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ABSTRACT

The object of this thesis is twofold:
(i) to study the structural properties of graphs which are critical

with respect to edge-colourings;
(ii) to apply the results obtained to the classification problem

arising from Vizing's Theorem.

Chapter 1 contains a historical,nonrtechnical introduction, 
general graph-theoretic definitions and notation, a discussion of 
Vizing's Theorem as well as a survey of the main results obtained to 
date in Vizing's classification problem. Chapter 2 introduces the 
notion of criticality in the first section; the second section 
contains both well-known and new constructions of critical graphs 
which will be used in later chapters. The third and final section 
contains new results concerning elementary properties of critical 
graphs. Chapter 3 deals with uniquely-colourable graphs and their 
relationship to.critical graphs. Chapter 4 contains results on the 
connectivity of critical graphs, whereas Chapter 5 deals with bounds 
on the number of edges of these graphs. In particular, bounds 
improving those given by Vizing are presented. These results are 
applied to problems concerning planar graphs. In Chapter 6, critical 
graphs of small order are discussed. All such graphs of order at most 
8 are determined, while the * critical graph conjecture’ of Beineke & 
Wilson and Jakobsen is shown to be true for all graphs on at most 10 
vertices. The seventh and final chapter deals with circuit length 
properties of critical graphs. In particular, the minimal order of 
certain critical graphs with given girth and maximum valency is 
determined. Results improving Vizing’s estimate of the circumference 
of critical graphs are also given. The Appendix includes a computer 
programme which generates critical graphs from simpler ones using a 
constructive algorithm given in Chapter 2,
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CHAPTER 1: INTRODUCTION

1) Historical

. The beginnings of chromatic graph theory go back about 120

years when the Four-Colour Conjecture was first formulated by Guthrie

and discussed in print by Cayley, Kempe, Tait, and Heawood. Since

then, a great deal of research has developed around the problem of

face-colouring of maps and the dual problem of vertex-colouring of

planar graphs. Tait [38] showed in 1880 that the problem of face-
*colouring a cubic map with four colours is equivalent to that of 

colouring its edge's with three colours in such a way that edges 

meeting at a vertex are assigned different colours. In view of 

Tait’s result, it is surprising that the edge-colouring approach to 

the Four-Colour Conjecture has been practically ignored until quite 

recently. In fact the only significant result that appeared in the 

literature between 1880 and 1964 was due to Shannon [37], who showed 

in 1949 that if p denotes the maximum valency of a graph, i.e. the 

maximum number of edges meeting at a vertex, then the least number of 

colours required to colour the edges of the graph does not exceed 

[y p]. For completeness’ sake, we must also mention a result due to 

Johnson [22], who showed in 1963 that every cubic graph can be edge- 

coloured with four colours.

The real breakthrough came in 1964, when Vizing [41] showed 

that, for a simple graph, the least number of colours required to

* To be historically accurate we must state that Tait only proved 
the sufficiency of this condition, since he accepted Kempe’s 

erroneous proof of the Four-Colour Conjecture.



colour the edges must be equal either to p or to p + 1, where p is 

defined as above.

Vizing’s result naturally partitions the set of all graphs 

into two disjoint classes. The first consists of those graphs with 

maximum valency p which can be edge-coloured with p colours, whereas 

the second consists of those which require p + 1 colours. It is not 

difficult to see that a complete solution of the problem of class

ifying graphs into one or other of these classes implies a solution 

to the Four-Colour Problem. This is just an indication of how 

difficult the problem is. However, since 1964, many attempts have 

been made to provide partial solutions to this question. We shall be 

surveying the main results in a later section of this chapter.

Just as in problems related to vertex-colourings of graphs, 

the notion of a graph which is critical in some sense plays an 

important role in most approaches to the problem. This is not 

surprising, since problems about graphs in general can often be 

reduced to ones about critical graphs which are less arbitrary, 

contain more structure and so more can be known about them.

The scope of this thesis is mainly to study the structure 

of critical graphs and apply this knowledge to give a partial 

solution to the classification problem.

2) Basic definitions and notation

In this section we shall give the basic definitions and 

notation to be used in the thesis. This seems the most natural way



of proceeding since there is yet no standard terminology. However, 

the following list is not complete since more specialised terms will 

be defined at the beginning of the chapter in which they first appear 

or as they are needed.

A graph G is a pair (V(G),E(G)) or simply (V,E), where V is 

a finite set of vertices and E is a set of - unordered pairs

of vertices; the elements of E are called edges. We shall be inter

ested primarily in simple graphs, i.e. ones for which a pair of vert

ices (v,w) can define at most one edge. A subgraph H of G is a graph

(V(H),E(H)) such that V(H) c V(G) and E(H) c E(G). If W is a subset

of V(G), then the subgraph- induced by W, denoted by <W>, is the graph 

H such that V(H) = W, and (v,w) e E(H) if and only if (v,w) e E(G).

If H is a subgraph of G and V(H) = V(G), then H is called a spanning 

subgraph.

If X and Y are two disjoint subsets of V(G) and e = (x,y) 

is an edge such that x e X and y e Y , then we say that e is of type 

X X Y. Edges which are pairwise not adjacent (incident with the same 

vertex) are called independent. Tlie valency of a vertex v is the 

number of edges incident with v and is denoted by p(v). The maximum 

valency of G is denoted by p(G) or simply by p. Similarly, the 

minimum valency of G is denoted by_a(G) or simply by a. t (G), the 

total deficiency of G is the sum

I (p(G) - p(v)).
veV(G)

If each vertex has the same valency p, then G is called regular or 

p-valent. A 3-valent graph is called cubic. Vertices adjacent to a 

vertex v are called its neighbours and the set of neighbours of v is 

denoted by N(v). The order of G is the number of vertices of G. It



is denoted by n(G) or simply by n. m(G) or m,denotes the number of 

edges of G.

We define a walk in a graph G to be a sequence:

V ,e ,v ,e ,v ,...,v ,e ,v , where the v.’s are vertices, the e.’s 0 1 1 2  2 n-i n ’ n ’ i i
are edges and e^ = (v^_ ,Vj.) for each i = 1,2,... ,n. The length of

the walk is n, the number of edges. If all the vertices (except

possibly V and v ) are distinct, then the walk is called a chain, o n
If V = V , the chain is said to be closed and it is then called a 0 n----------------------------------
circuit; otherwise it is open. A chain of length k is called a 

k-chain (or k-circuit if closed) and is denoted by or according 

as to whether it is open or closed. If G contains a spanning 

circuit, then G is said to be Hamiltonian.

If V is a vertex of G, then G - v is the graph G ’ such that 

V(G’) = V(G) \ {v} and E(G’) = E(G) \ {(v,x): x e N(v)}. If e is an

edge of G, then G - e is the graph G" such that V(G") = V(G) and

E(G") = E(G) \ {e}. G ’ and G" are said to be obtained from G by the 

deletion (or removal) of v and of e respectively. If G is a graph

and V a vertex not in V(G), then G’ is said to be obtained from G by 

the insertion (or introduction) of v into an edge (x,y) in E(G) if 

V(G’) = V(G) U {v} and E(G’) = E(G) u {(v,x),(v,y)} \ {(x,y)}. If G 

and H are two graphs whose vertices are labelled, then the union of 

G and H, written G U H, is the graph K such that V(K) = V(G) U V(H) 

and E(K) = E(G) u E(H). If V(G) n V(H) = 0 ,  then K is called the sum

of G and H and we write K = G + H.

We shall often encounter various types of graphs. Through

out we shall adopt the following notation: denotes the complete

graph on n vertices and the complete bipartite graph on m and n



vertices. If G is a graph, then a graph H is called the line-graph

of G if there exists a one-one correspondence 0; V(H) ---  ̂ E(G) such

that (v,w) e E(H). if and only if 0(v) and 0(w) are adjacent in G. The 

line-graph of G is denoted by Û. G denotes the complement in the 

complete graph of the same order, A graph is planar if it can be 

embedded in the plane in such a way that no two edges intersect 

except at a vertex to which they are both incident, A.planar graph 

that can be so embedded is called plane. An open region of Eg \ G 

defined by a plane graph G is called a face of G. If all the 

vertices of a plane graph lie on the same face, then the graph is

Two graphs G and H are said to be isomorphic if there exists 

a one-one correspondence between V(G) and V(H) which preserves 

adjacency. We then write G - H, G and H are said to be homeomorphic 

if they can both be obtained from the same graph K by the insertion 

of vertices into the edges of K.

We define .a vertex-colouring of a graph G to be a mapping

(p: V(G)  S such that 5 is a set whose elements are called colours,

and if v and w are a pair of adjacent vertices, then (f)(v) <|)(w). If

h is the least number of colours required to colour G, then h is called 

the chromatic number of G and is denoted by x^(G). G is then said to 

be h-chromatic. We define an edge-colouring or simply a colouring of 

G to be a mapping f: E(G) — S such that S is a set whose elements 

are called colours and if e and e’ are a pair of adjacent edges, 

then f(e) # f(e’). If k is the least number of colours required to 

colour G, then k is called the chromatic index of G and is denoted by 

Xg(G). If t is any integer not less than (G), then G is said to be 

t-colourable. The set of edges coloured with any one colour is



called a colour-class. If v is'a vertex of a graph G which has been 

t-coloured, then 0 denotes the set of colours of edges incident withV
V, whereas 0 denotes the complement of 0^ in the set of t colours.

If a and 3 are two distinct colours used in some colouring of G, then

C Q denotes the subgraph of G consisting of edges coloured a or 3 ot,p
and the vertices defining these edges.

Any COlour-class is an independent setof edges since no 

pair of edges are adjacent. A set of independent edges is called a 

matching. The size of any maximal matching in a graph G is called the 

edge-independence number of G and is denoted by a (G). A k-valent

spanning subgraph of a graph is called a k-factor. In particular, a
: .

matching covering all vertices is called a 1-factor. '

Further Notation: If x is a real number, then [x] denotes the

largest integer not greater than x and {x} denotes the smallest 

integer not less than x. If S is a set, |S| denotes the cardinality 

of S. := and =: mean ’is defined to be’ and ’defines’

respectively. // indicates the end or absence of a proof.

3) The Theorem of Vizing

We enunciate formally the theorem of Vizing [41] referred 

to earlier and give a proof which is somewhat different from other 

known proofs (see, for example [2, p. 211] or [32, p. 248]) but which, 

like them, depends crucially on a ’Kempe-chain’ type of argument.

1.1 Theorem . ' 7 - - ' ..

If G is a simple graph with maximum valency p, then 
p < X g ( G ) f P + l .



Proof

Among all graphs for which the statement is false, let G be

one with a minimum number of edges. Thus, if e is any edge of G,

G - e is (p + 1)- C Olourable, Let v be a vertex of maximum valency and 

assume that all edges of G except one edge e incident with v have been 

coloured with p + 1 colours. We shall show that e can also be

coloured with one of the colours already used.

Witl%out loss of generality, we can assume that p(v) > 3.

Let N(v) be the set (v ,v ,...,v } and let the uncoloured edge beP
(v,v,). Let b £ 0^ and a, € .0 , Such a colour a. exists sincei V  ̂ Vj I
| 0  I = (p + 1) -  ( p ( V j )  -  1) > 2 .

Also, Uj € 0^, for otherwise we could colour (v,v^) with 

colour aj. Suppose a^ colours (vjV^). We can colour (v,Vj) with 

colour aj and un-colour (v,v^). The vertices v, v^, v^ belong to the 

same component of C , for otherwise we could change the colourss 1 J D
alternately on the open chain with initial vertex v^ without affecting 

the colouring of (v,Vj). This would enable us to colour (vjV^) with

colour b. Let a. e 0 . Again, a e 0 and moreover, a z a .2 Vg 2 V  2 1
Suppose a^ colours (v,v^). Then we can colour (v,v^) with a^ and un

colour (v,Vg). Vertices v, v^, v^ belong to the same component of

^ by the same argument as before,

We repeat this process until we arrive at a vertex v^ such

that the edge (v,v^) is un-coloured, a^ c 0 and h satisfies
k

1 < h < k - 2. We note that this is possible since k > 3. Without 

loss of generality let h = 1. We have seen that v, v^, v^ belong to 

the same component of ^ . This component can only be an open
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chain F with initial vertex v, initial edge (v.,v.,) coloured a, and
.1 ; 1

terminal edge (x,v^) coloured b, where x e N(v^) \ {v}. Consider a 

chain T coloured a and b, of maximum length and with initial edge 

(v^,y) coloured b, where y e N(Vj )̂ \ {v}; clearly such a chain must

exist. Since a e 0 ,F n F = 0. Thus, we can change the colours 
! 7̂ 2

alternately on F to allow us 

This completes the proof, //

alternately on F to allow us to colour the edge (v,v^) with colour b.

The strength of this theorem is evident from the fact that
' •  ' ■ .it imposes very sharp, strict bounds on the chromatic index. It is 

also evident from the impossibility to strengthen it, at least in the 

following sense: Let G be the line-graph of a graph G and let w(G)

denote the clique number of G, i.e. the size of any largest maximal 

complete subgraph of G. Clearly, p(G) = 0)(Ĝ . Since = X.^(G),

Vizing’s theorem implies that x^(G) < 03(G) + 1. This suggests the 

question: Can we construct an alternative proof of this theorem by 

first showing that x^(H) < oj(H) + 1  for all graphs H and obtaining 

Vizing’s theorem as a corollary ? In fact, this statement is false, 

since House [15] has shown that for all integers w, k such that 

Î < 0) < k there exist k-chromatic graphs with clique number w.

Moreover, we have been able to show the following:

1.2 Theorem - ;

The Four-Colour Conjecture is true if and only if 

Xy(G) ^ w(G) + 1 for every planar graph G.

Proof

Assuming that every planar graph is 4-colourable and noting 

that for planar graphs w(G) ^ 4, we consider the following four cases :

(i) If U)(G) = 4, then X^(G) ^ 5 = w(G) + 1, by Heawood’s 5-coIour

theorem (cf. [14]);
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(ii) if Cü(G) = 3, then (G) < 4 = w(G) + 1, by hypothesis;

(iii) if w(G) = 2, then X^(G) ^ 3 = co(G) + 1, by Grotzsch’s theorem

(cf. [ 12]); and

(iv) if w(G) = 1, then X^(G) < 2 = w(G) + 1, trivially.

Conversely, assume X^(G) S  w(G)  + 1 for all planar graphs G,

The result clearly holds if p(G) <3 .  So let us assume that 03(G) = 4
and apply induction on the.order of G. If G is K. the result holds4
trivially. If G is not K., then G contains a
triangle T, say, such that there are vertices of G both inside and

outside T. Thus, by the inductive hypothesis, we can colour its 

interior Int(T), the subgraph of G induced by all vertices on and

inside T, with four colours. If we define Ext(T) similarly, then we

can also colour the exterior of T with four colours. Having chosen 

the notation in such a way that the vertices of T are coloured a, 3, 

and Y in both cases, we can re-combine Int(T) and Ext(T) to give a 

4-colouring of the graph G. //

For various other conditions equivalent to the Four-Colour 

Conjecture the reader is referred to [35].

4) A survey of classified graphs ^

In this section we survey the main results obtained in the 

classification problem arising from Vizing’s theorem. One of the 

earliest results in this direction is due to Konig [23]:

1.3 Theorem

All bipartite graphs are in class 1. //

This was also proved by Vizing [42] and somewhat generalised by Welsh, 

who noted that if a graph which is not an odd circuit has all its
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circuits of the same parity, then it must be of class 1.

The complete graphs have also been investigated by various 

people. So, for example, Vizing [42], Wilson [45], Berge [4], and 

others have noted the following: ‘

1.4 Theorem

K is of class 1 or of class 2 according as n is even or n
odd. //

To show that K is of class 1, one can give an explicit colouring of 

the edges. That  ̂ is of class 2 follows as a corollary from the 

following more general result proved explicitly by Beineke & Wilson [3] 

and found implicitly in the work of Vizing [42], ,

1.5 Theorem j , —

If G is a graph of odd order and if its total deficiency is 

less than its maximum valency, then G is of class 2, //

We list some corollaries of this result to which we shall 

be referring later.

1.6 Corollary

If G is regular of odd order, then G is’of class 2. //

1.7 Corollary

If G is regular and has a cut-vertex, then G is of class 2.//

1.8 Corollary

If G is obtained from a regular graph of even order by 

inserting a vertex into any one of its edges, then G is of class 2, //

Before proceeding with other established results in the 

classification problem, we include here one or two results of our own 

on regular graphs since this seems to be the most suitable place to 

insert them. We shall refer to the following theorem in Chapter 2.
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1.9 Theorem

The graph obtained from a complete graph of even order by 

removing a 1-factor is of class 1.

Proof

We first exhibit a decomposition of ^2^+2 i^to k Hamiltonian 

circuits and a 1-factor. We label the vertices a, b, 1, 2, 3 , 2k

and for i = 1, 2, 3,..., k we obtain the i’th Hamiltonian circuit H.
. ■; ' . -- ^ :

by taking the sequence of edges {(i,i+l), (i+l,i-l), (i-l,i+2), 

(i+2,i-2),...,(i+k-1,i+k+l), (i+k+l,i+k)} (where all arithmetic is 

worked modulo 2k) and joining a to i and to i + k. We then introduce 

b into the unique edge (i+r,i-s), where r + s = k (mod 2k). 

Illustration

in

20=

. Figure 1.1

The 1-factor is then the set of edges { (a,b),(1,1+k),(2,2+k),... (k,2k)}.

Now let an arbitrary 1-factor of ^2^+2 be given. We label the 

vertices of the first edge 1 and 1 + k respectively, those of the 

second edge 2 and 2 + k respectively,those of the k*th edge k and 

2k respectively, and those of the (k+l)*th edge a and b respectively. 

Then we can decompose the edges of which are not in the 1-factor

into k edge-disjoint Hamiltonian circuits, each of which is
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2-colourable, Thus, the graph obtained from K2k+2 by deleting an 

arbitrary 1-factor is of class 1, as required. //

The next result generalizes (1.7).

1.10 Theorem

If G is a p-valent graph which contains a set of t edges

(t < p) whose removal yields a disconnected graph having an odd ^

component, then G is of class 2.

Proof

Let the separating set of t edges be S. Let G* := G - S

and let C be the odd component of G\. If p is the order of C, then

PP I p(v) ,
veV(C) ■ .

since G is p-valent. Thus,

PP ^ p(p - 1) + t < p(p - 1) + p ,

P > p. ..
Thus, C contains at least one vertex of valency p and its total 

deficiency is less than p. Hence, by (1.5), C is not p-colourable 

and so neither is G. //

Returning to the survey of established results in the 

classification problem we note that some rather special classes of 

graphs have been investigated. It is well known that the Petersen 

graph is of class 2. Watkins [13, p. 171] suggested the following 

generalization of the Petersen graph. We denote the generalized 

Petersen graph by P(n,k), where P(n,k) is defined for each pair of 

integers k and n satisfying 1 < k < n as follows:

V(P(n,k)) = {uj, ,Uj,... ,u^_. ,v^,v^,... ,v̂ __̂ } and

E(P(n,k)) = {(u^jU^^j),(u^,v^),(v^,v^^^): i an integer} , and where 

all arithmetic is worked modulo n. Thus, for example, the Petersen
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graph is P(5,2). We call the subgraph induced.by the vertices

{u ,u j...jU„ } the outer rim, that induced by the remaining vertices0 . 1  n—i ------;- :
the inner rim, and the edges of the form (u.,v.) the spokes of P(n,k).

. ■■ ^  ^
Clearly, P(n,k) is isomorphic to P(n,n-k).

Watkins [13] conjectured that all graphs in this family are 

of class 1 with the exception of tbe Petersen graph itself. Watkins 

himself settled a few cases of this conjecture but the coup de grace 

was dealt recently by Castagna & Prins [6] , who showed:

1.11 Theorem "

P(n,k) is of class 2 if and only if n = 5  and k = 2. //

A generalization of another type of graph, the circuit, has 

also been investigated. Parker [33] defines a generalized circuit 

C(n,k) as follows : C(n,k) is composed of k copies of the totally 

disconnected graph on n vertices. These copies are arranged in a 

k-cycle and two vertices are joined if and only if they lie in 

adjacent members of the k-cycle. In this set-up we have the following 

result:

1.12 Theorem

C(n,k) is in class 2 if and only if n and k are both odd. //

A similar result has also been established recently by Laskar & Hare

[25]. ' . ■  ̂ ;■

1 .13 Theorem

Let K(n,r) denote the complete r-partite graph each of whose 

parts has n vertices. Then K(n,r) is of class 2 if and only if n and

r are both odd. //

Another type of graph has been considered by various 

authors: Balaban [1] , Biggs [5] , Meredith & Lloyd [31] . The family
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of odd graphs whose k ’th graph is denoted by 0, is defined as follows;
' -" V  ' kThe vertices of 0. are indexed by the (k-l)-subsets of the (2k-l)-set 

{l,2,...,2k-l}. Two vertices are adjacent if and only if their 

indexing sets are disjoint. Thus, 0̂  ̂is k-valent and is of odd order

if and only if k is a power of 2. In particular, 0„ is the 3-circuit
' -  . . ■ ■ . ■ and Og is the Petersen graph. It is conjectured that 0^ is of class 1

for all k > 5 and k 2^. Meredith & Lloyd have proved the following

resul t :

1.14 Theorem

0^ and Og are the edge-disjoint unions of two Hamiltonian

circuits and a 1-factor and three Hamiltonian circuits respectively

and hence 0- and 0, are of class 1. 0-, is Hamiltonian. //.5 0 /

One other general result due to Vizing [43] is worth 

mentioning here although the problem related to it will be discussed 

in Chapter 5. This result is concerned with planar graphs.

1.15 Theorem ’

If G is a planar graph whose maximum valency is at least 8, 

then G is of class 1. //

*

As can be seen, not many general classes of graphs have been 

classified. However, some other results on particular graphs are 

known. Thus, for example, it is not difficult to see that all the 

Platonic graphs are of class 1. Also, a case-by-case analysis of all 

connected graphs of order at most 6, enabled Beineke & Wilson to show 

that out of a total of 143 such graphs only the eight in Figure 1.2 

are of class 2; this seems to indicate that graphs of class 2 are 

rather fewer in number than those of class 1.
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Figure 1.2

One rather important contribution to the solution of the 

problem has been the construction of class 2 graphs from simpler 

class 2 graphs. Thus, for example, Meredith [30 3uses a *vertex- 

rcplaccmcnt* method to construct n-valent, n-connected, non- 

Hamiltonian class 2 graphs based on the Petersen graph.

Two constructions of cubic class 2 graphs are due to 

Rufus Isaacs (private communication).

Construction 1

Let G and H be two cubic graphs of class 2, such that H 

contains the following induced subgraph on six vertices:



18

V
1

V
h2

Figure 1.3

Now, let (w ,w ) and (w ,w ) be a pair of non-adjacent edges of G,
1 2 3 4

Then the graph obtained from G and H by deleting the vertices v and
■ V

Vg from H and the edges (w^jW^) and from G and joining w^ with

(i = 1,2,3,4) by an edge, is also cubic and of class 2.

