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Abstract

All the results in this thesis are concerned with the classification

of graphs by their chromatic class.

We first extend earlier results of Fiorini and others to give a 

complete list of critical graphs of order at most ten. We give 

conditions for extending the edge-colouring of a nearly complete subgraph 

to the whole graph and use this result to prove a special case of

Vi zing's conjecture. We also use other methods to solve further cases

of this conjecture.

A major part of the thesis classifies those graphs with at most 4 

vertices of maximum degree and this work is generalised to graphs with r 

vertices of maximum degree. We also completely classify all regular 

graphs G with degree at least y|v(G)|.

Finally we give some examples of even order critical graphs and • 

introduce the concept of a supersnark.
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1;̂. : Int r oduc t ion

The idea of edge-colouring a graph was first introduced by 

P.G. Tait [T1] in 1880 in an attempt to prove the Four Colour Conjecture. 

The first major result on edge-colourings was in 1964 when V.G. Vizing 

proved that every simple graph G with maximum degree A can be properly 

edge-coloured with at most A+1 colours. Vizing*s result partitions the 

set of all graphs into two disjoint classes. The first. Class 1, consists 

of those graphs of maximum degree A which can be edge-coloured with A 

colours, whereas the second. Class 2, consists of those graphs that 

require A+1 colours.

The general problem of classifying all graphs is extremely difficult 

as can be seen since a solution would have as a corollary the four colour 

theorem.

This thesis is mainly concerned with the classification problem for 

different types of graphs and looks at some of the particular graphs 

which require A+1 colours. We tackle this problem from several different 

angles.

We first look at small order graphs and extend results of Fiorini 

and others to classify all graphs on at most 10 vertices. Our second 

approach classifies graphs whose degree is high relative to the order.

The first such graphs we consider are obtained from a complete graph 

by removing a few edges. We obtain results on these graphs by giving 

necessary and sufficient conditions for an edge-colouring of an induced 

subgraph of G to be extended to an edge-colouring of G with x ĈG) colours.

By adapting the proof of Vizing* s theorem to multigraphs we have 

been able to show for odd order graphs that if a graph G has 2n+1 vertices, 

- 2n edges, and maximum degree 2n-1, then it is Class 1. For even 

order graphs we have found a necessary and sufficient condition for a
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graph with 2n+2 vertices and maximum degree 2n-1 to be Class 1. Both 

these results answer problems posed by Plantholt.

Our third approach considers r, the number of vertices of maximum

degree. We have been able to classify all graphs with 1 < r < 4 and
7all graphs with A > n + yr - 3.

We have also shown that regular graphs of even order with -

d(G) > y |V(G)| are Class 1. This result is a partial solution to the

conjecture that all regular graphs of even order which satisfy

d(G) > 4 1 v (G)| are Class 1.
L .

The results mentioned in the previous two paragraphs are the 

most significant results of the Thesis.

We introduce the concept of super—snarks and give examples. Goldberg 

gave a 3-critical counter-example to the conjecture that all critical 

graphs had odd order. We give some 4-critical counter-examples. We 

also exhibit a family of graphs which are obtained from the double star 

snark and show which of these are Class 2.



2. Definitions and known results.

We now give the basic definitions and results on edge-colourings used 

in this thesis.

We denote the maximum degree of a graph G by A(G) and the minimum 

degree by 5(G). The degree of a particular vertex v is d(v). Vertices

adjacent to a vertex v are called its neighbours and the set of

neighbours of v is denoted by N(v). We let d*(v) be the number of

neighbours of v of maximum degree.

The order of G is the number of vertices of G and is denoted by
|v(G) I , The size of G is the number of edges of G and is denoted by
|e (g)].

If W is a set of vertices of G, then G<W is the graph G* such that

V(G’) = V(G)'̂  W. and E(G') = E(G)'̂ { w  : w€V(G) and x€‘ W }. Similarly

if M is a set of edges of G, then GSM is the graph G" such that V(G") = V(G)

and E(G") = E(G)SM. If Y c V(G) then <Y> denotes the subgraph of G induced 
by Y. ........

The deficiency of G is the sum

I (A(G) - d(v)).
, vGV(G)

and is denoted by def(G).

Two graphs G and H. are said to be isomorphic if there exists a one

to one correspondence between V(G) and V(H) which preserves adjacency. We

then write G = H.

We define an edge-colouring of G to be a mapping <f>:E(G)— > ^  where

^  is a set of colours such that if ê  and e^ are edges with a common

\ vertex then ^ (f)(ê ). The least number j for which there exists an
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edge-colouring of G with j colours is called the chromatic index of G and 

is denoted by x *(G).

Vizing [VI] showed that if G is a simple graph then

A(G) < x'(G) < A(G)+1.

G is Class 1 if x'(G) = A(G) and is Class 2 if x *(G) = A(G)+1. If G is a 

multigraph then G is Class 1 if x'(G) = A(G), and is Class 2 otherwise.

If G is Class 2 and x*(G’) < x’(G) for all proper subgraphs G* of G,

then G is said to be critical.

A set of independent edges is called a matching. A matching 

covering all vertices is called a 1-factor. A near 1-factor is a 

matching covering all but one of the vertices. A regular. Class 1 graph

is often called 1-factorizable as it is the union of edge disjoint

1-factors.

If a graph is edge-coloured and a colour c is present on one of the 

edges incident with some vertex if, we say that c is present at v. If c 

is not present on any of the edges incident with v, then we say that c is 

absent at v.

If X is a real number, then [xj denotes the largest integer not 

greater than x and fx] denotes the smallest integer not less than x.

If x̂  ^ Xg = ... = x^ and a graph G has r\ vertices of degree x^

for 1 ^ i ^ , then we write
_  = 1̂ ^2G - Xi X£ ... .

Other basic graph theoretic terminology can be found in any 

standard introdcution to the subject such as [B3].

Our first Lemma is Vizing’s Adjacency Lemma [V2] and will be used 

frequently.

Lemma 2.1 Let G be a critical graph. Let u,w GV(G) and let u be 

adjacent to w. Then
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d*(w) >  fA(G) - d(u)+1 d(u) < A(G),
\2 d(u) = A(G).

An accessible proof of this lemma can be found in [F6 ]. An immediate 

corollary of Lemma 2.1 is

Lemma 2.2. Let G be a critical graph. Then each vertex is adjacent to

at least two vertices of maximum degree (i.e. d*(v) > 2  ¥ vGV(G)).

Lemma 2.3 [V2] Let G be a graph of Class 2 with maximum degree A.

Then G contains a critical subgraph of maximum degree k for each k 

satisfying 2 < k < A.

For our purposes, the following result is extremely useful.

Lemma 2.4 For a graph G, let e G E(G) and w G V(G), and let e and w 

be incident. Let d*(w) < 1. Then

A(G^) = A(G) =» x’(G^) = x'(G) and

A(GNw) = A(G) ^  X ' (Ĝ <w) = x*(G).

Proof. If G is Class 1 then we have

A(G) = x '(G) ^ X * (G''̂ ) ̂  A(G'^) = A(G),

so x'(G) = x̂  (G^), and similarly

A (G) “ X * (G) ^ X * (G^w) ^ A (G'^) = A (G) ,

so x'(G) = X*(G^w).

If G is Class 2, let G* be a critical subgraph of G with A(G) = A(G*) 

Then, in view of Lemma 2.1, e ^ E(G*) because d* ^(w) < d* (w) < 1. 

Similarly w t V(G*).

There is an alternative proof of Lemma 2.4 which does not depend on 

Vizing's Adjacency Lemma, nor on the notion of critical graphs. It does 

however depend on knowledge of the original proof of Vizing*s theorem 

that x '(G ) < A(G)+1.
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Alternative proof of Lemma 2.4. If d*(w) < 1 and A(G^w) = A(G) then 

Vizing’s argument may be applied to extend the edge-colouring of G^w, 

without increasing the chromatic index, provided that w is the pivot 

vertex and the edge (if there is one) joining w to a vertex of degree 

A(G) is coloured last. If d*(w) <1, A(G^) = A(G) and A(G^w) = A(G) 

then x’(G^) = x'(G), since x'(G) > x* (G^) > x* (Ĝ w) = x*(G).

If however d*(w) <1, A(G^) = A(G) and A(G-w) f A(G) then G and G ^  have 

just one (the same) vertex of maximum degree other than possibly w. It 

is easy to show by Vizing*s argument that both are Class 1, provided an 

edge on this vertex of maximum degree is coloured last. (If d(w) = A 

colour the edge joining the two vertices of maximum degree last.)

Lemma 2.5 If G has 1 or 2 vertices of maximum degree, then G is 

Class 1.

Proof. If G is not Class 1 then G has a critical subgraph G* with

A(G) = A(G*), and G* has at most two vertices, say u,w of maximum degree. 

But d*(u) < 1 which contradicts Lemma 2.2. Therefore G is Class 1.

Lemma 2.6 Let G be a critical graph. If G has r vertices of degree

A(G), then

6(G) > A(G) - r + 2.

Proof. Let u be a vertex with d(u) = 6(G) and let w be a vertex

adjacent to u of degree A(G) [there is such a vertex by Lemma 2.2]. By 

Lemma 2.1 ,w is adjacent to at least A(G)”d(u) + 1 vertices of maximum 

degree. Thus including w, there are at least A(G) - 6(G) + 2 vertices 

of degree A(G), s o  r > A(G) - 6(G) + 2, whence the result.

Lemma 2.7 Let G be a graph with v vertices and e edges, and with

maximum degree A; then G is of Class 2 if e > A|̂ yj.

Proof. If G is Class 1, then each colour class can have at most



edges. Since there are A colours the maximum number of edges is A|̂ yj

The following results may be found in [F6].

Lemma 2.8 Let G be a critical graph. If G has maximum degree A and 

if V  and w are adjacent vertices of G,then d(v) + d(w) > A + 2.

Lemma 2,9 Let G be a critical graph with v vertices and e edges, 

maximum degree A and minimum degree 6 then

e < -%-(v-1 )A +1 if V  is odd,
1e < — (v-2)A + Ô - 1 if V  is even,z — -------- -

Lemma 2.10 Let G be a critical graph of maximum degree A and let n̂

be the number of vertices of degree j for j = 2,3,...,A. Then for each

k satisfying 2 <  k < A-1, we have

k n. n.A

Lemma 2.11 A critical graph contains no cut vertices.

The next lemma is due to Kô'nig [K1].

Lemma 2.12 If G is a bipartite graph with maximum, vertex degree A, 

then X* (G) = A.

The next lemma is Tutte* s theorem [T2].

Lemma 2.13. A graph G has a 1-factor if and only if, for all 

S c V(G), the number of odd components in G^S is not more than |s|.



3. Critical graphs of order 9.

3.1 Introduction and definitions.

In this chapter we extend the results of Beineke, Fiorini and 

Jakobsen to give a complete catalogue of all the chromatic index 

critical graphs of order < 10. In particular Jakobsen [J3] has 

constructed all 3-critical graphs of order < 10, Beineke and Fiorini [B1] 

have constructed all critical graphs of order 7 and Fiorini [F4] has 

shown that there are no critical graphs of even order <10.

We begin by finding the 4-critical graphs of order 9 and end up with 

8-critical graphs of order 9. The degree of difficulty for finding the 

degree-lists of A-critical graphs decreases as A increases because each 

time we use the results obtained previously and because-the number of 

cases to be examined decreases as A increases. In the subsequent sections, 

if IT is a k-colouring of G and ,.. .C^ are the colour classes of E(G) 

with respect to tt, we always assume that for each fGC^, w(f) = i and 

|Ĉ  |>|C^!>...>!C^|.

We shall need the following lemmas.

Lemma 3.1 For A>3, there does not exist a A-critical graph with a 

vertex u of degree 2, à vertex v(^u) of degree < A and all other vertices 

of degree A.

Proof. Suppose such a A-critical graph G exists and let u be joined

to û  and û . Since G is critical,G^iuu^} is Class 1 and can therefore 

be coloured with A-colours.

Vertex u has 1 colour, û  has A-1 colours, v has d(v) colours,

and all other vertices have A colours. The colour at u must be the colour 

missing at u^, or else we could colour uu^. Therefore there are 

A colours missing at u and u^, and A-d(v) colours missing at v. Since
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d(v) 7̂ A some colours will be missing an odd number of times and some an 

even number of times. This is impossible and hence Ĝ {uu,j} is not Class 1 

Therefore G is not critical.

Lemma 3.2 If there exists a 4-critical graph G such that n^ = 2n^ and

n^ = 0, then, for each vertex x of degree 2 G, the two Vertices adjacent 

to X must be adjacent.

Lemma 3.3 If G is a A-critical graph of order n on m edges then

a) m > 2n+1 if A = 5,

b) m > if A = 6,

c) m > if A = 7.

Proofs of Lemmas 3.2 and 3.3 can be found in Yap [Y2].

We now give a catalogue of the degree lists of all the critical 

graphs on at most 7 vertices and the 3-critical graphs on 9 vertices. 

This was found by Beineke and Fiorini [B1 ] and Jakobsen [J3]. It should 

be noted that all 2-connected graphs with the degree lists given, with 

the exception of the degree lists 2^3^ and 2 3̂ , are critical.

Catalogue

v - V 2 3 4 5 6

3 2̂

5. 2̂ 23^ 3^ 4^

7 2' 23^ 24^ 
3^ 4^

25^ 
345^ 
4^ 5̂

452 6*
5^ 6^

9 2^ 238
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* The only graph which is critical with degree list 2^ 3^ is the graph P: 

drawn in Figure 3.1. Clearly any graph 23^ which contains P* as a 

subgraph is not critical

Figure 3.1. The Graph P*.

3.2 4-Critical Graphs 

We first prove

Lemma 3.4 If G is a A-critical graph of odd order and F is a 1-factor

of GNx where d(x) < A, then G^F has a (A - 1)-Critical subgraph H.

Proof. X* (Ĝ F) = A, otherwise any (A - 1)-colouring of G^F can be

extended to a A-colouring of G. By the choice of x, the maximum degree of 

GSF if A - 1. Hence GSF is Class 2. Lemma 3.4 now follows from Lemma 2.3

We now prove

Theorem 3.1 A 2-connectéd graph G of order 9 4-criticàl if and only if
8 2 7its degree-list is either 24 or 3 4 ,  except for the graph of Figure 3.6.

Proof. By Lemma 2.11, a critical graph must be 2-connected. Let G be

a 4-critical graph of order 9 having minimum degree 6.

Suppose 6 = 2. By Lemmas 2.1 and 2.10, n^ > max {4,20^ + n̂  } .

If n^ = 0, then the possible degree lists of G are: 2^ 4̂ , 2^ 4^ and 24^.

If n^ ^ 0, then the possible degree-list of G is 23^ 4̂ .

Suppose 6 = 3. By Lemma 2.10,n^ < n^. Hence 3^ 4^ and 3^ 4^ are
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the only two possible degree-lists for G.

. 2 7By Lemma 3.1 there are no critical graphs having degree list 2 4 .

Theorem 3.1 now follows from the following five lemmas:

Lemma 3.5 There are no critical graphs having degree-list 2^ 4̂ .

Proof. Suppose such a critical graph G exists. Let x̂ ,̂ x^ and x^

be vertices of degree 2. By Lemma 2.1, N(x^) A N(Xj) = 0, if i .5̂ j. Let 

N(x^) = (y^,y2), NCx^) = (2^,2 )̂, N(x^) - (w^,W2). By Lemma 3.2, y^ y^,

^1^2* ^ 1 2̂ '

Let ir be a 4-colouring of G ^ 1̂ 2* Since |E(Gxx^y^) | = 14, two of

the four colour classes E^,...,E^, say Ê  and of G ^^72 with respect

to TT must be of cardinality 4. Hence G^x^ has a 1-factor F - = Ê  or Eg, so

that A(G^F) = 3 and (Ĝ F) = 4 and,by Lemma 3.4, G^F has a 3-critical 
subgraph H.

Suppose |V(H)| =9. A 3-critical graph of order 9 does not have any 

vertices of degree 1. Therefore H is not a subgraph of G F̂, since G^F 

has two vertices of degree 1.

Suppose |V(H)| = 7. Then |e(H)| =? 10 from the catalogue. Since H 

has .only one vertex of degree 2 we may assume that (f. V(H). Then

|e(H) | 15 - 4 - 4 = 7 which yields a contradiction.

Suppose |V(H)| = 5, Then |e(H)| = 7 from the catalogue. Since H has 

only one vertex of degree 2, we may assume that Xg,x^ ̂  V(H).

Then |e (H)| < 15 - 4 - 5 = 6 which yields a contradiction.

Lemma 3.6 There are no critical graphs having degree-list 23^ 4 .̂

Proof. Suppose such a critical graph G exists. Then |E(G)| = 16.

Let X, y, 2 e V(G) be such that d(x) = 2, d(y) = d(z) = 3 and let x^, X2
be the neighbours of x. By Lemma 2.1, y, z  ̂N(x^) U N(x2).
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Let IT be a 4-colouring of where e e E(G), let E^,...,E^ be the 

colour classes of E(G^) with respect to u, and let |eJ = |Eg| = \e \̂ = 4 

and |ê | =3.

We first prove that yz  ̂E(G). Suppose otherwise. Then x, y, z are 

the only vertices of G^yz having degree < 4. Hence, in the above

colouring tt of G ^  where e = yz, colour 4 is not present at all these

three vertices. But then tt can be extended to a 4-colouring of G, 

contradicting the hypothesis.

Next, we consider the above tt colouring of G ^  where e = zw.

Without loss of generality, we may assume that colour 1 is missing 

at z. Then F = Ê  .forms a hear 1-factor of G and G^F -—  

has valency-list 123 . By Lemma 3.1 , GSF has a 3-critical subgraph H.

It is obvious that |v(H)| ^ 9 and since there are no critical graphs of 

even order < 10, |v(H)| = 7  or 5.

Suppose |v (H)| = 7. Then H as degree-list 23^ (see catalogue). Let 

Y — V(G) ^ V(H). Then X e Y. Since G^F has 12 edges and H has 10 edges,

X  must be joined to the vertex of degree 2 in G^F. But then in G, x  will

have degree 2 and be joined to a vertex of degree at most 3 and this 

contradicts Lemma 2.1. Hence |V(H)| f 7.

Suppose |v(H)| = 5. Then H has degree-list 23^ (see catalogue).

Again, let Y be defined as above. Then x e Y and |E(<Y>)| < 5. Let 1 

be the set of edges of the graph induced by Y in G^F. There are at most 

4 edges in 1 since x has degree 1 in G^F. G^F has 12 edges and H has 7 

edges and there is at most one edge from V(H) to V(l) in G^F. Hence 1 has 

at least 4 edges,so |l| = 4  in G^F.

Let X be joined to t and let t have neighbours z , z in G^F.1 2
One of the z^ will have degree at most 3 in G and therefore Lemma 2.1 is
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contradicted for the vertex tin G.

The proof of Lemma 3.6 is complete.

8Lemmp 3.7 Any 2-connected graph G having valency-list 24 is critical

Proof. The size of G is 17 > 4 By Lemma 2.7, G is Class 2.

If G is not critical, then by Lemma 2.3, G contains a 4-critical subgraph 

H. Since there is no critical graph of even order < 1 0  and we have shown 

above that there is no 4-critical graph of order 9 with minimum degree 2 

and having smaller size, the order of H must be 7 or 5.

We now prove that G cannot contain a 4-critical subgraph of order 7

or 5.

Suppose the graph K is obtained from G by deleting two vertices. The

number of vertices of degree 4 in K is at most 4. But a 4-critical graph
6 2 5of order 7 has degree-list either 24 or 3 4 (see catalogue). Hence G

cannot contain a 4-critical subgraph of order 7.

Finally there is only one 4-critical graph of order 5, namely 

(see catalogue). But cannot be extended to a graph of order 9
g

having degree-list 24 .

Lemma 3.8 There are no critical graphs having dégrée-list 3^ 4^.

Proof. Suppose such a critical graph G exists. Let X = {x,y,u,v}

be the set of vertices of degree 3 and let K = <X>. If K = 0^, the

graph of order 4 and size 0, then there is at least one vertex z of

degree 4 adjacent to three or more vertices in X; but this is 

prohibited by Lemma 2.1. Again, by Lemma 2.1 it is clear that 

K = U Og or 2Kg. Hence we may assume that xy e G.

Let z be of degree 4 and adjacent to u. Let tt be a 4-colouring of

G^uz and let E^,...,E^ be the four colour classes of G^uz with respect to

IT such that
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|e ^1 > ... > |E^|t Since |E(Gxiz) | = 15, we have
|e |̂ = [Ê I = |Ê I = 4  and | E^ | =3. It is clear that x’ (Ĝ Ej.) = 4 for

each i = 1, 2, 3, 4. We note that the degree-list of G^uz is 23^ 4^ and

that, for each i = 1, 2, 3, there is exactly one vertex of degree < 4 in

G^uz at which colour i is not present.

We now show that there is i = 1, 2 or 3 such that G^E. is Class 2 

and cannot be 3-critical. From this it follows that, for some i = 1, 2 or 

3, G^E^ has a 3-critical subgraph H of order 7 or 5. We will finally 

prove that this is not possible and hence there are no critical graphs 

having degree-list 3^ 4 .̂

Applying the fact that there is only one 3-critical graph of order 9 

and size 12 ( see catalogue) namely P*, we can prove by examining all cases 

that there is i = 1, 2 or 3 such that G^E^ is of Class 2 -and cannot contain 

a 3-critical subgraph of order 9. Hence, for some i = 1, 2 or 3, G^E^ 

contains a 3-critical subgraph H of order 7 or 5. From now on, we write 

F for this particular Ê .

Suppose |v (H)| = 7. Let V(G)'̂ V(H) = {v^, v }. In this case, the 

degree-list of H is 23^ (See catalogue). Since F is a near 1-factor of G,

F has at least two but not more than three edges in H. Let B be the 

set of edges joining V(H) with {v̂ , V2}. Then H has deficiency < 6, so 

|b| <2 and min{d(v^), dCv^)} < 2, which is false.

Suppose |v(H)| = 5. Then H is the graph given in Figure 3.2. Let 

Y = V(G)^V(H) and let 1 = <Y>. Let J be the subgraph of G induced by V(H). 
We note that since G is connected.

Figure 3.2 Figure 3.3
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J f K^. Also, since G is 2-connected, J or otherwise Y = X

IE(I)I = 5, contradicting the fact that <X> = U 0^ or 2X2»

and

Suppose J = K^^{e^, e^},where ê  and e2 are independent. Then 

by examining the degree-list of J, we know that 2 < m < 4, where m is the 

number of edges joining V(H) with Y,and 4 < n = |e(I)| < 6. If m = 4, 

then all the vertices in V(H) are saturated, i.e. of degree 4,and thus 

Y = X,which is impossible because |e(<X>)| < 2 while |e(<Y>)| = 4. If 

m = 3, then n = 5. It follows that Y has a vertex z of degree 4 joinèd 

to three vertices of degree 3 in Y, contradicting Lemma 2.1. If m = 2, 

then n = 6 and G is one of the two graphs given in Figure 3.3. However, 

both these graphs are 4-colourable.

Suppose J = K^^{e^'^2 '̂ where ê  and e2 are not independent. Then 

again 2 ^ m = 4 and 4 = n = 6. Similarly to the previous case, we can 

show that m 7̂ 4, 3. Suppose m = 2. Then n = 6 and G is the graph given 

in Figure 3.4. However, this graph is also 4-colourable.

—  —  —  —♦

Figure 3.4 Figure 3.5 Figure 3.6

Finally, suppose J; = H. Then there are four independent edges joining 

V(H) with Y because F ç E(G)^E(H). Hence in this case 4 < m < 6 and 

3 < n < 5 .  If m = 6, then n = 3̂ and Y = X, which is false. If m = 5, 

then n = 4 and G has three vertices of degree 3 in Y. Let z e Y be of

degree 4. By Lemma 2.1, d^(z) =2, I = <Y> and <Y^z> = P̂ , a path on three
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vertices, contradicting the fact that <X> = U 0^ or If m = 4,

then n = 5 and G has two vertices of degree 3 in Y. In this case, it is 

clear that the four edges joining V(H) with Y constitute F. Hence it is 

not difficult to see that G must be the graph given in Figure 3.5. 

However, this graph is 4-colourable.

The proof of Lemma 3.8 is now complete.

2 7 .Lemma 3.9 Any 2-connected graph G having degree-list 3 4 is

critical,except the graph of Figure 3.6.

Proof. The size of G is 17 > 4 ' Hence, by Lemma 2.7, G is

Class 2. If G is not critical, then by Lemma 2.3 G contains a

4-critical subgraph H. By the previous results, the order of H cannot be 

9. Since there is no critical graph of even order < 10 the order of H 

is either 7 or 5.

If H is of order 7, then the degree-list of H is either 24^ or 3^ 4^

(sfee catalogue). But no graph H having degree-list 24^ or 3^ 4^ can be
2 7extended to a graph having degree-list 3 4.

Next, there is only one 4-critical graph or order 5 and it can be
2 7extended in a unique way to a graph of order 9 having degree-list 3 4

as shown in Figure 3.6.

This completes the proof of Lemma 3.9.

/
Lemmas3.5 - 3.9 together complete the proof of Theorem 3.1.

3.3 5-CRITICAL-GRAPHS

Lemma 3.10 Let G be a A-critical graph of odd order n having size 

> A (^^̂ ) + 6(G) + 1. Then for every x eV(G) such that d(x) = 6(G),

Gnx has a 1-factor F.
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Proof. Let ê  be an edge incident with x. Let tt be a A-colouring

of and let E^,...,E^ be the colour classes of E(G^^). Assume that

|ê | > ... > |Ê |. Since |e(G^^)| > A (-^) + 6,where 6 = 6(G) and 

|Ê | = ... = [ê I = (n-1)/2. Now at least one of the colours 1, ..., 6 

i C^(x) because |Ĉ (x)| = d(x) - 1 = 6 - 1 .  The result follows by taking 

F = Ê , if i  ̂ (x), i < 6.

Open Problem. Is it true that if G is any A-critical graph of odd order, 

then for each x e V(G) such that d(x) = 6(G), Gnx has a 1-factor F?

Lemma 3.11. Let G be a 5-critical graph of order 9 and let x e V(G) be 

such that d(x) = 6(G). Then GNx has a 1-factor.

Proof. By Lemma 3.3 and Lemma 2.9, 19 < |e (G)| < 21. Lemma 3.11 follows

from Lemma 3.10 when |e(G)| > 20 or when 6(G) < 3. Now if 6(G) = 4,
5 4then by Lemma 2.1, n^ > 3 and the degree-list of G is either 4 5 or

3 64 5 . Thus |e (G)| > 20 and again Lemma 3.11 follows from Lemma 3.10.

Theorem 3.2 If G is a 5-critical graph of order 9, then |E(G)| = 21.

Proof. We shall prove that |e (G)| f 19 or 20. Suppose |E(G)| < 20.

By Lemmas3.11 and 3.4,for some vertex x of degree 6(G), Gn x has a 1-factor 

F such that G^F has a 4-critical subgraph H. By well-known results, |v(H)| 
f 8, 6. By the previous result on 4-critical graphs of order 9, |v(H)| 4̂ 9 

Hence |V(H)| = 7 or 5.

6 2 5Suppose I V(H) I = 7. Then the degree-list of H is either 24 or 3 4

(see catalogue) and |e (H)| = 13. Let {v̂ , v^} = V(G)'̂ V(H).

Suppose VjV2eE(G). Then by Lemma 2.8, d(v^) + d(v^) > 7. Thus there 

are at least five edges joining {v^, v^} with V(H). Moreover, F has at 

least two edges in H. Hence |E(G)| > 13 + 2 + 5 +  1 = 21, contradicting 

our original assumption. Hence we may further assume that v^V2^E(G).
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It is clear that F has at least two but not more than three edges in 

H. Suppose F has only two edges in H. If |E(G)| = 19, then d(v^) + 

dCvg) = 19 - (13 + 2) = 4 and so d(v^) = 2 = ^(v^); if |E(G)| = 20, 

d(v^) + d^v^) = 5 and so d(v^) = 2 and d(v2)= 3. In either case the only 

vertices of G which are of degree 2 are Vj and and so in Lemma 3.11
we can choose x = v^. But then F must have three edges in H, contradicting

our original assumption. This shows that F has three edges in H. However,

after adding three independent edges to H, the number of vertices of

degree 5 in H > 4. Hence, v^ and v^ can only be joined to < 3 vertices

in H and so d(v^) + d(v^) < 3 which is impossible.

