Sheffield
 Hallam University

On the derivatives of composite functions

LINGHAM, Eleanor and LANGLEY, James K

Available from Sheffield Hallam University Research Archive (SHURA) at:
http://shura.shu.ac.uk/24265/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

LINGHAM, Eleanor and LANGLEY, James K (2007). On the derivatives of composite functions. New Zealand Journal of Mathematics, 36, 57-61.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

On the derivatives of composite functions

J.K. Langley and E.F. Lingham

Abstract

Let g be a non-constant polynomial and let f be transcendental and meromorphic of sub-exponential growth in the plane. Then if $k \geq 2$ and Q is a polynomial the function $(f \circ g)^{(k)}-Q$ has infinitely many zeros. The same conclusion holds for $k \geq 0$ and with Q a rational function if f has finitely many poles. We also show by example that this result is sharp.

Mathematics Subject Classification 2000: 30D30, 30D35
Keywords: composite functions, Nevanlinna theory.

1 Introduction

This paper will use standard notation of value distribution theory [7], including $\rho(f)$ for the order of growth of a meromorphic function f in the plane. In [4], the second author proved the following result, for application in a theorem concerning normal families.

Theorem A Let $k \in \mathbb{N}$. Let f be a transcendental entire function with $\rho(f)<1 / 2$. Let g and Q be polynomials, with g non-constant. Let F and H be defined by

$$
\begin{equation*}
F=f \circ g, \quad H=F^{(k)}-Q \tag{1}
\end{equation*}
$$

Then H has infinitely many zeros.
The hypothesis $\rho(f)<1 / 2$ was needed for the proof of Theorem A in [4], which made use of the celebrated $\cos \pi \rho$ minimum modulus theorem [8, Chapter 6]. In this paper, we show that Theorem A can be extended to transcendental functions of sub-exponential growth, that is, functions of at most order 1, minimal type. We state the result as follows.

Theorem 1.1 Let k be a non-negative integer. Let g be a non-constant polynomial and let f be a transcendental meromorphic function in the plane with

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{T(r, f)}{r}=0 \tag{2}
\end{equation*}
$$

Let F and H be defined by (1), with Q a rational function. Then the following conclusions hold.
(a) If f has finitely many poles then the exponent of convergence of the zeros of H is equal to the order $\rho(F)$ of F.
(b) If $k \geq 2$ and Q is a polynomial, or if $k=1$ and $Q \equiv 0$, then H has infinitely many zeros.

Theorem 1.1 is sharp in the following sense. If $f(w)=e^{w}+P(w)$ and P and g are polynomials with g non-constant, then $F=f \circ g$ satisfies $F^{(k)}=R e^{g}+S$ with R and S polynomials so that the equation $F^{(k)}(z)=S(z)$ has finitely many solutions in the plane.

The case $k=0$ of Theorem 1.1 may be compared with results on the frequency of fixpoints of $f \circ g$. Bergweiler proved that if g is a transcendental entire function and f is transcendental and meromorphic in the plane then $f(g)-Q$ has infinitely many zeros, for any non-constant rational function Q [3] (see also [1, 2]). It seems plausible that if f is a transcendental entire function satisfying (2) and g is any non-constant entire function then the function H defined by (1) has infinitely many zeros, for any $k \geq 1$ and any rational function Q. Some partial results are proved in [4] and [11, Theorem 6].

2 Proof of Theorem 1.1

We need the following result by the first author [10].
Lemma 2.1 Suppose that G is meromorphic of finite order in the plane, and that $G^{(k)}$ has finitely many zeros, for some $k \geq 2$. Then G has finitely many poles.

We now prove Theorem 1.1. We first note that since f has finite order and g is a polynomial it follows that

$$
\begin{equation*}
\rho(H)=\rho\left(F^{(k)}\right)=\rho(F)<\infty \tag{3}
\end{equation*}
$$

Next, we observe that it suffices to prove part (a). To see this, note first that the case where $k=1$ and $Q \equiv 0$ is handled by the argument of [11, p.137], and is based on the fact that (2) implies that f^{\prime} has infinitely many zeros, by a result of Eremenko, Langley and Rossi [5], from which it follows since g is a non-constant polynomial that so has $F^{\prime}=f^{\prime}(g) g^{\prime}$. Suppose next that $k \geq 2$, that Q is a polynomial, and that H has finitely many zeros. Choose a polynomial Q_{1} with $Q_{1}^{(k)}=Q$ and set $G=F-Q_{1}$. Then $H=G^{(k)}$ and it follows from Lemma 2.1 that G has finitely many poles and, again since g is a polynomial, so has f. Hence H is a transcendental meromorphic function of finite order with finitely many zeros and poles so that $\rho(F)=\rho(H) \geq 1$, using (3), and a contradiction arises from part (a).