Illustration

G: w

w

H:

V

V V6 4

W V4 4

Figure 1.4

Construction 2

. Let n be an odd positive integer. Take and label the

vertices 1,2,...,2n. Take a set of n other vertices {a ,a ,...,a }1 2 n
and join a. with vertices i and i + n on , where all arithmetic is 1 2n
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worked modulo 2n, Now take C and label its vertices b ,b ,...,b .n 1 2 n
Join b. with a. cyclicly. The resulting graph is cubic and of

. V .class 2. Figure 1.5 illustrates this construction for the case n = 3.

Figure 1.5

Making use of (1,6), we can construct ah infinite family of

iterated line-graphs all of which are of class 2. This can be achieved

as follows: Let G be an arbitrary regular graph of odd order and
• ■ . valency p =  2 (mod 4), (such as K^), and let (G) denote the k th

, . ■ ^ k .iterated line-graph of G. We shall show that (G) is of class 2 for

each k. It is clear that (G)^ is regular. Denote by the valency

of each vertex of (G)^. Thus,p^ = p(G) and = p(G), Using the

fact that, by hypothesis, p^ = 2(2t + 1) for some positive integer t,
k+1we can establish inductively that p^ = 2(2 t + 1), which is 

congruent to 2 (mod 4), Also,

"k =“ "((G)k) = = (2^ +

which is odd since n^ is odd. This completes the proof.

In the same vein, Jaeger CIS] proved the following theorem:

1.16 Theorem

If G is a regular graph of class 1 with an even number of 

edges, then G is also of class 1. //



We conclude this section by giving a construction of 

class 2 graphs from others of smaller order. First we need the 

following definition;

20

A Hajos union of two graphs G and H is the graph obtained 

from G and H by the following construction:

(i) a vertex v in G is identified with a vertex w in H;

(ii) some edge (u,v) is deleted from G and some edge (w,x) is 

deleted from H;

(iii) the vertices u and x are joined by an edge.

This construction is illustrated in Figure 1.6. Using it,

•Jakobsen [19] proved the following result:

1.17 Theorem

If G and H are two class 2 graphs with p(G) = p(H) = p,

then any Hajds union K of G and H, in which the sum of the valencies

of the identified vertices does not exceed p + 2, is also of class 2 

and p(K) = p. //

V
H: K: /A\ /f\v=w

Figure 1.6
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CHAPTER 2: CRITICAL GRAPHS ' :

1) Definitions and examples

It has been noted in Chapter I that graphs which are

critical in some sense have played an important part in the

classification problem discussed there. Two different definitions of 

critical graphs have been put forward. The first one was used by 

Beineke & Wilson [3] , who defined a vertex-critical graph G to be a

graph of class 2 such that the removal of any vertex yields a graph

with smaller chromatic index. The second one was introduced by 

Vizing [42] and adopted by Jakobsen [19] and others: A graph G is

defined to be edge-critical if it is connected and of class 2, but the 

removal of any edge reduces the chromatic index. It is clear that 

every edge-critical graph is necessarily vertex-critical, but that the 

converse is not true in general. Thus, for example, K is vertex- 

critical but not edge-critical.

For graphs which are edge-critical, Vizing [43] proved the 

following fundamental result. Here we present our version of the 

proof, but we first require a definition:

Let X be a vertex of a graph whose edges have been coloured 

in such a way that adjacent edges are assigned distinct colours. A 

fan-sequence at x with initiàl edge (x,x ) is a sequence ((x,x.)) of
. 1  J

distinct edges incident with x such that, for each j > 1, the colour 

of (x,x. ) does not belong to 0 , where as before, 0 is the set ofJ+l X. V
colours present at a vertex v.
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2.1 Theorem

Let G be an edge-critical graph and let v and w be a pair 

of adjacent vertices such that p(v) = k. Then w is adjacent to at 

least p - k + 1 other vertices of maximum valency p.

Proof

Consider a p-colouring of G* := G - (v,w). It is clear that 

w is incident to edges coloured with each of the p - k + 1 colours
i  .
not present at v, since otherwise, we should get a p-coloiiring of G.

Thus, p(w) > p - k + 2. We partition the set of p colours into

three disjoint sets: 0 \  0 0  \  0 , and 0 n 0 . Note that theW  V V W  V  w
first two sets are necessarily non-empty, whereas the third may well 

be empty. We now make two assertions:

(i) In G ■, any pair of fan-sequences at w with distinct 

initial edges coloured with some colour from 0^ \ 0^ must have empty 

intersection.
For suppose not. Let ((w,ai),(w,a2),...,(w,a )) and

((w,b^),(w^b^),...,(w,b^)) be a pair of fan-sequences at w with
^p ” minimal length, in the sense that each contains no
proper subsequence having initial edge coloured with some colour from 

^  that all edges except a and b are distinct. At
least one of p and q is at least 2; without loss of generality,

suppose p > 2. Let the colours of the first sequence be a^,a^,...,a

and let the colours of the second sequence be 0 ,3 ,...,3 ,o ,
1 2  q-i P

if q > 2. If q = ] , then 3j = Thus, is missing both from

from bq^^. Since these fan-sequences are of minimal length, 

none of their colours except and 3̂  are in 0^ \ 0^. Let y belong 

to 0^ \ 0^ and consider a chain T of maximal length consisting of 

edges alternately coloured CL and y and having initial edge 

(^»^p) = (w,b^). We consider two distinct cases:

(1) q > 2; r may terminate at either a or at b or at neitherP- 1 q- 1

of these. In the last two instances, by interchanging

the colours of T and re-colouring (w,a.) with colour a. , for1 1+1



23

i = 1,2,...,p-l, we can colour (v,w) with a . . In the first instance, 

by interchanging the colours of F and re-colouring (w,b.) with colour 

3. , for j = 1,2,...,q-l, we can colour (v,w) with colour 3 .

(2) q = 1 : If r does not terminate at v, then, by interchanging the 

colours of F, we can colour (v,w) with 3 —  If F 

terminates at v, then by interchanging the colours of F and re

colouring (w,a^) with colour , for i = 1,2,...,p-l, we can colour 

(v,w) with colour a .

This proves our first assertion. The second is the 

following: . ' ,

;(ii) No fan-sequence >((w,a ), (x7,a ),..., (w,a )) with edges
_ ■ : - . P \ ■

coloured a,,a„,...,a respectively and such that a, lies in 0 \ 01/ 2’ ’ p ^ ■ 1 w  V
can contain an edge (w,a,) such that 0 contains some a., where i< k.

■ . ' ; %  _

Suppose on the contrary that this is the case and let y

belong to 0 \ 0 . If we assume that i > 2, then there must exist a
- . ■ . . .chain with edges alternately coloured y and a., having initial vertex

a. ^incident with an edge coloured y) and having terminal edge (a. ,w)

(coloured a.); otherwise, by colouring (w,a. ) with colour y,1  . 1-1
interchanging the colours on the maximal (y,a.)-chain starting at a._

. . .  .  . .and re-colouring edge y w , a . j with colour a.^ , for j =? i,2,...,i-2

(if this set is non-empty), we can re-colour (v,w) with colour a .
■ ■ ' : ^

similarly, there exists a (y,a.)-chain with initial vertex

a^ (and initial edge coloured y) ajjd terminal vertex either w (and

terminal edge (w,a.) coloured a.) or a. (and terminal edge 1  ̂ . 1-1
coloured y) ; otherwise, we can re-colour (w,a^) with colour y. We can

then interchange the colours on the maximal (y,a.)-chain starting at
'a, and re-colour (w,a.) with colour a., for j = l,2,...,k-I. This K J J + l

allows us to colour (v,w) with colour a .

However, the simultaneous existence of these two (y,(X.)- 

chains is clearly impossible. There remains to deal with the case
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when i = 1. In this case, by re-colouring (w,a.) with colour a., 

for j =1,2,...,k-l, colouring (w,a^) with colour y and interchanging 

the colours on the maximal (y,a^)-chain starting at a^ (and which 

terminates at a,), we can colour (v,w) with colour a . This concludes 

the proof of our second assertion.

We now complete the proof of the theorem as follows:

Consider a fan-sequence of maximal length at w and starting with an 

edge coloured with a colour from the set 0 \ 0^. By our second

assertion, such a fan-sequence must end with an edge (w,z) such that

0 is empty and thus p(z) = p. By pur first assertion, there are at
^ .least p - k + 1 such fan-sequences ending in as many edges, which are

pairwise distinct. Thus, w is adjacent to at least p - k + 1 

vertices of maximum valency other than v, as required. //

Thisf theorem has the following corollaries :

2.2 Corollary

If G is an edge-critical graph with maximum and minimum 

valencies p and a respectively, then

(i) every vertex of G is adjacent to at least two vertices of 

maximum valency*

(ii) G has at least

max {3,p - o + 2 }  .

vertices of maximum valency. //

2.3 Corollary

If G is an edge-critical graph, then for each edge e, 

p(G - e) = p(G). //

2.4 Corollary

• If G is an edge-critical graph, then for each edge e,

Xg(G - e) = p. /'/
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In view of this discussion, we shall adopt the second 

definition of criticality, and define a graph G to be critical if 

G is connected and of class 2, but the deletion of any edge yields 

a graph of class 1. We also call such a graph p-critical when we 

wish to emphasize the fact that its maximum valency is p. Occasionally, 

we shall also use the first definition of criticality, but when we do 

so, we explicitly call such graphs vertex-critical.

It is not difficult to see that p-critical graphs exist for 

each p. One way of seeing this is by noting that p-valent graphs 

exist for each p. For each p we consider a p-valent graph which may be 

of odd order or of even order. In the former case, the graph is of 

class 2, by (1.6). In the latter case we can obtain a graph of 

class 2 by inserting a vertex into any one of the edges. Thus, for 

each p there exist class 2 graphs having maximum valency p.

Now consider an arbitrary graph G which is of class 2 and 

let e be any edge. If G - e is of class 1, then we call such an edge 

essential; otherwise, we call it non-essential. Thus, a critical 

graph is a class 2 graph all of whose edges are essential. Moreover, 

if from G we remove the (possibly empty) set of all non-essential 

edges, then we obtain a critical graph with the same maximum valency. 

This shows that p-critical graphs exist for each p.

Vizing [43] strengthened this last assertion as follows:

2.5 Theorem , :

If G is a class 2 graph with maximum valency p, then G 

contains a k-critical subgraph for each integer k satisfying 

2 < k < p. //
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We illustrate these ideas by dealing with the following 

example in some detail. Consider the generalised Petersen graph 

P(8,3). This graph is illustrated in the following diagram and was 

sho\cn to be of class 1 in (1,11).

u

u

Figure 2.1

We obtain a class 2 graph, from P(8j3) by introducing a vertex w into 

the edge (u^,u ). Clearly, each of the edges (w,u^), (w,u^) and 

(UfjUi^ ) (i = 0,1,2,...,6) is essential, since the deletion of any 

such edge allows us to colour the remaining edges of this set and those 

of the inner rim alternately a and 3> whereas the spokes can be 

coloured y. Moreover, the following five 3-colourings show that all 

other edges are also essential. This shows that the graph obtained 

from P (8,3) by the insertion of a vertex into any edge of the outer rim 

is in fact 3-critical. Note that each of these colourings enables us 

to say only that the edges marked & are essential. The conclusion 

that the edges marked @ are also essential follows by symmetry.. ■ ;
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Figure 2.2

We conclude this section by giving a few examples of critical 

graphs to which we shall be referring in later chapters.

2.6 Theorem

The graph G obtained from the complete bipartite graph K 

by inserting a vertex into an arbitrary edge is p-critical.
P,P
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Proof . ■ ■ ■ .

It follows from (1.8) that G is of class 2. We now show

that the deletion of any of the edges of G yields a graph of class 1.

It is readily seen that any two edges of K lie on a Hamiltonian
P> P

circuit, so that if v is the new vertex of G and e is any edge of G, 

there is a Hamiltonian circuit H containing both v and e. In G - e, 

the remainder of H can be 2-coloured, and the graph G - H is a 

bipartite graph which can be (p - 2)-coloured, by (1.3). It follows 

that X_(G - e) = p. //

Before proving our next two theorems we need to establish 

the following lemma.

2.7 Lemma ... ' - ' -..̂ -

There exists a decomposition of into k edge-disjoint

Hamiltonian circuits and a 1-factor in such a way that

for any pair of distinct edges not in the 

1-factor, one of the Hamiltonian circuits contains both of them.

Proof

We use the construction and notation of (1.9), and consider 

various cases according to the ways in which the prescribed edges e 

and f are adjacent to the edges of the 1-factor F.

Ga£e__lj_ e and f have a common vertex v, say.

Let e = (v,x) and let f = (v,y).

(i) If (x,y) € F, we assign the new label a to the old vertex v, the 

new label 1 to the old vertex x, and the new label 1 + k to the old 

vertex y. We then label b the vertex adjacent to v in F and label the 

vertices of the remaining edges of F (2,2+k),(3,3+k),(4,4+k),..., (k,2k) 

respectively. Thus, e and f belong to Hj in the decomposition of
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(ii) If (x,y) ^ F, then we assign the new label 1 to the old vertex v, 

the new label a to the old vertex x and the new label 2 to the old 

vertex y . We label vertices adjacent to a, 1, and 2 in F, b, 1 + k, 

and 2 + k respectively. We then label the vertices of the remaining 

edges of F (3,3+k), (4,4+k),..., (k,2k) respectively. As before, e and 

f belong to Hj in the decomposition of of (1.9).

Ca^e_2j_ e and f have no common vertex, but are adjacent to the same

edge (v,w) in F. Let e = (v,x) and f = (w,y).

(i) If (x,y) G F, then we assign the new labels 1,1 + k, 2 + k, and

2 to the old vertices v, w, x, and y respectively. We label the

vertices of the remaining edges of F (3,3+k), (4,4+k),.,., (k,2k), and 

(a,b) respectively. Thus, e and f belong to the

decomposition of 0  • 9) .

(ii) If (x,y) i  F, then we assign the new labels 1, 1 + k, a, and

2 + k to the old vertices v, w, x, and y respectively. We label b

and 2 the vertices adjacent in F to a and to 2 + k respectively. We 

then label the vertices of the remaining edges of F (3,3+k), (4,4+k),..., 

(k,2k) respectively. Thus, e and f belong to Hj in the decomposition
V rsÇ /I o\

- ' ■ . / ' ■

Ĉ ase_3j_ e and f are not adjacent to the same edge in F.

Let e = (v,w), f = (x,y), and vertices adjacent in F to v, w,

X, and y be v', w', x’j and y^ respectively. We assign the new labels 

1, 1 + k, a, b, 2, 2 + k, k, and 2k to the old vertices v, v ’, w, w^, 

y, y^, x ’, and x respectively. We then label the vertices of the 

remaining edges of F (3,3+k), (4,4+k),..., (k-l,2k-l) respectively.

Thus, e and f belong to in the decomposition of ^2k+2 (1.9).

This completes the proof. //
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2.8 Theorem

The graph G obtained jErom by inserting a vertex into

an arbitrary edge is critical.

Proof

It follows from (1.8) that G is of class 2. We now show

that the deletion of any of the edges of G yields a graph of class 1.

Let the new vertex v be inserted into the edge e. It is trivial to

see that if f is any edge incident with v, then G - f is of class 1.

So let f be an edge not incident with v. By (2.7), there exists a 

Hamiltonian circuit H in G including v and f, such that G - H is 

(2k-3)-colourable. But H - f is 2-colourable. Thus, G - f is (2k-l)- 

.colourable, as required. //

2.9 Theorem

The graph G obtained from by the deletion of an arbitrary

1-factor and the insertion of a vertex into any one of the remaining 

edges is critical.

Proof ■  ̂\

By (1.8), the graph G is of class 2. To see that it is in

fact critical, let the vertex v (of valency 2) be inserted into the 

edge e. It is trivial to see that if f is any edge incident with v 

in G, then G - f is of class 1. So let f be any edge not incident 

with V. By (2.7), there exists a Hamiltonian circuit H in 

including e and f, such that (H u F) is (2k-4)-colourable for

any arbitrary 1-factor F. But H - f is 2-colourable. Thus, G - f

is (2k-2)-colourable, which completes the proof. //

; Finally we show that each graph in the infinite family of 

graphs, the k ’th member of which we denote by L^, is 3-critical. Lj 

and L^ are shoifn in Figure 2.3. For k > 2, we obtain L^ from L^_^ by

inserting a vertex labelled 2k - 1 into the edge (a,2k-3) and a vertex
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a

b

^2^
a

b

o c

Figure 2.3

labelled 2k into the edge (b,2k-2); we then join the new vertices 2k 

and 2k - 1 by an edge. We note that consists of a Hamiltonian 

circuit, which we denote by and a set of k + 2 independent edges, 

which we denote by

It follows from (1.8) that for each k, is of class 2. We

now show that the deletion of any edge of results in a 3-^colourable

graph. This is clearly true if the edge e is deleted from H^, for

then we can. colour H^ - e with two colours and the edges of with

the third colour. So let e be an edge of S^. To show that - e

is 3-colourable, we use induction on k. It is easy to start the

induction and check that the statement holds for Lj, L^, and L^. Now

we assume that the statement holds for all L, with k < k.. We note

that L. (k > 4) contains at least four edges of the type (2r-l,2r).
0 °

Moreover, L, - e has at least two ."consecutive" edges of this type.
0 - ‘ ,

Let L* be the graph obtained from L. - e by deleting two "consecutive"
0

edges of the said type and contracting all edges incident with the 

resulting vertices of valency 2. Then,L’ has at least one edge of 

type (2r-l,2r) and is 3-colourable, by the inductive hypothesis. 

Moreover, any 3-colouring of L* induces a 3-colouring of L^ - e, as
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indicated in the following diagrams:

o— ot— o o— ot— o— ot— o o— ot— o o— -Ot— -o— 3— Ç— ot— o

o— a— o o— a

r n ^  ,  ,-> Y Y Y Y

— d— ot— o-3— 6— ot— o o— 3— o o— 3— 6— ot— 6— 3

Figure 2.4

This completes the induction and the proof

2) Constructions of critical graphs I '

In this section we consider two types of constructions of 

p-critical graphs :

Type (A) We construct p*-critical graphs from p-critical graphs of

the same order, where p* > p.
*

Type (B) We construct p-critical graphs from other p-critical graphs 

of smaller order.

Type (A)

We first establish a lemma.

2.10 Lemma

Let G. (i = 1,2) be a pair of 3-critical graphs formed 

respectively by taking an odd circuit ^2s+ ] ^ set of s independ

ent edges. If Sj n = 0, then G := Gj u G^ is a 4-critical graph. 

(Remark. This construction is illustrated in Figure 2.5)

Proof y y  ̂ ' - r

From (1.5) it follows that G is of class 2. We now show
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that every edge e of G is essential. We consider two cases;

(i) e £ ^2s+l* this case we colour the edges of - e

with 1370 colours and each of and with the

third and fourth colours respectively.

(ii) e e : Here we colour - e with three colours and the

edges of S. (j i) with the fourth colour. //J

G|:

6

G,r

6

Gj u G^: J 1 2

6

Figure 2.5 .

An inductive argument easily generalizes Lemma 2.10 to give 

the following theorem .

2.11 Theorem

Let Gj, G^ be 3-critical graphs such that for each

i = 1,2,...,t, G^ is formed by taking an odd circuit and a set

of s independent edges. If n = 0 for each i, j (i j), then 

G := Gj u G^ u ... u G^ is a (t+2)-critical graph. //

To illustrate this theorem, we first show how to obtain an

infinite family of 3-critical graphs. We take an odd circuit ^28+1
(s)'' \ .(s >2) and let G be the graph obtained from it by adding a set of

s independent edges as in Figure 2.6.
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0--

Figure 2.6

By induction on s, it is easy to check that G is in fact 3-critical

We now take the graph of order 2s + 1 and label its vertices 

1,2j3,...,2s+l in a counterclockwise manner along the (2s+l)-circuit. 

We call this graph and we denote the set of edges of G^ not on the 

(2s+l)-circuit by S^. We now let G^^j be a copy of G^ except that the 

vertex formerly labelled j is now labelled j + 2 (mod 2s+l) for 

j = 1,2,3,... ,2s+I. The graphs in the set {G^ ,G2 ,G^,... j} then 

satisfy the conditions of Theorem 2,11. We can therefore construct 

p-critical graphs of odd order 2n + 1 for each p satisfying 

2 < p ^ {|n} + 2. Figure 2.7 illustrates this for the case n = 3.

Figure 2.7 '

This can be considerably improved by the use of more 

complicated constructions. The statement and proof of these are 

deferred till Chapter 4 by which time the relevant preliminary
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concepts will have been introduced.

The reader is referred to a computer programme included in 

the Appendix. This programme generates p*-critical graphs from 

p-critical graphs (p* > p) of the same order, using the algorithm 

exhibited in (2.11). The programme was written jointly with C, Galea 

and A. Buttigieg.

Jakobsen [21] gives another construction of a type similar 

to that of (2.11). This can be formulated as follows:

2.12 Theorem

. , Let G be a p-critical graph of odd order 2s + 1 and

satisfying the following conditions :

(i) G does not contain three independent edges;

(ii) the number m of edges of G satisfies {— } = p +1.

Let G ’ be any graph obtained from G by adding any new set of s 

independent edges; then G  ̂ is (p+l)-critical. //

For future reference we also include here a similar 

construction for vertex-critical graphs due to Bcinckc & Wilson [3]:

2.13 Theorem

If G is a graph obtained from an odd circuit by adding

t mutually disjoint sets, each consisting of s independent edges, then 

G is vertex-critical. //

Type (B)

- We now turn to constructing p-critical graphs from other 

p-critical graphs of smaller order. One such construction makes use 

of the Hajos union of two graphs and is again due to Jakobsen [19]:
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2.14 Theorem

Let G and H be two p-critical graphs and let K be any

Hajos union of G and H obtained by identifying two vertices the sum

of whose valencies does not exceed p + 2; then K is also p-critical. //

If we restrict ourselves to odd p, then we can give another 

similar construction of our oim.

2.15 Theorem

Let p be odd, let G be a p-critical graph and let H be

either K or K .. Then the graph K obtained from G and H by the 
p.p p+i

following construction is also p-critical:

Construction

(i) “ Choose a vertex v in G which has valency p and label itsi

neighbours Vj,v ,v ,...,v respectively;
. P

(ii) choose a vertex w in H and label its neighbours w ,w ,... ,w
P

respectively;

(iii) delete v and w from G and from H respectively and join the v.*s1
with the w.*s in a one-one manner.

J , ■ •
(The proof of this construction will be given in Chapter 4). 

nlustration

Figure 2.8
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3) ' properties of critical graphs

Before attempting a study of structural properties of 

critical graphs it is illuminating to analyze in some depth critical 

graphs of small order. This will give us some idea of what sort of 

properties to look for in the general case.

Jakobsen [20] was the first to have a look at such graphs, 

but he limited himself to ones with chromatic index 4. We summarize 

his results in the following theorem:

2.16 Theorem ^

If G is a 3-critical graph, then

(i) p(v) = 2 or 3 for each vertex v;.

(ii) the distance between any two vertices of valency 2 is at 

; x . l e a s t  3;

(iii) G cannot have exactly two vertices of valency 3;

(iv) n(G)< m(G) < |(3n(G) - 1). //

Using these results, Jakobsen produced a list of all
. *

3-critical graphs on at most 10 vertices. We include the list here 

for future reference as Table 2.17.