Suppose |V(H) | = 5. Then H = K '̂̂ {û U2},u^, u^ e V(H) ('̂ ea catalogue)

and |E(H)| = 9. Let B be the set of edges joining V(H) with Z = V(G)'̂ V(H).

Suppose u^u^ € E(G) .Then |B| g 5. Let I = <Z> If jB| = 5, then

4 = 19 - (10 + 5) < |E(I)| < 20 - (10 + 5) = 5. Thus 6(G) < -̂ (5 + 2 x 5 )

from which it follows that 6(G) < 3. Hence F ç  Gsx for some x e Z.

Now |ẑ x| = 3 and |F| = 4  imply that u^u^ e F. It is easy to show that 

d(x) 5̂ 2. Hence d(x) = 3. Since 4 < |e(I)| < 5, there is z e Z such that 

xz eef<S). Let Z = {x,z,w^, w^}. Then d(z) + d(w^) + dXw^) < 2 x 5 + 5 -  3 = 12, 

Applying Lemma 2.1, it is not difficult to show that xw^, xw^ eE(G) is 

impossible. Suppose xw^ sGG) but xw^ Then since z and w^ are both

adjacent to at least 3 vertices of degree 5 and |B| = 5, we know that each

of z and ŵ  is adjacent to 2 vertices in H and both z and w^ are adjacent 

to w^ where d(w^) = 5. However, this is false because |B| =5. Suppose 

xw , xwg (:%). Since F ç G - x, xu^, xu^ £1E(G) and each vertex in ZNx is 

adjacent to exactly one vertex in H^{u^, Ug}. But then z cannot be 

adjacent to at least 3 vertices of degree 5. Hence |B| f 5. Now 

4>|b| > 19 - (10 + 5) = 4  implies that |b| =4. Thus 5 < 1E(l)| < 6.

In case |E(l)| = 6, applying Lemma 2.1 again, it is clear that d(x) f 3.

Hence all the vertices in Z are of degree 4 and are adjacent to each other, 

contradicting Lemma 2.1. In case |E(I)[ = 5, 6(G) <-^(5 x 2 + 4) from
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which it follows that 6(G) <3. It is easy to show that 6(G) 7 2. Hence

6(G) = 3 and I = - xw^, say, where ŵ  is of degree 3 and is adjacent

to 2 vertices in Z, each of which is of degree at most 4, contradicting 

Lemma 2.1.

Suppose Then F g  B. Now F s Gnx and F c B imply that

X E H. Hence 6(G) > 3 and |b| < 6. If &(G) = 3, we may assume that

d(u^) = 3 and x = û . Then G is a subgraph of the graph given in

Figure 3.7.

Figure 3.7

However j it is easy to verify that the graph in Figuré ,3.7 is

5-colourable. If 6(G) = 4, then {b| < 6 and |E(I)| = 4, 5, and 6. But

if |e(I)1 = 6 then |b[ <5, which contradicts Lemma 2.1, Hence

16 <  ̂ d(a) < 5 X 2 + 6 showing that |b| = 6, |e(I)| = 5 and d(a) = 4 
ael

for each a e I. But then Z has a vertex b adjacent to a vertex c e Z

(having degree 4) and ..bi is adjacent to only one vertex of degree 5,

contradicting Lemma 2.1.

The proof of Theorem 3.2 is complete.

Corollary 3.1 A 2-connected graph of order 9 5~criticàl if and only 

if its degree-list is one of the following: 25^, 345^ or 4^ 5̂ .

Proof. By Theorem 3.2, if G is a 5-critical graph of order 9, then

the degree-list is either 25^, 345^ or 4^ 5̂ .
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To prove the converse, we first note that, since |E(G)| > 5 ,

G is Class 2. Hence if G is not critical, it contains a proper critical 

subgraph H. Again, by Theorem 3.2, |v(H)[ f 9. Since there are no 

critical graphs of even order < 10, ]V(H)| = 7 or 5. Suppose |v(H)| = 7. 

Then the degree-list of G is either 25^, 345^ or 4^ 5^ (see catalogue).

However, none of the graphs having degree-lists 25^, 345^ and 4^ 5 can 

be extended to a graph having degree-list 25^, 345^ or 4^ 5̂ . It is also 

clear that |v(H)| f 5.

3.4 6-CRITICAL GRAPHS

Lemma 3.12 Let G be a A-cfiticàl graph'of odd order h 'having size

> A(^^^) +2. Then G has, a vertex y of degree < A such that G^y has a 

1-factor F.

Proof. Let x e G be such that d(x) = 6(G) and let xz e E(G) where

d(z) = A. Suppose ir is a A-colouring of Gnkz. Let E^,...,E^ be the

colour classes of E(GNxz) such that jE^j > ... > | |  . Since |E(GNxz)j

> A(^^) + 1, = (n-1)/2. ■ Now if colour 1 is present at z, then F=E^ is

a 1-factor of G^y for some y e V(G) having degree < A. Otherwise, by 

interchanging the colours 2 and 1 in the (2,1)^-chain having initial 

vertex z , we reduce it to the previous case.

Corollary 3.2 Let G be a 6-critical graph of order 9. Then G has a

vertex y of degree < A such that G^y has a 1-factor F.

Proof. By Lemmas 3.3 and 2.9, 21 < |E(G) | < 25. Corollary 3.2 now

follows from Lemma 3.12.

Theorem 3.3 If G is a 6-critical graph of order 9, then |E(G) | = 25.

Proof. We shall show that |E(G)| ^ 25. Suppose |E(G)| < 24. By

Corollary 3.2 and Lemma 3.4, there is y e V(G) having degree < 6,so that 

G^y has a 1-factor F such that G^F is Class 2 and hence has a 5-critical
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subgraph H. By now it should be obvious that |v(H) |  Y 6, 8 or 9. Hence 

Iv (H)[ = 7. The degree-list of H is either 25^, 345^ or 4^ 5^ (gee 

catalogue) and so |e (H)| = 16. Let {v^, v^} = V(G)\V(H). It is now also 

clear that v^ v^  ̂Ei.G) (see the third paragraph of the proof of Theorem 
3.2).

.Clearly F has at least two but not more than three edges in H. 

Suppose F has only two edges in H. Then d(v^) + d(v ) < |e (G)| - (16 + 2)

= |E(P)|-18. Let d(v^) < ^(v^). Hence if |e (G)| <24, d(v.) < 3. We

now show that for each w e V(H), d(w) >4.

5Let H have degree-list 345 . Assume z £ V(H) is such that dy(z) = 3

and d(z) = 3. Then I (d(w)-d (w))-2|E(H)nF| g I (d(w)-d (w))-4 ^ 7-4 =3,
w€H wEH^z ®

which is impossible. The case that the degree-list of H is 25 can be

similarly disposed of.

The above shows that v.̂ and v^ are the only possible vertices of 

degree 6(G). Hence, by Lemma 3.10, Ĝ v.̂  has a 1-factor F, unless 

|e (G)| = 21. However, if |e (G)| = 21, then d(v ) + d(v_) <21 - (16 + 2)

= 3,which is not true. On the other hand, if F is a 1-factor of G^v^, then 

F has three edges in H, contradicting our original assumption.

Finally, suppose F has three edges in H. Then T(d(w)-d (w))
, _ ,  ̂ well ^

- 2|E(H)nF| Û 4 and so G has two vertices, v̂  and V2, of degree 2

and the remainder have degree 6,. contradicting Lemma 3.1.

This completes the proof of Theorem 3.3.

Corollary 3.3. A 2-connected graph of order 9 is 6-ctitical if and only 

if its degree-list is one of: 26^, 356^, 4^ 6̂ , 45^ 6^ and 5^ 6̂ .

Proof. The proof is similar to that of Corollary 3.2.
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3.5 7-CRITICAL GRAPHS

Lemma 3.13 Let G be a 7-criticàl graph of order 9. Then G has a 

vertex y having degree < A such that G^y has a 1-factor F.

Proof. By Lemma 3.3 and Lemma 2.9, 23 < |E(G)| < 29. Lemma-3.13 now

follows from Lemma 3.12.

Theorem 3.4. If G is a 7-criticâl graph:of order 9, then |e (G)| = 29.

Proof. We shall prove that |e (G)| 29. Suppose |E(G)| < 28. By

Lemma 3.13 and 3.4, G has a near 1-factor F such that G^F contains a 

6-critical subgraph of H. The only possible order of H is 7. The 

degree-list of H is either 45^ 6^ or 5^ 6̂ . Hence |E(H)| = 19. Let 

{v̂ , v^} = V(G)\V(H). It is now clear that v.̂ Vg  ̂E(G) (See the third 

paragraph of the proof of Theorem 3.2) and d(v^) < 3.

Since |e (H)| = 19, F has exactly two edges in H. Now if |E(G)| >25, 

then by Lemma 3.10 F is a 1-factor of Ĝ v.̂ , say, which is impossible.

Since |e (H)| = 19, using Lemma 3.1, F has exactly two edges in H.

Now if |E(G)|  ̂25, then by Lemma 3.10 F could have been chosen to be a

1-factor of G\Vj, which is impossible.

On the other hand, if | E(G) | < 24, d(v^) + d(v^)= 24 -21 = 3  which is

false.

The proof of Theorem 3.4 is complete.

Corollary 3.4. A 2-connected graph G of order 9 ^  7-criticàl if and'only 

if its degree-list is one of : 27^, 367^, 457^, 46^ 7̂ , 5^67^, 56^ 7̂

and 6^ 7̂ .

Proof. This follows from Theorem 3.4 and the fact that there are no

critical graphs of order 8.

3.6 8-CRITICAL GRAPHS.

Lemma 3.14 Let G be an 8-critical graph of order 9 and let x e V(G) ^  

of degree 6(G). Then G^x has a 1-factor F.
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Proof. If G' = G^x does not have a 1-factor, then by Tutte*s theorem (Lebima 2.13) 
V(G') has a subset S such that |s| <h = number of odd components of Ĝ '̂ S.
Now since |v(G')| is even, |s| and h must be of the same parity.
Also since n > 3 (by Lemma 2.5), |s| > 3 and h è 5. Hence |s| = 3 and 
h = 5. However, this implies that G g + 0̂ , the sum of and 0̂ .

Hence 6(G) < 4. Applying Lemma 2.6, we have n^ >  6, which contradicts 

the fact that Isl =3.

Theorem 3.5 If G is an 8-critical: graph of•order 9;'then |E(G)| - 33.

Proof, By Lemmas 3.14 and 3.4,G has a vertex x of degree 6(G),so

that Gnx has a 1-factor F such that G^F contains a 7-critical subgraph H. 

Now the order of H must be 9. However, by Theorem 3.4,|E(H)| =29 and 

thus |E(G)| > 29 + 4 = 33. Theorem 3.5 now follows from Lemma 2.9.

Remarks. Theorem 3.5 has been confirmed by a recent result of

Plantholt; Plantholt’s result is also discussed in Chapter 5,and follows 

from Theorem 4.1.

Corollary 3.5. A graph of order 9 is 8-criticàl if and only if its 

degree-list is one of: 57^ 8^, 6^ 8^, 6 7 8 , 67 8 and 7 8 .

Proof. This follows from Theorem 3.5.

It is trivial that every critical graph is 2-connected. Also all 

the graphs with the degree lists mentioned in Theorems 3.1 - 3.5 are

2-connected. Therefore the hypothesis that G be 2-connected in these 

theorems can be dropped. However since graphs which are not connected 

are of no interest when considering criticality, it seems natural to 

retain the present statement.
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4. Embedding Nearly Complété Graphs

4.1 Introduc t ion

We now consider graphs G formed by removing n edges from the 

complete graph We give a necessary and sufficient condition for

any partial edge-colouring of G with 2n colours to be extended to a 

proper edge-colouring of G.

In [B2] Beineke and Wilson observed that any graph G obtained by 

removing q edges (q<n) from ^2n_+'j Class 2 and therefore needed 2n+1

colours for an edge-colouring. In [H5] Hilton conjectured that if q=n 

then G would be Class 1 and therefore could be edge-coloured with 2n 

colours. This would imply that if q = n-1 then G would be a critical 

graph. Hilton's conjecture is a special case of an earlier conjecture of 

Vizing [V3] that, if G is critical, then

2|E(G)1 > |v (g)|(|a (g)1-i) + 3.

In Hilton's conjecture the inequality becomes an equality. In [PI], 

Plantholt proved Hilton's conjecture. In [A 1;, Corollary 4.3.3],

Andersen and Hilton showed that an edge-colouring of with 2n-1 

colours can be extended to an edge-colouring of with the same 

colours if and only if each colour is used on at least r-n edges of K^.

In this chapter we show how an analogous result can be formulated and 

proved which implies Plantholt's theorem. Andersen and Hilton [Al] 

also showed that any partial edge-colouring of with 2n-1 colours 

can be extended to a proper edge-colouring of K2̂  with 2n-1 colours.

We show that the situation can be very different if instead we consider 

with n edges removed and the colouring uses 2n colours only.2n+1

We shall need the following result due to Hoffman and Kuhn [H6].
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Lemma 4.1 A necessary and sufficient condition for a finite family

(A.: i € I) of subsets of à finite : set to have à system ( : i € I) of

distinct representatives such that M g  U x . is that both of the 
— --------------------- :— :— —  . .. i€i . “
following sets of inequalities are satisfied;

I. 1 U A. I > ll’l (VI’ Ç 1),
iCl' ^

II. |fi: A^ n M’ f (|) and i E I}| > |M’| (VM’ g M) .

We shall call condition I, Hall’s condition, and condition II, the 

marginal condition.

4.2 Step-by-step extensions of edge-colourings.

Let G* be a graph obtained by removing n edges from . Let the

vertex set of G* be >^2’* * *’̂ 2n+1 ̂ ^ G * ^ ^ 2 ^  < ... <
d (v ) then we say that G* has a standard vertex labelling. With 
G* 2n+1-------------------------- ------- -
respect to a standard vertex labelling of G*, for 1 < r < 2n+1, let G^ 

be the restriction of G* to {v^,...,v^}, or, in other words, the maximal 

induced subgraph of G* with vertex set {v^,...,v^}; let - 2n 

Given a n  edge-colouring with a set of 2n colours of G^ for some r,

1 < r < 2n+1, let e^ (a) be the number of edges of G* coloured with

colour a.

Theorem 4.1. Let 1 < r < 2n+1 and let G* have a standard vertex labelling 

with respect to which G* is defined.

A necessary and sufficient condition for an edge-coloufing of G* 

with a set g of 2n colours to be extendible to an edge-colouring of G* 

with ^  is that:

there are pairwise disjoint sets C ^ »•••» of coloufs of 

^ such that
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(i) |Ĉ | = (1 < i < r),

(ii) no colour of C. is used in G* on an edge on the vertex   1   r-------- ---------------
(1 < i < r),

and

(iii)

(a) ^

r - n - 1  if o € C, U ... U C ,—  1 r

r - n  otherwise.

Proof.

Necessity. Suppose G* has an edge-colouring with a set of 2n colours.

For 1 <  i < 2n+1, the vertex v. has a set C. of 2n d_^(v.) colours missing1 1 G'* 1
from it. The number of edges of G* is - n = (2n)n, so each colour

is used on n edges exactly and is missing from exactly one vertex. There

fore each colour of C., the set of colours missing at v^, is not missing 

in G* at any other vertex. Therefore , . . . are pairwise disjoint, 

and so C^,...,C^ are pairwise disjoint.

For a € {̂  , the number of edges of G* coloured a with at least one

end on a vertex of > • • • >^2n+1 ̂ at most 2n + 1 - r. Each colour

is used in G* on exactly n edges. Therefore, the number of edges 

coloured o in G* is at least n - (2n + 1 - r) = r - n - 1. On the other 

hand, if o € U ... ^^2n+1’ there is a vertex in {v^^^,..., v^^^^}

at which a does not appear, so the number of edges of G* coloured o with 

at least one end on a vertex of {v^^^,...,V2̂ ^^} is at most 2n - r. It 

follows that the number of edges coloured a in G* is at least 

n - (2n - r) = r - n.

Sufficiency. Let 1 < r < 2n + 1, let (̂ = {0̂ ,...,^2 ^  and let G* satisfy

conditions (i), (ii) and (iii). If r = 2n + 1 then there is nothing to

prove, so suppose r < 2n + 1. Let U ... U = {a^,...,a^ }; then 

> r. We show that the given edge-colouring of G* can be extended to
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an edge-colouring of satisfying (i), (ii), and (iii) (with r + 1

replacing r, of course).

The description of the process we carry out is aided by the

construction of the bipartite graph H we now describe. The vertex sets

of H are {v!,... ,v’} U {w ,...,w } and {a',...,o’ ,c*}. The edges of1 r 1 ^r+1
H are as follows. For 1 < i < r ,  1 < j <  2n, vl is joined to o\ by an ̂ J
edge if a. is not used on an edge on v^ and is not in the set Ĉ . An

edge (v^ OÎ) means that the colour could be used on one of the edges

from v^ to i > • * * »''̂ 2n+1 vertex v^ is joined to o* by

2n + 1 - r - [{a!: o\ is joined to vl}[ -edges. This makes all vertices J J ^
VÎ have degree 2n + 1 - r. We now join the vertices w., ..., w 
 ̂ ‘ ^r+1

to all those colours which are not already used in C^, Ĉ , , Ĉ .

For q + 1 ^ j ^ 2n and 1 ^ i ^ c . ol is joined to w.. r r+1 j 1
The bipartite graph H is illustrated in Figure 4.1.
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degree 

2n+1-r <

a*a* degree < 2n - q

olJ

OO'

> degree < 2n + 1 - r

degree

2n-q

w.1
w.2

w 2nr̂+1

\  degree 2n - r + cr+1

Figure 4.1 The graph H

Let H* be Then

dflCvp

dnCw.)

d^(a*)

dafop

= 2n + 1 - r 

= 2n - qr
< 2n - qr

2n + 1 - r

2n - r + cr+1

(1 < i < r), 

(1 < i <

(1 < j <

(q̂  + 1 < j < 2n)

The first and second equalities follow immediately from the definitions

of a* and of w ,... ,w respectively. To show the inequality for d (a*)
^r+1
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r

d„(a*) = % {(2n + 1 - r) - d (vî)}
i± 1.

I {(2n + 1 - r) - (d (v.) - d_(v.))} 
i=1  ̂ r

and so is the number of edges of G*which join vertices of {v^,...,v^} to

vertices of » * * * >’'̂ 2n+1 know that the total deficiency is 2n,
r

and the deficiency of G* is Ec.. Hence the deficiency of G*SG*. isr i=ii r
r

- i c_ = 2n - q̂ ,
rI
i=1

and so the number of edges of G*from {v^,...,v^} to i > • • • »''̂ 2n+1 ̂

less than or equal to this. Therefore d^(a*) < 2n - q̂ . Finally to

show the inequality for d^(aj) : If 1 < j < q^ then, by assumption,

e (o.) > r - n - 1. Therefore a. is not used on at most r - 2(r - n - 1)
r  J J -  •
= 2n - r + 2 vertices of G *. However a. is in C. U ... U C , sor J 1 r
dy(Oj) < 2n-r+1. If q^^^ < j < 2n then, by assumption, e^(o^) > r-n. 

Therefore is not used on at most r - 2(r - n) = 2n-r vertices of G^*. 

However each vertex w^ (1 < i < c^^^) is joined to ol when q^+1 < j < 2n, 

so dg(oj) < 2n - r + .

Let M be the set of those o. such thatJ

e (a r J

f r - n - 1

.) = j
if 1 < j < qu.

r - n  if q + , 1 < j < 2n .

These Oj will be called marginal colours and the corresponding vertices

aj will be called marginal vertices. We want to be sure that these marginal

colours are used on the edges at v . so that the number of times eachr+1
colour is used satisfies the initial conditions.

We would like to find a set J of independent edges of H* which

covers each vertex of {v*,...,v'} U {w\,...,w } except for those vl
 ̂ ^r+1
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such that is not joined in to and which also covers each

vertex of M. For then if vjo^ E J then we colour v/v^+i with a y  and

if W.OÎ € J then we place a. in the set C_ Then c , colours will be 
1 J 2  ̂  ̂ '

placed in C Furthermore any marginal colour will either be used, to

colour an edge from v^^^ to one of {v.j,... ,v̂ }, or will be placed in

C By relabelling if necessary, we may assume that C . = {o ^
r+1 . ^r ^r+1
In the case where o . is used to colour an edge we haveJ

(r + 1) - n - 1 if 1 j

(r + 1) - n if q̂ +1 + 1 < j < 2n

In the other case a. is used in and so j >q ̂ + j , but j iâ q^.j : thus

^(Oj) = r - n = (r + 1) - n - 1 and q^ + 1 ^ j ^ ^rtl*•®r+

Thus marginal colours will satisfy (iii) with r + 1  replacing r, but 

will be marginal in that case also. Clearly non-marginal elements will 

satisfy (iii) with r + 1 replacing r.

Furthermore n = 0(1 < i < r), and it is easy to check that

the remaining parts of the conditions (i), (ii) and (iii) will be 

satisfied with r + 1 replacing r. Thus it remains to demonstrate the 

existence of a suitable set J. We do this by verifying the Hoffman-Kuhn 

inequalities of Lemma 4.1.

We show first that Hall*s condition is satisfied. Let

W’ Ç {w ,...,w } and V» c {v|,...,v^} and let V* contain no vertex v ’
^r+1

such that v^ is not joined in G to v^^^. Clearly if W* f 0 then

(W’)| = 2n - q^ > |W'|. We consider various cases with V* f 0-

Case HI. > 3 or = 2 and
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lNjj,(V’ UW')|

> |Njj, (V')i

>  |Njj, (v^)| for some v!.

>  2n - c . - J_

If 2n - c. - d- (v.) > r + c , then we obtain 1 1 r+1

|N , (V U H')| >  |{v } U {w }| >  |V| + |W'l,
“ ’ ^ . =r+1

as required. If, however, 2n - c. - d_ (v.) < r + c ,. then  ̂ . . 1 G 1 r+1r

2n < r + c. + + dg (v.)
r

and d (v. ) < r - 1,
‘̂r  ̂ --

SO
2n
y c . = 2 n <  2 r + c .  + c  ,, - 1 < 2 r + c .  + c  . - 1 1 1 r+1 1 r+1j = 1

so

I C + 2 C < 2r - 1.
j=2 . i=r+2

Since c > 2, we know that c. > 2 for i < r + 1. r+1 1
r 2n

Hence |  ̂ c.| > 2(r - 1) and it follows that J c. = 0 and that
j=2  ̂ i=r+2 ^

Cg = ... = c^ = 2. Consequently c^^^ < 2, a case which is considered

below.

Case H2. c* ,. = 2 and c _ = . . . =  c_ , = 0. Then   r+1 r+2 2n+1
r

d (a*) < 2n a - 2n -  ̂ c. < 2n - (2n - 2) = 2
i=1 1

Therefore

dnjCv!) > (2n + 1 - r ) - 2 = 2 n - r - 1  ( 1 < i < r )
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I f 2 n - r - l > r  + 2 then for some i, 1 < i < r,

INr , (v O| > 2 n - r - 1 > r  + 2 = r + > |V| + |w’| ,

from which Hall's condition follows. On the other hand, i f 2 n - r - 1 < r + 2
r+1

then 2n < 2r + 3, so n - ̂  < r. But 2(r + 1) < I c. = 2n, so
2 i=1 ^

r < n - 1. Therefore, in this case, r = n - 1 and c.̂ = ... = = 2.

It follows that dg, (vO  ̂ 2n - r - 1. If d̂ T (vO = 2n - r - 1 then this

implies that is not joined to 2 elements of > • • • >''̂ 2n+1
is not possible, since c^^^ = 2 and c^^^ = 0, i = 2,...,2n-r. Therefore 

(v.) = 2n-r or 2n-r+1 (1 < i < r). Therefore for any i, 1 < i < r,

INri (vpl > 2 n  - r = n + 1 = r + 2 > | V |  + |W | ,

from which Hall's condition again follows.

Case H3. c <1. Then |w| < 1. Consider the minimal subgraph

H" of H containing the set V  U W  of vertices and all edges of H on

these vertices. The number of edges in it is

|V'| (2n + 1 - r) if |W | = 0,

IV'I (2n + 1 - r) + (2n - q̂ ) if JW'I = 1.{
Each vertex o' has degree in H (and therefore in H") at most 2n + 1 - r, 

and o* has degree in H at most 2n - q̂ . It follows that if d^„(o*) <

2n - q then the number of o-vertices in H" is at least |V'| + |W| + 1,*r
so

(1) iNg, (v')| + iNg' (W')| > |v| + |W'|.

If d „(o*) = 2n - q^ = 0, then (1) is similarly true. If . 

d „(o*) =. 2n - q > 0, then we know that in G all edges on vertices

{v  V  1 have their other vertex in {v ,... ,v }. Now sincer+1 2n+1 I r
2n-q^ ^ 0, we know that > 1, and since < 1 we have = 1,

so there is a vertex v^ in {v^,...,v^} not joined to So by the

definition of V , v^ ^ V'. But this contradicts dĵ „(o*) = 2n-q^.

Thus, in all cases. Hall's condition is satisfied.
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Next we show that the marginal condition is satisfied. First we note 

that if

r r - n

 ̂ r - n

r - n - 1  for o € C. U...U C , 
e,(a) > ' 1 r

' Otherwise,

then o is not marginal. Therefore, if n > r there are no marginal symbols, 

so that the marginal condition is satisfied vacuously.

Suppose therefore from now that r > n. Then it follows that

c < 1. For if c . > 2 we would obtain the following contradiction: r+1 r+1

2n+1 r+1
2n = y c. > y c. > 2(r + 1) > 2r > 2n.

i=i  ̂ i=i ^

Thus c^^^ < 1. Therefore there is at most one vertex, say v̂ ' such that '
t tV € {v^,...,y^} and v is not joined in G to

Let M' be a set of marginal elements al. We wish to show that

|Ng, (M*)| > |M* I if v^ does not exist,

|Ng, (M')'̂ {v̂  } I > |M'| otherwise .

Consider the subgraph of H* consisting of the vertices of M' and the

vertices of

. +Nr iCM’) if V does not exist,
*î* •N , (M')^v otherwise,n.

and all edges of H' between these vertices. The number of such edges is 

equal to

r
Im’I d(a') if V does not exist.

and at least

|M’| d(a') - d(v^) otherwise

For a. E M we know that 1
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r - n - 1  for o. E(C U...U C ) fl M,f r - II - I tor u . cvo.

^  ̂  ̂r - n for a. £ NS(C. U ... U C ).
e (a.) =

 ̂T — n for ^ _ ... _ _1 1 r
n - ( r - n - 1  ) for a. £(C U...U C ) fl M,rii Vi — 1 1 — 17 tot u .

Hence d(oI) = < ^
 ̂ n̂ - (r - n) + 1 for o^ CMS(C.j U ... U C^),

and so

d ( a l ) = 2 n - r + 1  (Vo. €M).1 1

Therefore the number of edges in H’ from M' is equal to 

lM’|(2n-r+1) if does not exist
and is at least

|M’I (2n-r+1)-d(v'̂ )j;> |m '| (2n-r+1) - (2n-r)

= (1m ’1”’1) (2n-r+1) + 1 otherwise.

The marginal condition now follows from the fact that the maximum degree 

in the subgraph is (2h-r+1).

This proves the sufficiency and completes the proof of Theorem 4.1.

4.3. Extending partial edge-colourings.

A partial edge-colouring of a graph G is an edge-colouring of some 

subgraph G' of G. Andersen and Hilton showed in [Al ] that any partial 

edge-colouring of with (<2n-1) colours can be extended to an edge- 

colouring of with 2n-1 colours. We investigate the analogous problem 

for partial edge-colourings of G *.r

We first of all give a necessary and sufficient condition for the 

extendibility of an edge-colouring of Ĝ *, where r ^ n + 1; we only have to 

consider the sets of colours unused at each vertex.

Theorem 4.2. Let r < n +1 and let G* have a standard vertex labelling. 

