
Application of IoT and BEMS to Visualise the 
Environmental Performance of an Educational Building

HOSSAIN, Mohataz <http://orcid.org/0000-0002-1885-8692>, WENG, 
Zhenzhou, SCHIANO-PHAN, Rosa, SCOTT, David and LAU, Benson

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/26867/

This document is the author deposited version.  You are advised to consult the 
publisher's version if you wish to cite from it.

Published version

HOSSAIN, Mohataz, WENG, Zhenzhou, SCHIANO-PHAN, Rosa, SCOTT, David and 
LAU, Benson (2020). Application of IoT and BEMS to Visualise the Environmental 
Performance of an Educational Building. Energies, 13 (15), p. 4009. 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


energies

Article

Application of IoT and BEMS to Visualise the
Environmental Performance of an
Educational Building

Mohataz Hossain 1,2,* , Zhenzhou Weng 3, Rosa Schiano-Phan 1,*, David Scott 4 and
Benson Lau 1

1 School of Architecture and Cities, The University of Westminster, London NW1 5LS, UK;
b.lau@westminster.ac.uk

2 Department of Natural and Built Environment, Sheffield Hallam University, Sheffield S1 1WB, UK
3 Department of Architecture & Civil Engineering, The University of Bath, Bath BA2 7AY, UK;

z.weng@bath.ac.uk
4 Fabrication Lab, College of Design, Creative and Digital Industries, The University of Westminster,

London NW1 5LS, UK; d.scott@westminster.ac.uk
* Correspondence: m.hossain@shu.ac.uk (M.H.); r.schianophan@westminster.ac.uk (R.S.-P.)

Received: 8 May 2020; Accepted: 29 July 2020; Published: 3 August 2020
����������
�������

Abstract: This paper presents the application of Internet of Things (IoT) Technology and Building
Energy Management System (BEMS) within the Marylebone Campus of the University of Westminster,
located in central London, to improve the environmental performance of the existing building as
well as enhance the learning experience on energy and sustainability. Sixty IoT sensors connected
to minicomputers were planned to be deployed within three floors of the building to continuously
measure the real-time environmental parameters, such as dry-bulb temperature, relative humidity,
illuminance level, carbon dioxide, and sound levels. Experimental workshops were also arranged
with undergraduate and post-graduate students at their classrooms using IoT sensors, portable
Bluetooth sensors and online questionnaires to increase awareness of the effect of environmental and
behavioural changes on energy saving through real-time visualisation. Users’ subjective feedback
on their workplace was also collected through Post Occupancy Evaluation (POE) questionnaire
surveys. The results show the effectiveness of IoT systems and BEMS in supplying the building
users and management with high-resolution, low-cost data acquisition systems highlighting the
existing challenges and future scopes. The study also documents the process and the improvement in
students’ awareness of environmental and energy performance of their building through IoT data
visualizations and POE.

Keywords: internet of things; building energy management system; smart technology;
data-visualisation; post-occupancy evaluation; students’ perception; workplace; educational building

1. Introduction

The application of Internet of Things (IoT), the wireless sensors and computers network,
has enhanced the concept of smart city environment in the current ‘revolutionary era of technologies’ [1].
Recently, the technology of IoT has been widely developed and its usage has been extended to social
networks, infrastructure, security, business, and healthcare [2,3]. The technologies combining the
IoT-based smart monitoring, such as environmental and energy monitoring, with human participation,
have made a significant prospect within the smart city context to help improve human health and
wellbeing [1].
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Previous studies showed many successful deployments of IoT enabled environmental monitoring
systems in various locations in the world as a significant feature of the smart city concept [4–7].
In particular, there are several successful case studies of integrating Building Energy Management
System (BEMS) with IoT sensors to monitor the indoor environment and optimise energy usage in
residential buildings [8,9]. Along with real-time data monitoring, dynamic data visualisation on
dashboards became an effective method of enhancing the interaction between visualising data gathered
from IoT-enabled sensors and occupants. Lehrer and Vasudev [10] also demonstrated the effectiveness
of real-time data monitoring and interactive data visualisation in commercial buildings to improve the
cost and energy efficiency of workplaces. Minoli [8] also showed in their research that the use of IoT
sensors can help in achieving ‘smart building’ status through improving the functionality, efficiency,
and cost-effectiveness of buildings.

Li and Xu [3] showed a comparative analysis on communication technologies in IoT and revealed
that Wi-Fi has a higher transmission range of up to 100 m compared to that of other technologies,
such as range of 10 m of Bluetooth and ZigBee. However, recent studies also highlighted the challenges
and issues of integrating the IoT in smart cities in terms of security, privacy, data quality, reliability,
budget, and scalability [3,11–14]. Kelly et al. [15] demonstrated an efficient method of integrating the
IoT for indoor environmental monitoring in residential buildings through low-cost solutions, such as
internet using ‘Internet Protocol’ (IP) connectivity. Although the reliability of IoT enabled data is high,
they also highlighted the issue of Internet Protocol version 6 (IPv6) connectivity while implementing
the IoT in their projects [15].

The above studies were mainly focused on either residential or commercial buildings where
cost-effectiveness and commercial gains were the key objectives of integrating IoT, BEMS systems,
and other smart technologies. Stavropoulos et al. [16] have shown the theoretical concept of a smart
university building with a real-time monitoring system to improve energy-awareness and sustainability
among users within an educational building. However, there are limited empirical research and
case studies that demonstrate the application of IoT for data visualization for educational purpose,
and integrations of IoT with BEMS systems and existing technologies [17]. Hence, this research adopted
an empirical approach to demonstrate the reliability, challenges, and limitations of using existing
BEMS systems and deploying IoT sensors for educational purpose within a university setting. Thus,
this original research contributes to existing knowledge towards smart-university buildings through
the feasibility of the methods, the empirical data, and analysis results.

This empirical work of this research was conducted in an educational case study building,
the Marylebone building of the University of Westminster, located in central London, and demonstrates
a methodology for integrating IoT sensors within the existing building’s internet network. The empirical
study framework revolves around the importance of understanding two types of variables: the
‘environmental variables’ as well as the ‘human variables’ [18]. The main research question is:

‘To what extent applications of IoT and BEMS are viable in terms of visualising the environmental
performance and improving the learning experience within a university campus?’

