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On the derivatives of composite functions

J.K. Langley and E.F. Lingham

Abstract

Let g be a non-constant polynomial and let f be transcendental and meromorphic of
sub-exponential growth in the plane. Then if £ > 2 and @ is a polynomial the function
(f og)(k) — @ has infinitely many zeros. The same conclusion holds for k > 0 and with @
a rational function if f has finitely many poles. We also show by example that this result
is sharp.

Mathematics Subject Classification 2000: 30D30, 30D35
Keywords: composite functions, Nevanlinna theory.

1 Introduction

This paper will use standard notation of value distribution theory [7], including p(f) for the order of
growth of a meromorphic function f in the plane. In [4], the second author proved the following result,
for application in a theorem concerning normal families.

Theorem A Let k € N. Let f be a transcendental entire function with p(f) < 1/2. Let g and Q be
polynomials, with g non-constant. Let F' and H be defined by

F=fogy, H:F(k)—Q. (1)
Then H has infinitely many zeros.

The hypothesis p(f) < 1/2 was needed for the proof of Theorem A in [4], which made use of the
celebrated cosmp minimum modulus theorem [8, Chapter 6]. In this paper, we show that Theorem A
can be extended to transcendental functions of sub-exponential growth, that is, functions of at most
order 1, minimal type. We state the result as follows.

Theorem 1.1 Let k be a non-negative integer. Let g be a non-constant polynomial and let f be a
transcendental meromorphic function in the plane with
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Let F' and H be defined by (1), with Q a rational function. Then the following conclusions hold.

(a) If f has finitely many poles then the exponent of convergence of the zeros of H is equal to the order
p(F) of F.

(b) If k > 2 and Q is a polynomial, or if k =1 and Q =0, then H has infinitely many zeros.



Theorem 1.1 is sharp in the following sense. If f(w) = e" 4+ P(w) and P and g are polynomials
with g non-constant, then F' = f o g satisfies F'(*) = Re9 + S with R and S polynomials so that the
equation F¥)(z) = S(z) has finitely many solutions in the plane.

The case k = 0 of Theorem 1.1 may be compared with results on the frequency of fixpoints of fog.
Bergweiler proved that if g is a transcendental entire function and f is transcendental and meromorphic
in the plane then f(g) — @ has infinitely many zeros, for any non-constant rational function @ [3] (see
also [1, 2]). It seems plausible that if f is a transcendental entire function satisfying (2) and g is any
non-constant entire function then the function H defined by (1) has infinitely many zeros, for any k > 1
and any rational function (). Some partial results are proved in [4] and [11, Theorem 6].

2 Proof of Theorem 1.1
We need the following result by the first author [10].

Lemma 2.1 Suppose that G is meromorphic of finite order in the plane, and that G*) has finitely
many zeros, for some k > 2. Then G has finitely many poles.

We now prove Theorem 1.1. We first note that since f has finite order and ¢ is a polynomial it
follows that
p(H) = p(FM) = p(F) < oc. (3)

Next, we observe that it suffices to prove part (a). To see this, note first that the case where k =1 and
@ = 0 is handled by the argument of [11, p.137], and is based on the fact that (2) implies that f’ has
infinitely many zeros, by a result of Eremenko, Langley and Rossi [5], from which it follows since g is a
non-constant polynomial that so has F' = f/(g)g’. Suppose next that k& > 2, that @ is a polynomial,
and that H has finitely many zeros. Choose a polynomial (1 with ng) =@ and set G = F — Q.
Then H = G*) and it follows from Lemma 2.1 that G has finitely many poles and, again since g is a
polynomial, so has f. Hence H is a transcendental meromorphic function of finite order with finitely
many zeros and poles so that p(F') = p(H) > 1, using (3), and a contradiction arises from part (a).

To prove part (a), assume that f has finitely many poles but that the exponent of convergence of
the zeros of H is less than p(F). It follows using (3) that there exist a positive integer n, a meromorphic
function II with finitely many poles and a polynomial P, such that

H=F® _Q=1e" p(ll)<n, degP =p(H)=n. (4)
Then we may write
9(z) =amz"+...+ay, P(z)=bz"+...4by, by € (0,00). (5)

Here the assumption that b, is real and positive involves no loss of generality, since otherwise we may
apply a rotation of the independent variable z.

Since f has finitely many poles and satisfies (2), a standard application of the Poisson-Jensen
formula [7, p.1] gives (compare [7, Theorem 1.6, p.18])

log M(r, f) < 3m(2r, f) + O(logr) =o(r) as r— oo. (6)

Denote positive constants by ¢, M, not necessarily the same at each occurrence. Combining (3), (4),
(5) and (6) and using the fact that f and F have finitely many poles, it follows that

a™ < T(reh)
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as  — 00. Using (5) again we deduce at once that
m > n. (7)
Let 0 and 1 be positive constants, with § and 1/d small. If r; is large then (4) and (5) give
3T
F® () = 0(2/M) > T ys5< <=5,
(z) =0O(|z|") for |z > 7, 5 +0<argz < . )
Hence repeated integration, starting from the point r1¢™/™ leads to
Mtk m 3T
flg(2)) = F(z) = O(|7] ) for |z|>r, —+d<argz< — 6. (8)
2n 2n
Let uj,ug, ... be the zeros of II, repeated according to multiplicity. Since p(II) < n it follows that
> Juil " < o0
u];éO
and a standard application of the Poisson-Jensen formula [7, p.1] gives
log |TI(z)| = o(|2[") as z—o0, z¢E= | Bluj,|u|™). (9)
u; 70

Moreover, standard estimates based on the differentiated Poisson-Jensen formula [7, p.22] (see [6] and
[9, p.89]) give
F®)(2)
F(z)

for large z outside a union E’ of discs, having finite sum of radii. Let r be large and positive, such that
the circle |z| = r does not meet the exceptional sets E, E’ corresponding to (9) and (10). Then (4),
(5), (9) and (10) yield

= 0(|z[") (10)

log|f(g(2))| =log|F(2)| > cr™ for |z|=r, |argz| < % — 0. (11)
With this same value of r let
i0 0 0 w0 T 3T
— PR <Hh < — — = e <0< — — .
0 {re -+ << o 25} oS {re W <H< T 25} (12)

Then (12) implies that for j = 1,2 the image of the arc Q; under the mapping
¢ =h(z) =apz" (13)

is the set {C = |am|r™e!® : ¢ € I;}, where I is an interval of length
m(z—élé) >+ 6,
n

3



since ¢ is small by assumption and m > n by (7). Hence there exist
21 €y, 29 € Q9 suchthat w=h(z1)=h(z). (14)
For |z — z2| = nr we have using (5), (13) and (14), since 7 is small and 7 is large,
Ih(z) = hz1)| = |h(z) — h(z2)| > er™, g(2) — h(z) = o(r™),  h(z1) — g(z1) = o(r™).
We then write
9(2) = g(21) = h(2) = h(z1) + g(2) = h(z) + h(z1) = g(=1)

and apply Rouché’s theorem, which shows using (14) again that g takes the value g(z;) at some
z3 € B(z9,nr), provided r is large enough. Moreover,

T
2n

using (12) and (14), since n is small compared to 6.
But now (8) gives

[F(g(z0))] = [f(9(z))] < |23 < e(|zo] + ) MHF = O(HHF),
whereas (11), (12) and (14) give

3
—|—5§arg23§—7r—5,
2n

log|f(g(21))| > er™.

These estimates are obviously incompatible since 7 is large, and this contradiction completes the proof
of part (a) and of Theorem 1.1.
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