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Abstract

All the results in this thesis are concerned with the classification

of graphs by their chromatic class.

We first extend earlier results of Fiorini and others to give a
complete list of critical graphé of order at most ten. We give
conditions for extending the gdge—cdlouring of a nearly complete subgraph
to the whole graph and use this result to prove a special case of
_Vizing% conjecturé.' We also use other methods to solve further caseé

of this conjecture.

A major part of the thesis classifies. those graphs with at most 4
vertices of maximum degree and this work is generalised to graphs with r
vertices of maximum degree. We also completely classify all regular

graphs G with degree at least gJV(G)I.

Finally we give some .examples of even order critical graphs and

introduce the concept of a' supersnark.
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1. Introduction

The idea of edge-colouring a graph was first introduced by
P.G. Tait [T1] in.1880 in an attempt to prove the Four Colour Conjecture.
The first major result on edge-colourings was in 1964 when V.G. Vizing
proved that every simple graph G with maximum degree A can be properly
edge~coloured with at most A+1 colours. Vizing's result partiﬁions the
set of all graphs into two disjoint classes. 'Thé firsﬁ, Class 1, consists
of those graphs of maximum degree A which can be édge—coloured Qith A
éolours, whereas the second, Class 23'consisté §f those graphs that

require A+1 colours.

The general problem of classifying all graphs is extremely difficult

"as can be seen.since a solution would have as a corollary the four colour

theorem.

This thesis is mainly concerned with. the classification problém for
different types of. graphs and looks at some of-thekparticular graphé
which require A+1 colours.. We tackle this problem from several different

angles.

We first look at small order graphs and extend results -of Fiorini

* and others to classify all graphs on at most 10 vertices. Our second

approach classifies graphs whose degree is high relative to the order.

The first such graphs we consider are obtained from a complete graph

- by removing a few edges. We obtain results on these graphs by giving.

necessary and sufficient conditions for an edge—colouring of an induced

subgraph of G.to be extended to an edge-colouring of G with x'(G) colours.

By adapting the proof of Vizing's theorem to multigraphs we have

been able to show for odd order graphs that if a graph G his 2n+1 vertices,

2

order graphs we have found a necessary and sufficient condition for a

(2n+1) - 2n edges, and maximum degree 2n-1, then it is Class 1. For even
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graph with 2n+2 vertices and maximum degree 2n-1 to be Class 1. Both

these results answer problems posed by Plantholt.

Our third approach considers r, the number of vertices of maximum
degree. We have been able to classify all graphs with 1 < r < 4 and

all graphs with A > n +-%r.— 3.

We have alsoishown that regular graphs of even order with -
d(G) >-g |v(G)| are Class 1. This result is a partial solution to the
conjecture that all regular. graphs of even order which satisfy

d(G) >%lv(c)| are Class 1.

The results mentioned in the previous two paragraphs are the

most significant results of the Thesis.

We introduce thé concept of super-snarks and give examples. Goldberg
gnez13fcritica1counter—example to the conjecture that all critical
graphs had odd order. We give some 4-critical counter-examples. We
also exhibit a fémily of graphs which are obtained from the double star

snark ahd show which of these are.Class 2.

///
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2. Definitions and known results.

We now give the basic definitionsand results on edge-colourings used

in this thesis.

We denote the maximum degree of a graph G by A(G) and the minimum

degree by §(G). . The degree of a particular vertex v is d(v). Vertices
adjacent to a vertex v are called its neighbours'and the set of
neighbours of v is denoted by‘N(v)’. We let d*(v) be the number of

neighbours of v of maximum degree.

The order of G is the number of vertices of G and is denoted by
'IV(G)l,' The size of G is the number of edges of G and is denoted by

|ECG) .

If W is a set of vertices of G, then GN\W is the graph G' such that
V(E') = V(&N W and E(G') = E(G)N wx : weV(G) and x€ W }. Similarly
if M is a set of edgés of G, then G\M is the graph G" such that V(G") = V(G)

and E(G") = E(G)"M. If Y < V(G) then <Y> denotes the subgraph of G induced
by Y. '

The deficiency of G is the sum '
Y (ae) - dlw)).
. VEV(G)

and is denoted by def(G).

Two graphs G and H. are said to be isomorphic if there exists a one
to one correspondence between V(G) and V() which preserves adjacency. We

then write G = H.

We define an edge-colouring of G to be a mapping ¢':E(C)——> é where

é is a set of colours such that if ey and e, are edges with a common

vertex then ¢(e1) # ¢(e2). The least number j for which there exists an
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g
C e

edge-colouring of G with j colours is called the chromatic index of G and

is denoted by x'(G).
Vizing [V1] showed that if G is a simple graph then
A(G) < x'(G) < A(G)+1.

G is Class 1 if ¥'(G) = A(G) and is Class 2 if x'(G) = A(G)+1. If G is a

multigraph then G is Class 1 if x'(G) = A(G), and is Class 2 otherwise.

If G is Class 2 and x'(G') < x'(G) for all proper subgraphs G' of G,

then G is said to be .critical.

A set of independent edges is calléd a matching. A matching

covering all vertices is called a {-factor. A near 1-factor is a

matching covering all but one of the vertices. A regular, Class 1 graph

is often called 1-factorizable as it is the union of edge disjoint

1—factofs.

If a graph is edge-coloured and a colour c is present on one of the
edges incident with some vertex ¥, we say that c is present at v. If ¢
is not present on any of the edges incident with v, then we say that c is

absent at v.

If x is a real number, then |x]| denotes the largest integer not

greater than x and [x] denotes the smallest integer not less than x.

A

If x

AN

X .. £ x_ and a.graph G has ri—vertices of degree X,

1 2 "' L
for 1 £ 1 £ & , then we write
r r r
G = x 1 X 2 .o X L
1 2 ‘ L

Other basic graph theoretic terminology can be found in any

standard introdcution to the subject such as [B3].

Our first Lemma is Vizing's Aﬂjacency Lemma [V2] and will be used

frequently.

Lemma 2.1 Let G be a critical graph. Let u,w €V(G) and let u be

adjacent to w. Then




1

d%(w) > {A(G) - A+l if d(u) < A(G),
2 I @) = ade).

An accessible proof of this lemma can be found in [F6]. An immediate

corollary of Lemma 2.1 is

Lemma 2.2. Let G be a critical graph. Then each vertex is adjacent to

at least two.vertices of maximum degree (i.e. d*(v) > 2 ¥ v€V(G)).

Lemma 2.3 [V2] Let G be a graph of Class 2 with maximum degree A.

Then G contains a critical subgraph of maximum degree k for each k

satisfying 2 < k < A.
For our purposes, the following result is extremely useful.

Lemma 2.4 For a graph G, let e € E(G) and w € V(G), and let e and w

be incident. Let d*(w) < 1. Then

A(GNe) = A(G) » x'(Ge) = x'(G) and

A(GNw) = A(G) > x'(Gw) = x'(6).
Préof{ If G is Class 1 then we have

AG) = x'(G) > x'(G~e) > A(Ge) = A(G),
so " x"(G) = x'(G~e), and similarly

A(G) = x'"(G) > x'(6~w) > A(G~w) = A(G),
so x'(G) = x'(Gw).

If G is Class 2, let G* be a critical subgraph of G with A(G) = A(G¥).
Then, in view of Lemma 2.1, e € E(G%) because.d*G*(w)-< d*G(w) < 1.

Similarly w € V(G*).

There is an alternative proof of Lemma 2.4 which does not depend on
Vizing's Adjacency Lemma, nor on the notion of critical graphs. It does
however depend on knowledge of the original proof of Vizing's theorem

cﬁat x'(G) < A(G)+1.
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Alternative proof of Lemma 2.4. If d*(w) < 1 and A(G~w) = A(G) then

Vizing's argument may be applied to extend the edge-colouring 6f G,
without increasing the chromatic index, provided that w is the pivot
vertex and the edge (if there is one) joining w to a vertex of degree
A(G) is coloured last. If d*(w)-< 1, A(G~e) = A(G) and A(G*w) = A(Gj
then x'(GNe) = x'(G), since x'(G) > x'(G~e) > x'(G~w) = x'(G).

If however d*(ﬁ)-< 1, A(G~e) = A(G) and A(G-w) # A(G) then G and G~e have
just one (the same) vertex of maximum degree other than possibly w. It
is easy to show by Vizing's argument that both are Class 1, provided an
edgé,on this vertex of maximum degree is coloured last. (If d(w) = A

colour the edge joining the two vertices of maximum degree last.)

Lemma 2.5  If G has 1 or 2 vertices of maximum degree, then G is
Class 1. . -
Proof. If G is not Class 1 then G has a critical subgraph G* with

A(G) = A(G*), and G* has at most two‘vertices,‘say u,w of maximum degree.

But d*(u)'< 1 which contradicts Lemma 2.2. Therefore G is Class 1.

Lemma 2.6 Let G be a critical graph. If G has r vertices of degree

A(G), then

8(G) > A(G) - r + 2.

Proof. Let u be a vertex with d(u) = 6(G) and. let w be a vertex

adjacent to u of degree A(G) [there is such.a vertex by Lemma 2.2]. By
Lemma 2.1,w is adjacent to at least A(G)-d(u)+1. vertices of maximum
degree. Thus including w, there are at least A(G) - &§(G) + 2 vertices

of degree A(G), so r > A(G) - &(G) + 2, whence the result.

Lemma 2.7 Let G be a graph with v vertices and e edges, and with

maximum degree A; then G is of Class 2 if e > A{%J.

Proof. If G is Class 1, then each colour class can have at most
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l%j edges.. Since there are A colours the maximum number of edges is A{%].

The following results may be found in [F6].

Lemma 2.8 Let G be a critical graph. If G has maximum degree A and

if v and w are adjacent vertices of G,then d(v) + d(w) > A + 2.

Lemma 2.9 Let G be a critical graph with v vertices and e edges,

maximum degree A and minimum degree S then

e <-%(v—1)A + 1 if v is odd,

e <-%{v—2)A + & - 1if v is even.

Lemma 2.10 Let G be a critical graph of maximum degree A and let nj

be the number of vertices of degree j for j = 2,3,...,A. Then for each

k satisfying 2 < k < A-1, we have

i
, 31 7 -

I o~

x

Lemma 2.11 A critical graph contains no cut vertices.

The next lemma is due to Kénig [K1].

Lemma 2.12 If G is a bipartite graph with maximum. vertex degree A,

then x'(G) = A.

The next lemma is Tutte's theorem [T2].

Lemma 2.13. A graph G has a 1-factor if and only if, for all

S < V(G), the number of odd components in GNS is not more than |S|.




3. Critical graphs of order 9.

3.1 'Introduction and definitionms.

In this chapter we extend the results of Beineke, Fiorini and
Jakobsen to give a complete catalogue of all the chromatic index
critical graphs of order < 10. .In particular Jakobsen {J3] has
constructed all 3-critical graphs of order < 10, Beineke and Fiorini [B1]
have consttucted all critical graphs of order 7 and Fiorini [F4] has

shown that there are no critical graphs of even order < 10.

We begin by finding the 4-critical graphs of order 9 aﬁd end up with
8—critical graphs of order 9. The degree of difficulty‘for finding the
degree—lists_of A-critical graphs décreases as A increases because each
time we use the results obtained previously and because-the number of
cases to be examined decreases as A increases. In the subsequent sections,
if 7 is é k-colouring of G and C1""Ck are the colour classes of E(G)
with respect to 7, we always assume that for gach fECi, w(£). = 1 and
|01!>4c2|>...>|ck|.

We shall need the following lemmas.

Lemma 3.1 For A>3, there does mot exist a A-critical graph with a

of degree A.

Proof. Suppose such a A-critical graph G exists and let u be joined

to u, and u,. Since G is critical,G\{du1} is Class 1 and can therefore

be coloured with A-colours.

Vertex u has 1 colour, u, has A-1 colours, v has d(v) colours,

1

and all other vertices have A colours. The colour at u must be the colour

missing at u1, or else we could colour uu Therefore there are

1"

A colours missing at u and u1, and A-d(v) colours missing at v. Since
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d(v) # A some colours will be missing an odd number of times and some an
even number of times. This is impossible and hence G\{uu1} is not Class 1.

Therefore G 1s not critical.

Lemma 3.2  If there exists a 4-critical graph G such that n, = 2n2 and
ng = 0, then, for each vertex x of degree 2 in G, the two vertices adjacent

to x must be adjacent.

Lemma 3.3 If G is aAA-critical’graph'of'order'q_gp m edges then
a) m > 2n+1 if A =5,
n+1 '
b)m>(gT). if A =6,
5n .
c)m>"2“ if A =7.

Proofs of Lemmas 3.2 and 3.3 can be found in Yap [Y2].

Ve mnow give a catalogue of the degreé lists of all Ehe critical
graphs on at most 7 vertices and the 3-critical graphs on 9 Qertiées.
This was found by Beineke and Fiorini [B1] and Jakobsen [J3]. - It should
be noted that all 2-connected graphs with the degree lists given, with

the exception of the degree 1ists.2336 "and 2'3% are critical.

Catalogue
v 2 3 4 5 6
3 93
5 27 23% 32 43
7 6 248 250 452 %

7 2 23 2 5 5 4

32 4 345 5% 6

43 5
9 2? 23
23 36 E3
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* The only graph which is critical with degree list 23 36 is the graph pP*
drawn in Figure 3.1. Clearly any graph 238 which contains P¥* as a

subgraph is not critical

Figure 3.1. The Graph P*.

3.2 4~Critical Graphs

We first prove

Lemma 3.4 ' If G is a A-critical graph of odd order and F is a 1-factor

of G~x where d(x) < A, then GNF has a (A - 1)-critical subgraph H.

Proof. X'(GNF) = A, otherwise any (A - 1)-colouring of G~NF can be
extended to a A-colouring of G. By the choice of x, the maximum degree of

GNF if A - 1. Hence GNF is Class 2. Lemma 3.4 now follows from Lemma 2.3.
We now prove

Theorem 3.1 A 2-connected graph G of order 9 is 4-critical if and only if

its degree-list is either 248 or 32 47, except for the graph of Figure 3.6.

Proof. By Lemma 2.11,a critical graph must be 2-connected. Let G be

a 4-critical graph of order 9 having minimum degree §.

Suppose § = 2. By Lemmas 2.1 and 2.10,n4 >-max'{4,2n2 + n3} .
If n, = 0, then the possible degree lists of G are: 23 46, 22 47 and 248.

3
If n, # 0, then the possible degree-list of G is 232 46.

Suppose § = 3. By Lemma 2.10,n3-< n,. Hence 32 47 and 34 45 are
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the only two possible degree-lists for G.
By Lemma 3.1 there are no critical graphs having degree list 22 47.

Theorem 3.1 now follows from the following five lemmas:

Lemma 3.5 There are no critical graphs having degiee-list 27 4,

Proof. ~ Suppose such a critical graph G exists. Let X5 X, and Xq

be vertices of degree 2. By Lemma 2.1, N(xi) n N(xj) =0@,if i # j. Let

N(x,) = (y1,y2), N(x,) = (z1,zz), N(zy) = (w ,w,). By Lemma 3.2, y, y,,

z2,2,, W, W, eE(G)..
Let m be a-4?colouring of G~ XY, Since |E(G\x1y2)] = 14, two of
the four colour classes E1,...,E4, say E1 and Ez,of G \~x1y2 with réspect

to 7 must be of cardinality 4. Hence G\x1 has a 1-factor E.= E1

that A(GNF) = 3 and X'(GNF) = 4 and,by Lemma 3.4,GNF has a 3-critical

or Ez,so

subgraph H.
Suppose |V(H)| = 9. A 3-critical graph of order 9 does not have any

vertices of degree 1. ‘Therefore H is not a subgraph of G\F,sincé G\F

has two vertices of degree 1.

Suppose |V(H)| = 7. Then |[E(H)| = 10 from the catalogue. Since H

has only one vertexhbf degree 2 we may assume that xz,xs‘ﬁ y(H). Then

|E(H)|.$ 15 = 4 = 4 = 7 which yields a contradiction.

Suppose |V(H)| = 5. Then |E(H)| = 7 from the catalogue. Since H has
only one vertex of degree 2, ' . we may assume that X,5Xg # V(H).

Then |E(H)| < 15 - 4 - 5 = 6 which yields a contradiction.

Lemma 3.6 There are no critical graphs having degree-list 232 46.

Proof. Suppose such a critical graph G exists. Then IE(G)| = 16.
Let X, y, z € V(G) be such that d(x) = 2, d(y) = d(z) = 3 and let X5 Xé

be the neighbours of x. By Lemma 2.1, y, z ¢ N(x1) U N(xz).
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1,...,E4 be the

colour classes of E(Gee) with respect to m, and let |E1| = |E2| = IE3| =4

Let m be a 4-colouring of G~e where e € E(G), let E

and |E4| = 3.

We first prove that yz ¢ E(G). Suppose otherwise. Then x, y, z are
the only vertices of G~\yz having degree < 4. Hence, in the above
colouring m of GNe where e = yz, colour 4 is not present at all these
three vertices. But then m can be extended to a 4-colouring of G,

contradicting the hypothesis.

Next, we consider the above m colouring of-G§e’where-eb= ZW.
Without loss of generality¢:wé may assume that colour 1 ié missing
aﬁ z, Then F = E1 forms a néar'1ffaeﬁor of G andvG\EﬂfA_
has valency-list 1237. By Lemma 3.1, GNF has a 3-critical subgraph H.

It is obvious that'lV(H)| # 9 and since there are no critical graphs of

even order < 10, [V(H)| = 7 or 5.

| Suppose |V(H)| = 7. Then H as degree-list 236 (see catalogue). Let
Y = V(G) ~V(H). Then x € Y. Since GNF has 12 edges and H has 10 edges,
X ﬁust be joined to the vertex of degree 2 in G~NF. But then in G, x will
have degree 2 and be joined to a vertex of degree at most 3 and this

contradicts Lemma 2.1. Hence |V(H)| # 7.

Suppose |V(H)| = 5. Then H has degree-list 234 (see éatalogue).
Again, let Y be defined as above. Then x e Y and |E(<Y¥>)| < 5. Let I
be the set of edges of fhe graph induced by Y invG\F. There are at most
4 edges in I since x has degree 1 in GNF. GNF has 12 edges and H has 7
edges and there is at most one.edge from V(H) to V(I) in GN\F. Heﬁce I has

at least 4 edges,so |I| = 4 in GNF.

Let x be joined to tand let t have neighbours'z14 z, in GNF.

One of the zg will have degree at most 3 in G and therefore Lemma 2.1 is
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contradicted for the vertex t in G.

. The proof of Lemma 3.6 is complete.

Lemma 3.7 Any 2-connected graph G having valency*liét 248 is éritical.
Proof. The size of G is 17 > &4 {%J . By Lemma 2.7, G is Class 2.

If G is not critical, then by Lemma 2.3, G contains a 4-critical subgraph
H. Since there is no critical graph of even order < 10 and we have shown
above that there is no 4—critical graph of order 9 with minimum degree 2

and having smaller size, the order of H must be 7 or 5.

We now prove that G cannot.contain a 4-critical subgraph of order 7

or 5.

Suppose the graph K is obtained from G by deleting two vertices. The
number of vertices of degreé 4 in K is at most 4. But a 4-critical graph
of order 7 has degree-list either 246'or 32 45.(see catalogue). Hence G

cannot contain a 4-critical subgraph of order 7.

Finally there is only one 4-critical graph of order 5, namely Ks\e

($ee catalogue). But Ks\e cannot be extended to a graph of order 9

having degree-list 248.

Lemma 3.8  There are no critical graphs having: degt<‘a¢'a+1:'Ls.t:.34 &,
Proof. Suppose such.a critical graph G exists. Let X = {x,¥,u,v}

be the set of vertices.of degree 3 and let K = <X>. If K = 04,.the~
graph of order 4 and size 0, then there is at least one vertex z of
degree 4 adjacent to three or more vertices in X; but’this ié
prohibited by Lemma~2.1. Again, by Lemma 2.1 it is clear that

K=K, U0, or 2K

2 9 2 Hence we may assume that xy € G.

Let z be of degree 4 and adjacent to u. Let m be a 4-colouring of
Gwuz and let E1,...,E4 be the four colour classes of G~uz with respect to

7 such that



14.
> ... >=|E41e Since |E(GMiz)| = 15, we have
= [Ezl = IEBI = 4 and ]E4| = 3. It is clear thatx'(GNEi) = 4 for

each 1 =1, 2, 3, 4. We note that the degree-list of G~uz is 234 44 and

-
|

that, for each i = 1, 2, 3, there is exactly one vertex of degree < 4 in

G~uz at which colour i is not present.

We now show that there is i = 1, 2 or 3 suéhAthat G\Ei'is Class 2
and cannot be 3-critical. From thiS'it follows that, for some i = 1, 2 or
3, C\Ei has a 3-critical subgraph H of order 7 or 5. We will finélly
prove that this is not possible and hence there are no critical graphs

having degree~list 34 45.

Applying the fact that thefe is:only one 3-critical graph of order 9
and size 12 (sée catalogue) namely P*, we can prove by examining all cases
that theré is i =1, 2 or 3 such that G\Ei is of Class 2-and cannot contain
a 3-critical subgraph of order 9. Hence, for some i = 1, 2 or 3, G\Ei
contains a 3-critical subgraph H of order 7 or 5. From now on, we write

F for this particular Ei'

Suppose |V(H)| = 7. Let V(G)~V(H) =f{v1, V-}. In this case, the
degree-list of H is 236 (3ee catalogue). Since F is a near 1-factor of G,
F has at least two but not more than three edges in H. Let B be the
set of edges. joining V(H) with {v1, vé}. Then H has deficiency < 6, so

|B| <2 and Ihin{d(vT), d(vz)} < 2, which is false.

Suppose |V(H)| = 5. Then H is the graph given in Figure 3.2. Let
Y = V(G)\V(H) and let I = <Y>. Let J be the subgraph of G induced by V(H).

We note that since G is connected,

Figure 3.2 ‘ Figure 3.3
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5\e,or‘otherwise Y = X and

|EC(I)| = 5, contradicting the fact that <X> = K2 U 02 or'2K2.

J # KS' Also, since G is 2-—coﬁnected, J#,K

Suppose J = Ks\{e1, eé},where e and e, are independent. Then
- by examining the degree-list of J, we know that 2 < m < 4,where m is the
number of edges joining V(H) with Y,and 4 <n = |E(I)] < 6. If m =4,

then all the vertices in V(H) are saturated, i.e. of degree 4,and thus

Y

n

X,which is impossible because IE(<X>)| < 2 while |E(KY>)| = 4. If
m = 3, then n = 5. It follows that Y has a vertex z of degree 4 joiné33
to three vertices of degree 3 in Y, contradicting Lemma’2.1. If m = 2,
then n = 6 and G is‘one of the two graphs given in Figure 3.3. However,

both these graphs are 4-colourable.

Suppose J = Kg\{e1,e2}, where e and e, érevnot.iﬁaépendent. Then
again 2 Sm £ 4 and 4 £ n £ 6. Similarly to the previous case, we can
show that m # 4, 3. Suppose m = 2. Thenn = 6 and G is the graph given

in Figure 3.4. However, this graph is also 4-colourable.

Figure 3.4 Figure 3.5 ' Figure 3.6

P

Finally, suppose J. = H. Then there are four independent edges joining
V(H) with Y because F _c; E(G)NE(H). Hence in this case 4 <m < 6 and
3<n<5 Ifm=6, thnn=73andy = X,vhich is false. If m =5,
then n = 4 and G has three vertices of degree 3 in Y. Let z € Y be of

degree 4. By Lemma 2.1, dI(z) =2, I = <Y> and <¥~\z> = P3, a path on three
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vertices, contradicting the fact that <X> = K2 U 02 or 2K2. If m =4,
then n = 5 and G has two vertices of degree 3 in Y. In this case, it is
clear fhat the four edges joining V(H) with Y constitute F. Hence it is

not difficult to see that G must be the graph given in Figure 3.5.

However, this graph is 4-colourable.

The proof .of Lemma 3.8 is now complete.

Lemma 3.9 A Any 2-connected graph G'haﬁing3degree—1ist 32 47 is

critical,except the graph of Figure 3.6..

Proof. The size of G is 17 > 4 tgjg. Henée, by Lemma 2.7,G is
Class 2. If G is not critical,,then‘by.Lemma 2.3 G contains a

4-critical subgraph H. By the previous results, the order of H cannot be
9. Since there is no critical gréph of.evengdrder=< 105 -the order of H

is either 7 or 5.

If H is of order 7, then the degree-list of H is either 246 or 32 45
($ee catalogue). But no graph H having degree-list 246_or 32 45 can be

extended to a graph having degree-list 32 47.

Next, there is only one 4-critical graph or order 5 and it can be

extended in a unique way to a graph of order 9 having degree-list 32 47

as shown in Figure 3.6.
This completes the proof of Lemma 3.9.

Lemmaé3.5 - 3.9 together complete the proof of Theorem 3.1.

3.3 5-CRITICAL-GRAPHS

Lemma 3.10 Let G be a A=critical graph of odd order n having size

> A (3%2) + 8(G) + 1. Then for every x eV(G) such that d(x) = §(G),

G~x has a 1-factor F.
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Proof. Let e, be an edge incident with x. Let w be a A-colouring

of G\e1 and let E1""’EA

‘E1I Zoeee > |EA|. Since IE(G\e,l)l > A (n—;:i) + §,where § = §(G).and

be the colour classes of E(G\e1). Assume that
|E1[ = ... = |E6| = (n—-1)/2. Now at least one of the colours 1, ..., §
¢ Cn(x) because |Cﬂ(x)l =d(x) - 1 =6 - 1. The result follows by taking

F=E, if i ¢ c“(g), i< 8.

Open Problem. Is it true that if G is any A-critical graph of odd order,

then for each x € V(G) such that d(x) = §(G), G~x has a 1-factor F?

Lemma 3.11. Let G be a 5-critical graph of order 9 and let x e V(G) be

such that d(x) = 6(G). Then G~x has.a 1-factor.

Proof. By Lemma 3.3 and Lemma 2.9, 19 < [E(G)| < 21. Lemma 3.11 follows

from Lemma 3.10 when |E(G)| > 20 or when §(G) < 3. Now if §(G) = 4,

4

then by Lemma 2.1, n. > 3 and the degree-list of G is either 45 5 or

5
43 56. Thus IE(Gjl > 20 and again Lemma 3.11 follows from Lemma 3.10.

Theorem 3.2 If G is a 5-critical graph of order 9, then |[E(G)| = 21.

Proof. We‘shall prove that [E(G) | # 19 or 20. Suppose [E(G)]-< 20.

By Lemmas 3. 11 and 3.4,for some. vertex x of degree §(G), G~x has a 1-factor
'F such that GNF has a 4—critical subgraph H. By well-known results, |V(H)]|

# 8, 6. By the previous result on 4—critical graphs of order 9, |V(H)| # 9.

Hence |V(H)| = 7 or 5.

Suppose |V(H)| = 7. Then the degree-list of H is either 246 or 32 45

(see catalogue) and |E(D| = 13. ILet {v,, x}’z} = V(G)\V(H).

Suppose VIVQEE(G). Then by Lemma 2.8,d(v1) + d(vz) > 7. Thus there
are at least five edges joining {v1, v2} with V(H). Moreover, F has at
least two edges in H. Hence |E(G)| > 13 + 2 + 5 + 1 = 21, contradicting

our original assumption. Hence we may further assume that v]v2¢E(G).
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It is clear that F has at least two but not more than three edges in
H. Suppose F has only two edges in H. If |[EG)| = 19, then d(v1) +
d(,) = 19 - (13 +2) = & and s0 dlv)) = 2 = dwys if |E@] = 20,
d(v1) + d(vz) = 5 and so d(v1) = 2 and d(v2)= 3.  In either case the only
vertices of G which are of degree 2 ate V].ahd'v2 and so in‘Lemma 3.11
we can choose x = v, But then F must have three edges in ﬁ, contradicting
our original assumption. This shows that F has three edges in H. However,
after adding three independent edges to H, the number of vertices of
degree 5 in H > 4. Hence, v, and v, can only be joined to < 3 vertices

1 2
in H and so d(VT) + 'd(v2)1< 3 which is impossible.

Suppose |v(H)| = 5. Then H = Kg*{u&ﬁz};u1, u, € V(H) (isee catalogue)

and |E(H)| = 9. Let B be the set of edges joining V(H) with Z = V(G)NV(H).

Suppose uu, € E(G).Then [B| s 5. Let I = <z> If |B| =5, then

4 =19 - (10 + 5) < |[E(D)| <20 - (10 + 5) = 5. Thus 'a(c)-<%(5 +2 x5)

from which it follows that §(G) < 3. Hence F g G~x for some x € Z.