Let G^* be edge-coloured with 2n colours, and, for 1 ^ i è r, let be 

the set of colours not used at vertex v^. This edge colouring of G^* can 

be extended to an édgé-côlouring of G* with 2h colours if and only if
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I U D. I > ÿ c. (V I s {1,...,r}).
i€I  ̂ ici ^

Proof. If we assume that can be extended,then by Theorem 4.1 we

know that there are pairwise disjoint sets C.j,...,C^ such that | Ĉ | = c^

and no colour of is used in G^* on an edge at v^. Hence S a.nd

I U D. I > I U C.| = % c. (V I s {1,...,r}).
iCI  ̂ i€I  ̂ iCI 7"

We now assume that

I U D.l > i c. (Vic {1,...,r})
iCI  ̂ iCI ^

and show that we can find pairwise disjoint sets of colours C^(i =1, . ..,r) 

such that (i), (ii) and (iii) of Theorem 4.1 are satisfied.

To find the it is sufficient to show that the family

(D^^, . . . ,Ü2i,...,D2c^,. • • • • • »D^c^) ,

where, for 1 < i < r, = ... = = D^, has a system of distinct

representatives. For then, by Hall's theorem [H6],

I U U D I > i |J I
i€I j€d J iCI

(V I c{1,...,r}, i G I, <= 1,...c^}) •

But this is equivalent to saying that

1 U D. I > I c.(V I c{1,...,r}), 
i€I  ̂ i€I^

which is true by assumption.

Condition (i) holds since |Ĉ | = ĉ  and (ii) is true since C^ g D^.

We now show that (iii) holds. If r < n then this condition is vacuous, so

assume r = n+1. Suppose that there is a colour a which is not in

C., U U C . and that a does not occur on any edge of G G has1 n+1 n+1 n+i
a vertex of degree at least n—1, for otherwise  ̂ c. > 2(n+1), which

i=:i ^
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n

contradicts the fact that J c. = 2n. So there are at least n-1 colours
i=I ^

used in One of these colours, say t, must be in 0...U since

|C;j U...U Ĉ l >n+1. We replace the colour t in U...U by the colour 

o. We can repeat this operation if necessary. This shows that (iii) can 

be made true consistently with (i) and (ii), and hence that can be 

extended to an edge-colouring of G*.

Corollary 4.1. Let r < n + 1. j[£ 2n - r + 1 > c.̂ + ... + ĉ  then any 

partial edge-colouring of G^* ' with 2h colours ' can be extended to an edge- 

colouring of G*.

Proof. The maximum degree in G^* of any vertex v^ of G^* is at most

r-1 and hence [d |̂ > 2n-r+1 (1 < i < r). Therefore

| U D . | > 2 n - r + 1 >   ̂ c. ( V I ç { 1,... ,r}),
i€I ^ i€I

SO the corollary follows from Theorem 4.2.

We now give a theorem which shows that it is possible to obtain 

graphs G* and partial subgraphs G^* where an edge-colouring of G^* is not 

extendible to G*. This is in sharp contrast to the result that a partial 

edge-colouring of with 2n-1 colours can always be extended to an edge- 

colouring of with 2n-1 colours.

Ii\Theorem 4.3. Let r be even and \ 2 / ̂  ^ ^ ~2 ’ Then there àré graphs G* 

and partial edge colourings of G^* with 2n colours such that the partial 

edge colouring of G^* cannot be extended to an edge-colouring of G.

Proof. Let G* be the graph obtained by removing from K^n+I' ^ edges

whose end vertices all lie in a set {v^,...,v^} of vertices.

This is possible since I ^  I > n and < 2n+1. Let F be a set of

Y independent edges o f e a c h  edge having exactly one
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end in the set {v ,...,v }, and colour G * with (<2n) colours so that all ---- r
2the edges of F receive the same colour,

To show that we can colour G^* in this way, consider G^*^F. This 

has maximum degree r-2 and hence can be edge-coloured with r-1 colours. 

Colour F with a new colour. Then G^* is edge-coloured with r colours 

(and r<2n). Then, since one colour is used at every vertex.

I U D. I < 2n-1
i£{1,...,r} 1

whereas

ÿ c. = 2n.
i€{1,...,r} 1

Therefore by Theorem 4.2, the edge-colouring cannot be extended to an edge 

-colouring of G* with 2n colours.

This proves Theorem 4.3.

In contrast to this, we show in the next theorem that if = n 

then any edge-colouring of G*̂ .̂  can be extended to an edge-colouring of 

G* with 2n colours.

Theorem 4.4. j[f c j = n then any edge-colouring of G*j with 2n colours can 

•be extended to-an-édgè-côlôùfing'ôf G^'with 2h colours.

Proof. Since = n, it follows that ^ ^

that in G* v. is not joined to any other vertex. Thus |d | = 2n. n+1 1 '
Since |Pu| > n+1 (2 < i < n+1),

n+1
if ICI then U D. > 2n > ÿ c. >  ̂c.,and

iCI  ̂ i=I ̂  iCI ̂
n+1

if 101 then U D. > n+1 > X > I
iCI  ̂ i=2 ̂  iCI ̂

so Theorem 4.4 follows from Theorem 4.2.
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oGiven r, let n^ be the least integer such that if n ^ n̂  

then, for any graph G* formed from by removing n edges, any

edge-colouring of G^* with 2n colours can be extended to an edge- 

colouring of G with 2n colours. Theorem 4.3 shows that n_ > ̂ 2 ^  i 

We make the following conjecture.

Conjecture 4.1.

no
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5. Nearly conpléte graphs : of odd'order.

5.1 Introduction

In [PI] Plantholt showed that if we remove q edges from then

the resulting graph G has (G)=2n+I if and only if q < n. We have already

proved this by an inductive argument in Chapter 4. We now give another

proof of Plantholt's theorem and also give the "next case” of Vizing s

conjecture (see Section 4.1), namely that if 2n edges are removed from

K giving a graph H, and if the maximum degree of H is 2nr 1, then H is 
2n+1 ’
edge-colourable with 2n-1 colours.

We shall make use of the following result. An edge-colouring of a 

graph is equalized if ||Ê | - |Ê || <1, whenever E^ and Ê  are the sets of 

edges of G of two distinct colours. McDiarmid [Ml] and-de Werra [W2] 

proved the following.

Lemma 5.1 If G has an édgê-colôùr itig : with à set of colours, then it haŝ

an equalized edge—colouring with the same set of colours.

5.2 The second case of Vizing»sCohjéctùre

First we need the following lemma.

Lemma 5.2 Let G be a multigraph with at most two vertices b (and pôssibly

c) of highest degree, let all the non-simple edges be incident with b, àn^ 

if b and c are joined by more than one edge, let there be à vertex w such 

that w is joined to c but not to b. Let G not contain a subgraph on

three vertices with A(G) + 1 edges. Then

X'(G) = A(G).

Proof. Let W be the set of vertices of G joined in G to b by non

simple edges. Let H and H* be the simple subgraph and the sub-multigraph 

respectively of G induced by W U {b}. We show first that %'(%*) < ^(G)*
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If H is Class 1, then edge-colour H with |V(H)| — 1 colours, and 

extend this to an edge-colouring of H* by colouring each of the extra 

edges on b with an extra colour. Then the number of colours used will 

be < A(G).

If H is Class 2, then edge-colour H with |v(H)| colours. If the

colour, say a, missing at b is also missing at some other vertex, say v*,

then colour one of the extra edges joining b to v* with a, and colour

the remaining extra edges on b with an extra colour. Then the number of

colours used will be djjj,(b) A(G). On the other hand, if ot is missing

at no other vertex, then |v(H)| is odd. Colour the extra edges on b with

extra colours. Then the total number of colours used will be dĵ Ĉb) + 1.

If + 1 < A(G) then this is the desired edge-colouring of H*.

Since d̂ ĵ̂ Cb) < A (G), we have used at most A(G) + 1 colours, or at most

one colour too many. In that case we replace the colour a on all the 
1•j(|V(H)| - 1) edges of H at which it now occurs by extra colours. Provided 

|V(H)| >  5, there is such an extra colour which is not present in H* on

either of the vertices of an edge coloured a. Thus in this case, if 

|V(H)| > 5, then < A(G). If |v(H)| = 3, since G does not contain

a subgraph on three vertices with A(G) + 1 edges, the number of edges in 

H* is at most A(G), so clearly x*(H*) < A(G).

We now show how to obtain from this an edge-colouring of G with A(G) 

colours. First colour E(G^H*) with A(G) colours. This can be done by 

Lemma 2.5, since G^H* has at most one vertex of degree A(G).

Then colour the edges of G joining H* to GnH* using Vizing's original 

argument [V1 ], always having the pivot vertex of each of the fans in 

V(G^H-), and choosing the last edge, or the last two edges, as follows.

If b is the only vertex of maximum degree, choose an edge on b last. If 

b and c both exist, suppose first that c € V(GsH*). If c is joined to b, 

then colour the edge be last. If c is not joined to b, colour an edge on
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b next to last, and an edge on c last. If c £ V(H*) then colour an 

edge on b next to last and the edge wc last. Vizing*s original argument 

will apply as, at any stage during the construction of the fans, there 

will always be a further colour available on the vertex at the other end 

from the pivot of the most recently adjoined edge; except at the final 

stage, such a further colour is then used to define the next edge of the 

fan. This yields the desired colouring of G with A(G) colours.

We have already found a direct proof of Plantholt* s theorem using 

Theorem 4.1. We next give another way of proving Plantholt*s theorem, 

also using Theorem 4.1; the amount by which the proof depends on 

Theorem 4.1 varies (according to the choice of r).

Proof of Plantholt*s theorem. Let 1 < r < 2n. From G* construct a multi-------—— ------------------ r - -
graph G** by adjoining a further vertex v* and, for 1 < i < r, c% edges

joining v* to v^ Since v^ is joined to Vg^^^ we know that d(v^) in G**

is<2n-1 (vi, 1 < i < r). By Lemma 5.2, x'(G**) < I c. < 2n. By Lemma
Ki<r

5.1, an edge-colouring of G** can be equalized; then the conditions of 

Theorem 4.1 are satisfied by G*, so that G* can be edge-coloured with 2n 

colours.

When r = 2n, Theorem 4.1 is so trivial that the above proof of 

Plantholt*s theorem is really self-contained. The proof of the next 

theorem, the *next-case* of Vizing*s conjecture, is essentially an 

imitation of the "r = 2n proof" above of Plantholt*s theorem.

Theorem 5.1 Let H be a simple graph such that | V(H) | = 2n + 1, | E(H) |
n+
2= (^^b -'2n ar^ A(H) = 2n - 1. Then x'(H) = 2n-1.

Proof. First suppose that n > 4. There is in H a vertex, say Vg^+j,

of degree 2n - 1. Let the other vertices be v.̂ ,... Let H* = ^^2n+1 *

Then H* has one vertex, say Vg^, of degree of most 2n -1, the remainder 

having degree at most 2n - 2. For 1 < i < 2n + 1, let h^ = (2n-1) - d^(v^)
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Let H ’* be formed from H* by adjoining a further vertex v* and inserting

h. edges between v* and v., for 1 < i < 2n. Then 1 1

d = I h. = 2n - 1.
“ Ki<2n ^

Also ~ 2n - 1 and = 2n - 2 (1 < i < 2n - 1). Except

in the case when v^^ and v* are joined by more than one edge and there

does not exist a vertex w joined to v_ and not to v*,then, by Lemma 5.2,

H** has an edge-colouring with 2n-1 colours. In the exceptional case,

since every vertex to v^^ is also joined to v*, there can be no further

multiple edges. We remove an independent set F of n edges containing an

edge on v^^ and an edge on v* (but not an edge joining v^^ to v*) and

avoiding a vertex v' which was not joined to either of v^^ or v*. Since

n > 4, it is easy to see that there is such an F, as follows. Consider

H*^{v ,v*,v*} where v is a vertex other than v_ joined to v*. This X X 2n
graph has 2n-2 vertices and minimum degree 2n-5. Now by Dirac's theorem

1[D2] there exists a Hamilton cycle if 2n—5 > (2n-2), i.e. n > 4. We

take alternate edges of the cycle together with edge y^ v* for F. Let e be

an edge on v*. By Lemma 5.2, we can now colourH'*'s(FUe) with 2n-2 colours. 

Then colour e also, using Vizing*s argument with v* as the pivot vertex. 

Then again we obtain an edge-colouring of H** with 2n-1 colours. In both 

cases,in the edge-colouring obtained, v^,...,V2^_^ each have one colour 

missing, since the number of edges of H** is n(2n-1) and every colour is 

on at most n edges. Therefore each colour is on exactly n edges and each 

colour is missing from exactly one vertex. Therefore '̂ 2xi+'\ be 

adjoined to H** and, for 1 < i < 2n - 1, the edge v^ ^2n+1 inserted with 

the colour on it being the colour missing at v^ in H’*. Finally v* can 

be deleted. This yields the graph H edge-coloured with 2n - 1 colours.

For n < 3, the theorem is easily deduced from results of Fiorini [F4] 

and Chapter 3.

This proves Theorem 5.1.
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From Plantholt*s theorem and Theorem 5.1 one may easily deduce that 

the edge-chromatic class which a graph on 2n + 1 vertices with at least 

- (3n - 1) edges belongs to is determined solely by the maximum 

degree and the number of edges, as indicated in Chart 1.

Number of.edges.;

/2n+1\
r  ) - (n- 1)
'2n+1

2
'2n+1(T ) - ■ 
C )  - <• • ■>

'2n+1

2
r2n+1 

2
r2n+1

)-
/2n+1\
V J "

(2n.-1 )

2n

/2n+1\
( ) - (3n - 1)

Class

>

2 if A(G) = 2n - 1 

1 if A(G) = 2n

2 if A(G) = 2n - 2 

1 if A(G) > 2n - 1

Chart 1
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5.3. Some final reniarks and conjectures

Plantholt's Theorem and Theorem 5.1 verify the case r = 1 and r = 2 

of the following conjecture.

Conjecture 5.1 Let 1 < r < n. Let G hé à simple graph with 2n+1 vertices

and maximum degree A(G) = 2n+1—r. Then G is Class 2 if and only if , 

for some s such that 0 < s < and for : some set ' '̂ 2s ̂

1e(G\{vi,V2,..,V2s1)1 > _ (r-2s)(n-s).

For 1 < a < “Y ”’ can construct examples of graphs of Class 2 which 

do not satisfy the inequality with 1 < s < a but do satisfy it for s = a. 

Let H be a graph obtained from a K2(n-s) + 1 by removing (r-2s) (n-s)-l edges 

in such a way that the maximum degree A(H) of H is given by A(H) = 2 (n-s)

+ 1 - (r - 2s) = 2n-r+1. The graph H* consisting of H together with 2s 

isolated vertices is such an example. Then H* is Class 2 since

<2(n-s) + 1 

2

/2(n-s) + 1 \
|e(H*)| = J -  [(r-2s)(n-s)-1]

= [2(n-s)+1 - (r-2g)] (n-s) + 1

and no set of independent edges of H* can consist of more than n-s edges. 

Provided the maximum degree is not increased, edges can be adjoined to 

this example to yield further examples.

When r = 1 or r = 2, Conjecture 5.1 is equivalent to the following 

conjecture.

Conjecture 5.2 Let 1 < r < n. Let G be a regular , multigraph on 2n+2 

vertices of degree 2n+1-r in which all non-simple edges are on the same 

vertex. Let G not contain a subgraph oh three vertices with 2n+2-r edges 

Then y’(G) = 2n+1-r.

In the case when G is simple, r = 3 and the complement of G is the 

union of three 1-factors,Conjecture 5.2 has been verified by Rosa and
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Wallis [RI]. This is also proved when G is simple and (2n+1-r) > y (2n+2) 

in Chapter 9.

Conjecture 5.1 implies the following conjecture.

Conjecture 5.3 Let 1 < r < n. Let G hé à critical graph with 2n+1 

vertices and maximum degree 2n+1-r. Then

'2n+1/zn-f
|E(G)I = ^ j - rn + 1 .

For 2 < r < n and for graphs of maximum degree 2n + 1 - r with 2n + 1 

vertices. Conjecture 5.3 is stronger than the conjecture of Vizing referred 

to in the introduction to Chapter 4. Whereas in Conjecture 5.3 a critical 

graph has

2n^ - (r - 1)n + 1

edges, according to the Vizing conjecture a critical graph has at least
2 1 2n - (r - 1 )n - y (r - 3)

edges. For 1 < r < 2, the two conjectures coincide.

The restriction r < n in Conjectures 5.1, 5.2 and 5.3 would be 

best possible, as the example of two disjoint when n is even,

shows that r cannot be increased to n + 1 in Conjecture 5.2.

We also have the following conjecture.

Conjecture 5.4. If a regular multigraph on 2h vertices of degree 2n - 1 

has no submultigraph consisting of three vertices and 2n + 1 edges, then 

it can be edge-coloured with 2n colours.

Of course. Conjecture 5.4 is true for simple graphs.
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6. The chromatic index of graphs of even.order with many édgès.

6.1 Introduction

Following the results on odd order graphs in Chapter 5 we now 

consider even order graphs. We show :

Theorem 6.1 For r = 1 or 2'à 'graph.G with 2n+2 vertices and maximum degree 

2n+1-r is of Class 2 if and only if

|e (Gv.v )| > - rn,

where v is a vertex of minimum degree.

We make a conjecture for 1 < r < n of which this result is a special 

case. For r = 1 this result is due to PlanthoIt [P2]._..

6.2 Even order graphs with large degree

Proof of Theorem 6.1. Since ” rn = (2n+1-r)n, it is easy to see

that the inequality is sufficient for G to be of Class 2. We shall now 

prove the necessity.

Assume that G is a simple graph with 2n+2 vertices, maximum degree 

A(G) = 2n+1-r, such that E(G^w) < - rn (V w € V(G)), and r = 1 or 2,

We first create a graph H on 2n+2 vertices by adding in as many edges 

as possible to G in such a way that

(i) |e(h^w)| < PT') " ™  ( V W e v(H)3,

(ii) A(H) = 2n+1-r, and

(iii) H is a simple graph.

Let the vertices of H of degree less than 2n + 1 - r be called v^,...,Vp.

Let the remaining vertices of H be ^p+i>*••»^2n+2* either
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|e (H\v*)| = - rn

for some vertex v*, or

|e(HSw)| < {^ 2̂ ^^ - rn (Vw € V(H)),

-v,j,...,v̂  are all joined to each other, and 2n > p > 2.

(If p=0 or 1 then for at least one vertex v E(H\v ) ^ ~

hence p ^ 2. To see that 2n ^ p, notice that if p = 2n+l or 2n+2

then the degrees of v^,...,v^ would be > 2n, a contradiction.)

Suppose first that, for some vertex v*,

|e (hsv*)| =

Then, since Conjecture 5.1 is true for r = 1 and r = 2, Rsv* can be edge- 

coloured with 2n + 1 - r colours. Since |E(Hsv*)| = n(2n +1 - r), each 

colour class occurs on n edges. Therefore each colour is missing in HNv^ 

from exactly one vertex. Therefore v* and the edges of H on it can be 

adjoined with the edges receiving distinct colours. This yields an 

edge-colouring of H with 2n + 1 - r colours and, therefore, an edge-

colouring of G with 2n + 1 - r colours.

Next suppose that

|E(H ŵ ;i| < - rn (Vw 6 V(H)),

v^,...,v are all joined to each other, and p >  2. We now add edges to H 

onto the vertices v^,...,Vp, creating in each case multiple edges, but not 

loops, so as to form a regular multigraph H* of degree 2n + 1 - r on 

2n + 2 vertices. To see that this can actually be done:

For 1 < i < 2n + 2, let 6̂  = 2n + 1 - r - dy(v^). We may assume that 

6i > Ô2 > ... > (Sp (if not, then we may relabel the vertices v^,.. .,v^).

We have to show that there is a loopless multigraph with degree 

sequence (6,, dL, ..., 6 ). By a result of Hakimi [H3], there is such a1 2 p
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loopless multigraph if and only if 

P
(mi) I Ô. is even, and 

i=1 ^

P
(mil) 6 ,< % 6..

T i=2 1

In our case, (mi) is satisfied since

p 2n+2
V Ô. = (2n + 2)(2n + 1 - r) -  ̂ d (v. ),

i=1 i=1

which is even since H is a graph. Also (mii) is satisfied,

s ince

À
= {(2n + 1)(2n + 1 - r) - 2|e (HSv )| - d^(v^)} - {(2n_+ 1 - r) - d^(v^)}

= 2n(2n + 1 - r) - 2|E(ENv^)|

> 2n(2n + 1 - r) - 2^^^* ^ - rnj, by our assumption,

= 0.

From H* delete a vertex x, x € '(Vp+'i > • • • >''̂ 2n+2̂  * Then x is joined
to at least p - r of v^,...,v^, has no multiple edges on it and H*Sx has

r vertices of maximum degree 2n + 1 — r. When r = 2, if possible select

X so that, in addition, in H*^x, at least one of the two vertices of

maximum degree is in » • • • »^2n+1 ̂ this is not possible, then,

again if possible, in addition select x so that there exists a vertex

y G {v .,...,V -} such that y is adjacent to one of the two vertices p+1 2n+2
of maximum degree in H*Nx and is non—adjacent to the other. The case when 

we cannot choose x to satisfy in addition either of these possibilities 

is considered at the end.
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If r = 1, or if r = 2 and one of the two additional requirements

for the selection of x can be satisfied, then we now proceed to show that

H'^x can be edge-coloured with 2n + 1 - r colours. First we edge-colour

the complete subgraph of H*~sx on the vertices v^,...,v^ with p colours

if p > 3 or with one colour if p = 2. We show below that |e (H*)1 - |e (H)|

< ^ P P ̂   ̂Therefore, giving the edges of E(H*)'̂ E(H)[2n + 2 - r - p if p = 2. ° ®
at most this number of further colours, we use at most 2n + 1 - r colours 

in all on the maximal submultigraph of H*Sx on v,j,... ,v̂ . To see that 

Ie (H*)[ - 1e (H)| < 2 n  + 1 - r - p ,  consider the graph H (the complement of

H), Each vertex v with d-(v) > r is joined in H solely to vertices of

degree r in H. Therefore the total number of edges in H joining vertices 

of degree > r in H (i.e. v^,...,Vp) to vertices of degree r in H is at most 

(2n + 2  - p)r. Therefore 

P E
I 3; = % - r)
i=1  ̂ i=1 ^ ^

= {J,
< (2n + 2 - p) r - rp 

= 2(n + 1 - p)r.

Therefore the number of edges of E(H*)'̂ E(H) is

I (J, 'i)< (n + 1 - p)r

< 2n + 2 - 2p

f2n+1-r-p if p > 3 and r < 2
(2n+2-r-p if p = 2 and r < 2.

Next we colour H*^iv^,...,v^,x} with 2n + 1 - r colours. This can 

be done since 2n + 1 - r > 2n - 1 and the number of vertices of 

H*^{v^,... ,v^,x} is 2n + 2 - p - 1 = 2n + 1 - p, which is at most 2n-1 

since p > 2.
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Finally we colour the edges joining the maximal submultigraph of H*\x 

on v,,...,v to the subgraph ,...,v ,x}. This can be done by Vizing*s1 p I p
original argument [VI] if the pivot vertex is always in ,...,v^,x}

and if the final edge to be coloured is as follows. If r = 1 then the 

final edge must be incident with the vertex of maximum degree. If r = 2, 

let the two vertices of maximum degree be b and c. If at least one of 

these, say c, is in H*<{v^,... ,v^,x}, then, if b and c are joined, colour 

the edge be last. If b and c are not joined, then colour an edge on b 

next to last, and colour an edge on c last. If both b and c are in the 

set {v^,...,Vp} but there is a vertex y E .-,V2n+2^ joined to b

but not to c, colour an edge on c next to last, and the edge yb last.

Vizing*s original argument will apply as, at any stage during the 

construction of the fans, there will always be a further colour available 

on the vertex at the other end from the pivot of the most recently adjoined 

edge; except at the final stage, such a further colour is then used to 

define the next stage of the fan. This yields the desired colouring of 

H*Nx with 2n + 1 - r colours. From this we obtain an edge-colouring of G 

with 2n + 1 - r colours by the same argument as when (1) applied (with 

H* and x instead of H and v).

It remains to consider the case when x cannot be chosen to satisfy 

either of the additional conditions. Since it is not possible to select 

X  so that, in addition to the other requirements, in H*Nx, at least one 

of the two vertices of maximum degree is in • »^2n+2^’ follows

that the subgraph of H* induced by » * • * >''̂ 2n+2̂  complete. We

already know that the sub (simple) graph of H* induced by {v^,...,v^} is 

complete. Since A(H*) = 2n + 1 - r, in this case it follows that each 

vertex of '̂''̂p+i > * * • >''̂ 2n+2̂  joined to all but two of {v^,...,v^}. Since 
it is not possible to select x so that, in addition to the other 

requirements, there is a vertex y ^ '̂'̂p+.-j > * * * >^2n+2^ such that y is 
adjacent to one of the two vertices of maximum degree in H*^x and non-
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adjacent to the other, it now follows that p is even and that

{v^,...,Vp} and v* • • have the property that, after re-ordering

if necessary, there are integers r^ =0, = 2n + 2 - p such

that, for 1 < i < y, ^21-1 v^^ are both non-adjacent to

V ,,...,v but are both adjacent to the rest of {v ,,...,v_p+r. ,+1 p+r. P+l zn+z
^  1 - 1  1

and that r. - r. . > 3.
1 1 - 1

Suppose p > 4 and consider the graph H*. We can show that this

graph has a 1-factor. Consider ,V2,v^^^ ,v^^^ This graph
1 1

contains two complete subgraphs on {v_,...,v } and

{v „,...,V  ̂ ,v ^ _,...,v« which will each have a 1-factor. IfP+1 p+r^ p+r +̂3 2n+2
we take these two 1-factors together with the edges v^v^^^ and 

then we have a 1-factor F of H* containing the edge

Now consider H*^F. The same argument we applied to H*Nx earlier,

now applies (with trivial modifications) to (H’̂F|>v̂ _̂ ,ĵ  since the sub (simple)

graph of (H’̂ F)'w^^^ induced by v^,... ,v̂  can be coloured with p - 1

colours, as p is even, and since the vertices v;̂ , v^ have maximum degree

in (H*^F)\v , and v is adjacent in it to v but non-adjacent inp+1 p+1+r^ z
it to v^. Consequently H*^F is Class 1, therefore so is H*, and so it 

follows that G is Class 1.

Finally suppose that p = 2. Then H* is plus two more 

vertices joined by 2n—1 multiple edges. Hence H* is Class 1 and working 

back G is Class 1.

This proves Theorem 6.1.

6.3 Conjectures.

Conjecture 6.1. Let 1 < r < n. Let G be a simple graph with 2n+2 

vertices and maximum degree A(G) = 2n+1—r. Then G is Class 2 if and only 

' if for some s' such that 0 < s < ̂ y^- and for some set {v^,.. * j^2s+1 ^(G) ,

|E(GMv,,...,v2g^,}| > (2n+1-2S) _ (r_2s)(„-s).
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When r = 1 or 2 then s = 0 and the last inequality becomes 

IE(G^v) I > ^) - rn. From Theorem 6.1, Conjecture 6.1

is true for r = 1 and for r = 2. The case r = 1 was proved 

earlier by Plantholt [P2].

In Chapter 5 we formulated a similar conjecture. Conjecture 5.1, 

for graphs of odd order. If Conjecture 5.1 is true then Conjecture 6.1 

can be reformulated.

Conjecture 6.1*.Under thé conditions.of Conjecture 6.1, G is Class 2 if 

and only if Gmt is Class 2 and A(G^) = A(G).

Jakobsen [J4] and independently, Beineke and Wilson .[B2] conjectured 

that all critical graphs have an odd number of vertices. This conjecture 

has recently been disproved by Gol'dberg [G3]. However if Conjecture 6.1* 

were true, it would imply the following modified version of the Critical 

Graph Conjecture.

Conjecture 6.3. There are no critical graphs of order 2n+2 and'maximum 

degree at least n+1.

A corollary to Theorem 6.1 is therefore:

Corollary 6.1. There are no critical graphs of order 2n+2 and'maximum 

degree 2h or 2n-1.

In order to see that there must be some bound on the value of r in 

Conjecture 6.1, let G be the even order critical graph discovered by 

GolMberg. Then j v (G ) |= 2 2 ,  A(G) = 3,|e (G)|= 31 and r = 18. Then the 

inequality in Conjecture 6.1 would give

|E(G^v) I > - rn = - 18.10 = 30.
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But in Gol*dberg's graph, |e (G v̂ )| is 29 for a vertex v of 

minimum degree and hence would be a counterexample for a large 

value of r.
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7. Chromatic class of graphs'with à given order and at most 4 vertices 

of maximum degree.