In view of these results and others discussed so far, 

Beineke & Wilson [3] and,independently, Jakobsen [21], were led to 

make the following conjecture:

Critical Graph Conjecture

There do not exist any critical graphs of even order.
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2.17 Table All 3-critical graphs of order at- most 10

n=4 None 

n=5 Ck:— o

n=6 None 

n=7

n=8 None

n=10 None.
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We shall be discussing the Critical Graph Conjecture in . 

Chapter 6. Here we limit ourselves to establishing some elementary 

properties of critical graphs. We have already proved one such 

property in (2.1). As a corollary to that theorem we then obtain 

the following:

2.18 Theorem

Let X(G) denote the Szekeres-Wilf number of a graph G, 

i.e. the integer max cr(G’), where the maximum is taken over all

induced subgraphs G^ of G and a denotes the smallest vertex
. ■„ ,. . ' . ■ ■ 

valency. Then G is of class 1 if p(G) > 2A(G).

Proof

Assume the contrary,i.e. that there exists a graph G

satisfying p(G). > 2A(G) and % (G) = p + 1. Without loss of
* . . .  ' "generality we can assume that G is critical. Let S be the set of 

vertices of G whose valency does not exceed A. Suppose that there 

exists at least one vertex in V(G) \ S of valency at most A in the 

subgraph induced by V(G) \ S and let v* be any such vertex of 

valency at most A in this subgraph. From the definition of S it 

follows that v ’ is adjacent in G to at least one vertex of S which 

has valency in G at most A. Hence, by ( 2 . 1 )  and since p k  2A and 

V(G) \ S contains all vertices of valency p in G, it follows that v* 

is adjacent to at least p - A + 1 > A + 1 vertices in V(G) \ S, 

contrary to the above supposition. This proves the result. //

This in turn has the following corollary:

2.19 Corollary

Let be the largest eigenvalue of the adjacency matrix

of G. Then G is of class 1, if p(G) > 2.h (G).^ max'
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Proof

Let G* be an induced subgraph of G for which a(G') = X(G).

Then

^ c(G') = %(G).
The result then follows by (2.18). //

We shall often make use of the following simple property of 

critical graphs:

2.20 Theorem

Let the edges of a graph G be labelled e ,e ,...,e . Then1 2 m
G is a p-critical graph if and only if G is of class 2 and there

exist p-colourings F such that in T o n e  colour-class1 2 m 1 '
consists precisely of e^ for each i = l,2,...,m. ';

Proof .  ̂ /

If G is p-critical, then G is of class 2 and for each 

i = 1,2,...,m, G^ := G - e^ is p-colourable. We obtain F. from any 

p-colouring of G^ by re-introducing e^ and colouring it with the 

(p+l)*th colour. '

Conversely, if G is of class 2, then G^ is p-colourable for

each i = l;2,...,m. Thus, G - e is p-colourable for each edge e,

i.e. G is p-critical. //

2.21 Corollary

Let G be a p-critical graph and let J be an arbitrary set 

of independent edges. . Then there exists a (p+1)-colouring of G in 

which J is a colour-class.

Proof . ' . y : . - '

Let e be an arbitrary edge of J. (2.20) allows us to colour G 

with p + 1 colours in such a way that {e} is one colour-class. We 

now obtain a (p+1)- C Olouring of G with J as one colour-class, by 

changing the colours of J \ {e} to the colour of e. //
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2.22 Corollary

If G is a p-critical graph and J is an arbitrary set of 

independent edges, then - J) = Xg(G) - 1.

Proof

By (2.21), Xg(G - J) < p.

Now, if we assume that Xg(G - J) < p, then G would be p-colourable. 

Thus, Xg(G - J) = p = Xg(G) - 1. //

2.23 Corollary

If G is a p-critical graph and F is a 1-factor of G, then 

G - F is of class 2. //

If we denote by a^(G) (or simply by a) the edge-independence 

number of G, then we have the following result: i

2.24 Theorem ^

If G is a p-critical graph, then ap ^ m - 1.

Proof

Let J be a maximal independent set of edges and let e be an

edge not in J. G* := G - e has maximum valency p and satisfies the

equality a^(G’) = a^(G). Thus,

P = X (G*) > m(GV) = m(G) - 1 ,
^ a^(G') a^(G)

since G’ is of class 1. Hence the result follows. //

The following remark shows that this result is in a sense 

best possible. We note that there exist p-critical graphs satisfying 

ap = m - 1 + k for each non-negative integer k. The first graph of 

Table 2.17 shows that this is true for k = 0. To see that the 

statement is also true for k > I we construct recursively the infinite 

family of 3-critical graphs {G,} as follows: G is the last graph of 

Table 2.17. G^ is obtained from G^  ̂by taking a Hajos union of G q
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vertex of valency 3 in G^. Figure 2.9 illustrates this construction.
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Figure 2.9

.Note that m(G^) = (8k + 1) + 3k and (G^) = 4k since G^ is 

Hamiltonian and of odd order for each k.

Theorem 2.24 can be re-formulated as follows:

The total deficiency of a p-critical graph of order n is at least 

p(|n - a) - 1, Such bounds on the deficiency of critical graphs turn 

out to be very useful in applications, as will be seen later. We now 

present one other such bound.

2.25 Theorem

Let G be a p-critical graph with minimum valency O'. Then 

t (G), the total deficiency of G, is at least .

p - 2 if n is odd

2(p - o + 1 ) if n is even.

Proof ■

If n is odd, then the result follows from (1.5). So, let n

be even and let v be a vertex of valency O. Let v be a vertex of
_ 1

valency p which is adjacent to v. The graph obtained by deleting the

edge (v,v ) is p-colourable, and in such a colouring, one colour is

missing from v and is used for some edge (v,v ). Thus, the graph G ’ * 2
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obtained from G by deleting y and adding an edge (which may

possibly be a double edge) is p-colourable. In the case that 

is a double edge coloured a and g, say, we can transform the multi

graph G* into a simple graph by effecting the following transformation;

a
V (X 2 V

Figure 2.10

Here H is the graph K with two independent edges removed. Since,P» P
for p > 3, K is of even order and p-colourable with two given edges P> P
having different colours, in any case we get a new graph which is both 

of class 1 and of odd order. Consequently, 

t(G*) = t(G) - (p ~ a) + (a - 2)
and

T(G') > p, by (1.5).
Therefore, •

t(G) > 2(p - a + 1), as required. //

2.26 Corollary

If G is p-critical and p > 2, then G is not regular. //

For completeness* sake we state:

2.27 Theorem

G is 2-critical if and only if G is an odd circuit. //

: We conclude this section by listing two results on critical

graphs which are due to Vizing [43]. v
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2.28 Theorem

Let G be a p-critical graph. Then

(i) G contains a circuit of length at least p +1;
.

(ii) G has at least -  (3p% + 6p - 1) edges.,//

It is to be noted that if (n - p) is ’small*, then the

bounds given by this theorem are very good. However, there are 

critical graphs (see, for example, the graph of Figure 2.9) for which 

they are not particularly good. Hence, possible directions of 

investigation are the improvements of such bounds. This is what we 

propose to do in later chapters, where results complementing Vizing*s 

conclusions are presented.
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CHAPTER 3: UNIQUELY-COLOUEABLE GRAPHS

Since the writing of the material in this chapter, it has 

come to our attention that some of the results obtained here have 

since been proved independently by D. Greenwell & H. Kronk [113.

Unlike the approach adopted by these authors, our motivation for 

looking at uniquely-colourable graphs stems from the close relation- 

ship these graphs have to critical graphs. We investigate this 

relationship and proceed to analyze the structure of uniquely-colourable 

graphs, which in turn sheds more light on our problem. In particular, 

we are interested in connectivity properties of these graphs in the 

same way as similar properties of critical graphs are investigated in 

Chapter 4; similarly we look for bounds on the number of edges and for 

circuit length properties of uniquely-colourable graphs with the 

corresponding results for critical graphs appearing in Chapters 5 and 7 

respectively. However, like Greenwell & Kronk, we base our 

investigation of structural properties of uniquely-colourable graphs 

on their one fundamental property,expressed in Theorem 3.1 below. For 

this reason, our proofs of Theorems 3.6, 3.16, 3.17 and 3.18 are 

rather similar. We note that our example of a non-planar uniquely-3- 

colourable graph of order 18 discussed on p. 46 is a counterexample 

to Greenwell & Kronk*s Conjecture 1.

We define a graph G to be uniquely-k-colourable (or simply 

uniquely-colourable) if its chromatic index is k, and any colouring of 

G with k colours induces the same partition of E(G).

Uniquely-colourable graphs exist as is exhibited by the
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following examples: All even circuits and all open chains of length

at least 2 are uniquely-2-colourable; the graphs K^, K^, - a, and
■■■■■■■; ' ■ ■ ■ ' , , , ■ ■ \ . 

- {a,b} are all uniquely-3-colourable for any pair of adjacent

edges a and b. All star-graphs K. are uniquely t-colourable.

' One way of obtaining an infinite family of uniquely-3-

colourable graphs is by taking any such graph, other than K^, and 

replacing any one of its vertices of valency 3 by a triangle. So, for 

example, we can start by taking the first graph of Figure 3.1 and 

obtain a new graph (the second in the diagram) by replacing the vertex 

V by the triangle T. We then repeat the process on some vertex v of 

valency 3 in the second graph, and so on.

Figure 3.1

From the examples and construction just given one might infer that all 

uniquely-colourable graphs are planar. However, this is not the case. 

We propose to consider the following (counter-)example in some detail 

because it gives us some insight into the structure of such graphs.

The graph in question is the generalised Petersen graph on 18 vertices, 

P(9,2), shown in Figure 3.2.

We note that P(9,2) has girth 5. If we assume that P(9,2) 

is planar and has f faces, then Euler’s polyhedron formula gives:

f = 27 + 2 - 18 = 11.
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But 5f ̂ 5 4 ,  since the graph has girth 5. This contradicts the 

previous statement and proves that the graph is non-planar.

Figure 3.2

On the other hand, a case-hy-case analysis shows that 

(not counting rotations) the following are the only 1-factors of 

P(9,2):

F

^3 =
- / " ■

\  ' \
\

:Hy
Figure 3.3
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In this figure, solid lines indicate edges of the 1-factor. Now, F, 

partitions its complement in E(P(9,2)) into a 5-circuit and a 

13-circuit, F_ partitions its complement in E(P(’9,2)) into a 7-circuit 

and an 11-circuit, whereas F . partitions its complement in E(P(9,2)) 

into two 9-circuits. Thus, none of these 1-factors can be a colour- 

class in some 3-colouring of P(9,2).

However, the complement of F« is a Hamiltonian circuit (of 

even length) and so we can colour the edges of F_ with the first 

colour and the edges of the Hamiltonian circuit alternately with the

remaining two. Moreover, all rotations of F_ and colourings induced
\  . . ' •by them yield the same partitioning of the edges, so that P(9,2) is

indeed uniquely-colourable.

We shall come to this example later on. For the time being 

we shall concentrate on the motivation for studying uniquely- 

colourable graphs. We start by giving a simple property of these 

graphs which comes in very useful in applications.

3.1 Theorem

Let G be a uniqueiy-k-colourable graph and let the colours

be {Cĵ  ,c^,... ,Cĵ }. For each i, any edge coloured c^ is adjacent to at

least one edge of every other colour. *

Proof L

Assume not. i.e. there exists some edge coloured c ,say,1
which is not adjacent to any edge coloured c , say. We can then 

re-colour the first edge with colour c^ to obtain a different partition 

of E(G). This contradicts the fact that G is uniquely-colourable. //

3.2 Corollary

If, for each i,j, C. . denotes the subgraph of a uniquely-k-
■. : : y.v : _ :■ / ’J

colourable graph G induced by the edges coloured c. or c., then C. •■ ,1 j 1)1
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is an open chain or an even circuit.

Proof ’ '

We first show that C. . is connected. Assume not, and let

S and T be two distinct components of j. At least one of them, S

say, contains edges of both colours. By interchanging the colours of 

these, thereby not affecting the colouring of the edges of T, we obtain 

a new partition of E(G). This contradicts the uniqueness of colour-

ability of G. Now the maximum valency of C. . cannot exceed 2, and so

C. . is a chain. If the chain is closed, then it has to be of even
. . . •order, otherwise it is not 2-colourable. //

3.3 Corollary

Let C. be the i*th colour-class in the colouring of a: 1 , ,! .

. '  juniquely-colourable graph. Then we have: —

' 0 < I |c;| - |c.| I < 1. •' ‘ 1* ' J ' ''
Proof . ■ • . . . . '

Me_thô d_I_£̂  Follows from (3.2).

Me_thnd_2_^ De Werra [8,9] and MacDiarmid [26] proved 

independently that if G is an arbitrary graph with chromatic index k, 

then for any integer t (t > k), there exists a t-colouring of G in 

which two distinct colour-classes have cardinality differing by at most 

unity. Now uniquely-colourable graphs have essentially one colouring. 

Thus, all colour-classes in a uniquely-colourable graph enjoy this 

property. // > :

3.4 Corollary

Let be the i*th colour-class in the colouring of a 

uniquely-k-colourable graph G having m edges. Then 

^  (m - k + I) < |Ĉ | < ^  (m + k - 1).

Proof

Let C, be a colour-class of minimum cardinality. Then, 
k

k.|cj < I  |C.| = m S |cj + (k-l)(|c I + 1), by (3.3).
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Thus, |Ĉ | > :̂  (m - k + 1).

Similarly, ifiC is a colour-class of maximum cardinality,

then
k

ra= ^ |Cj| > + (k-l)(|C^| - I), by (3.3).

Hence, jC^j < ^  (m + k - I).

This proves the result. //

Given m and k as above, if we let q = [^] and r to be the 

unique integer satisfying m =  qk + r, 0 ^ r < k, then we could have 

the following alternative formulation of (3.4):

3.4* Corollary " .

In a uniquely-k-colourable graph there are k - r colour-: ' ■ - . i
classes of size q and r of size q + 1. //

The connection, or rather contrast, between critical graphs 

and uniquely-colourable graphs is evident from the following theorem:

3.5 Theorem

If G is a graph which is both critical and uniquely 

colourable, then G is K^.

Proof C: \
■ * •

If G is critical, then there exists a colouring in which 

one colour-class consists precisely of any one pre-assigned edge, 

by (2.20). Hence, with each edge of G we can associate a colouring 

of G, thereby obtaining at least as many partitions of E(G) as there 

are edges, contradicting the fact that G is uniquely-colourable. This 

argument holds provided that not all of the colour-classes consist of 

exactly one edge, i.e. not all edges are pairwise adjacent, in which 

case each edge forms a colour-class of its own. This can happen in 

either of two ways : G = K„, which we are admitting, or G = K, , 

which is in class 1 and thus not critical. //
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In fact this result can be considerably strengthened as

follows :

3.6 Theorem

If G is a uniquely-colourable graph and G is not K^, then 

G is of class 1.

Proof

Suppose G is of class 2. Let be a vertex of maximum

valency p, and let VjjV^j.-.jV^ be its neighbours. Without loss of

generality we can assume that the edges (v^,v^),(v^,v^),...,(v^jV^)

are coloured c^,C2,...)Cp respectively. For each i = 1,2,...,p, the

subgraph C. , induced by edges coloured either c. or c ,,, is an i,p+i  ̂ • 1 p+i
open chain having v^ as an end-vertex. It follows from (3.1) that

each vertex v^ (i =. l,2,...,p) is incident with some edge coloured

c , . This implies that |v(C. , )| > p +1.: p+i ' ijp+i '

We also claim that |v(C^ p+})| ^ P + 1, for each i. This

can be seen as follows: Assume that |v(C )( > p + 1, and let the

ordered set of vertices of the chain C be1, P+1
A := <v^,v, ,a ,a. ,... ,a, ,a, > (X > p + 1), as shown in Figure 3.40 1 2 . 3  A— 1 A

o-0̂ V, ^2 3̂ X̂-3 .̂X-2 X̂-1 X̂

Figure 3.4

Since |{C. , }.P I i I/• \l' J,p+i 1=2* = p - 1 < p < |{v^,a^,a^,...,a^^^}|,

then there exists at least one vertex in the set A \ {v-,a,} which

is not an end-vertex of any of the chains {C. , }.P . Thus,l,p+i 1=2
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P
p := n V(CÎ , ) ^ 0, where Cî is obtained from C. by J,P+i ],P+i J.P+i ^■■ J-l ■■ ■ - ■ ' -t.;
deleting the two end-vertices. If x e y, then x has valency 2 in each

of the chains C.  ̂ , j = 1 , 2 , 3 , This means that p(x) = p + 1,

which contradicts the fact that p(G) = p. Hence jv(C. )| = p + 1,J Jp+i

Now, A := {v.}.P c V(C. ) since each v. is adjacent to1 1=0 - J ,p+i 1 ,

some edge coloured p + 1, Also, I a I = | v ( C .  . )l = P + !• Hence,
-, . J)P+i

A = V(C. ) for each j = 1,2,3,.,.,p. Moreover,

:: p ^ ;  
V(G) = u V(C.: ^ ) = u A = A.^

j=. j=1

Finally we show that G must be of the form K„. Note that2k+l i
since each of the vertices {v.}. is incident with an edge coloured

1 1=1

Cp^^, p must be even, say p = 2k, and there are k edges coloured c^^^.

Also, since is an open chain of length p + 1, there are k edges

coloured c. for each i = 1,2,3,...,p. So in all, G has k + k.2k

edges, and if we write 2k + 1 = n = |v(G)|,then G has gn(n - 1) edges.

This means that G is K .n

Now it is not difficult to see that ^2^+1 not uniquely- 

colourable except for the case k =1 ,  which we are excluding. This 

completes the proof. //

3.7 Theorem

If G is a p-valent (p^3) and uniquely-p-colourable graph, 

then the graph G obtained from G by the insertion of a vertex into 

any one of the edges is p-critical.

(Remark^ Compare this construction with that in (1.8))
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Proof "

By virtue of (3.6), we know that G is of even order, and

so, G* is of class 2, by (1.8). We have to show that for any edge e,

GT - e is of class 1. Let the vertices of G be labelled w, ,w^,...,w

and let the new vertex v be adjacent to w and to w in G \  Consider0 1 . 2

the graph H obtained from G* by splitting v^ into two (end-)vertices 

v^, v^ such that v^ is adjacent to w^ (i « 1,2) (see Figure 3.5).

G; G': H:
^2 0^1 ^2q

- Figure 3.5

Any p-colouring of G induces a p-colouring of H in which (v ,w )

and (v^,w^) are both coloured a. Let e be any other edge coloured

and define (p to be equal to 3 if 3 a, and let ^ be any other

colour not a, if 3 = Ot. Then ^ is an open chain and so (v^,w^)

and (v ,w ) belong to different components of C in K - c. This 2 2 (X,9
implies that (v ,w ) can be re-coloured (p whereas (v ,w ) can still2 2
remain coloured a. This in turn implies that G* - e is of class 1. 

The case when e is either (v^,w^) or ,w^) is trivial. //

The graph in Figure 3.6, in which the labelling is the 

same as that used in the above discussion, illustrates the 

construction of Theorem 3.7.
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Figure 3.6

3.8 Theorem .

If G is a p-critical graph, then G cannot contain a 

uniquely-p-colourable subgraph H such that G - E(H) is a disconnected 

graph with at least two non-trivial components.

Proof ■ -.i .

Assuming the contrary, let G be both p-critical and contain 

such a subgraph H. Let G - E(H) = u n = 0 and E(H^) ^ 0

(i = 1,2). Then for i = 1,2, u E(H) is p-colourable and moreover,

each p-colouring of u E(H) induces the same partition of E(H). 

Thus, we can re-combine the colourings of u E(H) and of u E(H) 

to give a p-colouring of G. This establishes the required 

contradiction. //

Another motivation for studying uniquely-colourable graphs 

stems from the following observation. The proof of the theorem follows 

very closely that of (3.7) and will be left to the reader.

3.9 Theorem

Let G be a uniquely-colourable graph which has two end-edges 

Cj and e^ belonging to the same colour-class, and let G^ be a graph 

obtained from G by the deletion of an edge which is not an end-edge. 

Then G ’ can be coloured in such a way that e^ and e^ belong to 

different colour-classes. // v
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Closely related concepts have been investigated by Izbicki 

[16,17]. In his notation, a graph whose vertex-valencies satisfy 

p(v) = p or 1 for each vertex v, is called pseudo-regular. Also, edges 

incident with a vertex of valency 1 (i.e. end-edges) in a pseudo

regular graph, are called external edges; otherwise they are called 

internal. With this terminology the following theorem is shown to 

hold.

3.10 Theorem

Let G be a pseudo-regular.graph with chromatic index k. If 

f^ denotes the number of external edges coloured c^ (i - l,2,...,k), 

then all the f^'s have the same parity. //

* The above discussion yields the following construction for

critical graphs: Let G be a graph and let (Vj,v^) be an edge of G.

Let H be any other graph having two end-edges (a^,b^) and 

Define the operation T on G and H as follows : Identify a^ with v^

(i =1,2) and replace the edge (v^,v^)'in G by the graph H to give 

a new graph K of order n(G) + n(H) - 2. This construction is 

illustrated in Figure 3.7.

G: . H:

V V
1 2

K:

v_=aa,=v

Figure 3.7

For brevity, in what follows we shall speak of 'replacing an edge of 

G by the graph H* when we are referring to this construction. This
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discussion has the following application: -

3.11 Theorem

Let G be a p-critical graph and let H be a uniquely-p- 

colourable graph with two end-edges in the same colour-class. If K 

is any graph obtained by replacing an edge of G by H using the above 

construction, then K is also p-critical.

Proof

K clearly is of class 2, since any p-colouring of K forces 

(a^,b^) and (a^/b^) to be in the same colour-class. This induces a

p-colouring of G. Also, since (a^/b^) and (a^jb^) lie in the same

colour-class, then the deletion of any edge in the set 

(E(G) - (v ,v )) u ‘{(a .b ), (a ,b )} yields a graph of class 1. Now 

let e be an arbitrary edge in E(H) - {(a ,b^),(a^,b )}. Then, by 

(3.9), the removal of e enables us to re-colour (aj,b^) and (a^jb^) 

differently. Thus, the notation of the p-colourings of G - (v ,v )

and of H - e can be so chosen as to give a p-coloufing of K - e. //

One, important application of this construction is the 

following: .

3.12 Theorem

There exist critical graphs which are not Hamiltonian.

Proof

Such graphs can be constructed in general by replacing three 

adjacent edges of a p-critical graph (p > 3) by three uniquely-p- 

colourable graphs, as exhibited in the construction of (3.11). The 

resulting graph H then contains an induced subgraph homeomorphic to 

the first graph of Figure 3.8, but not to the second. This implies 

that H is not Hamiltonian. //
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(i) il)

Figure 3.8

This is illustrated, by the following 3-critical graph which is not 

Hamiltonian:

1

63

Figure 3.9

Table 2,17 shows that all 3-critical graphs on at most 10 vertices 

are Hamiltonian. Since this graph is of order 11, it is a smallest 

such graph. It is constructed by taking the multigraph of Figure 3.10 

and replacing each of the two edges joining vertices 1 and 2 by the 

uniauelv-3-colourable eranh H of Figure 3.7.