Now |Z~x| = 3 and |F] = 4 imply that u F. It is easy to show that

1Y2 €

d(x) # 2. Hence d(x) = 3. Since & < |E(I)| < 5, there is z € Z such that

X2z eéﬁg. Let Z = {x,z,w1, wz}. Then d(z) + d(w1) + d(wz)'< 2 x5+5-3=12.
Applying Lemma 2.1, it is not difficult to show that XW 5 XW, eE(G) is

impossible. Suppose xw, €8G)but XW2’¢H§>, Then since z and w, are both

1
adjacent to at least 3 vertices of degree 5 and |B| = 5, we know that each
of z and v, is adjacent to 2 vertices in H and both z and w, are adjacént

to w, where d(wz) = 5. However, this is false because |B| = 5. Suppose
X, KW, éEKD; Since F € G - x, xu, xuz-edﬁ)and.each vertex in Zx is
adjacent to exactly one vertex in H\{u1, uz}. But then z cannot be
adjacent to at least 3 vertices of degree 5. Hence |B| £ 5. Now

4> |B] > 19 - (10 + 5) = 4 implies that |B| = 4. Thus 5 < |E(D)| < 6.
In case |E(I)| = 6, applying Lemma 2.1 again, it is clear that dx) * 3.

Hence all the vertices in Z are of degree 4 and are adjacent to each other,

contradicting Lemma 2.1. In case |E(I)| =5, &(G) <-%(5 x 2 + 4) from
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which it follows that §(G) < 3. It is easy to show that §(G) % 2. Hence

8(G) =3 and I = K4 - XW,, say, where w, is of degree 3 and is adjacent

1

to 2 vertices in Z, each of which is of degree at most 4, contradicting

Lemma 2.1.

Suppose u,u, ¢EG. Then F CB. NowF < Gwx and F < B imply that
x € H. Hence 6(G) > 3 and [B| < 6. If 8(G) = 3, we may assume that

d(u1) =3-and x = u Then G is a subgraph of the graph given in

1
Figure 3.7.-

Figure 3.7

L4

However; -it is easy to verify that the graph in Figuré 3.7 is’

5-colourable.  If S(G)

4, then |B| < 6 and [E(I)| = 4, 5, and 6. But
if [E(D]| = 6.then |B] < 5,.which'contradicts Lemma 2.1. Hence

16 < z d(a) < 5 x 2 + 6 showing tﬁat |B] =6, |E(I)| =5 and d(a) = 4
for :ZZh a € I. But thgn Z-has a vertex b adjacent to a vertex c € z

(having degree 4) and .b is adjacent to.only ome vertex of degree 5,

contradicting Lemma 2.1.
The proof of Theorem 3.2 is complete.

Corollary 3.1 A 2-connected graph of order 9 is 5=¢ritical if 'and only

if its degree-list is one of the following: 258, 3457‘2£ 43 56.

Proof. By Theorem 3.2,if G is a 5-critical graph of order 9, then

8 3 .6

the degree-list is either 25°, 3457 or 47 5°,
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To prove the converse, we first note that, since [EG)| > 5 l%l’

G is Class 2. Hence if G is not critical, it contains a proper critical
subgraph H. Again, by Theorem 3.2, |[V(H)| # 9. Since there are no

critical graphs of even order < 10, |V(H)| = 7 or 5. Suppose |[V(H)| = 7.

Then the degree-list of G is either 256, 3455 or 43 54 (see catalogue).

However, none of the graphs having degree—lists.25§, 3455 and 43 54 can
be extended to a graph having degree-list 258; / 3 56

clear that |V(H)| # 5.

3.4 6-CRITICAL GRAPHS

Lemma 3.12 Let G be a A-critical graph of odd order n having size

>-A(E%§) + 2. "Then G has. a vertex y of degree < A such that G~y has a

{=-factor F. .

Proof. k ‘ Let x € G be suqh that d(x) =.6(G) and let xz e E(G) where
d(z) = A. Suppose m is a A-colouring of Gxz. Let E1,..,,EA,be the
colour classes of E(G\xg) such that.lE1[ > ... >=|Ej[.f_Since IE(Q\XZ)I
>»AGE%§)-+ 1, |E1[”= (n-1)/2.. Now if colour 1:is[Presen§j§tvz, thei.r:F¥E1
a 1-factor of GNy,fof some y € V(G) having degree < A. Otherwise, by

interchanging the colours 2 and 1 in thev(2,1)ﬁ—chain having initial

vertex z, we reduce it to the previous case.

Corollary 3.2 Let G be a 6-critical graph of order 9. Then G has a

vertex y of degree < A such that G~y has a i1-factor F.

"Proof. By Lemmas 3.3 and 2.9, 21 < |E(G)| < 25. Corollary 3.2 now

follows from Lemma 3.12.

Theorem 3.3 E G is a 6-critical graph of order 9, then [E@@)| = 25.

" Proof. We shall show that |E(G)| 2 25. Suppose |E(G)| < 24. By

Corollary 3.2 and Lemma 3.4,there is y € V(G) having degree < 6,s0 that

Gy has a 1-factor F such that GNF is Class 2 and hence has a S-critical

345" or 47 5. It is also

is



Y

-

21.

subgraph H. By now it should be obvious that |[V(H)| # 6, 8 or 9. Hence
|[V(H)| = 7. The degree-list of H is either 256, 3455 or 43 54 (see
catalogue) and so |E(H)| = 16. Let {v1, vé} = V(G)NV(H). It is now also
clear that v, v, ¢ E{G) (see the third paragraph Qf the proof of Theorem

3.2).

Clearly F hds at least two but not more- than three edges in H.
Suppose F has only two edges in H. Then d(v1) + d(vz)-< [EG)| - (16 + 2)°
= {E(§)1—18. Let d(v1) < d(vz); Hence if |E(G)| < 24, d(v1)'< 3. We

now show that. for each w ¢ V(H), d(w) > 4.

Let H héve,degree—list 3455; Assume z € V(H) is such that dH(z) =3

and d(z) = 3. Then ) (d(w)-dH(W))—ZIE(ﬁ)nFI'é ) (dG)=d, (0))-4 s 7-4 =3,
wEH' B wEHNZ s
‘which is impossible. The case that the degree-list of H is 25° can be

similarly disposed of.

The above shows that vjvand v, are the .only possible vertices of

degree §(G). Hénce, by Lemma 3.i0, Gw, has a 1-factor F, unless

1
|EG)| = 21. However, if |E(G)| = 21, then d(v1) + d(vz) <21 - (16 +2)
='35whiqh is not true. On the other hand, if F is a 1-factor of G\v1, then
F has three edges in ﬁ, contradicting our original assumption.

Finally, suppose F has three edges in H. Then X(d(w)-dH(w))
well ’

- 2|E(H)NF| = 4 and so G has two vertices, vy and vy, of degree. 2

and the remainder have degree 6,. contradicting Lemma 3.1.

This completes the proof of Theorem 3.3.

4 5

7 ,2 .7 2 6. 6.

if its degree-list is one of: 265, 356, 42 6, 45 6° and 5

Proof. The proof is similar to that of Corollary 3.2.
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3.5 7-CRITICAL GRAPHS

Lemma 3.13 Let G be a 7-¢ritical graph of order 9. Then G has a

vertex y having'degreé < A'such that G~y has a 1-factor F.

Proof. By Lemma 3.3 and Lemma 2.9, 23 < |E(G)| < 29.. Lemma. 3.13 now

follows from Lemma 3.12.

Proof. We shall prove that |E(G)| % 29. Suppose |E(G)| < 28. By
Lemma 3.13 and 3.4, G has a near i1-factor F such that GNF contains a;7

6-critical subgraph of H. The only possible .order of H is 7. The

degree-list of H is either 452 64 or S4 63. Hence |E(H)| = 19. Let

1 Y ¢ E(G) (See the third

paragraph of the proof of Theorem 3.2) and d(v1) < 3.

{v1, vz} = V(G)\V(H). It is now clear that v

Since |E(H)| = 19, F has exactly two edges in H. Now if [E(G)| > 25,
then by Lemma 3.10 F is a 1~factor of'G\v1, say, which is.impossible.
Since IE(H)I = 19,_qsing Lemma 3.1, F has exactly two edges in ﬁ.
Now if |E(G)| 2 25, then by Lemma 3.10 F could have been chosen to be a
1-factor of G\v], which is impossible.
On the other hand, if |E(G)| < 24, d(v,) + d(v,)s24 - 21 = 3 which is

false.
The proof of Theorem. 3.4 is complete.

Corollary 3.4. A 2-connected graph G of order 9 is 7=¢ritical if and only

i1f its degree-list is one of : 278, 3677, 4577, 462 76, 52615, 563 75
and 65 74.
Proof. This follows from Theorem 3.4 and the fact that there are no

critical graphs of order 8.

3.6 8-CRITICAL GRAPHS.

Lemma 3.14 Let G be an 8<¢ritical graph of order 9 and let x € V(G) be

of degree §(G). Then G~x has a 1-factor F.
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Proof. If G' =G~ does not have a 1-factor, then by Tuttéfé theorém-(Léhﬁa 2.13)
V(G') has a subset S such that |S|<:h‘= numﬁer of odd components of G'\S.
NowVSince |V(G')| is even, |S| and h must be of the same parity.

Also since n, > 3 (by Lemma 2.5), |S| > 3 and h 2 5. Hence [S| = 3 and

8

h = 5. However, this implies that GVQ;K4 + 0., the sum of K, and 05.
Hence 6(G) < 4. Applying Lemma 2.6, we have ng > 6, which contradicts

the fact that .|S| =.3.

'Theorem'B.S"EE_G'ié‘aﬁ_8*cri£iéél;érééhiéfidr&ér 9;'£ﬁeﬁ |ECG)| = 33.

. Proof, By Lemmas 3.14 and 3.4,G has a vertex x of degree 6(G);so

that G~ has a 1-factor F such that G~NF contains a 7-critical sﬁbgraph H.
Now the order of H must be 9. However, by Theorem B.A,IE(H)I = 29 and

thus |E(G)| > 29 + 4 = 33, Theorem 3.5 now follows from Lemma 2.9.

. Remarks.  Theorem 3.5 has been confirmed by a recent .result of
Plantholt; Plantholt's result is also discussed in Chapter 5,and follows

from Théorem 4.1.

Corollary 3.5. A graph of order 9 is 8-critical if and only if its

degree-list is one of: 573 85, 63. 6, 62 72 85, 674 84 and 76 83.

8

Proof. This follows from Theorem 3.5.

It is tri?ial that every Criﬁical éraph is 2-connected. Also all
the graphs with the degree lists mentioned in Theorems 3.1 - 3.5 are
2-connected. Therefore the_hypothesis that G be 2-connected in these
theorems can be dfopped. However since graphs which_are not connected
are of no interest when considering criticality, it seems natural to

retain the present statement.
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4. Embedding Nearly Complete Graphs

4.1 Introduction

We now consider graphs G formed by removing n edges from the
complete graph K2n+1' We give a necessary and sufficient condition for
any partial edge-colouring of G with 2n colours to be extended to a

proper edge—colouring of G.

In [BZ] Beineke and Wilson observed that any graph G obtained by

removing q edges (q<n) from K2n+1 was Class 2 and therefore needed 2n+1

.colours for an edge-colouring. In [H5] Hilton conjectured that if q=n

then G would be Class.1 and therefore could be edge—coloured with 2n
colours. This would imply that if q = n-—1 then G would be a critical

graph. Hilton's conjecture is a special case of an earlier conjecture of

Vizing [V3] that, if G is critical, then

2|E@) | > |V(®)| (Ja(e)[-1) + 3.

In Hilton's conjecture the'inéqﬁaiity becomes an equality. In [P1],
Plantholt proved Hilton's conjecture. In [Al; Corollary 4.3.3],
Andersen gnd Hilton showed that an edge-colouring of Kr with 2n—1
colours can be extended to an edge-colouring of-K2n with the éame
colours if and only if each colour is used on‘at least r-n edges of Kr.
in this chapter we show how an analogous result can be formulated and
proved which implies ?1antholt's theorem. Andersen and Hilton [A}]
also showed that any partial edge-colouring of Kn with 2n-1 célours

can be extended to a proper edge-colouring of Koo with 2n~1 colours.

We show that the situation can be very different if instead we consider

K2n+1 with n edges removed and the colouring uses 2n colours only.

We shall need the following result due to Hoffman and Kuhn [H6].
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Lemma 4.1 A necessary and sufficient condition'for:é-finiteffaﬁil&

(Ai: i € I) of subsets of a finite sét to have a system (Xi: i€ I)of

distinct representatives such that M U X, is - that both of the
S .. 1€T °
following sets of inequalities: are satisfied:

I. |u Al > (VI' c 1),
icI'
1. |€i: A, MM #¢and i€ T} > M| V' = M).

We shall call condition I;‘Hail'S‘COndition, and condition II, the

marginal condition.

4.2 ‘Step—by—step‘ektensions.offedge*colourings..

Let G* be a graph obtained by removing n edges froﬁ“K2n+1. Let the
vertex set of .G* be {v1,v2,...,v2n+1}. If dG*(v1)-< dG*(vz)-< e <

dG*( ) then we say that G* has a standard vertex labelling. With

Von+1

respect to-'a staﬁdard vertex labelling of G¥, for 1 < r < 2n+1, let G?

be the restriction of G* to {v1,...,vr}, or, in other words, the maximal
induced subgraph of G* with vertex set {v1,...,vr}; let c, = 2n - dG*(vi)'
Given_an>edge—colouring with a set of 2n colours of Gi for some r,

1<r < 2ntl, 1et'ef(c)'be the number of edges of G? coloured with

colour o.

with respect to which G? is defined.

A necessary.and sufficient condition for an edge=colouring of G?

with a set § of 2n colours to be extendible to an edge-colouring of G*

with @ is that:

......

§ such that
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(i) [Cil =c,; (1 <i<r),
(ii) no colour of Ci'is'used'in Gi on an edge on the vertex
4 (1<i<r),
and
(iii) r-n-1 Cif o€C U...UC,
e_ (o) =z
r
r - n " otherwise.
Proof.

‘Necessity. Suppose G* has an edge-colouring with a set é?of-Zn colours.

For 1 < i < 2n+1, the vertex v, has a.setrCi:of 2n. = dG*(Vi) colours missing

2n+1)

from it. The number of edges of G* is ( 9 - n = (2n)n, so each colour

is used on n edges exactly and is missing from exactly one vertex. There-

"fore each colour of Ci, the set of colours missing at Vis is not missing

in G* at any other vertex. Therefore C,,... are pairwise disjoint,
At 1’ b4 p J

C2n+1

and so C,,...,C are pairwise disjoint.
1 r

For o € é » the number of edges of G* coloured o with at least one

end on a vertex of {Vr+1""’V2n+1} 1s at most 2n + 1 - r. Each colour

is used in G* on exactly n edges,. Therefore, the number of edges

coloured ¢ in G?'is at least n - 2n+ 1 -1r) =r -n - 1. On the other

}

then there is a vertex in {vr+1,..,,v

qU-UCy o,

hand, if ¢ € Cr+ U 20+

at which o does not appear, so the number of edges of G* coloured ¢ with

at least one end on a vertexvof’{vr } is at most 2n - r. . It

#1772 Von+t
follows that the number of edges coloured o in G? is at least

n-(2n-1r)=r-n.

Sufficiency. Let 1 < r <2n + 1, let 6= {01,...,02n} and let G? satisfy

conditions (i), (ii) and (iii). If r = 2n + 1 then there is nothing to

prove, so suppose r < 2n + 1. Let C1 Uu...uU Cr =‘{d1,...,cq }; then
°r
q, > r. We show that the given edge-colouring of G* can be extended to

\
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an edge-colouring of G?+ satisfying (i), (ii), and (iii) (with r + 1

1

replacing r, of course).

The description of the process we carry out is aided by the
construction of the bipartite graph H we now describe. The vertex sets

of H are {v{,...,v;} U'{w1,...,wC } and {O;,,..,cgn,c*}. The edges of
' r+1’
H are as follows. For 1 <i<r, 1<j<2n, vi is joined to 03 by an

edge if Uj is not used on an edge on 2 and is not in the set Ci' An
edge (VE 03) means that the colour oj could be used on one of the edges

from v, to {v. }. The vertex vi is joined to ¢* by

£+17° "V on+
2n + 1 -1~ ]{dj:'cé is joined to vi}l:edges. ‘This. makes all vertices
cees W

c

. r+1

to all those colours which are not already used in C,, C,, ..., C_.
. . 12 72 r

vi have degree 2n +.1 — r. We now join the vertices Wis

-

Forq +1sjs2n and 1sisc ., '05 is joined to w,.

The bipartite graph H is illustrated in Figure 4.1.
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degree < 2n - 9.

degree
2n+i-r *
v e —~ o) Pdegree<2m+1—r
1 J .
%
L]
k vl . ao,l )
4% )
/w o' h
+
1 q*1
degree W, < N
« > degree < 2n - r + i
2n—qr :
w e o O
cr+1 . 2n _J
~

Figure 4.1 The graph H

Let H' be EN{o*}. Then -

1y - 4 - s o
dH(Vi) 2Zn+1-1 - (1<i<n),
dH(Wi) = 2n - q. (1<ix Cr+1)’

dH(cr«‘) <2n-gqg
2n+1-r (1<j<qr),'
 |
dH(oj) <

2n -r +c (qr+1<j<2n).

The first and second equalities follow immediately from the definitionms

of o* and of WiseeesW, respectively. To show the inequality for dH(o*):
r+i
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1]

r .
L o+ 1-1) - d (DY

d'H(o*)
1=1 .

r .
.Z {2+ 1 -1) - (@, (v) - d, (v, )}
i=1 r

and so is the number of edges of G*which join vertices of -{".1’?'4"".1,} to

vertices of {v }. We know that the total deficiency is 2n,

r+17° " Vo4

, r .

and the deficiency of G;ﬁ is Zci. Hence the deficiency of G"‘\Gr is
» i=tt-

L.
2n - Z c, = 2n - 9.5
i=1

and so the number of edges of G*from {v1,'...,vr} to {Vr+j1 ,"'-"v2n+1} is

less than or equ;tl to this. Therefore 'dH(G*) < 2n - ’qr. Finally‘to
show the inequality for dH(d.%): If 1<j< q. then, by assumption,
er(cj)'> r - n - 1. Therefore O‘j is not used on at most.r - 2(x = n - 1)
=2n-1r+2 verticés of Gr*. However oj is in C1 Uu...u Cr’ S0

dH(og) < 2n-r+1. If q < j < 2n then, by assumption, er(cj)‘> r-n.

r+1
Therefore Gj is not used on at most r —= 2(xr — n) = 2n-r vertices of Gr*.
However each vertex w, (I<ix Cr+1) 'is joined to UJ! when q_+1 < j < 2n,

1 L
so dH(cJ.) <2n-r+ Cr_‘_1

Let M be the set of vthose oj such that
r-n-1 if1<j<qr,

r-n ‘ ifqr+‘1<j=<2n.

These oj will be called marginal ‘colours and the corresponding vertices

05 will be called marginalvertices. We want to be sure that these marginal

colours are used on the edges at V.41 SO that the number of times each

colour 1s used satisfies the initial conditions.

. We would like to find a set J of independent edges of H' which

covers each vertex of {v;,. . .,v]':} U {w1,. TP } except for those v]!_
r+1
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such that ] is not joined in G? t
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ov ., and which also covers each
+1 r+1

vertex of M. For then if v'c! € J then we colour v.v with ¢., and
i] : 1 r+1 i
if w.o' € J then we place o. in the set C__,. Then c colours will be
i3 v 3 r+1 T+l
placed in Cr+1' Furthermore any marginal colour will either be used.to

colour an edge from \A ‘to one off{v1,...,v£};'g£_wi11 be placed in

+1

Cr+1' By relabelling if negessary; wg may assume that Cr+1 = {cqr+1,...¢%£;11

In the case where oj is used to colour an edge we have:
(r+1)-n-1 if1<j<qr,

Cr+1 , .
(r+1) -n :qur+1+1<._]<2n.

In the;other'gase cjis'uSed in Cr+1 and sq;jhg(rrfg,>but'jfg:qri1; thus

e ,(0)=r-n=(+1)-n-1and q, + 123 s

r+ 1 J qr -tl:

Thus marginal'colours will satisfy (iii) with r + 1 replacing r, but

will be marginal in that case also. Clearly non-marginal elements will

satisfy (iii) with r + 1 replacing r.

Furthermore C, N C_ ., = (1 <‘iA< r), and it is easy to check that
the remaining parts of the»conditions (1), (ii) and (iii) will be
satisfied with r + 1 replacing r. Thus it remains to demonstrate the
existence of a suitable set J. We do this by Verifying the Hoffman-Kuhn

inequalities of Lemma 4.1.

We show first that Hall's condition is satisfied. Let

W' c {wr1,...,wc } and V' c {v;,...,v;} and let V' contain no vertex V]!_
r+1 :
such that v, is not joined in G to Vet Clearly if W' # ¢ then

lNﬁ W"| = 2n - q. > |W'|. We consider various cases with V' #£¢.
Case HI. c 4> 3or (cr+1 =2adc_ ., £ 0).
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EGRTEDY

> [N, (V9]

H!

' 1]
> [Ny (v))| for some vi,

>~ 2n - Ci - dG (v.).
T i

If 2n - c; - d (vi) > +‘cr then we obtain

G +1

r

[NH,.(vf TRADY! >-|{v1,...,vr}{U {wl’...’wér+1}l > vt o+ W,

7

as required. If, bowever, 2n - c; dG -(vi) <r+ C i1 thep

2n < r'+ c;te ¥ dG (vi}
r
and d, (vi) <r-ifi, i
T

S0

2n ‘

521 c; = 2n < 2r .+ s + C 41 1 s 2r + c, + Couq 1
so

T 2n

Y e, + ) c, < 2r - 1.’

. i . i :

3=2 . i=r+2 -

- Since Cr+1 > 2, we know that c; >2fori<r+ 1.
r i " 2n :
Hence | 2 Ci] > 2(r = 1) and it follows that z c. = 0 and that
j=2 _ i=r+2 % |
Cy = ... =c_ = 2. Consequently c <2, a case which is considered
' r r+i
below.
Case H2. Ciyq = 2 and C 42 = ... = Cont1 = 0. Then
r ' ]
dH(o*)<2n—qr= 2n - Z ci<2n—(2n-2)=2.
1=1

Therefore

d,(v1) > (n+ 1-1)-2=02n-71- 1 (1<i<r).
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If 2n — r - 1> 71 + 2 then for some i, 1 < i<,

‘NH' (vi)l >n-r-1>r+2=r1+ C i1 > [vr] o+ W],

from which Hall's condition follows. On the other hand, if 2n —r — 1 < + 2

: r+1
then 2n < 2r + 3, son - %-< r. But 2(r + 1) < z c; = 2n, so
i=1
r<n - 1. Therefore, in this case, r =n - 1 and Cy = eer T Clpy = 2.

1 > - - ) ) = -— - T
It follows that dH’(vi) >2n-1r —-1. If dH'(Vi) 2n - r — 1 then this
implies that v, is not joined to 2 elements of {Vr+1,...,v2n+1},but this
is not possible, since'cr+1 = 2 and Copi = 0, i=2,...,2n-r. Therefore
d_,(v.) = 2n-r or 2n-r+1 (1 < i <1). Therefore for any i, 1<i<r,
H 1 .

IN, (v}})]| >2n-r=n+1=r+2>|V]+[W],

from which Hall's condition. again follows.

Case H3. C ot < 1. Then |W| < 1. Consider the minimal subgraph

H" of H containing the set V' U W' of vertices and all edges of H on

these vertices. The number of edges in it is

i

{IV'I_(2n+1—r_) if [w'| =0,

1

[v'] (2n + 1 - 1) + (2n f:qr) if,IW'[ 1.

Each vertex 0' has degree in H (and therefore in H") at most 2n + 1-r,
and o%* has degree in H at most 2n - q . It follows that 1f dHn(c x) <
2n - 9. then the number of o-vertices in H" is at least [v'] + |[w'| + 1,

SO

(N, O] Ny @] > V] ]

If dH.,(c*) = - q =0, then (1) is similarly true. If

Hn(c*) =2n-q_ > 0,. then we know that in G all edges on vertices

v ... LN P i
{ 41’ s Vo +1} have their other vertex in {V ',vr} Now since

2n—-q_ # 0, we know that ¢C > 1, and since C <1 we have ¢c_ , = 1,
T _ T

r+1 +1 r+1

so there is a vertex Vi in {V19"-’V;} not joined to V So by the

r+1°

definition of V', ve ¢ V'. But this contradicts dH"(o*) = 2n—qr.

Thus, in all cases, Hall's condition .is satisfied.
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Next we show that the marginal condition is satisfied. First we note

that if.

r-n-1foroc€C, U...U Cr’

1

r-n otherwise,

er(o) > {

then o is not marginal. Therefore, if n > r there are no marginal symbols,

so that the marginal condition is satisfied vacuously.

Suppose therefore from now that r > n. Then it follows that

cpq < 1. For if Cpq > 2 we would obtain the following contradiction:
2n+1 r+1
2n = § c.> ) “c,>2(r+ 1) > 2r > 2n.
. i” . i .
1=1 i=1
Thus c_, . < 1. Therefore there is at most one vertex, say vi:sdch that .-

- I e
‘v. € {V1:--~3V%} and v is not joined in G to Vi

"Let M' be a set of marginal elements oi. We wish to show that

lNH.(M')| > |M'| if v does not- exist,

) 1
H,(M')\{v+ }| > |M"| otherwise .

Consider the subgraph of H' consisting of the vertices of M' and the

vertices of

N, (M") if vf does not exist,

NH,(M')\V+ otherwise,

and all edges of H' between these vertices. The number of such edges 1is

equal to

M d(et) if v' does not exist,
and at least

M| d(e") - d(v+) otherwise.

. For o, € M we know that
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. G - f r-n-1 for qi E(C1 U...U Cr)_ n M,
I A . foro. € MN(C, U ... U C).
_ 1 1 r
- - - ’ v Y
[n (r-n 1) for o; €_(C1 U...U Cr) nu,

Hence d(ci)

=}
!

(r -=mn) + 1 foro. eM~(C,U...UC ),
i 1 r

and so

d(c!) 2n -1 + 1 (V o, € M).
i o i

Therefore the number of edges in H' from M' is equal to

= MY (2n-x+1) if v+ doeé not exist

and is at least
IM’](anr+1)?d(ﬁF5;>fhﬂ[(Zn—r+1) - (2n-r)

= (Ia1-1) (2n-r+1) + 1 otherwise .

The marginal condition now follows from the fact that the maximum degree

in the sﬁbgraph is (2n~-r+1).
This proves the sufficiency and completes the proof of Theorem 4.1.

4.3. Extending partial edge-colourings.

A partial edge-colouring of a graph G is an edge-colouring of some

subgraph G' of G. Andersen and Hilton showed in [Al1] that any partial
edge-colouring of Kh with (<2n-1) colours can be extended to an edge-
colouring of Kzn with 2n-1 colours. We investigate the analogous problem.

for partial edge-colourings of Gr*.

We first of all give:a necessary and sufficient condition for the
extendibility of an edge—colouring of Gr*,where r £n+ 1; we only have to

consider the sets of colours unused at each vertex.

Theorem 4.2. Let r < n + 1 and let G* have a standard vertex labelling.

‘Let Gr* be edge-coloured with 2n ¢olours, and,for 1 £ i £ r, "let Di'hg

"the set of colours not used at vertex vi."This‘edge colouring of Gr*'can
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|u o> ) ¢

: vV Ig{tl,...,rD.
i€1 i€1

i
Proof. If we assume that Gr* can be extended,then by Theorem 4.1 we
know that there are pairwise disjoint sets C1’“"Cr such that |Ci|. =c

and no colour of Ci is used in Gr* on an edge at V.. Hence Ci é:Di and
lu o f>]u cl="7 ¢ v Ic{tl,...,rh.
i€1 i€l - ier *t :
We now assume that
¢ p > ) ¢ (WIg{l,...or])
1€1 i€I
and show that we can find pairwise disjoint sets of colours Ci(i =1 .eut)
such that (i), (ii) and (iii) of Theorem.4.1 are satisfied.

To find the Ci it is sufficient to show that the family

(DygseeesDyg sDpqsesesDyg seeesDsenesD ),
, 1 . 2 . r
where, for 1 < i<, Di1 = ... = Dic ='Di, has a system of distinct
i .
representatives. For then, by Hall's theorem [H6],
lu v op.l>]) |3
ier jex M ier  *
v Ic{1,...,r}, i €1, 3, ¢~1""°i})‘
But this is equivalent to saying that
| v o> Eci(Vlc'U,'..r.,r}),
i€1 i€l
which is true by assumption.
Condition (i) holds since ICiI =c and (ii) is true since C; =D;.