7.1. Introduction and statement of results.

In this chapter and the next we investigate the chromatic class of 

graphs when the number of vertices of maximum degree is fixed. If a 

graph G has just one or two vertices of maximum degree, then only a slight 

development of the proof of Vizing*s theorem is needed to show that G is 

Class 1. However, if G has three vertices of maximum degree all joined 

to each other, then the proof of Vizing*s theorem does not seem to lend 

itself to be adapted to prove some analagous result. The key step which 

inspired the next three chapters was the proof ôf the following proposition,

Proposition. Let G be a connected graph with three vertices of maximum 

degree. Then

G is Class 2 

if and only if

for some n, G is obtained from by removing n-1 independent edges.

In this chapter we develop this theme for graphs with up to four 

vertices of maximum degree.

We have the following result for graphs of even order.

Theorem 7.1 Let G be a graph of order 2n with r vertices of maximum 

degree. I£ 1 < r ^ 4 then G is not critical.

We conjecture the following:

Conjecture 7.1. Theorem 7.1 is true for 1 < r < n.

Our proof of Theorem 7.1 is rather long and complicated. We suspect 

that a similar proof would work to prove Conjecture 7.1 when r = 5, but 

would fail when r > 6. However, we were deterred by the amount of work
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involved.

We also have a corresponding result for graphs of odd order.

Theorem 7.2. Let G be à graph : of order 2n+1 with r vertices'of maximum 

degree. ^  1 < r < 4, then ' the : following : are ' equivalent:

(i) G is critical,

(ii) |e (G)| =nA+1,

(iii) G is (r-2)-edge connected and Class 2.

Conjecture 7.2. Let G be. à graph:of : order 2n+1. with r vertices of 

maximum degree. If 1 < r < n+1 then thé ' f ollowing are ‘ equivalent :

(i) G is critical,

(ii) |e (G) I = nA+1, - --

(iii) G is (r-2)-edge-cohnéctéd and Class 2, and |E(G)| < nA+1.

In this case, our proof of Theorem 7.2 will not extend to give a proof 
of Conjecture 7.2 when r = 5. The reason is that in the case when r = 4, 

one can deduce from Lemma 7.2 that A(G) >y|v(G)j, and the number y|v(6)) 
is compatible with the applications we have to make of Dirac's theorem 

(Lemma 7.5). However in the case when r = 5, one can only deduce from 
Lemma 7.2 that A(G) > y| V(G) | . (In the case of Conjecture 7.1 when 
|v(G)| is even, it turns out that when r = 5 the inequality A(G) > y|V(G) | 
(actually A(G) > y(| V(G) |-1)) can always be obtained from Lemma 7.3, as 
the graph G of even order with r = 5 satisfies 6(G) < A(G)-2, so we can 
put s > 2 in that Lemma.)

The bound r < n+1 comes from the fact that if |e(G) | = nA+1 then the 

edge-connectivity is at least 2n-r+2 (see Lemma 8.11), so if 

2n-r+2 > r-2 then n+2 > r. We have to exclude r = n+2 since the critical 

subgraph of the Petersen graph would give a counterexample.

A simple corollary to Theorem 7.2 is the following.
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Theorem 7.3. Let G be an (r-2)-èdgè-cônhécted graph of otder 2n+l with r

vertices of maximum degree. ’ If 1 < r < 4 then G is Class 2 if and ' only if 

|e (G)I > nA.

The following conjecture would follow from Conjecture 7.1 and 7.2.

Conjecture 7.3. Let 1 < r •< n+1. ' Let G be an. (r—2)—edge—connected graph 

of order 2n+1 with r vertices of ’maximum degree A. Then G is Class 2 if 

and only if |e (G)| > nA.

A simple corollary to Theorems 7.1 and 7.2 is :

Theorem 7.4. Let G be an (r - 2) -edge-connected graph of order 2n 

with r vertices of maximum degree. If 1 < r  ̂4, then G is Class 1.

The corresponding conjecture would be :

Conjecture 7.4. Let 1'^ r < n. Let G be an (r - 2) -edge-connected 

graph of order 2n with r vertices of maximum degree A. Then G is 

Class 1.

Class 2 graphs with three vertices of maximum degree are fully 

described in the proposition. A similar description is possible for 

Class 2 graphs with four vertices of maximum degree.

Theorem 7.5. Let G be a connected graph with four vertices of 

maximum degree. Then 

G is Class 2 

if and only if

G is one of the following graphs, for some n,

(i) G z (2n-2)2"-3(2n-l)4,,

(ii) G . (2n-2) (2n-l)2""4 (2n)^,
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(iii) for some m < n, G has a bridge e; one component Cj o^ G\e 

has maximum degree at most 2m-1 and, in G, e is incident 

with a vertex of degree in at most 2m-2; and the other

component satisfies

Cg = (2m-2) (2m-l)^™"^(2m)^
or

S  -  (2m-l)2^^2(2m)3.

7.2. Some preliminary lemmas.

Before embarking on the proofs of these results, we need to establish 

a number of lemmas.

Lemma 7.1. Let G be a graph of order 2n+1 with r vertices of maximum 

degree A and with |E(G)| = nA+1. Then A > 2n+3 - r.

Proof. A(G)n+1

= |e (g)|

"4 y {rA(G) + (2n+1-r) (A(G)-1)}

= nA(G) + y  (A(G) - 2n-1+r),

so

2n-r+3 < A (G) .

Corollary 7.1. Under the conditions of Lémmà 7.1,

max (r,A(G)) > n+2.

Lemma 7.2. Let G be a critical graph with r vertices of maximum degree 

A(G). Then

a(g) > « h .

Proof. By Lemma 2.2,each vertex is joined to at least two vertices of

degree A(G). Each vertex of maximum degree is joined to A(G) other 

vertices. Therefore 2[v(G)j < A(G)r, and the result follows.
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Lemma 7.3. Let r > s > 1. Let G bé à:critical graph. If G has r

vertices of maximum degree A(G)"and :àt least ohé vertex of degree 

A(G)-s, then

A(G) > .r - s + 1

Proof. The vertex of degree A(G)-s is adjacent to A(G)-s vertices, each 

of which is, by Lemma 2.1, adjacent to at least s+1 vertices of maximum 

degree. The remaining |v(G)[ - A(G)+s vertices are, by Lemma 2.2, adjacent 
to at least two vertices of maximum degree. Counting the edges incident 

with vertices of maximum degree, we have

(s+1) (A(G)-s) + 2 (|V(G)| - A(G) + s) < r A(G) 

from which the lemma follows.

The next lemma is an extension due to Berge [ B3] of a well-known 

theorem of Chvatal PIQ].

Lemma 7.4. Let G be a simple graph of order h with degrees d^<d^<.. .<d̂ .
“I

Let q be an integer, 0 < q < n-3. If, for every k with q < k < y(n+q), 

the following condition holds:

d, < k - > d , > n-k+qk-q n-k

then, for each set F of independent edges with |F | = q, there exists a 

Hamiltonian circuit containing F.

A special case of Lemma 7.4 which we shall make much use of is the 

following result of Dirac [D2].

Lemma 7.5. Let G bè a simple graph. If 

6(G) >.1|V(G)|
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then G has a Hamiltonian circuit.

The next lemma is a nice result of Jackson [ J1 ]

Lemma 7.6. Every 2-côhhécted, k-règùlàr graph oh àt most 3k vertices is 

Hamiltonian.

When r = 1 the next result is) due to Plantholt [P1] and when r = 2 

it is proved in Theorem 5.1.

Lemma 7.7. Let 1 < r < 2. Let G be à graph of order 2n+1 with 

A(G) = 2n+1-r and 1e (G)| < (2n+1-r)n. 'Then G is Class 1.

The next result is due to Bollob^s and Eldridge [B5].

Lemma 7.8. Let G be a graph with order n, maximum degree A, minimum 

degree 6. Then G contains at least m^(n,ô,A) independent edges, where,

min {l_̂ /2j,6} i^ 6 < A-2 and n < A + 6,

m^(n,6,A) <

I 6+A I
|2(A+1)1 

F n 6+1 1
I 2(6+1) 1

if 6 < A-2 and n > A + 6 ,

if 6 = A even, or 6 = A-1 odd,

if 6 = A-1 even,

if 6 = A odd and n = 6 + 1.

Finally when 6 = A odd and n > 6+1 there are integers u,k,r such that

n = u(6+1) + (2k+1) (6+2) + r and 0 < 2k < 6, 1 < r < 26 + 3

and m^(n,6,A) = y {n - u(6-1)} - k.

7.3. Proof of the proposition.

Here we prove the proposition given in Section 7.1.
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Proof.

Sufficiency. If G has three vertices of degree |V(G)| - 1 and the rest 

have degree |V(G)| - 2, then it is easy to check that .|V(G)[ is odd and

1e (G)| > A(G) .

Each colour class cannot contain more than !  ̂ I edges. Thus more

than A(G) colours are needed to colour the edges of G, so G is Class 2.

Necessity. Suppose G has three vertices a, b, c of maximum degree and is 
Class 2; but suppose also that G is not a graph with three vertices of
degree |v(G)| - 1 and |V(G)| - 3 vertices of degree |vCG)| - 2. We may

assume that |v(G)| > 4, as the necessity is clearly true if |V(G)| = 3.

Let G* be a critical subgraph of G with A(G) = A(G*). By Lemma 2,5 ,

G* has at least three vertices of maximum degree, and, since A(G) = A(G*),

G* has the same three vertices a, b, c of maximum degree.

By Lemma 2.6,G* contains |v(G*)| -  3 vertices of degree A(G*) - 1. 

Therefore |v(G*)| is odd, say |v(G*)| = 2p +1. By Lemma 2.2,a, b, c are 

all joined to each other in G*. By Lemma 7.2 ,

A(G*) > 1  |V(G*)|. CD

If there is a vertex u in G which is not in G*, then u would not be 

joined to any of a, b, c (for otherwise G* would have to have fewer than 

three vertices of maximum degree), but neither would u be joined to any 

vertex of V(G)^{a,b,c} (for otherwise, G* would have to have some 

vertices of degree < A(G*) - 2). Thus there cannot be any such vertex 

u. Therefore G = G*.

By the results of Chapter 3, the necessity is true for p < 4. 

Therefore suppose that p > 5.
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Since G = G*, |V(G)| = 2p + 1 and A(G) < 2p - 1 = jv(G)[ - 2. There

fore there is a vertex d not joined to a. Consider the graph G^{a,b}.

For p > 5, using (1),

6(G^{a, b})> A(G) - 3

>  -j(2p - 1)

= J  V(G^{a, b}) .

By Lemma 7.5, G^{a, b} has a Hamiltonian circuit. Therefore G has a near 

1-factor F which contains the edge ab but does not include an edge 

incident with d. Therefore G^F has 4 vertices, a, b, c, d of maximum 

degree, joined as illustrated in Figure 7.1.

d

Figure 7.1.

Since d^p(a) = 1 and A(G^(FUac)) = A(G^F), by Lemma 2.4, G^F is the 

same Class as G^(Fljac), which, by Lemma 2.5, is Class 1. Therefore G is 

Class 1.

Since • d(v) = 2|e (G)|, it is not possible for a graph of even 
v€V(G)

order to have 3 vertices of degree A, and the remaining vertices to have 

degree A-1. Therefore |V(G)| is odd.

This proves the proposition.
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7.4 Proof of Theorem 7.1.

Case 1. 1 < r < 2. By Lemma 2.5, if G has 1 or 2 vertices of maximum

degree, then G is Class 1. This proves the lemma in this case.

Case 2. r = 3. It follows immediately from the proposition that if 

|V(G)| is even, then G is Class 1. This proves the lemma in this case,

Case 3. r = 4. It follows from Beineke and Fiorini [Bl] that this

lemma is true when n < 5. So we shall assume that n > 6.

Suppose that G is a critical graph. By Lemma 2.6, 5(G) ^ A(G)-2. 

Therefore, for some integer x,

G . (A-2)% (A-1)|V(G)I - % - 4

By Lemma 7.3,

A(G) > -ILl) if X é 0.

and by Lemma 7.2,

A(G) >llV(G)|.

Let the four vertices of maximum degree be a, b, c, d. We may 

assume that d*(a) < d*(v) for v £ {a,b,c,d}. By Lemma 2.2, d*(a) > 2. 

We may assume that ab€ E(G). We consider various cases.

Case 3i. max d^(v) =2.
v€{a,b,c,d}
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Case 3i a. x > 1. Let d(z) = A(G) - 2. By Lemma 2.2, d*(z) > 2, so 

z is adjacent to at least two of {a,b,c,d}; without loss of generality, 

assume that zc € E(G). Then, by Lemma 2.1, G is not critical unless 

d*(c) > 3, a contradiction. Therefore Case 3ia does not arise.

Case 3i b. X = 0 .

Case 3i bl. A(G) > n + 2.Consider the graph G^{a,b}. We have

6(G^{a,b})> A(G) - 3 and |V(G^{a,b})| = 2n-2. Therefore by Leinma 7.5,

G^{a,b} contains a Hamiltonian cycle and hence G has a 1—factor F

including the edge ab. The graph G^F has 4 vertices a,b,c,d of

maximum degree and d^^Ca) = 1. We may assume that a is joined to c.

Then, by Lemma 2.4, G^F and G^(FUac) have the same Class. But G^(FUac) 

has just two vertices of maximum degree and so, by Lemma 2.5, is Class 1. 

Working back it follows that G is Class 1.

Case 3i b2. A(G) = n+1. In this case, G = ^(n+1)^. Since

6(G) = n = — |v(G)[, it follows by Lemma 7.5 that G has a Hamiltonian 

cycle H. If H includes at least one edge between two vertices of degree 

n+1 (a,b say), then we can take alternate edges of H including ab to 

be our 1-factor F, and argue as in Case 3i bl. Otherwise H does not include 

any edge between two vertices of degree n+1. Then, on the cycle H, each 

of {a,b,c,d} must have two adjacent vertices, neither of which is in 

{a,b,c,d}. Since the number of vertices is odd, there must be at least 

five vertices of less than maximum degree joined by edges of H to vertices 

of {a,b,c,d}. Since there are at most four vertices joined in G to more 

than two vertices of maximum degree, it is possible to form a 1-factor F 

by picking alternate edges of H so that F has at least one edge which 

joins a vertex v with d*(v) = 2 to a vertex of maximum degree. Hence in 

G^F, V is joined to only one vertex of maximum degree, so (G^F)^{v} has 

3 vertices of maximum degree not all joined to each other and so, by the 

proposition , (Ĝ F)'̂ {v} is Class.1 and hence G is Class 1.
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Case 3ib3. A(G) = n. In this case, G = (n-1)^^  ̂n^. . Therefore there 

are 4n-8 edges joining .{a,b,c,d} to the rest of the graph. Since G is 

critical, every vertex is joined to at least two vertices of maximum 

degree; in this case, every vertex is joined to exactly two of maximum 

degree. Therefore G<{a,b,c,d} is a regular graph of degree n-3. We can 

see that either this graph is 2-connected or it is two copies of 

If G^{a,b,c,d} is two copies of n. is even then G^{a^b^c,d}

has a 1-factor, and so G contains a 1-factor F including ab. The argument 

then proceeds as in Case 3ib1. If n is odd then it is possible to find 

two adjacent vertices of maximum degree, say a,b, such that G^{a,b} 

has a 1-factor. Then let F consist of ab and this 1-factor, and argue 

as in Case 3ib1. Otherwise G^{a,b,c,d} is 2-connected and so, by Lemma 

7.6, if 3(n-3) ^ 2n-4, then there exists a Hamiltonian cycle in 

G^{a,b,c,d} and hence a 1-factor F in G containing ab, and we proceed 

as in Case 3ib1. But this inequality is satisfied since n t 6.

Case 3ib4. A(G)<n. By Lemma 7.2,this case does not arise.

Case 3ii. d*(a) = 2 and max d*(v) =3.
v€{a,b,c,d}

Case 3ii a. x  ̂1.

Case 3ii a1. A^n+2. Consider the graph G^{a,b}. By Lemma 2.1, a

vertex V of degree A-2 in G is only joined in G to vertices w such 

that d*g(w) k A-(A-2)+1 = 3. Therefore no vertex joined to a has 

degree A-2. Therefore 5(G^{a,b}) ^ A-3 ^ (n+2)-3 = n-1 = V(G'̂ { a,b}) |,

so by Lemma 7.5, G contains a 1-factor F including ab.
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Then G^F has the same four vertices of maximum degree and d^^^^Ca) = 1; 

we may assume that a is joined to c. Then, by Lemma 2.4̂  G^F and G^(FUac) 

have the same Class. But G^(FUac) has just two vertices of maximum degree,

so, by Lemma 2.5, is Class 1. Working back, it follows that G is Class 1.

Case 3ii a2. A < n+1. By Lemma 7.3, n + 1 > A > 12. , Therefore3
n < 5. But this contradicts our assumption that n > 6. Therefore this 

case does not arise.

Case 3ii b. x = 0.

Case 3ii bl. A > n+2. In this case, since x = 0, 5(G^{a,b})> A-3. The

argument now proceeds as in Case 3ii a1.

Case 3ii b2. A(G) = n+1. There are 4n-6 edges from {a,b,c,d} to 

G^{a,b,c,d}. It follows that the degree sequence of G^{a,b,c,d} is 

either (n-4, n-2, n-2, ..., n-2) or (n-3, n-3, n-2, ..., n-2). Since 

I V(G^{a,b,c,d}) I = 2n-4, it follows from Lemma 7.4 that G^{a,b,c,d} has 

a Hamiltonian cycle. Therefore G has a 1-factor F which contains the 

edges ab and cd. Then, in G^F, d*(a) = 1 and hence (G^F)^ and G^F 

have the same Class, by Lemma 2.4. But (G^F)^ has only 2 vertices of 

maximum degree and so, by Lemma 25,is Class 1. Hence G is Class 1.

Case 3ii b3. A(G) < n. Since each vertex is joined to at least two of

{a,b,c,d}, by counting the edges between {a,b,c,d} and V(G)<{a,b,c,d}, 

it follows that

2(2n-4) < 2(A-2) + 2(A-3),



6.6.

and so n + 1 < A. Therefore this case does not arise.

Case 3iii a2. A < n+2. By Lemma 7.3,

^  < A < n+2.

It follows that n < 8. If n = 8 then A = 10, if n = 7 then A = 9, and 

if n = 6 then A = 8. In these cases we show that G has a 1-factor 

including the edge ad; it then follows as in the previous case that G 

is Class 1.

We use Lemma 7.4 to show that G ^  has a Hamiltonian cycle. We then 

take ad and alternate edges of the cycle avoiding d to be the 1-factor.

In G there are n-1 edges joining a to vertices of V(G)^{a,b,c,d}. Since 

6(G) = n there are at most n-1 vertices of degree n-1 in G^. Let 

1̂ ^2 ^ ^2n 1 degree sequence of G^. Therefore if
d  ̂< n-1 then d^ > n, and so,by Lemma 7.4, G^a has a Hamiltonian

cycle,as required.

Case 3iii b. x = 0.

Case 3iii bl. A(G) > n+3. Consider the graph G^{a,b,c,d}. We have

6(G^{a,b,c,d} > A(G) - 5 and |v(G^{a,b,c,d}) ( = 2n-4. if A(G)-5 >  n-2 

then 6(GS{a,b,c,d}) > |v(G^{a,b,c,d}) |, so by Lemma 7.5, G^{a,b,c,d} 

contains a Hamiltonian cycle. Therefore G contains two 1-factors, and

F̂ , such that F̂  includes the edges ac and bd, and F^ includes the edges 

ad and be. The graph Ĝ (F,j U F^) has four vertices, a,b,c,d, of maximum 

degree and d*(v) = 1 for each of them. By Lemma 2.4, G^(F^ U F^) and 

(Ĝ )'̂ (F.j U F^) have the same Class; but the latter graph has only two 

vertices of maximum degree, so, by Lemma 2.5, is Class 1. Therefore G is 

Class 1.

Case 3iii b2. A(G) = n+2. In this case, we again consider the graph 

G^{a,b,c,d}. The number of edges joining {a,b,c,d}to the rest of G is
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4n-4. If < ... <  ̂ 2n-4 degree sequence of G^{a,b,c,d},

then we have d^ = n-1 and,since n > 6, it then follows from Lemma 7.4 

that G^{a,b,c,d} has a Hamiltonian circuit. Then the argument of Case 

3iii bl applies to show that G is Class 1.

Case 3iii b3. A(G) = n+1. The number of edges joining {a,b,c,d} to 

G^{a,b,c,d} is 4n-8. Since |V(G^{a,b,c,d})| = 2n-4, it follows by 

Lemma 2.2 that d*(v) = 2 for v G V(G^{a,b,c,d}), and so G^{a,b,c,d} is 

regular of degree n-2. By Lemma 7.5,G^{a,b,c,d} has a Hamiltonian 

cycle. Therefore G contains two edge-disjoint 1-factors, and F^, where

F̂  contains ab and cd, and F^ contains ad and be. Then G^(F^ U F^) has 

four vertices, a,b,c,d, of maximum degree, but each is adjacent to only 

one of the others. By Lemma 2.4, (Gsa)'̂ (F,̂  U F^) and Ĝ (F,j U F^) have 

the same Class. But (G^)'^(F^ .U F^) has only two vertices of maximum 

degree, so by Lemma 2.5, is Class 1. Therefore G is Class 1.

This completes the proof of Theorem 7.1.

7.5. Proof of Theorem 7.2.

Case 1. 1 < r <  2. By Lemma 2.5, if G has 1 or 2 vertices of maximum

degree,then G is Class 1. In this case the condition that if G is 

(r-2)-edge-connected is vacuous,. Theorem 7.2 follows if we show that 

IE(G) I < n A(G) + 1. But this follows from Lemma 7.1, since A(G) < 2n.

Case 2. r = 3. We first prove that (iii) (ii). If G is Class 2, 

then, by the proposition, G has three vertices of degree |V(G)| - 1 

and the remainder have degree |v(G)| - 2. Therefore

Ie (G)| = -1(3.2n + (2n-2)(2n-1) )

2= 2n +1 

= nA (G) + 1.
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This proves that (iii) (ii).

To prove that (ii) (iii), suppose that (ii) is true. Then by 

Lemma 2.7]G is Class 2. By Lemma 7.V, A(G) = 2n; consequently 

G is connected for all n  ̂1. This proves that (ii) ^  (iii).

To see that (i) (iii) it is clear that if G is critical, then 

G is Class 2 and connected. By Lemma 2.7, |E(G)| < nA+1,

To prove that (iii) => (i), suppose that G satisfies (iii). Let

G* be a critical subgraph of G with the same maximum degree. Then, by 

the proposition, G has A(G) = |v(G)| - 1 and G* has A(G*) = |v(G*)| - 1. 
Therefore V(G) = V(G*). Since (iii) (ii) we have |E(G*)| = n A(G*) + 1
= n A(G) + 1 = |E(G)I. Therefore G = G*, so (i) is true.

This proves Theorem 7.2 in this case.

Case 3. r = 4. It follows from the results of Chapter 3 that this is 

true for n < 4. We shall therefore suppose that n > 5.

Suppose that G is a critical graph and that shall

show that (ii) is satisfied. Suppose that (ii) is not satisfied. Then

|e (G) I < n A(G).

If |V(G)| = 2n+1 and A(G) = 2n or 2n-1, then the assumption that 

|e (G)| < n A(G) means that the hypothesis of Lemma 7.7 is satisfied. 

Therefore G is Class 1. From now on we shall suppose that A(G) ^ 2n-2. 

By Lemma 2.6, 6(G) > A(G) - 2. Therefore, for some integer x,

G s (A-2)X (A-1)|V(G)| - X - 4
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By Lemma 7.3,

A (G)

and by Lemma 7.2,

A(G) > I |V(G)|.

Let the four vertices of maximum degree be a, b, c, d. We may assume 

that d*(a) < d*(v) for v € {a,b,c,d}. By Lemma 2.2, d*(a) > 2. We 

may assume that ab G E(G). We consider various cases.

Case 3i. max d* (v) = 2. 
vG{a,b,c,d} x

Case 3i. a. x ^ 1. Let d(z) = A(G) - 2. By Lemma 2.2, d*(z) ^ 2,

so z is adjacent to at least two of {a,b,c,d}; without loss of 

generality, assume that zc € E(G), ' Then, by Lemma 2.1, G is not 

critical unless d*(c) ^ A(G) - d(z) + 1 =3, a contradiction.

Therefore Cas^ 3iavdoes not arise.

Case 3i b. X = 0.

Case 3i b1. A > n+3. Let v be a vertex not joined to a with d(v) = A(G)-1. 

If we can find a near 1-factor F of G which contains the edge ab but does 

not include any edge incident with v, then G^F will have 5 vertices 

a,b,c,d and v of maximum degree, and d^^^^Ca) = 1. Then, by Lemma 2.4,

G^F and (Ĝ F)'̂ {a} have the same Class. Then we may assume that a is joined 

to c in G. Then (Ĝ F)*̂ {a} has 3 vertices, b,d,v, of maximum degree 

A(G) - 1, (A(G) - 2) vertices of minimum degree A (G) - 3 and 2n - 1 - A(G) 

vertices of degree A - 2. By the proposition, (G^F)Ma} could only be 

Class 2 if there were A(G) - 3 vertices of degree A(G) - 2 in one 

component of (G^F)‘̂{a}, so that 2n-1 - A(G) > A(G) - 3; i.e. A(G) < n+1.
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Therefore provided A(G) > n+2, then (G^F)Ma} is Class 1 and so G is 

Class 1.

Now consider G^{a,b}. We have ô(G^{a,b}) > A(G) — 3 and
■ 1|v(Ĝ {a,b})l = 2n-1. By Letnma 7.5, if A(G) - 3 > (2n-1) then 

there is a Hamiltonian cycle in G^{a,b} and hence a suitable F.

The inequality is true provided A(G) > n + 2 | .

Case 3i b2. A(G) = n + 2. Then G = (n+1)^*"^ (n+2)^. Let v be

a vertex which is joined to one of {a,b,c,d}, say b, and not

joined to another, say a. : Then G^{v} has 2n vertices. Their degrees

are n, n+1 and n+2, and at most n-1 of them have degree n. Therefore

if d. < d < ... <  d is the degree sequence of G^{v}, then d. > n 1 2 2n 3-
(1 < i < n-1) and d^ > n+1 (n < i < 2n). Using Lemma 7.4, it follows 

that G^{v}, has a 1-factor F which includes ab. Therefore, as described 

in Case 3i b1, G is Class 1.

Case 3 i b3. A(G) = n+1. G has at most two vertices v such that

d*(v) > 3. Hence G^{a,b,c,d} has either

A = (n-3, n-3, n-2, ..., n-2) 

or B = (n-4, n-2, n-2, ..., n-2)

as its degree sequence.

If the degree sequence is we can use Lemma 7.8 to show that 

there is a near 1—factor in G^{a,b,c,d}. Therefore G contains a 

near 1-factor which contains the edge ab,and it follows as in Case 

3i b1 that G is Class 1.

If the degree sequence is B, we consider the graph G^{a,b,c,d,v^}, 

where v̂  is the vertex of degree n-4. It follows from Lemma 7.8 that

this graph has a 1-factor F. Since n > 5 there is a vertex r in

V(CMa,b,c,d,v^}) which is joined to v^. Let rs G F* . We may suppose
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that sa t E(G). Let F* = (F*Mrs}) U {rv^} U {ab} U {cd}. The graph 

G^F* has five vertices of maximum degree, but d*^^^^(a) = 1, and so, 

by Lemma 2.4, G^F* and (G^F*)<{ac} have the same Class. [Here we 

assume that ac G E(G) ]. But similarly, (G^F*)Mac} and (GsF*)<({ac},{cs}) 

have the same Class; however this latter graph has only two vertices 

of maximum degree, and so, by Lemma 2.5, is Class 1. Working back, 

it follows that G is Class 1.

Case 3ii. d*(a) = 2 and max d*(v) = 3.
vG{a,b,c,d}

Case 3ii a. x > 1.

Case 3ii a1. n > 6. Let v̂  be a vertex of degree A(G) - 2 (v̂  exists, 

since x>1).

