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Abstract 1 

Tropical forest ecosystems are facing unprecedented levels of degradation, severely 2 

compromising habitat suitability for wildlife. Despite the fundamental role biodiversity 3 

plays in forest regeneration, identifying and prioritising degraded forests for restoration 4 

or conservation, based on their wildlife value, remains a significant challenge. Efforts to 5 

characterize habitat selection are also weakened by simple classifications of human-6 

modified tropical forests as intact versus degraded, which ignore the influence that three-7 

dimensional forest structure may have on species distributions. Here, we develop a 8 

framework to identify conservation and restoration opportunities across logged forests in 9 

Borneo. We couple high-resolution airborne Light Detection and Ranging (LiDAR) and 10 

camera trap data to characterize the response of a tropical mammal community to 11 

changes in three-dimensional forest structure across a degradation gradient. Mammals 12 

were most responsive to covariates that accounted explicitly for the vertical and 13 

horizontal characteristics of the forest, and actively selected structurally-complex 14 

environments comprising tall canopies, increased plant area index throughout the vertical 15 

column, and the availability of a greater diversity of niches. We show that mammals are 16 

sensitive to structural simplification through disturbance, emphasising the importance of 17 

maintaining and enhancing structurally-intact forests. By calculating occurrence 18 

thresholds of species in response to forest structural change, we identify areas of 19 

degraded forest that would provide maximum benefit for multiple high conservation 20 

value species if restored. The study demonstrates the advantages of using LiDAR to map 21 
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forest structure, rather than relying on overly simplistic classifications of human-modified 22 

tropical forests, for prioritising regions for restoration.  23 

 24 

Significance statement 25 

Forest restoration has become a global conservation priority, particularly in the tropics 26 

where a significant proportion of remaining forest ecosystems are degraded. To achieve 27 

ambitious restoration targets via limited conservation funds, areas that will deliver the 28 

greatest biodiversity value must be prioritized. Here, we combine airborne laser scanning 29 

with an extensive camera trap dataset to target conservation and restoration across a 30 

degraded logged forest gradient. We demonstrate the importance of accounting for three-31 

dimensional habitat structure when defining forest suitability and restoration potential for 32 

mammals. Consequently, we provide a robust quantitative framework to prioritize 33 

degraded forest restoration based on biodiversity considerations.  34 
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Introduction 35 

Habitat degradation is pervasive in forest ecosystems, affecting ~4 billion ha worldwide 36 

(1), with profound impacts on habitat suitability for wildlife and the delivery of 37 

ecosystem functions and services. The restoration of degraded forests has emerged as a 38 

global conservation priority, underwritten by the Bonn Challenge and New York 39 

Declaration on Forests, which seek to restore 350 million ha of forest by 2030 (2). Given 40 

limited conservation funding, it is imperative to maximize return on investment by 41 

targeting areas where interventions will have the greatest impact (i.e. optimize ecological 42 

benefits relative to opportunity and implementation costs). However, sophisticated 43 

frameworks to prioritize degraded forests for conservation and restoration are lacking, 44 

hindering the realization of ambitious policy targets (3).  45 

Biodiversity underpins the ecological processes that facilitate forest regeneration 46 

(4), meaning that wildlife persistence and restoration are inextricably linked. For 47 

example, it is estimated that 90% of tropical tree species depend on interactions with 48 

vertebrates to complete their life cycle (5). Given the importance of biodiversity for 49 

maintaining forest quality and ecosystem stability, policy and management interventions 50 

that prioritize restoration based on wildlife retention are fundamental to achieving long-51 

term restoration goals. This is paramount in the tropics where a significant proportion of 52 

the remaining forest extent is degraded, placing vertebrate taxa that use these regions at 53 

greater risk of extinction (6). Here, we introduce a framework based on high-resolution 54 

remote sensing and wildlife monitoring data to integrate biodiversity considerations into 55 

conservation and restoration planning for degraded forests in vulnerable tropical regions. 56 
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Selective logging is the principle driver of forest degradation across the tropics 57 

