = <X;R> where R 18 fintte and
satisfies C,(1/14) or C (1/10), T(4). Then

(i) G has finitely many congugacy classes of 2-generator
subgroups whose members are not free products of cycles.

(ii) bG has finitely many isoﬁorphism:types of 2-generator

subgroups.

In order to see this, note that by Theorem 2.3, for each
conjugacy class of two-generator subgroups whose members are
notvfree products of cycles, there exists a factorization
where two of the elements.are subwords of elements of R, and
the third is a product of at most two words, each of which is
a subword of an element-of pR. Since R is finite, there are

only finitely many such factorizations, proving part (i).

By (i) there are only finitely many isomorphism types of two-

generator subgroups which are not free products of cycles.
Also since R is finite, there is a bound on the orders of
elements of finite order in G [27,p281], so only finitely
many isomorphism types of 2-generator free products can occur

as subgroups of G.
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A result, similar to (i) cannot be obtained for 3-generator

subgroups. In [49] Rips shows that given A>0, and a finitely

presented group 4, there is no exact sequence.

1 v>C > B > A > 1
where B is a finitely generated C'(A)—groﬁp, and C is
generated, as a group, by two elements (C,, Cz; ’In a letter
to S.J. Pride, Rips has pointed out that ¢ is not free. Thus
if A has an infinite family {D_ ;7€ I} of pairwise non-
conjugate cyclic subgroups, and if % is an element of B,
mapping onto a generator of Dﬂ(i € I), then the subgroups
sgp{bi,C;{Cz};b (7 € I), are non-free and pairwise non-

conjugate 3-generator subgroups of B.

Suppose a group G is defined by means of a presentation
<X;R>, then a primitive of G is an element which is a member

of a generating |X|-tuple of G.

THEOREM 2.6 Let G = <a,b;R> where R is finite, and no

element of R is a power of a primitive of G, and R satisfies
1 ' ]

CL(1/14) or CL(l/lO) s T(4) . Then G has finitely many NE

classes of generating pairs.

(The result is well-known if G is a free product of cycles).
As no element of R is a power of a ppimitive in G, a

sequence of GE transformation (mod N) on a pair of generators
of G is a sequence of elementary transformations (mod V).
Thus if G is not free, by Theorem 2.3 each generating pair
(w,2) of G is in the same NE class as the generating pair

(u,v) of ¢, and a factorization of (u,v) is such that two of
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the elements are subwords of R, and the third is the product

of at most two words, each of which is a subword of R. Since

R is finite, there are only finitely many such pairs.

Using a'moéification of the method used fb prove Theorem 2.6,
Pride [141 has shoWn‘that the restriction that n§

element of R is a power of a primitive of G .in the above
theorem is not necéssary. However, the following example
shows that the condition that R is finite in Theorem 2.1

cannot be omitted.

EXAMPLE 2.1 Let k be an integer, Kk 2]6. For 7 = 1,2,3...
let

r. = ab® azvbt....ak p* b
Let R be the symmetrized closure in F = <a,b> ofhk;i==1,2”..}

and let ¢ =<a,b; R>. Now R satisfies T(4). In addition R
C . o
satisfies C.(<4/k) In order to see this note that the largest

pieces contained in a cyclic permutation of Pi are

- k=1 ,i+1 k-2 .7 k-1"
a a a

ak bi+% b a and b

bi

?

, A
Therefore R satistfies C ()) where

);2J4/k>>max{2i+l+k, k+Z+1, and 2k+7-3} / (k@+1+(1+2+...+k)

) '
In particular, R satisfies C (1/4).

We will show that G has an infinite number of NE classes of

generating pairs, represented by {(a,bt); 2 =1,2,...1.

In ¢, b"Y = a b* a® b* ...a" b", so that
(a,bl) generates G. We show that for 7 #;f, (a,bt). (a,57)

are not Nielsen equivalent.
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By Nielsen [32] it suffices to show that [a,bij, [a,bi]e,
(s = *1) aré not conjugate in ¢G. VHowever (by Theorem 1.3)
if they were conjugate in G, since they are cyqlically
reduced, but not freely conjugate, there would be a reduced

R-diagram D.

- or

with the label on the outer boundary [a,bij and the label on
the inner boundary [a,bj]e. Now any subword of [a,bi] or
[a,bj] which is aiso a subword of an element of R is a piece.
Thus all edges of regions of D are labelled by pieces which
contradicts the fact that B satisfies C'(l/4). |

‘ #
We have conjectured that if G = <d,b; R> where each element
of R»is a proper power, and whefe no element of R is a bower
of a primitive, then if R satisfies C'(X) for suitably small
A, G will haverone Nielsen equivalance class éf generating

-pairs. The following example should be noted in connection

"with this conjecture.

EXAMPLE 2.2 - Let k be an odd integer with k> 12, and

for 7 = 1,2,3...1let

r. = (abi)k

‘Then each r, is a power of a primitive in F = <a,b>, Let
R be the symmetrized closure in F of {ri; 7 = 1,2,3...,7}

(n may be «), and let G = <a,b; R>. Now R satisfies T(4).
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Also the largest piece contained in a cyclic permutation of
. . ,

r is btabt, and so R satisfies C (2/k). We show that @

has at least n Nielsen equivalence classes, represented by
;.2 . ; . '

((@*),b)ii = 1,2,...n}.

Let k¥ = 21+1. Then‘a—l = bl(abt)zz, so ((abt)a,b) generates

. . 1,2 J 2 .
G. Now for <% J, ((ab”) " ,b), ((ab?Y ) ,b) are not Nielsen

equivalent. To show this, it suffices to show that the

cyclically reduced forms of [(abi)z,b] and I;(abj)z,b]E

that is U = a *b %a" b Yab%ab and v = (a b 7a "t an?an)®
(¢ = *1), are not conjugate in G. But if they were conjugate,

since they are not freely conjugate, there would be a reduced

R-diagram D:

or

with the label on the outer boundary U and the label on the
inner boundary V. (See Theorem 1.3)

Now any subword of or'V.Which is also a‘subword of an
element of R is no more than 2 pieces. Thus each intérnal
édge of D is labelled by pieces, and each boundary edge is
labelled by at most 2 pieces. This contradicts the fact that
R satisfies C'(2/k).

| #

The question, whéther a group has a finite number of Nielsen
equivélenée classes arises when considering the nature of
Aut(G).

Let F, be the free group of rank 2, R a symmetrized éubset of

2
F2, N the normal closure of R, and ¢ = F2/N.
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Let N(N) be the gfoup of automorphisms ¢ of F2 such that
Noe = N. |
Each element ¢ of H(N) induces ah automorphism § of G where
wi$ = weN (v € F,)

By Pride [48] if G has ¢ Nielsen equivalence classes of
generating pairs. |

| lAut(G): H?N)} < v .
Therefore if G is a two-generator, finitely related, small
cancellation group, satisfying CL(1/14) or CL(l/lO), T(4),
then it follows from Theorem 2.6 and the above remark that
Aut(G) is finitely generated (resp. presented) if and only
if H?N) is finitely generated (resp. presented). Some

results concerning N(N) can be found in [48], [49].
We finish thiss section with an application of Theorem 2.4.

THEQREM 2.7 There exist two-generator, one-relator
groups which are not free, but which have every proper two-

generator subgroup free.

'To show this we construct the following group G?

Let ¥ be an integer, with k >31. Let

k k+1 k

' 2
OOOOab
and let G = <a,b; RBR>, where R is the symmetrized closure of
i [
r in F, (F = <a,b>). Then R satisties T(4) and C (1/12)
(since the largest piece contained in a cyclic permutation

of r is bzk_zabzk-l).
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Let (w,z) be a pair of elements. of G, where sng{w,z} = H
is a non—cyclic,.non-free subgroup of G. Then as no element
of R is a proper power, all pairs of words in ¢ will be
root-closed (rel R). Therefore, by Theorem 2.4(ii), (w,3)
is Nielsen equivalent in G to a conjugate of the pair (u,v),
and the élements f,g,% of a reducéd factorization of (u,v)
are pieces.
Since‘H*v= sng{u,v}vis non-free, H* contains a non-trivial
word w =a 1. By small cancellation theory (See Corollary 1.2),
éx will’contain a 2-remnant of R. But any 2-remnant of R must
have a subword z where

z = abj”abjzabjsabj“abj5a
for distinct J,,d, ,Js+d, »ds» and where ji¥f'= ji+i for some
i, 1£7<5. Note that z is the produét of no less than 6

pieces.

We use the result that f,g,% are pieces, and the fact that

aﬁy piece is of the form (bq‘aqu)il or biq,-(q,q,,qzz 0)

to give specific expressions for f,g,%, namely
Fz (bMa®pta)sy g = (MM ™), n o= (™ aMp)%e

where €,,e5,65 = *1; 8,A\,8 = 0 or 1; f1, f2,m1,mz,n1,n2> O.
By examining the maximum powers, J, of b in words of form abaa,

where ab%z_is a subword of a word in (u,v),we snow1jmt,asg;muSE:

+1 - |

also -be a_subword of a word in (y,v),f = :1,g 5 @ ,h b~ as required.

We first show that‘(f,g,h) cannot be a non-trivial factoriza-

tion of Type II. For if this is the case, as 2 is a positive
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word in (a,b), z must be a subword of gafns or“hsf-lga,
(a8 > 0). We assume z is a subword of gafhs, for the other

/

case is similar. Then z is a subword of

A L, 6.8 '

(M) pra%ptr (™M) R,

However, there can be.at most four distinct integers J, such
that abga is a subword of the above word, and this contradicts

our definition of 2.

Suppose the triple (f,g9,h) is a factorization of Type I.
Thenvas HE*¥* is non-cyclic, at least fwo elements of the set
{f,g,hl are non-trivial. It can bebseen that the tribles
(F5, 95, 05), (g, h5,F), (15, f°,9%) are reduced factorizations
of Type I of pairs of elements that genérate subgroups
conjﬁgate to H*. Thus we may assume that g, h are non-trivial,

and if f is non-trivial we can choose (u,v) and its factori-

zation so that €, = ¢, = 1. If f is trivial, then as (1,0 %),
‘ _ _ _ | o

(l,g,h l) (1,9 l.h‘;) are reduced factorizations of (u ~,v),

(u,v_l), (u'l’v_l) respectively, we may still choose (u,v)

and (f,g,h) so that €, = €3 = 1. If x =1

0, then (f,g,h)
is not reduced. By the symmetry between g andh we can assume

A =1. Thus 2z is a subword of a positive word in
£, 6 6. :
(Cpfrg®plzp™gp™ ), (phigfptzp™ oM pm2))

We have four cases to consider, depending on the values of

6 and p.

(a) "Suppose @ = K = 1. Then there can be no more than
four distinct integers J where abJa is a subword of a wofd

in (u, v), namely %,+n,,n; +2%,, %,+m,m2 +%,, which contradicts

our definition of 3.
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(b) Suppose & = 1, ﬁ = 0. Then there can be no more
than three distinct integers j whére-abJa is a subword of a
word in (u,v), namely 2,+n,+n,+%,, % ,+mysma+%,, — a contra-

diction of z.

(c) Suppose & = 0, ¥ = 1. Then there can be no more
than four distinct integers j where abJa is a subword of a
word in (u,v) namely m,+8% ,+8%,+7n,, N, +%,+&%,4m,, M¥% ,+%,+m,,

n,+%,+%,+n, - a contradiction of z.

(d) Suppose @ = p = 0. Let &,+%, = &, n,+n, = n:s

J J+1 oy
(¢,m > 0). If ab?Ya,ab® “a are subwords of a positive word
in (bgbm‘abmz,bzbn), then § = m,+(8+n)a+l+m,, -~ -
J+l = my+(%+n)o,+2+m, . o e

Therefore +n = 1. However, we assumed h is non-trivial, so

that 2 = 0 and n = 1. Thus

f =1, g = p"Mrap™2, n

[11]
o

If m, or my# O, then (f,g,h) is not a reduced factorization.
So it follows that (f,g,h) = (1,a,b), and (u,v) = (a,b) as

required.
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SECTION 2. PAIRS OF WORDS AND FACTORIZATIONS

In order to prove Theorem: 2.1 and Theorem 2.2 we need

to start witﬁ an arbitrary pair of words (u,v) in w(x),

and descfibe the transformations which will map (u,v) to a

pair of words that satisfy Properties 1,2 or 2%, However,
instead of working directly with the pair (u,v) it has begn
found to be simpler to use a factorization of (u,v) and
transform the factorization using the factorizafion transforma-

tions defined below.

So that we can reconstruct a pair (u,v) from a factorization
(f,g,h) it is convenient to write (f,g,h)I or (f,g,h)II
accordiqg to whether (f,g,4) is a factorization of Type I or
I1 respectively. We say that the factorizations (f,g,h)J.
(f,g,h)J' are equal if and only if either J = J' or f= 1,

(J,d* = I or II).

Let (f,q,h)I be a factorization of (u,v), then we define the

following factorization transformations:

(f,g'h)l °_ (U’e,ge,he)h)l, where n permutes

(f’g’h)y € = tlc

' I kSIz, ‘ I ) ,
(Fog k)™ o , (kfa,kgt, kh2)™, k2 €-W(x).
I st
(f}g,h) G N (f";g',h'), where =q f, g' =G g h' =G he
oI §I k -1 p
(frgih)™ "6, (firg,2h ), where f7= dlod),

1

R : - f'-f
£ e dtedy't, g = (ed)¥e, gy = (ed)¥ie, By=led) 70 B

7
r N~ (dC) s Y>1, r € R; H,V,Pl,yl > 03
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(P4Y+1, 7 ) = (P 3+V,+1,7)

In the second transformation kSIR, if k(or &) = 1, then

we write Sf ( or kSI).

We say that S%; kSIZ,

S, are free factorization transformations

I
F

(of Type I).

For example, let‘(f.g,h)I = (a-lb,b,a); where a,b ¢ X' so that

u'= b tab, v s“b_laz. Then
-1 1 SI -1, .1 ' -1 -2
(a "b,b,a) ® (a,b,a ), a factorization of (a “b,a »)
; y I I
cel, . -1 9s -1 2.1 S 2.1
(a “byb,a) , (aa "b,ab ,a") F (b,ab,a” )", a

factorization of (b-lab,b-laz) and if a’ € R, y>1, and a, is

' -1 r sTe7l g1
an integer such that (o,,y) = 1, (a “b,b,a) st
—_—
-1 1.1 8! -1 a,-1 -1.1 '
(a “,1,ab ™) G (a “,a ' “,ab 7) » which is a factorization

2. -
of (a®',a"p 1

).

Note that in each case, if (f,,gl,h,)I is the new factorization,

1

-1 -1,-1 -1 -1 )
sgp{f, 9. f: “h, }«;sgp{f g,f "h}, except in the last case

- -1 - -
when sgplf, Yo T R ~ sepif Yo,y

If (f,g,h)II is a factorization of (u,v) then we define the

the following transformations.