As a first part of the empirical work, the data collected by the IoT sensors pertains to the
environmental variables of the teaching and office spaces and included primarily dry bulb temperature
(DBT) in ◦C, relative humidity (RH) in %, illuminance levels in lux, carbon dioxide (CO2) levels in ppm
and sound pressure levels in dB. The IoT data was validated with data obtained from pre-existing sensors
from the building’s BEMS. The second part involves gathering ‘human variables’ including feedback
from students and staff-member to observe the usefulness of gathering and real-time visualising the
above environmental variables. The study shows how real-time data visualisation from IoT sensors
can be utilised for educational purposes, improving students’ awareness of environmental parameters
and realising sustainability. Thus, this article represents the overall methodology for integrating IoT
into the existing infrastructure of the Marylebone campus and highlights the limitations and mitigation
strategies of existing challenges for the application of IoT buildings in educational buildings.
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2. Materials and Methods

Based on the literature review on methods of studies using IoT and BEMS as well as taking
into consideration the constraints on facilities within the university, the research methodology was
developed. Figure 1 illustrates the overall methodology adopted. In collaboration with the Estates
Planning & Services department of the Marylebone campus, locations (Section 2.1) were selected and
data collection for principal investigation was scheduled. As mentioned in Section 1, the research
framework of the principle investigation has two parts. Based on the nature and objective of the
investigation [19] (p. 205), [20,21], both objective and subjective data covering the environmental
and human variables, respectively, were gathered (as shown in Figure 1) to ensure the validity and
reliability of data collected through IoT and BEMS sensors [18].
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Figure 1. Flowchart showing the empirical research framework and the overall methodology.

2.1. Schedules and Areas of Investigation

As a part of the ‘Realising Sustainability’ research project’s contract, the study focused on the
‘7-storey educational building, referred to as the ‘Marylebone Block’, located within the Marylebone
Campus of the University of Westminster and beside the Marylebone Road, coordinates 51.522 North,
0.155 West (Figure 2). The building consists of a total 10 floors, i.e., 3 floors below the ground level
and 7 floors above the ground level. Hence, the initial data collection took place at selected locations
such as Basement 1 level (Fabrication Lab) and Levels 1−7 (ground floor to 6th floor), representing
BEMS assisted air-conditioned and naturally ventilated zones respectively (see Section 2.2). Data
collection methods were designed and set up from November 2018 to May 2019 with simultaneous
data collections scheduled from January to July 2019 covering both spring and summer weather of the
UK. However, due to technical difficulties and security issues of the deployments, these environmental
data could not be collected continuously as planned. For instance, Sections 3.2 and 3.3 are unable
to present the data from BEMS and IoT during May–June 2019. Section 2.2 will explain more about
both variables.
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Figure 2. Location of the case study building (source: google maps, edited by author).

2.2. Methods of Objective Data Collections and Validations

As shown in Figures 1 and 3, objective data collection methods include spot measurements and
continuous monitoring of environmental data, including DBT in ◦C, RH in %, CO2 level in ppm,
Illuminance level in lux and Sound Pressure Levels in dB using handheld anemometers, IoT sensors,
existing BEMS sensors and Tinytag data loggers, as shown in Figure 3. Smart Bluetooth based
environmental sensors were also used to collect data during education workshops to support subjective
feedback, which is explained in Section 2.3.
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Table A1 in Appendix A provides the detailed specifications highlighting the measurement range
and accuracy of handheld equipment, BEMS, IoT, Bluetooth sensors, and other accessories based on
the manufacturers’ technical datasheets available on the internet.

As shown in Figure 4, spot measurements within the case study building were only conducted
following 17 and 30 grid points on the 4th and 5th floors, respectively, at 1 m and 2 m level from
the floors in November 2019 to investigate the deviations of DBT, CO2 and illuminance (lux level)
within the zone 3 of the floor plates. Since all the existing BEMS sensors have fixed positioned on
the wall at 2 m height from the floor levels and may not represent the environmental performance of
the total indoor space, this exercise tried to justify the reliability of monitoring the BEMS sensors for
indoor spaces.
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Figure 5 shows the locations of the BEMS, IoT and Tinytag data loggers within the selected
university premises. Over 60 IoT sensors with 30 Tinkerforge Bricklets (Appendix A) were planned
to be deployed in Fabrication Lab, 4th floor and 5th floor levels within the scope of the project, and
the overall methods of IoT integration methods were shown in Appendix B. Figure A1 elaborates the
four steps of deployment, e.g., environment, sensing, network, and application, revealing the locations
of each IoT Sensor Hub with mini Personal Computer (PC), execution of the python script, Hotspot
connection options, and tools involves from server to end-users.

However, for data validation and visualisation, IoT sensors were initially located in the Fabrication
Lab’s Print Office and Project Space at 1 m level suspended from the shelves on the desk levels as shown
in Figure 5. Two sets of IoT sensors were also deployed in two lecture rooms during the educational
workshop sessions (see Section 2.3). As a limitation of this research, these IoT sensors could not be
deployed from the ceiling on a free space due to security, power source, and handling issue. However,
the Tinytag data loggers were positioned at 3-meter level suspended from the ceiling and service trays,
as shown in Figures 3 and 5.

As an established method, the mini Personal Computers (PCs) were connected to Wireless Access
Point (WAP) through the University wireless network. The reason for selecting the existing Wi-Fi
network is the higher transmission range and rate compared to other technologies such as Bluetooth [3].
Tinkerforge IoT sensors measuring DBT (◦C), RH (%), Illuminance (lux) and Sound Pressure Level (dB)
were integrated into Microcontrollers named ‘Tinkerforge Bricklets’ and connected to Mini PCs, i.e.,
‘Raspberry PI Zero’ (specifications are included in Appendix A). Based on an initial market survey, 5v
USB adapter and Power over Ethernet (PoE) adapters were chosen to provide power to the Mini PCs.
It was found that the initial cost for battery-powered Mini PC is relatively high and have a high-risk
factor within a university premise as per the author’s risk assessment. This should be further explored
in future studies.

A desktop computer located in the Fabrication’s Lab Print Office was used as a local server
to write the data directly to the ‘InfluxDB’ database with written coding [2]. Grafana Lab tool
(https://grafana.com/) was used to visualise the live IoT data and to evaluate the reliability of using
university ‘Eduroam’ Wi-Fi network for this purpose. For the analysis, the database was converted
from InfluxDB to *.csv files. ‘Microsoft Excel’, with add-in ‘Pivot’ and ‘Data Analysis’ tools, were used

https://grafana.com/
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to retrieve the data from over 7.8 million rows for each parameter for cross-tabulations. ‘IBM SPSS
Statistics—version no. 24′ software was also utilised for managing and analysing database [22].