Figure 3.10

In fact this construction enables us to say more about circuit 

length in critical graphs. However, we defer this discussion to 

Chapter 7. At present, having seen the intimate relationship that 

exists between critical graphs and uniquely-colourable graphs, we 

propose to have a closer look at the structure of the latter. This
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will in fact yield further information about the former.

First we try to obtain bounds on the number of edges of 

uniquely-colourable graphs. The next theorem follows as a direct 

corollary of (3.1).

3.13 Theorem

For any pair of adjacent vertices v, w of a uniquely-k- 

colourable graph, p(v) + p(w) > k + 1. //

In fact the next theorem tells us exactly by how much 

p(v) + p(w) exceeds k + 1. Let 0^ denote the set of colours of edges 

incident with a vertex x in some colouring of a graph. Then we have 

the following result;

3.14 Theorem

If G is a uniquely-k-colourable graph, then

(i) l e ^ u e j  =k .

(ii) |g^ n 0^1 = p(v) + p(w) - k,

(iii) |0y \ 0^1 = k - p(w),

(iv) |0̂ . \ 0^1 = k - p(v),

for each pair of adjacent vertices v and w.

Proof

(i) follows from (3.1). It is also easy to see that 

k = |0v " + |0w \ + l®v \ ®wl •

Also, |ê | = |e^ \ e^l + |e^ n G^| = p(v) and 10^1 = p(w).

The result follows by straightforward manipulation of these 

equalities. //

Let be a colour-class of maximum cardinality in a

uniquely-k-colourable graph G and let be
all of the colour-classes
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of cardinality strictly less than that of Q^. (Note that there need 

not be any such colour-classes). Corollary 3.3 implies that each of 

these colour-classes has cardinality |Q̂ | - 1 and the rest All have 

cardinality IQ^|• Thus,

m = p(|Q I “ 1) + (k - p )|Q i = k|Q I - p.
Hence, ^ a a

I Q̂ l = + P) •
Now, all vertices covered by colour-classes of cardinality jQ^| - 1

are also covered by Q^, and hence there can be at most, k - p - 1

vertices not covered by Q^. Thus, .

n - (k - p - I) < 2| Q I < p  (m + p).
This implies that ^ "

m > '|k(n - k + 1) + |p(k - 2)

^ sk(n - k + 1).

We also have trivially that m < Ink. Note that the lower bound is 

attained by the star-graphs Kj whereas the upper bound is attained 

by all uniquely-k-colourable graphs which are k-valent. Thus, these 

bounds are best possible and we obtain the following result;

3.15 Theorem

If G is a uniquely-k-colourable graph, then 

Ink - - ro(G) < |nk

and there exist uniquely-k-colourable graphs that attain these 

bounds. //

Regarding the connectivity of uniquely-k-colourable graphs 

we have the following result;

3,16 Theorem

Let G be a uniquely-k-colourable graph whose vertex-valencies 

are either k or k - I. Then G is (k - l)-edge connected.

Proof

Let G contain a set S of at most k - 2 edges whose removal 

disconnects the graph, i.e. G - S = H^ u H^, H^ n H^ = 0. Note that



since we are requiring the vertex-valencies'to be at least k - 1,

then E(H.) 0 (i = 1,2). Let C. denote the set of edges coloured c..

Then, since |s| < k - 2, there are at least two colours, c^ and c^

say, such that (C u C ) n S = 0. By (3.2), C the subgraph induced . 1 2 ■ . 1»2 ,
by those edges coloured c, or c,, is connected. Thus, C n H. = 0

for some i e {1,2}. Say C n H = 0 and let e be any edge of H .
' .■;■.:: ■(Such an edge exists as shown above). If e is coloured with c„ say,

 ̂ ■ -.y .
then we have obtained an edge coloured c which is not adjacent to any3 J

edge coloured c^ or c^. This contradicts (3,1). //

iiôli
By studying the examples of uniquely-colourable graphs given 

at the beginning of this.chapter, we are led to expect that quite a 

lot* can be said about circuit length of such graphs. In fact we have 

the following theorem:

3.17 Theorem

* If G is a uniquely-colourable and regular graph, then G is

Hamiltonian.

Proof

Either G is K^, in which case the result holds trivially, 

or G is not K^, in which case G is of class 1, by (3.6). Thus the 

union of any two colour-classes is a regular spanning subgraph of 

valency 2. But this has to be connected, by (3.2), and hence G is 

Hamiltonian. //

For the special case of the cubic graph we have more to say.

3.18 Theorem

If G is a cubic and uniquely-colourable graph, then G has 

exactly three Hamiltonian circuits. . •

Proof ■ . • ; ■ .

The number of Hamiltonian circuits is at least three, since
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the union of any two colour-classes constitutes such a circuit and 

there are three such unions. Call these circuits C , C , and1 ,2 2,3
C . Now let C be a fourth Hamiltonian circuit. C n C. . 0,

r : ■ V -f- v ^  - "'J ,
(i z j) (i,j = 1,2,3). Thus., we obtain a new colouring of G by

colouring the edges of C alternately a and 3 and the rest of the

edges y. This implies that G is not uniquely-colourable. //

We conclude this chapter by showing how the construction 
• : \ _ 

of (3.11) supports the Critical Graph Conjecture discussed in the

previous chapter (see p. 37). In view of our construction, the 

conjecture would be disproved if, for example, one could construct a 

uniquely-3-colourable graph with an odd number of vertices and two

external edges in the same colour-class.' This would imply the

existence of a uniquely-3-colourable pseudo-regular graph with an odd 

number of external edges, two of which are in the same colour-class. 

However, since two external edges are in the same colour-class, there 

are. no other external edges, by (3.2). It would therefore be of 

interest to investigate whether there exist uniquely-k-colourable 

graphs for k > 4. The only ones known so far to exist are the trivial

ones, the star-graphs which are not suitable for our construct

ion. We are led to the following conjecture:

Conjecture 1

, ; With the exception of the star-graphs K. ,, there do not

exist uniquely-k-colourable graphs with k > 4.

At any rate, the following theorem holds. Its proof also 

follows from (3.2) and is left to the reader.

3.19 Theorem r.

There do not exist any uniquely-k-colourable pseudo-regular 

graphs having at least two end-edges in the same colour-class and
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satisfying: n^ = n^ = k = 1 (mod 2), where n^ is the number of 

vertices of valency i. //

Finally, we take another look at the beginning of this 

chapter and state the following conjecture:

Conjecture 2

If G is a planar, cubic, and uniquely-3-colourable graph, 

then G contains a triangle.

If this conjecture were true, then we should have characterized 

planar, cubic, and uniquely-3-colourable graphs as those graphs 

obtained from by a (possibly empty) sequence of transformations of 

the type : replace a vertex by a triangle.
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CHAPTER 4: THE'CONNECTIVITY OF CRITICAL GRAPHS

In this chapter we consider some connectivity properties of 

critical graphs. We have already dealt with one such property in the 

previous chapter, namely that p-critical graphs are not separable by 

uniquely-p-colourable subgraphs. Now we look for properties analogous 

to those enjoyed by vertex-critical k-chromatic graphs. In particular 

we note that these graphs cannot be separated by fewer than k - 1 

edges (see, for example, [32, p. 165]). We also note that G is a
. . ■ . . . J.p-critical graph if and only if its line-graph G is vertex-critical 

and (p+1)-chromatic. These last two remarks lead us to expect that 

critical graphs have quite 'high* connectivity properties.

Surprisingly this is not the case, as we shall establish in |:his 

chapter. We shall also look at certain p-critical graphs separable 

by p independent edges and characterize those for which p = 3.

1) General connectivity properties

To begin with, we note that if H is a vertex-critical 

vertex-coloured graph, then H cannot be written as H^ u H^, where 

H^ n H^ = for some p. Now, if H is the line-graph G of some 

critical graph G, then since K = K , we obtain the following 

result;

4.1 Theorem

If G is a critical graph, then G is connected, has no cut- 

vertex and is therefore bridgeless. //
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Thus we have that critical graphs are at least 2-connected.

We shall now show that, in general, this result is best possible. We

do this by proving the following result:

4.2 Theorem

For each odd integer n and for all possible p, there exists 

a Hamiltonian p-critical graph of order n with minimum valency 2.

Proof . . ..

We note first that p can be at most n - 2 and that the cases

p = n - 2 and p = n - 3 have already been proved in Theorems 2.8 and

2.9 respectively. The case p — 2 is trivial. '

We shall prove the remainder of the theorem by explicitly

constructing n - 6 3-critical graphs G. (i = 1,2,...,n-6) each

consisting of an odd circuit and an independent set S. of C|n]

edges, such that S. n S. = 0 if i  j. We shall then apply Theorem .... 1 J
2.11 to the union of any t of these graphs (1 < t < n-6) to give the 

resiilt.

The construction:

Given an odd circuit C_, , with vertices labelled2iCt 1 _ ...

<1,2,3,,..,2k,2k+l,1> we construct three families of 3-critical graphs 

as follows:

(A) The first family consists of k - 4 graphs Xj . For

each r, the independent set of edges of X is obtained by joining the 

vertices 1 and r +2, r + 2 - i and r + 2 + i (for i = l,2,...,r),

2k and k + r, 2k — 1 and k + r + l , k + r + l  + j  and k + r — j (for 

j = 1,2,...,k-r-3). The graph X^ is shown in Figure 4.1. .

To see that X^ is critical for each r, we use an inductive 

argument. To start the induction we note that Xj is a Hajos union of
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the graph described in Chapter 2, pp. 30 et seq., and the first

graph of Table 2.17, where the identified vertices have valency 2 in

both cases. Thus, is 3-critical, by (2.14). Assuming that

is 3-critical, we see that X is also 3-critical since X is obtainedr  ̂ r
from X , and K, by the construction of Theorem 2,15. With the r-1 4
notation of that theorem, G is X H is K,, and the deleted vertex vr-1 ... 4
of G is the vertex labelled r + 1 in X ,. This establishes that X... r-1 , ... r
is 3-critical for each r. '■

r+2 r+1 r-1

r+3

r+4 2k+l
r+5

2r

2r+l6‘

2r+2 ,2k-1

2r+3o- 2k-2

2r+4(r ■6 2k-3

-6k+r+4

k+r-2 tk+r+3

k+r-1 k+r+2

k+r k+r+1

Figure 4.1

(B) The second family consists of another k - 4 graphs

For each s, the independent set of edges of Y^ is obtained by joining
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the vertices 1 and k + s + 1, k + s + 1 - i and k + s + 1 + i (for 

i = Î,2J...,k-s~3) 3 2k and s + 2, 2k - I and s + 3, s + 2 - j and 

s + 3 +  j (for j = l,2,...,s). The graph Y is shown in Figure 4.2.

To see that Y is 3-critical for each s, we use an inductive

argument similar to the one given above. We note that Yj is obtained

from the graph referred to above, and by the construction of

Theorem 2.15. In this case, if G is.Y , and H is K., then the vertexs-1 4
V deleted from G is the vertex labelled 2 in Y -, for all s k i .  This, . s-1 '
shows that Y is 3-critical for all s.s . . .  .' t ■

s+2 s+1- s-1

s+3

s+4

s+5

s+6

o 2 k + l
2s+l

2k
2s+2

2s+3 2k-1

2s+4

2s+5 ^2k-3

2k-42s+6

■ok+s+4k+s-2

ik+s+3

k+s k+s+2

k+s + 1

Figure 4.2
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(C) The last family consists of the three graphs Z^, Z^ shovm in 

Figure 4.3.

k“2 k-3
2k+l

2kk-1

2k-]k

2 M

k-1 k-2Z2
2k+l

2k

k+2k+T 2 k ^ 2k^l

k-1Z3

k+1

2k+l
k$3 2 k ^

Figure 4.3

Zj is simply the graph we have been considering and which we know 

is 3-critical. Z^ and Z^ are easily seen to be 3-critical by an 

inductive argument making use of Theorem 2.15. This completes the 

proof. // .
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2) Separability by independent edges

From Theorem 4.2 we deduce that in general not much can be 

said about the connectivity of critical graphs. However, we can look 

for connectivity properties of particular critical graphs. One class 

of p-critical graphs we propose to consider is that in which the 

graphs are separable by t independent edges. It turns out that for 

the values of t we consider, the graphs are constituted of smaller 

p-critical graphs. This implies that when we are looking for 

p-critical graphs of minimal order, as we shall often have the 

opportunity to do in later chapters, we can exclude those which are 

separable in this way.

One result in this direction is due to.Jakobsen [ 19], who 

proves the following theorem:

4.3 Theorem

A p-critical multigraph G is separable by two independent 

edges if and only if G is a Hajos union of two other p-critical 

multigraphs Gj and G^, in which a vertex of valency 2 in Gj is 

identified with some vertex in G_. // •

Now we consider p-critical graphs which are separable by p

independent edges. Given any graph G with maximum valency p and which

is separable by p independent edges, we can associate with it two

■pairs of graphs (H^H^) and (J^J^) obtainable from G as follows:

Let the separating set S of p independent edges be {(aî,a?)}.^ andJ 1 J 1
let G - S = T, u T„, where T. n T. = 0. Also, let {a^}.^ e T. for 

1 2  1 2  J 1=1 1
i=l,2.

We obtain J . from T . by appending p end-edges {(aî,bî)}._ .* ' - J J J-1
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Hj is obtained from Jj by identification of the bj's to a single 

vertex and are similarly defined. We then write

G = H, "a «2- . "

Illustration

2
Pb

V
1

Figure 4.4

Conversely, given any two graphs having maximum valency p, we can 

obtain a graph G from them by reversing the above process. The graphs
^i " 1*2) just defined, will be referred to throughout therest of this chapter, , S;!

Before proceeding with the discussion for arbitrary p, we 

first restrict ourselves to the case p = 3 and impose the further 

restriction that should be 3—valent. We motivate our investigation 

by the construction of (2.15) and by the following typical examples :
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a V

a

Figure 4.5

Let Hj be a 3-critical graph and let be a vertex of valency 3

Incident with edges {a,b,e}. Ccnsid: r the graph. J- obtained frcir

by splitting v into three end-vertices v , v, , and v incident with 1 a D c
edges a, b, and c respectively. Jj is 3-colourable and we can choose 

our notation in such a way that among all 3-colourings of Jj there 

exists a colouring with a and b in the same colour-class, there exists 

one with b and c in the same colour-class, but there need not exist 

one with a and c in the same colour-class. This is illustrated in the 

following example :
H,: a or 3 V, o b

q Y... . '3~...(!)~—oL~~*o

Figure 4.6
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In this example, a and c always lie in distinct colour-classes. Thus a 

3-critical graph always has a distinguished edge - we may call a root 

edge - defined to be that edge b incident with in J ̂ (as defined 

above), which may be coloured with the same colour as a or c in some 

3-colourings of Note that it may well happen that all three edges

a, b, and c have this property, as in the following example:

-y— o

IV
1

Figure 4.7 .

Note also, that if two of the edges have this property, then so does 

the third.

Let be a class 1 pseudo-regular graph which has maximum

valency 3 and which has exactly three external edges. By (3.10), these

external edges lie in distinct colour-classes. We say that has the

weak-pairing property if for any internal edge e, there exists some

3-colouring of - e with some pair of the three external edges in

the same colour-class. We say that has the strong-pairing property 
if there exists an external edge f such that for any internal edge e 
there exists some
3-colouring of - e with f and some other external edge in the same 

colour-class, f is then called a root. Thus, for example, if is
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uniquely-3-colourable, then has the strong-pairing property.

A 3-critical graph Hj and a class 1, 3-valent graph are 

said to be compatible if either (i) Jj has more than one root and 

has the weak-pairing property, or (ii) Jj has a unique root and has 

the strong-pairing property.
''fr r

If Hj and are compatible, we define the g-union of Hj

and to be the graph G = H, u H_, where in the case that H. has a 
2. i g z  1

unique root, then this is identified with some root of H^. In this 

setting we have the following result:

4.4 Theorem " -,

G is a 3-critical graph having a set S of three independent 

edges satisfying G - S = Tj u T^, T^ n T^ = 0 and p^(v) = 3 for each 

V e VCT^) if and only if G is the g-union of Hj and H^, as defined. 

Proof ■ - ■ - ' ■

jÇAjr Nece^s^ity: We assume that G is 3-critical and

separable by a set S of three independent edges as described. We have 

to show the following:

(i) is of class 1: If e e E(Tj), then G - e, and hence J^, is of

class 1. But if J2 is of class 1, then by (3.10), all external edges

lie in distinct colour-classes. This implies that is of class 1.
. ■ . ' ■ ■ . . . .(ii) Hj is 3-critical: Not all external edges of Jj lie in distinct

colour-classes, for otherwise we should obtain a 3-colouring of G. 

Thus, Hj is of class 2. Now if e e E(Hj), G - e, and hence is of

class 1. As before, this implies that all the end-edges of J«, and 

hence also those of Jj - e, lie in distinct colour-classes. Thus,

H, - e is of class I.

(iii) and are compatible: Suppose has a unique root, then

without loss of generality, in every 3-colouring of Jj, edge a is
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coloured a, edge b is coloured g, whereas edge c is coloured a or g. 

Let e be any internal edge of J^. G - e, Jj, and ^2 “ e are all 3- 

colourable. Thus, in each 3-colouring of ^ 2 “ e, a* is coloured a, b ’ 

is coloured 3> whereas c* is coloured a or 3, where the external edges 

a’, b*, and c* of are identified respectively with the edges a, b, 

and c of Jj. But this means that has the strong-pairing property 

with c’ as root which, moreover, is identified with the unique root

of J .I
If Hj has more than one root, then it has three, as remarked 

above. In a typical 3-colouring of Jj, the end-edges are partitioned 

as follows: a is coloured a, b is coloured 3> and c is coloured a  

or 3' Arguing in exactly the same manner as before, we conclude that 

has at least the weak-pairing property, that Hj and are i 

compatible, and that G is the g-union thereof.

_SjafH£^ieneyj_ Conversely, we assume that Hj is 3-

critical, is cubic and of class 1, and Hj and are compatible.

Thus, the g-union of Hj and is clearly of class 2, since in every

3-colouring of.J^ two of the end-edges lie in the same colour-class

whereas all those of lie in distinct colour-classes.
, ^

There remains to show that the deletion of any edge e of G

results in a 3-colourable graph. If e £ E(Hj), then - e is 3- 

colourable and hence all end-edges of - e lie in distinct colour- 

classes. This induces a 3-colouring of G - e. On the other hand, if

e £ ECH^) and if has a unique root, c say, then, since and

are compatible, some root of is identified with c. TJiis yields a 

3-colouring of G - e. The same holds if has more than one root, 

which concludes the proof. //

We now consider the case of p odd but otherwise arbitrary.
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Let Jj and be a pair of graphs which are of .class 1, have maximum

valency p, and have exactly p end-edges. Moreover, suppose that J is

pseudo-regular. If 0 is a one-one correspondence between the end-

edges of Jj and those of , we define J^ and to be compatible with

respect to $ if there exist p-colourings of J, and of - e which
' - : y : ^

partition the end-edges of J. and those of J_ - e in the same way, for
. ' ; . . each internal edge e of J_. Using the same notation as above, we can

then prove the following result :

4.5 Theorem

Let p be odd. Then a graph G is p-critical and has a set S

of p independent edges satisfying G - S = T u T , T n T_ = 0 ,/ ̂ L \ I

pg(v) = p for each v e and only if G = u where is

p-critical, H is of class 1, and J, and are compatible with respect

to the one-one correspondence $ induced by this union. .

Proof '■

_(A^ _Ne^ce^s2ij ĵ_ We assume that G is p-critical and separable

by a set S of p independent edges as described. We have to show the

following: „ ; .

(i) is of class 1: Let e be an edge of Tj. Then G - e, and hence

«2,3.8 p—colourable. Thus, by (3.10/, all external edges of «2 Ire rn 

distinct colour-classes and hence is of class 1.

(ii) H j is p-critical: Not all external edges of Jj lie in distinct

colour-classes, for otherwise we should get a p-colouring of G. Thus, 

Hj is of class 2. There remains to show that the deletion of any edge 

e from Hj yields a p-colourable graph. Now, G - e, J2 , and Jj - e are

all p-colourable for each e £ E(H ). Thus, the end-edges of J_, and
. 1 . , 2

hence also those of Jj - e, lie in distinct colour-classes, by (3.10).

Hence, Hj - e is of class 1, as required.

(iii) Jj and J2 are compatible: Let e be any internal edge of J2 .

Then G - e is p-colourable and hence so are J, and J_ - e. Moreover,
1 2
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any p-colouring of G - e induces the same partition of the end-edges

of JJ and of - e. Thus, Jj and are compatible with respect to 0.

Conversely, assume that Hj is p-critical 

and that is p-valent and of class 1. Moreover, let the associated 

graphs Jj and J2 be compatible with respect to some one-one correspond

ence $ between their end-edges. We claim that the graph G obtained 

from J J and J^ by the identification of their end-edges according to 

^ is p-critical. To this end we show the following:

if C is of class 1, then there exist p-colour-

ings of J j and of J^ which partition their end-edges in the same way.

But there is a unique way of partitioning the external edges of J_,
' , ■ ■ ■ ^  Vnamely to partition them into distinct colour-classes. But tliis

implies that H j is of class 1. Thus, G is of class 2.

£  I. £  f_or £ach_ejdg£ e of_Gj_ Let e be any edge

of H j . HJ — e is of class 1 and hence there exists a p-colouring of

dj ■“ 6 in which all of the end-edges lie in distinct colour-classes.

This and any p-colouring of J^ induce a p-colouring of G — e. Finally,

let e be any edge of J^. The compatibility of Jj and of J2 ensures

the same partitioning of, the end-edges of J, and of J. - e. This in
. ' ■ ■ ; '  ̂ ..... 

turn induces a p-colouring of G — e, thereby convicting the proof. //

Remarks

(i) The usefulness of this theorem is twofold: In one 

direction it enables us to construct p-critical graphs from ^simpler*

P critical graphsj in the other direction it allows us,under certain 

circumstances, to focus on that part of a critical graph without which 

the graph would not be critical.

(ii) The compatibility conditions of these theorems are not 

very restrictive. There are a number of p-valent graphs of class 1
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which satisfy more stringent conditions and which are in fact 

compatible with any p-critical graph. One such sufficient condition 

is the following:

For any prescribed pair of external edges e^ and e^, and any

internal edge e of a pseudo-regular graph having exactly p external

edges, there exists a p-colouring of - e in which e^ and e^ belong

to the same colour-class whereas all other external edges lie in

distinct colour-classes different from that of e and of e .
■ , 1 2

If is any of the following regular, class 1 graphs, then 

any associated pseudo-regular graph satisfies the above condition:

(a) (b)

A proof of this statement implies a proof of Theorem 2.15 which, with

the notation we have been using in this chapter, states the following:

For each odd p, if Hj is a p-critical graph and is either

K or K , then H, u H_ is p-critical, p+1 p,p l a  2 ^

We now proceed to prove this theorem by showing that 

and K satisfy the compatibility condition stated above.p J p —, -,
Proof of Theorem 2.15

(a) Given K^, any two vertices v and w, and any edge

e (v,w), then there exists a spanning open chain P, which includes

e and has initial and terminal vertices v and w respectively. The

graph obtained from K by deleting P is of class 1, since it containsP
exactly two vertices of maximum valency p - 2 (This follows from 

(2.2) (ii) and (2.5)). If we append end-edges to each of the vertices 

except V and w, we obtain a pseudo-regular graph which is of class 1, 

has maximum valency p - 2, and has exactly p - 2 end-edges which are 

all in distinct colour-classes. Let P ’ be the graph obtained from P
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by deleting e and adding an end-edge e at v and an end-edge e at w.V . w
We can now re-introduce Since P* is the disjoint union of open

chains, we can two-colour it with e and e in the same colour-class,

different from any of those of the remaining external edges.