(7). Over a fifth of remaining forests have been logged, while an area of up to 600 million 58 

ha is currently designated as production forest (7, 8). Logged forests afford refuge to 59 

species of conservation concern (9) and play a pivotal role protecting wildlife against the 60 

impacts of environmental change (10). Despite this, the conversion of degraded forests to 61 

agricultural land of limited ecological value is a common land-use trajectory across the 62 

tropics (9). Selecting which areas of degraded logged forest to protect or restore is 63 

hampered by the coarse classification of forest into logged versus pristine categories (11). 64 

Such simplistic assessments overlook substantial spatial heterogeneity in levels of 65 

logging-induced degradation (12), and are often unable to provide specific 66 

recommendations to inform management and policy. To most effectively retain and 67 

enhance logged forests for biodiversity, we need to understand what habitat features 68 

species actively utilize.  69 

Habitat selection is a nested hierarchical process describing home range 70 

establishment and episodic use of the home range to meet ecological demands (13). It is 71 

an adaptive process through which species balance reward (resource acquisition, mating 72 

opportunities) relative to risk (energy expenditure, predation) (14). It is generally 73 

assumed, therefore, that areas of habitat used preferentially by species convey the highest 74 

levels of ecological benefits to them (15). Forest structure is a key determinant of species 75 

diversity (16, 17). Logging results in the structural simplification of forest habitats (18), 76 

however, the extent to which structural alterations associated with logging influence 77 

habitat selection by wildlife remain poorly understood, particularly in a spatial context. 78 
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This information is essential to delineate areas of forest that promote biodiversity 79 

retention and therefore optimize the success of restoration initiatives. 80 

 Habitat selection models for species predominantly focus on a single spatial 81 

extent (13), potentially obscuring scale-dependent associations and hierarchical 82 

environmental interactions (14). These issues are exacerbated for rare and cryptic species 83 

that are observed too infrequently to quantify their habitat associations, but are often most 84 

sensitive to forest degradation (19). Modern advances in statistical methods afford an 85 

analytical platform to overcome these challenges. Multi-species occupancy models 86 

provide robust parameter estimates for species infrequently encountered during 87 

biodiversity surveys while correcting for sampling bias (20). Moreover, the advent of 88 

multi-scale occupancy models account for the complexity of habitat selection (21), but, to 89 

date applications have been limited to single-species approaches (e.g. 22, 23). Thus, the 90 

formal integration of multi-species methods within a multi-scale framework provides a 91 

powerful statistical tool to capture hierarchical habitat selection for vulnerable and rare 92 

species.  93 

Efforts to characterize habitat selection to inform conservation are further 94 

hindered by multi-dimensionality in forest ecosystems. Tropical forests are three-95 

dimensional environments comprised of horizontal and vertical structural components. It 96 

is estimated that 75% of forest-dwelling vertebrates demonstrate some degree of 97 

arboreality, indicating that multi-dimensional interactions with vegetation structure are an 98 

important aspect of habitat selection (16, 17, 24). Nonetheless, structural complexity is 99 

rarely accounted for in conservation assessments due to challenges in measuring 100 
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structural elements at scales appropriate to management. Airborne Light Detection and 101 

Ranging (LiDAR) has emerged as a possible solution to these challenges, and has the 102 

potential to significantly advance our understanding of the structural signature of logging 103 

on biodiversity. However, applications in degraded tropical regions are yet to catch up 104 

with these technological advances (16, 17). While LiDAR has been widely implemented 105 

in tropical forest carbon assessments (25), it has received much less attention for its 106 

potential to quantify three-dimensional habitat associations, particularly for mammals 107 

(16), which occupy key trophic positions in tropical forest ecosystems and are a focus of 108 

global conservation efforts (4).  109 

Here, we couple high resolution airborne LiDAR with bespoke multi-species 110 

multi-scale Bayesian occupancy models to provide unprecedented insights into the 111 

conservation value of logged forests and demonstrate how species-habitat associations 112 

can be aligned with efforts to prioritize degraded forests for conservation and restoration. 113 