We now show that (iii) holds. If r < n then this condition is vacuous, so

assume r = n+1. Suppose that there is a colour ¢ which is not in

. 1 % %
c, Uu..W ¢ and that ¢ does not occur on any edge of Gn+1*. Gn+1c has

1 n+1 n+1

a vertex of degree at least n-1, for otherwise z c, > 2(n+1), which
i=1
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n ,
contradicts the fact that - z Ci = 2n. So there are at least n-1 colours
i=I ~ ,
used in G*n+1' One of these colours, say t, must be in C1 g...u Cr since

IC1 u...u Crl > n+l. We replace the colour t in C, U...U Cr by the colour

1

0. We can repeat this operation if necessary. This shows that (iii) can
be made true consistently with (i) and (ii), and hence that Gr* can be

extended to. an edge—colouring of G%.

Corollary 4.1. Let r<mn+ 1. 'If 2n - 1 + 1 > c, .

colouring of G%.

Proof. . The maximum degree in Gr* of any vertex vi of Gr*.is at most

r-1 and hence'[D11 > 2n—r+1 (1 < i < r). ' Therefore

|uD,|>2n-r+1> ) c, ¥V Ic{1,...,th),
ier * ier *

so the coroliary follows from Theorem 4.2.

We now give a theorem which shows that it is possible to obtain
graphs G* and partial subgraphs Gn* where an edge-colouring of Gh* is not
extendible to G*. This is in sharp contrast to the result that a partial

edge—colouring of Kn with 2n—-1 colours can always be extended to an edge-

colouring of K _ with 2n-1 colours.

2n
T

Theorem 4.3. Let r be even and § >n > %-."Then'there‘are'graphsvG*

and partial edge colourings of Gr*’with'Zn colours such that the partial

edge colouring of Gr* cannot be extended to an edge—colouring of G.

Proof . Let G* be the graph obtained by removing from Kyeq> B edges
whose end vertices all lie in a set {V1""’Vr} of g-vertices.

r 2
This is possible since ; >n and §-< 2n+1. Let F be a set of

' %-independent edges‘of“G*;; each edge having exactly one -
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end in the set f{v1,..,,v£}, and colour'Gr* with (<2n) colours so that all

the edges of F receive thg same colour.

To show that we can colour'Gr* in this way, consider‘Gr*\F. This
has maximum degree r-2 and hence can be edge-coloured with r-1 colours.
Colour F with a new colour. Then Gr* is edge-coloured with r colours

(and r<2n). Then, since one colour is used at every vertex,

| v D.| < 2n-1
- 1

ie{1,...,r}
whereas

c. = 2n.
i€{1,...,r} t

Therefore by Theorem 4.2, the edge-colouring cannot be extended to an edge’

-colouring of G* with 2n colours.

This proves Theorem &.3.

In contrast to this,-we‘show in the next theorem that if ¢1 =n
then any edge—colouring of G§+1 can be extended to an edge—colouring of

G* with 2n colours.

= n then any edge-colouring. of _GI’«; _” with .2n colours can

1

Theorem 4.4. If ¢

-be extended to.an édge ¢olouring of G* with 2n ¢olours.

Proof. Since ‘ﬂ = n, it follows that c2 =‘c3.= .= cn+1,= 1 and

that in G* is not joined to any other vertex. Thus'|D1| = 2n.

n+1? 1

Since lDil >n+l (2 < i <n+l),

n+1 )
if 1€I then U D, > 2n > ") ¢, > ) €. and
ier * i=t * qert .
n+1 .
if 1¥I then U D, > n+#l > ) ¢, > ) C.
, . 1 . i e P
1€X 1=2 1€l

so Theorem 4.4 follbws from Theorem 4.2.
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Given r, let n be the léast integer suéh that if n 2 n
then, for any‘graph G*vformed froszn.!_1 by removing n edges, any
edge-~colouring of G_* with 2n colours can,be.extended to an edge—
colouring of G with 2n colours. Theorem 4.3 shows that n_ 2 (E)o 1.

2
We make the following conjecture.

Conjecture 4.1.
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5.1 Introduetion

In [P1] Plantholt showed that if we remove ¢ edges from K2n+1'then
the resulting graph G has x'(G)=2n+l if and only if q < n. We have already
proved this by an inductiﬁe argument in Chapter”é; We now give another
proof of Plantholt's theorem and also. give the 'next case” of Vizing's
éonjecture (see Section 4.1), mnamely that if 2n edges are removed from
IEH+1,giving a graph H? and if the makimum‘degree of H.is 2n-1, then H is

edge—colourable with 2n-1 colours.

We shall make use of the following result. Aniedgéécolouring of a
graph is equalized if HEil-lEjH < 1, whenever E, and E; are the sets of
edges of G of two distinctAcolouré. M@Diarmid'[M1] and-de Werra [W2]

proved the following.

Lemma 5.1 If G has an edge~colouring with a set of colouts, then'it’ has

an equalized edge*colouringﬁwith'thelsame“set”offcolours.

5.2 The second case of‘Vizing*gconjecture

First we need the following lemma.

.

Lemma 5.2 Let G be a multigraph with at most two vertices b’ (and possibly -

¢) of highest degree, let all the non—-simple edgés be incident with b, and

if b and c are joined by more than one edge, let there be a vertex w such

that w is joined to c but mot to b. Let G not contain a subgraph on

three vertices with A(G) + 1 edges. Then ’ o

x'(G) = ACG) .

"Proof. Let W be the set of vertices of G joined in G to b by non-

simple edges. Let H and H* be the simple subgraph and the sub-multigraph

respectively of G induced by W U {b}. We show first that x'(H*) < A(G).
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1If H is Class 1, then edge-colour H with.IV(H)I - 1 colours, and
extend this to an edge-colouring of H* by colouring each of the extra
edges on b with an extra colour. Then the number of colours used will

be d . (b) < A(G).

If H is Class 2, then edge-colour H with |V(H) | colours. If the
colour, say o, missing at b is also missing at some other vertex, say V¥,
then colour one of the extra edges joining b ‘to v* with o, and colour

the remaining extra edges on b with an extra colour. Then the number’ of

colours used will be.dH*(b)-< A(G). On the other hand, if o is missing

at no other vertex, then v | is odd. .Colour"ﬁhe extra edges on b with
extra colours. Then the total number of*colours.useévwill be dH*(b)_+ 1;
If dH*(b) + 1 < A(G) then this is the desired edge-colouring of H*.

Since dH*(b) < A(G), we have used at most A(G) + 1 coloﬁfs, or at most

one colour too many. In.that case we replace the colour o on all the’

1 . ) - :
§(|V(H)[' 1) edges of H at which it now occurs by extra colours. Provided

|v(#)| > 5, there is such an extra colour which is not present in H* on
either of thie vertices of an edge coloured a. Thus in this case, if
|v(a)| > 5, then x'(H%) < A(G). If |V(H)| = 3, since G does not contain

a subgraph on three vertices with A(G) + 1 edges, the number of edges in

 H* is at most A(G), so clearly x'(H*) < A(G).

We now show how to obtain from this an edge-colouring of G with A(G)
colours. First colour E(GNH*) with A(G) colours. This can be done by
Lemma 2.5, since GNH* has at most one vertex of degree A(G).

Then coloﬁr the edges of G joining H* to GNH* using Vizing's original
argument [V1], always having the pivot vertex of each of the fans in
V(GNH*), and choosing the last edge, or the last two edges, as follows.
If b is the only vertex of maximum degree, choose an edge on b last. If
b and c both exist, éuppose first that ¢ € V(GNH%). If c is joined ‘to b,

then colour the edge bc last. If c is not joined to b, colour an edge on
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b next to last, and an edge on c last. If c € V(H*) then colour an

edge on b next to last and the edge wc last. Vizing's origiﬁal argument
will apply as, at any stage during the construction of the fans, there
will always be a further colour available on the vertex at the other endv
from the pivot of the most recently adjoined edge; except .at the final
stage, such a further colour is then used to define the next edge of the

fan. This yields the desired colouring of G with A(G) colours.

We have already found a direct proof of Plantholt's theorem using
Theorem 4.1. We next give another way.of proving Plantholt's theorem,
also using Theorem 4.1; the amount by which the proof depends on

Theorem 4.1 varies (according to the choice of r).

Proof of Plantholt's theorem. Let 1 < r < 2n. Fromici_ponstruct a multi-
graph G%* by adjoining a further vertex v* and, for 1 < i<, ¢ édges
we know that d(vi) in G?*

joining v* to v Since v. 1s joined to v
J & 1 i J 2n+1.

is<2n-1 (vi, 1 < i <r). By Lemma 5.2,'x'(G§*)-< ) ¢, <2n. By Lemma
' , i

5.1, an edge-colouring of G?* can be equalized; then the conditions of

Theorem 4.1 are satisfied by Gi,zso that G* can be edge-coloured with 2n

colours.

When r = 2n, Theorem 4.1 is so trivial that the above proof of
Plantholt's theorem is really self-contained. The proof of the next

theorem, the 'next-case' of Vizing's conjecture, is essentially an

- imitation of the "r = 2n proof'" above of Plantholt's theorem.

Theorem 5.1 Let H be a simple graph such that |[V(H)| = 2n.+ 1, [E@)|

= (2?;1) - 20 and A(H) = 2n - 1. Then x'(H) = 2n-1.

Proof. First suppose that n > 4. There is in H a vertex, say Vone1?
- . T — . .
of degree 2n ~— 1. Let the other vertices be ViseresVy o Let H H\v2n+1
Then H' has one vertex, say v, , of degree of most 2n -1, the remainder
- 2n

having degree at most 2n — 2. For 1 <i<2n + 1, let hi = (2n-1) - dH(Vi)'
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Let H'* be formed from H'Aby adjoining a further vertex v¥* and inserting

hi,edges between v* and Vs for 1 < i< 2n. Then

d_, . (v¥) = z h. = 2n - 1.
i t<i<on *

Also d_; (vi) =2n-2 (1<i<2n-1). Except

H'*(VZn) =2n-1and d

H'#

in the case when Vo and v* are joined by more than one edge and there

does not exist a vertex w joined to v

2n

H'* has an edge—colouring with 2n-1 colours. In the exceptional case,

and not to v¥*,then, by Lemma 5.2,

since every vertex to v, is also joined to v¥*, there can be no further

2n
multiple edges. We remove an independent set F of n edges containing an

edge on v, and an edge on v¥* (but not an edge joining Vo, tO v*) and

2n
avoiding a vertex v' which was not joined to either of vznvor.?*. Since

n > 4, it is easy to see that there is such an F, as follows. Consider
H'*\{vx,v*,v'} where vx‘is a vertex other than §2n joined to v*. This
graph has 2n-2 vertices and minimum degree 2n-5. Now by Dirac's theorem
[D2] there exists a Hamilton cyclevif 2n-5 >=%-(2n—2),i.e. n>4. We

take alternate edges oﬁ the cycle.together.with.edge vx'v* for F. Let e be
an edge on v'. By Lemma 5.2, we can now’colourH'*\(FUe)‘with 2n-2 colours.
Theﬁ colour e aiso; using Vizing's argument with v' .as the piﬁot §ertex.‘
Then.again we obtain an edge-colouring. of H'* witﬁ 2n-1 colours. In both
cases,in the edge-colouring obtained, v1,.._.,v2n_;1 each have one colour
missing, since the number of edges of H'* is n(2n-1) and every colour is
on at most n edges. Therefore each colour is on exactly n edges and each
colour is missing from exactly one vertex. Therefore Voo C3R be

adjoined to H'# and, for 1 < 1 < 2n - 1, the edge Vi Vot inserted with
the colour on it being the colour missing at \ in H'#., Finally v* can

be deleted. This yields the graph H edge-coloured with 2n - 1 colours.

For n < 3, the theorem is easily deduced from results of Fiorini [F4]

and Chapter 3.

This proves Theorem 5.1.
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From Plantholt's theorem and Theorem 5.1 one may easily deduce that

the edge—chromatic class which a graph on 2n + 1 vertices with at least
2n+1

Cy

degree and the number of edges, as indicated in Chart 1.

) = (3n - 1) edges belongs to is determined solely by the maximum

Number of .edges.. | . .Class.............

(Zn;1\

2n+1 hl
- (n+1)
()
; & 2 if A(G) = 2n - 1
25;1, 1 if A(G) = 2n
( ) - (2n.-1)
2 )
2n+1,
( ) - 2n. 1
2
2n+1\
( )T (2n + 1)
2. ’
: 2 if A(G) = 2n - 2

if A(G) > 2n - 1

.
-—

Chart 1
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5.3. Some .final remarks and conjectures.

Plantholt's Theorem and Theorem 5.1 verify the case r = 1 and r = 2

of the following conjecture.

Conjecture 5.1 'Let 1 < r < n. "Let G be a simple graph with 2n+1 vertices

and maximum'degree A(G) = 2n+1-r. 'Then G is Class 2'if and only if ,

for some s such that 0 < s %%—Land'forfsome:sa ‘ {"-1’-"-2”’-""2; }'E v(G),

‘E(G\{.vl,vz,..,_vz-s})l > (2n+;-2s) (124 (amg) .

-1

2

do not satisfy the inequality with 1 < s < o but do satisfy it for s = o.

For 1 < o< , Wwe can construct examples of graphs of Class 2 which

Let H be a graph obtained from a K by removing (r-2s)(n-s)—-1 edges

2(n-s)+1
in such a way that the maximum degree A(H) of H is given by A(H) = 2(n-s)
+ 1 - (r - 2s) = 2n-r+1. The graph H* consisting of H together with 2s

isolated vertices is such an example. Then H* is Class 2 since

/2 (n—. S) +1
| ) - [(r-28)(n-8)-1]
2 /

|E(H) |

i

[2(a-8)+1 = (r—-25)] (n-s) + 1

and no set of independent edges of H* can consist of more than n-s edges.
Provided the maximum degree is not increased, edges can be adjoined to

this example to yield further examples.

When r =1 or r = 2, Conjecture 5.1 is equivalent to the following

conjecture.

" Conjecture 5.2 Let 1 <r <mn. Let G be a regular multigraph on 2n+2

vertex. Let G not contain a subgraph on threeé vertices with 2n+2-r edges.

Then x'(G) = 2n+1-r.

In the case when G is simple, r = 3 and the complement of G is the

union of three 1-factors,Conjecture 5.2 has been verified by Rosa and
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Wallis [R1]. This is also proﬁed when G is simple and (2n+1-r) §~%(2n+2)

in Chapter -9.

Conjecture 5.1 implies the following conjecture.

.

vertices and maximum degree 2n+1-r. "Then

: (2n+1
|E@G)]| = \ ) - rn+ 1.,
2

For 2 < r < n and for graphs of maximum degree 2n + 1 - r with 2n + 1
vértices, Conjecture 5.3 is stronger than the conjecture of Vizing referred
to in the introduction to Chapter 4. Whereas in Conjecture 5.3 a critical
graph has

2
2n” = (r = )n + 1
edges,‘according'tO'the Vizing conjecture a critical graph has at least
2 2 | |
"= (r - 1)n - %-(r - 3)

edges. For 1 <r < 2, the two conjectures coincide.

The restriction r < n in Conjectures 5.1, 5.2 and 5.3 would be
best possible, as the example of two disjoint Kh+1's, when n isAeveh,

shows that r cannot be increased to m + 1 in Conjecture 5.2.
We also have the following conjecture.

Conjecture 5.4. If a regular multigraph on 2n vertices of degree 2n - 1-

has no submultigraph consisting of three vertices and 2n + 1 edges, then

it can be edge-coloured with 2n colours.

Of course, Conjecture 5.4 is true for simple graphs.
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6. The chromatic index: of graphs of even. order with many edgés.

6.1 Introduction

Following the results on odd order graphs in Chapter 5 we now

consider even order graphs. We show :

Theorem 6.1 'For r = 1'or 2°'a ¢raph.G with 2n+2 vertices and maximum degree

2n+1-r i§ of Class 2 if and only if

sl > (257) -

where v is a vertex of minimum degree.

We make a conjecture for 1 < r < n of which this result is a special

case. For r = 1 this result is due to.Plantholt [P2]._.

6.2 Even order graphs with large degree

2n+1

Proof of Theorem 6.1. Since ( > - rn = (2n+1-r)n, it is easy to see

2
that the inequality is sufficient for G to be of Class 2. We shall now

prove the necessity.

Assume that G is a simple graph with 2n+2 vertices, maximum degree

A(G) = 2n+1-r, such that E(G\w) < (2%;1) -rm (VWw€ V(G)), and r = 1 or 2.

We first create a graph H on 2n+2 vertices by adding in as many edges

as possible to G in such a way that

(i) |Emw)| < (2“2“‘) - rn (Vv wevH),

(ii) A() = 2nt1-r, and
(iii) H is a simple graph.

Let the vertices of H of degree less than 2n + 1 — r be called v1,...,vp.

Let the remaining vertices of H be v Then either

p+1""’V2n+2'
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for some vertex v¥*, or

.
2n+1) _ (Vw € V(H)),

|[E(aw) | < ( )

.v13;..,vﬁware all joined to.each other, and 2n > p > 2.

% *
(If p=0 or 1 then for at least one vertex v E(H\v&) 2,(2n;l) - rn,

hence p 2z 2. To see that 2n 2 p, notice that if p = 2n+l or 2n+2

then the degrees of v1,.._.,,vp would be > 2n, a contradiction.)

Suppose. first .that, for some vertex v¥,

|E (o) | ='(2%;1> - rn.

Then, since Conjecture 5.1 is true for r = 1 and r = 2, E~v¥ can be edge-

n(2n + 1 - r), each

coloured with 2n + 1 -.r colours. Since | E(Exv*) |
colour class occurs on n edges. Therefore each colour is missing in HNv*
from exactly one vertex. Therefore v* and the edges of H on it can be
édjoined with the edges receiving distinct colours. This yields an
edge-colouring of H with 2n + 1 — r colours and, therefore, an edge-

colouring of G with 2n + 1 - r colours.

Next suppose that
. (2n+1
|[E(a~) | < (2 ) m (Yw € V(H)),

v ,...,vp are all joined to each other, and p > 2. Wé now add edges to H

1

onto the verticés v1,...,vp, creating in each case multiple edges, but not
loops, so as to form a regular multigraph H* of degree 2n + 1 — r on

2n + 2 vertices. To see that this can actually be done:

For 1<i<2m+2, letd =2n+1-1- dH(vi)' We may assume that

1 2
"We have to show that there is a loopless multigraph with degree

§, =8, > ... = 6p (if not, then we may relabel the vertices v4,...,vp).

sequence (61, 62, ey 6p). By a result of Hakimi [H3], there is such a
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loopless multigraph if and only if

(mi)

§. is even, and
1

o~

i
. B >
(mii) 61 <-‘X Gi.
i=2
In our case, (mi) is satisfied since
) . 2n#+2
E §.=(n+2)(2n+1-1r)- ) d.(v.),
Lo 1 . H 1
i=1 i=1
which is even since H is a graph. Also (mii) is satisfied,

since

§ §. = 8
i=2 1

{(2n + 1)(2n + 1 - 1) - 2[E@W)| - dp(v )} = {(n+ 1 - 1) - dH(vi)}

2n(2n + 1 - 1) - 2|E(H\v1)|

2n(2n + 1 - 1) - 2{(2n ; 1>~— rn}, by our assumption,

A%

From H* delete a vertex x, X €'{vp+1"’f’V2n+2}' Then x .is joined

to at least p — r of v1,..,,vp, has no multiple edges on it and H*x has

,

r vertices of maximum degree 2n + 1 - r. When r = 2, if possible select
x so that, in addition, in H%x, at.least one of the two vertices of

maximum degree is in {v }. If this is not possible, then,

p+1,...,v 0

again if possible, in addition select x so that there exists a vertex

y € {v } such that y is adjacent to one of the two vertices

p+1,...,v

2n+2

of maximum degree in H*~x and is non-adjacent to the other. The case when

we cannot choose x to satisfy in addition either of these possibilities

is considered at the end.
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If r =1, or 1f r = 2 and one of the two additional requiremeﬁts
for the selection of X can be satisfied, then we now proceed to show that
H¥x can be edge—colourédbwith 2n + 1 - r colours. First we edge-colour
the'complete subgraph of H*§x on the ﬁertices v_1,..,,vp with p colours

if p > 3 or withone colour if p = 2. We show below that |E(H*)| - [E(H)|

< {Zn +1-r=-pif p>3

m+2-1-pifp=o2. Therefgre, giving the edges of E(H*)NE(H)

at most this number of further colours, we use at most 2n + 1 — r colours
in all on the maximal submultigraph of H*x on;v1,..,,§p. To see that
|E(E*)| - |E(H)| < 2n + 1 - r - p, consider the graph H (the complement of
Hj. Each vertex v with dﬁ(v) > r is joined in H solely to vertices of
degree r in H. Therefore the total number of edges in H joining &ertices
of degree > r‘in H (i.e. v1,...,vp) to vertices of degree r in H is at most
(2n + 2 - p)r. Therefore

ig1 (dz(v;) - 1)

P
{121‘dﬁ(vi)} - rp

[ )
[oc]
]

< (2 + 2 - p) r - rp

i

2(n + 1 - p)r.

Therefore the number of edges of E(H*)NE(H) is

2

% 6.) <@+ 1-px
i=1 *

<2n+2-2p

nyvy

p>3and r <2
P 2 and r < 2.

< 2n+1-r-p if
2n+2-1-p if

Next we colour H¥{v ..,vp,k} with 2n + 1 = r colours. This can

1°°

be done since 2n + 1 = r > 2n - 1 and the number of vertices of

H~{v ..f,vﬁ,x} is2n+ 2 -p-1=2n+ 1-p, which is at most 2n-1

1’

since p > 2.
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Finally we colour the edges joining the maximal submultigtaphvof Hi~x
on v1,...,vp to the subgraph,H*\{Vq,..,,ﬁp,k}{ This can be .done by Vizing's
original argument [V1] if the pivot vertex is always in *\{v1,...,vp,x}
and if the final edge to be coloured is as follows. If r = 1 then the
final edge must be incident with the vertex of maximum degree. If r = 2,
let the two vertices of maximqm'degree be b and ¢. If at least one of
these, say c, is’in-H%\{Qd,;;;,ﬁp,k}; then, if b and c are joined, colour
the edge bc last. If b’apd c.are ﬁot joined, then colour an edge on b
next to last, and coiour'an‘edge on ¢ last. If both b and c are in the
set {v1,.;,,v§} but there is a ﬁértex~y,€f{Vp+1?..,,v2n+2}‘joined to b
but not to.c, colour an edge on ¢ next to last, and the edge yb 1ast;
Vizing's original argument-willlapply as, at any stage during the
construction of the fans, there will always be a further colour available
on the vertex at the.other'énd from the pivot of the moé% recently adjoined
edge; éxééét at the final stage, such a further colour is then used to
define theAnext stage of the fan. This yields the desired colouring of
Hi~x with 2n + 1 — r colours. From this we obtain an edge-colouring of G
witﬁ 2n + 1 = r colours by the same argument as when (1) applied (with

H* and x instead of H and v).

It remains to consider the case when x cannot-be chosen to satisfy
either of the additional conditions. Since it is not possible to select
x so that, in addition to the other requirements, in H*x, at least one

. . ) . .. v ‘. . W
of.the two vertices of maximum degree is in {VP+1, _,v2n+2}, it follows

+1"f”v2n+2} is complete. We

that the subgraph of H* induced by:{vp
already know that the sub(simple)graph of H* induced by {V1,...,vp} is
complete. Since A(H*) = 2n + 1 - r, in this case it follows that each

vertex of {v } is joined to all but two of {v1,..,,vp}. Since

ceesV
p+t’ ? " 2n+2
it is not possible to select x so that, in addition to the other

requirements, there is a vertex y € {vp+1’°"’V2n+2} such that y is

adjacent to one of the two vertices of maximum degree in H*x and non-
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. graph of (H*\F)\vp‘

1 N
‘in (" F)\vp+1, and vp

51.
adjacent to the other, it now follows that p is even and that
{v1,...,vp} and {vp+1""’V2n+2} have the property that,. after re-ordering

if necessary, there are integers ry =0, r1,;.,,rp/2 =2n + 2 — p such

p

thag, for 1 <1 <-§, Voiq and v,; are both non-adjacent to
vp+ri—1+1,..,,vp+ri‘but are both aﬁjacent to the rgst of {vp+1,...,v2n+2},‘
and that r. - r, . » 3.

i i-1

Suppose p > 4 and consider the graph H*.  We can show that this

- . : HE o _ . '..' .
g?aph has a 1-factor an51der H {V1’v2’vp+r1+1’vb+r1+2} This graph
contains two complete subgraphs on'{v3,...,vé}'and.

} which will each have a 1-factor. If

{Vp+1""’vp+r1’vp+r1+3’°"’v2n+2

we take these two 1-factors together Wlth the edgesrv»fvp_!_rf+1 and vzvp+21%2
. - & hd L )

then we have a 1-factor F of H* containing the edge v1vp+ri+1;

Now consider H#~F. The same argument we applied to H*x earlier,

now applies (with trivial modifications) to (H¥*<F)v

17 since the sub(simple)

+1 induced by v_1,...,vp can be coloured with p - 1

colours, as p is even, and since the vertices v,, Vv

1 have maximum degree -

2

is adjacent in it to v, but non-adjacent in

+1+r1 2

it to vy Consequently H¥F is Class 1, therefore so is H*, and so it

follows that G is Class 1.

Finally suppose that p = 2. Then H¥% is K2n plus two. more
vertices joined by 2n-1 multiple edges. Hence H* is Class 1 and working

back G is Class 1.

This proves. Theorem 6.1.

6.3 Conjectures.

Conjecture 6.1. Let 1 < r <n. 'Let G be a'simpl’e'graph'with 2n+2

yertices and maximum degree A(G) = 2n+1-r. Then G is Class 2 if and only

-1,

5 and for some set {v1 yeos ,V25+1}C v(G),

[E@Ny, vy H > P72 - (em20) (ams).
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When r = 1 or 2 then s = 0 and the last inequality becomes

2n+1
9 )

is true for r = 1 and for r = 2. The case r = 1 was proved

[E(e~) | > ( = rn. From Theorem 6.1, Conjecture 6.1

earlier by Plantholt [P2].

In Chapter 5 we formulated a similar conjecture, Conjecture 5.1,
for graphs of odd order. 1If Conjecture 5.1 is true then Conjecture 6.1

can be reformulated.

and only if G\ is Class 2 and A(Gw) = A(G).

Jakobsen [J4] and independently, Beineke and Wilson .[B2] conjectured

that all critical graphs have an odd number of vertices. This conjecture

‘has recently been disproved by Gol'dberg [G3]. However if Conjecture6,1*'

were true, it would imply the following modified version of the Critical

Graph Conjecture.

......

Conjecture 6.3. There are no critical graphs of order 2n+2 and maximum

degree at least n+1,

A corollary to Theorem 6.1 is therefore:

degree Zn_gi 2n-1.

In order to see that there must be some bound on the value of r in
Conjecture 6.1, let G be the even order critical graph discovered by.
Gol'dberg. Then |V(G)[=22, A(G) = 3,|E(G)|= 31 and r = 18. Then the

inequality in Conjecture 6.1 would give

B > 5 - m = 3D - 18.10 = 30,
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But in Gol'dberg's graph, |[E(Gw)| is 29 for a vertex v of
minimum degree and hence would be a counterexample for a large

value of r.

53.
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7. Chromatic class of graphs with a given order and at most & vertices

of maximum deégree.

In this chapter and the next we investigate' the chromatic class of
graphs when the number of ﬁertices of maximum degréee is fixed; If a
graph G has just one or two ﬁertices of maximum degree, then only a slight
development of the proof of Vizing's theorem is needed to show that G is
Class 1. However, if G has three vertices of maximum degree all joined
to each other, then the proof bf.Vizing's theorem does not seem to lend
itself to be a&apted to prove some analagous result. The key step which

inspired the next three chapters was the proof of the following proposition.

Proposition. Let G be a connected graph with three vertices of maximum

degree. Then

G is Class 2

if and only if

for some n, G is obtained from K2n+1'bY'removing n—-1 independent edges.

In this chapter we develop this theme for graphs with up to four

vertices of maximum degree.

We have the following result for graphs of even order.

maximum

Theorem 7.1 Let G be a graph of order 2n with r vertices of

~ degree. If 1 £ r £ 4 then G is not critical.