To deal with the exceptional case e = (v,w), we append end-

edges to all the vertices and let those edges incident to v and w be

e and e respectively. Let e be the end-edge in the same colour-

class as e and let the colour of e be a. If e is deleted, then we
.  • ■ "  .  'can re-colour e and e with colour a. Moreover, if e was previously

V. , w , ;,^V -  ; 7"
coloured 3> then we can re-colour e^ with colour 3. -

.. (b) Let p be odd and let e , e , e be any three edges of

K exactly two of which (e and e say) are adjacent, at the vertex 
P,P 1 2

V say. Then there exists a Hamiltonian circuit H including all three 

edges. The graph G obtained from K by the deletion of H is a
P)P ■ ' ■

(p - 2)-valent graph. Thus, the pseudo-regular graph obtained from G 

by splitting v into p - 2 end-vertices has p - 2 end-edges in different 

colour-classes. Let H ’ be obtained from the Hamiltonian circuit by 

splitting it at v and deleting the edge e^. In G we can re-introduce 

H' which is the disjoint union of two open chains and hence can be 

two-coloured with the end-edges e^ and e^ in the same colour-class 

and different from that of any of the other external edges. //
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CHAPTER 5 ; SOME BOUNDS ON THE NUMBER OF EDGES OF CRITICAL GRAPHS 

AND APPLICATIONS TO PLANAR GRAPHS

In Chapter 2 we obtained bounds on the total deficiency of 

critical graphs which are equivalent to upper bounds on the number of

edges of these graphs. We also discussed a lower bound due to Vizing

and noted that there is room for improvement on this bound. In the
. ■ : : _ : - ■

first part of this chapter we propose to determine bounds on the

number,of edges which complement Vizing's result. .In the second part
, . 7: 7 7 - 7 .  77., : : 7 .  7 77 7 ■ .

we apply these results to planar graphs and discuss a problem raised

by Vizing.

1) Some bounds on the number of edges

We note first that, if G is a p-critical graph and Ô is its

line-graphj then G is vertex-critical.. Thus, by a well-known result
■ . ^(see, for example, [32, p. 164]), a(G) > p. Moreover, if 

(v,w) = e € E(G) and if $ is the one-one correspondence between E(G) 

and V(G), then a(G) < p(0" (e)) = p(v) + p(w) - 2. This implies the 

following result:
y  "  - . :77 . 7: -I' r-7 . %7'^7 :7/ 7 ,7 : \ - 7 - - - '-r5.1 Theorem.

If G is a p-critical graph, then for each pair of adjacent 

vertices v and w, .

p(v) + p(w) > p + 2, //

. In fact. Berge [4, p. 254]) tells us exactly by how much

p(v) + p(w) exceeds p +2. He calls this result the 'Uncoloured Edge 

Lemma'. An equivalent formulation is the following:
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5.2' Lemma

We assume that G is a p-critical graph, that e = (v,w) is an

edge of G and that G - e has been p-coloured. If 0^ and 0^ denote

respectively the set of colours of edges incident with v and w in this 

colouring, then

(i) |0^ u = p,

(ii) |0.̂  n 0^1 = p(v) + p(w) - p - 2,

(iii) 10^ \ 0^1 = p + 1 - p(w),

(iv) |0^ \ 0„| = p + 1 - p(v) . //

Note the similarity of these last two results with Theorems

3.1.3 and 3.14 on uniquely-colourable graphs. This is not surprising 

in view of the construction of Theorem 3.11. j

Using these results, we can deduce the following bounds on 

the number of edges of a p-critical graph :

5.3 Theorem

Let G be a p-critical graph and let S = ^  (p(v))^ and
veV(G)

T — P • Then
P+1

Proof

(T^ + ST): _ T < m(G) < __S_ " | (p - 2).
« p+2

Let n be the number of vertices of valency p in G, and let
P : V .

a(G) be the minimum vertex-valency of G. Then

a(G) > max {p,2a(G) - 2},
• - . . . . ■' ' ■ ■ since G is a line-graph which is vertex-critical. Also, by (2.2) (ii),

n > p - a(G) + 2.
Thus, ^ ^

2m(G) > n (2p - 2) + (m(G) - n ).a(G)
. ^ ^ ^ ■ ■ 

s' (p - a(G) + 2) (2p - 2 - ff(G)) + m(G).0(G)

>m(G).p + |(p% - 4). . ■
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Now,. a straightforward computation shows that

m(G) + m(G) = |S. .
\  :

These last two results yield the upper bound of the theorem.

The following inequality is due to Turan [39]:

m(G) < (m(G))2(p - 1).
2p

This and the former result yield the lower bound of the theorem and

complete the proof. I I

Note that this theorem again implies the fact (shown in 

(2.26)) that, apart from the odd circuits, critical graphs cannot be 

regular. It is also worth noting that for certain critical graphs

these bounds are best possible. Thus, for example for the graph of

order 5 in Tab.le 2.17 both bounds are exact. This result is also 

quite good for testing particular graphs, but more generally applicable 

bounds which involve just n and p are desirable. Bounds of this type 

can be obtained for small values of p. Thus, for example, Jakobsen : 

[20] showed that if p = 3 ,  then

J  n < m < i(3n - 1).

A similar analysis establishes analogous bounds for p = 4. Here and 

in what follows we use an extension of an argument due to Vizing [43]

5.4 Theorem

If G is a 4-critical graph, then

*7 n < m < 2n - 1.

Proof

If V is a vertex of G of valency 2, and if u and w are the 

vertices adjacent to v, then (2.1) implies that each of u and w has 

valency 4, and that neither of them is adjacent to any vertex of 

valency 3 or 2.

Now denote by n^ the number of vertices of valency j, and 

let n(p,q) denote the number.of vertices of valency 4 adjacent to
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exactly p vertices of valency 2 and q vertices of valency 3, With 

this notation we have:

and 

Thus, 

But 

and

Hence,

Thus

But

2n = n  (1,0)
2 h

2n^ ^ n (0,1) + 2n (0,2).
7 '. 7 7 4 . , •

+ n_ < n.(l,0) + |n (0,1) + n (0,2) < h .6 a 4 4 4 4
4(n^ + Ug + n^) = 4n 

2n + 3n + 4n = 2m,7 2. 7:..7.;3- 4 • ■■ .
2n. + n = 4n - 2m.2 3
n > 4n - 2m.
4 . . 7:'

2m > 4n + (n - n ).2 = 2n + 2n.4 4 4
These last two statements show that 

2m > 8n - 4m + 2n, 

which proves the lower bound of the theorem. The upper bound follows 
from (2.25). //

A similar argument can be given for p = 5. In this case
we have

2%2 = n^(l,0,0)

2n < n (0,1,0) + n (0,1,1) + 2n (0,2,0)
3 5 5 5

2iî  S n^(0,l,I) + (0,0,1) + 2n^(0,I,2) + 2n^(0,0,2) +
3n^(0,0,3), -7 '

where n (p,q,r) denotes the number of vertices of valency 5 adjacent 

to exactly p vertices of valency 2, to q of valency 3 and . to r of 
valency 4. Thus, *r

This implies that 5n > 2n.

Since we also have that n^ ^-|n^, then provided that 

n - f n ^ , 0 ,  „ 7 7 ,  ' 7 ;

2m > 5n + 2.|n + 3.(n - ^n,)

— 3n + T2 ^
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On the other hand, if n - ^ n^ < 0, then 

2m > 5 .n + 2.(n - n )5 ' 5
^ 4n.

So, in all cases m > f n.

This technique can be generalized to give quite a good lower 

bound for m involving only n and p. We first need the following lemma.

5.5 Lemma .

Let G be a p-critical graph. Then for all k satisfying

2 < k < p - 1, we have

J P

Proof 7 ' . y ' 7 7 7  . ^7 7

With each vertex v of valency p of G we associate a (k-I)-

tuple (i ,i ,...,i_ ), where for 2 < t ^ k, i denotes the number 
2 3 k t

(possibly zero) of vertices of valency t joined to v. For any such

(k-I)-tuple we have the following; Let q denote the smallest index of

all non-zero elements of the (k-l)-tuple. Then v is joined to i (> 0)
%

vertices of valency q, and since by (2 .1) v is joined to p - q + 1

vertices of valency p ,  then the vertex v is joined to at most

p - (p - q + 1) vertices of valency less than p. Consequently,

i + i + ... + i, < q - 1.
.2 7. 3 ■:,7 ■ ^ .

Now, let n (i ,i ,...,i_) denote the number of vertices of valency p

associated with the (k-l)-tuple (i ,i ,..,,i ). Then
2 3 h

where the summation extends over all (k-l)-tuples associated with any 

vertex of valency p of G. In this summation every vertex of valency j 

IS counted at least twice, since by (2.2) (i), each vertex is joined 

to at least two vertices of. valency p. Hence, a lower bound for this

sum must be 2n.. From this it follows that



83

Ij-i  ̂ i,' 1 jj-'j=2 J j.=2 <k>

■ l  " » ‘ b ......... V  J. {ri
‘  i >  " » “ > 'P  j l .  ( î = ^

- *p'
where we have used the fact that i + i + ,. . + L  ^ q - 1.2 3 k ^
This completes the proof of the lemma. //

5 .6 Corollary " ; *

If G is a p-critical graph, then for each integer k i

satisfying 2 < k < p - I, we have -
'■ k 'I n. s | ( k - -  On .

j=2
Proof -

n. ■' n.
The result follows from (5.5) by noting that :— ^.. . .. . k-i .. J-i

for each j satisfying 2 < j < k. //

The next corollary follows directly from the fact that each

vertex of a p-critical graph is adjacent to at least two vertices of= .

maximum valency p. We include it here for future reference and since 

it also follows from (5.6).

5.7 Corollary

If G is a p-critical graph of order n, then pn > 2n. //
' ^5.8 Corollary ■.

A p-critical graph of order n has at least —  n(p - 1) edges.
P

Proof

2m > pn + 2.(n - n ). The result then follows from (5.7).// P P
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We can now give a lower bound for the number of edges m in 

terms of n and p as follows. Let w  = [^(p t I)]. Arguing in a way 

similar to that given in Lemma 5.5, for each h satisfying 0 < h < w-2, 

with each vertex v of valency p - h of G, we associate a (w - I)-tuple

Ci(p-h) .(p-h) .(p“b) ■

where for 2 < t ^ w, i^P denotes the number (possibly zero) of 

vertices of valency t joined to v. Let

(p-h) .(p-h) .(p-h),
p-h' 2 >^3 . ’•••’’■w ri

denote the number of vertices of valency p - h associated with the 

(w - 1)-tuple
(p-h) . (p-h) . (p-h).

Then, by virtue of (5.1), we have the following for j;

satisfying 2 < j < w:

- S  J , ....
■ p-h

where the first summation extends over all (w - 1)-tuples associated 

with any vertex of valency p - h in G. This implies the following;

h=o <w .>  ̂ ^ j=2 » jp-h J

Now, for each h satisfying 0 < h 3 w - 2, let q denote the 

smallest index of all non-zero elements of the (w - l)-tuple

^ ^.(p-h) .(p-h).

Then, by (2.1), we have
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■Thus,

Hence,

w
I (p - k) - (p - q, +.1) = q, - h - 1.

j = 2 J

W A X • W
■  S - i  y i Ç P ' h )  a  %  - h  - 1 a m  _ h _ ]

4h j:2 j  --------------------------'h w

W w-2
I n r i .  I I ....

j=2 h=o <w ,> p-h

But
w

w-2
Y H z ilz l Y T, f : ip - n ;  ; \ p - n j \  4 w • 4 ’̂ p-h^ 2 ''"'^w ^h=o " <w ,> P ^ p-h

.(p-h) .(p-h)
w

w-2

h=o
w-h-1

p-h ' w

J  n. = n - ^ I  n.,
j=2 j=W+l

which implies that

w-i
I

h=l w

where
0 if p is odd,

n if p is even,w+i

This implies that;

w-i
nwp 
2w-1 h= 1^ I E E r ' ' " - h + ' wÇp 

2w-1

Now,

Thus,

(2w-h)p < p - h + 1, by definition of w. 
2w-l

;ri.uW-l. '
nwp < 2 (p-h+]).n^_
2w-1 : h=i p-h+1 wÇp . < 2 j .1̂ ' ^ 2m.

2w-l j~w+i ^

This implies that m is at least nwp and proves the following result;
2(2w-I)
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5.9 Theorem ' ;

If G is a p-critical graph of order n, then the number of 

edges of G is at least %n(p + 1), //

In fact, this result can be slightly sharpened as follows: 

5.9* Theorem

If G is a p-critical graph of order n, then the number of 

edges of G is at least |n(p + i), where i = 1  or 2 according as p is

odd or even. //

One corollary of this result is the following:

5.10 Corollary

If G is a p-critical graph, then its edge-independence 

number a satisfies the inequality

4ap > n(p + 1) - 4.

I i o o f

Theorem 2.24 implies that ap > m - 1. This and (5.9) 

together imply that ap > |n(p + 1)—  1, whence, the result follows. //

If a rs known,•then we can obtam a lower bound for m by 

applying (5.1). In particular, we get the following corollary:

5.11 Corollary

If G is a Hamiltonian p-critical graph, then 

m(G) > I (n - l)(p + 2). //

This is slightly better than the bound given by (5.9).

These bounds are by no means the last word on the subject. 

Vizing [44] has made the following conjecture:

Conjecture

Every p-critical graph has at least |(n(p - 1) + 3) edges.
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One interesting conclusion that could be drawn should this bound 

be proved correct, would be that all planar graphs with maximum 

valency at least 7 are of class I. This leads naturally to the second 

part of this chapter which deals with the problem of classifying 

PMMi? graphs into either class 1 or class 2, Before discussing this 

problem we make a resume of the bounds on the number of edges treated 

in this first section. We present the following table which compares 

the various bounds for the first few values of p.

> small values 

(p. 80 et seq.)

-  n(p - 1) P
(Cor. 5.8)

|n(p + i) 

(Theorem 5.9*)

5 (n(p-I) + 3) 

Conjecture

2.; : : n , ; ■ ■ ' . n ■■■ ■ n ■ 1 (n+3)

n n+2

, Y

5 i  a 2n+2

6 2n . : f  n . 2n 1(5n+3)

2) Applications to planar graphs

In this section we discuss the classification problem for 

planar graphs mainly with the help of the techniques and results \ 

established in the previous section. To begin with, we note that it 

is easy to construct planar graphs of class 2 with maximum valency p 

for 2 < p < 5. Examples of these are the odd circuits and the graphs



obtained from the following three Platonic graphs by inserting a 

vertex into one of the edges: the tetrahedron, the octahedron, and 

the icosahedron. We also note that it follows as a direct corollary 

of (2.18) that all planar graphs with maximum valency at least 10 are 

of class 1. This was noted by Vizing [42]. In fact, in a later paper 

Vizing [43] proved the following stronger result:

5.12 Theorem

If G is a planar graph with maximum valency at least 8,

:then G is of class 1. //
, v -x \ - : ' - 1

In this connexion, we must also mention Mel'nikov work [28] 

which generalizes (5.12). In particular, he proved the following tV7o 

theorems : ' i

5.13 Theorem .

If G is a graph that can be embedded in the projective 

plane and if its maximum valency is at least 8, then G is of 

class 1. // .

5.14 Theorem

If G is a graph that can be embedded in a surface with non

positive Euler characteristic Ç and if

p(G) > max {[1(11 + (25 - 24E)5)],[j(6 + 2(52 - 18Ç)i)]}, 

then G is of class 1. //

However, the problem of determining what happens when p = 6 

or 7 remains open. We state the following conjecture due to 

Vizing [43]:  ̂ .

Planar Graph Conjecture

If G is a planar graph with maximum valency at least 6, then 

G is of class 1. '
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On the assumption that it is not easy to settle this 

conjecture, we look for various restrictions on the graph which 

enable us to solve the problem at least partially if not in its 

entirety. .

( b)_ c_t^ons_on Jth^ mascimum val^e^c^

5.15 Theorem

(i) If G is a planar, class 2 graph with maximum valency 7, 

then n > 6. .

(ii) If G is a planar, 7-critical graph, then 

. n^ > max {6,[y(n + 21)]}.

Proof

Euler*s Theorem for connected, planar graphs implies the 

following inequality:

n^ + 12 < 4n. + 3n, + 2n, + n_ . . . . .  . .(A)7 2 3 4 5

(i) without loss of generality, we can assume that G is critical. 

Thus, by Lemma 5.5, we have the following:

2": + *3 + t + 2 O; s n, . . . . . . ( B )

Conditions (A) and (B) together imply that

n^ + 12 < 6n^ + 3n^ + 2n^ + -| n^ + -§• n^ < 3n^.
Hence,

n_ > 6. .

(ii) Since G is critical, it folPows from (5.9) that

4n ^ 7n.y + 6ng + 5n^ . . . .  . . . . . . .(C)

Conditions (A) and (C) together imply that

4n + 84 < 28n + 21n + 14n + 12n + 6n .2 3 4 5 6
Condition (B) implies that ,

48ng + 24ng + 16n^ + 12n^ + 9n^ ^ 24n^.

These last two inequalities together imply the conclusion of the 

theorem. //
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Similar results hold .for graphs of maximum valency 6, We 

state the corresponding theorem without proof since this follows 

closely the one just given.

5.16 Theorem

(i) If G is a planar, class 2 graph with maximum valency 6, 

then n.g > 4.

• (ii) If G is a planar, 6-critical graph, then 

ng > max {4,[-|(n + 6)]}.. //

(b) Restrictions on the ̂ minimum valency

The following is a direct corollary of the work of (5.9):

5.17 Theorem . . ' /' : '  ̂̂  A  T : :

. I f  G is a planar graph with maximum valency 7 and minimum

valency 4, and if n > |n - 3, then G is not critical.

Proof . ■ . . .

Assume on the contrary that G is critical. Then it follows 

from (5.9) that :

4n ^ 7n + 6n + 5n = 2m - 4n .
Thus, : 7 .. * S 4 .

2m > 4n -f 4(|rx - 3) - 6n - 12, .

which contradicts Euler's Theorem for connected, planar graphs. //

(c) Restrictions on the girth

• We can impose other restrictions on a planar graph to 

obtain similar partial results. One obvious such restriction is on 

the girth of the graph. We can ask the question: If the girth g of

a planar graph is at least g^, what is the smallest maximum valency p

such that all planar graphs with girth g ^ g and maximum valency
■ ■ ■ . 0

p ^ p are of class 1?- 0 - ■ • ' . '
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We can follow the same line of proof as in the previous 

theorems and assume that we are given a planar graph with girth g, 

maximum valency p, and which is of class 2, We then consider a p- 

critical subgraph G whose girth is therefore at least g. If we denote 

by n, m, and f the number of vertices, edges, and faces of G, it 

follows from Euler's Theorem for connected, planar graphs that:

We also have:

It follows that:

2gf = 2gm - 2gn + 4.

2gm = I  gj.n. ;
j=2 ^

• 2gn = I  2g.n. ;
j=2 ^

P
2,gf < 5] 2j .n. .

j=2 .

p“ i
4 + (g(p - 2) - 2p).n < ^ (2j - gj + 2g).n. ..

^ 1=2 ^

We now consider a few cases:

I) ,p..=...3

Condition (*) implies that

4 + (g - 6).n^ < 4n^.

This contradicts (5.5) if g > 8.

,11) : ^

Condition (*) implies that

4 + 2(g - 4).n^ < 4n^ + (6 - g).n^.

This contradicts (5.5) if g >5.

Ill) p = 5 : v: '

Condition (*) implies that

4 + (3g - IO).n^ < 4n^ + (6 - g).n^ + (8 - 2g).n^ 

This contradicts (5.5) if g > 4. ' '
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If p = 6 or 7 we obtain a similar contradiction when g > 4

and if p > 8, we have Vizing’s Theorem. We have thus established the

following result:

5,18 Theorem

Let G be a planar graph whose girth is at least g and whose
. y - t

maximum valency is at least p^; then G is of class 1 if one of the 

following holds:

(i) pQ = 3 and g^ = 8 ; (-Ü) p^ = 8 and g^ = 3 ;

(iii) Pq = 4 and = 5 ; (iv) ' p^ = 5 and gq = 4. //

Cases (iii) and (iv) of this theorem have also been stated 

by Kronk, Radlowski & Franen [24],

Arguing in exactly the same way as in Theorem 5.15, we 

obtain the following result, the proof of which is left to the reader.

5.19 Theorem

(i) Let G be a class 2 graph which is planar, has maximum

valency 4 and girth 4; then G has at least six vertices of maximum

valency;

(ii) Let G be a class 2 graph which is planar, has maximum

valency 3 and girth 7; then G has at least twenty-eight vertices of

maximum valency. //

Similar reasoning about class 2 graphs which are planar, 

have maximum valency 5 and girth 3 leads us to conclude that they 

have at least three vertices of maximum valency. However, this holds 

for class 2 graphs in general. ' r

j(d)_

We conclude this chapter by imposing one further restriction 

on the graph. We assume that G is an outerplanar graph, i.e. that all



the vertices of G lie on the same face. Without loss of generality 

this can be taken to be the infinite face. A typical graph is shown 

in Figure 5.1.
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Figure 5.1.

In fhis case, the problem is solved completely. We first need to 

establish the following lemma..

5.20 Lemma

If G is a 2-connected outerplanar graph with maximum valency 

3, then G has a vertex of valency 2 which is either (i) adjacent to 

another vertex of valency 2, or (ii) adjacent to tx-7o adjacent vertices 

both of valency 3.

Proof

Since G is 2-connected and outerplanar, it is clear that G

is Hamiltonian. For any pair of vertices v, w define d(v,w) to be the

shortest distance between v and w along the Hamiltonian circuit. Also

define a chord of G to be any edge not belonging to the Hamiltonian

circuit. Let (x ,y ) be a chord of G such that among all chords (x,y)0 0
of G, d(x ,y ) is minimal. Note that since G has maximum valency 3,

0 0 -

then G has at least one chord. Note also that d(x^,y^) > 2 and 

d(x ,y ) =  2 corresponds to case (ii) of our lemma. If d(x ,y ) is at 

least 3, then, because G is outerplanar, we can write G = H^ u H^, 

where H^ n H^ = (x^,y^). Without loss of generality, let n(Hj) < n(H2 )
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Now, either has a chord or not. If it has, we have a contra

diction to the minimality of d(x^,y^). If it has not, then this 

corresponds to case (i) of our lemma. //

We can now prove our result:

5.21 Theorem

An outerplanar graph is of class 1 if and only if it is not 

an odd circuit.