We examine the complexity of habitat selection in logged forests and assess degradation 114 

impacts on forest structure and biodiversity. We develop structural metrics from three-115 

dimensional plant area distributions to capture the horizontal and vertical components of 116 

forest architecture. Our appraisal was conducted in a region characterized by high levels 117 

of forest degradation in Borneo, where 46% of the remaining forest area is degraded, a 118 

figure which could increase to 88% based on land-use allocations to the timber estate 119 

(26).  120 

We assess forest structure deterioration across a logging-induced degradation 121 

gradient, comprising Old Growth Forest (N=10), Managed Forest (twice-logged; N=15), 122 
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Heavily-degraded Forest (repeatedly-logged; N=28) and Remnant Forest embedded 123 

within an oil palm matrix (N=21; Fig. 1). Integrating an extensive camera trap dataset (74 124 

sampling locations, comprising two camera trap stations, N=148; 5,472 camera trap 125 

nights) within a multi-scale modelling framework, we explore how structural features 126 

influence hierarchical habitat selection by tropical biodiversity at the species and 127 

community level. Throughout, we define occupancy as the probability that a sampling 128 

location is situated within the home-range of at least one individual of a given species, 129 

and specify probability-of-use as preferential habitat selection at the scale of the camera 130 

trap station, conditional on the home range being represented by the sampling location. 131 

By linking LiDAR-derived structural characteristics operating at different spatial extents 132 

to species detection data, we elucidate the forest architectural properties that characterize 133 

a home-range and habitat preferences.  134 

Our appraisal focuses on medium to large mammals, which have lost 70% of their 135 

original habitat across Southeast Asia (27). The development of effective conservation 136 

measures for threatened mammals has proved challenging due to a weak evidence base. 137 

Despite substantial value as conservation flagship species, basic ecological information is 138 

still lacking for many Southeast Asian vertebrates, 32% of which are considered data-139 

deficient (28). Given the scale of regional forest modification, interventions that 140 

recognize the potential value of degraded habitat are essential to safeguard Southeast 141 

Asia’s imperiled biodiversity. 142 

 143 

Results and Discussion 144 
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The structural signature of forest degradation 145 

We quantified eight forest metrics from LiDAR point-cloud data, reflecting horizontal 146 

and vertical structure, vertical heterogeneity and landscape context (Table 1; SI Appendix 147 

S1.1; 16). Consistent patterns of habitat simplification relative to logging intensity were 148 

identified between the Managed, Heavily-degraded and Remnant Forest classes, 149 

demonstrated by a lack of overlap between Bayesian 95% credible intervals (BCI; Fig. 2; 150 

SI Appendix, Table S1). Simplification was characterized by a lower height profile and 151 

reduced vegetation density, resulting in fewer environmental niches, fewer canopy 152 

pathways and an increase in canopy gaps. This structural simplification is driven by the 153 

removal of large trees and damage to surrounding vegetation. In addition, intensive 154 

forestry causes soil compaction and eradication of the seedling community (29), which 155 

restricts the successional capacity of forests (30). Furthermore, forest remnants are 156 

susceptible to wind damage and altered microclimatic conditions which lead to additional 157 

mortality of large trees in fragmented landscapes (31). While structural simplification 158 

associated with logging is well documented (32), we provide the first empirical evidence 159 

of progressive multi-dimensional architectural deterioration due to repeated logging and 160 

habitat fragmentation. 161 

 162 

Multi-scale habitat selection in degraded forest ecosystems 163 

Landscape context covariates, indicative of forest availability (forest cover) and quality 164 

(canopy height variability), were important drivers of occupancy for nine of 28 mammal 165 
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species, representing 32% of the sampled community (SI Appendix, Figs. S1-S3). Habitat 166 

availability has been shown to be an important factor defining species persistence (33). 167 

However, our results indicate divergent species-specific responses, driven by differences 168 

between forest specialists (e.g. banded civet, Hemilagus derbyanus, mean of posterior 169 

distribution=0.83, BCI=0.01-2.02; Bornean yellow muntjac, Muntiacus atherodes, 1.14, 170 