We conjecture the following:

Conjecture 7.1. Theorem 7.1 1is true for 1 < r < n.

Our proof of Theorem 7.1 is rather long and complicated. We suspect
that a similar proof would work to prove Conjecture 7.1 when r = 5, but

would fail when r > 6. However, we were deterred by the amount of work
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involved.

We also have a corresponding result for graphs of odd order.

" Theorem 7.2. Let G be a graph of order 2n+1 with r vertices of maximum

(1) G is critical,
(i1) |E@]| = nA+1,

(iii) G is (r-2)-edge connected and Class 2.

Conjecture 7.2. :Let G be a graph of order 2n+1 with r vertices of

(i) G is critieal,

(ii) |E(@G)| = nA+1, - .

(iii) G is (r-2)-edge-connected and Class 2, and |E(G)| < nA+1.

In this case, our éroof of Theorem 7.2 will not extend to giﬁe_a proof
of Conjecture 7.2 when r = 5. The reason is that in the cése when r. = 4,
one can deduce from Lemma 7.2 that A(G) >f%1V(G)J, and the number %JV(G)]
is compatible with the applications we have to make of Dirac's theorem
(Lemma 7.5). However in the case ﬁhen r = 5, 6ﬁe can only déduce from
Lemma 7.2 that A(G) >-%JV(G)[. . (In the case of Conjecture 7.1 when
|v(@)| is even, it turns out that whén r = 5 the inequality'A(G) SH%EV(G)[

(actually A(G) >-%(|V(G)|-1)) can always be obtained from Lemma 7.3, as

the graph G of even order with r = 5 satisfies 6(G) < A(G)-2, so we can

L]

put s > 2 in that Lemma.)

The bound r < n+1 comes from the fact that if |E(G)| = nA+1 then the
edge-connectivity is at least 2n-r+2 (see Lemma 8.11), so if
2n-r+2 > r-2 then n+2 > r. We have to exclude r = n+2 since the critical

subgraph of the Petersen graph would give a counterexamplé;

A simple corollary to Theorem 7.2 is the following.
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Theorem 7.3. Let G be'an (r-2)=-edge=-connected graph. of order 2ﬁ+1‘§itﬁ r

vertices of ‘maximum degiee. 'If 1 < r < 4 then G is Class Z‘if:anci'oﬁiyi' if

|ECG)| > nA.

The following conjecture would follow from Conjecture 7.1 and 7.2.

and only if |E(G)| > nA.

A simple corollary to Theorems 7.1 and 7.2 is :

Theorem 7.4. Let G be an (r - 2) -edge-connected graph of order 2n

with r vertices of maximum degree. If 1 < r < 4, then G is Class 1.

The corresponding conjecture would be :

Conjecture 7.4. Let l“ﬁrr < n. Let G be an (r — 2) —edge-connected

graph of order 2n with r vertices of maximum degree A. ~ Then G is

Class 1.

Class 2 graphs with three vertices of maximﬁm degree are fully
described in the proposition. A similar description is possible for

Class 2 graphs with four vertices of maximum degree.

Theorem 7.5. Let G be a connected graph with four vertices of

Maximum degree. Then

G is Class 2

if and only if

G is one of the followiﬁg graphs, for some n,

(20-2)2873 (2n-1)"%, |

(1) @6

e

4

2n-4 (2m) %,

(ii) G z (2n-2) (2n-1)

R
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(iii) for some m < n, G has a bridge e; one component Cl of G\e

has maximum degree at most 2m—-1 and, in G, e is incident

with a vertex of degree in C, at most 2m—2; and the other

1

component C, satisfies

2
¢, = (2m-2) (2m=1) 2% (om)*
or

Cy 2 (om-1)2""2(om)3.

7.2. Some preliminary lémmas.

Before embarking on the proofs of these results, we need to .establish

a number of lemmas.

Lemma 7.1. Let G be a graph of order 2n+1 with r vérticeés o6f maximum

degree A and with |E(G)| = nA+1. Then A > 2n+3 - r.

Proof. A(G)n+1
= |E(G) |
<5 (xA(@ + Quri-r) (A(G)-1)}
= nA(G) + 5 (A(G) - 20-1+1),

so

2n~-r+3 < A(G).

Corollary 7.1. Under the ¢onditions of Léemma 7.1,

max (r,A(G)) > n+2.

Lemma 7.2. Let G bé a critical graph with ¥ vertices of maximum degree

A(G). Then

A(G) >3|—V§G—)[ .

‘Proof. By Lemma 2.2,each vertex is joined to at least two vertices of

degree A(G). Each vertex of maximum degree is joined to A{G) other

vertices. Therefore 2|V(G)| < A(G)r,»and the result follows.
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Lemma 7.3. 'Let r > s > 1. 'Let G'be a¢ritical graph. If G has r

vertices of maximum degree A(G) and at least oneé vertex of degree

A(G)-s, then

ACG) > 2|V]EG-)-1'S-‘—;S$'S-‘-1) )

Proof. The vertex of degree A(G)-s is adjacent to A(G)-s vertices, ‘each

of which is, by Lemma 2.1, adjacent to at least s+1 vertices of maximum

degree. The remaining |V(G)| - A(G)+s vertices are, by Lemma 2.2, adjacent

_to at least two vertices of maximum degree. Counting the edges incident

with vertices of maximum degree, we have
(s+1) (A(G)-s) + 2 (|V(G)| = A(G) + s) <t A(G)
from which the lemma follows.

The next lemma is an extension due to Berge [B3] of a well-known

theorem of Chvatal [£10].

Lemma 7.4. Let G be a simple graph of order n with degrees d1<ﬂf<"'<ﬂn'

the following condition holds:

d <k= d
n—

k-q > n~k+q

k

then, for each set F of independent édges with |F| = q; there exists a

Hamiltonian circuit containing F.

A special case of Lemma 7.4 which we shall make much use of is the

following result of Dirac [D2].

"Lemma 7.5. Let G be a simple graph. "If

§(G) > -%IV(G)I
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then G has a Hamiltonian e¢irceuit.

The next -lemma is a nice result of Jackson [ JI 1J.

Lemma 7.6. Every 2-connected, k-regular graph on at most 3k vertices is

Hamiltonian.

When r = 1 the next result is due to Plantholt [P1] and when r =2

it is proved in Theorem 5.1.

Lemma 7.7. Let 1 < r < 2. 'Let G be a graph of order 2n+1 with

A(G) = 2n+1-r and |E(G)| < (2n+1-r)n. 'Then G is Class 1.

The next result is due to Bollobds and Eldridge [B5].

4444444

degree §. Then G contains'at'léastvmb(n,ﬁ,A)'indepéndéntfédges, where,

min {|®/2],68} if §<A-2and n <A+ 3§,
-ﬁ] ' if §<A-2and n>A + 3§

S+A 1__ : and n s
[ ] if 6 = A § = A-1 odd

m (,6,0) = < [ZG+D if 6 = A even,or & = A-1 odd,

n 6+1 } )

2(5+1) if § = A-1 even,

%-n' if § = A odd and n = s+ 1.
9 . L. -

Finally when 6 = A odd and n > 8+1 there are integers u,k,r such that

0= u(er1) + (2k+1) (642) + rand 0 < 2k < 8, 1 <1 < 26 + 3

§g§_vmo(n,6,A) = %ﬁ{n - u(s-1)} - k.

7.3. Proof of the proposition.

Here we prove the proposition given in Section 7.1.
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Proof.

Sufficiency. If G has three vertices of degree,IV(G)l = 1 and the rest

have degree |V(G)| - 2, then it is easy to check that |V(G)| is odd and
lECG)| > ACG) lll(zGAJ .

Each colour class cannot contain more thanf[‘vgf) j edges. Thus more

than A(G) colours are needed to colour the edges of G, so G is Class 2.

Necessity. Suppose G has three vertices a, b, ¢ of maximum degree and is

Class 2; but suppose also that G.is not a graph with three vertices of
degree |V(G)| - 1 and |V(G)| - 3 vertices of degree [V(G)| - 2. We may

assume that |V(G)| > 4, as the necessity is clearly true if |V(G)| = 3..

Let G* be a critical subgraph of G with A(G) = A(G*).. By Lemma 2.5,
G* has at least three vertices of maximum degree, and, since A(G) = A(G¥*),

G* has the same three vertices a, b, ¢ of maximum degree.

By Lemma 2.6,G* contains |V(G*)| - 3 vertices of degree A(G*) - 1.

Therefore |V(G*)| is odd, say |V(G*)| = 2p + 1. vBy Lemma.2.2,§, b, ¢ are

all joined to each other in G*. By Lemma 7.2,

A(G#) >% |v(e#)|. 1)

If there is a vertex u in G which is not in G*, then u would not be
joined to any of a, b, ¢ (for otherwise G* would have to have fewer than
three vertices of maximum degree), but neither would u be joined to any
vertex of V(G)~a,b,c} (for otherwise, G* would have to have some
vertices of degree < A(G*) - 2). Thus there cannot be any such Qertex’

u. Therefore G = G%.

By the results of Chapter 3, the necessity is true for p < 4.

Therefore suppose that p > 5.
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Since G = G*, |V(G)| = 2p + 1 and A(G) < 2p - 1 = |V(G)| - 2. There-
fore there is a vertex d not joined to a. Consider the graph'G\{é,b}.

For p > 5, .using (1),
§(6~a, bh > A(G) ~ 3

>[£9_+£] -3

3
>i(2 - 1)
= 2 V(CN{a, b} .

By Lemma 7.5,'G\{§,*b} has a Hamiltonian .circuit. Therefore G has a near
1-factor F which contains the edge ab but does not include an edge
incident with d. Therefore G~F has: 4 vertices, a, b, ¢, d of maximum

degree, joined as illustrated in Figure 7.1.

b

* Figure 7.1.

Since4dé\F(a) = 1 and A(G~(FUac)). = A(GNF), by Lemma 2.4, GNF is the
same Class as GN(FUac), which, by Lemma 2.5,is Class 1. Therefore G is
Class 1.

Since X - dv) = ZlE(G)J, it is not possible for a graph of even

vEV(G) « .
order to have 3 vertices. of degree A, and the remaining vertices to have

degree A-1. Therefore |V(G)| is odd.

This proves the proposition.
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7.4 Proof of Theorem 7.1.

Case 1. 1 <r < 2. By Lemma 2.5, if G has 1 .or 2 vertices of maximum

degree, then G is Class 1. This proves the lemma in this case.

Case 2. t = 3. It follows immediately from the proposition that if

|v(G)| is even, then G is Class 1. This proves the lemma in this case.

Case 3. r = 4. It follows from Beineke and Fiorini [BI] that this

lemma is true when n < 5. So we shall assume that n > 6.
Suppose that G is a critical graph. By Lemma 2.6, §(G) = A(G)-2.

Thefefore, for some integer x,

G = (a-2)* (a-1

>IV(G)| -x -4 A4

By Lemma 7.3,

A(G) >

and by Lemma 7.2,
A(G) > %lv(e)l.

Let the four vertices of maximum degree be a, b, ¢, d. We may
assume that d*(a) < d*(v) for v €'{é,b,g,d}. By Lemma 2.2, d*(a) > 2.

We may assume that ab€ E(G). We consider various cases.

"Case 3i. max o dx(v). = 2.

vela,b,c,d}
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Case 3i a. x> 1. Let d(z) = A(G) - 2. By Lemma 2.2,..d*(z) > 2, so
z is adjacent to at least two of {a,b,g,d}; without loss of generality, .
assume that zc € E(G). Then, by Leimma 2.1, G is not critical unless

d*(c) > 3, a contradiction. Therefore Case 3ia does not arise.

Case 31 b. x=0.

Case 3i b1. A(G) > n + 2.Gonsider the graph GNMa,b}. We have -

S(G\{a,b})>-A(G) -3 and‘[V(G\{é,B})[ = 2n-2. Therefore by Lemma 7.5,
G~a,b} contains a Hamiltonian cycle - and hence G has a 1-factor F
including the edge ab. The graph G~F has 4 Qertices a,b,c,d of

maximum degree and dé\F(a) = 1. We may assume that a is joined to c.
Then, by Lemma 2.4, GNF and'G\(FUac).have the same Class. But G~N(FUac)
has just two vertices of maximum degrée and so, by.Lemma 2.5, is Class 1.

Working back it follows that G is Class 1.

Case 3i b2. A(G) = n+1. In this case, G = ﬁzn—4(h+1)4, Since -

8(G) =n = %-[V(G)I, it follows by Lemma 7.5 that G has a Hamiltonian
cycle H. If H includes at least one edge between two vertices of degree
n+1 (a,b say), then we can take alternate edges of H including ab to

be our 1-factor F, and argue asbin Case 3iib1.‘0thérwise H does not include
any edge between two vertices of degree n+i. Then, on the cycle H, each
of {a,b,c,d} must have two adjacent vertices, neither of which is in
'{a,b,c,d}f Since the number of vertices is odd, there must be at least
five vertices of less than maximum degree joined by edges of H to vertices
of {a,b,c,d}. Since there are at most four vertices joined in G to more
than two vertices of maximum degree, it is possible to form a 1-factor F
by picking alternate edges of H so that F has at leést one edge which
joins a vertex v with d*(v) = 2 to a vertex of maximum degree. Hence in
GNF, v is joined to only one vertex of maximum degree, so (G\F)\{Q} has

3 vertices of maximum degree not all joined to each other and so, by the

proposition , (GNF)N{v} is Class.1.and ‘hence G is Class 1.
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Case 3tb3. A(G) =n. In this case, G = _(n-.1)-2n'—4‘h4

. . Therefore there
are 4n-8 edges joiningf{ﬁ,b,c,&}.to the rest. of the.graph;"Since G is
critical, every Qertex‘is joined to at least two vertices of maximum
degree; in this case, every ?ertextis joined to exactly two of maximum -
degree. Therefore'G\{é,b,c,d}jis a .regular graph of degree n;3;fWe can
see that eiﬁhét ;his giapﬁ iEIZ—ééﬁﬁécféd 6f itﬁié tﬁévéopies of.ﬁh_z.

If 6Na,b,c,d} is two copies of R _ and n is even then GNa;b,c,d}

2
has a 1-factor, and so G contains a 1-factor F includiﬁg ab. The argument
then proceeds as in Casé 3ib1. If n is odd then it is possible to -find |
two adjacent vertices of maximum degrée, say‘a;b,.such that'G\{a,b}

has a 1-factor. Then let F consist of ab and thisk1—factor, and argue

as in Case 3ib1. Otherwise G\{a;b,c,d} is 2-connected and so, by Lemma
7.6, if 3(n—3) 2 2n—-4, then there exists a Hamiltonian cycle in

GN{a,b,c,d} and hence a 1-factor F in G containing ab, and we proceed

as in Case 3ib1. But this inequality is satisfied since n 2 6.
Case 3ib4. A(G)<n. By Lemma 7.2 this case does not arise.

“Case 3ii. d*(a) = 2 and max d*(v) = 3.
v€{a,b,c,d}

Case 3ii a. x 2 1.

Case 3ii al. Az2n+2. Consider the graph GMa,b}. By Lemma 2.1, a
vertex v of degree A-2 in G is only joined in G to vertices w such

that d*G(W) 2z A-(A-2)+1 = 3. Therefore no vertex joined to a has

degree A-2. Therefore §(GNMa,b}) 2 A-3 2 (n+2)-3 = n-1 =-%IV(G‘{ a,bH|,

so by Lemma 7.5, G contains a 1-factor F including ab.
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Then GNF has the same four vertices of maximum degree and d*G\F(a) = 1;
we may assume that a is joined to c. Then, by Lemma 2.4, GNF and GN(FUac)
have the same Class. But G~(FUac) has just two vertices of maximum degree,

so, by Lemma 2.5, is Class 1. Working back, it follows that G is Class 1.

2 (2n-1)-

‘Case 3ii a2. A <n+l. By Lemma 7.3, n + 1 > A >——"——= | Therefore

3

n < 5. But this contradicts our assumption that n > 6.  Therefore this

case does not arise.

- Case 3ii b. x = 0.

Case 3ii b1. A > n+2.. In this case, since x = O;.G(G\{é,b})>-A+3...The

argument now proceeds as in Case 3ii aft.:

Case 3ii b2. A(G) = n+1. There are 4n-6 edges frpmﬂ{é,b,c,d} to
¢{a,b,c,d}. It follows that the degree sequence of G\{é,b,c,d}‘is
either (n-4, n-2, n-2, ..., n-2) or (nFS, n-3, n—2,A...,'n-2),'.Sinéek
]V(G\{a,b,c,&}){ = 2n-4, it follows from Lemma 7.4 théth\{é,b,c,d} has
a Hamiltopian cycle. Therefore G has a 1-factor F which contains the -
edges ab and cd. Then, in G\F, d*(a) = 1 and hence (GNF)~a and GNF
have the same Class, by Lemma 2.4. But (GNF)~Na has only 2 vertices of

maximum degree‘and so, bermmaZﬁ;is Class 1. Hence G is Class 1.

Case 3ii b3. A(G) < n. Since each vertex is joined to at least two of
{a,b,c,d},bby counting the edges between’{é,b,c,d}Aand V(G)\{g,b,c,d};
it follows that

2(2n-4) < 2(2-2) + 2(4-3),
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and son + 1 < A. Therefore this case does not arise.

‘Case 3iii a2. A < n+2. By Lemma 7.3,

4n-2

3 < A < n+2..

It follows that n < 8. If n = 8 then A = 10, if n = 7 then A = 9, and
if n = 6 then A = 8. In these cases we show that G has a 1-factor
including the edge:ad; it then follows .as in the previous case that G

is Class 1.

We use Lemma 7.4 to show that GNa has a Hamiltonian cycle. We then
take ad and alternate edges of the cycle aﬁoiding d to be the 1-factor.
In G there are n-1 edges joining a to vertices of V(GT\{é,b,c;&}; Since
8(G) = n there are at most n—1 vertices of degree n-1 in Ga. Let
d1 < d2 < oee < d2n—1 be fhe degree séquence'bf'G\a. Therefore if

d < n-1 then d > n, and so,by Lemma 7.4, G~a has a Hamiltonian
n—1 n i h

cycle,as required.

Case 3iii b. x = 0.

‘Case 3iii b1. A(G) > n+3. Consider the graph G\{a,b,c,d}{' We have

§(G~a,b,c,d} > A(G) - 5 and [V(6{a,b,c,d})|=2n-4. If A(G)-5 > n-2

then §(GN{a,b,c,d}) 5-% |v(e~a,b,e,dD) |, s0 by Lemma 7.5, G\{a,b,¢,d}
contains a Hamiltonian cycle. Therefore G contains two 1-factors, F1 and
includes  the edges

F2, such that F, includes the edges ac and bd, and F

1 2
ad and bc. The graph G\(E1U F2) has four vertices, a,b,c,d, of maximum
degree and d*(v) = 1 for each of them. By Lemma 2.4, G\(F1 u Fz) and

(G\a)\(F1 U Fz) have the same Class; but the latter graph has only two

vertices of maximum degree, so, by Lemma 2.5, is Class 1. Therefore G is

Class 1.

Case 3iii b2. A(G) = n+2. In this case, we again consider the graph

G\{a,b,c,d}; The number of edges joining'{a,b,c;d}to the rest of G is
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1 2 2n-4

then we have d

4n-4, Ifd <d,<...<d is the degree sequence of G\{ﬁ,b,c,d},
5 = n-1 and, since n > 6,it then follows from Lemma 7.4 |
that G\{é,b,p,d}rhas a Hamiltonian circuit. Then the argument of Case

3iii b1 applies to show that G is Class 1.

"Case 31ii b3. A(G) = n+1. The number of edges joining'{a,b,g,d}.to

e~{a,b,c,d} is 4n-8. Since IV(G\{é,b,c,ﬂ})l = 2n-4, it follows by -
Lemma 2.2 that d%(v) = 2 for v € V(G\{a,b,c,d}), and so’G\{a,b,c,d}'is
regular of degree n-2. By Lemma 7.5,G\{a,b,c,&}.has a'Hami1tonian'

cycle. Therefore G contains two edge-disjoint 1-factors, F, and FZ’ where

1

F, contains ab and cd, and F, contains ad and bc. 'Then'G\(F1'U FZ) has

1 2
four vertices, a,b,c,d, of makimum‘degree,;but‘each»is adjacent to only
one of the others. By Lemma 2.4,“(G\a)\(F1 U F.Z')_and'G\(F1 U Fz) have

the same Class. But (G\a)ﬁ(F1,U Fz) has only two vertices .of maximum

degree, so by Lemma 2.5, is Class 1. Therefore G .is Class. 1.
This completes the proof of Theorem 7.1.

7.5. "Proof of Theorem 7.2.

‘Case 1. 1<r<2. By Lemma 2.5, if G has 1 or 2 vertices of maximum
degree, then G is Class 1. In this case the condition that if G is
(r-2)-edge-connected is vécuous.nTheorem 7.2 follows if we show that

|EG)| < n A(G) + 1. But this follows from Lemma 7.1, since A(G) < 2n.

Case 2. r = 3. We first prove that (iii) = (ii). If G is Class 2,

then, by the proposition, G has three vertices of degree |V(G)| - 1

and the remainder have degree |V(G)| - 2. Therefore

lE(e)l -%-(3.2:1 + (2n-2) (2n-1))

2n2+1

nA(G) + 1.
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This proves that (iii) = (ii).

To prove that (ii) » (iii), suppose that (ii) is true. Then by
Lemma 2;?36 is Class 2. By Lemma 7.}, A(G) = 2n; consequently

G is connected for all n 2 1. This-pfoves that (ii) = (iii).

To see that (i) = . (iii) it is clear that if G is critical, then

G is Class 2 and connected. By Lemma 2.7, |E(G)| < nA+1.

To prove that (iii) % (i), suppose that G satisfies (iii). Let
G* be a critical subgraph of G with the same’maximum'degree. Then, by
the proposition, G has A(G). = |V(G)| - 1 and G* hés A(G¥) = |[viex)| - 1.
Therefore V(G) = V(G*); Since (iii) ® (ii) we have |E(G*)| = n A(G¥) + 1

=n AG) + 1 = |ECG)|. Therefore G =.G*, so.(i) .is true.
This proves Theorem 7.2 in this case.

Case 3. r = 4., It follows from the results .of Chapter 3 that this .is

true for n < 4. We shall therefore suppose that n > 5.

Suppose that G is a critical graph and that [J}Q§2l1'= n,"Wé shall

show that (ii) is satisfied. Suppose that. (ii) is not satisfied. Then
|E@G)| < n A(G).

If |V(G)| = 2n+1 and A(G) = 2n or 2n-1, then the assumption that
|E(G)| < n A(G) means that the hypothesis of Lemma 7.7 is satisfied.
Therefore G is Class 1. From now on we shall suppose that A(G) £ 2n-2.
'ﬁy Lemma 2.6, 8(G) > A(G) - 2; Therefore, for some integer X,

¢ = (A-2)F (o) V@ = x =4 44
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By Lemma 7.3,

A(G) > if x # 0,

2(lv@] = 1)
3
and by Lemma 7.2,

AG) > % V(@) ].

Let the four vertices of maximum degree be a, b, c, d. We may assume
that d*(a) < .d*(v) for v E'{é,b,c,d}{v'By Lemma 2.2, d#(a) > 2. We
may assume. that ab € E(G). We consider various cases.

Case 31i. ﬁax d* (v) = 2.
v€{a,b,c,d} .

Case 3i. a. x 2 1. [Let d(z) =A(G) - 2. By Lemma 2.2, d*(z) z 2,

so z° is adjacent to at least two of {a,b,c,d}; without loss of
generality, assume that zc € E(G). ' Then by‘Leﬁﬁav2.1, G is not
critical unless d*(c) = A(G) - d(z) + 1 = 3, a contradiction. -

Therefore Casg 3ia.does not arise.

Case 3i b. x = 0.

Case 3i b1. A > n+3. Let v be a vertex not joined to a with d(v) = A(G)-1.
If we can find a near 1¥factor F of G which contains the edge ab but does
not includg any edge incident with v, then GNF will have 5 vertices

a,b,c,d and v of maximum degree, and d*G\F(a) = 1. Then, by Lemmg 2.4,

G\f and (GNF)~a} have the same Class. Then we may assume that a is joined
to;'c' in G. Then (GNF)~a} has 3 vertices, b,d,v, of maximum degree

A(G) - 1, (A(G) — 2) vertices of minimum degree A(G) - 3 and 2n - 1 - A(G)
vertices of degree A - 2. By the proposition, (GNF)~a} could only be
Class 2 if there were A(G) - 3 vertices of degree A(G) - 2 in one

component of (G\F)\{é},'so that 2n-1 - A(G) > A(G) - 3; i.e. A(G) < n+1.
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Therefore provided A(G) > n+2, then (6~F)~{a} is Class 1 and so G is

Claés 1.

Now consider G\{a,b}:1 We ‘have G(G\{ﬁ,B})'>-A(G) - 3 and
|v(e~a,b})| = 2n-1. By Lemma 7.5, if A(G) - 3 >=-;- (2n-1)- then
there is a Hamiltonian cycle in’G\{é,B},énd hence a suitable F.

The inequality is true provided A(G) > n + 2§;.

Case 3i b2. A(G) =n + 2. Then G = (ﬁ+1)2n;3 (n+2)4; Let v be

a vertek which is joined to.onefoff{é,ﬁ,c,d}; say b, and not

joined to another, say a. ZThen'G\{Q} has 2n vertices. Their degrees
are n, n+1 and ﬁ+2, and at most n—1 of them have degree n. Therefore
if d1 < d2 <...< d2n is the degree sequence of G\{AVA},’ then di >n
(1<i<n-1) and di >n+1 (n < i< 2n). Using Lemma 7Llf" it follows

that GN{v}, has a 1-factor F which includes ab. Therefore, as described

in Case 3i b1, G is Class 1.

Case 31 b3. A(G) = n+1. G has at most two vertices v such that

d*(v) > 3. Hence G\{a,b,c,d} has either

o
]

(n-3, n-3, n-2, ..., n-2)

Il

or . - B = (n~4, n-2, n-2, ..., n-2)

as its degree sequence.

If the degree sequence is A,we can use Lemma 7.8 to show that
there is a near 1-factor in G\{a,b,p,d}. Therefore G contains a
near 1-factor which contains the edge ab,and it follows as in Case

3i b1 that G is Class 1.

If the degree sequence is B, we consider the graph G\{a,b,c,d;q},

where v, is the vertex of degree n-4. It follows from Lemma 7.8 that

this graph has a 1-factor F. Since n > 5 there is a vertex r in

V(G\{é,b,c,d,vk}) which is joined to vy Let rs € F'. We may suppose
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that sa ¢ E(G). Let F¥* = (F'{rs}) U {r'v'1} U {ab} U {cd}. The graph

G\F*<a)= 1, and 8o,

by Lemma 2.4, GNF* and (G~F#)~{ac} have the same Class. [Here we

G~F*  has five vertices of maximum degree, but d¥

assume that ac € E(G)]. But similarly, (G~F%)~ac} and (G\F*)\K{éc};{dé})

have the same Class; however this latter graph has only two vertices

of maximum degree, and so, by Lemma 2.5, is Class 1. .Wbrkingvback,'

it follows that G is Class 1.

‘Case 3ii. d*(a) = 2 and max d*(v) = 3.

vE{a,b,c,d}

Case 3ii a. x> 1.

Case 3ii al. n > 6. Let v, be a vertex of degree A(G) - 2 (v1 exists,

since x > 1).

Consider the graph GNa,b}. By Lemma 2.1, a vertex v of degree
A-2 in G is only joined in G tq vertices w such that’d*G(w) >;A-(A—Z)+1 = 3.
Therefore.no vertex joined to a has degree.A-Z. Therefore §(G~{a,b} > A-3.
Also |V(GMa,b})| = 2n-1. .Since |[V(G)| is odd and x 2 1, then, by

Lemma 7.3,

2@ > [z(lv(cgl - 1)1

and it is easy to verify that A(G) - 3z n, since n 26..
Therefore 6(GN{a,bh 2 - 4|v(G)~a,b}|, so. Ga,b}. contains a
Hamiltonian -cycle. Then G contains a near 1-factor F including

ab, but including'no edge incident with v,

Then GNF has the same four vertices of maximum degree'and.d#G\F(a)=1;
we may assume that a is joined to c. Then, By Lemma 2{4, G~F and
G~ (F U ac) have the same Class. But GN(F U ac) has just two vertices

of maximum degree, so, by Lemma 2.5, is Class 1. Working back, it
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follows that G is Class 1.

Case 3ii a2. n =5 or 6. We shall show that G\{_é,b} ‘has a Hamiltonian
cycle. It then follows by the .argument used in Case 3ii al that G is

Class 1.