Energies 2020, 13, x FOR PEER REVIEW 6 of 33 

 

 
Figure 5. Studied areas for BEMS, IoT and Tinytag sensors. 

The existing BEMS interface of the case study building was located at a specific and static 
Internet Protocol (IP) address hosted on ‘TREND 963’ server [23]. The same computer used for IoT 
data visualisation was validated by the IT security team of the university to direct access to the 
graphical interface of BEMS. Screenshots of the graphical interfaces showing the thermostats, indoor 
and outdoor DBTs, CO2, rain, and wind sensors were recorded daily during weekdays and a few 
weekends from March 2019 to July 2019. The useful data of the studied floors (see Section 2.1) were 
transferred manually to Excel sheets and SPSS database for comparative analyses and cross-
tabulations [22]. Figure 5 shows the locations of the BEMS sensors at 2 m level that were used for data 
validations. Tinytag DBT and RH sensors were also deployed at 3 m above the floor plate and 3 m 
away from the BEMS sensors simultaneously during July 2019 to cross tabulate the reliability of 
BEMS sensors in both BEMS assisted naturally ventilated and air-conditioned zones, as shown in 
Figure 5. 

Portable Bluetooth sensors (Appendix A) were also used to record DBT and RH at work desks 
during the students’ workshops to cross tabulate between the overall environmental data of the 
lecture room (Figure 6), and data collected at students’ desks and students’ online feedback (see 
Section 2.3). 

2.3. Educational Workshops and Post Occupancy Evaluation 

The educational workshops were conducted during February and April 2019 as a collaboration 
between ‘Realising Sustainability’ project and students from the undergraduate and postgraduate 
courses. The collaboration not only allowed useful data to be collected for the project, but highly 
enhanced the students’ learning experience and educational value of the teaching activities. 

Figure 6 shows selected images from the educational workshops and provides examples of the 
classroom, IoT data visualisation, portable Bluetooth sensors and other equipment. Through these 
workshops, students were exposed to the cutting-edge technology of recording and visualising real-
time environmental data, which are usually invisible to them, through utilising IoT sensors in 

Figure 5. Studied areas for BEMS, IoT and Tinytag sensors.

The existing BEMS interface of the case study building was located at a specific and static Internet
Protocol (IP) address hosted on ‘TREND 963’ server [23]. The same computer used for IoT data
visualisation was validated by the IT security team of the university to direct access to the graphical
interface of BEMS. Screenshots of the graphical interfaces showing the thermostats, indoor and outdoor
DBTs, CO2, rain, and wind sensors were recorded daily during weekdays and a few weekends from
March 2019 to July 2019. The useful data of the studied floors (see Section 2.1) were transferred
manually to Excel sheets and SPSS database for comparative analyses and cross-tabulations [22].
Figure 5 shows the locations of the BEMS sensors at 2 m level that were used for data validations.
Tinytag DBT and RH sensors were also deployed at 3 m above the floor plate and 3 m away from the
BEMS sensors simultaneously during July 2019 to cross tabulate the reliability of BEMS sensors in both
BEMS assisted naturally ventilated and air-conditioned zones, as shown in Figure 5.

Portable Bluetooth sensors (Appendix A) were also used to record DBT and RH at work desks
during the students’ workshops to cross tabulate between the overall environmental data of the lecture
room (Figure 6), and data collected at students’ desks and students’ online feedback (see Section 2.3).

2.3. Educational Workshops and Post Occupancy Evaluation

The educational workshops were conducted during February and April 2019 as a collaboration
between ‘Realising Sustainability’ project and students from the undergraduate and postgraduate
courses. The collaboration not only allowed useful data to be collected for the project, but highly
enhanced the students’ learning experience and educational value of the teaching activities.
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Figure 6 shows selected images from the educational workshops and provides examples of
the classroom, IoT data visualisation, portable Bluetooth sensors and other equipment. Through
these workshops, students were exposed to the cutting-edge technology of recording and visualising
real-time environmental data, which are usually invisible to them, through utilising IoT sensors in
addition to conventional data logging sensors and hand-held equipment (Figure 6). After the workshop,
it was expected that the students would improve their perception of the effect of environmental factors,
e.g., DBT, RH etc., and personal factors, e.g., Clothing insulation (CLO) and Metabolic Equivalent of
Task (MET) value, on human thermal comfort. Anonymous Online Structured Questionnaire, based
on google drive, as shown in Appendix C, was provided to the students for their instant feedback
on their thermal comfort through the Thermal Sensation Vote (TSV) in 7-point scale and Thermal
Preference Vote (TPV), in 5-point scale, so that they could relate their real-time thermal perception with
data visualization (Tables A2 and A3, Figure A2). An answer with a 5-point scale (−2 to +2) was also
gathered at the end of the workshop to quantify their self-assessed improvement on their perception of
the indoor environment using IoT (See Table A4 in Appendix C).
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As a well-recognised method for post-occupancy evaluation (POE) [24], the Building Use Studies
(BUS) Questionnaire survey method was selected to collect subjective data at the Marylebone Block.

Specifically, the Workplace Questionnaire that has been developed and licensed by the Usable
Building Trust [25] was used for the evaluation. Leaman [26] described the BUS occupant questionnaire
and methodology, which has been extensively employed in hundreds of buildings studies around
the world. Results from the BUS licenced building studies over the years converge into the database
forming the basis for benchmark and comparison of each new survey. The survey comprehensively
evaluates the users’ perceptions of the building, questioning the ‘historic’ memory of the building
since the first occupation, and does not question the perception of their environment at the present
moment only [27]. Due to copyright restrictions, the BUS questionnaire was not attached to this paper.

The questionnaire queries occupants on environmental parameters, namely: lighting, airflow
and air quality, the temperature during summer and winter, noise, as well as on other parameters of
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subjective satisfaction such as the design perceptions, health, perceived productivity etc. The occupants’
cumulative response for each parameter is indicated through a mean value and this can be evaluated in
the context of the parameter’s specific 1 to 7 scale and benchmark of the BUS database. The 1 to 7 scale
expresses responses in the spectrum of unsatisfactory to satisfactory, respectively, and is graphically
represented by shaped symbols and a traffic light colour code (green, amber and red). On the top scale
of each parameter, the benchmarks are represented by the small rectangles [27].