R o o
(f»g,h)II S°'5 (f,ggl;hez);dfoiW(ffl;hezyge’)II where .
EI)EZ =+l or —lov

kK IIg _ _
(Fog,m)tt 8 (k£e,kgk Y, 0" a) I, k.0 e W(x)
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1T SII ) II
(fsgrh) _G_9 (f',,q'..h') where f =6 f'y g =G’g" h:G ht
o =II
II S II ]
(f;g,h)» G ’(f,g,,h) ‘where g = cH, g, = c"’,
r N CT;Y’ (=2 R’Y>1;V)F1>o;(r’7) =v(t‘197)'
~In the second transfofmafion, if k(or &) = 1, then we write
SIIQ (or kSII).
We say that SEI, kSIIQ, SII are free factorization transforma-

F

tions (of Type II).

-1

For example if (f,g,h)II = (b,a,a?b)II so that u = b “ab,

v = aab, then

(b,a.azb)II fﬁf;a (b_l,azb,a)II, a factorization of (bazbb—l,a)
(b,a,azb)II bSI# ; (bz,bab_l,azb)II, a factorization of
(6"2bab™2p%,5%b). " 1f a¥ € R,Y 51, then if (a,,Y) = 1, we
have (b,a,azb)II _§;i9 (b,aa‘,aab) a factorization of

- 2
(b 1a% b,a%b)u
Therefore as in the previous set of transformations, if
(fi»g9.,+h,) is the new factorization, sgp{f—lgf,h} ~

-1 . . L e .
sgp{f, “g.f.sh,} except in the last case when sgp {fylgf,hj ﬁajy

=1 . : :
sgp {f, "g.f.shil}. ' : -
In general if J = I or II, we only apply factorization
J Jk J = J
transformations S, *s » Sp 9 Sy tooa factorization of Type J.

However, as the trivial factorization can be regarded as a
factorization of Type I or T&pe II, we can apply any of the
factorization transformations to it. Any factorization#
(f,g,h)J can be mapped by means of fhlSJ and S; to a tr;vial

factorization of the same pair (u,v), so that by this device
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we can change from a Type I factorization to a Type II

factorization, and vice versa.

Jl

are weakly related if there is a finite sequence of factoriza-

1 .
‘tion transformations mapping (f,g,h) to (f',g',h')J . If.

I =II
c and SG ,

then we say that (f,g,h) , (f',g',h')J' are related..

this sequence excludes transformations of types s

A transformation of type S% will map (f,g,h)I to

-((feyge,he)ﬁ)l, € = *1, n a permutation of (f,g,h). Thus

the transformations of type S% form a group of order 12.
(That is,.the group is isomorphic to the direct product of

Zgland 53 the symmetric groups on 3 elements.) A transforma-

tion of type S%I will map (f,g,h)II to (f,g?‘,hez)II or

EI)II

(f_l,hez,g y €158z = %¥1. Thus the transformdtions of

type SEI form a group of order 8. (That is, the group is

isomorphic to the direct product of three copies onfz.)

We say that the factorizations (f,g,h)J, (f',g‘,h')J'idre
equivalent if 7

(fra.m)¥ 0 = (frar,mn)? -
Qnd’ﬁviS'a Seduéﬁce of factorization transformations of types

&
Sf and S%I only.‘

Let S be a factorization transformation, where

(f’g’h)JS = (f;tglyhl )J-l'

Let (f,g,h}J, (f11g1+1h1)/s be factorizationsof (y,p ), and

,(ul,vl) respectively.
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. I- | I
Suppose S is of type S,.. If (f,g,h)I S = (h»f-g)

- -1
l,v “u). However

‘ -1 -1
(uvU)NI)szN;:NO;N1 = (v 'V u)-

(f—lvg-;vh_l)l‘then (U3'VI)‘= (fg-llfh' ).

Ir (f,g,h)I S

However (u,v) N,,NO,N,,NO,Nf71 =((u_Hfjﬁv_Lf ) s

. 11 :
Suppose S is of type S, . If‘(f,g,h)?lmsz=r(f?g=

then (u,,v,) = (f?hfdf,m However (u,v)N, = (u-l,p)

1f (F,a,m) 0 s = (770,00 T then (uy,vy) = (FrF7 Y, 9)

However (u,v) NoNf‘; = va'i,u).

kSIﬂ or kSIIﬁ

Suppose S is of type’ . Then (f,g,h)IS

= (kfpa kgl kh) T or (Fog, )T S = (kfL,kekTH 0T MR T

In both casés (uxﬂh) = (u,v)£ = (u,v)Nl.

J or kSJl

Thus if S = S , there exists a sequenceNef transforma- .

0

Ne so that

2

tions of types N,,N,,N
(u,v)N = (uliv;)o
J = dJ

If s = SG or SG , then it can be seen directly from the

definition that there exists an elementary transformation N

of typé NG orTNG respectively, where

(uy )N = (u,,v,)
-

Therefore if (f,g,h)J'is related (of weakly related) to
(f.l,gl,hl)']1 then there exists a sequénce of elementary
transformations (orrGE transformations) which maps (u,v) to
(u,yv,). In fact, as we shall show in the next lemma, the
reverse situation is also true. That is, if a sequence of
elementary transformatioﬁs (GE transformations) maps (u,v) to

(u,,v,) then (f,g,h)J is related (weakly related) to (fl,g,,hl)J‘-
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LEMMA. 2.2 Let ‘(f,g,hi.;)v‘r é’?d’ (f; ,93,. S hy )"t be factori-
zations of (u,v) aﬁd (ul;vl) régpectively.‘ Théh (f,g,h,)J
and (f,,g,,h,)J‘ are réiated or wéakly’felatedjin’G 1f and
pnly;if_(u;v) can bé.transformed to (u,,v,) by a seauence of
éleménféry traﬁéformations in G, orﬁGE‘transfofmations in G,

respectively.

The sufficiency of the condition has already been noted. ' In
order to see that the condition is necessary, we can assume
that (u,,v,) is obtained from (y,v) by one of the transforma-

tions N ,N ,N Nk

LN, 'NG’EG’ we trea# eachAof these in turn.
(1) (ulyv,)b= (u,v)N,
(fagim)? s e ™ i (1,0,u)7
fr SJ,,SFJ, o ;hl)J' |
(2) (u,,v,) = (u.v)kN,
(f'_,g.h).J JeﬂlSJ’SFJ\ (l,u.v)II i'(l;u-l,v)J‘
Taigda s I Frrgiii)
(3) (uy19,) = (u,0)N,
(frgim)? 'f-;lsJ’SFJ\ (1,u, )" S_II_> (1,u" %071

-

v—lsI; (v_l,v—lu_l,l)I _SI°__> (l,uv,v)J‘ J“ISJI'SFJl . (.7"1.)'9'1]11’):71
('4) (vu;,vf) = (u,v)NG
(f,g,h)J f—lsJ’SFJ R (l,u,v)J _E§i9 (l,u,,-u.,l_)‘]1
f‘SJ’,S J,

F ;,(flvg;ihx)Jl-
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(5) (uy,v,) = (u,0)N,
?};g;h)J fflsJ'S; (1,u;v)II EGII; (l,ul,v,)J‘
;f!st;s;‘ (fl.g;.hl)J‘
where u-= ¢@, u, =c%y r = e, y>l,r € Ri(o,¥) = {a,,T)
#

We will now prove the main results described in Section 2.1.
First we will’establish Lemma 2.1, which is the link between

Theorems 2.1 and 2.3, and between Theorems 2.2 and 2.4.

PROOF OF LEMMA 2.1

Suppose fu,v) satisfies Property 1. Then if sng{u,v}

is not a free product of cycles, since each element of §

is a power of some element which is one of a generatiﬁg pair
of sgp{u,v}.§ must contain at 1east two elements Sgland S,
If ($,,5,) is a generating pair of sgp{u,v}, then gymust
contain a third element §,, where Sfl is not conjugate to

Sy or S,.

Suppose (f,g,h)Ijig a feeterization of (u,v).

(r, "

. =1 . B.\Py -
gi(fi hi) ) ? , where

1]

Then for all si. € §, let 5,
(fi’g"hi) is a permUtation of (f,g,h),Bi> 0. We can arrange
that B,;ansi, 7#1, and if §, exists, we can also arrange

that 83>Bi,i¢1,2. For convenience we drop the suffix 1. We

examine the various possibilities for S and 5,.

Case (1) B>0, B,>0.

Then S contains f—l,g and k as subwords, and f—l is
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- -1 - -
a piece since (f lg(f‘ h)B)ﬁi ((f lhisf

1
P

To show g and h are pieces, we consider the six possible

values for S, separately.

(a) S, = (f—lg(f-lh)BZ)FZ: Then g and h are pieces,

since as B # B,,

(g PP 2 (g B HE ana

(hr 1) Begr~ 02 2 ((nf™h) gf‘l)F

(b) S,z (g tula™tr)B2)P2 : Then g
(g™ n( ‘130)32)”2 # (¢t (B ana

(g il 2 (B E

(c) S, = (h‘lf(h‘lg'BZ)FZ: Then g

(g Bzen P22 (g (™) ?)P ana

(rrata PPz (i b

(a) S, = (F i tg)P P2 Then g

B and B, are not both equal to 1, which

(Y ar HB2)P 2 2 ((nrmh)Per )P ana

Car HPenr P2 2 (g e H 5P,
(e) S, = (g_;f(g— h)Bz)FZ: Then g

(¢ tr(g B fe 2 q‘lf(h‘lf)5>9~and

C(rgHBerg T e 2 (e h B HP
(f) s, = (ntgmn? f)Bﬂ)PZ: Then g
(gr trn B 2 2 (g (nfm ) B0 ana

—lg(h—lf)sz)f)z ; ((7’2_ f) g" f)lo

(h
Case (2) >0, g, = O
Then f-l,g and h are subwords of S. As

(Frar g (rmtn B 2 (£ R B lgyf

and A

and h

and h

means

and #

and h

are pieces, since

are pieces, since

are pieces since

that

are pieces since

are pieces since

f_lh is a piece. However B, = 0, so that the only possible
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values for S, are (f-;h)Pz, (g—lf)Pzg (h_lg)Pz'

(or their inverses). We consider these separately.

Lot By is a

: ’ + -
generating pair of sgp{u,v}, S, exists and Ss,"1 = (g.lf)F’ or

(a) 5, = (f_lh)Pzz 'Then as (f_lh,f_

(h_lg)e’, so that g is a piece.

e

(b) 5,5 (g A2 Then as (g )P (gt HHT,

i

g is a piece.

- P
(c) S, 1)8)'}

m

(" "g)72: Then as (gn 1)P? £ (gf l(hf
g is a piece.
Case (3) B =1, B, = O.

-1 ' -1 -1 -1, -1
Then f ~, g-and h are subwords of S. As f “gf "W # f "hf g,

f is a piece. However as B, = 0, the only possible values for
1

P :
g) ? (or their inverses). We

s, are (£ in) P2, (" 1r) 2, (n”
consider fhese separately.

(a) S, = (f_lh)PZ: Then (f—lh,f_lgf_lh)'are a
generating pair for sgp{u,v}. Thus S, exists and

Sa = (g_lf)P3 or (h'_lg)pEl (or their. inverses) so that g and &
are pieces.

(b) S, = (g-lf)Pz: Then as S is symmetric in g and h,
the case is similar to (a).

1

(c) 5, = (W g)pzz ‘Then g and h are pieces.

Case (4) 8 = 0, B, = O.

(f_lh)pz) and

n

Then we can arrange that g

m

-1
(f g)p- S,
—l p3
S: = (h g)

. y, so that f,g and p are pieces. Since B was

assumed to be maximal, these are all the possible values of

Q, so that (y,yp) satisfies Property 2.



Suppose (f,g,h)I; 18 a factorization of (u,v)
: - €"6"p’
Then for all S' e 5 let Si = (f lg %fh %%) v oor

-1 B Pg
g

= (he f f) ;'e{}62'= +1; B»0. We can arrange that
Bi>B,2B. » # 1, and if S, exigté, we can also arrange that
B’ZBi 1 F 1,2. By the symmetry between g and h we can assume
S, = (frlgfhB

For convenience we drop the suffix 1. We examine the various:
possibilities for S and S,, and where’necessary S;. Note

th;t by replacing Si by a conjugate of Siil, we can arrange
that ¢, = 1.

7

Case (1) 3>0,-32>0.‘

Then f,g4, and p are subwofds of S. As

(5 arn®)® 2 (5N g s

f is a piece.

"B)P

- To show g and p are pieces, we consider the possible values

for §, separately.

(a) S, = (f yfhs BZ Then g and % are pieces, since
§8,# B so that
(grn®2B2r7 P2 2 (grnPr 1) ®) ana

(n82f2rigp) P g (hsf‘qu)‘P'

(b) S, = (hf-lgészf)92: Then S, is in the same form

as the S5, in case (a) with g and h exchanged.

Case (2) >, ‘g, = O.
Then f,g and h are subwords of S. As
Pt # f Pt ana hrten™l # RPplgr

f and h are pieces. However B, = 0, _so that the onlybpossible

. - P .
values for §, are f lgpzf or ' 2. 'We consider them separately.
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Suppose (f,g,h)II 15 a factorization of (u,v)
- €. 6- npo
Then for all S e § 1let Si = (f lg 7’.7"}1'7'81) v oor
-1 diB8g |
g 1

31>3238i » 7 # 1, and if 5, exists, wevcan’a%éo arrange that

p . . /7
7’; Ei*5£”= tl; B>0. We can g%range that

6
=(h f

-7

3333i y7 ¥ 1,2. By the symmetry between @/and h we can assume

<o - . /1
8, = (f lgth')p'. /

4
/

- For convenience we drop the suftix 1. /We examihe the various:
possibilities for § and §,, and Where/;ecessary S,. Note

Lth;t by replacing'si by a conjugate/Bf Siil, Qe can arrange
that ¢, = 1.

7

Case (1) >0, B,>0.

Then f,g4, and p are subworq>7 f S. As

(Flrom®® 2 (5714 fh‘B){j«?
. . ‘ , D/
_f is a piece. A

-

To show g and j are pieces, we consider the possible values

for 5§, separately. /

(a) s, = (f bfhs Bz Then g and h are pieces, since
§8,# B so that

(grnlzPeptyPe z< gfr®f 1) ®, ana

(n°2f2fhgp) P o/ (R g r) e

(b)" S, E/th'lgazszf)°2: Then S, is in the same form

as the §, in/éase (a) with g and % exchanged.

Case (2)/%>l, g, = O.

/
Then fyb and &k are subwords of S. As

frer Va2 Pt ana Aflgn®l # nPrler

/

f apd h are pieces. However B, = 0, so that the only possible
//
/ - P

values for S, are f lgpzf or h. %, We consider them separately.

o/
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(a) S .f_l.qu

f: Then as g2 # (gfhsf—l)p»

g is a piece.