Consider the graph G^{a,b}. By Lemma 2.1, a vertex v of degree

A-2 in G is only joined in G to vertices w such that d*^(w) > A-(A-2) + 1 = 3,

Therefore no vertex joined to a has degree A-2. Therefore 6(G^{a,b} > A-3.

Also I V(Gs{a,b}) | = 2n-1. Since |V(G)| is odd and x ^ 1, then, by

Lemma 7.3,

and it is easy to verify that A(G) - 3 k n, since n k6 ..

Therefore ô(G^{a,b}) k i | V(G)Ma,b} | » . so , G^{a,b} ; contains a 

Hamiltonian cycle. Then G contains a near 1-factor F including 

ab, but including no edge incident with v^.

Then G^F has the same four vertices of maximum degree and d*^^(a) = 1 ; 

we may assume that a is joined to c. Then, by Lemma 2. 4, G^F and 

G^(F U ac) have the same Class. But G^(F U ac) has just two vertices 

of maximum degree, so, by Lemma 2.5, is Class 1. Working back, it
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follows that G is Class 1.

Case 3ii a2. n = 5 or 6. We shall show that G^{a,b} has a Hamiltonian 

cycle. It then follows by the argument used in Case 3ii al that G is 

Class 1.

If V is a vertex such that . dç(v)=A(G)-2 and if w is adjacent 

to V in G, then, by Lemma 2.1, d*^(w) > A(G) — dg(v)11 =A-(A-2) + 1 =3.

For any vertex v ^such that %}(v)=A(G)-3, it follows that

^gCv) =A(G)-1 or A(G)-2; if d^(v)=A(G)-1 then v is 

joined in G to a and b, and so, in particular, is joined to b; and 

if dg(y)=A(G)-2 then v is joined in G either to a or to b; but v 

cannot be joined to a since : d*(a)=2; therefore v is joined to b.

Thus, to summarize, if ĵ Ĉv) =A(G)-3, then v i^ joined to b.

Therefore there are at most A(G)-3 vertices of degree A-3': in 

G^{a,b}.

Consider the case when n = 5. By Lemma 7.3, A(G) > |^^| = 7, and , 

as in Case 3ii al̂  ô(G^{a,b}) > A(G)-3. If A(G) >  8, then 

6(G^{a,b} >5, so ô(Ĝ {a,b}):̂  ̂ J |V(G^{a,b}) |, and so, by Lemma 7,5, 

G^{a,b} has a Hamiltonian cycle. If A(G)=7 then ô(G^{a,b} > 4. But, 

as shown above, there are at most A-3=4 vertices of degree 4. 

Therefore, if d̂  < ... < d^ is the degree sequence of G^{a,b}, then 

d^ > 5, and it:'follows from Lemma 7.4 that G^{a,b} has a Hamiltonian 

cycle.

Now consider the case when n = 6. Then A(G) > 8 and 6(G^{a,b}

> A(G)-3. If A(G)=9 then 6 (G^{a,b}) > 6 and so 6(G^{a,b})

> 2 IV(G^{a,b})I, and so G has a Hamiltonian cycle. If A(G)=8 then

6(G^{a,b}) > 5. But there are at most 5 vertices in G^{a,b} of degree

5. Therefore, if d < ... < d is the degree sequence of G^{a,b},
1 11

then d^ > 6, and it follows from Lemma 7.4 that G has a Hamiltonian cycle,
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Case 3ii b. x = 0.

Case 3ii bl. A(G)ài+3‘. We show that if G contains a near 1-factor 

F such that ab is in F and no edge incident with w, where w is a vertex 

of degree A-1 not adjacent to a, is in F, then G is Class 1. There 

is a suitable vertex w since d(a) = A < 2n-2. The graph G^F has five 

vertices a,b,c,d and w, of maximum degree, but d*(a)=1 so, by ’

Lemma 2.4, G^F and (G^F)Ma} have the same Class. The graph (Ĝ F)"̂ {a} 

has three vertices of maximum degree A(G)-1. Since ô((GSF)Ma}) > n, 

it follows that (G^F)^{ai is connected .Therefore, by the proposition, 

(G^F)Ma} is Class 1, since it has even order. Working back, it follows 

that G is Class 1.

We now use Dirac*s condition (Lemma 7.5) to show that F exists.

The graph G^{a,b} has minimum degree A(G)-3 and has 2n-1 vertices.

Since A(G) ^ n+3, A(G)-3 k n = ^

Therefore G^{a,b} has a Hamiltonian cycle, and consequently G has a 

suitable near 1-factor F.

Case 3ii b2. A(G)=n+2. The graph G^{a,b} has at most n-1 vertices

of degree n-1 and no vertices of lower degree. Lemma 7.4 applies and

shows that G^{a,b} has a Hamiltonian cycle. The remainder of the 

argument is the same as in the case immediately above.

Case 3ii b3. A(G)=n+1. The vertices of degree A-1 are all joined

to exactly two vertices of degree A. Hence G^{a,b,c,d} has 2n-3 

vertices and is regular of degree n-2. This graph is 2-connected and 

hence by Jackson's theorem (Lemma 7.6), since 3(n-2) > 2n-3 (as n > 3), 

G^{a,b,c,d} has a Hamiltonian cycle. We take alternate edges of this 

cycle avoiding a vertex w not joined to a. Clearly w exists sinçe 

d;(a),̂ n+1.. We take two more edges (here we assume a is joined to c as?. , 

well as to b): either ab, cd, if w is not joined to b,

or ac, bd̂  if w is joined to b.
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Then in either case d*(a) = 1 ' and so, by Lemma 2.3,

either G^(FUac) . has the same Class as G^F

or G^(rUab) ! has the same Class as G<F.

In either case we have at most 3 vertices of m a x i m u m  degree not all 

joined to each other and so, by the proposition, we have a Class 1 graph, 

Hence, working back,G is Class 1.

Case 3ii b4. A(G) < n. Since each vertex is joined to at least two of 

{a,b,c,d}, by counting the edges between {a,b,c,d} and V(G)Ma,b,c,d}, it 

follows that

2(2n-3) < 2(A-2) + 2(A-3) 

so that n+1$A, Therefore this case does not arise.

Case 3iii. d*(a) =3.

Case 3iii a. x > 1.

Case 3iii al.A(G) > n+4. Let v be a vertex of degree A(G)-2 and

suppose that v is joined to a and d. Let w be a vertex not joined to

a. If we can find a near 1-factor F which includes the edge ad but 

does not include any edge incident with w, then it follows that G is 

Class 1; the argument to show this is as follows:

In the graph G^F there are at most five vertices, a,b,c,d,w, of 

maximum degree A(G)-1. Clearly d*g^p(a)=2 (a is now not joined to

w or d) and d (v)=A(G)-3. Let H be a critical subgraph of G\FG^F
with the same maximum degree A(G)-1. It follows that, if aGV(H)

then d*y(a)=2, and if vGV(H) then dg(v)GA(G)-3. But, if

vaGE(H) then, by Lemma 2.1, d * ^ ( a ) = A ( H ) - d ^ ( v ) + 1 ^ ( A ( G ) - 1 ) - ( A ( G ) - 3 ) + 1 = 3 .
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Therefore va^E(H). Therefore ‘(Ĝ F) and G^(FU{a}) have the same 

Class.

In the graph G\(Fu{va}) there are at most four vertices,b,c,d,w,

of maximum degree. Clearly d*G\(Fu(va})(d)^'3 V(Fu{va})^''^
= A(G)-4. It follows that if d€V(H) then d*^(d)^3 and if vGV(H) 

then dg(v)^A(G)-4. . But, if vdGE(H), then, by Lemma 2.1, 

d*jj(d)^A(H)“d^(v)+1è(A(G)“1)+(Â(G)-4)+1=4. Therefore vd^E(H).

Therefore G^(FU{va}) and G^(FU{va,vd})'.have the same Class.

The graph G\(Fu{va,vd}) has three vertices of maximum degree; 

all vertices except v have degree at least A(G)-3kn+3-3=n^ 

so,since n ^ 5, G\(Fu{va,vd}) is connected. However, in this graph, 

the degree of v is three less than the maximum degree, so, by the 

proposition, G\(Fu{va,vd}) is Class 1. Therefore G is Class 1.

Since A(G)kn+4, it follows that 6(G\{^d})^ n = V(G\{a,d}) | j,

SO, by Lemma 7.5, G\{a,d} has a Hamiltonian cycle, and, consequently, G 

has a near 1-factor containing ab, but containing no vertex incident 

with w.

Case 3iii a2. A(G)=n+3. Suppose first that there are two vertices

v,w both of degree A(G)-2 and that two of {a,b,c,d}, say a and d, 

are joined to both v and w. Let d̂  ^ dg ^ ... ^ d^^ be the degree 

sequence of G\{v}. Since v is joined to at most n-1 vertices of 

degree n+1, it follows that .d^^n+1. One may easily verify that

therefore G\{v} satisfies the conditions of Lemma 7.4 for the existence 

of a Hamiltonian cycle containing a specified edge. Let F be a 1-factor 

of G\{v} containing the edge ad obtained by deleting alternate edges of 

a Hamiltonian cycle containing ad.
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Let H be a critical subgraph of G\F with the same maximum degree 

A(G)-1. If awe E(H) then it would follow from Lemma 2.1 that

d* (a)^A(H)-d^(w)+1>(A(G)-1)-(A(G)-3)+1=3.

However this is impossible since (a) = 2. Therefore àwjf E(H).
1

Similarly dwjf E(H). Consequently H has at most two vertices, b,c, 

of maximum degree; however, it then follows by Lemma 2.5 that H is 

Class I. Therefore G\F is Class 1, and so G is Class 1.

If there do not exist two such vertices, then we can use the 

argument of Case 3iii al. By Lemma 7.4, G\{a,d} has a Hamiltonian 

cycle, since, if dj ^ ... -^2n-l degree sequence of G\{a,d},

then d^ ^ n and so d^ ^ n.

Case 3iii a3. A(G) < n + 2. By Lemma 7.3,

£ A S n + 2,

and this implies that n ^ 6. There are only two possibilities to 

consider: n = 6 and A = 8; n = 5 and A = 7. We shall show that in

neither case does a critical graph exist.

Consider first the case when n = 6 and A(G) = 8. Suppose a 

critical graph G exists. A vertex of degree 6=A-2 is joined to 

either all four of {a,b,c,d} and to two other vertices, or to at least 

three other vertices. As explained in Case 3ii al of the proof of

Theorem 7.1 in Section 7.4, there are at least three edges joining any

vertex adjacent to a vertex of degree a-2 to {a,b,c,d}, and so, in 

bo th o f the:above -cas e s, there are three vertices other than {a,b,c,d} 

each joined to at least three of {a,b,c,d}. The remaining six 

vertices of V(G)\{a,b,c,d} are, by Lemma 2.2, joined to at least two 

of {a,b,c,d}. Therefore there are at least 3.3 + 6.2 =21 edges from
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V(G)\{a,b,c,d} to {a,b,c,d}. However, since each of {a,b,c,d} has 

degree 8, from each of {a,b,c,d} there are five edges to V(G)\{a,b,c,d}, 

and thus 20 such edges in all, a contradiction. Therefore there is no 

such critical graph.

The argument in the case when n = 5 and A = 7 is similar, but 

slightly more involved. If a vertex of degree 5 is joined to all four 

of {a,b,c,d}, then there are at least 5.2+3+4=17 edges from

V(G)\{a,b,c,d} to {a,b,c,d}. If there are three edges from the vertex 

of degree 5 to {a,b,c,d}, then there are also three such edges from at 

least two other vertices of V(G)\{a,b,c,d}; if there are only two edges 

from the vertex of degree 5 to {a,b,c,d}, then there are three vertices 

of V(G)\{a,b,c,d}, each having at least three such edges on them.

There are therefore altogether at least 4.2 + 3.3 = 17, again, such 

edges. However, by the other argument, there are only 16 such edges, 

a contradiction.

Case 3iii b. x = 0.

Case 3iii bl. A(G) > and A(G) Én+4. . Since A(G)32n-2

there are two vertices, say Vj and v^, which are both non-adjacent to a, 

We can assume v̂  is adjacent to d.

Consider the graph G\{a,b,d,Vj}. We have 6(G\{a,b,d,Vj^} kA(G)-5 

and I V(G\{a,b,d,Vj}) I =2n-3. Since A(G)-5^n-1 we have '

6(G\{a,b,d,Vj}) ^ j|V(G\{a,b,d,Vj })|, so, by Lemma 7.5, G\{a,b,d,V|} 

contains a Hamiltonian cycle. Therefore G contains a near 1-factor 

Fj containing the edges ab and dVj, but containing no edge incident 

with v^.
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The graph G\Fj contains five vertices a,b,c,d,V2, of maximum

degree A(G)-1. Now consider the graph (G\{a,d})\FjWe have

0((.G\{a,d})\Fj )^A(G)-4 and V((G\{a,d})\Fj )=2n-1. / If
• 1

A(G)-4^n then 6((G\{a,d})\Fj ) > — |v((G\{a,d})\Fj) | so, by Lemma

7.5, (G\{a,d})\ Fj contains a Hamiltonian circuit. Therefore G\Fj 

contains a near 1-factor F^ containing ad but containing no edge 

incident with v^.

The graph G\(FjUF2 ) has six vertices, a,b,c,d,Vj,V2 » of 

maximum degree A(G)“2, and of these c is the only one adjacent to a.

By Lemma 2.4, G\(F^UF2) and (G\a)\(FJUF2) have the same Class.

Now (G\a)\(FjUF2) . has four vertices, b,d,Vj,V2 of maximum degree 

A(G)“2 and d is non-adjacent to v^; it has A(G)-3 vertices of 

degree A(G) -4 and therefore 2n-(A(G)-3)=2n-A(G)+3 

vertices of degree at least A(G)-3.

If the graph (G\a)\(FJUF2) is Class 2, then it contains a 

critical subgraph G* with the same maximum degree A(G)-2. By 

Theorem7.1,|v(G*)| is not even. Let |v(G*)| = 2n*+l for some 
n* ^ n. Let G* have r* vertices of maximum degree. Then r* ^ r = 4, 

and, by Lemma 2.5, 3 < r*. If r = 3 then, by the proposition, G* has 

A(G*)+1, vertices of degree at least A(G*)“I, so (G\a)\(FjUF2) 

has at least A(G)-1 vertices of degree at least A(G)-3, Since 

the implication (i)4> (ii) • has been established when r* = 4 in 

Cases 3i and 3ii, it follows that, if r* = 4, then |e(G*)|>n*A(G)+1,

and so, by Lemma 2.7, |e (G*) |=n*A(G*) + 1. If r = 4, then it follows

that either G* has four vertices of degree 2n*-l (=A(G)-2) and the

rest (A(G) — fp have degree 2n*-2 (=A(G)-3) so that (G\a)\(FjUF2) 

has at least A(G) vertices of degree ^ A(G)-3, or G has four vertices 

of degree 2n* (=A(G)-2), one of degree 2n*-2 and the rest (A(G)-6)
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have degree 2n*-l (= A(G)-3), so that (G\a)\(FjUF2) has at least

1-2 vertices of degree at.least A(G)-3.

Since (G\a)\(Fj UF^) has 2n-A.(G)+3 vertices of degree at 

least A(G)-3, it follows in the first and third cases that

A(G)-132n-A(G)+3,

so that n+2$A, and in the middle case it follows similarly that 

n+1^A(G).^ , But in both cases this contradicts our assumption

here that A > n + 4. Therefore CG\a)\(Fj Uf )̂ is Class 1. Working 

back, it follows that G is Class 1.

Case 3iii b2. |-|v(G) | > A(G) > n+4. If d*(v)&3 . for all • vGv(G), then, 
counting edges, it is easy to see that A(G) > ^ |v(G)|. Therefore, in 

this case, there is a vertex, say Vj, such that d*(Vj) = 2. Suppose 

Vj is non-adj acent to both a and d. Since A(G) ^ 2n-2, there is a 
vertex v^ f v̂  which also is non-adjacent to a.

Consider the graph G\{a,b}. We have 6(G\{a,b} ^ A(G)“3 . and 

|v(G\{a,b})| = 2n-l . Since A(G)"3 k n we have 6(G\{a,b})>: |-|V(G\{a,b}) |, 

so, by Lemma 7.5, G\{a,b} contains a Hamiltonian cycle. Therefore 

G contains a near 1-factor F̂  which contains the edge ab but contains no 

edge incident with Vj.

The graph G\F^ contains five vertices, a,b,c,d,Vj, of maximum degree 

A(G)-1. Now consider the graph (G\{a,d})\Fj. We have 

g((G\{a,d})\F ) > A(G)-4 • and |V((G\{a,d}))\F^)| = 2n-l. Since A(G)-4 

> n it follows that ô (,(G\{a,d})\Fj ) S ^^V((G\{a,d})\F|) so, by Lemma 7.5, 

(G\{a,d})\Fj contains a Hamiltonian cycle.. Therefore G\F^ contains a 

near 1-factor F^ which, contains the edge ad, but contains no edge incident
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with v^.

The graph GXC.FjUF̂ ) has six vertices, a,b,c,d,Vj ,V2» of 

maximum degree A CG)-2, . and of these c is the only one adjacent to 

a. The argument now proceeds exactly as in the previous case, and 

it follows that G is Class I.

Case 3iii b3. A(G) = n+3. As in the previous case, we may take v̂

to be a vertex non-adjacent to a and b, and v^Cf v^) to be a vertex

non-adjacent to a. Again we show that G contains two edge-disjoint

near 1-factors F̂  and F^, where F̂  contains the edge ab but no edge

incident with Vj, and F^ contains the edge ad but no edge incident

with v«. It then follows that G is Class I. z

There are altogether 4n edges joining V(G)\{a,b,c,d} to {a,b,c,d}. 
Of these, 2(2n-3)=4n-6 are accounted for by the fact that d*^(v) ^ 2 

for each v€v(G). Therefore

G\{a,b,c,d} = (n-2)^ (n-1)^  ̂ ,

since (2n-3)-(6-2a)-^=2n+a-9,. where a.^ 3.

If there is no edge v^v^ in G\{a,b,c,d}, insert it to form a

graph G*; otherwise let G* = G\{a,b,c,d}. Let d^ ^ dg ... ^ <̂ 2n-3
the degree sequence of G\{a,b,c,d}. We shall apply Lemma 7.4 to show

that G* has a Hamiltonian cycle containing v v . In this case, this1 ^
follows if we show that if d _ = n-2 then d , ^ n. If d „ > n-2n-3 n-I n-3
then G* has such a Hamiltonian cycle. Suppose therefore that d^_g = n-2 

Then n-3 < a < 3, and so n < 6. If n = 6 then the degree sequence is
3. 6 "23.(4,4,4,6,6,6,6,6,6), so d^_j = n. If n = 5 then G\{a,b,c,d} = 3 4  

5^̂ ,̂ so G\{a,b,c,d} has 1+2a vertices of odd degree, which is 

impossible. Therefore G* contains a Hamiltonian cycle containing -/v̂jV̂ .*
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Therefore G contains the two near 1-factors Fj and F^ with the desired 

properties.

Case 3iii b4. A(G) = n+2. There are 4(n-1) edges from V(G)\{a,b,c,d}

to {a,b,c,d}. By L e m m a  2.2,since |v(G)\{a,b,c,d}| = 2n-3, either (A)

there is one vertex w^ e V(G)\{a,b,c,d} such that d*(w^) = 4 and

d*(v) = 2 for v€ V(G)\{a,b,c,d,Wg}, or (B) there are two vertices wj

and w^ such that d*(Wj) = d*(̂ 2) ~ 3 and d*(y) = 2 for ve V(G)\{a,b,c,d,Wj ,w^}

Suppose that G\{a,b,c,d}contains a Hamiltonian cycle with two

consecutive vertices Vj and v^ with the properties that there is a vertex

in {a,b,c,d} which is not adjacent to either of v̂  and v^, and that

d*(v ) = 2 and d*(v„) < 3; we may suppose that a is non-adjacent to both 1 2  _
Vj and v^, and that d is non-adjacent to v^. Then G\{a,b,c,d} contains 

two edge-disjoint near 1-factors Fj* and F^*, such that F^* has no edge 

incident with Vj and F^* has no edge incident with v^. It follows that 

G has two edge-disjoint near 1-factors F  ̂ and F^, where Fj = F^* u {ab,cd} 

and F^ = F^* u {ad,be}. The graph GXCF^UFg) bas six vertices, 

a,b,c,d,Vj ,v^ of maximum degree, but of these c is the only one adjacent 

to a. Therefore, by Lemma 2.4, G\(F|UF2) and (G\a)\(F|UF2) bave tbe 

same Class. But (G\a)\(F^UF2) has four vertices, b,d,Vj,V2, of 

maximum degree, and d and v̂  are non-adjacent.

We can now adapt the final part of the argument of Case 3iii bl 

(when A(G)<n+3, that argument does not all apply as it stands). From

that argument it can be seen that two possibilities remain. One is that

(G\a)\(FjUF2) contains a critical subgraph G* of order n+1 with three 

vertices of maximum degree n and n-2 vertices of degree n-1. The other 

is that (G\a)\(FjUF2) contains a critical subgraph G* of order n+1 with

four vertices of degree n, n-4 vertices of degree n-1, and one of

degree n-2.
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We know that (G\a)\(F^UF^) has four vertices of degree A(G)-2=n, 

n-3 vertices of degree n-1 and n-1 vertices of degree h-2. However in 

both cases it is easy to see that it is not possible to extend G* to a

graph with these parameters. Therefore (G\a)\(F^UF^) is Class 1.

Working back it follows that G is Class 1.

We now show that there always is such a Hamiltonian cycle. The

degree sequence of G\{a,b,c,d:} is (n-3, n-1, n-1, ...,n-1 ) in Case A 

and (n-2, n-2, n-1, n-1, ..., n-1) in Case B; |v(G\{a,b,c,d})| = 2n-3.

By Lemma 7.4, in both cases, G\{a,b,c,d} has a Hamiltonian cycle H with 

a prescribed edge VjV2«

In Case A, H will have the required property unless the vertices 

going round H starting at w^ are joined to those of {a,b,c,d} indicated:

{a,e,y,6}, {a,3}, {y,6}, ..., {a,3}, {y,6};

(here (a,3,7,6) is some permutation of (a,b,c,d)).

The number of times the pairs {a,3} and {y,6} occur in this list is n-1

(including each pair as a subset of {a,3,7,6}). The degree of w ino
G\{a,b,c,d} is n-3, so there is one vertex, say w*, joined to the pair 

{a,3}, which is not joined to w^. There are only n-2 vertices other 

than w^ which are joined to the pair 7,6, so w* must be joined to a 

vertex w** f w^ which is also joined to a,3. By Lemma 7.4, G\{a,b,c,d} 

has a Hamiltonian cycle which includes the edge w*w**. This is the 

required Hamiltonian cycle.

In case B, H will similarly have the required property unless the 

vertices going round H starting at ŵ  are joined to those of {a,b,c.,d} 

indicated:

{ a , B , 7 } , { 7 f 6 } ,  { u y 3 } , . . . , { 7 , 6 } ,  {ct, '3},{ 3 ,7»6} ,  {a ,  6 } , { 3, 7} , . . . ,  { 3 , 7 ) , 6 } ; •



83.

(here again, (q,3,y,&) is some permutation of (a,b,c,d)).

The number of vertices, joined to both a and 6 is at most n-2. If there 

is a vertex w* adjacent to 3 and to y and not adjacent to a or 6, then 

it must be adjacent to at least one vertex w** which itself is not 

adjacent to both a and 6. If there is no such vertex w* then the 

sequence above is the special case:

{a,3,y}, {a,(S}, {3,7,6}, {a,3}, {7 ,6}, ..., {a,3}, {7,6}.

There are n-2 vertices adjacent to both 7 and 6. Therefore, a vertex 

w* adjacent to a and 3 and not adjacent to 7 and 6 is adjacent to at 

least one vertex w", itself not adjacent to both 7 and Ô. By Lemma 7.4, 

G\{a,b,c,d} has a Hamiltonian cycle which includes the edge w* w** (or 

the edge w’w"). This is the required Hamiltonian cycle.

Case 3iiib5. A(G) = n+1. This case cannot arise, as the number of 

edges from {a,b,c,d} to G\{a,b,c,d} would have to be 4(n-2) = 4n-8, 

whereas, by Lemma 2.2, it must be at least 2(2n-3) = 4n-6.

We have now proved the implication (i) => (ii) in Case 3.

The implication (ii)^(i) . in Case 3. Suppose that |e (G) | =nA(G) + 1..

Then G is Class 2. By Lemma 7.1, A(G) > 2n-l. The graph G must contain 

a critical subgraph G* of the same maximum degree. By Lemma 2.5, G* 

has either three or four vertices of maximum degree.

If G* has three vertices of maximum degree, then by the proposition, 

|V(G*) |-1 = A(G*) = A(G) = |V(G)|-1; by the implication (i)^(ii) when 

r = 3, |e(G*)| = n  A(G*)+1. Therefore |e(G*)| = n A(G)+1 = |e(G)|, s o  

G = G*; but this contradicts the fact that G has four vertices of 

maximum degree.
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Now suppose that G* has. four vertices of maximum degree. . By Theorem

7.1,. |V(G*) I 4̂ 2n. Therefore |V(,G*) | = 2n+I. ? By the implication

(i)4>(ii) of Theorem 7.2, |e (.G*) |=nA(G*) + 1. = nA(G) + 1 = |e (G)|.

It follows that G = G*, and therefore G is critical.

Thé implication . (i)=> (ii.i). in Casé 3. This is obvious.

Thé implication (iii)=>(i) in Casé 3. Suppose that G is 2-edge-

connected and Class 2. Let G* be a critical subgraph of G of the same 

maximum degree. By Lemma 2.5, G* has either three or four vertices of 

maximum degree.

If G* has three vertices of maximumm degree then, by the proposition, 

6(G*) = A(G*)-1. As G has four vertices of maximum degree, it follows 

that G is not 2-edge-connected. But this contradicts our assumption.

Now suppose that G* has four vertices of maximum degree. Then, by

the implication (i)=i" (ii);; when r = 4, it follows that

|E(G*)|= n*A(G*)+1=n*A(G)+1,

where |v(G*)|=2n*+1. By Lemma 7.1, A(G*)^2n*-1. It is easy to

verify by counting that if A(G*)=2n*-1 then ô(G*)=2n&-2, and 

that if A(G*)=2n* then G* has one vertex of degree 2n*-2, the 

remainder having degree at least 2n*-1. If n 4 n*, then it would 

follow that G was not 2-edge-connected, a contradiction. Therefore 

n = n*, so V(G) = V(G*) and |e(G*)|=nA(G)+1. But no edges can be

added to G* without creating a further vertex of maximum degree.

Therefore G = G*.

This completes the proof of Theorem 7.2.
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7.6.■ Proofs of[Theorems 7.3, 7.4 and 7.5.

Proof of Theorem 7.4 Let G he a 2-edge-connected graph, with |v(G)[=2n 

and with four vertices of maximum degree, and suppose that G is Class 2. 

Let G* he a critical subgraph of G with the same maximum degree. Then by 

Theorem 7.1 |v(G*) | is odd, equalling 2n* + 1 , say, so 2n*+K|V(G)|.

By Lemma 2.5, G* has either three or four vertices of maximum degree.

If G* has three vertices of maximum degree, then, by the 

proposition, 6(G*) = A(G*) — 1. Since G has four vertices of maximum 

degree, G cannot be 2-edge-connected, a contradiction.

If G* has four vertices of maximum degree, then |E(G*)| = n* A(G*) + 1 

By Lemma 7.1,2n* - 1 ^ A(G*). It is easy to verify by counting that if 

A(G*)=2n*-1 then 6(G*)=2n*-2, and that, if A(G*) = 2n*, then G* 

has one vertex of degree 2n* - 2, the remainder having degree at least 

2n* - 1. Since G has four vertices of maximum degree, it follows that 

G cannot be 2-edge-connected, a contradiction.

It follows that G is Class 1, as required.

Proof of Theorem 7.3.

 ̂ Necessity. If G is Class 2, then, since (iii)4>(ii) in Theorem 7.2,

it follows that | E(G) |>nA(G) ., .