Proof

The necessity of the condition is obvious. So, assume that 

G is a connected outerplanar graph which is not an odd circuit. If 

p = 1 or 2, then the statement is trivially true. If p is at least 4, 

then the result follows by (2.18), since an outerplanar graph contains 

a vertex of valency 1 or 2.

The case p = 3 is the only one to consider. In this case,

if G has a cut-vertex, then G contains some bridge e and if G - e is

3-colourable, then so is G. Thus, we need only consider 2-connected 

graphs. These are necessarily Hamiltonian.

We now proceed by induction on the number of edges t of the

Hamiltonian circuit. The statement is clearly true for the case t = 4.

So, assume it is true for all outerplanar graphs with t < t , and

consider having t = t^ + 1. By Lemma 5.20, G has either two vertices

V and w say, which are adjacent and both have valency 2, or three

mutually adjacent vertices, x, y , and z say, such that x has valency 2

and each of y and z has valency 3. In the first case, by contracting

(v,w) to a single vertex, and in the second case, by contracting the

3-circuit (x,y,z) to a single vertex, we obtain an outerplanar graph

having at most t^ edges in the Hamiltonian circuit. This is therefore

3-colourable by the inductive hypothesis. I t  is not d i f f i c u l t  to see

that any 3-COlouring of this graph can be extended to a 3-colouring 
of G. Since we have dealt with all cases, the result is proved. //
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CHAPTER 6: SMALL CRITICAL GRAPHS AND THE CRITICAL GRAPH CONJECTURE

As stated in Chapter 2, it has been conjectured by Beineke & 

Wilson [3] and independently by Jakobsen C2l3, that critical graphs 

of even order do.not exist. Some evidence for the truth of this 

conjecture has already been presented in Chapter 3. The object of 

this chapter is to provide some further evidence by considering 

critical graphs of small order. As a by-product, we shall obtain, 

other interesting information about critical graphs of odd order. We 

divide the material in this chapter into two sections. In the first 

section we obtain results about critical graphs of small order; we 

then apply these results, in the second section, to the Critical 

Graph Conjecture. Here we show that there do not exist any critical 

graphs of even order not exceeding 10 and no 3-critical graphs of

order 12. This extends Jakobsen’s [20] conclusion that there are no

3-critical graphs of even order not exceeding 10.

1) Small critical graphs

As in the previous chapter, for a given graph G, we let n.
.  . ^  ^denote the number of vertices of valency j and if a^,a^,...,a^ are

the valencies of G in ascending order, we call the (valency-)list of

G the expression /;

where f . = n

We need the following results on matchings iii critical 

graphs. -
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6.1 Theorem

If G is a 3-critical graph of even order n < 26, then G 

contains a 1-factor.

Proof

Let G be a 3-critical graph containing no I-factor. Then, 

by Tutte’s criterion [40], G contains a cut-set S of p vertices, such 

that h(S), the number of components of odd order of G - S, is 

greater than p. A parity argument shows that there must be at least 

p + 2 such components. Let a and 3 be the number of isolated 

vertices of G - S which have valency 2 and 3 respectively in G. Note 

that a < [gp]. Let A be the set of isolated vertices of G - S which 

have valency 2 in G. Thus [a[ = ot. Let the total number of edges of 

the° form V(G - S) x S be t. If all components of G - S except elements

of A are joined by at least three edges to S, then

3p > t > 2a + 3(h(S) - a)

> 3(p + 2) - a. :

Thus, a ^ 6, which implies that p > 12, which in turn implies that 

n > 26. If n 4 26, then each component of G - S is trivial and G is 

therefore bipartite and thus not critical. Hence, either n > 28, or 

some component other than an element of A is joined by less than three 

edges to S. In the latter case,'we have some non-trivial component 

joined by two edges to S and these edges must be independent, by the 

connectivity properties of G.

For each value of p, let k be the smallest order of aP
component of G - S joined by two independent edges to S. Let

k = max k . We claim that k ̂ 5.
p  ̂ ^

To prove this, suppose that k > 7, and let G be a graph for

which this occurs. Then

’ k-i
3p > 2a +, 3 I  3 + 2 I  8 ,

i=i i^k
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where 3* is the number of components of order j; 3 =3.

Thus, if we denote 2 3- by B, we have
i>k ^

3p > 2h + (h - a - B)

> 3p + 6 - a - B, .
and hence

a + B > 6.

Then, since k is at least 7, we get following implications:

B = I = = >  a  > 5 = >  p > 10 — > n > 1 0 + 1 1  + 7 = 28;

B = 2 = = >  a > 4 =— > p > 8 — > n > 8 + 14 + 8 = 30;

B = 3 =— > a > 3 =— > p > 6 = = >  n > 6 + 21 + 5 = 32;

B = 4 = = >  n > 2 + 28 = 30.

Thus, k S 5.

Now,, by (4.3), if G is separable by two independent edges, 

then G is a Hajos union of two 3-critical multigraphs, one of which 

has a vertex of valency 2 which is identified with a vertex in the 

other. Moreover, one of the constituent graphs has order 3 or 5.

Call this graph Gj and the other G^. Since G is simple and since there 

are no 3-critical multigraphs of even order n ^ 10, the identified 

vertex of valency 2 belongs to G^ which is necessarily simple, whereas 

Gj can have at most one multiple edge. Thus, as shoxm in [20], Gj can 

only be one of the following multigraphs : ■

Figure 6.1

In all cases it is clear that a I-factor of G_, which exists by the
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minimality of G, can be extended to a 1-factor of G. //

The proof of the next theorem is omitted, since this 

follows closely the one just given.

6.2 Theorem

Let G be a 3-critical graph of odd order n ̂  19 and let v

be any vertex of valency 2. Then G has a matching of C|n] edges

which covers every vertex except v. // . -

- If we make no restriction on p, then we obtain the following

result : . - ,

6.3 Theorem

If G is a p-critical graph of even order n 10, then G 

contains a 1-factor.

Proof .

In view of Theorem 6.1, we can. assume that G is a p-critical 

(p ^ 4) graph of even order n ^ 10 which has no 1-factor. By Tutte's

Theorem [40], there is a set S of p vertices for which G - S has at

least p + 2 components of odd order. We consider the various possible 

values of p.

p = 2; By Theorem 2.1, no vertex can be adjacent to more than one

of valency 2 so that at most one component of G - S has

order 1. Since there must be at least four components, this is

impossible.

p = 3: Similarly, a vertex of G can be adjacent to at most two of

valency 3 (or less), so that G - S has at most two trivial 

components, which is impossible.

p = 4: Since G - S has at least six components, in this case all

must be trivial. If p = 4, there can be at most 16 edges 

joining S to G - S, so that at least three vertices in G - S have
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valency less than 4 in G and this.is impossible as before. Therefore 

p > 5, so that all vertices of maximum valency are in S. If a denotes 

the minimum valency in G, this implies that a > p ~ 2. But since 

each vertex in G - S is adjacent only to vertices in S and every 

vertex in S is adjacent to at least two others in S, 4p > 6a + 8. As 

this implies p < 2, we again have a contradiction. //

It is easy to see that there are no critical graphs of 

order 2 or 4. The only one of order 3 is the 3-circuit, and there 

are only three of order 5 (shown in Figure 6.2). We note that each 

of these last three is p-critical for a different value of p. These 

graphs are the only ones with the corresponding valency-lists, so we 

shall often refer to them by their lists: 2^, 23^, 3^4^.

2": 3 .

Figure 6.2

In our next theorem, we shall determine the valency-lists 

of all critical graphs of order 7. The proof involves a large number 

of cases by looking at possibilities for maximum and minimum valencies, 

In many cases, the problem is reduced to showing that the graph is of 

class 2 because of its total deficiency and then proving that it is 

p-critical because it could contain no other p-critical subgraph. For 

simplicity, we shall refer to this as the 'critical list argument'.
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6.4 Theorem

, Let G be a connected graph of order 7. Then G is p-critical 

if and only if it has exactly 3p + 1 edges.

Proof ■ ■

Let G be p-critical with minimum valency a and total 

deficiency t. We note that G has 3p + 1 edges if and only if

“ P *“ 2, We shall consider all possible pairs (p,cr) with

2 < a < p < 6 together with the.first trivial case (2,2).

Ca£e_(2,2)j_ The 7-circuit is the only 2-critical graph and the only

connected graph with p = 2  and t = 0.  ̂ ■

— (5^5), n^ > 2n^ , so that the only possible valency-

is 23 • (Here and m  what follows we freely use

the fact that .the number of vertices of odd valency must be even).

By the critical list argument, any such graph must be critical. 

Cas.e_(4,2)2 Since in this case n^ > n^ + 2n^, there are just three

possible lists; 2 4 , 23^4^, and 24^. Any graph with

list 2 4 can be obtained by taking the only graph of order 6 which 

is 4-valent and splitting one vertex into two of valency 2. Since the 

graph is 4—colourable, then so is the result. Thus, 2^4^ 

cannot correspond to a critical graph. Because of the required 

adjacencies of all vertices to vertices of valency 4 (Theorem 2.1 ),' 

there is only one possible graph with list 23̂ 4*  ̂ and this is 4- 

colourable (see Figure 6.3). It follows that every graph with list 
24® is critical.

Figure 6.3
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Case_(^,^)_r Since we must have ^ n^, there is only one possible

list, 3^4^, and any corresponding graph must be critical 

by the critical list argument.

Since n^ ^ 5, by Corollary 2.2, there are two lists to 

consider: 235^ and 25®, In a critical graph with the 

first list, the vertices of valency 2 and 3 cannot be adjacent. Thus, 

since is 5-colourable, so is this graph. Therefore the critical 

list argument implies that any graph with list 25® is critical.

Case (5,3): In this case n k 4, so that 3^45^ and 345® are the only

possible lists. If the first belongs to G, then each 

vertex of valency 5 is adjacent to all three others, and since the 

vertices of valency 3 cannot be adjacent, the vertex of valency 4 must 

be adjacent to one of them. There is only one graph meeting these 

conditions and it is 5-colourable (see Figure 6.4). As in earlier 

cases, we deduce that all graphs with list 345® are 5-critical.

Figure 6.4

Ca£e_(^,^)j_ Since n^ > 3 and since the deficiency must be at least 3, 

there is only one list, 4®5^, and any corresponding 

graph is critical.

£ase£ _(6j_2)_^n^ _(6_2_3̂ : Since n^ > 6 in the first case and n^kk 5 in

the second, there is no critical graph possible.

Since n^ k 4 and the deficiency is at least 4, there are
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three possible lists: 4^6^ 4^6% and 45f6\. The second belongs to 

no graph and the first only to the complement of in which is 

readily seen to be 6-colourable. Therefore the critical graphs are 

precisely those with list 45̂ 6**.

£a£e_(^,_5)j_ In this case n^> 3 and, by Theorem 2.25, n^> 4. There

fore the only possible list is 5^6^ and all correspond
ing graphs are critical.

It is an easy matter to check that in each case, the p- 

■Critical graphs belong to lists with valency sum 6p + 2, //
6,5 Corollary ’

A connected graph of order 7 is critical if and only if its 

-valency-list is in the set {2?,23G,24*,3=45,25*,345:,4354,45264,5463}.

We observe that analogous results also hold for n = 3 and 

n = 5. However, there is no comparable result for n = 9, as can be 
verified from Table 2.17.

It is.not difficult to find all critical graphs of order 7 

using Corollary 6.5. We present them by list in Table 6.6.

G'G Table The critical graphs of order 7

2 3*:
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24 6 «

3245 :

25®:

345®:

4®54:

45 26 4;

5 “6®:

We now apply this discussion to regular graphs of small

order,
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6.7 Theorem

All' connected, regular graphs of even order less than 10 

are of class 1,

Proof

Let G be a connected, regular graph of even order n and 

valency p. If p = 2 ,  then G is an even circuit which is clearly of 

class 1. If p > 3, then n >4. If n = 4, then G is which is of 

class 1. •

If n = 6 and if G is of class 2, then G contains a p-critical 

subgraph H, which is either the graph 23^ or the graph 3^4^ (see 

Figure 6.2). Hence p(G) = 3 or 4. If v is the vertex of G not in H, 

then p(v) = 1 or 2 according as p(G) = 3 or 4. In either case, we 

have a contradiction to the regularity of G.

So, let n = 8 and assume that G is of class 2. G contains

a p-critical subgraph H whose, order is 5 or 7. If H has order 7, then 

H has deficiency p - 2, by Theorem 6.4. This implies that the vertex 

V of G which is not in H has valency at most p - 2, contradicting the 

regularity of G. Thus, H has order 5, in which case H must again be

one of the graphs 23^ or 3^4^. In either case, there are three

vertices of G not in H. In the first case, p = 3 and of the vertices 

of G - H, exactly one can be adjacent to a vertex in H. Thus, the 

remaining two have valency 1 or 2. This again contradicts the 

regularity of G. In the second case, p = 4 and of the vertices of 

G - H, exactly one can have valency 4. This final contradiction 

proves the result. //

6.8 Theorem

Apart from the Petersen graph, all cubic, bridgeless 

graphs of order 10, are of class 1.

Proof

Let G be a cubic, bridgeless graph of order 10 which is of
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class 2. G contains a 3-critical subgraph H whose order is 5, 7,,or 9. 

With exactly one exception (see Table 2.17), H has total deficiency 1. 

The exceptional case gives rise to the Petersen graph. All other 

cases are either not realizable as subgraphs of a cubic graph of 

order 10, or give rise to the graph of Figure 6.5 which contains a 

bridge. //

Figure 6,5

2) The Critical Graph Conjecture .

In this section we shall prove that the smallest p-critical 

graph of even order must have at least 12 vertices and if p = 3 at 

least 14.

6.9 Theorem

There are no critical graphs of order 6.

Proof ' ■, : /A .

Assume that G is a p-critical graph of order 6. We consider 

the three possible values of p separately.

^a£e_p_=_3_£_ In this case n > 4, by Theorem 2.25, and n > 3, by

Corollary 2.2 (ii), which is impossible.

Ca£^e_p_=_4j_ From Theorems 2.1 and 5.5 it follows that the only

possible lists are 2^4^, 24^, 23*4^, and 3^4^. The 

first three contradict Theorem 2.25, so G must have list 3^4^. By
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Theorem 6.3, G has a 1-factor F, and the removal of F leaves a graph 

G ’, which is of class 2, by (2.23). Therefore G? must contain the 

3-critical graph 23*̂  of Figure 6.2, which is impossible for a graph 

with list 2̂ 3**.

Ca^e p_j=_5j_ In this case G is a subgraph of which is 5-colour

able. Therefore G cannot be critical. //

6.10 Theorem -

There are no critical graphs of order 8.

Proof

Assume that G is a p-critical graph which has order 8 and

minimum valency a. Since Kg is 7-colourable and G cannot be regular,

we assume 2 < a < p < 6 .  By Theorem 6.3, G has a 1-factor F, and

G - F contains a (p-l)-critical subgraph G \  We now consider all

possible cases (p,a), relying heavily on Theorems 2,25 and 5.5 which

give inequalities for the number n. of vertices of valency j.J
â_se__(̂ ,̂ )_£̂  There are no such graphs since we must have n^ ^ 2n^

and n > 4, which are irreconcilable.

Case (4,2): Similarly, we must have n, > 2n„ + n. and 2n + n k 6,

again an impossible situation.

Ĉ a£̂ e__(j4,_3)_̂  A corresponding argument implies that G must have list 

3^4^. Then G - F must have list 2^3^ and hence G ’ 

cannot have 7 vertices. Therefore G^ muèt have list 23 and any 

extension to G results in three vertices of valency 3 being mutually 

adjacent, which is impossible. ^

Case (5,2): Here n > 2n + n and 3n + 2n + n, k 8, so that the5 2 3 2 3 H
only possible list is 2^35^. By Theorem 2.1, such a list 

cannot belong to a critical graph.

From the facts that n^ > 4 and 2n^ + n^ 6, we see that 

3^5^, 3̂ 5*̂ , and 3^4^5** are the only possible lists.
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Since G - F then has list 2^4^, 2^4^, or 2^3^4^, we see that the 

order of G^ cannot.be 7. and hence must be 5, However, this means 

that G^ has list 3 4 . Any extension to G requires two vertices of 

valency 2 to be adjacent, which is impossible. r

Case (5,4): Since n > 4, G must have list 4^5^. Furthermore, G'

must have list 3^4^ and thus cannot be a subgraph of 

G - F (which has list 3^4^). ‘

Case (6,2): The deficiency of G must be at least 10 and yet n must

be at least 6. Thus, this case cannot occur. 

vCa^es^ _(6_,32_,_(̂ ,_4)_2_ and _(6j_5j_: It is not difficult to see that the

only possible lists are: 3^46^; 4*̂ 6*̂ , 4^6^, 4^5^6^; 5̂ 6**.

In no case can the list for G - F admit a 5-critical subgraph, since 

such a subgraph would have to be of order 7. // .

6.11 Theorem

There are no critical graphs of order 10.

Proof

Assume that this is not the case, and let G be a p-critical

graph of order 10 with p minimal. By Theorem 6.3, G has a 1-factor F ,

and the graph G ’ G — F has a (p— 1)—criLical suhgraph H which we 

take to have maximum possible order. Lemmas 6.12 and 6.13 below show 

that this order must be 9. :

Let u be the vertex of G not in H, let k be the valency of u, 

-rand let a be the minimum valency in G. Then the total deficiency of 

G - u is

, t (G - u) = t (G) - p + 2k

^ 2-(p - a +1) - p + 2k, by Theorem 2.25

> Q + 2.

Therefore, t (G’ - u) > p + 1. There must be at least one vertex w of

maximum valency adjacent to u in G ’. It follows that if t^ is the
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next-largest valency to p - 1 in H, then the valency of w is between 

tg and p - 2, so that

T(H) k t (G’ - u ) + 2(p - 2 - tjj) > 3pg - 2tg,

where p„ (= p - 1) is the maximum valency in H. It follows from

Lemma 6.14 below that H must have deficiency less than this. There

fore, no such graph H can exist. //

We now prove the three lemmas used in the proof of 

Theorem 6.11. To this end, we assume that G is a p-critical graph of 

order 10, with p minimum. If p = 3, then n > 4  and n > 2n , so 

p >3. By Theorem 6.3, G has a 1-factor F, the deletion of which 

leaves a graph G* which must contain a (p - l)-critical subgraph.

Assume that H is one of maximum order. Since p is minimal, H must 

have odd order.

6.12 Lemma

The order of H is not 5. ^

Proof

Assume that the order of H is 5. Then the maximum valency 

Pjj is either 3 or 4.

Case 1: Pg “ 3 : Then H has valency-list 23*̂ . Let J be the subgraph

of G ’ induced by the other five vertices. Since 

each vertex in G ’ must be adjacent to at least one vertex of valency 3,

J must contain at least two vertices of valency 3. Moreover, no vertex 

of valency 3 can be adjacent to more than one vertex of valency 1. So 

there are at most two vertices of valency 1. By Theorem 2.1, we also 

have that if G ’ has a vertex of valency 1, then G’ has at least seven 

vertices of valency 3. All this implies that the only possible lists 

for G ’ are: 1^3®, 12^3^, 2^3®, and 2^3^. The first three cases clearly  ̂

violate the deficiency condition of Theorem 2.25. The last case gives 

rise to the following disconnected granh and to no other:
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Figure 6.6

Moreover, since every vertex in G is to be adjacent to at least two 

vertices of valency 4, (u,v) must be an edge in F. But then one can 

clearly obtain a new I-factor F/ from G such that G - F/ is not 

isomorphic to this configuration, which it must be since H is of 

maximum order.

Case 2; = 4 :  Then H is the graph with list 3^4^. We consider sub

cases according to the number q of edges between H

and J in G ’.

q “ 0: J has at least two vertices u^, u^ of valency 4 and these

must be adjacent. Moreover, by Theorem 2.1, all other 

vertices have to be of valency 3 at least. The only possibility for 

G ’ is to consist of two disjoint copies of H. But then one can obtain 

a new I-factor from G whose deletion does not yield the graph 3^4^. 

q = !: Again, J must contain two vertices of valency 4. Now either

some vertex of valency 4 is adjacent to some vertex in H or 

not. In either case, each vertex of J has valency at least 3 in G* 

and they respectively give rise to the following two graphs and to 

no other:

and

Figure 6.7
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However, as before, we can obtain in each case a new 1-factor from G 

which does not contain H.

q - 2: If J has only one vertex of valency 4 in , then Theorem 2.1

forces G ’ to have list 3*̂ 4®. Under these conditions, G ’ can 

only be the following graph;

Figure 6.8

Again, we can obtain a new I-factor from G whose deletion does not 

yield the graph 3^4^.

If J has exactly two vertices of valency 4 in G , then 

these must be adjacent to the vertices in H, since otherwise the 

deficiency condition is violated. Again by Theorem 2.1, a(G’) is at 

least 2 and the only possible list for G’ is 2^4^. Since a vertex of 

valency 5 in G which is adjacent to a vertex of valency 3 has to be 

adjacent also to at least three other vertices of valency 5, G* can 

only be the following graph:

Figure 6.9
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However, since this graph violates Theorem 5.1 since in G,

. p(u) + p(v) = 6 < p(G) + 2. i

Since, by Theorem 2.25, J cannot have three or more vertices of

valency 4, the proof of the lemma is complete. //

6.13 Lemma

The order of H is not 7.

Proof

We consider individual cases of p, making repeated use of 

the fact that each of the three vertices u , u , u in G* - H must be

adjacent to at least one vertex of valency p - 1 in G  ̂which does not

have valency p - 1 in H. /

p = 4: H must have list 23^ and then n (G’) is at least 8, which

contradicts the deficiency condition. 

p_ 2  2' ^ must have one of the following lists: 24®, 3^4®. Both of

these cases contradict the deficiency condition. - :

2  2  A" ^ must have one of the following lists : 25®, 345®, 4®5**.

Hence, the list of G must be x x x 6^ and each of u , u ,u’ 1 2 3 1 ’ 2 3
has valency at most 4. Theorem 2.1 implies that no two of these can 

be adjacent and so G must have list 2®6^. Now, since no two of the 

u^’s can be adjacent to a common’vertex, we can identify u^, u^, and 

Ug to obtain a graph G" which is of order 8 and 6-valent. It follows 

that G", and hence G, are of class 1, by Theorem 6.7.

2  2  2' H must have one of the following lists: 45^6^, 5^6®. Also, in

G , n must be at least 6 and n + n must be at least 7 by the7 ■ 6 7 ■
above condition. By Theorem 5.1, no two of u^, u^, u^ can be adjacent.

Thus, the only possible lists for G are 2®67® and 2^37^. The second

case violates the deficiency condition. The first yields a graph G",

obtained by identification of u , u , and u , which is 7-colourable 
. . . 1 2 3

since it is a subgraph of Kq . This completes the proof. //
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6.14 Lemma

If G is a p-critical graph (3 < p ^ 7) of order 9 and total 

deficiency T, then T < 3p - 2t, where t is the largest valency of G 

less than p. '

Proof

We assume on the contrary that T ̂  3p - 2t and proceed to 

get contradictions for all cases (p-,a), 2 ^ a < p ^ 7, where a is as

usual the minimum valency of G. We note that T and p have the same
h

parity.