To prove part (a), assume that f has finitely many poles but that the exponent of convergence of the zeros of H is less than $\rho(F)$. It follows using (3) that there exist a positive integer n, a meromorphic function Π with finitely many poles and a polynomial P, such that

$$
\begin{equation*}
H=F^{(k)}-Q=\Pi e^{P}, \quad \rho(\Pi)<n, \quad \operatorname{deg} P=\rho(H)=n \tag{4}
\end{equation*}
$$

Then we may write

$$
\begin{equation*}
g(z)=a_{m} z^{m}+\ldots+a_{0}, \quad P(z)=b_{n} z^{n}+\ldots+b_{0}, \quad b_{n} \in(0, \infty) \tag{5}
\end{equation*}
$$

Here the assumption that b_{n} is real and positive involves no loss of generality, since otherwise we may apply a rotation of the independent variable z.

Since f has finitely many poles and satisfies (2), a standard application of the Poisson-Jensen formula [7, p.1] gives (compare [7, Theorem 1.6, p.18])

$$
\begin{equation*}
\log M(r, f) \leq 3 m(2 r, f)+O(\log r)=o(r) \quad \text { as } \quad r \rightarrow \infty \tag{6}
\end{equation*}
$$

Denote positive constants by c, M, not necessarily the same at each occurrence. Combining (3), (4), (5) and (6) and using the fact that f and F have finitely many poles, it follows that

$$
c r^{n} \leq T\left(r, e^{P}\right)
$$

$$
\begin{aligned}
& \leq(1+o(1)) T\left(r, F^{(k)}\right) \\
& \leq(1+o(1)) T(r, F) \\
& \leq(1+o(1)) \log M(r, F) \\
& \leq(1+o(1)) \log M(M(r, g), f) \\
& =o(M(r, g))
\end{aligned}
$$

as $r \rightarrow \infty$. Using (5) again we deduce at once that

$$
\begin{equation*}
m>n \tag{7}
\end{equation*}
$$

Let δ and η be positive constants, with δ and η / δ small. If r_{1} is large then (4) and (5) give

$$
F^{(k)}(z)=O\left(|z|^{M}\right) \quad \text { for } \quad|z| \geq r_{1}, \quad \frac{\pi}{2 n}+\delta \leq \arg z \leq \frac{3 \pi}{2 n}-\delta
$$

Hence repeated integration, starting from the point $r_{1} e^{i \pi / n}$, leads to

$$
\begin{equation*}
f(g(z))=F(z)=O\left(|z|^{M+k}\right) \quad \text { for } \quad|z| \geq r_{1}, \quad \frac{\pi}{2 n}+\delta \leq \arg z \leq \frac{3 \pi}{2 n}-\delta \tag{8}
\end{equation*}
$$

Let u_{1}, u_{2}, \ldots be the zeros of Π, repeated according to multiplicity. Since $\rho(\Pi)<n$ it follows that

$$
\sum_{u_{j} \neq 0}\left|u_{j}\right|^{-n}<\infty
$$

and a standard application of the Poisson-Jensen formula [7, p.1] gives

$$
\begin{equation*}
\log |\Pi(z)|=o\left(|z|^{n}\right) \quad \text { as } \quad z \rightarrow \infty, \quad z \notin E=\bigcup_{u_{j} \neq 0} B\left(u_{j},\left|u_{j}\right|^{-n}\right) \tag{9}
\end{equation*}
$$

Moreover, standard estimates based on the differentiated Poisson-Jensen formula [7, p.22] (see [6] and [9, p.89]) give

$$
\begin{equation*}
\frac{F^{(k)}(z)}{F(z)}=O\left(|z|^{M}\right) \tag{10}
\end{equation*}
$$

for large z outside a union E^{\prime} of discs, having finite sum of radii. Let r be large and positive, such that the circle $|z|=r$ does not meet the exceptional sets E, E^{\prime} corresponding to (9) and (10). Then (4), (5), (9) and (10) yield

$$
\begin{equation*}
\log |f(g(z))|=\log |F(z)|>c r^{n} \quad \text { for } \quad|z|=r, \quad|\arg z| \leq \frac{\pi}{2 n}-\delta \tag{11}
\end{equation*}
$$