The survey was conducted during the period of June–July 2019. Although the main objective of
conducting the ‘BUS Questionnaire’ survey among both students and staff members was to benchmark
the environmental performance of the Marylebone block by questioning their memory of the space,
the survey outcome within this study was also used to investigate and cross-reference the students’
improved perception and awareness on their indoor environmental after the workshops during
February–April 2019. As suggested by Gossauer and Wagner in 2007 [28], sample size and their
characteristics were maintained while distributing the questionnaire. All the ethical procedures and
risk assessments were followed and practised. The survey was conducted among 83 staff members
and 57 students of the Marylebone Block representing 60% of the staff and student population during
the summer term.

3. Results and Discussions

3.1. Outcome of Spot Measurements

Figures A3–A8 in Appendix D provide graphical representations of average results from the spot
measurements and highlight the variations of indoor DBTs, CO2 and Lux levels at the 4th and 5th
floors during November 2018. The results from spot measurements of indoor DBT, CO2 and Lux levels
reveal there were variations of 0.4 ◦C, 62 ppm, and 130 lux, respectively, within highest and lowest
values at the 4th floor study area. Again, there were variations of 1.4 ◦C, 207 ppm, and 1630 lux of
indoor DBT, CO2, and Lux levels, respectively, within highest and lowest values at the 5th floor study
area. The main reasons behind the deviations of spot measured values were the location of the floor
plates and the configuration of the spaces, as shown in Figure 5. While validating the data collected at
1 m and 2 m levels, the results revealed that the deviations of indoor DBT between these two levels at
both study areas were not significant. However, CO2 levels were recorded slightly lower at 2 m level
than that at the 1 m level at both study areas. In contrast, Illuminance levels were recorded slightly
higher at 2 m level than that at the 1 m level at both study areas. These results also indicated the
importance of locating the BEMS and IoT sensors close to the work-plane level, i.e., 0.8 m–1 m high
from the floor plate, within a workspace area while considering the CO2 and illuminance levels that
users usually experienced at their sitting position.

Given that the existing BEMS system is assisted by mainly DBT sensors at all floors and CO2

sensors are only used on the 4th and 5th floors for manoeuvring ventilation outlets on the roof, the
further investigations were focused on only indoor DBTs as a common environmental parameter
within the study areas.

3.2. Results from IoT and BEMS Sensors

Figure 7 illustrates the measured DBT data from IoT and BEMS sensors located at the
air-conditioned spaces of Fabrication Lab named ‘Project Space’ and ‘Print Office’ during March
and April 2019. The figure reveals that there were significant differences in indoor DBT profiles
between weekdays office hours, weekdays unoccupied hours and weekends. Since both spaces are
air-conditioned, scheduled and assisted by BEMS, indoor DBTs recorded by BEMS sensors decreased
to its lowest at 8 am and increased after 6 pm during each weekday. During weekdays and weekends,
the diurnal range of indoor DBTs fluctuated by values of 6.2 ◦C and 1.5 ◦C, respectively, deviating by a
maximum of 18 ◦C from the outdoor DBT. The fluctuations of indoor DBT did not respond to outdoor
DBT and was governed by schedules set by BEMS.
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Figure 7. Recorded dry bulb temperatures (DBTs) in Print Office and Project Space (source: IoT and
BEMS sensors, outdoor DBT collected from BEMS outdoor space sensor).

In Figure 7, the recorded indoor DBT data reveal that there were significant deviations, i.e., from
2.5 ◦C to 6 ◦C, between the IoT and BEMS sensors during the weekdays and weekends. Figure 8
and Table 1 also show the comparative study of maximum, minimum, mean, median and standard
deviations (SDs) of indoor DBT recorded from IoT and BEMS sensors.
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Table 1. Descriptive Statistics of Recorded Data from IoT and BEMS Sensors in Fabrication Lab.

Project Space—DBT,
◦C (Source: BEMS)

Project Space—DBT,
◦C (Source: IoT)

Print Office—DBT, ◦C
(Source: BEMS)

Print Office—DBT, ◦C
(Source: IoT)

Maximum 28.20 31.65 26.70 23.99
Median 26.40 28.61 24.70 22.29
Mean 25.50 27.55 24.61 22.09

Minimum 21.50 22.80 20.40 20.28
SD 2.04 3.08 1.10 0.94

Data Count 90 90 146 146

Figure 8 reveals that deviations between BEMS and IoT data slightly differ in Project Space and
Print Office, considering they were recorded during the periods of April and March, respectively.
In particular, the mean indoor DBTs recorded from IoT sensors in Project Space and Print Office were
2.05 ◦C higher and 2.52 ◦C lower respectively than BEMS data. Standard deviations (as shown in
Table 1) were also higher in Project Space and lower in Print Office. Considering Figures 3 and 5, these
deviations could be the result of the slightly different location of the BEMS and IoT sensors being
placed on walls near air-conditioner blowers and work-plane levels, respectively, in addition to the
varying size of the volume of these spaces.

Figure 5, Figure 7, and Figure 8, and Table 1 indicate that the location of the BEMS sensors may have
an impact on the users’ experience as users usually control their indoor heating and cooling setpoints
during office hours based on the reading shown on the controller displays. Hence, the reliability of
real-time indoor DBT readings and visualisation should be ensured during office hours. While indoor
DBTs recorded from IoT sensors represent the thermal environment around the work-plane area with
less fluctuation, these data can be utilised subject to further testing of validations and can be integrated
with BEMS systems so that air-conditioned spaces could be effectively controlled.

3.3. Results from BEMS and Tinytag Sensors

Figure 9 illustrates the measured DBTs from BEMS and Tinytag sensors located at the
air-conditioned Fabrication Lab—‘Project Space’—as well as the design studio areas on the 4th
and 5th floors during July 2019. The latter two areas were BEMS assisted for heating and natural
ventilation. The figure reveals that there were significant differences in indoor DBT profiles between
weekdays office hours, weekdays unoccupied hours and weekends, similarly to the scenario illustrated
in Figure 7. Since ‘Project Space’ is air-conditioned, which is also scheduled and assisted by BEMS,
indoor DBTs recorded by BEMS sensors decreased to its lowest after 8 am and increased after 6 pm
during each weekday, when uncontrolled. The diurnal range of indoor DBTs fluctuated by a maximum
value of 5.5 ◦C and 0.3 ◦C during the weekdays and weekends respectively, keeping a deviation of up
to 9 ◦C from the outdoor DBT. The fluctuations of indoor DBT did not respond to outdoor DBT and
was governed by schedules set by BEMS.