Sufficiency. If |e (G)[>nA(G), then, by Lemma 2.7̂  G is Class 2.
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Proof of Theorem 7.5

Sufficiency. In Cases (i) and (ii), the sufficiency follows from 

Lemma 2.7 applied to G and, in Case (iii), the sufficiency follows from 

Lemma 2.7 applied to C2.

Necessity. Assume G is Class 2. Then G contains a critical

subgraph G with the same maximum degree and three or four vertices of

maximum degree. If G has three vertices of maximum degree then
* 2m — 2 3 ' V * ,G s (2m - 1) (2m) for some m, by the proposition, so G\G is

* * . .joined to G by exactly one edge. If G has four vertices of maximum

degree then G = (2m-2)^^ ^(2m-l)^ or G =(2m-2)(2m-l)^^ ^(2m)^ for 

some m, since, by Theorems 7.1 and 7.2, | E(G )| = |^ |V(G ) A(G) + 1 

and so, by Lemma 7.1, A > |v(G*)| - 2. The case

G ~ (2m-2)^^ ^(2m-l)^ with m<n is excluded since G is connected.

If m<n and G = (2m-2) (2m-l )^™ ^(2m)^ . there can only be one further edge
*of G incident with G , namely an edge incident with the vertex of degree 

2m-2 in G .
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8. The chromatic class of graphs with many vertices of maximum degree 

8.1 Introduction and summary of results

In this chapter and the previous chapter we obtain some results 

about the chromatic class of graphs with a fixed number (r) of vertices 

of maximum degree. In the last chapter we proved each of the four 

conjectures in Chapter 7 for 1 < r ^ 4, and in this chapter we prove 

these conjectures for general values of r, but we have to assume that

A(G) is large. We also describe all Class 2 graphs with r vertices 

of maximum degree and A(G) large.

We obtain the following results:

Theorem 8.1. Let G have r vertices of maximum degree A, attd let
5 
2|V(G)I = 2n. A(G) > n + y r - 4, then G is not critical.

Theorem 8.2. Let G have r vertices of maximum degree A, and let 

|V(G)| = 2n+l. Let

-n + ̂ r - 7-t - if A = 2n + I - r + t and t > 0,
^ "

I n + Y  ̂  3 i f A ^ 2n + 2 -r.

Then conditions (i) - (iv) below are equivalent:

(i) G is critical^

(ii) |e (G)I = nA + 1,

(iii) G is (r-2)-edge-connected and Class 2, and |e (G)| < nA + 1,

(iv) def(G) = A - 2.

Each of the above conditions implies the following:
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(v) The edgerconneetivity A. (G) , satisfies X (G) > 2n-r+2.

Note that there is no ambiguity when A = 2n+2-r, as the two inequalities 

are identical then. Note also that the inequalities for A can be 

rewritten:

 ̂-|n + ̂  r - 2  if A > 2n+2-r,
^ \ 7n + - 3 if A < 2n+2-r.

Again there is no ambiguity when A = 2n+2-r.

These two theorems, which give conditions for graphs to be critical, are 

applied to give the following two results on the chromatic class of 

graphs of sufficiently high degree and edge-connectivity.

Theorem 8.3. Let G have r vertices of maximum degree, "let |v(G)|= 2n 

and let G have edge-connectivity at least (r-2).

If

r n + -̂ r - 7-t - -M- if A = 2n+I-r+t and t > 0. { 2 4 4 -  —
 ̂ n + TT-r - 3 if A ̂  2n+2-r,2 —

then G is Class 1,

Theorem 8.4. Let G have r vertices of maximum degree, let |v(G)| = 2n+l 
and let G be (r-2)-edge-connected. Let

A
n + -̂ r - 7-t - if A = 2n+l-r+t and t > 0,4 4 —  ---

‘ I .n + Y ^ - 3  A < 2n+2-r.

Then

G is Class 2 

if and only if

|e (G)I > n A(G).
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In the proof of Theorem 8.2 we need the following result, which is 

/very similar in essence to Theorem 8.3 and 8.4 and is of interest in its 

own right. (We thank Dr. F. Holroyd for drawing our attention to this 

result.)

Theorem 8.5. Let G have r vertices of maximum degree and let

IV(G)I = 2n + 1. Let 

6(G) >
S 1 3n + ^rr-T-t-T- if A = 2n+l-r+t and t > 0, Z 4 4 — ----------------- - •

n + -^ r-l if A < 2n+2-r.

Then G is Class 2 

if and only if

|e (G)I > nA(G).

By again considering the minimum degree, we have the following 

flieorem from which we can deduce Theorem 8.1.

Theorem 8.6. Let G have r vertices of maximum degree and let
3 
2
3|v(G) I = 2n. If̂  6(G) > n + r - 2, then G is Class 1.

All Class 2 graphs with r vertices of maximum degree, where the 

maximum degree is sufficiently high are described by Theorems 8.7 and 8.4

Theorem 8.7. Let G have an edge-cut S with |s| < r - 2, let G have

r vertices of maximum degree, and let ^ | V(G)| = n. Let

r n + 2^" 4 t
\ n  + 3

Y A = 2n+l-r+t and t > 0,

if A < 2n+2-r.

Then

G is Class 2 

if and only if

S separates G into two subgraphs Gj and G2 , where

|V(G|)| > jVCG^)!, lV(G,)| is odd, and

|e (G, )1 > A (G) Ij .
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8.2. Proof of Theorems 8.1 and 8.6.

We first prove Theorem 8.6.

Proof of Theorem 8.6. Suppose that G has r vertices of maximum degree,
O

has I V(G)| = 2n and satisfies 6(G) > n + - r - 2.

Let G^ be the induced subgraph of G on the r vertices of maximum 

degree. Partition E(G^)into r partial matchings, , ..., such that, 

for 1 < i ^ r,M^ is a maximal (by inclusion) matching in the graph 

Gr\(Mi U ... u M^_j). This can be done as follows:

Firstly G^ can be given a proper edge-colouring with r colours (by 

Vizing's theorem); let the i-th colour class be M^*(I ^ i ^ r).

For 1 < 1 ^ r, define ... ,M̂  in sequence so that is a

matching which contains M^*\(Mj u ... u ) and which is maximal in 

the graph G\(Mj u ... u M^_^) .

Next let Fj, ..., F^_^ be r-1 edge-disjoint 1-factors of G such

that F^ (1 < i ^ r-1). We now show that such I-factors do exist

Let 1 < j < r-1 and suppose that F^, ..., F̂ __j exist and that

(Fj u ... u Fj_|) n (Mj u ... u M^) = 0; we now show that F̂  exists.

Let H. — G\(Fj U ... u Fj_j).
Then

6(H.\V(Mj)) > 6(G) - (j-1) - |V(Mj)| 

& 6(G) - (j-1) - r.

By Lemma 7.5, if

6(H.\V(Mj)) > i|V(HAV(Mj))|,

then HjW(Mj) has a Hamiltonian cycle. But
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Ô(HAV(M^))> 6(G) - (j-1) - |v(Mj)|

^ 6(G) - (r-2) - V(Mj)

= 6 (G) - r + 2 - |v(Mj)|.

Also |V(H^(M3)| = 2n - V(Mj . Therefore

6(H.\V(Mj))

£ 6 -  ;r +'2 -  |v(M .) | -  n + ; |v (M .)J  ̂ J

= 6- r + 2 - n - Y | v  (M. ) |

> 6 - .r + 2 “ n -

3r _
= 6 — Y” 2 “  n

3 r> 0, since 6 ^ n + -r 2

Therefore H.\V(M.) has a Hamilton cycle (which is necessarily of even 
J J

length). Let consist of together with alternate edges of the

Hamiltonian cycle. Since was a maximal matching in G^\(Mj u ... u M^_^),

it follows that F̂  contains no edge of + | u ... u M^. This shows that a

suitable F. does exist.J
r-1

The graph G\( U F.) has exactly r vertices of maximum degree, and 
i=l ^

each of these r vertices is joined to at most one other vertex of
r-1

maximum degree. Therefore by Lemma 2.2, G\ U F. is Class 1. Working
i=l

back, it follows that G is also Class 1 . -

Proof of Theorem 8.1. Suppose G is critical but satisfies the 

inequality. Then, by Lemma 2.6,

6(G) > A - r + 2, 

from which it follows that the inequality of Theorem 8.6 holds. 

Then G is Class 1, a contradiction. This proves Theorem 8.1.
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8.3. Proof of Theorem 8.5.

It is convenient to prove Theorem 8.5 here, as it is used in the 

proof of Theorem 8.2 (and later in the proof of Theorem 9.2).

Lemma 8.1. Let G be a graph with |v(G)| = 2n+l,|e(G)| < n A(G) 

and let G have r vertices of maximum degree. If A = A(G) > 2n-r+l, 

let t = A - 2n + r. Let v be a vertex of degree A. Then there exists 

a set X of vertices with v X such that

d*(v) ^ A - I - d(x)) + |{x£X: vxjf E(G) and d(x) < A-l} 
xeX

and

rd*(v) + 1 - t if A > 2n-r+1,
|x| 2

d*(v) +1  if A < 2n-r.

Proof. def(G) = (2n+l) A(G) - 2|e (G)| > (2n+l) A - 2nA = A.

There are r vertices of degree A, so there are 2n + I - r vertices of

degree ^ A-1. Let the excess deficiency e(G) be defined by

e(G) = 2 (A-l - d(w)).
wev (G) : d (w) ̂ A-1

Then s(G) = def(G) - (2n+I-r) ^ A-2n + r-1.

Let V be a vertex of degree A. Since d(v) = A and v is joined to 

d*(v) vertices of degree A, v is non-adjacent to r - d*(v) - I vertices 

of degree A. But v is non-adjacent to 2n-A vertices altogether, and 

so is non-adjacent to (2n-A) - (r-d*(v)-I) = 2n-A-r + d*(v) + I vertices

of degree at most A - 1.
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Let

X = {x e V(G): either d(x) < A-l or d(x) = A-l and xv i E(G)},

Then

I (A-l-d(x)) + |{xeX:vx^E(G) and d(x) ^ A-l}| 
xeX

= e(G) + |{x € X : vx E(G) and d(x) < A-l}|

^ (A—2n—1+r) + (2n—A—r+d*(v)+l)

= d*(v).

Also

| x|  > |{x: d(x) < A-l and xv i E(G)}|

= 2n - A - r + d*(v) + 1, from above,

r 2n - (2n-r+t) - r + d*(v) + 1 if A > 2n-r+l

d*(v) + 1 if A ^ 2n-r,

r d*(v) + l - t  if A ^ 2n - r + 1,

d*(v) +1 if A < 2n-r.

This proves Lemma 8.1. .

Lemma 8.2. Let B be a bipartite graph. Let (x^, ..., x^) and

(Wj, ..., w^) be two sequences of vertices of B, where

{x,, ..., X } n {w,, ..., w } = 0 and w,, ..., w are all distinct.1 q 1 q   1 q----------------
Let m be the largest value of j for which there exist indices

i,, ..., i. with 1 ^ i, < ... <i. ^ q and x. = ... = x. . Let I J ------- 1 J   ij ij ---
p ^ max (q, m + A(B) + 1). Then we can partition the edge -set of B

into matchings , ..., M^, where,for some permutation tt of (1, ..., q),

no edge of M. is incident with either x. or w ....------ 2----- 1   1 —  7r(i)
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Proof. We may suppose that q  ̂1 (otherwise the lemma follows from 

Lemma 2.12.). We introduce two new vertices a and b, joining b to 

each of Wj, ..., w^ by a single edge, and, for each x e {xj, ..., x^}, 

joining a to x by a number of edges equal to the number of times x 

appears in the sequence (Xj, ..., x^), and, finally, joining a to b 

by p-q edges. Denote the graph thus formed by J (J may not be bipartite)

The graph J has two vertices, a,b, of maximum degree p, and the 

remaining vertices satisfy dj(v) < m + A(B) = p-1. All multiple edges 

are incident with the one vertex a, and, since q > 1, there is a 

vertex Wj joined to b but not to a. Since {Xj, ..., x^} n {w^, ..., w^} = 0, 

J does not contain a subgraph on 3 vertices with p+1 edges. Thus J 

satisfies Lemma 5.2 and so J is Class 1. Therefore we nan colour J 

with p colours, say Cj, ..., ĉ .

Denote the colours used on the edges joining a to b by

c^^j, ..., Cp and denote the colours on the edges joining, a to each

X e {x,, ..., x^} by c. , c. , ..., c , where i,, i„,___ _ i^ are
I q 1] ^2 s

the indices i for which x^ = x (1 < i < q); let n(i) be such that the

edge bw ... is coloured c. (1 < i < q). For 1 < i < p, let M. be theT r ( i )  1  ^  1
set of edges of B coloured c^. Then Mj, ..., are the required

matchings (clearly contains no edge incident with x^ or

This proves Lemma 8.2.
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Lemma 8.3. Let * * * ’̂ p sets of vertices of a graph G and

suppose that there are partial matchings M ’ such that 

P
(i) U MÎ = E(G),

i=1 ^

and (ii) contains no edge incident with a vertex of (1  ̂i  ̂p).

Then there are partial matchings such that

P
(i)’ U M. = E(G),

i=1 ^

(ii)' contains no edge incident with a vertex of (1 ^ i ^ p),

and (iii) * is a partial matching which is maximal (by inclusion) in

the graph (V(G), U ... U M^), subject to the proviso

that (ii) * is satisfied, for 1  ̂i ^ p....

Proof. Let be a maximal matching in G containing M* but containing no

edge incident with V.j. Proceeding inductively, let be a maximal matching 

in (V(G), E(G)^(M^ U ... U )̂) which contains MN(M^ U ... U ) but 

contains no edge incident with V .̂ Clearly we obtain , ..., 

satisfying (i)', (ii)* and (iii)'.

We are now in a position to prove Theorem 8.5.

Proof of Theorem 8.5. The sufficiency follows from Lemma 2.7.

To prove the necessity assume that 5(G) satisfies the inequality and 

that |e (G)| < n A(G). We shall show that G is Class I.

The essential idea of the proof is to remove a set of 1-factors

and near 1—factors from G in such a way that, in the resulting graph,

each vertex of maximum degree has at most one other vertex of maximum

degree adjacent to it. Then the necessity follows from a repeated

application of Lemma 2.4.
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Let V  be a vertex with d(v) = A(G), Let q = d*(v)-1. Let X be 

a set of vertices such that

q = d*(v)-l ^  ̂ (A-I-d(x)) + |{xeX: vx i E(G) and d(x) ^ A-!}
xeX

and

fd*(v) + 1 - t if A k 2n-r+2,
|x| = I

q if A ^ 2n-r+l.

It follows easily from Lemma 8.1 that such a set X exists. Let 

(Xj, ..., Xq) be a sequence of elements of X such that

{Xj, ..., x^} = X and, if x e X, then

]{i: I < i < q and x. = x}| £ A-l-d(x) + { ^

Let W be the set of vertices of degree A, Let H denote the subgraph 
of G induced by (XUW)\{v}.

Let be a maximal (by inclusion) matching of H. Let L and R 

be sets of vertices of G such that

(X u W)\{v} = L u R,

|l| < |r| < |l| + 1, and

each edge of joins a vertex of L to a vertex of R. Let B(L,R) 

be the bipartite subgraph of H induced by H with bipartition (L,R).

Let
f if A > 2n-r+2,

& = 1 I
if A ^ 2n-r+l.

Let Mq , , ..., be pairwise edge-disjoint partial matchings of B(L,R) 

such that
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(Mi) E(B(L,R)) = Mg U . . .  U M ,

(Mii) for 1 ^ i  ̂q, contains no edge incident with either or

W£,where {w^,...w^} is a set of vertices of W joined to v. 

and (Miii) for 0 ^ i ^ &, M^ is maximal (by inclusion) in the graph 

(L U R, U ... U M^), subject to (Mii).

It follows from Lemma 8.2. that M^, ..., M^ exist satisfying (Mi) and 

(Mii), for the maximum degree in H is at most

/ (r-l) + (q*-t+2))*| if A > 2n-r+2,

^ ^^<(r-I) + q)j if A < 2n-r+l,

and the greatest value of j for which there exist indices î , ..., ij

with 1 ^ i < ... <i. ^ q and x. = ... = x. is 1 J ij

J q - (q-t-I) if A > 2n-r+2,

^ I if A ^ 2n-r+l■

and therefore the number p of that lemma is given by

1 + (t-I) + ̂ ^^r + q - t + l ) |  if A > 2n-r+2,

1 + 1 + ^^^r + q - I)j if A ^ 2n-r+l.

For our purposes, we•take p = £ + 1.

It follows from Lemma 8.3 that (Miii ) can be satisfied also.

Our next step removes all edges of M^, ..., M^, creates vertices 

xeixj, ..., x^} of maximum degree and leaves v joined to only one vertex 

of maximum degree. We describe next how we carry this step out.

Let F,, F , ..., F be q edge-disjoint near I-factors of G such 1 2 q
that, for 1 < i < q, F^ contains M^ and w^v but does not contain any 

edge incident with x^, nor any edge of (m̂  U...U M._j) U 

(m^^j U /.. U M̂ ) . To see that such near 1-factors exist, suppose that 

Fj, ..., F^_| have been chosen for some i, 1 < i ^ q. We show that F^ 

can be chosen. Consider the graph
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J.= (G\(V(M.) U {v,w }))\(F, u ... u F. , u M ).J- 1 1 1  1—i o

First observe that our assumptions imply that

|V(Ĵ )| = [V(G)| - |v(M^)| “ 2 = 2n-l - |v(M^)j, and

5(J.) > 0(G) - |V(M̂ )| - 2 - (i-1) - I

= . 5(G) - |V(M.)| - i - 2.

Therefore

6(Ĵ ) - i |V(Ĵ )|

& 6(G) -  |V(M^) I - i -  2 -  n + j +  j  |v(M^> |

= 6(G) - n - J  |V(Mĵ )| - i - I

4 '

1 3 .5 (G) - n - ir(r + q - t + I ) - q - if A > 2n-r+2,2
1 3 .g(G) “ n - -̂ (tl + q - I) - q - — if A ^ 2n-r+l,

-{
5 - n - E - + Y - 2 if A > 2n-r+2,

5 - n - —  - ~ 1 if A < 2n-r+l,

d “ n “ 2r + ^ + 1 if A > 2n-r+2,{A - n - zr -r

5 - n - 2r + if A < 2n-r+l, 

since q = d*(v) - 1  ̂r-2.

^ ■ * * T + T  i f A ^  2n-r+2,

if A ^ 2n-r+I,

> 0.
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It follows from Lemma 7.5 that has a Hamiltonian cycle, and therefore 

that (G\(Fj u ... u F^_^)) has a near 1-factor F^ containing w^v,

containing M^, but not containing any edge incident with x^, nor any

edge of M ; it follows from '(.Miii) and the fact that M. <= F. (1  ̂ ^ i-1)
° j J

that F^ also contains no edge of (M.̂ U . U M^_^) U (M̂ .̂̂  U ... U M^).

The graph G\(Fj u . . .  u F^) has at most

r r + d*(v) + 1 - t if A k 2n-r+2,

^ r + q if A ^ 2n-r+1,

vertices of maximum degree, but v is adjacent to only one of them. 

Therefore by Lemma 2.4, (G\v)\(Fj u . . .  u F^) and G\(F^ u . . .  u F^) 

have the same Class. Let S = (G\v)\(Fj u . . .  u F^ ) .  We need to show 

that S is Class 1. Note that |v(S)| = 2n, so is even, and that

6(S) > 6(G) - 1 - q.

We now remove all the remaining edges in B(L,R) except for those 

in the maximal partial matching M^. We describe now how we carry this 
step out.

Let , F^ be &-q edge disjoint 1-factors of S such that,

for q + 1 < i < &, F^ contains M^ but does not contain any edge of

M^. From (Miii) and the fact that M̂. c: F̂  (1 ^ j ^ i-1), it follows that 

F^ will also not contain any edge of (M̂ - U U M^_^) U (M̂ .̂̂  U ... U M^) 

either. To see that such 1-factors exist, suppose that F^^^,...,F^  ̂have been 

chosen for some i, q+1  ̂i ^ &. We show that F^ can be chosen.

Consider the graph

= (S\V(NL))\(Fq+| u ... U F^_, U M^) 

Then we have
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ô(J^') ^ 5(G) - I - q - jv(M^)j - (i-I-q) - I
= 5(G) - I - |V(M^)I - i

> 5(G) - 1 - |V(M^)I - &.

Therefore

6(Ji') - Ÿ |V(Ji')|

& 6(G) - |V(M^)| - £ - 1 - I<2n-|V(ML)|)

j|v(M.:= 6(G) - i|V(M.) I - £ - n - I

f ô - ■|-(r+q-t+I) - |^(q+r+t-l) -n---l] if A ̂  2n-r+2,

6^  y(r+q—I) “ j -̂ (q+r+I)l -n-I if A £ 2n-r+l,

,3) ̂ 5- r - q - n - y

^ 5 - r - (r-2) - n - y, since q = d*(v) --1. ^ r-2.

(n + ^r - ) - 2r - n + Y if A > 2n-r+2,

5 I(n + *2^ - 1) - 2r - n + if A ^ 2n-r+l,

_J —r - ^  if A > 2n -r+2,
1 1 T :yr - Y  if A < 2n-r+l,

> 0.

It follows from Lemma 7.5 that Ĵ ' has a Hamiltonian cycle and

therefore that S\(F^^j u ... u F^_^) has a 1-factor F^ containing

M., but not containing any edge of (MJj ... u M. J  U (M. , U ... U M« ).1 V 1— 1 1+1 *•

Our next step removes all edges of L; it follows that each 

vertex of L is then joined to at most one other vertex of B(L,R). We 

describe now how we carry this step out.

Now let S* = S\(Fq+| U ... U F^). Then 5(S*) > 5(G) - 1 - q - (&-q) 

= 5(G) - &-1. Consider the subgraph of S* induced by L. Let

s = Il I.
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Then s = |L
1
2= |i|(x u W)\{v}J

r (r-1) + (q-t+2)}J if A > 2n-r+2,

^ (r-l)+q}j if: A < 2n-r+l,

if A ^ 2n-r+2, 

if A < 2n-r+l.

Let Mj*U ... U be pairwise adge-disjoint partial matchings of 

such that

(M*i) E(S *) = U ... U M *,Jj I s
(M*ii) for 1 ^ i ^ s, is maximal (by inclusion) in the

graph (L, U ... U M^*).

Let F^*, ..., F^* be edge disjoint 1-factors of S*SM^ such that

F^* contains ; (M*ii) and the fact that ; tz F (1 ^ j ^ i-1) ensures

that E.* contains no edge of (M, * U ... U M. ,*) 0 (M. ,,* IJ ... U M*); since 
^ I - l-I 1+1 s f

S''/Mo contains no edge of Mq , none of Fj F̂  contain any edges of M^.

To see that such 1-factors exist, for 1 < i < s, suppose that

F *, ..., F̂ . * have been chosen. Consider the graph1 i-T

J.* = (S*\V(M.*))\(F,* u ... u F. ,* u M ).- 1 1 1  1—1 ' o

Then

a(j.*) > a(s*) - |v(M.*)| - (i-1) - 1 

> 5(G)—& — 1 — |v(M^*)I — i 

^ 5(G)-& - 1 - IV(M^*)I - s.

Also

|V(Ĵ *)I = 2n - |V(M^*)I .

Therefore

S(Ji*) - |-|v(Jj.*) I
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k 6(G) - & - 1 - s — |v(M^*)I - n + Y |V(M^*)[
= 5(G) - n - Y |V(M^*)I - & - s - 1

k 5 (G) — n — —s — £ — s — 1 
3= 5 — n — & — Y® — 1

4

4

5 - n - |Y(q+r+I ) j

. 5 „ _ 5  ̂^ 1

3 1
“ 2 .2
3 1

“ 2 .2

14

roj(r+q-l)l - 1 if A ^ 2n-r+l ,

if A ^ 2n-r+2,4 4 + 4
- — r - n - % q - - T  if A < 2n-r+l,

r A — r r - n - y- (r—2) + —  t - if A ^ 2n-r+2,^ J 4 4 4 4
d - r - n - Y (r-2) - if A < 2n-r+l,

J 5 - Y  ̂  - n * + l if A > 2n-r+2,

^ 5 - Y  r - n -»■ if A < 2n-r+l,

> 0.

It follows from Lemma 7.5 that J* has a Hamiltonian cycle and therefore

that S*\(Fj* u ... u F * ̂ ,) has a 1-factor F^* containing but not

containing any edge of M nor of (M* U ... U M*. 4) U (M*. , U ... U M* ).o 1 1~ I 1+1 s

The graph H* = S*\(Fj* u ... u F^*) has the same set L u R of 

vertices of maximum degree as had S. In H* the vertices of L are 

joined to at most one vertex of maximum degree. The vertices of R 

which are not joined by an edge of are pairwise non-adjacent in 

H*, since was chosen to be a maximal partial matching of H.

Therefore by Lemma 2.4-, the graph S*\(F̂ * u ... u F^*) is Class 1.

Working back it follows that G\w is Class 1, as required. This proves

Theorem 8.5.
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8.4. Proof of Theorem 8.2.

Theorem 8.5 is in itself the most significant step in the proof 

of Theorem 8.2; the following lemma follows easily from Theorem 8.5.

Lemma 8,4. Let G have 2n+l vertices, of ŵ hich f have maximum degree 

A. Let :

A
7 1 1 1 .n + —  r - —  t — —  A = 2n+l-r+t and t > 0,

n + Y  ̂  “ 3 A < 2n+2-r,

If (i) G is critical,

then (ii) |e (G)| = nA+1•

Proof. Suppose G is critical and satisfies the inequality.

Then, by Lemma 2.6, 

a(G)>A - r + 2 ,

from which it follows that the inequality of Theorem 8.5 holds.

Therefore |e (G)|>nA(G). But since G is critical, it follows from

Lemma 2.7 that |E(G)| = nA(G) + 1.

This proves Lemma 8.4.

For positive integers r and n, let f(n,r) be defined by

if c 2 ^ n . ^  ,

" - ' " ' I  . I f  -3
2 10There is no ambiguity in this definition, for if r = ^ + "9“ then

Y n  + - ^ r - 2  = n + Y ^ ” 3.
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Lemma 8,5»

(i) f (n,r) = min (-|- n + -^ r - 2, n + j r - 3) ,

(ii) The inequality in Theorem 8.2 and in Lemma 8.4 may be put in the 

form

A > f(n,r).

(iii)f(n,r) is an increasing function of n and of r.

Proof. It is easy to verify that

r ^ - | n  + -^ as | - n + ^ r - 2 |' 2n+2-r,

that

< 9 
and that

> 2 ^  10 _ 7 _> 6 ^ 13 „
^ Z J  ̂  ~9~ n + j  T - 3 ̂  J  n + -J-r - 2,

or, in other words, that

r Y  n + as n + ^  r - 3 ^  ^  n + ^  r - 2 ^ 2n+2-r,

(i) now follows immediately.

It also follows immediately that the condition 

"A > Y n + r - 2  if A > 2n+2-r"

can be rewritten 

"A > f(n,r) if A > 2n+2-r" 

and that the condition 

"A > n + Y  ̂  “ 3 if A  ̂2n+2-r"
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can be rewritten

"A > f(n,r) if A < 2n+2-r.”

Consequently the inequality

. I n + r - 2 if A > 2n+2-r, "
^ ^ 7 ̂n + —  r - 3 if A ^ 2n+2-r,

can be rewritten

A > f(n,r).

But as indicated after the statement of Theorem 8.2, the combined 

inequality above is equivalent to the inequality of Theorem 8.2. This 

proves (ii)..

(iii) follows immediately from the definition of f(n,r).

This proves Lemma 8.5. .

Lemma g .6 . Let G have 2n+l vertices, r of them having maximum

degree A. Then the following are equivalent.

(ii) |e (G)I = n A + 1,

(iv) def(G)= A - 2„

Proof. def (G) = a |v (G)| - 2 |e (G)|

= A(2n+1) - 2 |e (G)|

= A - 2(|e (G)I - nA).

Therefore if ]e (G) | = nA+1 , then def (G) = A - 2.

Conversely if def (G)= A - 2, then |e (G)| = nA+1.

We now prove the converse of Lemma 8.4.
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Lemma 8.7.. Let G have 2n+1 vertices, of which r have maximum

degree A. Let

n + y r - Y t - "Y" ^  A = 2n+l-r+t and t > 0,
A " "  ̂ 4 44 1n + Y  ̂  “ 3 if. A ^ 2n+2-r.