If v is a vertex such that . dG(V)=A(G)f‘2 and if w . is adjacent

to v in G, then, by Lemma 2.1, d*,(w) > A(6)—d (v)+1=A=(-2)+1=3.

»FoAr any vegttex v nisuch that "dG\‘{a;b}(v?=A(‘G)'—3,. it follows that

’dG(v)’=A(G)—1 or A(G)-2; if dG(v)=A(G)'-—1 then v is

joined in G to a and b, and so, in particular, is joined to b; and

if dG(\?).=A(G)%2‘ _ then v is joined in G either to.a or to b; but v

cannot be joined to a since. d*(a)=2; therefoxe.ﬁwis joined to b.
Thus, to sutmnarizg,- if 'dG'\{a:,i)}'G’)' =A'((‘%)+3, "~ then v is joined to b.
Therefore there are at most A(G)-3 vertices of degree A-37 in
ENPRSN |

Consider _tﬁe case when n = 5. By Lemma 7.3, A(G) >[%~l =,_7_,‘ and , .
as in Case 3ii af, 5((;‘#{4,5})' > A(G)-3. - If A(G) > 8, then
§(G~a,b} > 5, so G(G\{a,B})}Z 4}|V(G\{a,b})|, and so, by Lemma 7.5,
GMa,b} has a Hamiltonian cycle. If .A(G)=7. then §(G~{a,b} > 4. But,
as shown above, there are at most 'A-3=4 vertices of degree 4; V
§< e < d9 is the degree»Sequence of G\{a;b}, then

d5 > 5, and #t' follows from Lemma 7.4 that GN{a,b} has a Hamiltonian

cycle.

NOW'considerthecase when n = 6. Then A(G) > 8 and §(G~{a,b}
> A(G)-3. If A(G)=9 then 8(G~{a,b}) > 6 and so §(G~a,b})
> }|v(6cMa,b})|, and so G has a Hamiltonian cycle. If A(G)=8 then
§(6~a,b}) > 5. But there are at most 5 vertices in GN{a,b} of degree
5. Therefore, if d, < ... < d_ , is the degree sequence of G\{é,B};

1 11
then d6 > 6, and it follows from Lemma 7.4 that G has a Hamiltonian cycle.
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Case 31ii b. x = 0.

Case 3ii b1. '~ A(G)zn+3. We show that if G contains a near 1-factor
F such that ab is in F and no edgebincident with w, where w is a ﬁerfex
of degree A—1 - ‘mot adjacent to a, is in F, thenG is Class 1. There

is a suitable vertex w since d(a) = A < 2n-2.. The graph G~F has five
vertices a,b,c;d and w, of maximum degree, but d*(a)=1 so, by -

Lemma 2.4, G~NF and (GNF)Nal have the same Class. The graph (G\E)Na}
has three vertices of maximum degree A(G)-1. Since §((GNF)Nal}) > n,
it follows that(GNF)i{a}iiscnnnectéd.Thereforg, by the proposition,
(G\F)\{a}-is Cléss 1, since it has even order. Working back, it follows

that G is Class 1.

We now use Dirac's condition (Lemma‘7;5) to show that' F exists.
The .graph G~{a,b} has miﬁimum degreé. A(G)-3 and has ZA;i vertices.
Sincé “A(G) z n+3, AG)-3 zan = (3‘1211-] ='{%ly(@{g,b.}j[-].
Therefore G\{a,B}‘has a Hamiltonian. cycle, - and consequentiy G has a

suitable near 1-factor F.

Case 3ii b2. A(G)=n+2. The graph G\{a,B}'has at most n—-1 vertices

of degree n—1 and no vertices of lower degree. Lemma 7.4 applies and

. shows that G~{a,b} has a Hamiltonian cycle. The remainder of the

argument is the same as in the case immediately above.

Case 3ii b3. A(G)=n+1. . The vertices of degree A-1 are all joined
to exactly two verticés of degree A. Hence G\{é,b,c,d} has 2n-3
vertices and is regular of degree n-2. This graph is 2-connected and
hence by Jackson's theorem (Lemma 7.6), since 3(n-2) > 2n-3 (as n > 3),
GMa,b,c,d} has a Hamiltonian cycle. We take alternate edges of this
cycle avoiding a vertex w not joined to a. Clearly w exists since
d(a).sn+1.. We take two more edges (here we assume a is joined to c as’’
wéll as to b): either ab, cd, if w is not joined to b,

or ac, bd, if w is joined to b.
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Then in .either case -d#(a)=1  and so, by Lemma 2.3,

" either GN(FUac) . has the same Class .as GNF

or G\((i.'Uab) " has the same Class as' G\F.

In either case we have at most 3 vertices of maximum degrée not all
joined to each other and so, by the proposition, we have a Class 1 graph.

Hence, working back,G is Class 1. -

‘Case 3ii b4. A(G) <n. _Siﬁce-each vertex .is joined to .at least. two of

{a,b,c,d},‘by counting the edges.between“{é,b,g,d} and V(G)\{é,b,c,d};vit
follows that
2(2n-3) < 2(a-2) + 2(A-3)

so that mn+12A. Therefore this case does not arise.’

Case 3iii. d*(a) = 3.

Case 3iili a. x> 1.

Case 3iii al.A(G) > n+4. Let v be a vertex of degree A(G)-2 and

suppose that v is joined to a and d. Let w be -a vertex not joingd'to
a. If we can find a near 1-factor F which includes the edge ad but.
does not include any edge incident with w, then it follows that G is

Class 1; the ergument to show this is as follows:

.In the graph G~NF there are ét most five Vertices, a,b,c,d,w, of
maximum degree A(G)-1. Clearly,.d*GKF(a)=2 (a is now not joined to
w or d) and dG\F(v)=A(G)43. Let H.be a critical subgraph of G\F
with the same maXimum.degree A(G)-1.. It follows that, if a€v(H)
then d*Hégész, and if vEV(H) then 4 (v)EA(G)-3.. But, if B

va€E(H) then, by Lemma 2.1, d%H(é);A(H)-dH(§)+1g(A(G)-1)-(A(é)—3)+1=3.
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Therefore va¢E(H). Therefore ‘'(GNF) and GN(FU{a}) have the sameé.’

. Class. -

In the graph G\(Fb{va}) there are at most four vertices b,c,d,w,
1 ‘ % . - = - . K
of maximum degree. Clearly d G\(Fu{va})(d)'s and dG\(FU{va})(v)
= A(G)-4. It follows that if d€EV(H) " then d* (d)s3  and if vEV(H)
then dH(V)éA(G)-4- . But, if vdcE(H), then, by Lemma 2.1,
d*H(d)zA(H)-dH(V)+1g(A(G)41)+(A(G)—‘4)+1=4. Therefore vd¢E(H).

Therefore GN(FU{va}l) and G~(FU{va,vd}).have the same Class.

The graph G\ (Fu{va,vd}) has three vertices of maximum dégree;
all vertices except v have degree aﬁ‘least A(G)-32n+3-3=n,
sossince n = 5, G\(FU{va,vd}) is conﬁected. ‘However, in this graph,
the degree of v is thfee less than the maximum degreé, 55; by the

proposition,kG\(FU{va,Vd});is Class 1. .Therefore G is Class 1.

Since A(G)zn+4, - it follows that G(G\{gd})z n =j[%1V(G\{a,d})|];

so, by Lemma 7.5, G\{a,d} has a Hamiltonian cycle, and, consequently, G

‘'has a near l-factor containing ab, but containing no vertex incident

with w.

Case 3iii a2. A(G)=n+3. Suppose first that there are two vertices

v,w both of degree A(G)-2 and that two of {a,b,c,d}, say a and d,

are joined to both v and w. Let.dl}s d2 < ... %< dZn be the degree
sequence of G\{v}. Since ﬁ is joined to at most n-1 vertices of
degree n+1, it follows that .dn2n+1. One may easily verify that
therefore G\{v} satisfies the conditions of Lemma 7.4 for the existence
of a Hamiltonian cycle containing a specified edge. Let F be a I-factor

of G\{v} containing the edge ad obtained by deleting alternate edges of

a Hamiltonian cycle containing ad.
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Let H be a critical subgraph of G\F with the same maximum degree

A(G)-1. If awe E(H) then it would follow from Lemma 2.1 that

ax,(a)z (H)—-dH<w>+1z'<A(c>—1)—(A(c>—3>'+1=3.

However this is impossible since d#* (a) = 2. Therefore awé E(H).

G\-F1

Similarly dwé E(H). Consequently H has at most two wvertices, b,c,
of maximum degree; however, it then follows by Lemma 2.5 that H is

Class 1. Therefore G\F is Class 1, and so G is Class 1.

If there do not exist two such vertices, then we can use the
argument of Case 3iii al. By Lemma 7.4, G\{a,d} has a Hamiltonian
cycle, since, if d1 < ... < d2n—1 is the degree sequence of c\{a,d},

then d, 2 n and so d_ 2 n. . _
2 n N

Case 3iii a3. A(G) < n + 2. By Lemma 7.3,

-4n '
—3—f5A5n+2,

and this implies that m < 6.. There are only two possibilities to
consider: n=6and A=8; n=5and A =7. We shall show that in

neither case does a critical graph exist. .

Consider first the case when n = 6 and A(G) = 8. Supposé a
critical graph G exists. A vertex of degree 6=A-2 is joined to
either all four of {a,b,c,d} and to two other vertices, or to at least
three other vertices. As explained in Case 3ii al of the proof of
Theorem 7.1 in Section 7.4, there are at least three edges joining any
vertex adjacent to a vertex of degree -2 to {a,b,c,d}, and so, in
both of ‘the-above cases, there are three vertices other than {a,b,c,d}
each joined to at least three of’{a,b,c,&}. The .remaining six
vertices of V(G)\{a,b,c,d} are, by Lemma 2.2, joined'to at . least two

of'{a,b,c,d}. Therefore there are at .least 3.3 + 6.2 = 21 edges from
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V(6)\{a,b,c,d} to {a,b,c,d}. . However, since each of {a,b,c,d} has
‘degree 8, from each of {a,b,c,d} there are five edges'tO'V(G)\{a,b,c,a}b
and thus 20 such edges in all, a contradiction. Therefore there is no

such critical graph.

The argument in the case when n = 5 and A = 7 is similar, but
slightly‘more involved. If a vertex of degree 5 is joined to all four
of {a,b,c,d}, then there are ét least 5,2+3+4=17 edges from
v(G)\{a,b,c,d} to {a,b,c,d}. If there are three edges from the vertex
‘of degree 5 to {a,b,c,d}, then there are also three such edges from at -
least two other vertices of V(G)\{a,b,c;d}; if there are only two'edges'
from the vertex of degree 5 to {a,b,c,d}, then'fhere are three vertices
of V(G)\{a,b,c,d},'each,héving at least three such edges on them.

There are therefore altogether at least 4.2 + 3.3 = 17,f;éain; such

edges. However, by the other argument, there are only 16 such edges,

a contradiction.
Case 3iii b. x = 0.

case 3iii b1. 8@ > V@I g a@zarh. . since A(@sm-2
there are two verticés, say vl‘and vz, which are both non—adjacent to a.

‘We can assume v, is adjacentito d.

1

Consider the graph G\{a,b,d,vl}. We have'G(G\{a,b,d,vi}-aA(G)—S

and |V(G\{a,b,d,v,})|=20-3.  Since A(G) -52n-1 we have’

§(G\{a,b,d,v,}) 2 5|V(G\{a,b,d,v]})[, so, by Lemma 7.5 G\{a,b,d,v }
contains a Hamiltonian cycle. Therefore G contains a near 1-factor

F. containing the edges ab and dv

i ],.but containing no edge incident

w1th.v2.
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The graph G\Fl contains five .vertices a,b,c;d;VZ; of maximum
degree A(G)-1. Now consider'the graph (G\{a;d})\F].. We héVe '
a((c\{a,a})\Fl);A(G)—a  and v((c\{a;a})\Fl)=2ne1. L, If
A(G)-42n then §((G\{a,d}\F,) é%lV((a'\{a,A})\F,)l so, by Lemma
7.5, (G\{a,dH)\ F, contains a Hamiltonian circuit. Therefore G\F]
contains a near l-factor Fz'containing ad but containing no edge
incident with vy

The graph G\SFIUFZ)' has six vertices, a,b,c,d,v,57,, of
maximum degree A(G)-2, and of these ¢ is. the only onebadjacent to a.
By Lemma 2.4, G\<F1UFé);. and (G\a)\(FIUFZ) havé the same Class.

Now (G\a)\(F1UF2)-- has four vertices, b,d,vl,v of maximum degree

2
A(G)-2 and d is non—-adjacent to Vs it has A(G)-3  vertices of
degree A(G)~4  and therefore 2n-(A(G)-3)=2n-A(G)+3

vertices of degree at least A(G)-3.

If the graph <G\a)\(F1UF2) is Class 2, then it contains a
critical subgraph G* with the same maximum degree A(G)-2. By
Theorem7.1, |[V(G*)| is not even. Let [vie*)| = 2n*+1>for some
n* £ n. Let G* have r* vertices of maximum degree. Then r* < r = 4,
and, by Lemma 2;5,‘3 < r%, If r = 3 then, by the proposition, G* has
A(G*)+1. vertices of degree at least A(G*)—1, so (G\a)\(FlUFz)
has at least A(G)-1 vertices of degreé at least A(G)-3, Since

the implication (i) (ii) . has been established when r* = 4 in

Cases 3i and 3ii, it follows that, if r* = 4, then IE(G*)[;n*A(G)+1,

and so, by LemmaA2.7; |E(G*) [=n*A(G*)+1. . If r = 4, then it follows
that either G* has four vertices of degree 2n*-1 (=A(G)-2) and the
rest (A(G) — Y§) have degree 2n*-2 (=A(G)-3) so that (G\a)\(FIUFZ)

has at.least A(G) vertices of degree 2= A(G) -3, or G has four vertices

of degree 2n* (=0(G)-2),  one of degree 2n*-2 and the rest (A(G)=-6)
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have degree 2n*-1 (= A(G)-3), so that (G\a)\(FlUFz) has at .least

A(G)-2  vertices of .degree at.least A(G)-3.

Since (G\a)\(FlUFz) . has 2n-A(G)+3  vertices of degree at

least A(G)-3, it follows in the first and third cases that
A(G) =122n-A(G)+3,

so that ~n+22A, and in the middle case it follows similarly that
n+12A(G). . But in both cases this contradicts our assumption
here that A 2 n + 4. Therefore (G\a)\(FIUFZ) is Class 1. Working

back, it follows that G is Class 1.

Case 3iii b2. %IV(G_)I > A(G) = n+4. If d*(v)23 . for all - VEV(G), then,
counting edges, it is easy to see that A(G) 2 %-IV(G)|. Therefore, in
this case, there is a vertex, say Vi such that'd*(vl) = 2. Suppose

v‘ is non-adjacent to both a and d. Since A(G) < 2n-2, there is a

1,

vertex v, # v, which also is non-adjacent to a.

2 1

Consider the graph G\{a,b}. Wé'have §(G\{a,b} = A(G)-3 . and
|[v(G\{a,b}) | = 2n-1. | Since A(G)-3 2 h  we have §(G\{a,b} 2 %[V(G\{a,b})l,
so, by Lemma 7.5, G\{a,b} contains a Hamiltonian> cycle. Therefore
G contains a near l-factor F which contains the edge ab but contains no
edge incident with.vl.

The graph G\Fl contains five vertices, a,b,c,d,vl, of maximum degree
A(G)-1. . Now consider the graph (G\{a,d})\Fl. We have
6'((c'\{a,'d})\_Fl) 2 A(G)-4 - and {V((G'\{a,'d}))\_.F])l = 2n-1. Since A(G)-4
> n it follows that 6((6\{&,&})\F1) é %JV((G\{a,d})\FI) so, by .Lemma 7.5,
(G\{a,d})\F] contains a Hamiltonian cycle.. Therefore G\F] contains a

which contains the .edge ad, but contains no edge incident

-~

near l-factor F2
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with v,.

The graph G\<F1UF2), ‘has six vertices, a,b,c,d,vl,vz, of
maximum degree A(G)—2, . and of these c is the only one.adjacent to
a. The argument now proceeds exactly as in the previous case, and

it follows that G is Class 1.

Case 3iii b3. A(G)‘= n+3. As.in the previous case, we may take -vl

to be a vertex non-adjacent to -a and b, .and vz(%.vl) to be a vertex
non-adjacent to a. Again we show that G contains two edge-disjoint

near l-factors F. and Fz, where F. contains the edge ab but no edge

1 1

incident with v,> and F contains the edge ad but no edge incident

2
with Ve It then follows that G is Class 1. L

There are altogether 4n edges joining v(e)\{a,b,c,d} to {a,b,c,d}.
Of these, 2(2n-3)=4n-6  are accounted for by the fact that d*G(v) 22

for each' VE€V(G). Therefore

H

since (2n-3)-(6-2a)-a=2n+a-9, . where a < 3.

If there is no edge v in G\{a,b,c,d}, insert it to form a

Y1Y2
graph G*; otherwise let G* = G\{a,b,c,d}. Let.dr < d2 < ... £ d2n—3 be

the degree sequence of G\{a,b,c,d}. We shall apply Lemma 7.4 to show

that G* has a Hamiltonian cycle containing vlvz.

3 = n-2 then dn—l Zvn. If dn_3 > n=-2

then G* has such a Hamiltonian cycle. Suppose therefore that dn-3 = n-2.

In this case, this

follows if we show that if d__

Then n-3 < a <3, and son < 6. If n= 6 then the degree sequence is
- R a ,6-2a
(4,4,4,6,6,6,6,6,6), so d _ =n. Ifn =35 then G\{a,b,c,d} =3". 4

1
-51+a; so G\{a,b,c,d} has 1+2a .vertices of odd degree, which is

impossible. Therefore G* contains a Hamiltonian cycle COntaining'yY1v2;
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Therefore G contains the twaneaf 1-factors F] and F2 with the .desired

properties.

‘Case 3iii b4. A(G) = n+2.. There are 4(n-1) edges from VCG)\{a,b,c,d}

to'{a,b,c,d}. By Lemma 2.2,sin¢e.lV(G)\{a,b,c,d}[ = 2n-3, either (A)
there is one vertex LA V(G)\{a,b,c,&}‘suéh4that d*(wb) = 4 and

d*(v) = 2 for ve V(G)\{a,b,c,d,wg}, or (B) there are two'vertices'-w1

and v, such that d*(wl) = d*(wz) = 3 and d*(v) = 2 for ve V(G)\{a,b,c,d,wl;wé}.

Suppose that G\{a,b,c,d}contains a Hamiltonian cycle with two

consecutive vertices v, and v, with the properties that there is a vertex

. in {a,b,c,d} which is not adjacent to either of v, and Voo and that

d*(v]) = 2 and d*(vz) <-3; we may suppose that a is non-édjacent to both

v, and v,, and that d is non-adjacent to v.. Then G\{a,g,c,d} contains

1 1
two edge-disjoint near l—factors:Fl*'and Fz*; such»that Fl* has no edge
incident withAvlvand Fz* has no edge incident with Voo It follows'thaf
G has two edge-disjoint near 'l—factorstl and FZ’ where Fl =»F1*>U'{ab,cd}
and F2 = FZ* u {ad,bc}. The graph G\(FIUFZ)' -has six vertices,
a,b,c,d,vl,v2 of maximum degree, but of these ¢ is the only one adjaceﬁt
to a. Thefefore, by Lemma 2.4, G\{F]UFZ) .and (G\a)\gFlqu) have the
same Class. But'(G\a)\(FlUFz) has four vertices, b,d,vl,vzg of

maximum degree, and d and v, are non-adjacent.

We can now adapt the final part of the argument of Case 3iii bl
(when A(G)<n+3, that argument does not all apply as it stands). From

that argument it can be seen that two possibilities remain. One is that

‘(G\a)\(F]UFz) contains a critical subgraph G* of order n+! with three

vertices of maximum. degree n and n-2 vertices of degree n-1. The other
is that_(G\a)\(FIUFz) _contains ‘a critical subgraph G* of order n+l with
four .vertices of degree n, n—4 vertices of degree n-1, and one of

degree n-2.
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‘We know that (G\é)\(FIUEZ) ‘hasvfour.vertices[of.degree‘A(G)—z:n,
n-3 vertices of degree n—1 and n-l1 .vertices of degree n-2. However’ in
both cases it is easy to see that it is not possible to extend G* to a
graph with these parameters. Therefore (G\a)\(F]Ufz) ‘ié Clasé.l;

Working back it follows that G is Class 1.

We now show that there aiways is such a Hamiltonian cycle.” The
degree sequence of G\{a;b,c,di} is (n-3, n-1, n-1, ..., n=V) in Case A
and (n-2, n-2, n-1, n-1, ..., n-1) in Case B; IV(G\{a,b,c,d})[_= 2n-3.
By Lemma 7.4, in both éases, G\{a,b,c,d} has a Hamiltonian cyecle H with
a prescribed‘edge:vlvz.

InjCase A, H Will have the require& property unless the verticeé

going round H starting at w  are joined to those of‘{a,b,c,d} indicated:

- {0,8,7,8}, {o,8}, {v,6}, ..., {o,8}, {y,8};

" (here (a,B,Y,8) is some permutation of (a,b,c,d)).

The number of :times the pairs {a,8} and {y,8} occur in this list is n-1
(including each pair as a subset of'{a,B,Y,S}); The degree of-wb in
G\{a,b,c,d} is n-3, so there is one vertex, say w¥, joined to the pair
{0,B}, which is not joined to w_. There are only n-2 vertices other
than.w0 which are joined to the pair v,8, so w* must be joined to a
vertex w##% # LA which is also joined to a,B. By Lemma 7.4, G\{a,b,c,d}
has a Hamiltonian cycle which includes the edge W¥w#%, This is the

required Hamiltonian cycle.

In case B, H will similarly have the required property unless the
| are joined to' those of {a,b,c,d}

indicated:

0, 8,7 F, (55}, {as8), - o, (v, 8Y, (asBY, 18,7, Y, {0, 63, (8,7}, - .o, {8y v}, {0, 635
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(here again, (a,B,Y;d) is some permutation of (a,b,c,d)).
The'number'of.vertices'joined‘to both & and § is at most n—2:‘ If there
is a vertex’w*.adjacent to B and to y and not adjacent to'a or'S; then’
it must be adjacent to at least one .vertex w** which itself is not
adjacent to both a and 8. If there is no such vertex w* then the

sequence above is the special case:

{a,8,v}, (0,6}, (8,7,8}, 0,8}, {v,8}, ..., {a,B}, {v,s}.

There are n-2 vertices adjacent to both ¥y and 6. Therefqre, a vertex
w' adjacent to o and B and not adjacent to y and § is adjacent to at
least one vertex w", itself not adjacent té both v and §. By Lemma 7.4,
G\{a,B,c,d} has a Hamiltonian cycle which includes the edge Ww*w** (or
the edge ‘Wiw"). This is the required Hamiltonian-cycle.

Case 3iiib5. A(G) = n+l. This case cannot arise, as the’numﬁer of
edges from {a,b,c,d} to G\{a,b,c,d} would have to be &4(n-2) = 4n-8,

whereas, by Lemma 2.2, it must be at least 2(2n-3) = 4n-6.

We have now proved the implication (i) = (ii) in Case 3.

The implication (ii)=(i) in Case 3. Suppose that IE(G)|énA(G)+1,
Theén G is Class 2. By Lemma 7.1, A(G) 2 2n-1. The graph G must contain
a critical subgraph G* of the same maximum degree. By Lemma 2.5, G*

has either three or four vertices of maximum degree.

If G* has three vertices of maximum degree, then by the proposition,

C|ve®) |-1 = a(G*) = A(G) = |V(G)|-1; by the implication (i)%(ii) when

r =3, |E@G*)| = n A(G¥)+1. Therefore |E(G*)| = n A(G)+1 = |E(G)], so

G

"

G*; .but this contradicts the fact that G has four vertices of

maximum degree.
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Now .suppose -that .G* has.four .vertices of maximum degree.. By .Theorem
7.1, |V(G*)| # 2n.. Therefore.|V(G*)| = 2n+l.. By.the implication
(i)>(ii)  of Theorem 7.2, |E(G¥)|=nA(G*)+1 = nA(G)+1 = |E(G)].

It follows that G = G¥*, and therefore G is critical.

" The "implication . (L= (iii) 'in 'Cdse 3. This is obvious.

" The "implication (iii)=(i) ir Cdase 3.  Suppose that G is 2-edge-

connected and Class 2. Let G* be a critical subgraph of G of the same
maximum degree. By Lemma 2.5, G* has either three or four vertices of

maximum degree.

If G* has three vertices of maximumm degree then, by the proposition,
8(G*) = A(G*)-1. As G has four vertices of maximum degree, it follows

that G is not 2-edge-connected. . But this contradicts our assumption.

Now suppose that G* has four vertices of maximum degree. Then, by

the implication (i)= (ii); when r = 4, it follows that
|E(G*) |= n*A(G*)#1=n*A(G)+1,

where |V(G*)|=2n*+1. . By Lemma‘7.l, A(G*)QZn#—1.“ - It is easy to
verify by counting ﬁhat if ‘A(G*)=2n*-1 then . 6(G*)=2n*-2, and

that if A(G*)=2n*  then G* has one verfex of degree 2n*-2, thei
remainder having degreé at least 2n%*-1. . If n # n*, then it would
follow that G was not 2-edge-connected, a contradiction. Therefore

n = n*, so V(G) =‘V(G*) and [E(G*)I=nA(G)+1. ‘ But no edges can be
added to G* without creating a further vertex of maximum degree.

Therefore G = G¥%.

This completes the proof of Theorem 7.2.
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 7.6. 7 Proofs of Theorems 7.3; 7.4 and 7.5.

" 'Proof of ‘Theorem 7.4 .Let G.be a Z—ngerCOnnecEed'graph_WithﬂlV(G)|=2n

and with four vertices of maximum degree, and suppose that G is Class 2.
Let G* be a critical subgraph of G with the same maximum degree. Then by
Theorem 7.1 |v(e*)| is odd, equalling 2n*+1, say, so 2n*+1<|V(G) | .

By Lemma 2.5, G* has either three or four vertices of maximum degree.

If G* has three vertices of maximum degree, then, by.the
broposition, §(G*) = A(G*) = 1. Since G has four vertices of maximum

degree, G cannot be 2-edge—connected, a contradiction.

If G* has four vertices of maximum degree, then‘]E(G*)l = n* A(G*) + 1.
By Lemma 7.1,2n* = 1 < A(G¥%). It is easy to verify by counting that if
A(G*)=2n*-1 then  §(G*)=2n*-2,  and that, if A(G*) = 2n%, then G¥
has one vertex of degreeAZn* - 2, the remainder having degree at least
2n* - 1. Since G has four yertices of maximum degree, it follows that

G cannot be 2-edge-connected, a contradiction.
"It follows that G is Class 1, as required.

Proof of Theorem 7.3.

Necessity. If G is Class 2, then, since (i1ii)=>(ii) in Theorem 7.2,

it follows that |E(G)|>nA(G). .-

Sufficiency. If |E(G)[>nA(G), then, by Lemma 2.7, G is Class 2.
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Proof of Theorem 7.5

Sufficiency. In Cases (i) and (ii), the sufficiency follows from

Lemma 2.7 applied to Gand, in Case (iii), the sufficiency follows from

Lemma 2.7 applied to C2'

Necessity. Assume G is Class 2. Then G contains a critical

. * .
subgraph G with the same maximum degree and three or four vertices of

maximum degree. If G has three vertices of maximum degree then

* 2m

- : %
G =z (2m - 1) 2(Zm)3 for some m, by the’ﬁroposition, so G\G 1is

joined to G by exactly one edge. If G has four vertices of maximum

2m-3 2m-4

% %
degree then G = (2m-2) (2m—1)4 or G =(2m-2) (2m-1) (2m)4 for .

some m, since, by Theorems 7.1 and 7.2, I E(GA)| = {%|V(Gh)[JA(G) + 1

and so, by Lemma 7.1, A 2 |v(GH|] - 2. The case

* 2m-3

G (2m-2) (2m—])4 with m<n 1s excluded since G is connected.