In contrast, Figure 9 also shows that indoor DBTs were relatively responsive to outdoor DBT. Due to
the unavailability of the staff member and a technical issue, data could not be collected continuously
during the whole month of July. Indoor DBTs recorded by both BEMS and Tinytag sensors escalated to
its peak value after 3 pm and decreased to its lowest after 1 am during each weekday. This relationship
between indoor and outdoor DBT was observed to be more pronounced on the 4th and 5th floors where
greater coupling with the outdoor exists by the adoption of a natural and mixed-mode ventilation
strategy. The diurnal range of indoor DBTs fluctuated by the maximum values of 2.5 ◦C and 0.8 ◦C
during the weekdays and weekends, respectively, keeping a deviation from the outdoor DBT of up
to 5.6 ◦C.
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Figure 9. Recorded DBTs using BEMS and Tinytag sensors (source: BEMS sensors and Tinytag data
loggers, outdoor DBT collected from BEMS outdoor space sensor).

In Figure 9, the recorded indoor DBT data revealed that there were significant deviations, i.e., from
1.2 ◦C to 5.6 ◦C, between the BEMS and Tinytag sensors at the Project Space during the weekdays and
weekends. In contrast, the recorded indoor DBT data revealed that there were minor deviations, i.e.,
from 0.2 ◦C to 1.9 ◦C, between the BEMS and Tinytag sensors at the Project Space during the weekdays
and weekends. Figure 10 and Table 2 also show the comparative study of maximum, minimum, mean,
median and SDs of indoor DBT recorded from BEMS and Tinytag sensors.
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Figure 10. Validation and Deviations between BEMS and Tinytag data in (a) Project Space, (b) 4th Floor
and (c) 5th floor.

Table 2. Descriptive Statistics of recorded data from BEMS and Tinytag Sensors.

Fabrication
Lab’s Project
Space—DBT,
◦C (Source:

BEMS)

Fabrication Lab’s
Project

Space—DBT, ◦C
(Source: Tinytag

Sensors)

4th
Floor—DBT,
◦C (Source:

BEMS)

4th
Floor—DBT,
◦C (Source:

Tinytag
Sensors)

5th
Floor—DBT,
◦C (Source:

BEMS)

5th
Floor—DBT,
◦C (Source:

Tinytag
Sensors)

Maximum 30.10 26.70 29.90 30.13 30.60 32.03
Median 27.50 25.37 24.60 24.52 26.00 26.64
Mean 26.51 25.38 25.37 25.27 26.54 27.29

Minimum 21.50 24.15 21.90 22.42 23.50 24.22
SD 3.01 0.63 0.19 0.21 1.88 1.99

Data Count 99 99 99 99 99 99

Figure 10 explicitly demonstrates that the deviation between BEMS and Tinytag sensors is
significant in the basement Project Space compared to the studio spaces on the 4th and 5th floors
considering they were all recorded during the same period of July 2019. In particular, the mean
indoor DBT recorded from BEMS sensors in Project Space was 1.13 ◦C higher than that from Tinytag
sensors. Maximum and minimum values recorded by BEMS sensors also indicate its higher diurnal
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range compared to those values from Tinytag data loggers. Standard deviations (as shown in Table 2)
were also higher in Project Space and lower in the 4th and 5th floors. Considering Figures 3 and 5,
the deviations in Project Space could be the result of the location of the BEMS and Tinytag sensors
positioned on the walls near air-conditioner blowers, and 2 m above the floor plate, respectively. This
validation process indicates that the BEMS data in 4th and 5th floors are more reliable than that located
in the air-conditioned Project Space.

Figure 5, Figure 9, and Figure 10, and Table 2 indicate that the location of the BEMS sensor
may have an impact on the users’ experience, as found in Section 2.2. While indoor DBTs recorded
from BEMS sensors located on the 4th and 5th represented relatively accurate and valid thermal
environments, these data can be utilised for real-time data-visualisation integrated with the planned
deployment of IoT sensors (Appendix B).

3.4. IoT Data Visualisation and Its Application

Despite the challenges associated with the internet privacy protocol and the dynamic IP address of
‘Eduroam’ Wi-Fi at the University of Westminster, the environmental data (i.e., DBT, RH, illuminance,
and sound level) from Tinkerforge IoT sensors were successfully visualised and displayed using the
web tool, Grafana (see Section 2.2). Both the real-time and historic data visualisations from IoT sensors
were available for students and staff members in the Fabrication Lab at Print Office and Project Space
as a test run. Figure 11 provides a snapshot of the different matrices of the real-time visualisations
of the above environmental parameters in addition to at least 24-h historic data. A few informal
feedbacks from the users revealed that the data in the templates of the circular dashboard located
at the right-hand side of the figure were easy to perceive in terms of understanding the real-time
environmental data and targeted comfort ranges of their environment.
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in the Print Office (source: IoT data display in Grafana tool, edited by the author).

Figure 12 illustrates the historic data visualisations at the ‘Print Office’ utilising the Grafana tool,
which enabled users to improve their perception of the environmental and energy performance of
the Fabrication Lab. The highlights of the disruptions in continuous data monitoring show the lack
of reliability of recording continuous IoT data by utilising solely the university Wi-Fi networks with
dynamic IP addresses which changes almost every week for university’s security reasons. This indicated
that IoT should be set up with a static IP address especially permitted by the university’s IT team and
that daily scheduled monitoring is required to avoid loss of data.
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Figure 12. DBT, RH, Illuminance and Sound levels—Historic Data Visualisation at the Print Office
(source: IoT data display in Grafana tool, edited by the author).

In addition to the real-time data-visualisation, Figure 13 shows the maximum, minimum and
average values of environmental parameters recorded at the Project Space and Print Office by using
IoT sensors during April 2019. Figure 13 demonstrated that the average values of DBT, Illuminance
and Sound level, recorded by sensors located at the work-plane level, were 4.5 ◦C, 150 lux, and 3.6 dB
higher in the Project Space than in the Print Office. In contrast, the average value recorded by the
RH IoT sensors in Project Space was 1.4% lower than that in Print Office. This summary data for
each month for all workspaces is useful for a comparative analysis of the environmental and energy
performance with the air-conditioned working environment. These data could also be used to keep a
comfortable working environment for users. For instance, from Figure 13, the maximum noise level of
71.5 dB was identified in Project Space, which is located near metal and wood labs producing high
noise levels from the machine. The historic data of Figure 12 could help identify the date and time
of the high sound level, e.g., 8 April, 2019, to investigate the source of the noise and find possible
solutions for avoiding such noise pollution.
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during April 2019).