U  (ii) |e(G)| = nA+1, 

then (i) G is critical.

Proof. Since |e (G)| = nA+1 > by Lemma 2.7, G is Class 2.

Suppose G is not critical. Then G contains a critical subgraph G* 

of the same maximum degree A with r* (̂ r) vertices of maximum degree.

By Theorem 8.1, since

c r n  + Y ^ - v t -  ̂  if A = 2n+l-r+t and t > 0,
n + Y ^ - 4  <  j  y

I n + Y r - 3 if A < 2n+2-r,

it follows that |v(G*)| is not even. Let |V(G*)| = 2n*+l for some 
n* < n. By Lemma . 8.5 (iii) (in the notation of that lemma),

A(G*) = A(G) > f(n,r) > f(n*,r*).

Therefore by Lemma 8.5 (ii) and Lemma 8.4, |e (G*) | = n*A+l.

By Lemma 3.6y, the deficiencies of both G and G* are A-2, so 

the number of edges that can be added to G* in forming G is at most

■ ^ (2n+I)-(2n*+Oj = (n-n*)(n-n*-I).

However

|e (G)I - |e (G*)I = A(n-n*), 

so it follows that
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A(n-n*) ^ (n-n*)(n-n*-l), 

and so, if n f n*, then 

A  ̂n~n*“l < n.

However the inequalities of the lemma imply that A > n+2. This is a 

contradiction. Therefore n = n*, and so |E(G*)| = nA+1. = |E(G)| 

and |V(G*)| = 2n+f = |v(G) | . Therefore G.= G& and so G is critical

This proves Lemma 8.7.

Combining Lemmas 8.4 and 8.7 we have

Lemma 8.8. Let G have 2n+l vertices of which f have maximum

degree A. Let

n + 2.r-|-t--î^ i^A = 2n+l-r+t and t > 0,
A  ̂ !

 ̂_ 3 if A ^ 2n+2-r.'■ n + y r -

Then the following are equivalent:

(i) G  is critical»

(ii) |e (G)| = nA+1.

The next two lemmas show that (i) and (iii) in Theorem 8.2 are 

equivalent.

Lemma 8 . 9 .  Let G  have 2n+l vertices r having m a x i m u m  degree A,

Let A  k  n+r-2.

1È

(i) G is critical ,
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then

(iii) G (r-2) édgë-côniiéctéd and Class 2, and 

|e (G)| < nA+1.

Proof, Clearly G is Class 2 and, from Lemma 2.7, |e (G)| ^ nA+1.

Let S be a set of vertices of G with |s| ^ n. By Lemma 2.6,

5(G) ^ A-r+2 > n. Therefore the number of edges between S and V(G)-S 

is at least

|s| (5- |s| + 1)

> min (5, n(5-n+l))

a n

> r-2.

Therefore X(G) ^ r-2 as required.

Lemma ,8.10. ̂ Let G have 2n+1 vertices, r having maximum degree

A. Let

n + Y r - ^ b  - if A = 2n+l-r+t and t >0,
A " '4  r'■ n + TT r -2 - 3 if A < 2n+2-r.

If

(iii) G (r-2)-edge-connected and Class 2 and |E(G)| ^ nA+1,

then

(i) G is critical.

Proof. Suppose G satisfies (iii). Let G* be a critical subgraph of G 

with the same maximum degree A. Since
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-X1 + — r — — t —— if A — 2n+l“r’+t and. t  ̂0,
n . f r - 4 £ {  ^  ^  "

( n + Y  ̂   ̂ i f A ^  2n+2-r,

it follows from Theorem 8.1 that jv(G*)j is odd. Let |V(G*)| — 2n*+l.

Let G* have r* r) vertices of maximum degree. By Lemma 8.5 ,(iii) 

(in the notation of that lemma ),

A(G*) = A(G) ^ f(n,r) k f(n*,r*).

Therefore, by Lemma . 8.5 (ii) and Lemma . 8.4 , |e(G*) | = n* A+1.

remarked in the proof of Lemma 8.1 , the excess deficiency 

e(G*), satisfies

e(G*) = I (A - 1 - d *(v))
(v:dg*(v)<A)

def (G*) - (2n*+l-r*)

(A-2) - (2n*+l-r*), by Lemma 8.6,

— A—2n*+r*—3

< r*-3,

since A < 2n*, as |V(G*)| = 2n*+l and A = A(G*). If n* < n then the

number of edges of G joining V(G*) to V(G)\V(G*) is at most

(r*-3) + (r-r*) = r-3,

for otherwise G would have more than r vertices of maximum degree. 

However this contradicts the hypothesis that G is (r-2)-edge-connected, 

Therefore n = n*, so |e(G*)| = nA+1.

Since G* is a subgraph of G, and since |e (G)| ^ nA+1 = |e (G*)|,

it follows that G = G*, and so G is critical, as required.
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This proves Lemma 8.10.

Lemma 8.11. Let G have 2n+l vertices, r n) of them having 

maximum degree A.

If

(iv) def (G) = A-2,

then the edge-connectivity X(G) satisfies

(v) X(G) k 2n+2-r.

Proof. As remarked in the proof of Lemma 8.1, the excess deficiency 

e(G) of G satisfies

e(G) = def(G) - (2n+l-r).

Therefore

e(G) = (A-2) - (2n+l-r) = A-2n+r-3.

Therefore

6(G) > (A-l) - (A-2n+r-3) = 2n+2-r.

Let S be a set of vertices of G with (s( ^ n. Since 5(G) ^ n, 

the number of edges between S and V(G)-S is at least

|s| (6 - |s| + 1 )
> min (Ô, n(5 - n+1))

^ min (2n+2-r, n(n + 3 - r))

= 2n+2-r.

Therefore X > 2n+2-r, as required.

This proves Lemma 8.11.'
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Proof of Theorem 8.2. By Lemma .8.8, (i) and (ii) are

equivalent if A satisfies the inequalities of the theorem. By 

Lemma 8.6 ̂ (ii) and (iv) are also equivalent then, and, by Lemmas 

8.9 and .8.10, (iii) is also equivalent to (i) then. By Lemma 

8.11 , each of these implies (v) then.

This proves Theorem 8.2.

8.5. Proofs of Theorems 8.3 and 8.4.

Proof of Theorem 8.3. Suppose G satisfies the hypotheses of the 

theorem. If G is Class 2>then G has a critical subgraph G* with 

the same maximum degree A and with r* (̂  r) vertices of maximum 

degree. Since

2 ,n + Y ^  if A = 2n+l-r+t and t > 0,
n + TT r - 4 ^

2 r - 3 if A < 2n+2-r,

it follows from Theorem 8.1 that |v(G*)| is not even. Let [v(G*)j = 2n*+l. 

By Lemma 8.5,

A(G*) = A(G) > f(n,r) > f(n*,r&).

Therefore, by Theorem 8.2, |e (G*)| = n*A+l.

The excess deficiency e(G*) satisfies

e(G*) = def (G*) - (2n*+l-r*)

= (A-2) - (2n*+l-r*), by Theorem 8.2,

= A—2n*+r*—3 

< r*-3,

since A < 2n*, as |V(G*)[= 2n*+l and A = A(G*). The number of edges of 

G joining V(G*) to V(G)\V(G*) is at most
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(r*-3) + (r-r*) = r-3,

for otherwise G would have more than r vertices of maximum degree. 

However this contradicts the hypothesis that G is (r-2)-edge-connected 

Therefore G is Class 1, as required.

This proves Theorem 8.3.

Proof of Theorem 8.4.

Sufficiency. This follows from Lemma 2.7.

Necessity. Suppose G satisfies the hypotheses of the theorem

and is Class 2. Then G has a critical subgraph G* with the same 

maximum degree A and with r*(< r) vertices of maximum degree. By 

the same argument as in the proof of Theorem 8.3, |V(G*)| is odd.

Let |V(G*)| = 2n*+l, where n* ^ n.

If n* < n then we obtain a contradiction in the same way as in 

the proof of Theorem 8.3. Therefore n* = n. By Theorem 8.2,

|e (G*)| = nA+1, and so |e (G)| > nA, as required.

This proves Theorem 8.4.
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8.6. Proof of Theorem 8.7.

Sufficiency. By Lemma 2.7, Gj is Class 2 and so it follows that 

G is Class 2.

Necessity. Suppose G is Class 2. Then G has a A-critical

subgraph G with r (<r) vertices of maximum degree. By Theorem 8.1,

since
7 1 11.n + - r - ^ t - -  if A =2n+l-r+t and t>0,

_n + ^ r - 3 if A< 2n+2-r

it follows that |v(G )| is not even. Let |V(G )| = 2n +1
*for some n ^ n. By Lemma 8.5 (iii),

A(G ) = A(G) k f(n,r) > f(n ,r ).

Therefore, by Lemma 8.5 (Ü) and Lemma 8.4, |e (G )| = n A + 1.
* * *The excess deficiency of G is A - 2 - (2n + 1 - r ), so

the number of further edges which can be incident with vertices
* . . 'of G without forming more than r vertices of maximum degree is

at most
* *A - 2  - (2n + l- r) + ( r - r )
&= A - 3 - 2 n + r  

= (r - 3) + (A - 2n )

< r - 3.

Clearly |v(G )| > |v(G\G )|. Therefore the theorem is satisfied 
* *with V(Gj) = V(G ) and G being a subgraph of Gj.

This proves Theorem 8.7.
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9. Regular graphs of high.degree are 1-factorizable

9.1 Introduction

It is a well known conjecture that if a regular graph G of order 2n 

has degree d(G) satisfying d(G) è n̂  then G is the union of edge 

disjoint 1-factors. This conjecture is known to be true for 

d(G) = 2n - 1 or 2n - 2 and we show here that it is also true for 

d(G) = 2n - 3, 2n - 4 or 2n - 5 and for d(G) ^ y 1 • .

Conjecture 9.1 A régulât graph of order 2h and degree d(G) satisfying

The lower bound 2 1

- 1 is Class 1

“ 1 is best possible. A connected regular

graph of order 2n and degree 2 “ 2 which is of Class 2 can be

formed for n = 2m + 1, m  ̂2, from two copies of jlK by removing one2m+1
edge (say a^b^ and agbg) from each and joining the two copies by edges 

^1^2* Petersen graph is an example of a connected regular

Class 2 graph of order 2n and degree 2 - 3.

It is well known that is Class 1, and a trivial consequence is 

that a regular graph of order 2n and degree 2n - 2 is Class 1 (as any 

such graph can be formed by removing a 1-factor from . Rosa and 

Wallis [r1] recently proved the case when d(G) = 2n - 4 under the 

special circumstance that G is Class 1. Haggkvist has showed us a sketch 

of a proof of the conjecture when d(G) ^ |v(G)|. He also has proved

that, given e > 0, there exists n such that if |V(G)| k n and even, 

and G is regular with d(G) = (2 + e) |v(G)|, then G is '1-factorizable. Our
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method and his bear no resemblance to each other.

In this chapter we have two main results. Theorems 9.1 and 9.2, which 

are both special cases of the conjectureo

Theorem 9.1 Let G be a regular graph of older 2n'and ; degree

d(G) =2n - 3, 2n - 4 or 2n - 5o Let d(G) ^ 2 - 1. Then G is

Class 1o

Thereom 9.2 Let G be a regular graph of order 2n whose degree 

d(G) satisfies

d(G) ^ y  IV (G) I

Then G is Class 1.

Thereom 9.2 has an application on the subject of 'Intricacy* about 

which an interesting paper has recently heen written by W. Eo Opencomb 

[oil. Briefly, suppose we have a set of edge-disjoint 1-factors of 

It may well be that this set of 1—factors cannot be completed to give a 

1-factorization of In that case, for some integer j = j (n), it is

certainly possible to partition the given set of edge—disjoint 1—factors

into j parts in such a way that the set of 1-factors in each part of the

partition can be extended to a 1—factorization of The intricacy of

this problem is the least j for which there always exists a partition 

into j parts, each of which can be extended to a 1—factorization of 

The conjecture would imply that the intricacy of this problem was 2.

Theorem 9.2 implies that it is no more than 7, In the notation of

[01 ], we have:



116.

Corollary.9.1. For n k 3,

2 ^ K (Pack  ̂Ç (KgJ) 3 7.

The upper bound, 7, replaces the upper bound given in [01 ].

Combining Theorem 9.1 and Theorem 9.2 with recent results of 

Faudree and Sheehan [FI] we obtain the following corollaries.

Corollary 9o 2. Let 2 = k ^ 4, n ^ k. G is a connected regular graph

of degree k and order 2n, and G K.. „ if k = 3. then G has a 1-factor  3,3 —  ---- — — :---------
F such that both G U F and G^F are Class 1.

Corollary 9.3. Let k k 2, 2n k max(2(k^ - k + 1), 7k + 14). ^  G is a 

connected regular.graph.of degree k and order 2n, then G has a 

1-factor F such that both G U F and G^F are Class 1.

Combining a slight extension of Conjecture 1 with a slightly 

generalized form of a conjecture of Faudree and Sheehan [FI], we have:

Conjecture 9.2. Let n ^ k ^ 2, G is a régulât graph. of degree k and

order 2n, and G ^ if k is odd, then G has a 1—factor F such that

both G U F and GNF are Class 1.
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9.2 Preliminary results

We give here some lemmas used in the following sections.

Lemma 9.1 Let n ^ 1. Let G be a regular graph of order 2n, G z K 

Let w € V(G). Then G is Class 1 if and only if G ^  is Class 1.
2n

Proof

Necessity. If G is Class 1, then G can be edge—coloured with A(G) colours

Therefore G^w can be edge-coloured with A(G) colours. Since G K2n
there is a vertex in G non-adjacent to w, so A(G^) = A(G). Thus GNat

can be edge-coloured with A(G^) colours, so G ^  is Class 1.

Sufficiency. If G ^  is Class 1, let G ^  be coloured with A(G^w) colours. 

As above, A(G^) = A(G). The graph G ^  has A(G) vertices of degree 

1 and |v (Ĝ w )| is odd. Therefore each colour is missing from 

exactly one vertex and each vertex of degree A(G) — 1 has exactly one 

colour missing from it. Therefore w and the edges on w can be restored, 

with each edge wv (v E V(G^), ~ A(G) - 1) having the colour

previously missing at v.

Let P* be the graph obtained from the Petersen graph by 

deleting one vertex.
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Lemma 9.2 With the exception of all critical graphs G of order 

^10 satisfy the equation.

|E(G)| = U|V(G)|J . A(G) + 1.

Proof. The result follows by an examination of the list of all critical 

graphs of order ^ 10 in the papers by Beineke and Fiorini [Bl],

Jakobsen [J3] and in Chapter 3.

Lemma 9.3 Conjecture 9.1 is true for regular graphs of order 2n and 

degree 2n-5 if 2n ^ 10.

Proof. Let w £ V(G). The graph G^w has four vertices of degree 

A(G), the remainder having degree A(G) - 1. Therefore " •

|e(G\w):| = K4(2n - 5) + (2n - 5)(2n - 6))

= 2n^ - 7n + 5

< 2n^ - 7n + 6

= A(Gs«) .

By Lemma 9.2, G ^  is not critical, and does not contain a critical 

subgraph of maximum degree 2n - 5 on 2n - t verticèSo

If Gn  ̂is Class 2, it must contain a critical subgraph G* of

maximum degree 2n - 5. The graph G* must satisfy

2n - 5 < |V(G*)I < 2n - 1,

and the values 2n — 4 and 2n — 2 are precluded by Lemma 9.2. Therefore 

G* has 2n — 3 vertices and, by Lemma 2.5, three or four vertices of
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maximum degree.

There is no solution in this case of the equation of Lemma 9.2 when 

r = 3, and the only possibility when r = 4 is that G* has four vertices 

of degree 2n - 5, and the remaining vertices have degree 2n - 6. Since 

GNf has only four vertices of maximum degree, G^w consists of G* U Kg. 

Therefore d(G) =2, so 2n - 5 = 2, so 2n = 7, which is impossible. 

Therefore G^w is Class 1, and so, by Lemma 9.1, G is Class 1.

9 o3 Proof of Thèôtèm.9.1

First we prove the special case of Theorem 9.1 when d(G) = 2n - 3

Case.1. d(G) = 2n - 3.

Let w € V(G) and consider the graph G^. This has 2 vertices of 

maximum degree 2n. - 3 and so,by Lemma 2.5,is Class 1. Therefore,by 

Lemma 9.1, G is Class 1.

Case 2... d(G) = 2n - 4.

Let w E V(G) and consider the graph G^w. Then |V(G^) | = 2n - 1, 

G ^  is connected since the conditions imply that n ^ 4, and G^w has 

three vertices of maximum degree. Therefore,by the proposition of 

Chapter 7, Gs\r is Class’1. Therefore, by Lemma 9.1,G is Class 1.

Case 3 . d(G) = 2n - 5.

By Lemma 9.3, the theorem is true in. this case for n Û 5, From 

now on we shall assume that n ^ 6.
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Let w € V(G), Then |v(G^) | = 2n - 1, G ^  has four vertices, say 

a, b, c, d, of maximum degree 2n - 5, and the remaining vertices have 

degree A(G^w) - 1 = 2n - 6. By Lemma 9.1 we need only show that G ^  is 

Class 1.

Suppose G^w is Class 2. By the proposition of Chapter 7, G\w could 

only contain a critical subgraph with the same maximum degree with  ̂3 

vertices of maximum degree, if the edge-connectivity of G\w were A 1 .

However the minimum degree is too high for this to be possible. Therefore,

in any critical subgraph of G\w with same maximum degree, a, b, c and

d have degree A(G). From Theorems 7.1 and 7.2, we fehhw

that the only critical graphs G* with four vertices of maximum degree

have |E(G*)| ==-1!Z^21LJa(g*) + 1. But |e(Gxw)| = Ü I M I z Ü a  (G)

and hence G^w is Class 1.

This completes the proof of Theorem 9.1.

9.4 Proof ■ of ■ Theorem." 9.2

Proof. Let G be a regular graph of order 2n+2 and degree '

d(G) satisfying

d(G) = I JV(G) I .

Let d(G) = 2n - r + 1. By Theorem 9.1, we may assume that r = 5.

Let w e V(G) and consider the graph G\w. G\w has 2n + .1 vertices, 

r of degree 2n — r + 1 and 2n — r + 1 of degree 2n — r. We are going to 

apply Theorem 8.5 to show that G\w is Class 1.

First notice that A(G\w)=' 2n - r + 1  < 2n + 2 - r.

Then notice that

6(G\w) = 2n - r > n + I r - 1.
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Finally notice that

|e (G\ w )| = ^{r(2n - r + 1) + (2n - r + 1) (2n - r)}

- n(2n - r + I)

= nA

Therefore, by Theorem 8.5, G\w is Class I, and so, by Lemma 9.1,

G is Class 1. This proves Theorem 9.2.

We should point out that the following, slightly strengthened 

form of Theorem 9.2 can be obtained.

Theorem 9.2*. Let G be a regular graph of order 2n and degree 2n - k, 

where

ill
2^  ̂- I (k - l)(2n - k)

2n - 1 

Then G is Class 1.

This is really a rather insignificant improvement on Theorem 9.2, since 

the inequality in Theorem 9.2 is approximately d(G) >*857|V(G)| , 

whereas the inequality of Theorem 9.2' is approximately 

d(G)> '849 V(G)|. Similarly, slight improvements could be made to the 

inequalities in the theorems of Chapter 8.

We now indicate very briefly how this improvement can be brought about 

In the graph G\w of the proof of Theorein 9.1, thé average value of 

d*(u) (ueV(G\w)) is, by counting edges, easily seen to be

(k - 1 ) (2n - k)
(2n - 1)
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Therefore, we can choose the vertex v (of the proof of Theorem 8.5) 

so that

Now working through the argument of Theorem 8.5 with this bound on 

d*(v) yields a slight improvement to the inequality of that theorem 

which, in turn, yields the improved bound of Theorem 9.2'.
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10. Supersnarks

10.1 Introduct ion

In [G1] Martin Gardner gave the name snarks to 3-regular, Class 2 

graphs. This name was chosen because of the difficulty of finding such 

creatures,after Lewis Carroll's "The Hunting of the Snark". At that 

time it was not known if there were any planar, 3-regular, Class 2 graphs 

and such an object, he said, would be the mythical Boojum.

A snark is usually defined to be a 3—regular Class 2 graph which is 

cyclically 4-edge-connected and of girth at least 5. A general discussion 

and review of known snarks can be found in [C8], The requirements that 

snarks should be cyclically 4-edge-connected and of girth at least 5 are 

made to avoid trivial casés. It now appears [C1 ] that snarks which are 

not cyclically 5-edge-connected are 'trivial*, in the standard sense 

that they can be constructed from 3-regular Class 2 graphs of lower 

order by a standard process. It seems to be premature to try to 

■'define out" such trivial cases.

It is natural to ask whether the idea of a snark can be extended 

to regular graphs with degree greater than three. One possible 

generalisation, is:

Definition. For k £ 3, a k-snark is a regular multi-graph of degree k and

Class 2. If the value of k is unimportant we use the general term 
supersnark.
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Strictly speaking, a 3-snark is not a snark, as the standard

'trivial cases' have not been excluded. Three trivial cases for 

k-snarks are:

(1) A k-snark which contains a multiple edge consisting of k - 1

parallel edges. In this case the same colour is forced at either 

end in any hypothetical k-edge colouring, so the multiple edge 

could be contracted out. The converse process also works.

Figure 10.1
(2). A k-snark which contains a k-clique (a complete subgraph on

k vertices) when k is odd. In this case the outgoing edges must 

all have different colours in any k^edge colouring, so the clique 

could be contracted to a point. The converse process also works.

CL

Ou

ex.

Figure 10.2
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(3) A k-regular graph of odd order. This must be Class 2 by Lemma 2.7.

Some cases which are certainly trivial when k=3, and probably

are in general (but this still awaits a proof) are given next;

the points of difficulty in cases (5) and (6) were overlooked

in [C8].

(4) A k-snark which contains a k-clique when k is even, k ^ 4.

To discuss this, let k be even, let G denote a graph containing 

a k-clique, and let^(G) be the set of all derived graphs, where a 

derived graph is a k-regular graph obtained from G by removing the 

k-clique leaving k pendent edges, and then joining these pendent 

edges together in pairs.

It is clear that if G is k-edge-colourable then 

3D(G) €D(G) such that D(G) is k-edge-colourable also (see Figure 10.3

p.

Figure 10.3
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On the other hand, except in small cases, it is not clear that if 

G is not k-edge colourable, then 3D(G) €^)(G) such that D(G) is not 

k-edge-colourable either. This is what needs to be proved if k-snarks 

containing k cliques when k is even are to be deemed trivial. Putting 

it another way, we need to know that if H G ̂ (G) H is k-edge- 

colourable then G is also k-edge-colourable.

However, we suspect that much more is true than what we need to 

prove. We suggest that if 3H €^(G) such that H is k-edge-colourable, 

then it follows that G is k—edge—colourable. Putting this another way, 

we suspect that if G is not k-edge-colourable, then. H € 3) (G) H is not 

k-edge-colourable. Rephrasing this one again, we make the following 

conjecture,

Conj éctùfè 10 o 1, Let k be even. Let v^,,,, ,Vĵ  be the vertices of e ,nnd 

let c^,,,,,c^ be k colours. Let f^,,,.,f^ E {c^,,,.,c^} and let 

|{i| f^ = fj and 1 g i^k}| be even, for each j, 1 ^ j ^ k. Then 

can be properly edge-coloured with c^,,,,,ĉ  ̂in such a way that, for 

1 i - k, the colour f^ does not occur on any edge which is - incident 
with v^.

There is some possibility that we could prove what we need to 

deem these k-snarks trivial without having to prove Conjecture 10,1, 

but Conjecture 10,1 is probably a tractible problem so tackling it 

is probably the most sensible approach.
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(5) A k-snark which contains a (k+1)-clique with a 1-factor

removed, when k is odd.

Again to discuss this, let k be odd and let G. denote aI
graph containing a (k+1)-clique from which a 1-factor has been 

removed, Let^ (G|) be the set of all graphs derived from G^; here 

a derived graph is a k-regular graph obtained from Ĝ  by removing 

the (k+1)-clique from which a 1-factor has been removed, leaving 

k + 1 pendent edges, and then joining these pendent edges together 

in pairs.

It is clear that if Ĝ  is k-edge-colourable, then 

3 D(G^) GtD(G^) such that D(G^) is k-edge-colourable also 

(see F i g u r e ) .

cx

'a.

CL

Figure 10,4
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On the other hand, except in small cases, it is not clear that 

if is not k-edge-colourable, then 3 D(G^) €|)(G^) such that 

D(G^) is not k-edge-colourable either. Again, this is what needs 

to be proved for kodd if k-snarks containing (k+1)-cliques from 

which a 1-factor has been removed are to be deemed trivial.

Putting it another way, we need to know that if H E (G) H is 

k-edge-colourable, then G is also k-edge-colourable.

However, again we suspect that much more is true than what we 

need to prove. For k k 5, we suspect that if 3 H EÜ)(G), such 

that H is k-edge-colourable, then it follows that G is 

k-edge-colourable, [For k = 3, it seems to be possible that this 

need not be the case: consider the example of Figure 10.5.

G, D(G^)
Figure 10.5

If D(G.) can only be 3-edge-coloured with the two edges shown 
1

receiving different colours, and no other derived graph can be 

3-edge-coloured, then Ĝ  cannot be 3-edge-colouréd. However, it 

is not clear whether this possibility can actually arise. So 

maybe our suspicion concerning the situation when k è 5 should be
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extended to the case when k = 3 also]. Putting our suspicion 

another way, we suspect that, for k ^ 5, if G  ̂ is not 

k-edge-colourable, then H Ei>(G^) H is not k-edge-colourable.

The next conjecture is slightly stronger still.

Conjecturé 10.2. Let k be odd. Let F be a 1-factor of a , let

v^,...,v^^^ be the vertices and let c^,...,c^ be k colours. Let

f^,...,f^^^ € {c^,...,c^} and let |{i: f_ = fj and 1 ^ i é k}1 be even

for each j, 1 ^ j ^ k. Then, apart from one exceptional case,

^ F can be properly edge-coloured with c^,...,c^ in such a way that,

for 1 ^ i ^ k, the colour f^ does not occur on any edge which is

incident with v^. The exceptional case is when 3 j ̂ , j^ such that, if

i., i- € {1,...,k} < {j., j.}, then f. = f. , and v. v is an edge I z I z J1 ^2
of the 1-factor.

If D(G^) can be k-edge-coloured, then Ĝ  can be given a partial 

k-edge-colouring in which all edges are coloured except the edges of the 

less the 1-factor- Let f^,...,f^ be the colours on the edges 

connecting v^,...,v^ to the part of Ĝ  not in the less the

1-factor. Unless we have the exceptional case, then if Conjecture 10.2 

is truê  this k-edge-colouring can be extended to all edges of Ĝ . In 

the exceptional case, the partial k-edge-colouring can be equalized.

Then each colour will occur either no times, or two times amongst 

f^,...,f^^^. Thus, by recolouring, the exceptional case can be 

avoided. Note that this argument fails when k =3.
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Even more than in the last case, in this case it seems that we do 

not make the problem any simpler by trying to confine our attention 

just to what we need to prove - the easiest approach seems to be to 
tackle Conjecture 10.2.

It should be noted that if k - 3, then the exclusion of (2) and;

(5) reduces to the requirement that the graph should have girth  ̂5.

(6) A k-snark which contains a (k+1)-clique with l(k+1) edges 

removed, when k is odd.

This is a more general version of (5), and the discussion is very 
similar.

We can generalise the Parity Lemma [D1] for snarks as follows 

(this has been used implicitly already in the discussion of (4) and (5) 
above).

Lemma 10.1 (The :gènétâliséd: Parity:Lemma).,

Let G be a k-regular graph with a k-edge-colouring. If a cut in 

G intersects s^ edges of colour i, for i = j, 2,...,k, and if A is the set 

of vertices on one side of the cut, then

®1 = ®2 = l?(A)| (mod 2).
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Proof. Consider a graph G divided by a cut into two sets of 

vertices A and B, Let the cut intersect ŝ  edges of colour i. If X 

is the set of edges in the cut, then

Z s. = |X|. 
i=1 ^

If is the set of edges coloured i in A then, since every vertex in A 

has an edge coloured i, where some edges are in A^ and the rest are in 

X,

|V(A)I = 2|a. 1 + s ..1 ' 1

Hence |v(A) | = (mod 2), and since this is true for all colours i.