£a£e2  _(̂ j_42̂ ,__(i6,5̂ )̂  an^ _(7̂ 6_̂ : Here T > p + 2 and also, since

n ^ 3, T ^ 6, which is a contradiction.
P

Case (3,2): We have n < 3, n = t and t ^ 5, which is impossible.

Case (4,2): Here n k 2n + n = t ^ 12 - 2t. If t - 3, this implies:  4 2 3 ^
n > 6 and in turn T ^ 4, whereas if t = 2, n k 8 and4 4

T ^ 2, both of which are impossible. -

Case (4,3): A contradiction follows from the inequalities n < n  . .,■■■ 3 ■ -, 4- .
(so n 4) and n = ,T ^ 6.' 3 . 3 . - ' '

the one hand, T ^ 15 - 2t, and on the other hand,

' T ^ 14 - t (since n^ k 5). It follows that if t = 2,

T = 11; if t = .3, T = 9 or 11; and if t = 4, T = 7 or 9. The only

lists which meet these conditions are 23®5®, 234^5®, and 2^45®, It is 

not difficult to show that none can meet the adjacency condition of 

Theorem 2.1 for a 5-critical graph;

Case (5,3): Here t = 4, so T ^ 7. Also, n" S: 4, so that T ^ 9. The

only possible lists are therefore 3^4®5^, 3^45^, and

3®45®, none of which is constructible as a 5-critical graph. . /o 

Case (6,2) : Since n ^ 6, we have T ^ 14 - t and T ^ 18 - 2t, so t is

4 or 5. If t = 4, T = 1 0  and the only list is 2^46®,

which cannot belong to a 6-critical graph. If t = 5, T = 8 and the

only list is 2356®. Such a graph has a Hamiltonian circuit by Posais
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Theorem (see, for example, [4, p. 211])'so there is a set. of four

independent edges not meeting the vertex of valency 2, Then G - F

has list 2^45® and must contain a 5-critical subgraph T, by (2.22).

The order of T cannot be 9, so T must have 25®, 345®, or 4®5^ as its 

list. However, each of these requires the two vertices of valency 2 

to be adjacent in G - F, which is impossible.

Arguments similar to those given above show that the only

possible lists are 3^6®, 3®56®, 3^4^6®, 3^5^6®, and 

34^56®. In each of the first four cases, there must be at least twelve 

edges from vertices of valency 6 to other vertices, and yet each vertex 

of valency 6 must be adjacent to four others. This is clearly 

impossible. The graphs with list 34^56® are handled using four 

independent edges as in the preceding case.

Case (6,4): In this case, n^ > 4, T = 2n + n and t > 18 - 2t. The

only possibilities are 4^6^ and 4®5^6^, but since any 

vertex adjacent to one of valency 4 must also be adjacent to at least, 

three of valency 6, it is clear that such a critical graph cannot exist.

Case (7,2): Since n^ > 7, T ^ 12 - t. But we must also have

T ^ 21 - 2t, which is impossible.

Case (7,3): Here, n ^ 6, so T ̂  15 ^ t. Again, T Si 21 — 2t, so that

t = 6 and 3^67® is the only possible list. It is readily

seen that the vertices of valency 3 are not adjacent and that their

identification results in a simple subgraph of K , which is of class 1..

Because of bounds on n^, we have T ^ 16 - t in 

the first case and t < 15 - t in the second. These in

equalities, together with T > 2 1 -  2t, restrict T and t so that the

only possible lists are 4®57®, 4^567®, and 5^67^. Any such' graph can 

be sho^fn to have four independent edges whose deletion leaves a graph 

which cannot have a 6-critical subgraph, (cf. Case (6,2)).

This completes the proof of the lemma. //
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Finally, we prove a result which extends the earlier work 

of Jakobsen [20] on 3-critical graphs.

6,15 Theorem

There are no 3-critical graphs of order 12,

Proof

Assume on the contrary, that G is a 3-critical graph of 

order 12. It follows from Theorems 2.25 and 5.5 that G has exactly 

four vertices of valency 2 and eight of valency 3. Furthermore, the 

vertices of valency 2 must be at distance at least 3 apart, by 

Theorem 2.1. By Theorem 6.1, G contains a 1-factor F, whose deletion 

leaves a class 2 graph G ’ with list 1^2®. It follows that, since G ’ 

must contain an odd circuit, it is the graph of Figure 6.10, in which 

the pairs joined by dotted lines cannot be adjacent, since otherwise 

G would contain a vertex of valency 2 contained in a 3-circuit. This 

implies that G is separable by two independent edges and hence is a 

Hajos union of two 3-critical graphs one of which is of even order at 

most 10, by Theorem 4.3. But this is contradictory.

m(X

u V

n

w

Figure 6.10

Since every vertex of valency 3 must be adjacent to one of valency 2, 

in G, a, b, u, v, w must generate a 5-circuit. Consequently, p, q, or 

r is adjacent to ra or n, say p to m. without loss of generality. But 

then the edges (p,m), (q,r), (h,a), (k,b), (n,w), and (u,v) form a 

1-factor whose deletion leaves a graph with no odd circuits. //
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CHAPTER 7: CIRCUIT LENGTH IN CRITICAL GRAPHS

In this chapter we consider two problems related to the 

length of circuits in critical graphs. The first problem, discussed 

in the first section, deals with the girth (the length of any shortest 

circuit) of critical graphs. We showed in Chapter 5, how restrictions 

on the girth of graphs yield a partial solution to the planar graph 

problem. Here we show that p-critical graphs with arbitrary girth 

exist for each p. We also discuss the problem of determining f(p,g), 

the-minimum order of a p-critical graph having girth g. In the second 

section, we consider problems related to the circumference (the length 

of any longest circuit). We improve the lower bound for the circum

ference given by Vizing [43], and construct p-critical graphs with 

circumference not exceeding t(n,p), a number depending on the order n 

and the maximum valency p of the graph.

1) The girth of critical graphs

One natural question to ask about the girth of critical 

graphs is the analogue of that asked by Faber & Mycielski [10] and by

Meredith [30] about class 2 graphs: Do there exist p-critical graphs

of arbitrary girth g for each p? If this is answered in the affirm

ative, one can go on to ask: Within what bounds can one expect to

find p-critical graphs of given girth and of minimal order?

To answer the first question, one need look only at regular 

graphs and exploit the work that has already been done in this field.
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In particular, we recall that Sachs [36] showed:

7.1 Theorem ,  ̂ ' :

For each p > 3, g > 2 and h >1, there exists a Hamiltonian 

graph G which is p-valent, has girth, g, and in which all g-circuits 

are mutually disjoint and constitute a 2-factor of G. Moreover, the 

number of g-circuits is divisible by h. //

Once we have a p-valent graph G of the required girth, it is 

easy to obtain a class 2.graph having maximum valency p and of the 

same girth, for either G is of odd order and so is itself of class 2, 

or G is of even order. In the latter case, the graph G’ obtained from 

G by introducing a vertex into any one of the edges is of class 2.

This follows from (1.8). Having obtained a class 2 graph G’ having 

maximum valency p and of the required girth, we can consider a ,p- 

critical subgraph G" of G ’, which always exists, by (2.5). Now, the 

remark that if H is a subgraph of K, then g(H) > g(K), enables us to 

make the following conclusion:

7.2 Theorem

For any integers g > 3 and p > 3, there exists a p-critical 

graph of girth at least g. //

However, we should like to sharpen this last statement and 

obtain p-critical graphs with girth exactly equal to g. This can be 

achieved using the construction of regular graphs which Sachs used to 

establish Theorem 7.1. The p-valent graph G(p,g) of girth g in this

construction has the property that the Hamiltonian circuit H includes
" : . . ■ . ■ ■ ■ 

g - 1 edges of each of the g-circuits, G(p,g) - H has p - 2 1-factors,

and, except for the case p =  2 and g odd, n(G(p,g)) is even.

Now consider the graph G ’ obtained from G(p,g) by inserting

a vertex into an edge of the Hamiltonian circuit which is incident to
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some vertex of a g-circuit but does not belong to the g-circuit 

itself. By (1.8), G ’ is of class 2 and, by (2.13), G’ is vertex- 

critical. Thus, if G" is any p-critical subgraph of G ’, n(G") = n(G’). 

Moreover, each of the edges of H is essential, for the removal of any 

of them allows us to colour the remaining edges of H with two colours 

and each of the p - 2 1-factors with a distinct colour. Also, the 

edge of the g-circuit which is not on H is also essential, since a 

vertex of valency 2 in a p-critical graph can be adjacent only to 

vertices of maximum valency. Thus, G" is a p-critical graph of girth 

g and we obtain the following result:

7.3 Theorem . .

For any g ^ 3 and p > 3, there exists a p-critical graph of 

girth g. //

The answer to the second question proposed above seems to 

be difficult to give in full generality. However, we can attempt a 

partial solution. Let f(p,g) be the minimal order of a p-critical 

graph of girth g. Then we have the following result:

7.4 Theorem

î ( p . 3 )  =■ JL 1J-/ • M -1-JU ^  U- W V W A

p + 2 if p is odd.

Proof

Since a complete graph of even order is of class 1, it

follows at once that f(p,3) > p + I if p is even and f(p,3) ^ p + 2

if p is odd. Now consider a complete graph of odd order, ^2t+l* 

must contain critical graphs of order 2t + I and maximum valencies 2t 

and 2t - 1. We now show that they must contain a triangle." If we 

write n = 2t + 1, then for the former graph

m ^ ^^3(n - 1)^ + 6(n - 1) - 1), by Theorem 2?28 (ii) ,

- > [t-n^3, for all n > 2.
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Thus, by Turân’s Extremal Theorem,[39], the graph contains a triangle. 

For the latter graph, ^

m & i(3(n - 2)2 + 6(n - 2) - 1).

This exceeds C— for all n 5 8, For 7» we ’can verify the truth

of the statement by considering the graph of order 5 in Table 2.17 

and any one of the graphs with maximum valency 5 in Table 6.6. //

7.5 Theorem

f(p,4) = 2p + 1.

Proof

By Theorem 2.6,"f(p,4) < 2p + 1. Let G be, a p-critical 

graph with no triangles. By Theorem 2.1, there exist adjacent vertices 

u and V of valency p. As these have no common neighbour^, G has at 

least 2p vertices and is not bipartite. If G has no other vertices, 

then there is an edge joining neighbours of u or v, which is 

impossible. Hence,, f(p,4) > 2p + 1. //

We now consider f(3,g) for small values of g. We define a 

_(P> to be a p-valent graph of girth g and of minimum order.

From Table 2.17, it is clear that for g = 3, 4, and 5, f(3,g) = 2g - 1, 

the unique corresponding graphs being the following :

Figure. 7.1

Note that, whereas the last graph is obtained from the Petersen graph 

by deleting a vertex, the first two are obtained from the (3,3)-cage
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and the (3,4)-cage respectively by inserting a vertex into one of the 

edges. In what follows, we shall use this technique to obtain upper 

bounds for f(p,g) by exploiting the work that has already been done 

in determining the various (p,g)-cages.

We now determine f(3,6). We are indebted to L.W. Beineke 

for the proof of the following theorem, since it considerably 

shortens our earlier proof of the same result.

7,6 Theorem

f(3,6) = 15.

Proof

The graph H in Figure 7.2 has p = 3 and % = 4. It has

girth 6 since it is obtained from the (3,6)-cage, discovered by. 

Heawood [14], by inserting a new vertex into one edge.

H:

Figure 7.2

,The circuits <0,1,2,3,4,...,12,13,14,0> and.<0,1,6,7,12,13,4,5,10,11, 

2,3,8,9,14,0> are Hamiltonian and each edge of H lies in at least one 

of them. It follows that, for any edge e, the graph G - e is 3- 

colourable: We can now colour the remaining edges of a corresponding

Hamiltonian circuit with two colours and the edges not on that circuit 

with a third. Thus, the graph H is critical and f(3,6) <15.

Suppose now that f(3,6) <15. Let H be a graph of order k
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attaining .the minimum. From Table 2.17, it follows that k > 11.

First assume k is even. As shown in Chapter 6, H must have exactly 

four vertices of valency 2, and must contain a 1-factor F. Further

more, the distance between two vertices of valency 2 is at least 

three, and H - F must contain an odd circuit of length greater than 6. 

Thus, H - F must have at least three components, one of which is this 

odd circuit of order at least 7 and the other two of which are chains 

of order at least 4. This contradicts the fact that k < 15 and leaves 

only the cases k = 11 or 13.

From (5.5) it follows that H has either one or three

vertices of valency 2. Furthermore, H has an odd circuit; let Z be 

such a circuit of shortest length. Clearly Z can have no chords nor

can any vertex not on Z be adjacent to two vertices on Z, since Z is of

minimal odd order. Hence, if Z has length at least 9, there are at 

least six other vertices, which is impossible. Therefore Z has 

length 7. \

Since vertices of valency 2 cannot have a common neighbour, Z 

has at least five vertices of valency 3, and H must have order 13. Let 

A denote the set of vertices on Z, B those vertices not on Z but 

adjacent to Z, and C the remaining vertices, if any. Then A has order

7, with either one or two vertices of valency 2, and B has order 5 or

6 and at least four vertices of valency 3. But each of these vertices

can be adjacent to at most one in A and one in B. Thus, there must be

at least four edges joining a vertex in C to one in either A or B.

Since C can have at most one vertex, this is a contradiction, i.e. 

f(3,6) > 15. //

We now prove the following lower bound for f(3,7):

7.7 Lemma

f(3,7) > 2 1 .
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Proof , . ■ • ■ '/ ^'

Let G be a 3-critical graph of girth 7 and of order n S 20.

Let V be a vertex of valency 3 and let A.(v) be the set of vertices of 

G at distance i from V. Since the girth of G is 7, no element of 

A_(v) can be adjacent to two distinct elements of A_(v). Thus,

|Aj(v)| = 3 and |A^(v)| > 5, since the vertex v is adjacent to at least 

two vertices of valency 3, by Theorem 2.1. A similar argument applied 

to vertices of Aj(v) shows that |Ag(v)| ^ 8 . Thus f (3,7) ^ 17.

If f(3,7) =17, then since 17 is not a multiple of 3, there 

is some vertex w of G which is adjacent to three vertices of valency 3. 

Hence, I Aj (w)| = 3, Ia^Cw)! = 6 , and | A^(w) | > 9, which implies that 

f(3,7) k:19. .. :

The same argument holds if f(3,7) = 18 and there is some 

vertex of valency 3 adjacent to three vertices of valency 3. So 

assume this is not the case, i.e. G contains exactly six vertices of 

valency 2 and twelve of valency 3. By Theorem 6.1, G contains a 

1-factor F whose removal must result in an odd circuit C. with t ^ 7 

and three open chains each of order at least 4. But then G must have 

order at least 19.

Finally, we show that the order of G cannot be 19 or 20. 

Suppose n(G) = 20. By Theorem 6.1, G contains a 1-factor 

F and since G must have at least four vertices of valency 2, 

the graph G^ := G - F must consist of an odd circuit C (t 5: 7) and at 

least two open chains each of order at least 4. If we denote an open

chain of order j by P., and if G has six vertices of valency 2, then

the graph G" := G* - must be P, + P, + P_ and t must be 7. In this  ̂  ̂ t 4 4 5
case, there are three edges of F not incident with C_. This implies

that there are at least two adjacent vertices of G" incident in F with

C^, which is inconsistent with the fact that the girth of G is 7./ »
Hence, G has four vertices of valency 2 and so G" has two components.
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with t = 7, 9, or 11.

If t = II, then since no two vertices of can be joined

by a chord, we must have the order of G at least 22.

' If t = 9, then there is exactly one edge of F not incident

with Cg. This implies that G" contains a as subgraph all of whose 

vertices are joined in F to C^. However, this reduces the girth of G.

If t = 7, then G" is one of the following: P^ + Pg, P^ + Pg, 

or Pg. + P^ and there are exactly three edges of F not incident with C^. 

In the first two cases, we always have two adjacent vertices of G" 

incident in F with C^, which reduces the girth of G. In the third 

case, this can be avoided in a unique way, i.e. if the three edges 

cover the labelled vertices, as shown in Figure 7.3.

o o---- —o----- o--- :— o---- o-

Figure 7.3

However, all remaining possibilities either reduce the girth of G or 

are inconsistent with properties of critical graphs.

Ĉ ase_(^i2^: Suppose n(G) = 19. If G has exactly one vertex x of

valency 2, then by considering some vertex y of valency 3 

at distance at least 3 from x, we obtain |a.(y)| = 3, |A_(y)| = 6 , and
, \ ^   ̂' . ' T ' ' ^
IA^(y)I k 11, which implies that n(G) ^ 21. Thus, the number of 

vertices of valency 2 in G is 3 or 5.

By Theorem 6.2, G has a matching M covering all vertices of G 

except one of valency 2. Then the graph G' := G - M is of class 2, and
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consists of an odd circuit (t ̂  7) and one or two other components 

one of which is an open chain of order at least 4. Thus, t satisfies 

the inequalities: 7 < t < 15.

It is to be noted, that for t =11 + 2k (0 < k < 2), can

have at most 2k chords consistently with the girth of G being 7. Thus, 

for 0 < k < 2,

n(G) > (11 + 2k) + ((10+2k) - 4k) = 21.

Hence, t = 7 or 9. ‘

Suppose t = 9. Then note that if in any of the following 

configurations, all unlabelled vertices are joined in M to , then 

the girth of G is reduced :

(i) o o o (ii) o----- o----- o----- o— — — o

Figure 7.4

Now, G" := G’ - Cg has ten vertices all of which except at most three 

are incident in M to C^. Thus, G" is one of the following: P jqj 

Pg + P^, or" P^ + P^. Since some one of the configurations of 

Figure 7.4 must occur in each of these cases, t cannot be 9.

So finally we assume that t = 7. In this case, there 

cannot be two adjacent vertices of G", which are both incident in

M to C— « « . ». . « . . • . . . •. i . . . . . . (^ )

Then G" := must be one of the following:
. 7  . : ■■

C7 + P5 , Cg + P^, Pj2 * Pg + P4 ) Py + P5 ' P^ ■̂ ^6 *
The rest of the proof is dedicated to showing that each of these cases 

yields a contradiction. .

There are six or seven edges from to G". In all cases

except G" = P^ + P^, we get a contradiction to condition (*) , if there

are seven edges of this type. -In the exceptional case, these
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adjacencies are uniquely determined consistently with the fact that 

the girth of G is 7. But then nny other adjacency reduces the girth. 

Thus, we can assume that there are six edges of the form 

”0^ X G", i.e. there are three edges of M with both end-vertices in G".

In all cases except P T h e o r e m  2.1 forces each of these three edges

of M not incident with C_, to join one vertex in one component to a 

vertex in another component. In each of the cases + P^, Cg + P^, 

and Po + P, we are left with at least two adjacent vertices in G" . 

which are adjacent to vertices in C_. This contradicts condition (*).

If G is Pj2 or Pg + Pg, then there is a unique way of 

fitting in the three edges of M so as to avoid a contradiction to 

condition (*) and to be consistent with properties of critical graphs. 

However, this reduces the girth of G.

Finally, if G" is P_ +P^, then there is a unique way of

having the three edges of M incident with vertices in P^ and not 

contradicting condition (*). However, all three adjacencies of the 

form Py X p^ which are consistent with properties of critical graphs 

reduce the girth of G. ' ■

This completes the proof. // v ■

Now let us consider an upper bound for f (3,7). Consider the 

(3,7)-cage described by McGee [27]. This has order 24 and can be seen 

to be Hamiltonian in the representation of Figure 7.5. Note that 

<13,2*0,21,22,23,34,12,13> is a 7-circuit. . Consider the graph G 

obtained from the McGee graph by inserting a vertex into the edge

(13,14). By Theorem 2.13, G is vertex-critical. Thus, any 3-critical
'subgraph G ’ has the same order, 25.

Now, all-edges of the Hamiltonian circuit of G are clearly 

essential. Moreover, by Theorem 2.1, the vertices 12 and,13^have 

valency 3 in G*. Thus, the removal of non-essential edges (if any)
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13 12

Figure 7.5

from G to yield G \  leaves the 7-circuit <13,20,21,22,23,24,12,13> 

intact. We have therefore produced a 3-critical graph having girth 7 

and order 25. This and the previous lemma together establish the 

following result: •

7.8 Theorem

21 < f(3,7) < 25. //

An upper bound for f(4,5) can be similarly given. Consider 

the (4,5)-cage described by Robertson [34]. This is the following graph 

of order 19, which can be seen to be Hamiltonian in the representation 

of Figure 7.6.

Figure 7.6
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The graph G obtained from the Robertson graph by the deletion of the 

edge (2,11) is vertex-critical.. This follows from Theorem 2.13 and

the fact that G is obtained by taking a 19-circuit and the two

disjoint sets, each of nine independent edges,

{(1,5),(2,14),(3,18),(4,12),(6,17),(7,19),(8,16),(9,13),(10,15)} and 

{(1,16),(3,8),(4,15),(5,9),(6,14),(7,12),(10,19),(11,17),(13,18)}.

Now, let G* be any 4-critical subgraph of G. Then G* has order 19.

Clearly, all edges of the Hamiltonian circuit are essential and hence

belong to G \ Moreover, vertex 2 has valency at most 3 in G ’. Hence, 

by Theorem 2.1, vertex 1 has valency at least 3 in G*. Thus, not both 

edges (1,5) and (1,16) are non-essential. This implies that either 

the circuit <1,2,3,4,5,1> or the circuit <1,16,17,18,19,1> is a 5- 

circuit in G*.

We can now prove the following result:

7.9 Theorem

15 ^ f(4,5) < 1 9 .

Proof

The proof of the upper bound follows from the previous 

discussion. To prove the lower bound, let v be a vertex of valency 4, 

whose neighbours are w, x, y, and z. It follows from Theorem 2.1 

that w and x, say, have valency 4, whereas y and z either have 

valencies 4 and 2 respectively, or both have valency at least 3. 

Moreover, w, x, y , and z can have no common neighbour except v, since 

the girth is 5. Thus, f(4,5) ^ 15. //

2) The circumference of critical graphs

As we mentioned in Chapter 2, Vizing [43] proved that if G 

is a p-critical graph, then G contains a circuit of length not less 

than p + 1. This means that p + 1 is a lower bound for the
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circumference of p-critical graphs. As with the lower bound for the 

number of edges obtained in the same paper, this estimate for the 

circumference seems to suffer from the same deficiency, i.e. no 

account is taken of the order of the graph. However, the analogy 

between the two estimates is not complete, as will be discussed in the 

next few pages.

In tackling the problem from a different angle, we notice 

that critical graphs need not be Hamiltonian. This was pointed out in 

Chapter 3, where we showed that the graph of Figure 3.9 is a non- 

Hamiltonian 3-critical graph of minimal order. The same argument can 

be used further to give an infinite family of p-critical graphs whose 

circumference does not exceed a certain number t(n,p), which is a 

function of the order n and the maximum valency p of the graph.

To avoid repetitionj we consider only the case when p is odd; 

the case when p is even is strictly analogous. Let G be the graph 

obtained from by inserting a vertex into any edge. (If p is even,

then we use the graph obtained from by deleting a 1-factor). G

has been shoxm to be p-critical in (2.8). Let H be the graph obtained 

from K , by deleting one edge and appending an end-edge at each of thep+1
two resulting vertices of valency p - 1. The graph K obtained from 

G and H by deleting an edge of G and replacing it by H is p-critical.