(b) S, = 4P2: Then % and fflgth are a generating pair
' . -1 Ps
for sgpiu,v}, so‘that S, exists, and as g, = 0 §, = f lg 3f.

Thus as in case (a), g is a piece.

Case (3) s =1, g, = O.
Then f,g and h are subwords of S, and f is a piece (since

l), As B, = 0, the only possible values

FrETtg # it
for S, are f—lgpzf or n*%. But (f_lgchU and (f_lgfhdrlgf)

are generating pairs for sgpi{u,v} so that in both cases S,

B - p L P P
exists. As g, = 0, Sy = f lg f if §, = h ° , and S,= h ?
-1 P ’
if Szvg f lg 2f. It can be seen that, in.both cases,
+1 1 , ‘
5,5, , S are not conjugate, so that g and A are pieces.

3

Case (4) g = 0, B, = O.
-1 0p ; :
Then S = f lg fy S, = W2, as g is maximal, sng{u,v} is

a free product of cycles.

In the remainder of this section, we will show that if an
J
arbitrary pair of words (u,v) with factorization (f,g,h)__
Lod
does not satisfy Properties 1,2 or 2%, then (f,g,h) is

weakly related in G to (f',g';h')J' where L(f',g',h'")<L(f,g,h).

First we consider transformations in F only.
If, in a word in u and v, cancellation occurs, apart from
the obvious cancellation between f and f_l, then we will show

in the next lemma how (f,g,h)J can be mapped to the factorization
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1

(f',g',h')J with shorter length.

LEMMA 2.3 7 Let (f,g,h)J be a faciorization of (u,v)

where [u,v] # 1 and where either

(i) J = I and g-lfh—lgf_lh 18 not cyclically reduced or
(ii) J = II and f-lgf,fhf_l, gg or hh is not reduced or
(iii) f =1 and gflh_lgh,g or h 18 not cyclically reduced.

Then there is a sequence of free factorization transformations

’ . '
mapping (£,g.h)° to (f',g',h')? where L(f',g',h')<L(f,g,h)

and etther J = J' or f = 1.

fi) Suppose J = I.

Then at least 2 of the elements of (f,g,k) are non-trivial.
Suppose f aﬁd g are nonftrivial, and f_lg is not reduced.
Then either f(org) is itself not reduced, in which case using
SF we can replace f(or g) by a shorter word, or there_exists

a word k# 1, where

t

kfz'

Thus we have the following sequence of transformations.

g = Kg f

k=11

o I .
I s ,.-1 =1 -1 .I S -1 I
(frgrn) s> (k "kfsrk "kgork Th) F_o (forg.rk “h)

But ka;-é;lk—lh) ='L(f,g»h) - L(k) ~
< L(f,gsh) |

Trénsformations of type Sf do not alter the iength ol a

factorization. Thus as the pairs (g,f_l),(h_l,f),(f,h—l),

(g_l,h), (h,g-l) can be obtained from (leg) by meéns of a

transformation ot type S% acting on (f,g,h)I, part (i) of

the lémma is proved unless f,g or j = 1.
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Suppose J = I but £ = 1,9 and h reduced, gh not reduced.

Then there exists kK # 1 where
-1

g= g,k 7, h = kh,
- 1 11 it -1 ,.II
so that (199’h) = (1lg|h) 0 5 (l,g ,h)
k=l 7
= (1,71, mt R R T T
: S
Sy, =1 -1 I
Fooct gt et

But L(k"Y,g 1.k, = L(1,9,k) - L(k)

<L(1l,9,h).
As the pairs (h,g9), (f,g), (h,f) can be obtained from the
pair (g,h) by means of a permutation of (f,g,%), part (i)

~of the lemma is proved.

(ii) Suppose J = II.

Then g and % are non-trivial. If fyg or h is not reduced,
. I1 1T

then using SF , we can transform (f,gn) to a shorter

factorization.

If g is reduced but not cyclically reduced, then for some

k;l,

g = kg, k7L,

Therefore we have the following transformations:

i ki -1, -1 -1 11 sif -1 CIT
(f,9,h) , (kK "f k" "kg k Tk, h) F_,(k "f.g, k)
But L(k'f,g,,h) = L(f,g,k) - L(k)

< L(f,g.,h).
If f_l and g are reduced, but f—lg is not reduced, then
Athere exists k # 1 where
g = kgz’ f = kfz'

Therefore we have the following transformations:
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| k=111 _ _ 11 R
(Fogrm) 't S kT kT kgak TSP (g, g0k TR

But L(f,,g,ksh) = L(f,g,hn) - L(k)

<V‘L(fvgv h)-

_Transformations of type SEI do not alter the length‘of a
factorization. Therefore as the pairs (f—l,g_l), (f.n),
(f,h—l), (h,h)'can be optained from (f_l,g) or (g,g) by

means of a transformation of type SEI acting on (f,gJUII,

part (ii) ot the lemma is proved.

(iii) Part (iii) follows from parts (i) and (ii). For
if £ = 1 we can regard the factorization to be of Type I or

1. -
h lgh is not cyclically reduced, by

Type II, so that if g
I

part (i), we can map (l,9,h)  to a shorter factorization, and

if g or h is not cyclically reduced, by part (ii}, we can

map (i,g,h)II to a shorter factorization.

#

Thus a factorization (f,g,h)J, which is not reduced can be

' .
mapped to a reduced factorization (f',g',h')J where
L(f,g,h)2L(f',g',h') by means of a seqhence of free factoriza-

tions. For any given factorization, the sequence can be

constructed using the method described in Lemma 2.3.

Therefore we only need to consider a pair (u,v) which has a
reduced factorization (f,,,h)J. We are interested in the
sgp {u,V}. To obtain the structure of this group we ﬁeed to
~analyze sgp {#,V.}nN.

We will assume
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(a) : sng{u.v} is not cyclic, so that two of the triple
(f,g,h) are non-empty, and if the factorization is of Typé II,
then ¢ and A4 are nonQempty.'

(b) k sng{u,v} is‘not free so that sgp{u,v}nN'¢ 1.

Note that if sng{u,v} is free, then (u,v) satisfies

Property 1 and the Theorems 2.1, 2.2 are proved.

Let W(x,y) be a word in two variables. Let W* be the word
obtained from W(u,v) by freely reducing in terms of the
generators of F. ‘Note that W* is obtained by cancelling the

1 and f—l,f. Thus W#*

letters from adjacent subwords f,f
+ +

can be partitioned into subwords f_l, g'l or hil. We call

these f-,9-,0r h-subwords of W* respectively. We call an

f-,9-, or h—subword of W* an F-subword of W*.

If W*2 1 defines an elemént of N, then by small cancellation
theory, W* contains a Q—remnant (p = 2 if R satisfies T(4),
and ¢ = 3 otherwise). Let ¢t be any p-remnant which is a
subword of a freely reduced word W* equal to a word in (u.v),
(W”s does not necessarily belong to N). We define below 6
properties ({i},{ii},{iiié},{iiib},{iva},{iVb}).on the set
(w,v,W,t). By analyzing the position of £ in relation to the
f-,g-,h-subwords of W*, we will show that the set (u,v,Wst)
(a) possesses at least one df the properties”
{i},{ii},{iiia},{iva}, and
(b) possesses at least one of the properties

{i},{ii},{iiib},{ivb}.

The properties {i},{ii},{iiia},{iiib},{iva} and {ivbl}are

defined as follows:



{1}~ There is another word W, (x,y) so that

Wy (u,v) W(u,v), (where-§is as defined in Section 2.1),

28>
and if W# is the freely reduced word equal'to W,, then’

L(W,*) < L(W*).

{ii} There is another pair (u',v') of elements of F

with factorization (f',g',h')J!, where L(f'yg'»h")<L(f1g,h)
and (f',g',h')J' is weakly related to (f,g,h)J. If (u,v) is
root-closed (rel r), then (f',g',h')J' is related to (f,g,h)J.
{iiial A subconjugate of t contains f-!,g%2,h"s disjointly,
for certain integeré €9€,se3 OF modﬁlus 1.

{iiib} The elementt contains, disjointly, the F-subwords

E5,h%,hes (Ei = %1, 1<€i<6), and f,g,h are

€ € €
f lrf 2’9 3’9
pieces"rglative to the symmetrized closure of r, where t is

a subword of r e R.:

{iva} L(t) < max{(1/2,(2p+4)1,(3p+2)r)L(Pr)}

{ivb} L(t) < max{(1/2,(p+8)A,(2p+6fA,(3p+4)A)L(r)}.

Suppose (u,v,W,t) has property {i}. Then (u,v) is not:

root-closed (rel R) and W* W,*, where LW ,®*)<L(W¥*),

Z28>
Wi* = Wi,and W, is-a word in (u;v).’ We can repeat.this.process
until we have a word which cannot be reduced any further

by this method. We say that such a word is S—miniﬁ%l. Thus

if w# is S-minimal, then (u,v,W,t) does not possess

property {i}.

Suppose (u,v,W,t) has property {ii}. Then (f,gJUJ can be
1)
replaced by a weakly related factorization (f‘,g',h')J ’

where L(f',g',h')<L(f,g,h). If the factorization (f,g,h)J
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. Ly
has minimal length, that is for any factorization (f',g',h')J
weakly related to (f,g,h)J, L(fygsh)<L(f'yvg'+vh'), then
(u,v,W,t) cannot possess property {ii}.

Note that by the detinition of weakly related factorization,
.)J'

if (u,v) is root-closed (rel R), and (f,g,h)J, (£F'yg'sh
1]
are weakly related factorizations, then (f,g,h)J. (f',g',h')J

are related factorizations.
If (u,v,W,t) has property {iiial, then G has Property 2.

If G:satisfies the hypothesis of Theorem 2.1 then (u,v,W,t)
cannot possess property {iva}. In order to see this

suppose R satisfies CL(1/14). Then » = 1/14, p = 3, so

that

L(t)> 11/14 L(r)-.

If we substitute for p,x and L(t) in the inequality in {iva}
we get

11/14< max {1/ 2,10/14,11/14}

which is not péssible. v

If on the other hand R satisfies CL(I/lO) and T(4), then

A = 1/10, p = 2 so that

L(t)> 8/10 L(r) -~
If we substitute for p,2 and L(t) in the inequality in {ival
we get ’

8/10 < max{1/2,8/10,8/10}

which also is not possible.

Therefore, in order to prove Theorem 2.1, it remains to show
that (u,»,W,t) possesses one of the properties {i}, {ii}, {iiial},

{iva}.
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Suppose (u,v,W,t) possesses property {iiib} then G has

Property 2%,

If & satisfiés»the hypothesis of Theorem 2.2, then the
inequality in {ivb} is not poséible. In order to see this,
suppose R satisfies'CL(l/lG). Then ; = 1/16, p = 3 so that
L(t) > 13/16 L(r)

If we substitute for p,\ and L(t) in the inequality in {ivb}
wé get

13/16 < ﬁax{l/?, 1i1/16, 12/16, 13/16}

which is not possible.

It on the other hand R satisfies C£(1/12) and T(4), then

A = 1/12, p = 2 so that | |

L(t) > 10/12 L(r)

If we substitute for p,A-and L(¢z) in the inequality in {ivb}
we get

10/12 < max{l/ 2, 10/12, 10/12, 10/12}

which is not possible.

Therefore, in order to prove Theorem 2.2, it remainS'tp show

-~ that (u,v,W,%t) possésses one of the properties {i}, {ii},

{iiib} or {ivb}.

The inequalities in {iva} and {ivb} are obtained by considering

t as the product of a number of subwords. We will show that
if (u,v,¥,t) do not possess one of the properties {i}, {ii},
{iiia} (or {iiib} for Theorem 2.2),then the length of each of
these subwords of ¢ is bounded in size by AL(Z”) or pAL(r), |
depending on the subword and the method used. vIn order to

obtain the inequalities for the length of ¢, we add the
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bounds on the lengths of the subwords.

There are four possible methods‘to show that these subwords
are bounded.r We call these methods A,B;C,and D, and
according to the method used, we refer to each of these
subwords as of types A,B.C or D respectively. (This notation
is only needed in Theorem 2.2).

We will show that unless theré is another factorization
(f',g',h')J' of (u',v'), where (f';é',h')J' is related to
(f,g,h)J and‘L(f',g',h')J' <L(f,g,h)J, then a subword of
Type A is bounded by pAL(r).

Subwords of types B and D are shown to be pieces.

A subword of type C is shown fo be a piece unless (u,v) is
not root-closed (rel R), and either there is another

] . ]
factorization (f‘,g‘,h)J of (u',v') where (f',g',h)J is

1
weakly related to (f,g,h)J and L(f',g’,h‘)J <L(f,g,h) ,

or W*¥ is not S-minimal.

In assuming that either t is a subword of § or f€1,4%2,1%s
are not distinct subconjﬁgates of ¢, (or fel,fez.g53,gs“.h55,
h%¢, are not distinct subwords of ¢), we restrict the

possible positions that f can have in relation to the p-subwords

of w*.

&

~Each position, relative to these p-subwords of K* provides

a possible case. In addition to these cases we will consider
the case when FE1,F®2,6%%,6% ,h 5,456 are all distinct
F-subwords of ¢, and show that unless frg. and hare pieces
(relative to the symmetrized closure of ») the set (u,v,W,t)

possesses properties {il or {iil}.
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However because of the number of cases, (even after factoring

out similar cases)kneeded for Theorem 2.2, we provide only a

U

L/

-guide to the proof for each. This is done by writing ¢t as

the product of A-,B- and C—type subwords, and indicating the
type of subword, and therefore the corresponding method by

writing the letter (A,B, or C) above the subword.

A complete list of cases, and a shortened proof for each
case in Theorem 2.1 is given in Section 2.3. A complete
list of cases and a guide to the proof for each case in

Theorem 2.2 is also given in Section 2.3.

The following examples provide a detailed description

of the methods used, and how the inequalities are obtainedf
In these examples, and in all the detailed consideration of
cases in Section 2.3 we let

tp_l = r, re R.

Then as ¢t is a b—remnant, L(y)<pAvL(r).

In each example we begin with a diagram which shows the

position of ¢t relative to the f-, g- and h-subwords of W*.