I

. ) .
If m<n and G = (2m—2)(2m—1)2m 4(2m)4_there can only be one further edge
of G incident with Gh, namely an edge incident with the vertex of degree

. %
2m-2 in G .
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8. The chromatic class of graphs with many vertices of mdaximum degree

8.1 Introduction and summary of results

In this chapter and the previous chapter we obtain some results
about the chromatic class of graphs with a fixed number (r) of vertices
of maximum degree. In the last chapter we provéd each of the four
conjectures in Chapter 7 for 1 < r < 4, and in this chapter we prove
these conjectures for general values of r, but we have to assume that
A(G) is large. . We also describe dll Class 2 graphs with r vertices
of maximum degree and A(G)vlarge.' |

We obtain the following results:

Theorem 8.1. Let G have r vertices of maximum degree A, and let

2

|V(G)| = 2n. If AG) 2n +2r -4, then G is not critical.

Theorem 8.2. Let G have r vertices of maximum degree A, and let

[v@e)| = 2n+1. Let
7 1 11 . _ '
n+<1r—-—=%t-—— if A=2n+ 1 -r+ tand t > 0,
A > f 2 4 &
1 n + %-r -3 if A<2n+ 2 -r.

Then conditions (i) = (iv) below are equivalent:

(i) G is critical,
(ii) |E(G)| =na + 1,

(iii) G is (r-2)-edge-connected and Class 2, and IE(G)I <nA + 1,

(iv) def(G) = A - 2.

Each of the above conditions implies the following:
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(v) Theedgeconnectivityfl(G);'Sétisfies A(G) = 2n-r+2.

Note that there is no ambiguity when A = 2n+2-r, as the two inequalities

are identical then. Note also that the inequalities for A can be

rewritten:
S+ B0 if A > 2n42-r,
A > [5 75
1 n + Er -3 if A £ 2n+2-r.

Again there is no ambiguity when A = 2n+2-r.

These two theorems, which give conditions for graphs to be:.critical, are

'applied to give the following two results on the chromatic class of

graphs of sufficiéntkyhigh degree and edge-connectivity.

Theorem 8.3. Let G-haveﬂr vertices 'of maximum degree, “let |V(G)[= 2n

and ‘let G have edge~connectivity at least (r-2).

If
7 1 11 o
n+o5r =t = — if A = 2n+l-r+t and t > O.
As 2° 4 &4 - =
\ n+dr-3 if A € 2n+2-r,
then G is Class 1.
Theorem 8.4. Let G have r vertices of maximum degree, let [v(e)| = 2n+1

2n+l-r+t and t > O,

=
it
|
H
>
i

2n+2-r.

=]
+
'
|
w
™
Hh
(>3
IA

Then
G is Class 2

if and only if

|EG)| > n AG).
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In the proof of Theorem 8.2 we need the following result, which is
wvery similar in essence to Theorem 8.3 and 8.4 and is of interest in its
own right. (We thank Dr. F. Holroyd for drawing our attention to this

result.)

Theorem 8.5. Let G have r vertices of maximum degree and let

[V(@)| = 2n + 1. Let

"
!
I
t
|
l
:;
>
i

2n+l-r+t and t > 0,

nv -

8§ (G)
< 2n+2-r.

[T T |
2}
|
m
[
nA

Then G is Class 2

if and only if

E@)| > nA(G).

| By again considering the minimum degree, we have the following

-theorem from which we can deduce Theorem 8.1. .

. Theorem 8.6. Let G have r vertices of maximum degree and let

v | = 2n.  If 8(G) 2 n + %-r - 2, then G is Class I.

-,

All Class 2 graphs with r vertices of maximum degree, where the

maximum degree is sufficiently high are described by Theorems 8.7 and 8.4.

Theorem 8.7. Let G have an edge-cut S with [S| < r - 2, let G have

r vertices of maximum degrée, and let % |v@E)| =n. Let
o Le- i t - i f A= 2n+l-r+ d t>0
n* 5r- 2 A if A = 2n+l-r+t an s
T (n+5r-3 if A < 2n+2-r.

Then

G is Class 2

if and only if

S separates G into two subgraphs Gl and GZ’ where

[v(g )| > [v(,)]|, |v(e)| is odd, and

' V(G,)
Bl > 4 ) | LGOI
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8.2. Proof of Theorems 8.1 and 8.6.

We first prove Theorem 8.6.

Proof of Theorem 8.6. Suppose that G has r vertices of maximum degree,

has [ V(G)| = 2n and satisfies 6(G) > n + % r - 2.
Let Gr be the induced subgraph of G on the r vertices of maximum

degree. Partition E(Gf)into r partial matchings,M , ..., M},Such that,

1
for 1 <1 < r,Mi is a maximal (by inclusion) matching in the graph

G\, U ... U M. _,). This can be done as follows:

Firstly Gr can be given a proper edge—colouring with r coloﬁrs (by
Vizing's theorem); 1let the i-th colour class be Mi*(l < i é r).

For 1 £ i <r, define Mi’MZ”°°’ME in sequence sd that Mi is a
mgtching which contains Mi*\gMl U.eoo U Mi—l) and which is maximal in

the graph G\(M1 U... U Mi_ ).

1
Next let FI’ cees Fr-] be r-1 edge-disjoint I-factors of G such

that Mi‘g,Fi.(l £ i £r-1). We now show that such 1-factors do exist.

Let 1 £ j £ r-1 and suppose that Fl’ ey Fj—l exist and that

(F1 U... UF, 1) n (Mj U ... U Mr) = (J; we now show that Fj exists.

j-

Let Hj =G\(F, U ... U Fj~1)'
Then

S(HAVQL)) 2 8(6) = (G-1) - [var)|

>68(G) - (5-1) - r.

By Lemma 7.5, if

1
G(Hj\V(Mj)) > EIV(HJ.\V(MJ.))I,

then Hj\V(Mj) has a Hamiltonian cycle. But
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S(Hj\V(MJ.)) §(G) - (3-1) - ]chJ.)[
26G) - (r-2) - var)

=8(G) - r+2 - lV(MJ.)].

Also [V(ﬁ}ﬂM})[ 2n - V(Mj) . Therefore

o
S AVOH,)) - 7| V(N |

1
2§~ r+2° = |VM.)| - n + 5|V,
, - [ver) | = n + glve) ]
= §- r+2-n-=</Voe)]
_ -2 h]

> 6 - 'r+2—n-.--1-r,

' 2

3 .
=§ - 7; + 2 =-n .
>0, since § 2 n + %;-* 2.

Therefore Hj\V(Mj) has a Hamilton cycle (which is necessarily of even
length). Let Fj consist of Mj together with alternate edges of the
Hamiltonian cycle. Since Mj was a maximal matching in Gr\(Ml U ooo U Mj—l)’

it follows that Fj cbntains‘no edge of Mj+1 U ... U Mr. This shows that a

suitable Fj does exist.

The graph G\(f;l Fi) has exactly r yertices of maximum degree, and
each of these r vei;;ces is joined to at most one other vertex of
maximum degrge. Therefore by Lemma 2.2, G\fa] F. is Class i. Working
back, it follows that G is also Class 1 =

Proof of Theorem 8.1. Suppose G is critical but satisfies the

inequality. Then, by Lemma 2.6,
§(G) 2 A -1 + 2,
from which it follows that the inequality of Theorem 8.6 holds.

Then G is Class 1, a contradiction. This proves Theorem 8.1.
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8.3. Proof of Theorem 8.5.

It is convenient to prove Theorem 8.5 here, as it is used in the

proof of Theorem 8.2 (and later in the proof of Theorem 9.2).

Lemma 8.1.. Let G be a graph with |[V(G)| = 2n+1,|E(G)| < n A(G)

and let G have r vertices of maximum'degree. If A = A(G) 2 2n-r+l,

let t = A - 2n + r. Let v be a vertex of degree A. Then there exists

a set X of vertices with v ¢ X such that

d*(v) < (} A ~ 1 = d(x)) + |{xeX: vx¢ E(G) and d(x) < A-1}]

xeX
and
d¥(v) + 1 -t if A 2 2n-r+1,
RETES |
‘ dx(v) + 1 if A < 2n-r.

Proof. def(G) = (2n+1) A(G) - 2|E(E)| 2 (20+1) 4 - 204 = A,

There are r vertices of degree A, so there are 2n + 1 - r vertices of

degree < A-1. Let the excess deficiency £(G) be defined by

€@ = (8-1 - d(w)).
wev(G):d(w)sA-l

Then €(G) = def(G) — (2n+1-r) 2 A-2n + r-1.

Let v be a vertex of degree A. Since d(v) = A and v is joined to
d*(v) vertices of degree A, v ié non-adjacent to r - d*(v) - 1 vertices
of degree A. But v is non-adjacent to 2n-A vertices altogether, and
so is non-adjacent to (2n-A) - (r-d*(v)-1) = 2n-A-r + d*(v) + 1 vertices

of degree at most A - 1.
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Let:
X = {x € V(G): either d(x) < A-1 or d(x) = A~1 and xv ¢ E(G)}.
Then |

) (A=1-d(x)) + |{xeX:vx¢E(G) and d(x) < A-1}]
xeX

il

e(G) + I{x € X : vx ¢ E(G) and d(x) < A-1}]

v

(A-2n-1+r) + (n-A-r+d*(v)+1)

d*(v).

Also

[{x: d(x) < A-1 and xv ¢ E(G)}|

=
v

I

2n = A -r + d*(v) + 1, from above,

[2n-= (2n-r+t) = r + d*(v) + 1 if A = 2n-r+1,

v

1 d*(v) + 1 if A £ 2n-r,

f d*(v) + 1 - t ifA22n-1r+1,

\ d*(v) + 1 if A < 2n-r.
This proves Lemma 8.1. .

Lemma 8.2. Let B be a bipartite graph. Let (xl, cees xq)'and

(W, «.., W) be two sequences of vertices of B, where
1 q .

>{x1, eeey X} 0 {ﬁl; cees Wq} = @ and Wis eees wq are all distinct.

Let m be the largest value of j for which there exist indices

i, ee., 1. with 1 i, < ... <i. <qand x. = ... =X, . Let
j— 1 ] — 1 1. —_—

1’
1 3
p 2max (q, m + A(B) + 1). Then we can partition tlie edge —set of B

into matchings M,, ..., M, where, for some permutation = of (1, ..., q),

l’

no edge of M. is incident with either x. or w_,...
i i— "w(i)
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Proof. We may suppose that q 2 1 (otherwise the lemma follows from
Lemma 2.12.). We introduce two new vertices a and b, joining b to
1° TIRTE xq},

joining a to x by a number of edges equal to the number of times x

each of w cees wd by a single edge, and, for each x € {x

appears in the sequence (Xl, cees xq), and, finally, joining a to b

by p-q edges. Denote the graph thus formed by J (J may not be bipartite).

The graph J has two vertices, a,b, of maximum degree p, and the
remaining vertices satisfy dJ(v) <m+ A(B) = p-1. All multiple edges
are incident with the one vertex a, and, since q = 1, there is a

vertex w, joined to b but not to a. Since {XI’ oo xq} n'{wl, cees w&} =@,

1

' J does not contain a subgraph on 3 vertices with p+l edges.v Thus J
satisfies Lemmé 5.2 and so J is C(Class 1. Therefbre we .can colour J

with p colours, say Cps eees cp.

Denote the colours used on the edges joining a to b by

cq+1, cees cp and denote the colours on the edges joining a to each
X € {xl, “ees xq} by Cil, Ciz, eees € , where i, i,, ..., i, are
the indices i for which X;

s o
x. (1 £ 1 5q); let m(i) be such that the

A

. <3 . .
edge bWﬁ(i) is coloured ci‘(l £1i<q). For1l<1ic<p, let Mi,be the
set of edges of B coloured ci. Then Ml’ cees Mp are the required

matchings (clearly M. contains no edge incident with x, or W“(i)).

This proves Lemma 8.2.
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Lemma 8.3. Let V1,V2,...,Vp be sets of vertices of a graph G and

suppose that there are partial matchings M',Mé,...,M% such that

P
(i) U M! = E(G),
. i
i=1
and (ii) Mi contains no edge incident with a vertex of \A (1 21=209p).
Then there are partial matchings M.,M,,...,M such that
. 1 p—
p
O U M. = EG),
. i
i=1
(ii)"' Mi contains no edge incident with a vertex of Vi (1 £1iz2p),
and (1ii)’' M. is a partial matching which is maximal (by inclusion)in

the graph (V(G), M. Uu...u Mp), subject to the proviso

that (ii)' is satisfied, for 1 £ i £ p..

Proof. Let M, be a maximal matching in G containing M; but containing no

1 1
edge incident with V1. Proceeding inductively, let Mi be a maximal matchiﬁg
in (V(G), E(G)\(M1 Uu...U Mi—1)) which contains M:!L\(M1 Uu...u Mi—1) but

contains no edge incident with Vi. Clearly we obtain MI’ cens Mp

satisfying (i)', (ii)' and (iii)’'.

We are now in a position to prove Theorem 8.5.

Proof of Theorem 8.5. The sufficiency follows from Lemma 2.7.

To prove the necessity assume that &§(G) satisfies the inequality and
that |E(G)| < n A(G). We shall show that G is Class 1.

The essential idea of the proof is to remove a set of I-factors
and near l-factors from G in such a way that,in the resulting graph,
each vertex of maximum degree has at most one other vertex of maximum
degree adjacent to it.  Then tﬁe necessity follows from a repeated

application of Lemma 2.4.
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Let v be a vertex with d(v) = A(G). Let q = d*(v)—1. Let X be
a set of vertices such that
q = d*(v)-1 < Z (A-1-d(x)) + l{xeX: vx £ E(G) and d(x) < A-l}l
xeX
and
fd*(v) + 1 -t if A 2 2n-r+2,
%[ = 9 .
. q if A < 2n-r+l.

It follows easily from Lemma 8.1 that such a set X exists. Let

(x], ool xq) be a sequence of elements of X such that

A{xl, ceos xq} = X and, if x € X, then

1 if vx£E(G),

|{1: 1 <1 <q and X, = x}l < A=-1-d(x) + { 0 otherwise.

Let W be the set of vertices of degree A. Let H denote the subgraph
of G induced by (XUW)\{v}.

Let Mo be a maximal (by inclusion) matching of H. Let L and R
be sets of vertices of G such that
(X u W\{v} =L UR,

|L] < [R] = |L] + 1, and

each edge of Mo joins a vertex of L to a vertex of R. Let B(L,R)

be the bipartite subgraph of H induced by H with bipartition (L,R).

Let 1
f [E-(r+q+t-l)] if A 2 2n-r+2,
'] =
1 f%-(q+r+l)] if A < 2n-r+l.
Let MO’ M1, ceey M2 be pairwise edge-~disjoint partial matchings of B(L,R)

such that
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M. U...UM,

@D EGE,R) =M \

(Mii) for 1 £1i £ q, M, contains no edge incident with either x; or
wi,where'{wi,...wq} is a set of vertices of W joined to v.
and (Miii) for 0 £ i £ ¢, Mi is maximal (by inclusion) in the graph
(L U R, Mi Uu... U Mz), subject to (Mii).

It follows from Lemma 8.2. that M., ..., M exist satisfying (Mi) and

0

(11ii), for the maximum degree in H is at most

L

f o [zan + (@-t+2))]  if 4

2 2n-r+2,
[%((r-l),+ q)] _ if A £ 2n-r+l,
and the greatest value of j for which there exist indices il’ ooy ij
with 1 £i, < ... <i., <qand x. = ... =X, is
1 ] i , 1.
o 3
{a- (q-t-1) if A 2 2n-r+2, _—
1. 1 ©if A £ 2n-r+l.

and therefore the number p of that lemma is given by

\Y

1+ (t=1) + [%(r +q-t+1) ] if A > 2n-r+2,

1+ 1+ H(r+q—1)] if A

A

2n-r+1.

For our purposes, we-take p = & + 1.

It follows from Lemma é;3 " that (Miii) can be satisfied also.

Our next step removes all edges of M, ..., Mq, creates vertices

1’

xe{xl, ey xq} of maximum degree and leaves v joined to only one vertex

of maximum degree. We describe next how we carry this step out.

Let F], | R Fq be q edge-disjoint near -1-factors of G such

2’
that, for 1 <i < q, Fi contains Mi and w.v but does not contain any
edge incident with X;, mor any edge of (MO U...U M. ]) U

i-

(Mi+1 U... U Mz). To see that such near I-factors exist, suppose that

F.y eeey Fi_lﬂhave been chosen for some i, | £ i £ q. We show that Fi

I’

can be chosen. Consider the graph
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J= G\EVQEL) U {v,w, DINE, v ... v Fi“ uM).

First observe that our assumptions imply that

v = |V(G)_| - v | -2 = 20-1 - |V(Mi)|, and
8(3,) = 8(6) - IV(Mi)] -2 - (i-1) -1
= &(G) - [V(Mi)l -i- 2.
Therefore

1
§(3;) - 5 v |

> §(G) —-[V(Mi)l —i-z—n+§+7|V(M)[
- N -3 -3
= §(G) - n > JV(Mi)I i-3
1 : -3 . S
{\ s(G) ,—n—g(r+q—t+1.)—q-§ if A 2 2n-r+2,
> .
5(0) -—n-artq-1) -q -3 if A< 20-r+l,
- - E_3_C{ P_ 1 > -
={6 n 5773 +2 -2 if A =2 2n-r+2,
&-n—g\—-:szi-'l if ‘A £ 2n-r+l,
{6 -n - 9r + g-f 1 if A 2 2n-r+2,
2
§~n=-2r + 2 if A < 2n-r+i,
since q = d*(v) - 1 < r-2,
r t 1 .
N = 4 - f Az 2n-r+2
>{2 it * RS
'\% + 1. if A £ 2n-r+l1,

v
o
.
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It follows from Lemma 7.5 that Ji-has a Hamiltonian cycle, and therefore
that (G\(ﬂ Ueeo U Fi—l)) has a near l1-factor Fi containing WV,
containing Mi’ but not containing any edge incident with X;, mor any
edge of M ; it follows from ‘(Miij) and the fact that Mlj‘c:Fj (1 23 51i-1)

that F. al tai e } oo . | ces )
at F,; also contains no ‘edge of (M1 U U M1_1) u (Mi+1 u u MR)

The graph G\(F U ... U Fq) has at most

{ r+d¥(v) +1 -t if A 2 2n-r+2,

r+q if A £ 2n-r+l,

vertices of maximum degree, but v is adjacent to only ome of them.

Therefore by Lemma 2.4, (G\?)\(F1 U ..o U Fq) and G\(F] U ..o U Fq)

have the same Class. Let S = (G\v)\(Fl U ... U Fq). We need to show

that S is Class 1. Note that [V(S)| = 2n, so is even, and that

8(8) 268(G) -1 -q.

We now remove all the remaining edges in B(L,R) except for those

in the maximal partial matching M. We describe now how we carry this

step out,

Let Fq+ cees F, be %-q edge disjoint 1-factors of S such that,

l’
for q + 1 <1i <2, Fi contains Mi but does not contain any edge of
M. From (Mjiiji) and the fact that Mj C:Fj (1 £ j = 1i-1), it follows that

F, will also not contain any edge of o oL U
i e, v UM, ) U QL V..UM

either. To see that such 1-factors exist, suppose that F +1,...,F. 1 have been
q 1=

chosen for some i, q+l £ 1 < &. We show that Fi can be chosen.

Consider the graph
L - ’
Ji (S\V(Mi))\(Fq+] U ... U Fi—l U Mo).

Then we have
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8(3;") 28(6) -1 -q - [va)| - (i-1-q) -1

= §(G) -1 - [V(Mi)l -1
> 6(6) -1 - IV(Mi)I - 2.
Therefore
8. ") —-;- v, |
280 = |ver)| -2 -1 - 2ee-|ver) )

]

§(G) - ;—|V(Mi')| -2 -n-1

1 .
>{ § = E{r+q-t+1) - [%{q+r+t~l) —nwll if A 2 2n-r+2,

1 1 : .
§ = E(rfq-l) -'[§(q+r+l)] -n-1 if A < 2n~r+l,
2 §- r-‘q-n—_';%:
2 §- r - (r-2) -n ;_%; since q = d*(v) ~-1 £ r-2,
5. 1. . 3 ' .
2{ (n + Er - Zt - j:-) - 2r - n + %— if A 2 2n-r+2,
5 ' 1 .

(n + 5t = 1) -2r - n t if A £ 2n-r+1,
f'lr——l-t—.-l—i if A 2 2n-r+2
=L ZE T = ’

B if A < 2n-r+1,

v
o

It follows from Lemma 7.5 that Ji' has a Hamiltonian cycle.and
therefore that S\(Fq+1 U ... U Fi—l) has a I-factor F, containing

Mi’ but not containing any edge Of(McP Tl U Mi41) U (Mi+1 Uu... Uu g@),

Our next step removes all edges of L; it follows that each
vertex of L is then joined to at most one other vertex of B(L,R). We
describe now how we carry this step out.

Now let S* = S\(Fq+1 Uu... U Fz). Then &(S*) 2 6(G) -1 - q - (£—q)
= 6(G) - &-1. Consider the subgraph SL* of S* induced by L. Let

s = |L|.
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||

[%l & v W\

Then s

{ %{(r—l) + (q—t+2)}J if A_Z 2n-r+2,
’ %{(r-l)+q}! if A £ 2n-r+1,
f %{r+q—t+l)J if A 2 2n~-r+2,
1 %(r+q—l)] if A < 2n-r+l.

Let M1* Uu... U MS* be pairwise adge-disjoint partial matchings of SL*

such that

%1 *) = ES *
(M%) E(sL ) =M *U ... U M,

1

(M*i) for 1 £i < s, Mi* is maximal (by inclusion) in the

graph (L, MU ... U Ms*).

Let F1*, cens FS* be edge disjoint 1-factors of S*\Mo _such that
Fi* contains Mi* 3 (M%ii) and the fact that M%%;E:F (1 = j.é i-1) ensures

. . * o * .
that F.* contains d Y * oo V. i
at F, no edge of (Mq-_P oo U N&—T,) V) (Mi+l‘ y.o..o v D%.g, since
‘ . . . . % | *
S*/Mb contains no edge of M, none of qu,f;}., F. contain-any-edges of MO'

To see that such l1-factors exist, for 1 £ i <s, suppose that

F % ..., F_ I*jhave been chosen. Consider the graph
i-1

% = (S*% % * ;K 2
J.* = (s \V(Mi ))\(F1 U...u Fi—l_,P Mo)t

Then
§(J. %) > 8(s%) - [vae® | - G-1) -1
> §(G)-2 - 1 - IV(Mi*)l -i
2 §(6)-2 - 1 - |V(Mi*)| - s.
Also

|V(Ji*)| = 2n - lV(Mi*)l .
Therefore -

§(3, %) - %1V(Ji*)l
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1 J
ZS(G)—SL—]—S—IV(Mi*)I—n+—2—IV(Miv<)[
1 .
=6(G)—n——2-[V(Mi=~)|—£,-s-l
2 6(G) - n - %s - -5 -1
3
= Po) - - — - =8 e
n- 2L 2 1
§ -n- l'(++«c—1)-l —ili(+—+1 if A 2 2n-r+2
>{ : n - fo(gtr 5 L7 (r+a-t -1 1 2 2n-r+2 |
- 1
6 =nmn —'fz(q+r+1)] - g—{%(r+q—l)i -1 if A £ 2n-r+l |
-5, -2 LI A F A -
N { 8 4 r-mn- g q + A t - % if A = 2n-r+2,
= 5; 5 N ) . .
S - Z-r -n - Z—q - %- if A £ 2n-r+l,
ey e n =2 (-2 + -1 -
N { § A r-n-7 (r-2) + 5 4 if A 2 2n-r+2,
- B o= (p-2) ~ 2 - -
§ -, r-n-3 (r-2) ~ % if A £ 2n-r+l,
s - éir - n + 1-t+ 3 if A =2 2n-r+2
%72 G- ’
L 8= g-r -n +,{%- if A £ 2n-r+l,

v
o

It follows from Lemma 7.5 that J* has a Hamiltonian cycle and therefore

% ) has a 1-factor Fi* containing M;*, but not

that S*\(F,* v ... U F
_ 1 S1-1

containing any edge of M_mnor of (M* ‘U ... UM%, . ) U (M%,
o 1 i-1 i+1

The graph H* = S*\(F]* U ... U FS#) ﬁas the séme set L U R of
vertices of maximum degree as had S. In H* the véftices of L are
joined to at most one vertex of maximum degree. The vertices of R
which are not joined by an edge of M.o are pairwise non-adjacent in
H*, since M.o was chosen to be a maximal partial matching of H.
Therefore by Lemma 2.4, the graph S*\Uﬁ* U ... U Fs*) is Class 1.

Working back it follows that G\w is Class 1, as required. This proves

Theoreﬁ 8.5.

U ..o UME),
. .8
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- 8.4.Proof of Theorem 8.2.

Theorem 8.5 is in itself the most significant step in the proof

of Theorem 8.2; the following lemma follows easily from Theorem 8.5.

+ T - —t - — i = - |
Az{n 5 T 4t: i if A = 2n+l-r+t and t > O,

n+o>r -3 if A < 2nt2-r,

If (1) G is critical,

then (ii) [E(G)| = na+l.

'géégﬁ. .Suppose G is critical and satisfies the inequality.
Then, by Lemma 2.6,

6(G)zA - r + 2,
from which it follows that the inequality of Theorem 8.5 holds.

Therefore |E(G)|>nA(G). But since G is critical, it follows from
Lemma 2.7 that IE(G)I = nA(G) + 1.

This proves Lemma 8.4.

For positive integers r and n, let f(n,r) be dgfinedAby

1
gﬂ + %g-r -2 if r 2 %-n + Tgf’
£(n,r) = . 2 10
+ Z-r -3 ifrs=n+—.
nT3 9 9
| i igui i his definiti for if r = g-n + 10 then
There is no ambiguity in this definition, 5 5
6 + lé-r -2 =n+ Z-r - 3.

50775 2
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Lemma 8,5, ..

(i) £(n,r) = min (g-n + %g-r‘— 2, n+ %—r - 3),

(ii) The inequality in Theorem 8.2 and in Lenma 8.4 .

form

A = f(n,r).

(iii)f(n,r) is an increasing function of n 'and of r.

Proof. It is easy to verify that
> 2 10 6 13 >
r<§n+—9— as -5-n+v—5-r—2z2n+2—r,
that
> 2 10 7 > .
r2§n+—9— as n+§-r-322n+2—r,
and that
> 2 10 > 6 13
r</§n+—9— as n + <+ r 32§-n+-3—~r—2

or, in other words, that

104.

‘may be ‘put in the

22 10 7_._3258 13 -
r<9n+9 as n+2r 3<5n+5r 2 - 2n+2-r.

(i) now follows immediately.

It also follows immediately that the condition

"A > g-n'+ %?-r -2 if A 2 2n+2-x"

can be rewritten
"A 2 f(n,r) if A 2 2n+2-r"
and that the condition

A >n + %—r -3 if A £ 2n+2-r"
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can be rewritten

“"A 2 £f(n,r) 1if A < 2n+2-r."

Consequently the inequality

®
H
|
[

if A

v

2n+2-r, "

5 Lo

if A

H
|
W
IA

+
NI\IU4

2n+2-r,
can be rewritten
A 2 f(n,r).
But as indicated after the statement of Theorem 8.2, the combined

inequality above is equivalent to the inequality of Theorem 8.2. This

proves (ii).

(iii) follows immediately from the definition of fzﬁ,r).
This proves Lemma 8.5,

Lemma 8.6.. Let G have 2n+l vertices, r of them having maximum

degree A. Then the following are equivalént.

(ii) |E@)|

(iv)  def(@)

Il
=}
>
+
—
“

i
[
g

»

AIV(G)I -2 |E@)]

Proof. def (G)

A(2n+1) - 2 |E(G)]

I

A - 2(|E@)| - na).

n
>
I
N

Therefore if |E(G) | = nA+1, then def (G)

I
=}
>
T

Conversely if def(G)= A - 2, then IE(G)]

We now prove the converse of Lemma 8.4.



Lemma 8.7.. : Let G have 2n+1 veértices, of which r hdve maximum

degree A. Let

n+—7—r—-l—t»—u- if A = 2n+]-r+t and t > O,
AZ{ 2 4 4
n+%r—3 if A < 2n+2-r.

If  (ii) |E(G)]| = na+1,

then (i) G is critical,

Proof. Since |E(G)l = nA+l > L VEE) JA, by Lemma 2.7, G is Class 2.
Suppose G is not critical. Then G contains a critical subgraph G*
of the same maximum degree A with r* (<r) vertices of maximum degree.

By Theorem 8.1, since

n+lr-Lte- 1L if A = 2n+l-r+t and t > O,
2 4 4 A
n+5r-4 < 7
nt+or - 3 if A < 2n+2-r,
it follows that |V(G*)| is not even. Let |[V(G*)| = 2n%+1 for some

n* <n. By Lemma \8.5' (iii) (in the notation of that lemma),
A(G*) = A(G) 2 f(n,r) = £(n*,r¥).
Therefore by Lemma 8.5 (ii) and Lemma 8.4, |E(G*)| = n*a+1.