0.36-2.26) and taxa adapted to take advantage of resources in degraded or non-forest 171 

habitats (e.g. greater mouse-deer, Tragulus napu, -0.99, -1.78 to -0.28; leopard cat, 172 

Prionailurus bengalensis, -1.27, -2.49 to -0.38). Species demonstrated a greater number 173 

of positive responses to forest quality (SI Appendix, Fig. S1), likely reflecting a greater 174 

abundance of resources typical of structurally complex habitats, such as fruit and browse 175 

availability for ungulates (34), and small mammal prey for carnivores (35). The 176 

contrasting influences of forest cover and quality may be indicative of the degree of 177 

habitat degradation across the study site, with old growth forests accounting for ~8% of 178 

the landscape. Given the limited spatial extent of preferential habitat, species appear to be 179 

actively selecting areas that retained adequate structural quality to meet their ecological 180 

requirements. Our findings emphasize the importance of maintaining forest quality, as 181 

well as extent, in a region characterized by high levels of forest degradation. This concurs 182 

with evidence from elsewhere in the tropics (33).  183 

Patterns in probability-of-use revealed the structural properties that constitute 184 

quality habitat and help maintain ecological processes. Looking at the mammal 185 

community as a whole, forest structure was a key determinant of probability-of-use, 186 
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highlighting the importance of mature, connected forest habitat, containing a breadth of 187 

environmental niches for mammal persistence (Fig. 2).  188 

At the species level, species-habitat structure associations were evident for 16 of 189 

the 28 mammals assessed (57% of the sampled community; Fig. 2; SI Appendix, Figs. 190 

S4-S9). In general, species were most responsive to structural measures that captured the 191 

inherent multi-dimensionality of the forest environment, emphasizing the importance of 192 

recognizing the three-dimensional signature of habitat degradation in management and 193 

policy. Plant area index throughout the vertical column was the strongest predictor of 194 

probability-of-use (Fig. 2; SI Appendix, Table S2). For arboreal ambush predators, such 195 

as the Sunda clouded leopard, Neofelis diardi, dense vegetation provides cover that 196 

increases hunting efficiency through visual or locomotive obstruction, as shown 197 

previously for lions (36). Conversely, vegetation density and distribution may provide 198 

refuges for prey species such as ungulates, particularly when engaged in vulnerable 199 

behaviors such as resting or rumination (37). Mammals actively selected forest areas with 200 

taller canopies and a greater breadth of environmental niches (Fig. 2), which are 201 

characteristic properties of late-successional stands (38). Mature, diverse forests 202 

demonstrate higher primary productivity (39), affording greater resources to primary 203 

consumers such as the Bornean yellow muntjac. Moreover, tall trees are fruiting oases for 204 

frugivorous species like the binturong, Arctictis binturong, as has been demonstrated for 205 

species with similar dietary preferences (40). Forests with late-successional 206 

characteristics also accumulate leaf litter at a faster rate, attracting a diverse, abundant 207 
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invertebrate community (41) that may encourage the persistence of insectivorous 208 

mammals such as the banded civet.  209 

To date, a limited understanding of the structural features of logged forests that 210 

promote species persistence has restricted our capacity to capitalize on conservation 211 

opportunities within the vast global timber estate. Here, we identify consistent active 212 

selection of structurally complex environments by mammals at fine spatial scales 213 

indicative of episodic habitat use to meet ecological demands, revealing a causal 214 

mechanism for the negative effects of forest degradation on mammal persistence. This 215 

emphasizes the importance of maintaining and/or restoring structurally intact forests for 216 

biodiversity conservation. Taken as a whole, our results confirm that species will track 217 

resources at successively lower hierarchical levels of habitat selection in degraded forests 218 

to overcome limitations at the preceding level (14). Here, the mammal community was 219 

more responsive to changes in the structural environment at the scale of probability-of-220 

use, presumably because resources were limited throughout the home range to the extent 221 

that species tracked relevant structural variations at progressively finer scales. Moreover, 222 

these findings suggest the potential for negative feedback loops in degraded systems. 223 