We say that "{i} occurs" to mean that (u,v,W,t) has

———

property {i}, with similar abuses of terminology for the

other properties. »
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In the first 6 examples, the factorization is of Type I. -

Example 1

h‘E h1hz: féfxfz': t = fl- hl'

Then h, =; fip, and f, = h,p—l. Using the first of these,

G

the transformation SI maps (f,g,h)I to (f,g,f,phz)l Then

-1 I
gsFf1 “fiph2)

G

the transformation *f—ISI maps this to (f,_lf',f,_l

and then S; will map this to (fz,fl_lg,phz)l. In a similar

way, using the expression for f,, we obtain

) -1 : I
(fr.qsh)l SGE (th fz:g’h)
l-'-1"31 -1 -1 -1 ~1, T éI -1 -l I.
—— y (hy "hip "fashy Tgshy ThH) F (p "farhy "gih,)

Therefore (f,g,h)I is related to (fz,fl—lg,phz)I and

(P lehl_l.q’h'z)lt

But L(f,g,h) = L(f.,f Tg,phs)-L(p)+L(R )

]

L(p_lfz,h.—lg.hz)-L(p)+L(f1)

Thus if (f,g,h)I is not related in G to a factorization
with shorter length L(p)>L(f,) and L(k,), and as a
consequence.’ | |

L(t) = L(f, )+L(h, ) € 2L(p) < 2parL(r).

#

&

This example used 'Method A', and shows that unless
(fag,h)I is related in ¢ to a shorter factorization, then
the length of f,, and the length of h, are less than

pAL(r). We call f, and h,, A-subwordas of t.
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For the remainder of the examples,the transformations
JII '

S;, SF (that is cancellation :within the elements of a

factorization) will be used without specific reference to them.

Example 2
-1 -l -1 1
f hoo 979 97

g9 =999, t=997Ff hg, .

Then f =z hg;_lp—l

Q

-1 -1 -1
0Ty h =G fgu. 9o PGy 9,9y =Q Pguh f
Using the expression for f, we have the following

I

. I S -1 -1 I
(frg,h) G, (hgy "P "guGusg,h)
2 gyh-lgIg=1g,-1 1 -1 I

)

foo- -1 -
s (P Taguh "gsige

Using the expressions for k, we have

I -~

S -1 I
Pgu)

(f,g,h)l G (fvg}f.q!o-lgo

gyf-1.Ig.,-1
S -1 -1 .1
o (1,94f "9390:190 "P)

-1 -1 \II
= (l,94f "9390190 -P)

II :
S -1 -1 II -1 -1 LI
0 (1,9,f "9sGoesP Go) = (1s9~f gsGsrP Go)
gig -1 S -1,1
—— 9o v Gl Gss P
Using the expression for g,g, we have -
I If-1
I S -1 I S N | -1. I
(frgih) G, (fsgspgu b "fsh) > (lygspg.h “4Rf )

I1
-1, -1 II S -1 ,, -1 1II
= (l,g5pguh “Hhf 7) " o (Ligspgsh TL,fR )

iz ‘
-1 ., - S I
= (l’gapguh rfh l)I —_— > (h’gspgu’f)

Therefore it can be seen that it (f,g,h)I is not related to
a shorter factorization, then

L(p)?L(f)r L(n), and L(gn)-
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If g, is non-trivial and is not a piece, then as t is a
subword of r, “

g, f hg, P re = 0 k7l 6 T la T

which is not possible. Thus either (f,g,h)I is related
to a shorter factorization, or

L(t) = 2L(g,)+L(g,)+L(h)+L(F)

<(2+3p)AL(r).

The words, f,ge,h'are A-subwords of ¢t. However we call g,

‘'a B-subword of ¢, and the above argument used to show that

g, is a piece is called Method-B.

Example 3

1 1 -
f: f: h f ' hl hz
: \\ 2 7 +
‘ -1
p
. . - =1, -1 .
f = fifas h 2 hyh,, t = fy-"hf ‘hl'
Then & =¢ flph;—lfv f =c h¢p-lf,—lh. Using the first of these,
we have
I If~1
I S ] -1,..I s -1 -1.1I
(f:g:h) G; (f:.gvf1ph1 f) > (.119f 'tfxphl )
11
—1 -1.I1I S -1 -1, II.
= (1,gf » fiphy ) 0 S (1’fg yfip iy )
1.1 Nolgt 1.1

. -1 L - - - -
= (1,fg "firh ) ________>(f1 1’f29 i’Phl )

and using the second of the expressions, for f, we get

. . I In-1
I S -1 -1 I S . -1 -1 -1 I
(f’gsh) G (hlp bl h.g,h) ; (h,p il ,gh 1)
I
S0 ,me e g T o, he T T g T
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II
S -1 -1,11I -1 -1.1
0 5 (1,f.ph, sgh ) = (1,f,ph, ygh )
Ih .
s—"1 -1,1I
s (hysfapagh, 77,

Therefore if (f,g,h)I is not related in G to a factorization

with shorter length, L(p)}ﬁ(hz) and L(f,).

However we cannot place a bound on L(%Z) until we know the

maximum permitted length of fl_lhi.

Suppose flflhi is not a-pieée. Then by definition of a piece’
-1 -1 -1 -1 -1 -1 -1 .
fi hf hyp . = f1 hap f1 hf, r € R-.

This implies that fl-lhlp—l and f, hfz_l commute. But .

Ll [

commuting elements in a free group are power of a common

element, so that » is a proper power, and (u,?v) is not

- root-closed (rel R).

If r is a power of fl_lhfz_l, then as
-1

. - - - 2
L(t)> 3L(p), p = h,f, l, so that (f lh) ¢ R, and therefore
— ] 2 .
(r lh) € §. TFrom the diagram it can be seen that

f_lhf_lh is an F*-subword of W¥*; and therefore
W = Uf—lhf-lhv, where U,Vare words in (u v)

_ - %
Z§>UV W, = W,

mn

and UV is a word in (u,v), L(W,*)<L(W,),

so that {i} occurs.

If on the other hand, r is not a power of fl-lhfz_l,

then a>(a,y), where f_lh = z%, r ~ V. ’ -
‘ - v

Thus f s d(ed)", n = (ed) ¢, where dc = x(a'Y)

and #+v+l = o. Therefore we have the following transformations:

I I
I S : I S -1 I
(f'glh) oa (flhig) G; (d .C.g)

But a>(&,¥)21, so that ¥ or v>1 and L(f,g,h)> L(d—l,c,g).

Thus (f,g,h)I is weakly related in G to the factorization

-1

(d c,g)I which has shorter length.
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As a consequence if {i} and {ii} do not occur,

1

L(t) = 2L(f, ""h ) + L(f.) + L(h,)

< (2+2p)kL(r)

In this example, f, and h, are A-subwords of ¢, but we used

a different argument to establish a bound on L(fx_l

hl)c
We call this Method-C, and say that fl_lh, is alsubword of t¢.

Example 4

N

m

-1 -1
g = g3GoeGus T guwf "hf Tgss g # 1.

. -1, -1 -1 -1
Then g, = pgs "fh "f, g, fh fg,

. g -1
P n E‘fgh Pgs i

Using the first expression (for g,) we have

L I
: \I- S -1, -1 I
(frg,h) 6, (frgea,pg, fh "Fih)
If-1
S -1,.-1 ,.-1.1
_ (lrgggupga fh vhf )
S —i>II eIl o o-1,.-1 . =1 II
= (l,g,9,pq9, fr hf )7 20 (lig,g.pa, fh .FR )
Ipf-1 : .
-1, -1 , =11 S o -1 -1 .
= (l.g,9,p9s fh fh ) _ (hf “1gsg.pas 'l)I '
. ,
S ' -1 -1.1 -1, -1,II ~
s (ligygepgs onf )7 = (ligyg.pg, +hf )
g5-1g1l -1 -1,T1I .
—_— 5 (93 ’goP’hf )

Note that we finish here with a different Type of factorization
to the Type with which we started. Using the expression for gj,
a similar set of transformations will map

- -1
(f’gvh)l to (g, l'Pquhf )II
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Finally, using the expression for h, we have
I

I -1 -1,.,1I
(frg.m S (fia. 9. teas i)
SIf—l
—1 -1 -1,1 -1 -1 -1
_— (I:Qf afgt. Pgs ) = (1:9f 1 F9u Pgs )
1T
S -1 -1 -1.1IT -1 -1 -1,I
0 5 (1l,g9f 1 93P g-.f ) = (l’gf :9;P gl\\f )

ga—lg1fg.-1 I

-1, -1 -1
, (g "fa. AR S ).

Thus either (f,g,h)l is felated to a factorization with

shorter length or Lip)>L(g,), L(g,) or L(n).

Supﬁose f_l is notra'piece, then by definition of a piece
f_lhf-lgap—lgq Elf_lg,pulghf—lh € R.

It can be shown using Method C that in this case (u,v) is

not root-closed (rel R), and {i} or {ii} must occur. However
in this case there is a simpler argument, that provideé a
stronger result. For by the above identity, g, and fnlh have
a common terminal subword which is non-trivial provided g, an
f_lh are non-trivial. However we assumed that g, and % are
non—trivial, so that gh_lf, and therefore (f',g,h)I is not

reduced, a contradiction. Thus f-1 must be a piece.

Therefore if (f,g,h)I is not related in G to a smaller

factorization
L(¢) = L(g,) + 2L(f) + L(k) + L(g,)

< (2+3p) L(r).

#

The argument used by this example to show that f_l must be

a piece is called Method D, and f-l is called a D-subword of

11

d
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-1, -1 -1
fz f, gfngl h

Example 5
g,
E J
o -1, -1 . =1
g = g1g.s t = g, "hf gf» s F = Faf2

-1 -1 -1 -1 -1
Then f =, gaf, "p "g1 "hy g =, fh "g\pf2s h =45 g.Pfag °F,

and using the first of these we have

gﬁ

gty
-1 -1 -1 I 7.8 o
(f g:h)I _G N (gf2 P "o hyg,h)

-1 -1 ,-1 -1,I
_(f2 P "ok Tgieg2 )

Similarly using the expression for g, we have

SI

I -1 I
(f',.C],h) GE (fvfh 9'1Pf2vh)
f-1g1 -1 -1 -1 -1, .II
° (1,4 g\pfa+f "h) = (1,h “g,pfasf h)
syt
—_—

1,11

(1sh—191Pf2-h_ f) I

(1sh_191sz9h_lf)

hoIf,-1 _
-—;E______> (hf, 191P-f1)1.

Similarly, using the expression for 3, we have

' I
I S - I
(_f',g,h) G; (fyg:_q;pfzg f)

Iful )
s | -1 -1 -1 ~1.II
o (lygf Thgipfog )7 = (Ligf “hgipfag )

sIT

-1 Co-1
5 (1fg “hgipfa.g

II

) !

)I

g,-1.Igf,-1 -
S -1 . -1 I
(szz 1gy  faiap)

. -1 -
= (1,fg “,g.pf.9

Thus either'(f,g,h)lis reiated to a smaller factorization,
(and therefore {ii} occurs), or L(p)z»L(g,), L(f,) or L(x).
Now g, and gz—l are both subwords of r, and therefore

g, is a piece.

Suppose f2 is not a piece, then

1 -1 -1, -1
f. pg9, hf "g,

which is not possible since g,h are non-trivial, and
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gh-l is reduced.

Therefore either (f;g,h)I is related to a shorter factorization,
or

L(t) = 2L(g,) + L(Rh) + 2 (f;) + L(f,) + L(gz)f:

< (4+3p)AL(r)

In this example #h, f,-l’ 92—1 are A-subwords of t, g, is a

B-subword of t, and f, is a D-subword of t.

Example 6
.gi g, g

-1, -1 -1 -1
g = gsgegus t = guf “Af ,gf hf “gs.

Then ¢ =c fh—lfgk_lpgs-lfh_%} and using this we have

I
(Fog.m) 56 (F.fRTrrg T tpg T irnT i

SIf—l

RN L T Y B Y e Vb b

= (1,fh Y g, Yeg, e R I

SII

S aLrtire eg, e AR T
= (1, rh7 e, T heg, TR pn T T )
_Eiii:ié R R T T e P

: _iie_(1,fh"lf9“-%gs'l,hf'l)l = (1,fh’1fg“’%g,‘l;ﬁf“l)11
_Eif_> (1,fh_1f9~?%93_i,fh_1)II:(1,fh"lfg“7}g,'l,fh-l)1
—ii:iiie.(hf-l»fghfég,_l'l)l =,(1vfg~]393_1»hfﬁl)l
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II
-1 -1, =1.II , -1 -1 . -1.II
= (lsfg',. Pgs th_f ) —?'é (1’f,ql, pg, ,fh )
, -1.1
-1 -1 _,-1.I f~*s -1 -1 -1 -1.1I
= (1,fg,' Pgs h ) —_— (f 'gy PYs ’h> )

Thus unless (f,g,h)l is related in G to a factorization

with shorter length, L(p)>L(g,).

If gkf—lhf_lgs is not a piece, then
-1, -1 -1, .-1_ -1 -1, -1 -1 =1, .-1 _
guf “hf Tgf "hf Tgsp guf "hf Tgsp “guf "hf Tgsg. =T P
1

an&'guf_lhf—lgagn commutes with gufhlhf_lgsp_ . But

in

commuting elements in a free group are powers of a common
element, so that r is a proper power, and (u,v) is not

root-closed (rel R).

If » is a power of gqf-lhf_lg3go, then as L(t) >3L(p),

p-l E goguf—lhf—lgs, so that (f‘-lhf—lg)2 € R and therefore

(f_lhf—lg)2 € §. From the diagram it can be seen that
gf_lhf_lg is an F* subword of W*, and therefore
W¥* = Ugf—lhf_lgv;-where Uf,V are words in (u,v)
-1 '
e UFR ey
=3, fhof
Where W * is freely reduced, and L(Wi*)<L(W*), so that {i} occurs.

W (u,v) = W, *,

1

If, on the other hand, r is not a power of g;f-lhf_lg;guL

then a>(a,y) where f—lhf—lg = xa,.r ~ xY. Thus

1

£ ated) nr Ty glor)

(cd)yc, where de = and "y+y+l = a.

"n

Now L(g) # L(h), or gh-l, and therefore (f,g,h)I are not
reduced. Thus we can assume L(g)>L(%), and so L(g)>L(c).

However we have:
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If—l _ _ _ _ ’
(f.g.,m)T S C gt = (gt

stt 1 I1 1.1

| > (gr hrnm I = (et erh

Iha I
S -1 I s, -1 I
. (hgf TR T 20 (Fagf TR R)

-1

¢ (atem?t

But as L(f)2L(d) and L(g)>L(e),

1

L(d_ yCH h)<L(Ff,g,h). Thus (f,g,h)I is weakly related in G

" to a shorter factorization.

As a consequence if {i} and {ii} do not occur,

_L(t) = 2L(gqf-lhf_lga)+ L(g,) < (2+p"\L(r).
#

These last examples, 5 and 6 are needed for Theorem 2.2.
They illustrate the fact that although the method is-
essentially the same, because of the greater complexity of

~the expressions for t, the details are lengthier.

In the next 6 examples, the factorization is of Type II.

Example 7
h3 ho h4 h3 - hu h4,
f- i 1 -~
! \\\\_~;—E/ /- I
=
p&

h = hyhohy, t = h,h,.