By Lemma - 8.6}, the deficiencies of both G and G* are A-2, so

the number of edges that can be added to G* in forming G is at most

Gaphca >) = (a-n®) (am¥-1) .

However
|EG)| - |E(6*)| = A(n-n%*),

so it follows that
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A(n-n*) < (n-n*)(n-n%-1),
and so, if n # n*, then
A € n—n®*-1 < n.

However the inequalities of the lemma imply that A = n+2. This is a
contradiction. Therefore n = n*, and so |E(G*) | = na+1 - = [E(G)]
and |V(G*)| = .2n+1T = [V(Q)]. 'Therefore,G.=iG*‘and*so;G;is critical. -

This proves Lemma 8.7.

Combininé Lemmas 8.4 . and 8.7 we have

Lemma 8.8.. Let G have 2n+] vertices of which ¥ haveé maximum

degree A. Let

11

n+-7-r--1—t-—- ifA=2n+1-r+t'aﬁdt>0,
A s { 2 4 4 — —_—
n+—;—r—3 if A < 2n+2-r.

Then the following are equivalent:

(i) G is critical,

(ii) |E(G)| = na+l.

The next two lemmas show that (i) and (iii) in Theorem 8.2 are

equivalent.

Lemma 8.9. Let G have 2n+l vertices r having maximuim degree A.
Let A 2 n+r-2.

It
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© then

(iii) G is (r-2) edge-connected and Class 2, ‘and

|E@G)| < na+i1.

Proof. Clearly G is Class 2 and, from Lemma 2.7, |E(G)| < nA+l1.

Let S be a set of vertices of G with lSI < n. By Lemma 2.6,
8§(G) = A-r+2 = n. Therefore the number of edges between S and V(G)-S

is at least

[s] (6= |s] + 1)

\%

min (6, n(d-n+1))

v
=]

v

r—-2.

Therefore A(G) = r-2 as required.

Lemma .8.10. Let G have 2n+l vertices, r having maximum dégree
A, Let
7 1 11 . : :
n+o-r-—-—t-— if A = 2n+l-r+t and t > O,
A > { 2 4 4 = =
n+sr-3 if A < 2n42-r.
If
(iii) G is (r-2)-edge-connected and Class 2 and [E(G)[ < nlA+1,
then

(i) @ is critical.

" 'Proof. Suppose G satisfies (iii). Let G¥* be a critical subgraph of G

with the same maximum degree A. Since
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7 1 .
-5 In+5'r—zt—"-u if A 2n+l-r+t and t > O,
n+=>r-4=g 4
2 3

IA

" .
1 n + 7T~ if A £ 2n+2-r,

it follows from Theorem 8.1 that |V(G*)| is odd. Let |v(G*)| = 2n%+1.
Let G* have r* (< r) vertices of maximum degree. By Lemma . 8.5, (iii)

(in the notation of that lemma ),
A(G*) = A(G) = f(n,r) 2 f(n*,r*).
Therefore, by Lemma . 8.5+ (ii) and Lemma . 8.4, [E(G*)I = n* A+l.
As remarked_in the proof of Lemma 8.1 , the excess deficiency
e(G*), satisfies’

e(c¥) = ) =1 - dg, )
(v:dG*(v)<A) :

def (G*) - (2n*+1-r¥)

(A-2) - (2n*+1-r*), by Lemma 8.6,

A-2n*+r¥=3

Y

r%-3,

since A < 2n*, as [V(G*)I = 2n*+1 and A = A(G*). If n* < n then the

number of edges of G joining V(G*) to V(G)\V(G¥*) is at most
(r*-3) + (r-r*) = r-3,

for otherwise G would have more than r vertices of maximum degree.
However -this contradicts the hypothesis that G is (r—2)~edge;connected.

Therefore n = n*, so |E(G*)| = nA+l.

Since G* is a subgraph of G, and since IE(G)I < nA+l = |E(G*)l,

it follows that G = G*, and so G is critical, as required.
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This proves Lemma 8.10..

Lemma 8.11..° Let G have 2n+l vertices, r(< n) of them having

maximum degree A.

If

(iv) def (G) = A-2,

then the edge—connectivity A(G) satisfies

(v) A(G) = 2n+2-r.

Proof. As remarked in the proof of Lemma 8.1,' the excess deficiency

€(G) of G satisfies

E(G),é def(G) -~ (2n+l-r).
Therefore

e(G) = (A-2) = (2n+1-r) = A-2n+r-3.
Therefore

§(C) > (A-1) - (A-2n+r-3) = 2n+2-r.

Let S be a set of vertices of G with |S[ < n. Since §(G) = n,

the number of edges between S and V(G)-S is at least

[s] (6 - |s] + 1)

v

min (8§, n(§ - n+l))

min (2h+2-r, n(n+3 -1))

v

2n+2-r.

Therefore A 2 2n+2-r, as required.

This proves Lemma 8,11, :
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" Proof ‘of ‘Theorem §.2. By Lemma .8.8, (i) and (ii) are

equivalent if A satisfies the inequalities of the theorem. By
Lemma 8.6, (ii) and (iv) are also equivalent then, and, by Lemmas
8.9 and .8.10, .(iii) is also equivalent to (i) then. By Lemma

8.11 ,° each of these implies (v) then.

This proves Theorem 8.2.

8.5. Proofs of Theorems 8.3 and 8.4.

Proof of Theorem 8.3. Suppose G satisfies the hypotheses of the

theorem. If G is Class 2sthen G has a critical subgraph G* with
the same maximum degree A and with r* (< r) vertices ofﬂmaximum

degree. Since

n+§r-—4-t—-4— if A = 2n+l-r+t and t > O,
n+5r-4=s { 7 :
: n + i 3 if A £ 2n+2-r,
it follows from Theorem 8.1 that [V(G*)I is not even. Let IV(G*)] = 2n%+1,

By Lemma 8.5, 
AGG*) = A(G) = £(n,r) > £(n¥,r*).
Therefore, by Theorem 8.2, IE(G*)I = n¥A+1.
The excess deficiency £(G*) satisfies

e(G*)

def (G*) — (2n*+1-r%)

(A-2) - (2n*+1-r*), by Theorem 8.2,

1]

A-2n*+r*-3
< r*-3,
since A < 2n*, as |V(G*)|= 2n*+1 and A = A(G*). The number of edges of

G joining V(G*) to V(G)\V(G*) is at most
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(r*-3) + (r-r*) = r-3,

for otherwise G would have more than r vertices of maximum degree.
However this contradicts the hypothesis that G is (r-2)-edge-connected.
Therefore G is Class 1, as required.

This proves Theorem 8.3.

Proof of Theorem 8.4.

Sufficiency. - - This follows from Lemma 2.7.

Necessity. * Suppose G satisfies the hypotheses of the theorem
and is Class 2. Then G has a critical subgraph G* with the same
maximum degree A and with r*(< r) vertices of maximum degree. By

the same argument as in the proof of Theorem 8.3, [V(G*)l is odd.

Let |V(G*)| = 2n*+1, where n* < n.
If n* < n then we obtain a contradiction in the same way as in
the proof of Theorem 8.3. Therefore n* = n. By Theorem 8.2,

|E(G*)| = na+1, and so |EG)| > nA, as required.

This proves Theorem 8.4.
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8.6. Proof of Theorem 8.7.

Sufficiency. By Lemma 2.7, G, is Class 2 and so it follows that

G is Class 2.

Necessity. Suppose G is Class 2. Then G has a A-critical

Lo

* %
subgraph G with r (<r) vertices of maximum degree. By Theorem 8.1,

since
7 1 11 . :
n+-r—--t-- 1if A =2n+l-r+t and t>0,
5 2 4 4
n + 7 r-4= 7
n + 5T - 3 if A< 2n+2-r
: * . % T
it follows that |V(G )| 1s not even. Let IV(G )l =2n + 1

: *
for some n < n. By Lemma 8.5 (1ii),

X - x %
AG ) = AG) 2 f(n,r) = f(n ,r ).
y c o %
Therefore, by Lemma 8.5 (ii) and Lemma 8.4, IE(G )l =n A+ 1.
* * %
The excess deficiency of G is A =2 - (2n + 1 -1 ), so
the number of further edges which can be incident with vertices

- * - 3 . . 3 : o
of G without forming more than r vertices of maximum degree is

at most

% * %
A-2-2n +1-r)+(r-1)

%
A-3-2n +r

(r - 3) + (A* - Zn*)

I

r - 3.
%* % .
Clearly |V(G )| > |V(G\G')|. Therefore the theorem is satisfied
* *
with V(Gl) = V(G ) and G being a subgraph of G,-

This proves Theorem 8.7.
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9. Regular graphs of high degree are 1-factorizable

9.1 Introduction

It is a well known conjecture that if a regular graph G of order 2n
has degree d(G) satisfying d(G) 2z n, then G is the union of edge
disjoint 1-factors. This conjecture is known to be true for
d(G) = 2n - 1 or 2n - 2 and we show here that i; is also true for

d(G)

2n - 3, 2n - 4 or 2n - 5 and for d(G) 2-% IV(G)J'

Conjecture 9.1 A regular: graph of order 2n and.degree d(G) satisfying

d(G) z 2 [Eil‘ -1 is Class. 1 .
w24 —
The lower bound 2.[3i11'-'1 is best possible. A connected regular

graph of order 2n and degree Z‘LE%%J'— 2 which is of Class 2 can be

formed forn =2m + 1, m 2 2, from two copies of;ﬁ:K2 by removing one

m+1

edge (say a.1b1 and azbz) from each and joining the two copies by edges

a,a, and b1b2. The Petersen graph is an example of a connected regular

Class 2 graph of order 2n and degree Z'Lﬂgl -'3.

It is well known that K2n is Class 1, and a trivial consequence is

that a regular graph of order 2n and degree 2n - 2 is Class 1 (as any
such graph can be formed by removing a {-factor from K2n)' Rosa and
Wallis [R1] recently proved the case when d(G) = 2n - 4 under the

special circumstance that G is Class 1. Higgkvist has showed us a sketch

of ‘a proof of the conjecture when d(G) 2.%§% |v(G)

that, given e > 0, there exists n such that -if |V(G)| 2 n and even,

. He also has proved

and G is regular with d(G) 2 (4 + €) |V(G)|, then G is ‘1-factorizable. Our
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method and his bear no resemblance to each other.

In this chapter we have two main results. Theorems 9.1 and 9.2, which

are both special cases of the conjecture.

Theorem 9.1. Let.G be a regular graph of order 2n and’ degree

N N l
d(G) =2n - 3, 2n - 4 or 2n - 5, ‘Let d(G) z 2 Izgl -~ 1. 'Then G is

Class 1,

Thereom 9.2 Let G be a regular graph of order 2n whose degree

~d(G) satisfies
.6
(@) z = MOIR

""Then G 18 'Class. 1..

Thereom 9.2 has an application on the subject of 'Intricacy' about
which an interesting paper has recently been written by'W.'EOFOpencomb
[01]. Briefly, supposé we have a set of edge-disjoint 1-factors of KZn'
It may well be that this set of 1-factors cannot be completed to give a
1-factorization of K2n° In that case,Afor some integer j = j(n), it is
certainly possible to partition the given set of edge-disjoint 1-factors
into j parts in such a way that the set of 1-factors in each part of the |

partition can be extended to a 1-factorization of K The intricacy of

2n°
this problem is the least j for which there always exists a partition

into j parts, each of which can be extended to a 1-factorization of K2n'

The conjecture would imply that the intricacy of this problem was 2.
Theorem 9.2 implies that it is no more than 7. In the notation of

[01], we have:



116.

'Corollary:9.l. For n 2z 3

k4

A 9 .
< <
2 £k (Pack “ ¢ (Kzn)) 7.
The upper bound, 7, replaces the upper bound‘fzg;i]'giﬁen in [01 }.

Combining Theorem 9.1 and .Theorem 9.2 with recent results of

Faudree and Sheehan [F1] we obtain the following corollaries.

Corollary 9.2. Let 2 =k =4, n 2 k. "If G'is a connected regulér graph

of degree k and order 2n, and G = K if k = 3, then G has a 1-factor

3,3
F such that both G U F and GNF are Class 1.

Corollary 9.3, Let k 2 2, 2n 2 max(Z(k2 -k + 1), 7k + 14). If G is a

connected regular.graph of degree k and order 2n, "then G has a

1-factor F such that both G U F and GNF are Class 1.

Combining a slight extension of Conjecture 1 with a slightly

generalized form of a conjecture of Faudree and Sheehan [F1], we have:

Conjecture 9.2. Let n 2z k 2 2, If G is a regular graph of degree k and

order 2n, and G = Kk X if k'is odd, then G has a 1-factor F such that
By

'both G U F and GNF are Class 1.
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9.2 Preliminary results

We give here some lemmas used in the following sections.

Lemma 9.1 Let n 2 1. Let G be a regular graph of order 2n, G = KZn'

Let w € V(G). Then G is Class 1 if and only if G~w is Class 1.

Proof

Necessity. If G is Class 1, then G can be edge-coloured with A(G) colours.
' Therefore Gw can be edge-coloured with A(G) colours. Since G = Koo
there is a vertex in G non-adjacent to w, so A(Gw) = A(G). Thus G

can be edge-coloured with A(G~w) colours, so G~w is Class 1.

‘Sufficiency. If G~w is Class 1, let G~w be coloured with A(GNw) colours.
As above, A(GN). = A(G). The graph G has'A(G) Vertices'of degree

A(G) - 1 and |[V(GW)| is odd. Therefore each colour is missing from
exactly one Veftex.and each vertex of degree A(G) _,j has exactly one.
colour missing from it. Therefore w and the edges on w can be restored, '
with each edge wv (v € v(e~w), dG\W(V)'= A(G) - 1).having the colour

previously missing at v.

Let_g* be the graph obtained from the Petersen graph by

deleting one vertex.
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Lemma 9.2 With the exception of P%, all critical graphs G of order

A

10 satisfy the equation.

|E@@)| = [4]v(@®)]] . ae) + 1.
Proof. The result follows by an examination of the list of all critical
graphs of order £ 10 in the papers by Beineke and Fiorini [B1],

Jakobsen [J3] and in Chapter 3.

Lemma. 9.3  "Conjecture 9.1 is true for regular: graphs of order 2n and

degree 2n-5 if 2n = 10.

Proof. Let W € V(G). The graph G~w has four vertices of degree

A(G), the remainder having degree A(G) - 1. Therefore - -

1420 - 5) + (2n - 5)(2n - 6))

]

IE(G\QE}

2n2 - 7n+5

<'2n2 —v7n + 6

A(GN) .'[lXS%;ﬁll]-+‘1.

By Lemma 9.2, G\w is not critical, and does not contain a critical

subgraph of maximum degree 2n - 5 on 2n - 1 vertices.

If G is Class 2, it must contain a critical subgraph G* of

maximum degree 2n. — 5. The graph  .G* must satisfy
2n - 5 < |V(G*)| < 2n - 1,

and the values 2n - 4 and 2n - 2 are precluded by Lemma 9.2. Therefore

G* has 2n - 3 vertices and, by Lemma 2.5, three or four vertices of
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maximum degree.

There is no solution in this case of the equation of Lemma 9.2 when
r = 3, and the only possibility when r = 4 is that G* has four vertices
of degree 2n - 5, and the remaining vertices have degree 2n - 6. Since
G~ has only four vertices of maximum degree, G~w consists of G*VU KZ'
Therefore d(G) = 2, so 2n = 5 = 2, so 2n = 7, which is impossible.

Therefore G~ is Class 1, and so, by Lemma 9.1, G is Class 1.

" 9.3 Proof of Theorem: 9.1

First we prove the special case of Theorem 9.1 when d(G) = 2n - 3.

'Case 1.. d(G): = 2n - 3.

Let w € V(G) and consider the graph Gw. This has 2 vertices of
maximum degree 2n - 3 and so,by Lemma 2.5,is Class 1. Therefore,by

Lemma 9.1, G is Class 1.

“Case. 2. d(G) =2n - 4.

Let w € V(G) and consider the graph G\w. Then |[V(G)| = 2n - 1,
Gw is connected since the conditions imply that n 2 4, and G~w has
three vertices of maximum degrée. Therefore,by the proposition of

Chapter 7, G~ is Class 1. Therefore, by Lemma 9.1,G is Class 1.

"Ccase. 3. d(G) =2n - 5.

By Lemma 9.3, the theorem is true in this case for n. £ 5. From

now on we shall assume that n 2'6.
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Let w € V(G). Then |V(Gw)| = 2n - 1, G~ has four vertices, say
a, b, ¢, d, of maximum degree 2n - 5, and the remaining vertices have
degree A(G\w) — 1 =2n — 6. By Lemma 9.1 we need only show that G is

Class 1.

Suppose G\w'istlass 2. By the proposition of Chapter 7, G\w could
only contain a critical subgraph with the same maximum degree with £ 3
vertices of maximum degree,if the edge-connectivity of G\y were 4£1.
However the minimum degree is too high for this to be possible. Therefore,
in any critical subgraph of G\w' with same maximum degree, a, b, c and
d have degree A(G). From Theorems 7.1 and 7.21>Qé know

that the only critical graphs G* with four vertices of maximum degree

have |E(G%)| = (IV(G*)|-1A)(G*) +1. But |E(G)] =(-ll£29—)-L’__‘)A @)

2

-and hence G~ is Class 1.

This completes the proof of Theorem 9.1.

"9;45fPrOOffOf;TheOfémTQ.Z..

‘fgéggﬁ.. Let G be a:regular graph of order 2n+2 and degree
de) safisfying -
4@ 22 Ju@|.
Let d(G) = 2n - r.+ 1. By Theorem 9.1, we may assume that r z 5.
Let w € V(G) and consider the graph G\w. C\w has 2n + 1 vertices,
r of degree 2n ~r + 1 and 2n - r + 1 of'degree 2n - r. We are going to

apply Theorem 8.5 to show that G\w is Class 1.

First notice that A(G\w)='2n - r + 1 < 2n + 2 - r.
Then notice that

§(GW) =2n-r 2 n + % r - 1.
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Finally notice that

[E@AW| = 2r@n-c+ 1)+ @a-r+ D@ - D)

= n(2n — f + I).

nA

Therefore, by Theorem 8.5, G\w is Class 1, and so, by Lemma 9.1,

G is Class 1. This proves Theorem 9.2.

We should point out that the following, slightly strengthened

form of Theorem 9.2 can be obtained.

Theorem 9.2'. Let ‘G be a regular graph of order 2n and degree 2n - k,

where

Cos| D@ - | 9k .
2n 2 2‘[ - o = 1 J + == -1,

Then G is Class 1.

This is really a féther insignificant iﬁpro&émenf on Theorem 9.2, since
the inequality in Theorem 9.2 is approxiﬁafely d(G) ;~857]V(G)| R
whereas the ineqhality of Theorem 9.2 is apprbximately
d(G)z '849|V(G)I;  Similarly, slight iﬁpréQements could be made to thé
inequalities in the theorems of Chapﬁer 8.

We now indicate very.briefly hoﬁ thiékim?rovement can be brought about.
In the graph G\w of the proof of Theorem 9.1, the average value of

d*(u)_ (ueV(G\w)) is, by counting edges, easily seen to be

(k. - 1)(2n - k)
’ (2n-1)
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Therefore, we can choose the vertex v (of the proof of Theorem 8.5)

so that

L% (k - 1)(2n - k)
d-(v) < L (2n - 1)

Now working through the argument of Theorem 8.5 with this bound on

d*(v) yields a slight improvemeht to the inequality of that theorem

which, in turn, Yields the improved bound of Theorem 9.2'.
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10. Supersnarks

10.1 Introduction

In [G1] Martin Gardner ga&e the name snarks to 3-regular, Class 2
graphs; This name was chosen because of the difficulty éf finding such
creatures,after Lewis Carroll's "The Hunting of the Snark". At that
time it was not known if there were aﬁy planar;'Bérégular, Class 2 graphs

and such an object, he said, would be the mythical Boojum.

A snark is usually defined to be a’ 3-regular Class 2 graph which is
cyclically 4-edge-connected and of girth at 1east‘5: A general discussion
and review of known snarks'can;be.fbund inA[C§]: The re&ﬁirements that
snarks should be cyclically 4—edge-connected and of girth at least 5 are
made to avoid trivial casés. It now appears [C1] that snarks which are
not cyclically 5-edge-connected are 'tri&ial', in the standard sense
that they can be constrﬁcted from 3-regular Class 2 graphs of lower
order by'a standard. process. It seemsbto be premature to try to

"define out" such trivial cases.

It is natural to ask-whether the idea of a snark can be extended
to regular graphs with degree greater than thrée. One possible

generalisation. is:

Definition. For k 2 3, a k-snark is a regular multi-graph of degree k and

Class 2. 1If the value of k is unimportant we use the geheral term

supersnark.
e amm
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Strictly speaking, a 3-smark is not a snark, as the standard

'trivial cases' have not been excluded. Three trivial cases for

k—snarks are:

(1) A k-snark which contains a multiple edge consisting of k - 1

2).

pafallel edges. 1In this case the same colour is forced at either
end in any hypothetical k-edge colouring, so the multiple edge

could be contracted out. The converse process also works.

—— -
d .

Figure 10.1

A k-snark which contains a k-clique (a complete subgraph on
k- vertices) when k is odd. In this case the outgoing edges must
all have different colours in any k—edge colouring, so the clique

could be contracted to a point. The converse process also works.

Figure 10.2
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(3) A k-regular graph of odd order. This must be Class 2 by Lemma 2.7.

Some cases which are certainly trivial when k=3, and probably
are in general (but this still awaits a proof) are given next;
the points of difficulty in cases (5) and (6) were overlooked

in [C8].
(4) A k-snark which contains a k-clique when k is even, k 2 4.

To discuss this, let k be even, let G denote a graph containing
a k-clique, and 1etd(G) be the set of all derived graphs, where a
deriﬁed graph is a k-regular graph obtained from G by removing the
k-clique leaving k pendent edges, and then joining these pendent

edges together in pairs.

It is clear that if G is k-edge-colourable then

ID(G) €P(G) such that D(G) is k-edge-colourable also (see Figure 10.3

Figure 10.3
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’ 'conjectur'e: 10.,1.. Let k .be even. Let v
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On the other hand, except in small cases, it is not clear ghat if
G is not k-edge colourable, thén ID(G) €D(G) such that D(G) is not
k-edge-colourable either. This is what needs to be proved if k-snarks
containing k cliques when k is even are to be deemed trivial. Putting
it another way, we need to know that if H € D(G) = H is k-edge-

colourable then G is also k-edge-colourable.

However, we suspect that much more is true than what we need to
pro{ke; We suggest that if 3H € D(G) such that H is k-edge—colourable,
then it follows that G is k-edge-colourable. Putting this another way,
we suspect that if G is not k-edge-colourable, then H €D(G) = H is not

k-edge-colourable. Rephrasing this one again, we make the following

" conjecture.

1’...’.1{
let c1,...,ck be k colours. Let fl""’f € {01,...,ck} and let

[{i] fi. = fjvand 1 £ i sk}| be even for each j, 123 k. Then K
can be properly edge-~coloured with c1';.'. ©sC in such a way that, for
1 212k, the colour fi' does not occur on any edge which.is - incident

with v..
i

There is some possibility that we could prove what we need to
deem these k-snarks trivial without having to prove Conjecture 10.1,
but Conjecture 10.1 is probably a tractible problem so tackling it

is probably the most sensible approach.

be the vertlces of. a Kk and
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A k-snark which contains a (k+1)-clique with a 1-factor

removed, when k is odd.

Again to discuss this, let k be odd and let G1 denote a

graph containing a (k+1)-clique from which a 1-factor has been

removed. Leti)(G1) be the set of all graphs derived from G,; here

1;

a derived graph is a k-regular graph obtained from G by removing

1
the (k+1)-clique from which a 1-factor has been removed, leaving

k + 1 pendent edges, and then joining these pendent edges together
in pairs.

It is clear that if G, is k-edge—colourable, then

1
3 D(G1) €§D(G1) such thatvD(G1) is k—edge-colourable also

(see Figure 10.4).

Figure 10.4 A
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On the other hand, except in small cases, it is not clear that
if G, is not k-edge-colourable, then 3 0(G,) €§)(G1) such that
D(G1) is not k-edge-colourable either. Again, this is what needs
to be proved for koddif k—snarksAcontainiﬁg (k+1)-cliques from
which a 1-factor has been removed are to be deemed trivial.

Putting it another way, we need to know that if H €D (G) = H is

k-edge-colourable, then G is also k-edge—colourable.

However, again we suspect that much more is true than what we
need to prove. For k 2 5, we suspect that if iH €P(G), such
that H is k-edge-colourable, then it follows that G is
k-edge—colourable. [For k = 3, it seems to be possible that this

need not-be the case: consider the example of FigureiO.S.

G, , ' D(Gl)

Figure 10.5
If D(G1) can only be 3-edge-coloured with the two edges shown
receiving different colours, and no other derived graph can be

' 3—edge-coloured, then G, cannot be 3-edge-coloured. However, it

1

is not clear whether this possibility can actually arise. So

maybe our suspicion. concerning the situation when k 2 5 should be
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extended to the case when k = 3 also]. Putting our suspicion
another way, we suspect that, for k 2z 5, if G, is not
k-edge-colourable, then H €§)(G1);:} H is not k—-edge-colourable.

The next conjecture is slightly stronger still.

"Conjecture 10,2, Let k be odd. Let F be a 1-factor of a Kk+1’ let

V1,.,,,Vk+1vbe the vertices and let CqseeesCy be k colours. Let

f1""’fk+1_€ {c1,..,,ck} and let |{i: fi = fj and 1 £ i £ k}| be even

for each j, 1 £ j £ k., Then, apart from one exceptional case,

Kk+1_\ F can be properly edge-coloured with CysevesCy in such a way that,
for 1 £ i £k, the colour fi does not occur on any edge which is

incident with v, The excéptional case is wﬁen 3 j4, j2 such that, if

i1, i2 € {1,..,,k} \i{j1,.j2}5 then fi1 = ﬁiz, and Vj1 vjz is an edge
of the 1-factor.

If D(G1) can be k-edge-coloured, then G, can be given a partial

1

k-edge—-colouring in which all edges are coloured except the edges of the

Kk+1 less the 1-factor¢ Let f1,...,fk be the colours on the edges

not‘in the Kk+1 less the

connecting VisesssVy to the part of G1

1-factor. Unless we have the exceptional case, then if Conjecture 10.2
is true;this k-edge-colouring can be extended to all edges of G1. In
the exceptional case, the partial k-edge-colouring can be equalized.
Then each colour will ‘occur either no times, or two times amongst
f1’°"’fk+1' Thus, By recolouring, the exceptional case can be

avoided. Note that this argument fails when k = 3.
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Even more than in the last case, in this case .it seems that we do
not make the problem any simpler by trying to confine our attention
just to what we need to prove — the easiest approach seems to be to

tackle Conjecture 10.2.

It should be noted that if k = 3, then the exclusion of (2) and:

(5) reduces to the requirement that the graph should have girth 2 5.

(6) A k~snark which contains a (k+1)—clique'witﬁ %{k+1) edges

. removed, when k is odd.

This is a more general version of (5), and the discussion is very

similar.

We can generalise the Parity Lemma [D1] for snarks as follows
(this has been used implicitly already in the discussion of (4) and (5)

above).

“'Lemma’ 10.1: ' (The: genéralised:?arity:LeMa) .

Let G be a k-regular graph with a k-edge-colouring. If a cut in

G intersects s; edges of colour i, for i = 1, 2,...,k, and if A is the set

of vertices on one side of the cut, then

8,58, ... 25 = [v(A) | (mod 2).
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Proof. Consider a graph G divided by a cut into two sets of
vertices A and B. Let the cut intersect s; edges of colour i. If X

is the set of edges in the cut, then

N~

s; = ]X[.

if Ai is the set of edges coloured i in A then, since every vertex in A

has an edge coloured i, where some edges are in Ai and the rest are in

X,

[V | = 2|Ai| +s,.

‘8

Hence |V(A) |

ss (mod 2), and since this is true for all colours i,

s, = ?2 =...=5 = v(a)| (mod 2).

" 'Example. For the following colouring and cutfin;kT; we have

'n1 =1, n, = 1, n, = 1, n, =3, ng=3and 1 =1=15=35%3 (mod 2)-

Figure 10.6
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Theorem 10.1,. Suppose that a k-snark has a cut set C of r edges such

thaf G\C is k-edge-colourable. Then either r is odd and r 2 k + 2,

or r is even and is at least 4.