With this same value of r let

$$
\begin{equation*}
\Omega_{1}=\left\{r e^{i \theta}:-\frac{\pi}{2 n}+2 \delta \leq \theta \leq \frac{\pi}{2 n}-2 \delta\right\}, \quad \Omega_{2}=\left\{r e^{i \theta}: \frac{\pi}{2 n}+2 \delta \leq \theta \leq \frac{3 \pi}{2 n}-2 \delta\right\} \tag{12}
\end{equation*}
$$

Then (12) implies that for $j=1,2$ the image of the arc Ω_{j} under the mapping

$$
\begin{equation*}
\zeta=h(z)=a_{m} z^{m} \tag{13}
\end{equation*}
$$

is the set $\left\{\zeta=\left|a_{m}\right| r^{m} e^{i \phi}: \phi \in I_{j}\right\}$, where I_{j} is an interval of length

$$
m\left(\frac{\pi}{n}-4 \delta\right)>\pi+\delta
$$

since δ is small by assumption and $m>n$ by (7). Hence there exist

$$
\begin{equation*}
z_{1} \in \Omega_{1}, \quad z_{2} \in \Omega_{2} \quad \text { such that } \quad w=h\left(z_{1}\right)=h\left(z_{2}\right) . \tag{14}
\end{equation*}
$$

For $\left|z-z_{2}\right|=\eta r$ we have using (5), (13) and (14), since η is small and r is large,

$$
\left|h(z)-h\left(z_{1}\right)\right|=\left|h(z)-h\left(z_{2}\right)\right| \geq c r^{m}, \quad g(z)-h(z)=o\left(r^{m}\right), \quad h\left(z_{1}\right)-g\left(z_{1}\right)=o\left(r^{m}\right) .
$$

We then write

$$
g(z)-g\left(z_{1}\right)=h(z)-h\left(z_{1}\right)+g(z)-h(z)+h\left(z_{1}\right)-g\left(z_{1}\right)
$$

and apply Rouchés theorem, which shows using (14) again that g takes the value $g\left(z_{1}\right)$ at some $z_{3} \in B\left(z_{2}, \eta r\right)$, provided r is large enough. Moreover,

$$
\frac{\pi}{2 n}+\delta \leq \arg z_{3} \leq \frac{3 \pi}{2 n}-\delta,
$$

using (12) and (14), since η is small compared to δ.
But now (8) gives

$$
\left|f\left(g\left(z_{1}\right)\right)\right|=\left|f\left(g\left(z_{3}\right)\right)\right| \leq c\left|z_{3}\right|^{M+k} \leq c\left(\left|z_{2}\right|+\eta r\right)^{M+k}=O\left(r^{M+k}\right)
$$

whereas (11), (12) and (14) give

$$
\log \left|f\left(g\left(z_{1}\right)\right)\right|>c r^{n} .
$$

These estimates are obviously incompatible since r is large, and this contradiction completes the proof of part (a) and of Theorem 1.1.

References

[1] W. Bergweiler, Proof of a conjecture of Gross concerning fixpoints, Math. Zeit. 204 (1990), 381-390.
[2] W. Bergweiler, Periodic points of entire functions, proof of a conjecture of Baker, Complex Var. Theory Appl. 17 (1991), 57-72.
[3] W. Bergweiler, On the composition of transcendental entire and meromorphic functions, Proc. Amer. Math. Soc. 123 (1995), 2151-2153.
[4] E.F. Clifford, Normal families and value distribution in connection with composite functions, J. Math. Anal. Appl. 312 Pt. 1 (2005), 195-204.
[5] A. Eremenko, J.K. Langley and J. Rossi, On the zeros of meromorphic functions of the form $\sum_{k=1}^{\infty} \frac{a_{k}}{z-z_{k}}, J$. d'Analyse Math. 62 (1994), 271-286.
[6] G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (2) 37 (1988), 88-104.
[7] W.K. Hayman, Meromorphic functions, Oxford at the Clarendon Press, 1964.
[8] W.K. Hayman, Subharmonic functions Vol. 2, Academic Press, London, 1989.
[9] I. Laine, Nevanlinna theory and complex differential equations, de Gruyter Studies in Math. 15, Walter de Gruyter, Berlin/New York 1993.
[10] J.K. Langley, The second derivative of a meromorphic function of finite order, Bulletin London Math. Soc. 35 (2003), 97-108.
[11] J.K. Langley and J.H. Zheng, On the fixpoints, multipliers and value distribution of certain classes of meromorphic functions, Ann. Acad. Sci. Fenn. 23 (1998), 133-150.

School of Mathematical Sciences, University of Nottingham, NG7 2RD
Department of Mathematical Sciences, Loughborough University, LE11 3TU