Then h, =5 h“-lp, h, = pha_l. Using the expression for h,,
we ha&e:
. II
IT S -1 11
(.f’g’h) G > (:f’g!h“ Phoh“)
gITh,1

LT L
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In a similar way, using the expression for h,, we have:

II I1h,

(f’g!h)II SG' N (frg!hghophs_l)II __s____> (th’g’hOP)II

1

Therefore (f,g,h)II is related to (fh, ,g,pho)II and

(fhsvgghoP)II- But

L(f.g.h) = L(fh, 1, g,phe)-L(p)+L(h,), and

L(,f',g.h)

L(fhyrgrhop)=L{p)+L(R,).

Thus if (f,g,h)II is not related in G to a factorization

with shorter length, L(p)>L(kh,) and L(k,), and as a consequence

L(¢t) = L(h,)+L(h,)g2L(p)<2paL(r).

The argument which is used to show that kA, and h, are bounded
in length by pAL(r) is called Method-A and h,,h, are

A-subwords of t.

Example 8 v _
-1 -1
£ f A n A A

f = fafefus t = fof»hfu_l-

‘ -1 -1_ -1
Then ../Fo.f‘l. =G P.fz.h ’ h =G fn, fﬂ Pf;.-

Using the expression for fof,» we have:

m

SII SIIh

IY -1 1T II
(f’gvh) G 5 (fapfuh )gah) 5 (fapf‘.sglh)

and using the expression for }, we have:

gIT -1 11 giif.,-1f,-1 -1 11

(Frgom)™t 56 (fiair,Tr e e gL) (f,1g:pF,

Thus it can be seen that if (f,g;h)II is not related to a

shorter factorization, then

)



- 76 =

L(p)>»L(f,) and L(f,,h).

-1
As f, and f, are subwords of r, if they are not pieces

f.,hf'l,_lp_lfD = f“h_lfq-lfo_lp‘which is clearly not posSible.

Therefore either (f,g,h)II is related in G to a shorter
factorization or

L(#) = L(fo)+L{Ff R)+L(Ffy 1)<(1420) \L(p).
#
In this eXample f ,and h are A-subwords of t, and f, is

a B-subword of t.

Example 9

(

h = hahohb s t = hoh;,haho.

Then h.h, 7}phn‘_lh -1, hoh, =

3

G hh_lho—lp. Using the first

of these we have:

II 11k,
- - . -1 I
(f,g,mt 5S¢ s (Fig,haphy Yn,mhy T _E_____>(fha’g’Phu Sk

g

and similarly using the expression for A.h, we have:

L

1T ' I1h, -1
. - -1 -1 - IT
f,9.m Y S (f,a,n, "ih,"ten, It S _ (rr g TN

Therefore if (f,g,h)II is not related in G to a shorter

factorization, L(p))L(hs) and L(%k,).

Before we can place a bound on the L(f), we need to determine
the maximum permitted length of hy,. Suppose k, is not a

piece, then



Rohuhshop © = hop Thoh,hy = 1.

This implies that h h,h, and h,,p_1 commute. But commuting
elements in a free group are powers of a comﬁon'element, so
that » is a proper power, and (u,v) is not root-closed

(rel R).

It r is a power of h,h,h, then as L(¢)>3L(p), p—l = h,h, so
that h2 € R and therefore h2 e §. From the diagram it can
be seen that h2 is an F*-subword of W*, and therefore

Uh2V where U,V are words in (u,v)

W*
= UV = W, = W,*,

and UV is a word in (u,v), L(W,*)<L(W*), so that {i} occurs.

If on the other hand, r is not a power of hy,h,h, then
a>(a,yv), where h = xa, r ~ x'. Therefore we have the

following transformation.

SII

‘('f,g.h‘)II G 5 (f,g,x(u'y))II,

' , II
But o>(a,y), so that L(f,g,h)>L(f,g,x(“ Y)).Thus (fsgsh)
is weakly related in ¢ to the factorization (f,g,x(a'Y))Il,

which has shorter length.

As a consequence'if {i} and {ii} do not occur
L(t) = 2L(ho)+L(As)+L(h,).

< (2+2p)AL(r)'

In this example, h, and h, are A-subwords of ¢, and h, is

a C-subword of ¢.



.- 78 -

Example 10

i

.f fifas B 2 hyh,, t = fo,hhh,, f, # 1.

Then f, =q phl_lhnz, and we have

2
II IIR™h : :
I R -1.-2 , ! 11
(Fog.m Se  (rien, iR g m B (£1prg huRy)

—_—
Thefefore unless (f,g,h)II is related in G to a factorization

with shorter length, L(p)2L(f,).

Suppose hh, is not a piece, then
5 -1 _ -1
hﬂlhzhlp fz = hhlp .f.zh € R.
Therefore as f, and 7 are non-trivial, the elements f, and
h have a common terminal subword,and hf—l, and therefore

(f,g,h)Il, is not reduced.

Therefore if (f,g,h)II is not related in ¢ to a shorter
factorization,

L(t) = L(f,)+L(kA)) +L(h)<(2+e)zL(r).
#

In this example f, is an A-subword of ¢, and A,hh, are

both referred to as D-subwords of ¢t. *
Example 11 »
-1 ~] .-1 :
A g.,»{f h £ g =f A fT e 9 9.
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9 =, fh—lf—lgb_lpgs-lfhf-l, and we have:
11 sil ~1,-1 -1 -1, -1 _ II
(f’g’h) G 5 (frfh £ gy Pgs Fhf. s h)
fhf“lsllﬁ‘l 1 -1 II

S (f.g.._ Pgs vh)

Therefore unless (f,g,h)II is related to a factorization
with shorter length, L(p)?L(g,).

-1

Now f7 and h—lf are both subwords of r, and therefore by

Method-B, fh is a piece. Similarly fh_l is a piece.

Supposé g, is not a piece, then
-1 -1 -1 -1 -1 -1 .. .-1_-1
afh "f Tgsp Tgufhf T = gsp “gufhf “gfh f
which is not possible or h2 = 1 and therefore h = 1.

Similarly g, is a piece.

Thus either (f,g,h)II»is related in ¢ to a shorter
factorization, or

L(t) = 2L(g,)+2L(g,)+2L(fh)+2L(f)+L(g,)

;< (8+p)ALir)

#
In this example g, is an A-subword of ¢, fh,fh_l are ~
B-subwords of ¢, and g,,g, are D-subwords of t.
) 5
Example 12
-1 1
{ia g, ghf!h‘fl g ,f,h .f—,gs g, 9,

-1 -1
g = 3909, s> t = g,g4Fhf “afhf “g.g,.

Suppose gug“fhf—lg,go is not a piece, then
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-1 -1 -1
g.9,fhf “gfhf “g.9.p

i
cur

9.9, Fhf g g00 " a,9.50F g,

This implies that g;gufhf-lgagdﬂand gog.,fhf—lg3 commute.
But commuting elements, in a free group, are powers of a
common element, so that » is a proper power, and (u,v) is

not root-closed (rel R).

If r is a power of gog“fhf-lg3, then as

o -1 -1 -1 3
L(z)>3L(p),p = g.fhf “g;, so that (hf "gf) € R and
therefore (hf-lgf)3 € §. From the diagram it can be seen

that gfhf_lgfhfnlg is an F*-subword of W¥*, and therefore

W* = Ugfhf—lgfhf_lgv,(where Uf,f_lv are words in (u,v))
-1,.-1
§§,> Ufh v =«W1(usv) = W,*
and L(W.*)<L(W*), so that {i} occurs.

If, on the other hand r is not a power of gogqfhf_lgs,

then o>(a,y), where f_lgfh = 2%, » ~ xY. Now either

L(r7g) or L(Fm>Liz ® ). For if Lr lg)cn(z{®*T)) then

L(fh))L(x(a’Y)) and vice versa. ’
However it L(f_lg) = L(fh) = L(x(a’Y)), then f—lg = x(g’Y)

y
= ,(a’Y) = -1 3 s
fh = x , so that f = 1 and g "h.is not reduced,:and

therefore the factorization (f,g,h)II is not reduced.

e

(a.Y)),

If L(f_lg)>L(x then consider the following sequence

of factorization transformations: #

e 1 f-igll ~1.II

(fvgsh)II 5 (fvg'h)l R (11f_lgfnh )

} _ Ip _
O A LN T I P

I
ST -1 I -1 I1
', (1 f Tgfh,h)T = (1,f “gfh,h)
—II
5S¢ (1l ) 1T,

—_—
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(a'Y),h)II is weakly related

Then the factorization (1,x
to (f.g,h)II and has shorter length.

Similarly if L(fh)>L(x(a'Y))

As a consequence, if {i} or {ii} do not occur,

L(t) = L(gdgufhf—lgsgb)+L(94fhf-19390)
' < 2AL(r)

#

In this example gog.,fhf_lgsg° and g.,f'hf—lgsgo are both

C-subwords of ¢t.
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SECTION 3. DETAILED SURVEY OF CASES

INTRODUCTION: ‘ |

In this section we Qill list all the cases described in
Section 2.2. The method of proof we shall use, depends, not
énly on the Size of ¢, but also on its position in W*. Cases

are defined so as to take account 6f this.

In order to define the position of ¢ in W*, and so that its
p&sition and sizé (relative to the f—,g—,h—subwqrds of W¥*) are
limited for a particular set of cases, we work with F¥-subwords
of W*, which are préducts of»Ffsubwords of W*¥. For example
if w* = th‘f_lgmfhszf—l; a,B,,B8, # 0, then hf_lg,fh,gafh are
Ysubwords of W*. If k is an F-subword of W¥*, then A UkV,v
where.U,V are F*;subwords of W¥. "If ¢t is a subword of W*, and
t = t,kt,; W¥= U,t;kt,V,; U,t,,t,V, F*subwords of W%, then we
say that k is an F-subword of t (relative to W). If k is an
F-subword of ¢t or tnl, then we say that k is an F-subword of

tQt-l.

1

For example, if W¥* = fhzf—lgsfhf—l then we can illustrate these

definitions with the following diagram.

-1 -1
f [ whR 9 g 9 , T B f
R L S -

e~ g—i :
|
2 t 5|
yl %‘/\ T >L yz >
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Then Y, &, Y, are F¥—~subwords of W, k = f—l is an F-subword
of W* and of t. However g and h are F-subwords of W* but

not of ¢.

Let F be an F*¥-subword of W*, and let Q@ be a sequence of

free factorization transformations of types Sf and SfI
which act on (f,g,h)J. Then Q acts on the F-subwords of F.

Let EQ = E,, then we say that E,E, are similar. By showing

1
1

that the factorizations (f,g,h)J and (f';g',h')J are related,

(that is

(f' vg' ’h'),J'

(f,g,h)J T

where T is a finite sequence of factorization transformations

kgl

e,

of typés S, , and S@, then the factorizations (f,,gi,h.)d
and (f',g',h')J' are also related. Similarly if (f,g,h)J

and (f',g',h')J' are weakly related, then (fl{g,,h,)J‘ and
(f',g',h')J' are élso weakly related. ‘

~In both cases, as L(f,,g,,k,) = L(f,g,h) if
L(f'yg'+h'")<L(f,g,h), then L(f',g" h')<L(f1+g1+h:)-
Therefore by proving the result for those cases which arise
when considering ¢ as a subword of EF, we have also proved
the result for all similar cases, obtained by considering ¢

v 1
. as a subword of F, .

In most cases, the Types of factorization J and J' -are equal.
However, in certain cases, the Typé of factorization can
change. These cases are marked with an asterisk. This is
necessary, because in fhe next chapter, we will make use of\

some of these results and we need to make certain that in

these cases the Type of factorization is unaltered.
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Where, in the details 6f a case, the Type of factorization
changes, then instead of writing

R i [
SJ J SJ

, ‘ . J )
s o0 0 0 v' 3 (l,x’y) = (1lx’y) ______>

for certain elementary factorization transformations SJ and
]

SJ , we shorten this as follows:
SJ

J!
. J
ooyoo- x(ljx)y)

! S
_f—%.

e e o 0 0

Note that we can only do this where the factorization is
trivial.

X I II : . . . .
The transformatlonsSF, SF ( that is cancellation within the
eléments'of a factorization ) will be used without specific

reference to them.

LIST OF CASES FOR 'THEOREM 2.1

The cases are considered in two sections, according to the
Type of factorization of (f,g,h).

A. Let (f,g,h)J be a factorization of Type J = I.

We assume that no cycle of a subword of tAcontains the subword
gil, for the cases that arise by assuming‘that no cycle of t
contains the subwords fil or h#l are similar. Therefore

t or t°1 is a subword of either -~

g, (F e g 430, or g(F 1% ,a> 0

where g = g,9,. In general let

£ = fifs = Fofofui Forfsafy £ 1
g E ..q!gz £ gggogq; 92'93'9.. # 1
h = hyh, = hyhoh,s hyhgoh, #1
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Suppose, first, that f,g9, and % are not F-subwords of tue~L,

If t is a subword of f*lh; either

1. t is a subword of f_l or h, or

2. te fin, t =,
1

+ - - - » -—
1r ¢l ¢ gf ~, f 1g,hf I or hg l, then the cases are

similar.

Secondly 1let f-l be an F-subword of t, but % and g not

F-subwords of tut_l. Then we have the following three cases

3. t ¢ hflnm, t = o f th,

Hohuf Thsha

m

4, as for 3, but ¢
- -1

5. tchfly, t = h,f g,

If t ¢ gf-lg,rthen the cases are similar to 3 and 4.

1

If f,9 7 or n*l is the only F-subword of t, then the cases

are similar.

Lastly, let k and f’l be F-subwords of ¢, but g not an
- F-subword of t.
(i) Let ¢ begin in frl and end in h,
then ¢ ¢ frl(hfrl)a’h, >l and we have the following cases:
6. a, = 1, otz fi7lnfm e,
7. oy > 1, ot o= f,T (e %, _
If t begins in A and ends f_l, then the cases are similar.
(ii) " Let t begin in f ' and end in L »
fthen t c f-l(hf-l)a‘hf-l, o>l and we have the following cases:
8. | o= 1, R T T atl Y Sk
9. o> 1, otz fT (re e 2

] -1

10. oy 1, ot o= f,r A (e ®aRe, T F,
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If t begins in h and ends in kA, then the cases are‘similar.
(iii) | Let ¢t begin in g and ehd in h,

then t ¢ g(filh)“if—lh, ol aﬂdfwe have two cases: 

g.f thftn,

g, (FTm e

11. a, = 1, t

12. a,w > 1, t

If t‘begins in'h and ends in g, or begins in f_l and ends in
g-l, then the cases are similar. |

(iQ) Let ¢ begin in g and end in f‘l,

then ¢t ¢ g(f—lh)“f-l, o>l and we have two cases:

130 a"-'- l, t

m

g, £ tnr, 7t
gz(f—lh)qu_l-

If ¢ begins f_l and ends in g4 or begins in A and ends

m

14. o > 1, t

in g_l, then the cases are similar.