In fact, it is a Hajds union of two copies of G, where the vertex of 

valency 2 in one copy is identified with a vertex of maximum valency 

in the other. We illustrate this for the case p = 3, in Figure 7.7.

In what follows, we shall talk of * replacing an edge of the given 

graph,~G say, by another graph, H say \  when we refer to this 

construction.

We construct our infinite family of graphs {G^} recursively
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G: H; K:

Figure 7.7

as follows: is the graph G just described. Let the vertex of

valency 2 in Gq be labelled v and let its neighbours (which have

valency p) be labelled u and w. Note that u is not adjacent to w.

Let T^ybe the set of edges incident with u but not incident with v

and let be similarly defined. Thus there are p - 1 edges in each

of T and T^. We obtain G by replacing each of the T and T edges u w 1 ° u w ^
by a copy of the graph H. Thus, if we denote the order and the 

circumference of G^ by n^ and c^ respectively, then

Up = (p + 2) = Cp

n^ = np + 2(p - 1)(p + 1)

Cj < Cg + 4(p + I).

Now in Gj there are 2(p - 1) copies of the graph K, each of which 

contains 2(p - I) edges of type T^. Thus, Gj contains 2%(p - ])% 

edges of this type. We obtain G^ by replacing each of these 2^(p - I) 

edges by the graph H. This yields.

%2 " *1 2^(p - l)^(p + 1), and

Cg ^ Cj + 2 (p + 1).

Repeating this process, we obtain
k-i- l  + ( p + l ) ( l + t  + t + ... + t ), where t = 2 (p - 1)

= I + (p + l ) ( 2 k ( p  -  ] ) k  _ ])
(2p -  3)

> 2k-'(p _ ,)k.
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Similarly,

- V l  3 ' + (P + 1)0 + 2% + 2® + ... + 2̂ )̂
-  1 + (p + 1 ) (2^ - 3 )

< (p + 1)2%+'. \

This implies that

log (2n^) > (k + 1) log (2p - 2)
i.e.

k 3 q(n^^p), where,

q(\»p) = log - log (p - 1)
log (2p - 2)

This establishes the following theorem:

7.10 Theorem

There exists an infinite family of p-critical graphs whose 

circumference c satisfies

c s 4(p + | )29(G'P),  '

where q(n,p) is as defined above. //

We now give an estimate for the circumference of p-critical 

graphs which does not depend solely on p. It was shown in (4.1) that 

critical graphs are 2-connected. Thus, given any pair of vertices v, 

w  of a critical graph, there are two vertex-disjoint chains from v to 

w, by Menger*s Theorem [29]. Hence, if the distance from v to w is 

d(v,w), then G has a circuit of length at least 2d(v,w), implying the 

following result, which is true for any 2-connected graph:

7.11 Theorem

The circumference c of a critical graph with diameter d 

satisfies c > 2d. //

in view of this result, we look for lower bounds for the 

diameter of critical graphs, preferably in terms of n and p. One such 

bound can be given by the following standard method. Let v be a
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vertex of a p-critical graph G -such that v is of minimum valency a.

The set V(G) can be partitioned into disjoint subsets A_, A,,...,A ,U 1 t
where A. is the set of vertices of G at distance i from v. Thus,1
Aq = {v }, |Aj| = a, and |â | < a(p - 1)̂  for 2 < j < t.

Thus,
' t V

n = I A^l < 1 + a(l + s + s^ + ... + s
t= 1 + g(s - 1) , where s = p - 1, .

(s  -  1)

Hence,

I.e.
g(n - 1) (s - 1) + 1 < s

t > f log { (n - 1) (p - 2) + a} - log a) .
I log {p - 1} ------- — /

since the diameter d >  t, we obtain the following corollary to (7.11);

7.12 Corollary i

The circumference of a p-critical graph whose minimum

valency is a is at least

2 flog {(n - 1)(p - 2) + g} - log a \. //
Îôg~rp~-~TJ

Already, this gives a better estimate than that of Theorem

2.28. So, for example, if we take p to be 3, Theorem 2.28 gives 4 as

a lower bound, which is smaller than the estimate of Corollary 7.12

for all 3-critical graphs of order at least 9. In general, this

estimate is better than Vizing^s if n p^. However, there is still

room for improvement. We think that a bound of the order p.2*, where

% = log (2n), is nearer the truth than the one given, 
log (2p)
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APPENDIX .

The following programme, written jointly with Galea and 

Buttigieg, produces t-critical graphs (t > 4) of some order n from 

3-critical graphs of the same order by the algorithm of Theorem 2.11.

To illustrate the use of the programme, we have limited 

ourselves to graphs of order 7, thereby giving the opportunity to 

compare the graphs thus obtained with those obtained in Table 6.6 by 

other methods.

We do not claim to have produced all t-critical graphs with 

t > 4 which can possibly be generated by the algorithm of Theorem 2.11 

To do this, we would have had to input all labelled isomorphic images 

of the four 3-critical graphs of Figure A.I.

1

6

Figure A.1

We have limited ourselves to inputting the 28 graphs obtained 

by rotating each of the four graphs of Figure A.1 as labelled there. 

Thus, for example, the graph obtained by inserting a vertex into an 

edge of is glaringly absent. This was shown to be 5-critical in 

Theorem 2.8. It can be produced by the algorithm of Theorem 2.11, for 

example, by taking the union of the two graphs of Figure A.2. However,
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3

Figure A.2

the second graph in this figure is a reflection of the second graph 

of Figure A.1 but not a rotation of it.

. Similarly, we can obtain all critical graphs of order 7 by

the algorithm of Theorem 2.11. This can be verified from Table 6.6.

When dealing with the production of graphs by computer or

otherwise, one has to face the difficult problem of weeding out 

isomorphic copies of the same graph. To do this, we make use of the 

algorithm of Corneil & Gotlieb [7], which we split into four sub

routines: ISOl, IS02, EEFINE, and LEXOKD.

Another feature of the programme is that space has been 

economized by working with a (1 x 14)-matrix instead of the usual 

(7 X 7)-adjacency matrix to represent the graph. Thus, for example, 

the second graph of Figure A.1 is represented in vector form by 

<0,1,0,0,0,0,0,1,0,1,0,0,0,0>, where adjacencies (7,1) and (i,i+l)

(i = 1,2,...,6) have been ignored since the 7-circuit is common to 

all these graphs. The remaining adjacencies are then labelled as 

follows :

<(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7), 

(4,6),(4,7),(5,7)> ,->• <aj,a^,aj,...,aj^>,

exploiting the fact that the adjacency matrix of a graph is symmetric,
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The matrix representation of a graph is only resorted to when the 

isomorphism subroutine is called.

The programme, which now follows, is written in FORTRAN.

1. PROGRAMME (MFOR)

2. DIMENSION NG(10,7,7),G(80,14),N(4),B(14),ÏB1(7,7)

3. DIMENSION IB2(7,7),IQ(7,7),IND(7),IG(7,7)

4. INTEGER G,Y,B

5. . DO 222 I = 1,22,7

6. DO 222 J = 1,14

7. G(I,J) = 0

8. 222 CONTINUE

9. G(l,2) = I

10. G(l,8) = 1

11. G(l,10) = 1

12. G(8,5) = 1

13. G(8,10) = 1

14. G(8,14) = 1

15. G(15,2) = 1

16. G(15,6) = 1

17. G(15,10) = 1 ^

18. G(22,4) = 1

19. G(22,5) = 1

20. G(22,9) = I

C THE ORIGINAL SET CONSISTS OF THE ABOVE FOUR GRAPHS

C THE 28 ROTATIONS OF THIS SET WILL BE OBTAINED BY DO

C LOOP 170 

24 DO 170 K = 1,22,7
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25 LI = K + 1

26 L2 = K + 6

27 DO 170 1 =  L1,L2

28 J = I - 1

29 Y = G(J,14)

30 G (1,14) = G(J,12)

31 G(I,12) = G(J,9)

32 G(I,9) = G(J,5)

33 G(I,5) = G(J,1)

34 G(I,1) = G(J,8)

35 G(I,8) = G(J,4)

36 G(I,4) = Y

37 . Y = G(J,2) '

38 G(I,2) = G(J,11)

39 G(I,11) = G(J,7)

40 G(I,7) = G(J,3)

41 G(I,3) = G(J,13)

42 G(I,13) = G(J,10)

43 G(I,10) = G(J,6)

44 G(I,6) = Y •

45 170 CONTINUE

46 1000 F0RMAT(1H1,20X,17H,GRAPHS.OF.VALENCY,I 3 ///)

47 1001 FORMAT(8X,414 /)

48 1002 FORMAT(12X,414 /)

49 1003 FORMAT(16X,314 /)

50 1004 FORMAT(20X,214 /)

51 1005 FORMAT(24X,14 ////)

C IB 1 IS THE GRAPH UNDER CONSIDERATION IN MATRIX FORM

53 DO 65 J = 1,7

54 65 IBl(J,J) = 0



135

55. DO 66 J - 1,6 '

56. 66 IB1(J,J+1) = 1

57. ’ DO 67 J = 2,7

58. 67 IB1(J,J-1) = 1

C THE ABOVE ARE INVARIANT ELEMENTS OF IBl

60. H(l) = 28

61. M = 0

62. . I . , ^  \  : .

63. 300 I = I + 1

C GRAPHS OF VALENCY I WILL BE GENERATED

65. IF (I.EQ.5) GO TO 305

66. IF (I - 3) 880,881,882

67. 880 KS = 1  M

68. ' KT = 1 ■ '

69. II = 0

70. 12 = 0

71. GO TO 883

72. 881 KS = 1 ,

73. KT = 2

74. II = 28

75. 12 = 0
' . /  ' '

76. GO TO 883

77. 882 KS = 2

78. KT = 2

79. II = 2 8

80. 12 = 2 8

81. 883 WRITE (2,1000) I

C N(I) IS THE CURRENT NUMBER OF GRAPHS OF VALENCY I

83. " .NXi),=,o :'';:̂ .A

84. M = M + N(I - 1)
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C M IS THE NUMBER OF GRAPHS OBTAINED SO FAR. THESE

, C INCLUDE THE ORIGINAL 28 ROTATIONS BUT EXCLUDE

C THE N(I)

88. JJJ = N(KT)

89. DO 250 IZ = I,JJJ

C DO LOOPS 250 AND 302 TAKE A GRAPH OF VALENCY KT AND

C SUPERIMPOSE IT ON ONE OF VALENCY KS

C LL IS THE LABEL OF THIS GRAPH IN THE SET G

93. LL =11 + IZ -

94. JKJ = N(KS)

95. DO 302 LS = I,JKJ

96. IF (I- 3) 886,884,887

97., 886 MAX = N(l) i

98. GO TO 888

99. 887 MAX = N(l) + N(2)

100. 888 MM = LL + LS

101. IF(MM.GT.MAX) GO TO 250

102. GO TO 885

103. 884 MM = 12 + LS

104. 885 DO 199 K = 1,14

r; C DO LOOP 199 LOOKS FOR COMMON EDGES

106. B(K) = G(LL,K) + G(MM,K)

107. IF (B(K).EQ.2) GO TO 302

108. 199 CONTINUE

109. DO 68 J = 1,4

110. IB1(1,J + 2) = B(J)

111. 68 IBl(J + 2,1) = B(J)

112. DO 69 J = 5,8 : " . /

113. - IB1(2,J - I) = B(J) •

114. 69 IB1(J - 1,2) = B(J)



137

115. DO 70 J = 9,11

116. ÏBI(3,J - 4) = B(J)

117. 70 ÏB1(J - 4,3) = B(J)

118. IBl(4,6) = B(12)

119. IBl(6,4) = B(12)

120. IBl(4,7) = B(13)

121. IBl(7,4) = B(13)

122. IBl(5,7) = B(14)

123. IBl(7,5) = B(14)

124. IBl(1,7) = 1

125. IBl(7,1) = 1

126. KK = 7

127. : KKK = 7 ' ,

128. ■ 333 FORMAT (//,15H AN IBl FOLLOWS,//,(712,1 OX,<7I2))

, ' C DO LOOP 770 LOOKS FOR ISOMORPHIC GRAPHS

130. CALL ISOl(IBl,IB2,IND,KK,KKK)

131. IF(Nd).EQ.O) GO TO 304

132. KJK = N(I)

133. ' DO 770 L3 = 1,KJK

134. DO 339 LI = 1,7

135. DO 339 L2 = I,KKK

136. IF(NG(L3,L1,L2) - pB2(Ll,L2)) 770,339, 770

137. 339 CONTINUE

138. GO TO 302

139. 770 CONTINUE

140. 304 N(I) = N(I) + 1

141. Ml = M + N(I)

142. DO 370 K = 1,14 v ^

143. 370 G(M1,K) = B(K)

144. miT E  (2,1001) (G(M1,K),K = 1,4)
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145. ' -WRITE; (2,1002) (G(M1,K), K = 5,8)

146. WRITE (2,1003) (G(M1,K), K = 9,11)

147. : WRITE (2,1004) G(M1,12),G(M1,13)

148. WRITE (2,1005) G (Ml,14)

149. DO 371 16 = 1,7

150. DO 371 17 = 1,7

151. U K  = N(I)

152. 371 NG(IJK,I6,I7) = IB2(I6,I7)

- C DO LOOP 371 STORES THE IQ OF THE GRAPH OBTAINED

154. 302 CONTINUE

155. 250 CONTINUE

156. IF(N(I).EQ.O) GO TO 305

157. GO TO 300

158. ■ 305 STOP

159. END

END OF MAIN PROGRAMME 

SUBROUTINE ISOl

160. SUBROUTINE ISOl(IG,IQ,IND,N,JS)

161. DIMENSION IND(N),IG(N,N),IQ(N,N),IND1 (100)

C THE SUBROUTINE PRODUCES THE MATRIX IQ, GIVEN THE MATRIX

C IG. ON EXIT THERE WILL BE A CORRESPONDENCE J TO IND(J)

C REPRESENTING THE CORRESPONDENCE BETWEEN THE VERTICES OF

C IG AND THOSE OF IQ. INDl(J) SHOWS THE SIZE OF THE J ’TH

C CELL ■ ' '  ̂ ' '

167. : K=^ i

168. DO 51 J >  1,N

169. ISUM = 0
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C DO LOOP 52 FORMS ROW SUMS OF IG

171. DO 52 I = 1,N

172. 52 ISUM = ISUM + IG(J,I)

173. 51 IQ(J,I) # ISUM

174. MAXVAL = 0

175. N1 = N + 1

C DO LOOP 53 FINDS THE MAXIMUM VALUE OF THE ROW SUMS, AND

C SETS IT EQUAL TO M

178. DO 53 I = 1,N

179. IT = IQ(I,1)

180. IF(IT.LE.MAXVAL) GO TO 53

181. MAXVAL = IT

182. 53 CONTINUE '

183. M = MAXVAL

184. ICOUNT = 0

185. JJ = 0

C SET IND, INDl AND FIND JMAX FOR THE FIRST TIME

187. DO 54 J = 1,N

188. DO 55 I = 1,N

189. IF(IQ(I,1).NE.M) GO TO 55

190. IND(K) = I

191. K = K + 1

192. ICOUNT = ICOUNT + 1 ' ' '

1 93. 55 CONTINUE

194 M = M - 1

195. IF(ICOUNT.EQ.O) GO TO 250

196. JJ = JJ + 1  .

197. INDl(JJ) = ICOUNT

198. 250 IF(K.EQ.Nl) GO TO 200

199. 54 ICOUNT = 0
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200. 200 JMAX = JJ

201. 301 CALL IS02(IG,IQ,IND,IND],N,JMAX,JS)

 ̂ C IF THIS CALL OF IS02 HAS FAILED TO PRODUCE A REFINEMENT,

C THEN ONE IS ARTIFICIALLY PRODUCED IN THE REST OF THIS

C SUBROUTINE, BY SPLITTING THE FIRST CELL WHICH HAS SIZE

C LARGER THAN ONE, AND THEN RE-LABELLING APPROPRIATELY

206. IF(JMAX.EQ.N) GO TO 300

207. DO 150 I = 1,JMAX

208. IF(INDl(I).EQ.1) GO TO 150

209. K = I

210. GO TO 151

211. 150 CONTINUE •

212. 151 ITEM = IND(K)

213. IF(K.EQ.l) GO TO 400

. 214. KK = K - 1

215. DO 152 I = 1,KK

216. KL = K - I + 1

217. 152 IND(KL) = IND(KL - 1)

218. ' IND(1) = ITEM

219. 400 DO 153 I = K,JMAX

220. KL = JMAX - I + K + 1

221. 153 IND1 (KL) = INDl (KL - 1)

222. INDl(K + 1) = INDl(K) - 1 . .

223. INDl(K) = 1

224. JMAX = JMAX + 1

225. GO TO 301

226. 300 RETURN

227. END

END OF SUBROUTINE ISOl
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SUBROUTINE IS02

228. SUBROUTINE IS02(IG,IQ,IND,IND1,N,JMAX,JS)

229. - DIMENSION IG(N,N),IQ(N,N),IND(N),INDl(N)

230. DIMENSION IND2(100),IND3(100),ISUP(100),ISIND2(100)

231. DIMENSION IND4(100)

C THIS SUBROUTINE REFINES AND REORDERS LEXICOGRAPHICALLY

C UNTIL THE FIRST FAILURE OF FURTHER PIEFINEMENT IS

C DETECTED

235.. 201 CALL REFINE(IG,IQ,IND,INDl,N,JMAX)

236. DO 500 I = 1,N

237. 500 IND4(I) = IND(I)

238. CALL LEXORD(IQ,IND3,INDl,IND2,ISUP,ISIND2,N,JMAX,JS,1)

239. DO 501 I = 1,N

240. II = IND3(I)

241. 501 IND(I) = IND4(II)

^42" IF(JS.EQ.JMAX) GO TO 300

243. JMAX = JS

244. GO TO 201

245. 300 RETURN

246. END

END OF SUBROUTINE IS02

; ' ■■ - ■' : \

SUBROUTINE REFINE

247. SUBROUTINE REFINE(IG,IQ,IND,INDl,N,JMAX)

248. DIMENSION IG(N,N),IQ(N,N),IND(N),INDl (N)

249. DO 70 I = 1,JMAX

250. DO 70 J = 1,N
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251. 70 = 0

252. DO 67 J = j,N - \

253. ■ K = IND(J)

254. DO 60 I = 1,N :

255. IF(IG(K,I).EQ.O) GO TO 60

: C LOOP 61 FINDS THE VALUE OF IL SUCH THAT IND(IL) = I, AND

. C SETS ITEM = TO THAT VALUE, IFND IS THE NUMBER OF THE CELL

C WHICH CONTAINS THE NUMBER IL

259. DO 61 IL = 1,N r

260. IF(IND(IL).NE.I) GO TO 61

261. ITEM = IL

262. GO TO 62

263. 61 CONTINUE

264. 62 M = 0

265. DO 65 L = 1,JMAX

266. M = M + INDI(L)

267. ITEST = M - ITEM

268. IF(ITEST.LT.O) GO TO 65

269. IFND = L

270. GO TO 66

271. 65 CONTINUE

272. 66 IQ(J,IFND) = IQ(J,IFND) + 1

273 60 CONTINUE

274. 67 CONTINUE

275. RETURN

276 .. END

END OF SUBROUTINE REFINE
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SUBROUTINE LEXORD

277. ■ SUBROUTINE LEXORD(lA,INDEX,IB,lAA,IBl,INDEXljN,IP,

■ NOUT,INDIC)

278. DIMENSION IA(N,IP),IB(N),INDEX(N),IAA(N),IB1(N),

INDEXl (N)

C THIS IS A GENERAL SUBROUTINE. GIVEN A MATRIX lA

C CONSISTING OF N ROW-VECTORS OF LENGTH IP, THEN ON EXIT

C INDEX (G) WILL CONTAIN THE NIRIBER OF THE ROW OF IA WHICH

C CONTAINS THE J'TH LARGEST VECTOR. IB IS AN INPUT VECTOR

C SUCH THAT IB(J) CONTAINS THE SIZE OF THE J ’TH CELL (IF

C lA IS IMPLICITLY SPLIT INTO CELLS). IF INDIC = 1, THEN

C IT IS UNDERSTOOD THAT lA IS ALREADY SPLIT INTO CELLS,

C AND THAT LEXICOGRAPHICAL ORDERING IS TO TAKE PLACE ONLY

C WITHIN EACH CELL. IT IS ASSUMED THAT EACH ENTRY OF lA

C IS NON-NEGATIVE.

289. IF(INDIC.EQ.n GO TO 200

290. ' IB(1) = N '

291. L = I

292. GO TO 201

293. . 200 L = IP

294. 201 DO 6 I = 1,N

295. INDEXl(I) = I

296. INDEX(I) = I

C LOOP 10 LOOKS AT EACH OF THE IP CELLS

298. DO 10 J = 1,IP

299. LI = 1

300. K = 1

301. DO 30 M = 1, L

302. IF(M.EQ.l) GO TO 100
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303. LL = LL + IB(M - 1)

304. LR = LR + IB(M)

305. GO TO 101

306. 100 LL = 1

307. LR = IB(1)

308. 101 IF(LR - LLV 102,31,102

309. 31 IBKLl) = I

310. LI = LI + 1

311. K = K + 1

312. GO TO 30

313. 102 DO 9 I = LL,LR

314. II = INDEX(I)

315. 9 lAA(I) = IA(II,J)

316. 50 ICOUNT = 0

317. ISUM = - 1

318. DO 11 I = LLjLR

319. IT = lAA(I)

320. IF(IT.GT.ISUM) ISUM = IT

321. 11 CONTINUE

322. IF(ISUM.EQ.-l) GO TO 30

323. DO 12 I = LL,LR

324. IF(lAA(I).NE.ISUM) GO TO 12

325. INDEXl(K) = INDEX(I)

326. K = K + 1

327. lAA(I) = -1

328. ICOUNT = ICOUNT + 1

329. 12 CONTINUE

330. IBl(LI) = ICOUNT

331. LI = LI + 1

332. GO TO 50
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333: 30 CONTINUE

334 L = L1 - 1

335 DO 17 1 =  1,L

336 17 IB(I) = IB 1(1)

337 DO 18 I = 1,N

338 18 INDEX(I) = INDEXl (I)

339 IF(L.EQ.N) GO TO 56

340 10 CONTINUE

341 56 NOUT = L

342 RETURN

343 END

END OF SUBROUTINE LEXORD
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GRAPHS OF MAXIMUM VALENCY 4

0 0
1
0

45

0 1 0 1 0 

0 0 0 1 

1 1 0  

0 1

; ■ ■ 0

1 1  0 0 0 

0 0 1 1 

0 1 0 

0 0 
1 4

0
1

0
0

0

0
0
0

0 1 1 0  0 

0 0 1 1 

0 1 1 

0 0 

0
6

0 0 0 0 0 
1 0 0 1 

1 1  0 

1 0  

0
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1 1 1 0 0 

0 1 0 1 

0 1 1

-0

0

0

0

0

1 1 0 0 0

0 1 1  I

I I 0.

1 1  

0 45

1 1 1 0 0 

0 1 1 1 

0 1 0  

1 1 

0 45
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