Energies 2020, 13, 4009 15 of 33

Figures 11–13 indicated that IoT data collection and visualisation can be useful for both users
including students, staff, managers, lab assistants and researchers for improving their perception
of the indoor workspace environment. Moreover, building managers can utilise both real-time and
historic IoT data-visualisation for monitoring and improving the existing working environments
by synchronising them with recorded BEMS data and energy bills, and, thus, improving energy
use efficiency.

3.5. Application of IoT in Educational Workshops

As part of an evidence-informed approach, IoT sensors were used to help students visualise the
real-time indoor DBT and RH data through projection (Figure 6) during educational workshops for
undergraduate and postgraduate students of environmental design. To crosscheck the data that were
collected from IoT with that from Tinytag and portable Bluetooth sensors, the descriptive statistics of
117 data of each parameter, i.e., indoor DBT and RH from each source were plotted (Figure 14).
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Figure 14. Comparison of statistical values of DBT and RH recorded at the lecture room during a
workshop (source: data collected from IoT, TinyTag, and portable Bluetooth sensors).

Figure 14 revealed that indoor DBT displayed from IoT sensors were reliable with the mean
deviations of 0.6 ◦C and 0.54 ◦C from that collected from Tinytag and Bluetooth sensors, respectively.
Similarly, indoor RH displayed from IoT sensors were reliable with the mean deviations of 2.38% and
1.28% from that collected from Tinytag and Bluetooth sensors respectively. These results validated
the reliability of integrating IoT sensors in educational workshops for not only displaying invisible
environmental data to students but also getting students involved in the real-time online survey for
their subjective feedback on thermal comfort based on portable Bluetooth sensors on their workstations
or desks.

Figure 15 shows the average DBT and RH recorded in the students’ lecture room during one of the
workshops and indicates the key period of changed physical and environmental parameters, such as
students’ physical exercise, switching on an electric heater, opening/closing windows for ventilation,
which have direct impacts on the students’ thermal comfort experience [28–31]. The subjective feedback
was also observed keeping the changes of conditions in mind in addition to recorded DBT values.
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workshop (source: Portable Bluetooth sensors).

Figure 16 provides students’ TSVs against the indoor DBT values recorded from the portable
Bluetooth sensors located on individual students’ desks during the workshop run in February 2019.
Comparing Figures 15 and 16, it was revealed that TSVs from the students were found as predicted
during the periods of 10:50–11:00, 11:15–11:29, 11:30–11:45, and after 11:45. For instance, most of the
students’ TSVs increased after 11:00 due to their metabolic gain and were relatively high in their peaks
during 11:15–11:29 while the heater was turned on. Similarly, their TSVs dropped after 11:30 while the
windows were open and cold draughts were entering the room. Along with real-time IoT data for DBT
and RH visualisation, these workshops helped students to perceive the factors that had effects on their
overall thermal comfort experience at their educational workspaces.
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Figure 17 illustrates the overall feedback from students on their learning experience during
workshop with IoT data visualization. Figure 17 reveals that at least a total of (38.5% + 38.5%) =

77% students agreed, and strongly agreed, that the workshops helped students to have a better
understanding about invisible thermal data, i.e., DBT and RH, and their overall thermal environment.
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The above results indicated that IoT can be applied and integrated successfully to improve the
learning experience of students and help them realise sustainability through educational workshops.

3.6. Evidence from the Post Occupancy Evaluation Survey

As mentioned in Section 3.3, the POE workplace questionnaire was administered to staff located
in the basement (Fabrication laboratory) and on the 1st, 2nd, 4th, and 5th floors. The majority of the
staff are academics and work in cellular offices, which are usually shared with at least one colleague.
Some of them have access to openable windows, some others are in mechanically ventilated spaces and
a small portion of the surveyed population have no access to a view to the outside. Of the 57 students,
the majority are instead located on the 4th, 5th, and 6th floors where they learn within an architectural
studio (open plan) environment. The same questionnaire (see Section 2.3) was administered to both
groups during the same period (June–July 2019) with the intent of appreciating staff and students’
subjective perception of the building performance, environmental comfort and their health and
productivity. The questionnaire was administered to the students after they attended the educational
workshops described in Section 3.5, whereas staff was not involved in any workshop or given any
specific extra knowledge on the environmental performance of the building.

At a glance, the results show that although the overall perception of the building is not markedly
better than the sector’s benchmark in any of the two groups, there is a greater level of satisfaction
amongst the students than the staff, with 91% of students’ responses in the satisfactory/neutral band as
opposed to 58% of staff in the same band. This is particularly evident for parameters such as Health
and Productivity, which are rated better than the benchmark and scale midpoint for the students and
worse than the benchmark and below scale midpoint for staff (Figures 18 and 19). Other notable
differences are the unsatisfactory perception of summer thermal conditions and winter ventilation
by staff. From students and staff’s comments, it is possible to deduce that one of the reasons for this
dissatisfaction is related to lack of environmental control in workspaces [26] where the opportunities
for adaptation and control are limited. Moreover, given that the students, unlike staff, were exposed,
through the workshops (see Section 3.5), to a greater level of understanding of the way the building
works and of the role of their behaviour in achieving comfort and influencing the performance of the
building, this could have influenced their overall perception of the building as documented in other
studies [32].
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Figure 18. Post Occupancy Evaluation summary chart for staff (source: Building Use Studies).