(v) Let ¢t begin in g and end in g_l,

then t ¢ g(f—lh)agﬁfa>l and there are two cases:

15. ' a =1, | t = goggf_lhg“_l

16. o > 1, | t = gogh(f'lh)ag»*l- |

If ¢ begins with g, and ends with g“-lgo_l, then thé cases
are similar.

(vi) Let t begin in g and end in g,

then t ¢ g(f_lh)af—lg,ra>l and as no cycle of a subword of ¢t

contains the subword g we have the following two cases omly:

-1, -1
17. a =1, t = guf "hf "gss gy E 1
. _ -1, ,0,1 .
18. 0'371, t = g (f "h)f "gs,gs % 1.
B. Let (f{g,h)J be a factorization of Type J = II.

We assume that no cycle of a subword oft contains the

+ +
subword f'l or g’l, for the cases that arise by assuming

+
that no cycle of ¢t contains the subword h'l are similar.
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Therefore ¢ (or t’l) is a subword of either

=1 =1 -1
gzgl' nghuf gi' or gfhaf g ’

where a>0,g'5 9,9,

In general let

Fofof i Forfyf, #1

f=r,f, =
9 = G,9, = 9,9,9.5 9,°9,°9, F 1
hos = R hoh,i hyshy ok, # 1.

hlhz.‘.

Suppose, first, that f,g and j, are not F-subwords of ¢ vu t-l.

If ¢t is a subword of fh or hh we have one of the following

cases:

1. ' t is a subword of f or h

2. tcfh, t = f,h,

3. t ¢ hh, t = h,h,

4. ‘ As for 3, but t = h h,h,h,.

+ -— — .
1f £ ¢ hf l,gf »f lgorgﬂythen the cases are similar.

Secondly let # be an F-subword of ¢, but f not an F;subword

of tu tT,

(i) Let t begin in A and end in A,

then t ¢ K%, o>2 énd we have the following cases.

5. t ¢ hhh, t = h,h h, N
6. £ o hR®ih,a 51t = hRSR,

7. t ¢ k% hye, 21,8 = Roh BYPhyEy )

(ii) Let ¢ begin in f and end in %,

then t ¢ fh%'h, a,>1, and we have two cases:

f,hh,
f,h%n,

8. . a, =1, t

9. o, )Al, t
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If ¢ begins in h and ends in f—l, then the cases are similar.
(iii) Lett begin in f and end in f-l,

then ¢t ¢ fh“fhl, a»l, and we have two cases:

‘ . -1
10. a = 19 t = f,ofc.hft.
-1
11. a1, t = Ff, R, .
If ¢ begins with f, and ends with fu_lfo_l, then the cases

are similar.

Suppose, f is an F-subword of t, but g and % not F-subwords
of tut—ll Then there is only one case:

12. t cgfh, t = g,fh,

If f—l is an F-subword of ¢, but g and h not F-subwords

of tvt-l, then the cases are similar.

Lastly suppose f and h are F-subwords of t, but g is not an

F—subword of tut o. Theh t must begin or end in g or g_l.
(i) Let ¢t begin in g and end in #,

then ¢t ¢ gﬁhulh, @,>0, and we have the following cases:

13. @ = 1, t = g,fhh,

14 ap >, 1, t = g, fh%h,

If ¢t begins in A and ends in g or g-l, then the cases are
similar. ~
(ii) Let t begin in g and end in Vf_l,

then ¢t ¢ gfhaf_l, a>1 and we have the following two* cases:

15. « =1, otz g, fhf, T

16. a’> 1, t = ngh°f2'1.

If ¢t begins in f and ends in ‘il,

theﬁ the cases are similar.

(iii) Let t begin in g and end in g -1,

then t c gthfrlg-l, a>l and we have the following two cases:



>

| -1 -1
17. e =1, t = gog.fhf g,
| . -1 -1
18. : v el ] , t = gogufhaf g, *
If t begins with g, and ends with g, 'g,~*, then the

cases are similar.
(iv) Let ¢ begin in g and end in g,
then ¢t < gfhaf_lg a>1l and as no cycle of a subword of ¢

contains the subword g, we have the'following two cases only:.

1}

; : -1
19. Cao= 1, t g, fhf g,

m

. ) -1
20. o >-1 - t g fref “g .

~ THE PROOF OF THE CASES REQUIRED FOR THEOREM 2.1

A. Let (f,g,h)J be a factorization with J = 1.

1. t ¢ f-l'or he If h = hyth, then (f‘,g,h)I is
related to (fﬁg,hlph“)l, which has shorter length, unless
L(t)<l/2L(r). 1If t cC f—l, then the case is similar.

1

2. . t = f, h, =o p+ Then this case is described in

Example 1 of Section 2.2.. Thus, unless {ii} occurs

L(t) = L(f,,h,)< 2L(p)< ZPAL(P)}

3%, St o= hof tn, =, P. Then
T -1 -1
I hg’ Ihl, .
) -1 : -1 -1 I
(foamt 5o (hp thu,gam)? S L (pahs g R

-1 »

But unless L(f)<L(p), L(f,g,h)>L(p,h3-lghq yho).

In addition,

S 1,,1

(fogomT Se_ (f,a,ninephs Tl -1y

I if-1
S (1,9F L, hshophs™)

——

h
-SII 3

-1 11
s (myogf “on,p) 7.
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(Note that the Type of factorization changes). But unless
L(n,) < L(p),'L(f,g,h) > L(hs,gf_ﬁhgp). Similarly for h,.
Thus, unless {ii} occurs,

L) = Ll 7 he) € L) < 3paL(r).

4%, t Then

1}

=1 A
hohq.f hgho =G pe

I
I S -1 I
(fvg!h) Q; (hghop hohq’Q’h)

ho'_l'h3—l Ihh_l -1 ‘ - - - I
S (P' hosho lhs lgh'o 1’1)
st -1 -1, -1 _ -1,II
°, (1yp “hosho hy ghy )
II
g -1 -1 I
0 5 (lrp hovhug hahJ
sTho=! 1 -1 -

- -1 I
N (ho :P- :hug ha) .

But unless L(f)s L(p), L(fig,h)> Liky up trhug )

In addition

I ,
_ I S : -1, -1 .1I
(f,g,h) G; (ftgahgpho ha f')
Ip-1
s -1 -1 -1 .IT.
S (gf timeen, w,H T

gITn,

-1 -1
5 (h3:gf PR,

I1
) .
(Note that the Type of factorization changes). But unless

1

L(h,) < L(p)y L(fsgsh) > L(hs;gf_l,pho_ ). Similarly fo?® #,.

Suppose f, is not a piece. Then

pos hohf Thohe s o= ke ThhF T,

sb that hop_l and’hoh,'f_lha commute. Thus r and hoh,,f—lh3
are powers of a common element, and r is a proper power.
Thus (u,v) is not root-closed (rel R).

If r is a power of hoh“f-lh, then as L(t) > SL(p),

-1 2

o™t = nufTtr,. Thus (57MR)° 2

‘€ R, which implies (f_lh) e §.
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But hf'lh is an F*-subword of K*, so that

W*

m

Uhf_lhv where U and A4V are words in (u,v)

25507V = W, |
However UfV = Ufh _th is a word in (u,v), and L(W;*) < L(w*).
Therefore {i} mdst‘occur.
If, on the otﬁer hand, » is not a power of h,h,f _lh,, then
a>(a,Y), where f-lh zyxu; r ~ z'. “Thus f_l = d(Cd)u,
h = (cd)vC, where de E’x(a’Y), and u+v+l = @. Therefore

we have the transtormation

I : =I
(f,g,h)I soa (f,h,g)I SG 5 (d_l,c,g)I,

But @>(a,Y) > 1, so that p or v > 1, and

L(f,g,h)‘> L(d;l.c,g). Thus (f,g,h)I is weakly related
in ¢ to the tactorization (d—l,c,g)I which has shorter
length .

As a consequence, if {i} and{ii} do not occur,

L(¢) = L(hoyhu1f-l;h3’ho) < (2+3p)ALir).

5. t = hz_f'lg.l =, P+ Then
I ‘ -1 _If. -1
I S -1 I g s "2 | -1 -1 I
(f»g,h) G; (91P hz.g,h) ' 5 (P 'gzhz T g hl)

A o IR
But unless L(f) < Lip), Lif,g, k) > L(p 1,gzh2 1 g, lhl).
In addition -
I CLIf-1
I S . -1_,1I S -1 -1,I1
(Fagan)™ 6, (Fogamipg, £ 2 (l.gf “ah,pg, )

II

s 1, -1,1

-1 -
s (Ligf “sgye "hy 7)
g1-1gl -1

1 -1.1I
———____9.(91 .

-1 -
g, f ap Ay )

-1 - -
But unless L(%k,) < L(p), L(f,g,h) >Lig, “,g9,f l,p h, )
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Similarly for g,.

Thus unieés {ii}occups,

L\t) = L(hz;f-l,g,) < 3pAL(r).

6. t = f,_lhf_lhl.- Then this case is described in
Example 3. of Section 2.2. We have shown, that unless

{i} or {ii} occurs

L(t) = L(fl—lh,,fl-lhl,hz) < (2+2p)AL{r).

7. t = f,_l(hf_l)u‘h,, a>l., Then it
-1

- -1 -
(f, lhfz ) Rl o lhl is not a piece, using the same method
as that used in the previous case (6.),'it can be seen that

{i} or {ii} occurs.

If (f,-lhfz—l)a’_lfx_lh, is a piece, then f,_lhfz_l is also

a piece, and

Lee) = LU TRETD O T Ty p T T < st
8. T T =g P+ Then
I ' h-1_1 '
I S =1 -1, -1 I S -1 -1, -1 -1
(fyg,h) G; (hfy "p "fs "h,yg,h) : s (fu "p " fs hysh “g,1)
I
S -1 -1, -1 -1 IT
S e )
I
S . -1 -1 -1 I
_o—% (1,7 “fspf vh Tg) -
hol
S -1 -1 -1 I
S (hsfy P T Fs yg) .
| , -1 -1, -1
But unless L(f,) < L(p), L(f,g,h) > L(h,fy, P "Ffs “,g)
If fs_lhf“—l is not a piece, then
-1 ~1. -1, -1 -1 -1 =1, . -1 -1, -1 -1, -1
r = fy "hfy Fo Fs Rfy TP = fy "hf, Tp TFfs Thf. T
. -1 -1 -1 -1 -1, -1
so that fy "Af. b and f, “hf, " fo commute. Therefore
r and f,—lhfu—lfo—l are.powers:. of a common element, and
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(u,v) is not root-closed (rel R). Therefore, as in Case 4

ERAN -

unless {i} or{ii} occurs,.fg_lhfu_l is a piece.
As a consequence if{i} or {ii}de‘not'occur;

1 1

L(t) = L(F, T hfnnl,fo.f,_ hF.TY) < (24p)aL(2).

1

' -1 . ' . ' .
9. t = fs_l(hf f’hf“‘ , @,>1.. Then using the same

method as in the prévious case (8), it can be seen that if

{i} and{ii} do not occur;

L(t) < 2AL(7r).

10. t =5, TR T T 2L p, ay>0. ! Then

using the same method as in case (8), it can be seen
if {i} and{ii} do not occur

L(t) < 2AL(r).

11. t = g,f 7 hf" h, =, p. Then

(Frgii)® _Eée_(f.glph,_lfh_lf,h)l s ; (1,g,ph,‘lfh"l,hf

| | i (1,gaohy Trn Tt |
_iiit:i>(nf'l.glphfl,1)Ijii; (1,g.p h '1,hf;l)II
;Eii—>'(1’gxPh1-lﬂfh—l)I _EE?__,(h;;g;p,fhz;l)

But unless L(g,) ¢ L(pj, L(f.gih)> L(h:l,giP,fhz_l)o

*

In aadition
I
I S -
(ngvh) G; (f:gafgz
SIf—l
_—
II
S =1 . =1 -
5. R ( l,fg ,Fg., Phx l)I
ng"']-SI

—

1 -1,
Phx f)I

1, -1,II
)

(1,9f "Y.rg, tph,

-1 -1,1

(9,57 9,7 pn T

1.

.

-1 1T
)
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<

But unless L(h2) < L(P), L(f,g,h) > Lxng_l.ga-l

,Phl—l

)
—1 . : . :
If f "hy is not a piece, then
- -1 -1 _ a1 -1 —1
Fine e g = £ AP g, "h,
-1 . s —1 -1
so that as f "hand g, are non-trivial, f "hg, is not
reduced, and (f,g,h)I is not reduced.
As a consequencé, unless {ii} occurs,

L(¢) = LUgs,f Thy koo 1Ay ) < (2420)AL(7).

lé. , t = gz(f-lh)a‘f_lh1 =; P» ©>1. Then
Frogm T _féé,(f,gjphl UL T
S;f-l'; (1,gipm, "2 (Fn~ 5% e~ TT
_fif_> (Logiph, " 2(rn~H e
_Eifi:ie.(hf- N L T S RS
_fié (1,g.pm, T (ra~hyo =t mym 1) T,

The last mappings are repeated a-1 times until:

gIt 1.1

(1,90, LuF ) (1,g.0hy 1, F0 %)

SIh1 1
—_ (hysg1P,th, )

As in the previous case (11), either (fnlh)a‘_lf—lh1 is

a piece or (f,g,h)I is not reduced.

As a consequence, unless {ii}l} occurs,

L(t) = Llg,, (¢ ) T LT ) < (24 aLir).

1

13. t = ng_lhfz-l =¢ P+ Then
I S¥ -1 I
(f»grh) G; (f.g,pfzh f,h)
sif-1 I

e N N
. (Lag,pf,h “ahf 7))
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s

-1 -1
R (l,g,pfzh :fh

)I

Ihfv—l
S 2 Lo =1
—_—— (hfz :lglplfl)

| ~ R
But unless L(g,) < Lip)y Lifsgsn) > L(kf, “4g.Psf1)
In 'addition :

I

| I - S -1 -1 I
('Fygrh) G; (hfz p gz:g.h)
-1
h-1lglge -1 -1 -1 ~1.1
(fz' p 'h 91 ygz )
1 -1 -1 -1

But unless L(f,) <€ L(p), L(f,g,h) > L(Ff, P "k girgz )
In addition

I

Gt 5o, Gigere tera)?
_f:ifj_> (1,77 gug: Tora) Y
SEI (lfg_lf,gz—lpfz)l
7es’f (9.2 Frgy Trap 07

But unless L(%) ¢ L(p), L(f,gsh) > L(ngz—l’gx—lf'P)

If fzis not a piece, then
-1 -1, -1 -1 _ -1 -1 =1 -1
f2 T hf. P g2 £ f2 P ga2f2 £ ks
so that as f-lhand gs ére non-trivial, f—lhgz—l is
not reduced, and thus (f,g,h)I is not reduced.