 ̂ = Sg E ... = s = |V(A)| (mod 2).

Example. For the following colouring and cut in k^, we have

= 1' S  = U  Tiq = 1, n, =3, n^ = 3 and 1 = 1 E 1 = 3 E 3 (mod 2)

Figure 10.6
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Theorem 10.1. Suppose that a k-snark has a cut set C of r edges such 

that G\C k-edge-colourable. Then either r is odd and r ^ k + 2, 

or r is even and is at least 4.

Proof. Suppose that G is an r-edge-connected k-snark. Let

Ĝ  and G^ be-two graphs each with r-semi-edges formed by taking a cut

through r edges of G.

We assume first that r is odd and is less than k + 2. By the 

Parity Lemma 10.1, if Ĝ  and G^ are k-edge-colourable, then

n. = n. = ... = n., (mod 2) and Z n.. = r,J2 jk

where n.. is the number of edges of G. coloured i. Since r is odd, 
k  3^ J
Z n.. is odd, and hence all the n.. are odd. But 
i=i

n.. 6 1 (¥.) I n.. 6 k,
^ i=1.

SO r = k  or k  + 1.

If r = k then n.^ = 1 for all i = 1,.. .k and j = 1., 2 , so each

graph Gj has one semi-edge of each colour and, by relabelling the

colours of Gg, these edges will match those of G|. Hence G is Class 1.

This contradiction shows that either G. or G„ is a k-snark. If 
k 1 2

r = k + 1 then Z n. . = k + 1, but this is impossible because
i=1 ^

n.. ^ 1 and odd.
13-

Now suppose that r = 2. Then the Parity Lemma cannot be satisfied

unless k = 2. But k ^ 4, so r ^ 4 also.
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10.2 Examples of supersnarks

In this section we give a number of examples of supersnarks.

10.2.1 Line graphs.of 3-shàrks

Kotzig [ K2 ] has shown that if G is a 3—regular graph of order 

n E 0 (mod 4), then G is a 3-snark if and only if L(G) is a 4-snark. Of 

course, if G is a 3-regular graph of order n E 2 (mod 4) then L(G) is 

a 4-snark of a trivial kind, since its order is odd.

If G is a snark of order n E 0 (modulo 4), then its line graph L(G) 

is a 4-snark of order 3n/2. The line graphs of Isaacs* flower snarks 

Jg and [II] are shown in Figures 10.7 and 10.8.

Figure 10.7
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Figure TO.8

10.2.2 .Generalised.line.graphs

In this section we consider a generalisation of Kotzig*s result,

Let G be a 3-regular graph of order n with vertices v^,...,v^y For 

1  ̂i ^ n, let be a graph with three vertices of degree 2 and the 

remaining vertices of degree 4. Let |v(H^) | = h^ (1 g i g n). Form a 

graph from G, by identifying one vertex of of degree 2 with

one vertex of of degree 2 whenever the edge vyvg is an edge, of G, 

using each vertex of degree 2 exactly once. Let G(H^,...,H^) denote a 

graph formed this way; then G(H^,...,H^) is 4-regular. If 

h^ = 3 (1  ̂i ^ n), then G(H^,...,H^) is the line graph of G.
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We prove the following two theorems on generalised line graphs, 

meofern 10.2. JÆ G is Class 2, then G(H^.....HJ is Class 2. 

Theorem 10.3. Let h^ be odd (1 < i < n). Then 

G(Hj,...,H^) is Class 2. 

if and only if

either ĥ  + ... + h^ - ̂  is odd, 

_or one of is Class 2

or G is Class 2.

We do not know whether Theorem 10.3 holds when the restriction that h be
i

odd (t ^ i ^ n) is removed.

FtôOf.of.Théotéa:10.2..Assume that is Class 1. Then we
prove the theorem by showing that G is Class 1.

Let G(H^,...,h )̂ be edge-coloured with four colours a, b, c, d.

From G(H^,...,h^), form a new graph G* as follows: replace each subgraph 

® vertex joined hy two edges to each of the three vertices of H
1

of degree 2, keeping the colours as shown.
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Figure 10.9

From G* we obtain G by removing each vertex of degree 4 and replacing the 

pair of double edges on the vertex by a single edge:

Figure 10.10

When we remove these pairs of double edges, we put a corresponding 

colour on the replacement edge, as indicated:

Figure 10.11
Now each edge of G is coloured with one of the colours 1, 2, 3. We can 

see that this is a proper colouring of E(G) since, if a vertex v̂ . in G 

has more than one edge of any colour, then the corresponding subgraph 

of G(H^,..,,H^) must have had two of its vertices of degree 2 

coloured with exactly the same colours, or no colours the same.
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But by the Parity Lemma applied to the 6 (or fewer) edges joining the 

three vertices of degree 2 in to the rest of we see that this is 

not possible. Hence G is Class 1.

Proof : of : Theorem'10 .3

Sufficiency. If G is Class 2, then, by Theorem 10.2, G(H^,...,H^) is 

Class 2. If ĥ  + ... + h^ - "Y is odd, then | V(G(H^,... ,Ĥ )) | is odd. 

so, by Lemma 2.6, G(H^,...,H^) is Class 2. Finally, if one of 

H^,...,H^ is Class 2, then, since H^,...,H^ are subgraphs of 

G(H^,...,H^) of degree 4, it follows that G(H^,...,H^) is Class 2.

Necessity. Suppose that h + ... + h - ~  is even, that H.,...,H areI n z  ■ I n
^il Class 1, and that G is Class 1. We prove the necessity by showing 

that G(H^,...,H^) is Class 1.

Since n is even and h^,...,h^ are all odd, it follows that

ĥ  + ... + h^ is even. Consequently, if it were true that n E 2 (mod 4), 

then ĥ  + ... + h^ - would be odd, a contradiction. Therefore, 

n = 0 (mod 4). Consequently, by Kotzig's result, L(G) is Class 1.

Since h^ is odd and is Class 1 (1 ^ i ^ n), it follows from the 

Parity Lemma that can be 4—edge—coloured with the vertices of degree 

two having their edges coloured with the pairs of colours 

{1,2}, {2,3}, {3,t}o Consequently, in any 4-colouring of L(G), 

a triangle of L(G) corresponding to a vertex v^ of G can be substituted 

for by Ĥ , the three colours on the edges of the triangle being 

compatible with the edge-colouring of H^. Thus G(H^,...,H^) is Class 1.
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10.2.3 Petersen.mùltigràph k-sriàrks

In this section and the next we give two ways of forming k-snarks, 
for k > 3.

In this section we consider a set of k-regular multigraphs based on

the Petersen graph and show which of these are Class 2. Then we show

that from these multigraphs one may construct k-regular graphs of the 
same Class.

We consider the Petersen multigraph M shown below,r, s

Figure 10.12
where the edges labelled r,s have r and s multiple edges respectively. 

Meredith [M2] has shown that for r = 2k. +- .1;. s = 2k - 3, 2k - 2, 2k - 1,

2k, 2k + 1, 2k + 2, the graph M^^^ is Class 2 and for r = 2k; s = 2k,
2k +- 1, 2k + 2 the graph M is Class 1.r, s

— orern 10.4. If r is odd or if r is even and greater than 2s. then the 

graph M^^g is Class 2; otherwise the graph is Class 1.

Proof, We first consider the 1-factors of the Petersen graph. Let the

inside edges, outside edges and spoke edges have the obvious meanings, 
as indicated in the diagram.
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Figure 10.13
Either all 5 spokes are used, or only one is used, in a 1—factor. Hence 

the only possible types of 1-factor are as shown in Figure 10.13.

We consider the following three cases:

^ odd. If r = 2k + 1, then the number of outside edges is

5r = 5(2k + 1) = 10k +5.

Now any 1-factor has an even number of outside edges. Hence, after taking

out r 1—factors, we have used up an even number of outside edges. Since

the number of outside edges is odd, M cannot have a 1-factorisation.

Hence if r is odd, then M is Class 2.r,s

r even and r > 2s . If has a 1-factorisation then, whenever two

outside edges are in a 1-factor, one spoke is in the same 1-factor. Since

there are 5r outside edges, the number of spokes is ^ |-r, so 
5 that is 2s ^ r. Since r > 2s we have a, contradiction. Hence

Mr.s does not have a 1-factorisation and is therefore of Class 2.

r even and r = 2s. In this final case we show that there is a 

1—factorisation. Consider the 1—factors which use just one spoke, and 

take five of these, each containing a different spoke. These five 

1—factors cover each spoke once and every inner and outer edge twice.
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If we take sets of these five 1-factors, we will have included each

inner and each outer edge in a 1-factor. The remaining edges will be
. 1spokes. Each spoke is in—r, 1-factors. We put the remaining spokes into 

s - -̂ r 1-factors, where these 1-factors are the ones which use all spokes

• 5 1We have now put  ̂into —r + s - —r = s + 2r 1-factors.

If we give the edges of each 1-factor a different colour, then we have

coloured M with s + 2r colours, and hence K is Class 1. r,s r,s
This proves Theorem 10.4.

We now show how to obtàin from a multigraph M a simple regularr, s
graph with degree 2r + s of the same Class. This is easily done. We 

replace each multiple edge uv consisting of r parallel edges by a 

Class 1 graph with 2r vertices of degree 2r -t s “ 1, the:remaining 

vertices being of degree 2r + s. When such a graph is properly 

edge-coloured with 2r + s colours, each colour is missing from exactly 

two vertices. For each such colour, join one of these vertices to u and 

one to V. The process is indicated in Figure 10.14:

r

Figure

UL
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A similar process works for the other type of multiple edge. It is

easy to see that M is Class 1 if and only if any corresponding simpler,s
graph obtained by this process is Class 1.

An example of the process described above when r - 2, 2r + s 5

V{

\  / #r Figure 10.15
An example of a 4-snark constructed by this process (here r = 1, s =2)

Figure 10.16
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Another construction, used by Meredith [M2 ], will suffice to

obtain from M a simple regular graph of degree 2r + s of the same r,s
Class, It can be used instead of, or together with, the previous

construction. In this construction we replace each vertex of M , orr,s'
any of the corresponding vertices of a graph obtained from M by ther, s
previous construction, by the complete bipartite graph 

^r+s, 2r+s-1’ figure 10.17.

r = 2 s = 3

Figure 10.17

Any colouring of 2r+s-t 2r+-s colours will mean that each of

the 2r+s vertices of. degree 2r+S“t will have exactly one colour missing,

and these missing colours will all be different. Hence colouring Mr, s
is equivalent to colouring the graph obtained from M by theser,s
replacements.
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An example (with r = 1 ,  s = 2 ) o f a  4-snark obtained by 

Meredith [1̂ 2 ] by this second process.

Figure 10.18

10.2.4 Another family of.k-sharks

Here we define a family M(J) of k-snarks based on the first flower 

snark and a particular one of its 1-factors F. The first flower snark 

J^, and the particular 1-factor we require, are illustrated in .
Figure 10.19.

Figure 10.19
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M(J) is formed by replacing each edge of F by k - 2 parallel edges. 

Clearly M(J) is a regular multigraph of degree k.

Theorem 10.5. K(J) is Class 2.

Proof. Assume M(J) is Class 1;. then K(J) has k 1—factors. There are 

two kinds of 1-factor in M(J), as illustrated:

pc.

X

Figure 10.20

Every 1-factor uses either 3 edges or 1 edge of type x. There are 

exactly k - 2 + 2 = k edges of type x in M(J), so the k 1-factors must 

each contain exactly one edge of type x. These 1—factors will contain 

either 0 or 2 edges of type y. There are 2(k-2) + 1 = 2k - 3 type y 

edges. Since we cannot cover an odd number of edges with 

edge-disjoint 1-factors, we have a contradiction. Therefore M(J) is 

Class 2.

Either or both of the constructions described in the previous 

section can be used to replace the multiple edges in M(J), and to yield 

simple graphs which are k-snarks.
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10.3 The classification of all regular graphs of order at most 10.

Here we give a complete list of all regular Class 2 graphs of 

even order at most 10. These results were obtained using a list of all 

graphs on up to 10 vertices and running.an edge-colouring programme on 

each graph; we only considered even order graphs, since all regular 

graphs of odd order are Class 2.

Order Total number of 
graphs

Class 2 graphs

172

Figure 10.21

Definition. A k-snark G is proper if for any Class 2 subgraph G* 

with maximum degree k, there does not exist a k-snark G* containing 

G’ of smaller order.

From these results we can see that the Petersen graph is the 

only proper simple k—snark on at most 10 vertices . We now give another 

proof of this result using the results of Chapter 3 on critical graphs.
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Theorem 10.6. Thé.Pétèrsén: graph is : thé : only' .proper simple k-snark on 

at most ■ 10 vertices.

Proof. We have seen from Chapter 3 that, apart from the 3-critical 

graph H of the figure below, the only k-critical graphs on at most 10 

vertices have 2n + 1 vertices and kn + 1 edges. The only graphs of order 

at most 10, which have 2n + 1 vertices and kn + 1 edges, which are not 

k-critical are those formed by the addition of an edge joining two of 

the vertices of degree 2 of H.

Figure 10.22
By Lemma 2.8, if G is a proper simple k-snark on a.t most 10 vertices, 

then G contains a k-critical graph on at most 10 vertices.

If k = 3 and G contains the graph H, then. G must be a 3-snark, and 

the only way to make H into a 3-regular simple graph on at most 10 vertices 

is to form the Petersen graph.

*In any other case, G has a.k-critical simple subgraph G of. order 

2n* + t, whose deficiency is

= k(2n* + 1) - 2(kn* + 1) 

= k - 2.
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The number of edges needed to construct a k-regular simple graph G

* .from G IS

y {k - 2+ k(|v(G)| - |V(G*)|)}. '

However, without forming multiple edges, not more than 

.(k ^ 2) +. - |V(G*)|^

edges can be placed on these vertices. So if G* can be extended to G, 

then

i ( k  -  2)* i k ( | v ( G ) |  -  |V (G * ) | )S  <k -  2)+(|V(G)| -  |V(G*)J^ _

SO 1
k < | v ( G ) |  -  | v ( G * ) | .  -  1.

Therefore

k S i  |V(G)| -  (k + 1) 

from which it follows that

2k + 2 3 l?(G)|.

Since k>4 and |v(G)| ^ 10, the only possibility for G has 

IV (G ) I = 5  and k = 4 

but then G is a subgraph of K and G is not proper.

10.4 The : Generalised :DoublhrStar Shark

The Petersen graph may be obtained by taking an outer 5-cycle with 

a semi-edge on each vertex (called a spoke) and an inner 5-cycle attached 

by joining its vertices to every second spoke. M. E. Watkins defined the 

generalised Petersen graph P(n,k) as follows: The graph P(n,k) has 

vertices v^, v^,...,v^_^, v^, v],...,v^_^ and edges v^v^+^, 

vî̂ vî̂ ^̂  and vvv^ for all i with 0  ̂i  ̂n - 1, with all subscripts taken
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modulo n. Thus the Petersen graph is the graph P(5,2). Watkins [W1] 

conjectured that with the single exception of P(5,2), all of these graphs 

are Class 1, In 1973 the conjecture was settled in the affirmative by 

Castagna and Prins [ C2 ].

In a similar way we can define the generalised double-star snark, 

and prove the following:

1Theorem'10. 7.''Thé :géhéfàliëêd.dôüblé-stàr: shark D(n,k), k  ̂ is 

Class 2 if and only if D(n,k) is one of D(l,1), D(3,1), D(5,2) or 

D(n1;k), where ̂  is an integer and g.c.d. (n,k) =

Before giving the definition of a double star snark, we give 

an example!

Figure 10.23

D(5,2) is the double-star snark discovered by Isaacs



Définition. Let n and k be positivé integers, 1  ̂k  ̂n, 

generaliséd double.star snark bas 6n vertices denoted by

. 149. 

The

a ,̂ aj,...,a^_^, b^, b*,... ,b̂ __̂ , c^, c*
and edges

^i^i’ ^i^i’ ^i^i+1» &i^i+1' 
a|c^, b|c|, bkiaî̂ _̂ ,̂ akbî̂ _̂ .̂
ĉ cî̂  for ail i with 0  ̂i ^ n-1, with all subscripts taken modulo n.

The sets of edges {a.c., b.c., b .a. . ,a.b and {aid, bid, blal^, , alb! . }1 1 1 1 1  1+1 1 1+1 1 i’ 1 i’ 1 i+k 1 i+k
make up the inner and outer rims respectively.

Figure 10.24 

The edges c^ c^ are called spokes.

In order to see that a graph is Class 1, we look for 2—factors where 

each cycle has even length. The 2-factors can then be 2-coloured and 

the remaining edges will form a 1—factor which can. be coloured with the 

third colour, and hence the graph will be Class t.

It is easy to see by symmetry that D(n,k) s. D(n, n—k) and hence we
Tneed only consider k such that 1 g k <i n. We now introduce some 

terminology to describe various paths and cycles that will be used in
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is the path indicated in the outer rim from ĉ  to

150,

Figure 10.25
LÎ, is the similar path in. the inner, jk
M., is the path indicated in the outer rim from c. to]k 2

Figure 10.26
Ml, is the similar path in the inner.Jk
N , , is the mixture indicated of these two types.,b,c,d

CdL

Figure 10.27

N , j is a similar mixture of the two types: ,b,c,d,e
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Figure 10.28

Pj is the path indicated of length 3:

Figure 10.29 
Oj is the circuit indicated of length 6;

C;"J

Figure 10.30
Iv is the component in the inner rim containing the vertices

a!, b!, c!. 1 ’ 1 ’ 1

Finally we remark that we take the length of a path to be the 

number of edges it contains.
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Proof. of ' Thèorém l0.7;' We shall use the standard usage that (n,k) is the 

greatest common divisor of n and k.

Ca6e 1. (n,k) = 1 and h is even. Then D(n,k) is Class 1. We form a

2-factor consisting of two even cycles, one around the outer rim of 

length 3n

and the corresponding cycle around the inner rim. Hence D(n,k) is 

Class 1.

ExdAple.. D(4,1).

Figure 10.31
Càsè.2. (n,k) =1, n is odd.and.n ^5. There are four graphs to

consider, D(1,î), D(3,1), D(5,1) and D(5,2).

D(1,1):

A

This graph has multiple edges 

and is of Class 2.

Figure 10.32
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D(3,1): This graph is Class 2. The 

inner rim is isomorphic to the 

3“critical graph on 9 vertices 

contained in the Petersen graph,

Figure 10.33

Figure 10.34

This graph has a Hamiltonian 

cycle as shown, and hence is 

Class t.

D(5,2): This is the double-star snark as drawn, in Figure 10.23

and is Class 2.
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Case 3. (n,k) = 1, n is odd and at least 7 and k =2. We construct a

path of odd length 3n in the outer rim and join it up with a path of odd 

length in the inner rim:

The outer path is from ĉ  to c^_2 and is n-2*

The inner path is ^n-2,1 if " = 4 t  + 1.  

i-; ,n-2 i f "  = 4 t + 3 .

IiL both cases the two paths join to give a cycle of even length. We now 

find cycles of length 6 in the inner rim to cover the remaining vertices. 

The cycles are

tOJ, i f  + 1,

o ; ,  i f  n = 4 t  + 3.

Each vertex is in some even cycle and hence D(n,k) is Class 1

Example: D(9,2)

Figure 10.35
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Casé 4. (n,k) =1, n is odd and at least 7 and k ^ 2. We find an odd 

length path in the outer rim and join it to an odd length path in the 

inner rim. The remaining vertices on the outer and inner rims 

respectively are covered by even cycles of length six.

Our odd length path in the outer rim will be L . . the vertices notn M , T
on the path are covered by the cycles 0 ,̂ 0^,...,0̂ _^.

Next we find a path of odd length in the inner rim from ĉ  to c^_^.

Either L* ' „  or LÎ . has odd length. To see this, note thatn.-1,l 1,n-l ■
Lj covers vertices with subscripts

1 - k, 1, k,..., 1 + xk = n. - 1, n - 1 + k,

for some x, and L* , , covers vertices with subscriptsn-1,1

n-1-k, n-1 = 1+xk, n-1+k,... ,n.-1-fcyk = 1,

where n - 1 + yk .= 1 + (x + y)k = 1 + nk, so that x + y = n, so that one

of X and y is odd, the other even. Therefore one of  ̂and

Lj has odd length. There will be an even, cumber of vertices on the

inner rim not on the path. They can be covered by cycles 0j.

We now have a 2-factor of D(n,k) with lots of 6 cycles and a long

even length cycle using vertices from both the inner and the outer rims. 

Hence D(n,k) is Class 1.



We now give an example to show how the 2—factor is found in the 

inner rim:

The inner rim of D(13,4).

Figure 10.36

The odd path is Lj and there are two 6-cycles, 0* and 0̂

Case 5o n/(n,k) is even. Then n must be even. Therefore the inner rim 

of D(n,k) will be composed of (n,k) components each with spokes.

We can find one even cycle in the outer rim and one even cycle in each of 

the inner components, and these will cover all vertices of D(n,k).



The outer cycle of length 3n is
157,

(*0=0^0 - ^ n -1  ^n-1 \ - 1  '

The inner cycles of length 3n/(n,k) for each i, 

0  ̂i ^ (n*k) - 1, are

(a! h[ ^i+k . aî . CÎ ■ hi , al) r-k i-k i-k 1

Hence D(n,k) is Class 1. 

Example: D(8,2).

Figure 10.37

Case 6. n/(n,k) = 3. These graphs are all Class 2 because each inner

component is the 3-critical subgraph of the Petersen graph.

Case 7. n/(n,k) is odd and at least 5, and n is even. Since n is even

and n/(n,k) is odd, (n,k) must be even. We obtain an. odd length path

in each inner component 1^(0  ̂i < (n,k) -1) . Each. path'includes all

the vertices of the component for i = 0,..., (n,k)-1. We have an

even number of components. We connect pairs of these I. with two odd
1length paths in the outer rim, to obtain even cycles. We form

an even cycle with the remaining vertices of the outer rim.



. 158.
For each inner component I. we take the path LÎ1 i+3k'i

0 ^ i g (n,k). In the outer rim we take the ~(n,k) paths and the

•jĈ jk) paths Pg^+2i' 0 ^ i  ̂-1 (n,k)'̂ 1. .These paths combine to
• 1'give y(n,k) even cycles

— 1 “1 
^2i ^2i+1+3k,2i+1. ̂ 3k+2i 4i+3k,2i (OSiS j(n,k)-.1).

There are an even number 3n - 4(n,k) vertices in the outer rim not in any 

of the above cycles. The following is a cycle on these 3a - 4(n.,k) 

vertices (writing m = (n,k)):

^0^1^2^3* • *^m-1̂ m^m\* * *^3k^3k+l ‘ * *^3k+m-1^3k+m^3k+m^3k+m* * ’̂ 0'

All vertices are now in even cycles and hence D(n,k) is Class 1. 
Example: D(10,2),

Figure 10.38
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Case 8« n/(n,k) is odd and at least 5, n is odd and n ^ 2k + (n,k). 

Since n and n/(n,k) are both odd, (n,k) must also be odd.

In each inner component (0^i^(n,k)-1), we obtain a path

^i+k,i+3k length and the remaining vertices form into even cycles

of length 6. We join up all the paths of odd length with paths of 

odd length in the outer rim to form an even, length cycle. The 

remaining outer vertices again form even cycles.

For Iĵ we have the path 3k+ i cycles
0* n* n*
"i+5k* i+7k'''''°i+n-2k'

Figure 10.39
Then relative to the outer rim we have paths attached to the following 

spokes (writing m = (n,k)):

r

-îk:

rn
-A-

’3K-*-nrv-l

Figure 10.40
There are (n-m-2k) spokes between and c^^. Now n-m-2k is

• ' teven; since k < 2̂ » n—m—2k  ̂0; and since n ^ 2k + (n,k) we have that 

2k is even and at least 2. Hence we can link up the spokes in the 
following manner:



:i6o,

Figure 10.41

This path in the outer can be described by 3k~1 3k+m-1

paths \ + 2i+1, ^3k+2i’ ^k+2i+1 ^k+2i+2 ^3k+2i to

^3k+2i+1 (0 ^ i  ̂ -1) respectively.

The remaining cycles in the outer are 03k+m+2i+1 =  ̂= ILJL_?!E_?.)

Example: n = 15, k = 3, (n,k) = 3, n/(n,k) = 5.

Figure 10.42 

The long path in the outer rim is N , q .
O yO y)? y 1 1
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Case 9. n/(n,k) is odd and at least 5, n is odd and n = 2k + (n,k),

Let n = (2r+1)m, where m = (n,k). We take paths in the inner 

components which join up with short paths in the outer rim as shown;

ca<n

nrv
V Y  V/

Czn

Figure 10.43

In lo ^;,2m’
in we take 

and in

I. we take L!1 i,m+i (2 g i 3 m-1)

We need paths Pgi» P^^2i

and circuits

The final path N. , . .o o o will combine with all the other 1 ,m+1 ,m+2, 2m+1, 2rm+1
odd paths to form one even circuit:

C o  ( " 2  C x » i  ••• ^ i m

... ^

Figure 10.44
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Example: n = 15, k = 6, (n,k) = m = 3.

Figure 10.45

The long path in the outer rim is  ̂y ^2 13'
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Chapter 11. .Some.interesting critical graphs

In this chapter we collect together some critical graphs which are of 

interest for some reason or another.

11.1.Â counterexample to Vizing’s Conjecture

We now give an example of a multigraph that does not satisfy 

Vizing's conjecture [V3] for the number of edges of a critical graph. 

[Vizing's conjecture was actually only stated for simple graphs.]

Vizihg's Conjecture. If G is a k-critical graph with v vertices and 

e edges then e k ̂  - v + 3). (Recall that Vizing's conjecture is

also discussed in the introduction to Chapter 4 and after 

Conjecture 5.3). The following graph W is 7-critical with 9 vertices 

and 28 edges. From Vizing's conjecture, the number of edges should be 

at least 29.

Figure 11.1

To establish this assertion, we first show that W is Class 2.

Suppose W is Class 1. Since there are nine vertices there are ^ 4 edges 

of each colour. Since there are 28 edges and 7 colours,each colour is 
on exactly 4 edges. So there are 7 near 1-factors whose union is W. Remove

a near 1-factor containing ê  which includes an. edge on each vertex of 

degree 7 (by symmetry, we need only consider one such near 1-factor).

We now look for a near 1-factor including e^. This is impossible and



hence W is Class 2.

164,

Figure 11.2
We now show that W ^  is Class 1. for each e € E(W), by exhibiting a 

colouring for each type of edge removed. Where we have multiple edges 

the colours are written in the form e.g. t, 3-7, meaning colours 

1, 3, 4, 5, 6, 7.

'<3-

z-v
1

Figure 11.3
Hence we have shown that for any edge e, the graph has a colouring 

with 7 colours and therefore is Class 1. Therefore M is 7-̂ criticàl.
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11.2 Thé■Critical Graph !Cônjèctùre

As remarked in Chapter 6 (see the discussion concerning 

Conjecture 6.3), Beineke and Wilson [ B2 ] and, independently,

Jakobsen [ J4 ] made the following remark.

The Critical Graph Conjecture. Every critical graph has an odd number 

of vertices.

The evidence to support the conjecture was that there were no even order 

critical graphs on at most 10 vertices and no 3—critical graphs of even 

order on at most 16 vertices. The conjecture is now known to be false. 

The earliest counter-example was given in 1978 by M. Goldberg [ g3 ] who 

constructed an infinite sequence of 3—critical graphs of even order, the 

smallest of his examples having order 22.

We have found two 4-critical graphs of smaller orders. The graphs 

have orders 18 and 16. The graph of order 16 has a multiple edge. [I 

should point out that the conjecture was only stated for simple graphs]. 

Both graphs are drawn in Figure 11.4.

Figure 11.4
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11.3 The graph that Yap used

Another graph which we found is drawn in Figure 11.5.

This graph is 4-critical of odd order and has 3 vertices of degree 2. 

This graph is very useful since Yap [ Y1 ] had invented a construction 

for r-critical graphs of even order (for r ^ 4) provided that there 

exists an r—critical graph G of odd order with a vertex of degree 2 and 

another vertex of degree at most (r + 2). Our graph is the only known 

example.

Figure 11.5
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