Figure 18 shows the summary chart of the staff satisfaction survey. The staff expressed satisfactory
responses (above midpoint in a 1 to 7 scale) for parameters such as Comfort (overall), Design, Image
to Visitors, Lighting (overall), Needs. Parameters such as Noise and Temperature in winter are at
scale midpoint and indicate a neutral perception by the respondents (i.e., not unsatisfactory nor
satisfactory). The responses to these parameters are indicated in amber, as they do not exceed the
sector’s benchmark but are similar to responses in other comparable buildings. The staff provided
responses gravitating towards unsatisfactory perception for 5 out of 12 parameters and specifically,
these are (in increasing order of dissatisfaction): Air in winter, Air in summer, Productivity, Temperature
in Summer, and Health.
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Figure 19 shows the summary chart of the students’ satisfaction survey. The students expressed
satisfactory or neutral responses (at or above midpoint in a 1 to 7 scale) for the majority of the enquired
parameters. A notable exception was the slightly unsatisfactory perception of noise, which although
scoring an overall average of 3.77, it is below the sector’s benchmark. This is clearly determined by the
open plan configuration of the Marylebone Architectural studios and it is a well-known issue in the
space. Other notable exceptions were the scores for Health and Productivity, which resulted higher
than both midpoint and benchmark. This is an encouraging overall result, which from the students’
comments it is evidence of their adaptive and modified behaviour as a result of understanding building
performance and operability. This is evidenced in comments such as “I use more layers of clothes for
winter, and I use earphones to block noise’, ‘Wearing warm clothes or not taking off jacket + have hot
drinks (in the case of cold winter) or Open window. Close/open blinds”.

3.7. Existing Challenges and Future Scope

Due to the limited timeframe and resources of the ‘Realising Sustainability’ project (August 2018
to July 2019), numerous challenges emerged in the effective application and troubleshooting of BEMS
and IoT technologies to the Marylebone building. Table 3 shows the key advantages and limitations
identified during the empirical work of this research.
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Table 3. Advantages and limitation of utilising BEMS and IoT sensors in the case study building.

Advantages Limitations

Existing BEMS
Sensor

- Additional deployment and energy
cost may not be applicable to access to
the real-time data.

- Real-time data are accessible using the
university’s dedicated internet server.

- Power consumption of the sensors can
be estimated and monitored.

- Fixed location on the wall—sensors may
not truly represent the environmental
variables of the whole space and thermal
properties of the wall may have an impact
on the environmental data.

- There is no feasible method for real-time
data visualization in the classroom due to
the compatibility issue with smart
technologies and low data transfer speed
from the server.

IoT Sensors

- Due to the higher transmittance range
and rate of Wi-Fi network, the total
number of IoT sensor can be reduced
and cost-effective covering selected
university areas.

- They can be deployed for effective
data monitoring in classrooms and
workspace for educational purpose.

- Real-time data visualization can be
utilised to monitor and improve
existing indoor
environmental performance.

- An additional cost for procurement of 5v
adapter, battery or Power over Ethernet to
power mini PCs.

- Total power consumption of the IoT
sensors could be high and need
further investigation.

- Disruption of dynamic IP in the
university Wi-Fi network causes data loss.

Although the ‘Estate Planning and Services Department’ as well as the IT Network Team
collaborated with the research team throughout the tenure of the project, the first challenge was the
strict security policy of Wi-Fi networks with dynamic IP addresses set for UK educational buildings,
such as those at the University of Westminster. As mentioned in Section 3.4 and shown in Figure 12,
it was not feasible to get uninterrupted data visualisation from IoT sensors by using University Wi-Fi.
The university would not allow installing a separate Wi-Fi network within the university area since
this could interfere with the existing wireless network.

The second challenge was to continuously monitor and visualise historic data from BEMS sensors
using the existing ‘TREND 963’ server. The hardware of the BEMS server did not support the smart
technology apart from providing a graphical interface and the server speed was too slow to cope
with two-way data traffics [23]. The third challenge was experienced in the attempt to install new
smart energy meters to monitor electricity consumption in various zones of the university, to be
correlated with environmental data from IoT and BEMS sensors simultaneously. Apart from budget
constraints in the installation of a sufficient number of smart meters and sub-meters to provide a
meaningful resolution, it was also not viable to integrate them in the existing building considering the
complexity of electric wiring of busbars and disruptions involved. All these new technologies would
also be consuming additional energy, which required negotiation with (and approval by) building
management, increasing the timeframe of the project.

However, as a result of the positive collaboration between the RS project team and the IT Network
team, the University is currently working on adopting 5G Long Range (LoRa) network devices as a
part of future technology and strategy for Low Power Wide Area Networks (LPWAN) which might be
a viable method to integrate IoT at this educational building [33]. It would also expand the scope for
installing additional IoT devices along with environmental and energy sensors through hybrid wireless
networks [34]. To overcome the limitation of the existing BEMS hardware, the university is in the process
of upgrading the existing ‘TREND 963′ with the new IQ®VISION [35] platform, which offers more
comprehensive and intelligent building system control functions enabling wide database management
and integration of smart software including IoTs and mobile devices. This could also partially resolve
the issue of integrating smart energy meters within the existing building. These extendable technologies
could expand the scope of application of IoT and BEMS within existing educational buildings.



Energies 2020, 13, 4009 21 of 33

4. Conclusions

This article demonstrated a range of applications of IoT and BEMS within an educational case
study building in London. While addressing the main research question, it is partially viable to utilised
the IoT and BEMS for visualising the environmental performance and very effective for improving
the learning experience within a university campus. However, the research also encountered some
challenges and limitations. The summary findings are as below.

• Spot measurement results showed the importance of locating the BEMS and IoT sensors above
the work-plane level, i.e., 0.8 m–1 m high from the floor plate while considering the CO2 and
Illuminance levels to obtain valid environmental data.

• Deviations between DBT values from IoT, BEMS, and Tinytag sensors also indicated that it is
important to locate the BEMS sensors suspended and close to the work desk to represent the
indoor environment that users experienced in both air-conditioned and naturally ventilated spaces
assisted by BEMS.

• Considering the wide transmittance range of Wi-Fi network, the total number of IoT sensors
can be reduced and thus IoT may be utilised as a cost-effective solution to validate the real-time
environmental data. However, the energy consumption of IoT solutions should be further explored
to establish this statement. Moreover, existing BEMS servers have to be updated to a higher
Specification to expand its compatibility with IoT for synchronising these data effectively.

• BEMS sensors located on the 4th and 5th floors showed valid DBT values with minor deviations.
However, other environmental sensors such as illuminance and sound level should be validated and
integrated with the BEMS to improve the indoor environmental performance and energy efficiency.

• Both historic and real-time data-visualisation from IoT sensors may be useful not only to users for
better understanding their working environment but also to building managers for regulating the
BEMS system to improve environmental and energy performance.