Mammals occupy key ecological roles in tropical forests, thus active avoidance of 224 

heavily-degraded areas could potentially affect the resilience of these systems, preventing 225 

natural post-disturbance recovery and leaving ecosystems in a state of arrested succession 226 

and, ultimately, defaunation (4). 227 

 228 

Prioritizing degraded forests for restoration and conservation  229 
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The capacity to identify and prioritize areas of degraded forests for improved 230 

management is imperative to inform biodiversity conservation and restoration objectives. 231 

To achieve this, we employed Bayesian change point analysis to detect thresholds in 232 

forest structural properties, based on records of active habitat selection by tropical 233 

mammals. Thresholds were applied to partition species response curves into three distinct 234 

occurrence states: (1) zones of  tolerance – high probability-of-use and low rate of 235 

change, representing optimal conservation areas; (2) zones of transition – variable 236 

probability-of-use and high rate of change, ideal for restoration as they offer substantial 237 

gains in species persistence per unit management effort, and; (3) zones of stress – low 238 

probability-of-use and low rate of change, thus low priority for any habitat intervention 239 

(Fig. 3a).  240 

By linking the species-habitat relationships to extensive LiDAR habitat maps, 241 

covering 40,150 ha, we were able to estimate occurrence states for multiple species from 242 

the structural covariates (SI Appendix, Table S3). At the species level, consensus across 243 

covariates reveals priority areas for conservation (i.e. tolerance zones) and restoration 244 

(i.e. transition zones). Moreover, spatial agreement between areas prioritized for multiple 245 

species indicates where interventions will be most optimal (i.e. of benefit to the most 246 

species). For example, adopting a conservative approach whereby only areas of high 247 

consensus (i.e. full agreement between all structural measures) qualified for management, 248 

the highly-threatened Sunda clouded leopard would benefit from 6,767 ha (16.7%) of the 249 

landscape prioritized for conservation and 4,415 ha (10.7%) for restoration (Fig. 3b). 250 

Combining this information with findings from six other high conservation value species 251 
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(either endemic or IUCN threatened (Vulnerable/Endangered/Critically Endangered): 252 

banded civet, binturong, Bornean yellow muntjac, marbled cat, sambar deer Rusa 253 

unicolor and tufted ground squirrel Rheithrosciurus macrotis; Fig. 3c; SI Appendix, Figs. 254 

S14-S20), conservation activities would be best targeted to 11,300 ha (27.4%), and 255 

restoration 16,410 ha (39.7%) of the landscape (Fig. 3d; SI Appendix, Table S4).  256 

Logged forests have been proposed as a cost-effective strategy to expand the 257 

existing protected area network to connect pristine habitats (10). The most extensive 258 

areas to prioritize for conservation were in Old Growth (1,680 ha, 14.9%) and Managed 259 

Forests (7,899 ha, 69.8%). However, within these classes, optimal habitat for all seven 260 

target species covered only 443 ha and 1,747 ha (26.3% and 22.1%) respectively (SI 261 

Appendix, Table S5). These findings illustrate the challenge of identifying conservation 262 

areas that maximize species representation, even when only a fraction of the mammal 263 

community is considered. Collectively, our results provide further evidence of declining 264 

conservation value with increasing logging intensity (42). We therefore advocate 265 

reduced-impact logging as a preventative measure to maintain forest structural integrity 266 

and reconcile production and conservation (43). 267 

There is a growing concern that many tropical countries lack the capacity to fulfil 268 

their international restoration commitments (44). Our framework provides a methodology 269 

to direct restoration activities to optimize biodiversity conservation outcomes and support 270 

restoration initiatives such as the Bonn Challenge and New York Declaration on Forests. 271 

Restoration opportunities were predominantly identified in Managed (5,612 ha; 34.2%) 272 

and Heavily-degraded Forests (7,046 ha; 42.9%). However, areas that would universally 273 
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benefit all target species were again rare (Managed Forest: 1,747 ha; 6.8%; Heavily-274 

degraded Forest: 1,988 ha, 28.2%; SI Appendix, Table S5). This demonstrates the 275 

potential for ecological trade-offs during the implementation of restoration initiatives, 276 

reinforcing the need for restoration planning to avoid perverse management outcomes. 277 