Proof. Suppose that G is an r—edge-connected k-snark. Let
G1 and sze&twographs each with r-semi-edges formed by taking a cut

through r edges of G.

We assume first that r is odd and is less than k + 2. By the
Parity Lemma 10.1, if G1 and G2 are k-edge-colourable, then

k

n. = n. ve. =n., (mod 2) and L n.. =r
31 j2 jk jop 417

where n,. is the number of edges of Gj coloured i. Since r ié'odd,
k
I n.. is odd, and hence all the n.. are odd. But
5o1 41 < - 31
'k
2 >
ng 2.1 .(¥) :j»ii1lnji 2 k,

so r=kork+1.

If r = k then T 1 for all i = 1,...k and j =1, 2, so each
graph Gj has one semi-edge of each colour and, by .relabelling the
colours of Gz,these edges will match those of'Gi; Hence G is Class 1.

This contradiction shows that either G.1 or G2

k .

r=%k + 1 then I . = k + 1, but this is ‘impossible because
i=1 ‘

n.. 2 1 and odd.
i

is a k-snark. If

Now suppose that r ='2. Then the Parity Lemma cannot be satisfied

unless k = 2, But k 2 4, so r 2 4 also.



133.

10.2 Examples of supersnarks

In this section we give a number of examples of supersnarks.

10.2.1 Line graphs: of 3=snarks

Kotzig [ K2 ] has shown that if G is a 3~regular graph of order

n =0 (mod 4), then G is a 3-snark if and only if L(G) is a 4-snark.. Of

course, if G is a 3-regular graph of order n

2 (mod 4) then L(G) is
a 4-snark of a trivial kind, since its order is odd.

If G is a snark of order n = 0 (modulo 4), then its line graph L(G)
is a 4-snark of order 3n/2. The line graphs of Isaacs' flower snarks

J3 and J5 [I1] are shown in Figures 10.7 and 10.8.

Figure 10.7
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Figure 10.8 o

10.2.2. . Generalised line graphs.

In this section we consider a generalisation of Kotzig's result.

Let. G be a 3-regular graph of order n with vertices vi,...,v . For
n

1 <£1i=2n, let Hi be a graph with three vertices of degree 2 and the

A

remaining vertices of degree 4. Let']V(Hi)l =h, (1 £1 2n). Forma
graph from G, H1,..,,HnAby identifying one vertex of Hi of degree 2 with
one vertex of Hj'of degree 2 whenever the edge vV, is an edge.of G,
using each vertex of degree 2 exactly once. Let G(H1,..,,Hn) denote a

graph formed this way; then G(H1,..,,Hn) is 4-regular. If

hi =3 (1 £1i2n), then G(H1,...,Hn) is the line graph of G.
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We prove the following two theorems on generalised line graphs.

Theorem 10.2. If G is Class 2, then G(H1;...,Hn) is Class 2.

‘Theorem:' 10.3. Let hi be odd (1 £ i £n). Then

G(H1,...,Hn) is Class 2.

if and only if

either h, + ,.. + h ;'ngis odd ,
R n 2 =

or _one of H',;.,,Hn_is Class 2,

=z 1

or G is Class 2.

We do not know whether Theorem 10.3 holds when the restriction that hi be

odd (1 £ i 2n) is remoﬁéd.

" 'Proof of Theorem 10.2.. Assume that G(Hi;..,,Hn)?is Class 1. Then we

prove the theorem by showing that G is Class 1.

Let G(Hi;;.,,Hn) be edge-coloured with four colours a, b, ¢, d.
From G(Hi;;..,Hh), form a new graph G* as follows: replacg each subgraph
Hi by a vertex joined by two edges to each of the three vertices of Hi

-of degree 2, keeping the colours as shovm.
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Figure 10.9

From G* we obtain G by removing each vertex of degree 4 and replacing the

pair of double edges on the vertex by a single edge:

,Figure 10.10

When we remove these pairs of double edges, we put a corresponding

colour on the replacement edge, as indicated:

a c - b o

-~ T —» < = L —— i
= P=Y < d &

| * ¢ L —* - 3 -

Figure 10.11

Now each edge of G is coloured with one of the colours T, 2,"3; We can
see that this is a éroper‘colouring'of E(G) since, 1if a‘vertéx.vi.in G
has more than one edge of any colour, then the corresponding subgraph

Hi of G<H1,...,Hn) must haﬁe had two of its vertices of degree 2

coloured with exactly the same colours, or no colours the same.
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But by the Parity Lemma applied to the 6 (or fewer) edges joining the
three vertices of degree 2 in Hi to the rest of Hi’ we see that this is

not possible.  Hence G is Class 1.

"Proof of Theorem 10.3. .

‘Sufficiency. If G is Class 2, then, by Theorem 10.2, G(H1,..,,Hn) is

Class 2. 1If h1 + ce. * hn ;.%?'is odd, then,|V(G(H1,...,Hn))| is odd,
so, by Lemma 2.6, G(Hj;...,Hn) is Class 2. Finally, if one of

H1”"’Hn is Class 2, then, since HJ,...,Hn>are-subgraphs of

'G(H1;;.,,Hn) of degree 4, it follows that G(H1;;.,,Hn) is Class 2.

all Class 1, and that G is Class 1. We prove the necessity by showing

that G(H,,...,H ) is Class 1.
12°°°2

Since n is even and h1,...;hn:are all odd, it follows that
h1 +ie. + hn is even. Conseduehtly, if it were true that n = 2 (mod &),
thenh1 t .. * hn - %;IWOuld be odd, a contradiction. Therefore,

n = 0 (mod 4). Consequently, by Kotzig's result, L(G) is Class 1.

Since hi is odd and H, is Class 1 (1 £ i = n), it follows from the
Parity Lemma that Hi can be 4-edge-coloured with the vertices of degree

two having their edges coloured with the pairs of colours

'{1,2}, {2,3}, {3,1}. Consequently, in any 4-colouring of L(G),

a triangle of L(G) corresponding to a vertex v, of G can be substituted
for by"Hi, the three colours on the edges of the triangle being

compatible with the edge-colouring of H,. Thus'G(Hi;;.,,Hn) is Class 1.
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In this section and the next we give two ways of forming k-snarks,

for k > 3.

In this section we consider a set of k—regularvmuitigraphs based on
the Petersen graph and show which of these are Class 2. Then we show
that from these multigraphs one may construct k-regular graphs of the
same ClaSs;

We consider the Petersen multigraph M} s shown. below,

Figure 10.12

where the edges labelled r,s have r and s multiple edges respectively,
- Meredith [M2] has' shown that for r = 2k + 15 s = 2k -3, 2k -2, 2k - 1,
2k, 2k + 1, 2k + 2, the graph Mr svis Class 2 and for r = 2k; s = 2k,

. b

2k + 1, 2k + 2 the graph Mr S is Class 1..
. Ly

" 'Theorem 10.4. If -r'is odd or if,r‘is'even'andfgreater'than,Zs;'thehfthe

"graph.Mr S'istlaSSJZ;'otherwise'the graph is Class 1.
- . I,

"frééf;.'We first consider the 1-factors of the Petersen graph. Let the

inside edges, outside edges and spoke edges have the obvious'meanings,

as indicated in the diagram.
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Ou\’S(dé

. R‘—///f edges

Either all 5-spokes are used, or only one is used, in a 1-factor. Hence

Figure 10.13

the only possible types of 1-factor are as shown in Figure 10.13.

We consider the following three cases:

"'¥'odd. If r =2k + 1, then the number of outside edges is

5r =52k + 1) = 10k + 5,

Now any 1-factor has an .even number of outside edges. Hence, after taking
out r 1-factors, we have used up an even number of outside edges. Since

the number of outside edges is odd, M} o, cannot have a 1-factorisation.
. it

Hence if r is odd, then M- is Class 2.
r,

r even and ' r > 25, If M__ has a 1-factorisation then, whenever two
2

outside edges are in a 1-factor, one spoke is in the same 1-factor. Since

there are 5r outSide edges, the number of spokes is 2 éx, so

-2
.5 . . . ..
58 2 ir; that is 2s 2'r. Since r > 2s we have a contradiction. Hence
Mr s does not have a 1-factorisation and is therefore of Class 2.
Lo

r even and r £ 2s, In this final case we show that there is a

1-factorisation. Consider the 1-factors which use just one spoke, and
take five of these, each containing a different spoke. These five.

1-factors cover each spoke once and every inner and outer edge twice.
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If we take %r sets of these five 1-factors, we will have included each
inner and each outer edge in a 1-factor. The remaining edges will be
spokes, Each spoke is in %r.1—factors. We put the remaining spokes into

s - %r 1-factors, where these 1-factors are the ones which use all spokes.

We have now put M int6 ér +5 - lr = s + 2r 1{-factors.
r,S 2 2

If we give the edges of each 1-factor a different colour,‘then we have

coloured Mr s with s + 2r colours, and hence M.r S is Class 1.

’ Ly

" This proves Theorem 10.4.

We now show how to obtain from a mﬁltigraph Mr,s a simple regular
graph with degree 2r + s of the same Class. fhis is easily done. We
replace each multiple edge uv copsistihg of r parallel edges by a
Class 1 graph with 2r vertices of degree 2r + s - 1,'thé7remaining
ﬁertices being of degree 2r + s. When such a graph is properly
edge-coloured with.2r + s colours, each colour is missing from exactly
two verticés. For each such colour, join one of these ﬁertices to u and

one to v. The process is indicated in Figure 10.14:

) <=
v v

Figure 10.14
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A similar process works for the other type of multiple edge. It is
easy to see that Mr S is Class 1 if and only if any corresponding simple
s ‘

graph obtained by this process is Class 1.

An example of the process described above when r = 2, 2r + s = 5.

Figure 10.15

An’ example of a 4-snark constructed by this process (here r = .1, s = 2).

Figure 10.16
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Another construction, used by Meredith [ M2 ], will suffice to

obtain from Mr s @ simple regular graph of degree 2r + s of the same
Ly

Class. It can be used instead of, or together with, the previous

construction. In this construction we replace each vertex of Mr g OF
b

any of the corresponding vertices of a graph obtained from Mr s by the
£

previous construction, by the complete bipartite graph

or+g—q? 25 shown in Figure 10.17.

K2r+s,

Figure 10.17

Any colouring of KZrts, 2res—1 w1§h 2r+s colours will mean that each of

the 2r+s vertices of degree 2r+s-1 will have exactly one colour missing,

and these missing colours will all be different. Hence colouring Mr
H

is equivalent to colouring the graph obtained fromMr s by these

. >
replacements.
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An example (with r = 1, s = 2) of a 4-snark obtained by -

Meredith [“M2 ] by this second process.

Figure 10.18

"10.2.4 " Another family. of  k—snarks.

Here we define a family M(J) of k-snarks based on the first flower
snark J3 and a particular one of its {-factors F. The first flower snark
J3, and the particular 1-factor we require, are illustrated in .’

Figure-10.19.

Figure 10.19
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M(J) is formed by replacing each edge of F by k -~ 2 parallel edges. .

Clearly M(J) is a regular multigraph of degree k.

Theorem 10.5. M(J) is Class 2.

‘Proof. Assume M(J) is Class 1; then M(J) has k 1-factors. There are

two kinds of 1-factor in M(J), as illustrated:

Figure 10.20

E&ery'1-factor,uses'either 3 edges or 1 édge of t&pe'x; Thefe are
exactly k =2 + 2 =k edges.of”type x in M(J), so the k {-factors must
-each contain exactly one edge of type x. These 1-factors will contain
either 0 or 2 edges of type;y; There are 2(k-2) + 1 = 2k - 3 type y

edges. Since we cannot cover an odd>number of edges with
edge-disjoint 1-factors, we have a contradictiOn: Therefore M(J) is

Class 2.

Either or both of the comstructions described in the previous
section can be used to replace the multiple edges in M(J), and to yield

simple graphs which are k-snarks.
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10.3. The classification of all regular graphs of order at most  10.

Here we give a complete list of all regular Class 2 graphs of
even order at most 10. These results were obtained using a list of all
graphs on up to 10 vertices and running.an edge-colouring programme on

each graph; we only considered even order graphs, since all regular

graphs of odd order are Class 2.

‘Order | Total number of Class 2 graphs
graphs
4 2
6 6 C3 + C3
8 19 CS+C3
10  _ 172 c7+c3,cs+CS,K + K

Figure 10.21

Definition. A k-snark G is proper if for any Class 2 subgraph G'
with maximum degree k, there does not exist a k-snark G* containing

G' of smaller order.

From these results we can see that the Petersen graph is the
only proper simple k-snark on at most 10 vertices . We now give another

proof of this result using the results of Chapter 3 on critical graphs.
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at'most . 10 vertices.

Proof. We haﬁe seen from Chapter 3 that, apart‘from'the 3-critical

graph H of the figure below, the only k—critical graphs on at most-10
vertices haﬁe 2n + 1 vertices and kn + 1 edges. The only graphs of order
at most 10, which haﬁe 2n + 1 vertices and kn + 1 edges, which are not
k-critical are those formed by the addition of an edge joining two of

the vertices of degree 2 of H.

Figure 10.22

By Lemma 2.8, if G is a proper simple k-snark -on at most 10 vertices,

then G contains a k-critical graph on at most 10 vertices.

If k = 3 and G contains the graph H, then G must be a 3-snark, and
the only way to make H into a 3-regular .simple graph.on at most 10 vertices

is to form the Petersen graph.

' *
In any other case, G has a k-critical simple subgraph G of. order

2n* + 1, whose deficiency is

k(2n* + 1) - 2(kn* + 1)

k -2,

]
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The number of edges needed to construct a k-regular simple graph G

*
from G 1is

3 k- 2e k(Y@ - |ven Y.

However, without forming multiple edges, not more than

w2+ <|v<c>'| - |v<c*>|)
' 2

edges can be placed'oﬁvthesewvertices. So if .G* can be extended to G,

then
' %(k ;~2)f,%i<(IV(.G)| ;~|V(G*)[)§.~'\§(k?'~--'2')-!-.qv(c)l - ,V(G*)‘I) ,
.2 . . )
S0 ! , |
| ks, V@] - v | - 1. -
Therefore

k<3 V@] - G+ 1)
from which it follows that

ok + 9 S V(@]

L *
Since k=4 and |V(G)’ £ 10, the only possibility for G has
*
[v(e™)| =5 and k=4

*
but then G 1s a subgraph of K5 and G is not proper.

. The Petersen graph may be obtained by taking an outer 5-cycle with
a semi-edge on each vertex (called a spoke) and an inmer 5-cycle attached
by joining its vertices to every second spoke. M. E. Watkins defined the
' generalised Petersen graph P(n,k) as follows: The graph P(n,k) has
: ’ . 1 L ' |
. vertices Vo v1,...,vn_1, Vs ViseeesVo and edges ViViie

viv! . and v,v! for all i with 0 £ i £n - 1, with all subscripts taken
i i+k i'i ' :
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modulo n. Thus the Petersen graph is the graph P(5,2). Watkins [W1]

conjectured that with the single exception of P(5,2), all of these graphs

are Class 1. 1In 1973 the conjecture was settled in the affirmative by .

Castagna and Prins [ C2].

In a similar way we can define the generalised double-star snark, .

and prove the following:

“'Theorem 10.7.  'The generalised double=star: snark D(n,k), k < —;—n is

Class 2 if and only if D(n,k) is ome of D(1,1), D(3,1), D(5,2) or

D(nkk),'wheré-% is an integer and g.c.d. (n,k) é'%.

Before giving the definition of a double star snark, we give

an example: -

Figure 10.23

D(5,2) is the double-star snark discovered by Isaacs.
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'Définition. Let n and k be positive integers, 1 £ k = n. The

generalised.double star snark has 6n vertices denoted by

bgs byseeesb

RO LRRRLL SRR n-1? ©0° S12°*2%y-q
aé, a;;;..,aé_q, bé, b;;...,bé_1, cé, c;,..,,c;_1,
and edges

2350 Pi%e Pifiage 205

L} 1 T .41 "b'
a.c., bic., bl:a: a..b.
1712 171 TiTTi+k? TiUi+k?

c.c! for all i with 0 £ i £ n-1, with all subscripts taken modulo n.
i’i : ‘
!

The sets of edges {aici, b.c biai+1’aibi+1}’ and {aici, bici, bial+k,

11’

make up the inner and outer rims respectively.

Figure 10.24

] 1
albl!
1 i+k

In order to see that a graph is Class 1, we look for 2-factors where

each cycle has even length. The 2-factors can then be 2-coloured and
the remaining edges will form a 1-factor which can be coloured with the

third colour, and hence the graph will be Class 1.

It is easy to see by symmetry that D(n,k)- = D(n, n-k) and hence we
need only consider k such that 1 £ k é %in. We now introduce some

terminology to describe various paths and cycles that will be used in

3
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the following constructions of 2-factors.

ij is the path indicated in the outer rim from c, to C:

Figure 10.25

L%k’is the similar path in the inner.
M.

ok is the path indicated in the outer rim from c. to ct

Figure 10.26
M! .

ik is the similar path in the inner.

is the mixture indicated of these two' types:
a,b,c,d -

Figure 10.27

N is a similar mixture of the two types:.
a,b,c,d,e '
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Figure 10.28

Pj is the path indicated of length 3:

.

) ghdl
Figure 10.29 .
0j is the circuit indicated of length 6;

Figure 10.30
Ii is- the component in the inner rim containing the vertices
] | ~ 1
ai’vbi’ Cse
Finally we remark that we take the length of a path to be the

number of edges it contains.
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Proof . of ‘Théorem'10.7; We shall use the standard usage that (n,k) is the

greatest common divisor of n and k.

'Case 1. '(n,k). = 1'and n'is even. Then D(n,k) is Class 1. We form a
2-factor consisting of two even cycles, one around the outer rim of
length 3n

a.)

cn.—1 bn—l 0

(aocobo a1c11')1'..'.,an‘_.1

and the corresponding cycle around the inner rim. Hence D(n,k) is

Class 1.

‘Example.. D(4,1).

Figure 10.31

""Case. 2.. (n,k) =1, n'is 0dd and. n ='5. There are four graphs to

consider, D(J,T), D(3,1), D(5,1) and D(5,2).

D(1,1): @ This graph has multiple edges
» and is of Class 2.

AN

Figure 10.32
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D(3,1): This graph is Class 2. The
inner rim is isomorphic to the
3-critical graph on 9 vertices

contained in the Petersen graph.

Figure 10.33

D(5,1): . 'This graph has a Hamiltonian

cycle as shown, and hence is

Class 1.

Figure 10.34 g

D(5,2): This is the double-star snark as drawn in Figure 10.23

and is Clasé'Z.
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Case 3. (n,k) =1, n is odd and at least 7 and k = 2. We construct a

path of odd length 3n in the outer rim and join it up with a path of odd

length in the inner rim:

The outer path is from cy to c and .1s LJ,an'

. 3 ’ ' 3 = .
The inner path 13_(Ln_2,1 if n =4t + 1,
. : ' 3 - .
L1,n—2 if n = 4t + 3.

In both cases the two paths join to give a cycle of even length. We now
find cycles of length 6 in the inner rim to cover the remaining vertices.

The cycles are

o3

) B t - - R .
LO_Z, 0f3:++50! ¢ if n = 4t + 3.

4t + 1,

K=
O =
-
Doe

. .
. e .
-
po
|

[oe)

=
a0
=]

]

Each vertex is in some even cycle and hence D(n,k) is Class't.

Example: D(9,2)

-4

Figure 10.35
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Case 4. (n,k): =1, n is odd and at least 7 and k # 2. We find an odd

length path in the outer rim and join it to an odd length path in the
inner rim. The remaining vertices on the outer and inner rims

respectively are covered by even cycles of length six.

Our odd length path in the outer rim will be Ln;JAf the vertices ot
PN ek

on the path are covered by the cycles 03, 05""’0n—4

Next we find a path of odd length in the inner rim from c, toc ..

Either L' .., or L! has odd length. To see this, note that
n-1,1 1,n—-1 S

L; n-q COVers vertices with subscripts

s '

1-k, 1, kyeeayl #xk=n=-1,n0-1+k,

for some x, and L' covers vertices with subscripts

n-1,1

n-1-k, n-1 = 1+xk, n-1+k,...,n~1+yk = 1,

wheren - 1 + yk.=1 + (x + y)k = 1 + nk, so that x + y = n, so that one
of x and y is odd, the other even. Therefore one of L;_1 1 and
RE)

.L; n-1 has odd length. There will be an even number of vertices on the
AR

inner rim not on the path. They can be covered by cycles 03.

We now have a 2-factor of D(m,k) with lots of 6 cycles and a long
even length cycle using vertices from both the inner and the outer rims.

Hence D(n,k) is Class 1.
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We now give an example to show how the 2-factor is found in the

. inner rim:

The inner rim of D(13,4).

Figure 10.36

The odd path is.L; n;T and  there are two 6—cycle$,.O;.and.Oé.
LK -

- Case 5. n/(n,k) is even. Then n must be evén. Therefore the inner rim
i of D(n,k) will be composed of (n,k) components each with T;EET spokes.

i,
We can find one even cycle in the outer rim and one even cycle in each of

the inner components, and these will cover 'all vertices of D(m,k).
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The. outer cycle of length 3n.is

(agegbyeee @ g e b s 3g).

The inner cycles of length 3n/(n,k) for each i,

0£is=s (n,k) -1, are

T ot ot ' vy 1 1 t
(aj e by @iy el Pl w--aly el Bl 2.

Hence D(n,k) is Class 1.

Example: D(8,2).

N
/
S_Z7

/,
N

Figure 10.37
""Case. 6. n/(n,k). = 3, 'These .graphs are all Class 2 because each inner

component is the 3-critical subgraph of the Petersen graph.

"Céée 7. n/(n,k) is odd and at least 5, and n is.evén; Since nbis.even
and n/(n,k) is odd, (n,k) must be.e?én;'.We obtain an odd length path
in each innef cémponent Ii(O £1i < (n,k)-1). Each.path includes all
the vertices of the component I for i = 0,...,(n,k}) -1. Ve have an
even number of components. We conneét pairs of these Ii with two odd
length paths in the outer rim, to obtaiﬁm%(n,k).even cycles. We form

an even cycle with the remaining vertices of the outer rim.
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For each inner component I we take the path L!

i+3k'i
0 £is (n,k). In the outer rim we take the §(n,k) paths P,. and the
%(n,k) paths P3k+2i,'f0rlo <is %-(n,k)+1. These paths combi@e to

giVé-%(h,k).eveﬁjcycles

1 1 1 -
F2i P2inte3k, 2001 Pakeni “2143k,21 (08iS 2(n,k)=1).

There are an .even number 3n - 4(n,k) vertices in the outer rim not in any
of the above cyclés. The following is a cycle on these 3m - 4(n,k)

vertices (writing m = (n,k)):

ag185bg: - by Sl 23Kk 3141 P 3cem- 123140 SicemD ek 2

oc

All vertices are now in even cycles and hence D(n,k) is Class 1.

Example: D(10,2).

Figure 10.38
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‘Case 8. n/(n,k) is odd and at least 5, nis odd and n # 2k + (n,k)

"Since n and n/(n,k) are both odd, (n,k) must also be odd.

In each inner component I, (Oéiéfn,k)—j)g»we obtain a path

1 - ‘e - .
i+k,i+3k’°f odd length and the remaining vertices form into even cycles

of length 6. We join up all the paths of odd length with paths of

odd length in the outer rim to form an even length cycle. The

remaining outer vertlces again form even cycles.

' 1
For Ii we have the pathkafi’3k+i‘and the cycles

t | S . \j .
0} s> Oduzers =+ 0L oo

w4t : gt

Couai o

Figure 10.39

Then relative to the outer rim we have paths .attached to the following

~—

spokes (writing m = (n,k)):

"

Cs«m-; . c36c CB ok Vet

Figure 10.40

There are (n;m-ZK)-spokes between ck+an and, o ‘Now n-m—2k is

.even; since k < %n5'n~mr2k.z 0; and since n # 2k + (n;k)'we have that

n-m-2k is even and at least 2. Hence we can link up the spokes in the

following manner:.
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Figure 10.41

This path in the outer can be described by Nk,k+m,3k—1,3k+mr1 with

paths P spokes c t and c

k+2i+1, D3k+2i’ k+2i+1 0 Cke2i42 3k+2i ©

C3k+2i+1 (0 = i < E%% -1) respectively.
v n-m—2k-2

(0 iz 5

).

The remaining cycles in the outer are 0O .
& ¢y eo 3k+m+2i+1

Example: =n = 15, k = 3, (n,k) = 3, n/(n,k) = 5. -

Figure 10.42

The long path in the outer rim is N3,6,9,11'
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Case 9. n/(n,k) is odd and at least 5, n is odd and n = 2k + (n,k).

Let n = (2r+1)m, where m = (n,k).

We take paths in the inner

components which join up with short paths in the outer rim as shown:

o ™M

C%léh <2

€y Con Cm Cmpa Cam

Figure 10.43

In I, we take L'
0 m,

. '
in I1 we take L2rm+1,1’

2m;

and in

1
Ii we take Li,m+i v 2

A

P . (1

We need paths P 424

2i’

and circuits 02rm+3’ 02rm+5’

The final path N1,m+1,m+2,2m+1,2rm+1

odd paths to form one even circuit:

Co . C Cq Comes Q,. ez - >
J‘\/_’""\/%./A_A...

Figure 10.44

IA
|

IA

IA

”"OQthrT

PR

v V..V

Czrﬁ\-.-‘

m=1).

E:l)

will combine with all the other

C“?.Cm+‘
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Example: n = 15, k = 6, (n,k) = m = 3.

Figure 10.45

The long path in the outer rim 1s N1,4’7,12’13.
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Chapter. 11...Some.interesting critical graphs..

In this chapter we collect together some critical graphs which are of

interest for some reason or another.

11.1. A counterexample to Vizing's conjecture

We now give an example of a multigraph that does not satisfy
Vizing's conjecture [V3] for the number of edges of a critical graph.

[Vizing's conjecture was actually only stated for simple graphs.]

'Vizing's Conjecture. If G is a k—critical graph with v vertices and

v -

e edges then e %-(kv'— v + 3). (Recall that Vizing's conjecture is
also discussed in the introduction to Chaﬁter 4 and after
Conjecture 5.3). The following graph W is 7-critical with 9 vertices

and 28 edges. From Vizing's conjecture, the number of edges should be

'a; least 29.

Figure 11.1

To establish this assertion, we first show that W is Class 2.
Suppose W is Cléss'T: Since there are nine ﬁertices there are £ 4 edg
of each colour. ‘Since there .are 28 edges and 7 colours,each- colour is
on exactly 4 edges. So there are 7:near 1-factors whose union is W.

a near 1-factor containing e which includes an edge on each ﬁertex of
degree 7 (by symmetry, we need only consider one such near 1-factor).

We now look for a neatr I-factor including ey- ' This is impossible and

es

Remove
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hence W is Class 2.

Figure 11.2

We now show that WNe is Class 1 for each e € E(W), by exhibiting a
colouring for each type of edge removed. Where we have multiple edges .
the colours are written in the form e.g. 1, 3-7, meaning colours

,1’ 3’ _4’ 5, ,6347"

Figure 11.3

Hence we have shown that  for any edge e, the graph Whe ‘has a colouring

with 7 colours and therefore is Class 1. 'Therefore M is 7-critical.
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As remarked in Chapter 6 (see the discussion concerning
Conjecture 6.3), Beineke and Wilson [ B2 ] and, independently,

Jakobsen [ J4 ] made the following remark.

The Critical Graph Conjecture. Every critical graph has an odd number

- of verticéS:

The eﬁidence to support the conjecture was that there were no even order
critical graphs on .at most 10 vertices and no 3-critical graphs of.éﬁen

order on at most316.§erticés: "The conjecture is now known to be false.

The earliest counter-example was given in 1978 by M. Goldberg [ g3 ] who
constructed an infinite sequence of 3-critical graphs of even order, the

smallest of ‘his examples héving order 22.

We have found two 4-critical graphs of smaller ordets. The graphs
have orders 18 and. 16. The graph of order 16 has a multiple edge. [I

should point out’ that the conjecture was only stated for simple graphs].

Both graphs are drawn in Figure 11.4.

Figure 11.4



166.

11.3. The graph that Yap used

Another graph which we found is drawn in Figure 11.5.
This graph is 4-critical of odd order and has 3 vertices of degree 2.
This graph is very useful since Yap [ Y{ ] had iﬁvented a construction
for r—critical graphs of even order (for r 2 4) provided that there

exists an r-critical graph G of odd order with a vertex of degree 2 and

 another vertex of degree at most %-(r + 2). Our graph is the only known

example.

Figure 11.5
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