• The educational workshop with students’ feedback demonstrated that IoT and real-time
visualisation of environmental data were beneficial in improving their perception of the indoor
thermal environment. These methods also enhanced students’ overall learning experience within
the university.

• The POE results indicated that students have a more positive perception of the building
performance, which could be linked to their improved understanding of their workspace
environment as a positive effect of the educational workshops with IoT data visualisation.

The challenges of effective application of IoT and BEMS in an educational building can be mitigated
by adopting advanced technologies such as 5G LoRa networks and IQ®Vision BEMS platforms which
are scalable for various smart applications. The methodology of this research can be adopted and
extended in future studies through long-term deployments and validations of IoT and BEMS sensors
for the improved environmental performance of working and educational spaces, students’ learning
experience and energy efficiency of the educational buildings. Bluetooth options can be investigated in
the future to overcome the challenges of Wi-Fi in terms of security and energy consumption. Further
quantitative analysis on the cost-effectiveness of IoT deployments in terms of energy consumptions
should be explored further in future research. If the IoT solutions are battery-powered, further
investigation on the battery lifetime and battery replacement can be done in future research. In this
research, the results and measurement differences between various types of sensors were expected due
to positional and hardware differences. Since this is one of the limitations of this research, the future
studies may consider exploring user perceivable environmental improvements, such as alertness to
noise, temperature, lighting or CO2 levels, and use of the distributed sensor data for controlling
environmental parameters.
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Appendix A

Table A1. Specifications of BEMS, IoT Sensors and other equipment (source: manufacturers’
technical datasheets).

Equipment Type Name Measurement Range Specification

Hand-held
Equipment for
Spot
Measurement

Testo 625—Thermo
Hygrometer

DBT: −10 to + 60 ◦C;
RH: 0.0 to 100.0%

Accuracy: ±0.5 ◦C (DBT); ±2.5% (5 to 95%RH)
Resolution: 0.1 ◦C (DBT); 0.1% (RH)

Testo 535 CO2 meter 0 to 9,999 ppm (0 to 0,999
vol.% CO2)

Accuracy: 0 to 5000 ppm: (at 23 ◦C) ± (75 ppm
+3 % of m.v.) 5000 to 9999 ppm: ± (150 ppm +
5% of m.v.)
Resolution: 1 ppm or 0.001 vol.%
[36]

The Hagner Digital
Lux Meter EC1 0.1–200,000 lux Accuracy: 0.1–200,000 lux

BEMS (Trend)
Trend CO2,
Temperature Space
Sensors

DBT range: −20 ◦C to +40 ◦C;
CO2 range: 0 to 2000 ppm

Accuracy: ±0.3 ◦C (DBT); ±50 ppm +2% of
measured value (CO2); Specification web-link:
[37]

Tinytag Data
Loggers/Sensors Tinytag Plus 2 DBT: −25◦ C to +85 ◦C;

RH: 0% to 100%
Accuracy: 0.01 ◦C or better (DBT); Better than
0.3% (RH)

IoT Sensors
(Tinkerforge)
and Accessories

Raspberry Pi zero
Minicomputer NA

Configuration: 1 GHz, Single-core CPU; 512
MB RAM; Mini HDMI and USB On-The-Go
ports; Micro USB power; HAT-compatible
40-pin header; Composite video and reset
headers; 802.11n wireless LAN; Bluetooth 4.0.

Humidity Bricklet 2.0
DBT: 20 ◦C to 85 ◦C in 0.01 ◦C
steps, 14 bit resolution
RH: 0% to 100% in 0.01% steps.

Accuracy: ±0.2 ◦C (typical) for temperature
(DBT); ±2% (typical) for humidity (RH)

Colour Bricklet 0–65,535 Lux Illuminance Resolution: 16 bit

Sound Pressure Level
Bricklet

Sound Pressure Level range:
30 dB–120 dB;
Frequency range: 40 Hz to
40,960 Hz

Accuracy: ±5 dB, ±5% maximum full-scale
error

Master Brick NA

Specification web-link:
https://www.tinkerforge.com/en/doc/
Hardware/Bricks/Master_Brick.html
[38]

Portable
Bluetooth Sensors
(Blue Maestro)

Tempo Disc™ 3 in 1
Bluetooth
Environmental
Sensor Logger

DBT and Dew Point:
−30 ◦C to +75 ◦C; RH Range:
0% to 100%

DBT: Typical 0.3 ◦C with maximum 0.4 ◦C at
−10 ◦C to +75 ◦C. Resolution of 0.1 ◦C, Drift
less than 0.01 ◦C per annum; RH: Typical 3%
RH with maximum 4% RH 0−80% RH.
Resolution of 0.1 ◦C. Hysteresis +/− 1% RH.
Drift less than 0.25% RH per annum
[39]

https://www.tinkerforge.com/en/doc/Hardware/Bricks/Master_Brick.html
https://www.tinkerforge.com/en/doc/Hardware/Bricks/Master_Brick.html
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Appendix C

Table A2. Online Questionnaire during the educational workshops (Part 1).

Subject ID

Personal Information

Time

Personal Factor

Gender Age Group CLO Value Activity Level

(Male/Female)
15–19 | 20–24 |
25–30 | 30–34 |
35–40 | above

(Between
0–3.5)

Seated | Standing Relaxed |
Standing Working |

Reclining | Walking |
Running | Other

RS 01A

10:20
10:30
10:40
10:50
11:00
11:10
11:20
11:30

Table A3. Online Questionnaire during the educational workshops (Part 2).

Subjective Vote

Thermal Sensation: How Are You Feeling at the Moment? Preference: What Kind of Improvement You Prefer
at the Moment?

Cold Cool Slightly
Cool Neutral Slightly

Warm Warm Hot Much
Warmer

Slightly
Warmer

No
Change

Slightly
Cooler

Much
Cooler

−3 −2 −1 0 1 2 3 −2 −1 0 1 2

Table A4. Online Questionnaire during the educational workshops (Part 3).

Remarks

Do You Think the Workshop Gave You Better Understanding about Invisible Thermal Data and the Environment?

Strongly disagree Disagree Neutral Agree Strongly agree

−2 −1 0 1 2
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Appendix D

Figures A3–A5 and Figures A6–A8 provide graphical representations of spot measurements
highlighting the variations of indoor DBTs, CO2 and Lux levels at the 4th and 5th floors, respectively,
during November 2018. Brief findings were also provided in each figure.
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