As a consequence, unless {ii} occurs

-1 - -1,
L(¢) = Llg,sfa  ofy 1.h.fz 1) < (2+3p)AL(p).

14. ot = gz(fflh)°f2'1»=G p» a>l. Then
I st -1 I
(f"g'h) (Z; (f'gxpf'z(h f)a'sh)
Ir-1 : .
S -1, -1.4-1  _-1,II
; (l,g,szh (Fr 2)% “ynf 7))



- 96 -

S:,EI (1 h-—l L
—s vg1Pf 2 (f

In - ,
S . -1 -1 I
—_ ‘hfgnpfz(h,_ f)a' W)

I Lo
' __S_o > i(fvgxsz(h—.lf)a'_:l’h)]’:-

These last four mappings are repeated a-times, until:

: } S SIf2-1~ . -1
"(.fvglf’.fzvh) —_ (fi,g.pshf2 )

I
\ - : -1,
But unless L(g,) <€ L(p), L(f,g,h) > LifisgiPrhfs )
If (f-lh)%_lfz_lvis not a piece, then using the same method
as in Case (11), we find that (f,g,h)I is not reduced -
a contradiction.
As a consequence, unless {ii} occurs,
-1 -1

L(t) = Llg,, (f  m)%,7 7)) < (2+p) L(r).

' ' ~1 -1 . . .
15. t = gog.f " hg. =g P Then this case is described

in Example 2 of Section 2.2. Thus unless {ii} occurs,

L(t) = L(gog“f-lhg“-l) < (2+30)AL(2).

16. t = gog“(f_lh)ag:l =c P o>1. Then
I si -l,.a ;I
(frg,h) G, (F 909, "f) ,h)
If-1 ' :
-1 - -
5 s, (l.gspgu(h 1° 1 l,hf LIt -~
LII |
: , - -1,-1 . -1.1I
5o g,pe, (7)o R e N
in . ; ' .
e s : -1 -1 I
’ — (h’gapgu(h f)a ’f)
I o
.8 -1 _.a-1 I
Y. (Fag pg (BTTE) TR

These lasf four mappings are repeated o-1 times, when we have

(f,gapg.,,h)l

But unless L(g,) < L(p), L(f,g,h) > L(f,gsPgs +h)
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If (f_lh)m-l is not a piece, then
—~1l.,.a =1 -1 -1 . a-1 -1 -1 ~1
(f “h) g P "gog. (f "h)  Tgy TP Tgoguf "h

m

so that as f;lh aha g, are non-trivial, g“f—lh is not
reduced, and thus (f,g,h)I‘is not reduced.

If g, is not a piece, then g“fflh‘s guh_lf,'which-is not
possible.i | ' |

.As a. consequence, it {ii} does not occur,

L(t) = L(gu)gub’(f-lh)a'gg) < (4+p) L(r).

17%, t = g.,f_lhf_lg3 = p.  Then this case is described
in Example 4 of Section 2.2. Thus unless {i} or {ii} 0ccurs,

L{t) = Liguysfrhyfrgs) < (2+3p)AL(r).

18*. t = g“(f—;h)af—1g3'=é p. Then
) I SI : . -1 -1 I
(frgsh) G (fags9.pas “(Fh7) F,h)
If-1 _ _ _
S L (L.gsgepgs "t~ H %, npmH
I1
- 8 - = =11
*, (L,g,a.pg, (RTH 1R
Inf-1 e - N _
5 , (hf Ya,gepgs T hHet )t
I N
5 5 (1ngsgopgs-l(fh—l)a_l’hf—l)II-

‘These last mappings are repeated o-1 times until

’ gs-1_1I
-1 -1, 11 S -1
(l.igagopg3

Jhf L -1

~-1,I1 *
(gs ,gop,hf .

)

—_—s

Thus in this case, the Type of factorization changes.

But unless L(g,) < L(p), L(f,9,n) > L(g, ",g,p, k5 1).

Similarly for g;.
By the same method as in case (17), as (f,g,h)I is assumed

to bé reduced, (f-lh)a-lf—l is a piece. As a>1, f—lh.is
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also a piece.

As a consequence, unless {ii} occurs,

L(8) = Liga, (FTW%F Tugs) < (2420)2L(r).
B. Let (f,g,h)J be a factorizatioh with J = II1.
1. , t ¢ f or h, then h = h,th, =c h,ph“ or

f = Ffaitf, = fsphy. In both cases, (f,g,h)II is related to a.

smaller factorization, unless L{t) < 1/2L(r).

- 2. t = fzhf =¢ P

gII 11 sIIm

I -1 II
(F.gom)™ 56 (FipnThgum) . (Fiprgihyh))

Then

But unless L(f,) < L(p), L(f,g,h) > L(f,p'g’hzh;)‘
In addition

11 sil : -1 11 siIfeT! 111
(f!.q:h) G N (f’g’fz th) —_— (fl’g’thfZ )

: . -1
But unless L(h,) < L(p), L(f,g,h) > L(f,,g,ph,f, )
As a consequence, unless {ii} occurs,

L(t) = L(f, h,) < 2paL(r).

3. t = h,h, = p.- Then this case is described in

G
Example 7 of Section 2.2. Therefore, unless {ii} occurs,

~—

L(t) = L(k,,h,) < 2prAL(r).

» -~

4, f = hohyhsh, =G p- Then this case is described
in Example 9 of Section 2.2. Therefore unless {i} or {ii}
occurs,

L(t) =‘L(hu'hg’h3’ho) < (2+20)kL(P)-
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5. t = h,hhy =, p. Then

(f:g;h)II G 3 (f,g,h.,—lph,-l)ll

But uﬁless’L(hD) < L(p), L(f,g,h)'> L(f,g,h“._lph3—1)

If n;h, is not a piece, then |

P = hyhshohyhy = hyhsh,hyhy,

so0 thatvh5n, and h,h;h, commute. Thus r énd huhsh, areb
powers of a' common element, and‘r is a proper power. ‘Thus

(u;v) is‘nét root-closed (rel.R).b Therefore, as in the pPeViOﬁS

case(4);{i} or{iil occurs. As a consequence, unless {i} or{ii} occurs.

L(t) = L(huhstho’h.,hg) < (2+p)AL(r ).

6. t = huha’hs, @,>1. Then as in the previous case
(5), if (hqhsho)%_;h“hs is not a piece, {i} or {ii} occurs,
Thus unless {i} or {ii} occurs,

L(£) = LU(hohyhy P h ki, ik, hy) < 22LGr)

7. t

m

hoh ,h*'h,h,, a>l. Then as in case (5), if
(hoh,hy)*'h, is not a piece, {i} or {ii} occurs. Thus,
unless {i} or {ii} occurs,

L(t) = L((hoh k)% “hy,hoh,h,) < 2AL(r).

8. t = fahha = P Then
. ) .
II ’ I1nn
IT S -1,-1 IT S II
(f"gvh) G 5 (flPhx h vg’h) 1; (f;P’g’hzhl) M

But unless L(f.) g L(p), L(f,g,h) > L(f,prgih,h,).
In addition

11 o1, -1.11 gt -1 11
ph, )

5 (fl,g,Phl-lfz )

(frg.m™t 56 (f.9.1, .
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1

But unless L(k,) < L(p), L(f,g,h) > L(fltgtphl_lfz_ )

if h, is not a piece,

m

| -1, .
hyohohip f2 hip “fahihy,
so that h and f, are non-trivial, hfz-l is not reduced,
and therefore (f,g,h)II is not reduced.

As a conseqdence, unless {ii} occurs,

L(£) = L(farhasharhy) < (2420)AL(2).

9. » t = fzha‘hl =z P a,>1. Then this case is
described in Example 10, with u; = 2. Thus unless {i} or
{ii} occurs,

a,-

L(t) = L(f,,h% Py h,hy) < (240)AL(2).

10. t = fofghfq_l =q¢ P Then this case is described
in Example 8 of Section 2.2. Therefore unless {ii} occurs,

L(t) = L(fosfurshyFfu) < (242p)AL(2).

1

11. t = fofuh fu = p- Then
a
} 11 sit - 11 stih II
(fsgsh) —G o (fspfun sgsh) ____f__>(fspf~?9'h)‘
But unless L(f,) < L(p), L(f,g,h) > L(f,pf,s9,h)
If f, is not a piece, then & = n~! which is not possible,
If ne-t is not a piece, then as in Case 8, (f,g,h)II is not

reduced.
As a consequence, unless {ii} occurs,

L(t) = L(fy,f, k%, f,) < (44paL(r).

12+, t = g,fh, =; p- Then

II 4 F-1TT -1 -1 ., II.
(Foam™ 56 (fiapn Tt S (1, ek, )
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II ' Ih, I

S ~1 -1 .,-1,I S -1 -1
__D___é (1'f glphl vh ) ______}(h),!f g,P.hz )
(Note that the Type of factorization changes).
But unless L(g,) < L(p)y L(Frgsh) > L(kysf Tgiprha 1)
Similarly for h,.
~~In addition
o II ' g..11R :
IT S -1 -1 I1 Y2 b II1
(frg,h) G (g2 "phy “4gsh) S 5 (pr1g2g.shahy)
But unless L(f) <€ L(p), L(F,g k) > L(p,gagirhahy)
A§ a consequence, unless {ii} occurs,
L(t) = L(g,,fshy) < 3paL(r).
13, t = g,fhh, =, p- Then
II | F-1_1II
II S -1 -1 -1 1I S ~1 . -1,-1 1T
(f1grh) ¢y (fog,ph, n f k) s (1, f “giphy "h TR)
II . g Iz ]
S -1 o0 =1 -1 -1,I S _ -1 -1 I
0 > (l:f glPhl h vh ) E(h"f glPhl‘ ',1) :
I II1
S -1 -1 II S -1 -1 -1,1I
o; (l’h!f glphl ) ° N (lsh !f glph| )

In
ST -1 -1 I
3 (hx’hz 9f glp)

(Note that the Type of factorization changes). But unless

-1 -1
L(gz) < L(p)’ L(fogrh) > L(hl"hz s f glP)
‘ _— ; . -
Inkaddition

siI -1 -1 -1 11 9.511RA

II | ~ | II
(f’gsh) G ;(gz ph! h ’gvh) \(P’gzgx’hzhl‘)

But unless L(f) < L(pj, L(fygsh) > L(psgogishahi)e »

Also
rgom t _Eéf_; (f,g’f—lgz—lphl—l)ll
sI1If-1 (1rgrg, o, "Ly~ )T
_Eif_) (Ligsfh,p gz)I SIgz_la (g, .gl.fhlp_l)l
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(Note that the factorization 1ype changes.) But unless
. . M -1 . . —1

L(k,) € L(p)y L(fsgrh) > Llg, “,g.s»fh,p 7)

If h, is not a piece, then

| N -1

hip “g.fh =’h1hzhlp_vggf'

so that as fh and g,f are non-trivial, ngh—lf_l is not

reduced.

As a consequence, unless {ii} occurs,

L(t) = Lg, fyhyaha hy ) < (243p)AL(r) .

L4 ’-t = szhu1h1.=é p» o>l. Then
(frgom)t? S5 (Frguph, T I

| _i:iiiie_(1,f‘1glphl-1h-al’h$11
—Eif—>(1’f_lglpkl_lh*°1,h‘l)I

—EE——> (1,5 guph, TR 0y TE

these last three mappings are repeated o,-1 times until:

IT :
- - I -1 - -
(1,7 g pn, ™, T Se (1,5 e, T !
Ih .
S 1 -1 -1.1I
S (h),’f glp,hz )

(Note that the Type of facforization changes). But unless

’ =1 -1
L(g,) g L(p), L(f,g,h) > L(n,,f “g,p,h, ™)
In addition

II
I - -1, -
(Fog. M Se (g, ten, TR g, m) ]

1

ngIIhulh

: o II
N (P,gigl’hzhl)
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But unless L(f) < L(p), L(f,g,h) > L(p;gzg,,hzhl)

As in the previous case (13) sinceb(f,g,h)II is reduced,
ha?_lh ~is a piece, and therefore h is also a piece.
Thus unless {ii} occurs, |

L(t) = L(g,,f h"'h,) < (2+2p)rL(r).

15%, t = nghfz-l = P- Then |

(Frg.m)tt Sp _ (Frapfah i m st VT T S S e
i (Lf g pr,h tn )t
_fif_> (hof tg,pf, 1T

I M AP o 1 )
S -1 II 25 -1 II
___f_>(1’f glpfz'h) ___.____.—9‘(f2’fl gxp'h)

But unless L(g ) < L(p), L(f,g,h) > L(ﬂ,fl_lglp,h)‘

In addition

| I |
vgih 5 -1, -1 11
(frogsh)™ 56 (g, prntgum)

II
> (Pfarg.9,0h)
But unless L(f,) g L(p), L(f,gsh) >L(pf,rg9,9,+h)

Also

JII '
II S -1 -1 II
(Frgon)™" 26 o (figrf g, pF)

sTif-1 . -1,11
_.____>(1’9’.¢72P.T, ) »
I1

-1 -1 -1
_; (1’9 g, pf.

)I

gast -1 ~1.1
_—_)(gz'gx ’pf1 ) *
(Note that the Type of factorization changes.) But unless

L(h,fz) < L(p)' L(fsgvh) > L(gz,gl_l,pf‘l—l).
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If f, is not a piece, then % h_l, which is not possible.

As a consequence if {ii} does not occur

L(¢) = Ligy+FfarFfarhsfa) < (143p)AL(r).

16. t avngh“fz_l =, p» a>1. Then
(Fagem) T _S_é_;(fvglpfzh;off-l»h)n
| ‘f-lsIIr (157 pp, = T
—Eij—>(1vf-lglpf2h_a.h—l)1
ki (s lgpf,n " T
_ii+ (lff—lgxpfzh_a+1’h)11

These last three mappings are repeated a-1 times, until:

‘SII

-1 II 2 -1 11
(1’f glpfz’h) —_ (fz’f| glp’h)
But unless L(g,) < Lip), Lif.,g,h) >L(f2,f1-lglp,h)
In addition

11

' I -1 - 11
(fogrh) I SG 5 (gz pfzh a:g-h)
‘ o3

gaglin II

;;_;;_;;:;(pﬁ‘gzgx’h)

But unless L(f ) < L(p), L(f,g:,h) > Lipf,1g9,9,:h)-

If h°-1 is not a piece, then
L-1 1 -1 '
nf. p a.fh .

so that as , and f,are non-trivial, f,h is not reduced,

-1 - -1 -
p g.f=hYF,

and thus (f,g,h)II is not reduced.

As a consequence, unless {ii} occurs,

L(¢) = L(gz,fl.fzyha,fz)'< (20+4)AL(7r).
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17%. t = gogkfhf_lgu_l =, P+ Then
: - IT1 )

p II S -1 _-1

(fvgsh) G N (f.g,pg:.fh f ’h)

II

£-1_I1
S -1 -1 II
_____>(1'f gspg«fh “,h)T
II -
S -1 -1
_____>°, (1,f “gspgufh "k

SIh

-1 I
s (h.f “gspguf,1)

fel -1 II
__19,(1:f gspguf’h)
fgll JIT
—_ (f'gapgu’h)

-1

‘)I

But unless L(g,)< L(p), L(f,g,h)>L(f,g:pg4+h)

In addition

SII

-1 -1 -1 IT
G (f+g:f "gv "g0 PgLS)

gugIIf-1g.,-1

(F.g,m) 11

-1 -1 -1 -1 I
, (L,ge g5 "gu vge P)

gogt | 1 -1

- I
_____9.(90193 Gy

D)

(Note that the Type ot factorization changes). But unless

L(hvf) £ L(p)a L(f’gyh) > L(gopga—lgu_l,p)

If g“fis,nof a piece, then & = h—l, which is not possible,
As a consequence, unless fii} occurs,

L(t) = L(goaguf’hvguf)'< (2+2p)AL(r)

18. ¢ = gog“fhaf-lg“—lgéa-pl;TEﬁeh

oo™ 56 (Grgupanrnrtim ™
_f:ifiie.(1vf_19,ég~fh-“vh)11
_Eif_>(l.f—lg,pg“fh—a.h—l)l
_fff_,(h»f_lg,pg“fh—é+l»1)1
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St

-1 I1
— 5 (1,f "gspg.fh

yh)TT

~a+1

Repeat these last three mappings a-1 times until:

1 ~
(1, “gspgufsB)°7 7 (fagspgush) ™.

But unless L(g,) < L(p), L(f,g,h) > L(fygspgush).

1r 1

is not a}ﬁiece,‘then

haf_lgh—lp—lgoguf = hu—lf_lgu—lp—lgugufh,

so that as j and»g“f‘areknon—trivial, g“fh~1 is nof reduced,
and therefore (f,g,h)II is not reduced.

As a consequence, unless {ii} occurs,

L() = Ligyiguf h®iguf) < (440) 2L (r)

l9. t = g“f'hf-lg3 =g P- Then
~II
, IT S =-1,.-1_.-1 II
(frgsh)" " 6 o (figsg.pgs fh °f ")
f-1g1I IT

' —1 -1, -1
—_ (1,f gs9oPGs fh “,h)

11

-1 -1_..,-1 ,-1
—_— (1,f "gs9.pgs "fh ~sh

1n :
S . -1 -1 I
— s (hsf Tgsg.pgs Frl)

SI

-1 -1 I
', (1,f "g,9.p9s FrR)TT

gs~1fgll -1 IT
5 s> (gs "Frgopsh)

But unless L(g,,) kS L(p)y L(fvgvh) > L(vgs-lf'gop’h)

Similarly for g,. " In addition, ~
II .
II S -1 -1 -1,..II
(frg.h) G (fri9+:f g, "pPgs F)

siif-1 -1 -1,11
—  (l,geg, TPGs:7)

SII -1 _

1 -1.1
’ > (1,9 "yg9, PG,

)
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guglga o -
_______9.(9#9g99 fp)

But uhless L(h,f) < L(p), L(f,g.h) > L(gugssgosp)

If f is not a piéce, then h = h_l, which is not possible.

Therefore if {ii} does not occur,

L(f) = L(gy+sFrhsfargs) < (1+3p)AL(r)

20. | t = g“thf_lgx =é‘p. "Then

(£rg m) Tt _S;;('J“»g,gop.ga—lfh—éf_l;;1)’11
_f:ifiia, (1:f_lgsgopgs—lfh;“}h)ll
_Eif_>(1-f_1g,gnpg,-lfh—a,hF1)I
—jfZ:> (h.fflgsgnpg,-lfh_“+ls1)I
—Eié (1off1§sgopgs_lfh_“+l,h)11

These last three mappings are repeated o-1 times, until:

-1 -1 II. 95 stI
(1,f "g,g,pg9, frh)

-1 II
(gy “Frgepsh)™

-1 ' '
But unless L(g,) < L(p), L(f,g,h) > L(gy; “f.g.p,h)
Similarly for g,
If'f is not a piece, then % = h—l, which is not possible.

If ha_l is not a piece, then =

o,=1 =1 -1 -1 -1 '
haf gsp guf = r° F "gsp gufh

and as g,f and k& are non-trivial, ggfh-l is not reduced, so

e

that (f,g,h)II is not reduced.
As a consequence, unless{iil} occurs,

L(t) = L(gysf h%,Ffrgs) < (4420)AL(p)
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A GUIDE TO THE PROOF OF EACH CASE REQUIRED FOR THEOREM 2.2

Because of the exceptionaliyuiarge number of cases it is not
- practical to provide a detaiied proof in each inétance.’
quever a simple coding system will indicate, in each case,
the stfategy required so that the reader may fill in the
-details, following the methods described in Section 2.2.

For each case, we divide ¢ into subwords t,,%t,,..,tn, where
tzt ty+.+ty. Then it can be shown that if Ww* is §-minimal
(sb that {i} cannot .occur,) either (f,g,h)J is weakly related
to a smaller factorization, or the 1éngths of the subwords
Ty 9ty seee,ty are bounded in size. The precise 1limit depends
on the method used. We indicate which method should be’used
by writing A,B or C above each subword. These coincide with
the detailed description of the methods in Section 2.2. For
convenience we do not make use of method D. This is because
method é can always be applied in those cases that could

(under certain conditions) be covered by method D.

In particular, the length of a subword of type A is either
bounded by pal(r), or (f,g.h)J is related to a smaller.

factorization.
A subword of type B is always a piece.

If a subword ti is of type C, (1 g Zgn), then ti is a piece
unless (u,v) is not root-closed (rel R) and either

(a) W* is not S-minimal and {i} occurs, or

(b) . (f,g,h)J is weakly related to a smaller factorization,

so that {ii} occurs.
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We assume W* is S-minimal (relvR)

By assuming that (f,g;h)J‘is not weakly related to a smaller
factorization or if (u,v) is root-closed (rel R), by‘
assuming (f,g,h)J is not related tova smaller factorization, .
we can find, for éach case defined below, a total bound T on

the length of ¢. This is obtained by adding together the

individual limits on the lengths of the sUbwords Tigeerln.

’We.will use a similar notation to that used for Theorem 2.1.
That is, if Y is any word in W(x) then we wriﬁe

Y = Y,Y,= Y,Y,¥Y, , where Y,,Y,,7, # 1.

We use q,d,,uzto denote non-negative integers, and e€,e,,€e,,

€e; to denote +1 or -1.

The cases are divided into two parts aécording to the Type J

of factorization of (f,g;h).

A. The factorization J = 1

We do not list below those cases which are similar. For

it is possible to construct from each of the expressions
listed below, 11 further unlisted expressions by means of
the transformation Sf. These expressions can be found bx
replacing the eleménts of the friple (fvgvh) by the eleménts

»

of a permutation of (fe,gs,he).

We consider in the first 20 cases the possible values for ¢,
where ¢ is a subword of W¥*, and where g is not an F-subword
of tUt_l. The cases obtained by assuming # or f is not an

F-subword of tut—l are similar.



- 110 - .

Suppose first that f,g and hare not F-subwords of tvt_l,

1 -1

then t or t’l is a subword of f g,gf-l, f—lh,hffl,_gh

or h-lg. and this gives cases Al and A2 of Theorem 2.1.

Secondly 1let f-l be F-subword of trbut h and g not F-subwords

of tut_l. Then t ¢ hf-lh; hf-lg or similar F*-subwords of W*.

This gives cases A3, 4 and 5 of Theorem 2.1.

In'the third placé, let % and f—l be subwords of‘t, but g is
not an F-subword 6f tut-l. This gives cases A6 - 18 of

: Théorem 2.1, and two additional cases, 19 and 20. These
extra cases arise when g is a subconjugate of f, but not an
F-subword of tut-l. The value for T in these cases shows

that the conclusion for Theorem 2.1 is in a sense maximal,

and in fact‘these are limiting cases for Theorem 2.2.
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CAC AC AC
19. t = goguf "hf " g3sges T = (3p+4)1rL(r)
. C A - c C AC
-1 o -1, -1 ;
20. t = gogu(f ~ R f TRf T gsge, T = (Re+4)AL(r) .

We consider in cases 21-24 the possible expressions for ¢

where f ’}g,h each occur as F-subwords of tut_l only. once.

In the first instance suppose t ¢ f_lhf-;gf-l
C AC A cC aAC
- - -1, -1 -1
21. t = £, hETT T £ gt T = (3048)AL( 1)
c A C C A c v ;
-1, -1 -1, -1, -1 -1, -1 .
22. t = f, fs "hfy "fo fs afu fo s T = (2ﬁ+4)AL(P)f
. -1, -1 -1
Secondly suppose t ¢ g “hf gf
B A C A B A C

1 -1 1

-1 L -
23. t (2} h f, fa g.:9:2f2 s T = (3p+4)ArL(r)

"t

-1, -1 -
Lastly suppose t ¢ g hf “gh 1

B A B A B A B

-1 -1 -1 ,
24. t = g, "hih,f gig2h, ~ , T = (3p+4)AL(r)

We consider in cases 25-36 the possible expressions for ¢

where g and A each occur as F-subwords of tut_l

only once, and‘f occurs at least twice as an F-subword of
tur™L,
In the first instance suppose f-l is an F-subword of ¢t only

1

twice.If ¢ ¢ f—lhf_lgf_ h, then

C A CAC C
-1, . -1 -1 .
25. t = f, “h,h,f “gf "h, s T = (2p+4)2rL(r).
Ifrt c f_lhf_lgf_lg, then

¢ A C A ¢
26. t = £, *

-1
hf g19.f

1t ¢ ¢ g nftgr th, then

g1y T = (2p+4)AL(7)
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B CAC BAC C

-1 -1 ~1 k _
27. t = g, h,h,f "gig.f "hy, T = (2p+6)AL(r).
If ¢t cvg—lhf_lgf-lg, then
B A C A C ;
-1, =1 1 : ‘
28. t = g5 hf "g:9.9.f "gs3ger T = (2p+3)AL(r)
B B A C BA C
; -1 -1 . -1 -1
29. t = g, @5 hf "gsg.9.f a5,y T = (2p+5)AL(r),

Secondly suppose f—l is an F—éuoword'of t at least 3 times
' i -1, -1 _-1
then either t c gf "hf "gf g, and

C A C A c C
-1

~—1 -1
30. t = guf "hf "g:g.9.f "@ss T = (20+4)rL(r)
C A c . C c :
o i e =3 .
3l. t = goguf hf T939094F Tgsds T = (p+4)AL(r)

or t ¢ hf_lhf—lgf—lg and

C A C CA C
= -1 -1
32. t = h,f lhlhzf g19:f “g1» T = (2p+4) L(r)

Lastly suppose F and f—l are F- subwords of ¢

then either ¢ ¢ g-lfg_lhf_lg, and

B A B B B

-1 -1 -
33. t = gu.f "g:9.9.79. gol' T = (e+4)AL(r)
C B A C B
, — — ,
34. t = . g.g.f "g39.9.Fg9. » T = (p+4)rL(1)

or t &£ gf Thg 'fh, and

BB BAB A B B
_ -l S S S |
35. t = gz_f hlhzgz da f‘kﬁ ’ T = (2p+6))\L(P)

td

or t ¢ hf-lhg-lfg_l, and

CB ACC A B¢
. -1 -
36. t = h,f "hyh.g. g fg. =, T = (2p+6)aL(p)
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We consider in the rest of the cases the possible expressions
for t, where g occurs as an F-subword of tut_l only once, but
f and h occur as distinct F-subwords of tUt_l at least twice.

each.

First suppoée g occurs in tut_l as an F-subword only ohce.
and t does not begin or end in the F-subwords g or g~;.

Then t ¢ (Af L)% g(f tn)%2®

We get a number of cases here, according to the position of
t in this word, and the value of ¢ .

C C A C
37. ¢ =(hf L. nf har i £l )., T = (e 3)AL(2)

c cc A C C c
s8. ¢tz (..hf ), hfTh g fThR (PR T = (p46)AL(r)
c C A B
39. t = (vouhf I af thf  gn, T, T = (430 Lin)
c c¢c A B )
40, ¢ = Gty TR arT g wThr, T = (e d)aL(n)
c BB A B B C
_ -1 -1 -1 -1 ) B
41. t = (...nf ") hf "gh "f (R °F ...),, T = (p+6)AL(r)

Secondly suppose g occurs in t&Jt-l as an F-subword only once .

and ¢ begins but does not end in the F-subwords g or 9-17 

»

Then either ¢ ¢ gf_lhf_l...hf—lg(f-lh...f-lh)e (cases 42-47)
or v t c g_lhf'_l...‘hf-lg(f-.lh...)€ (cases 47-51)
C A ¢ ¢ ¢
a2. ¢t = g f N giaf Tt reh R(FT MR )L, T = (prd)AL(r)
C caA ¢ c
43, t = ;:}:Tzf'lgxng'lh(f'lh.;.),’. T = (p+4)AL(T)
c c C A ¢ c |
a0, ¢ = g, (FM T R T e g (£ e )y, T = (p5 L)



J
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CB ACC B c ,
-1 -1 -1 ,.-1 t <
45. t = g,f g.9.h fh (fh )y T = (p+8)AL(r)
c c BCAC B B C
46, tzg,(F O nr g g T (FRT L) T = (peB)AL(r)
| c cC € AC B c
B e e e | -1
47.7t = g, (f "h) f "hf "gig.(h T f...)yy T = (p+6)AL(r)
B CC BA CC c | )
-1, -1 -1, -1 =
48. .t‘E_gl hf g192f h(f h---)ly T = (p+7);‘L(r)
B c CBA _C C | |
49, t = g, Y e e g g (F e )y, T = (p46)AL(R)
B BBBAB B c
-1, -1 -1, 1. o
50. t = g, "hf "g.g:h flh “feed)ys T = (p+7)AL(r)
B c C B A B ¢
51. ¢ = g, S o nr s g g (T A )L T = (p46)AL(2).

Lastly suppose that g occurs in tut—l as an F-subword only
once, but ¢ begins in the F-subword g or g_l and ends in
the F-subword gvor g—l.’ Then |

t < IR R B TC R S Rl P PRI P a,>a,,

(Cases 52-55), or

t e g I g % n T g ata,31; o, 2a,,

(Cases 56-59), or

t < g(f-lh)a‘f-lg(f—lh)uzg_l; a,+a,>1; a;>0,

(Casesv60-63), or
t g ¥ e g ie %t 40,515 «,>0,

(Cases 64-67), or »

-1 1

t 'ltig-l(hf )a‘g(‘f-lh)azg_ 5 01,0,205