Based on economic data available elsewhere in Borneo (45), combined restoration and 278 

opportunity costs for the study landscape would be financially prohibitive (average net 279 

present value: US$943 ha-1, equating to >US$5 million for the entire landscape). It is 280 

therefore essential that any forest restoration efforts are deployed in such a way that they 281 

optimize conservation value for associated biodiversity, including mammals. Based on 282 

our findings, we believe that buffering pristine conservation areas and enhancing 283 

connectivity between them is most likely to maximize species representation and returns 284 

on investment within our study system. Applying these principles over much larger 285 

spatial scales also serves as an effective climate-change mitigation measure for wildlife 286 

conservation (10).  287 

Here we demonstrate the use of a robust prioritization framework that can identify 288 

priority areas for habitat restoration and conservation, ensuring biodiversity is better 289 

integrated into land management decision-making. Moreover, our methodology has the 290 

potential to deliver important co-benefits due to documented spatial concordance between 291 

areas of high biodiversity and those offering climate change mitigation and water security 292 

(46). However, we recognize that restoration is a holistic process containing a significant 293 

socio-economic dimension (47) that is not captured by our framework. Our approach 294 

maximizes benefits for highly threatened species prioritized by conservation, but like all 295 
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approaches, may lead to trade-offs between addressing various goals (45). While our 296 

approach focused on species of conservation concern to guide restoration planning, the 297 

study system could be restricted to taxonomic groups/species that underpin ecological 298 

processes if the recovery of ecosystem functions is the ultimate goal of restoration. 299 

Although we have shown the value of our approach at the landscape scale, it could 300 

equally be applied to direct conservation policy at regional and global scales. Recent 301 

proposals by the Sabah government to increase protected area coverage by 5%, coupled 302 

with the state-wide availability of LiDAR data (25), provides an unparalleled opportunity 303 

to mobilize a collaborative network of species occurrence data and fully integrate 304 

biodiversity considerations into the conservation agenda. Moreover, the launch of 305 

NASA’s Global Ecosystem Dynamics Investigation promises to increase the scope of 306 

LiDAR coverage to global scales (48). Capitalizing on these developments could greatly 307 

enhance the limited ecological understanding of biodiversity across a pantropical gradient 308 

of forest degradation. 309 

  310 

Methods  311 

Study landscape 312 

Fieldwork was undertaken at the Stability of Altered Forest Ecosystems Project (SAFE; 313 

www.SAFEproject.net) and neighboring oil palm estates in Sabah, Malaysian Borneo. 314 

The SAFE Project area is nested within the Kalabakan Forest Reserve (KFR; 4°33’N, 315 

117°16’E), comprising lowland and hill dipterocarp forest. A legacy of commercial 316 
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logging has resulted in a heterogeneous forest stand (Fig. 1). Between 1978 and 2008 317 

KFR experienced multiple logging rotations (cumulative extraction rate =  179 m3 ha-1) 318 

(11). Similarly, the neighboring Ulu Segama Forest Reserve underwent two logging 319 

rounds (cumulative extraction rate = 150 m3 ha-1) with more stringent size quotas. In 320 

contrast, Brantian-Tantulit Virgin Jungle Reserve (VJR) retains near-pristine, old growth 321 

forest, with some past encroachment on the western and southern borders. The 322 

disturbance gradient is representative of transitional degradation states seen elsewhere on 323 

Borneo and much of tropical Southeast Asia. 324 

 325 

Mammal surveys and sampling design 326 

To characterize the mammal community, we collected detection/non-detection data using 327 

camera traps deployed between June 2015 and August 2017, following protocols 328 

described in Deere et al. (49). Remotely-operated digital cameras (Reconyx HC500, 329 

Wisconsin, USA) were deployed across 74 sampling locations, separated by a mean 330 

distance of 1.6 km, and randomly stratified to capture the degradation gradient relative to 331 

logging intensity using the Putz and Redford (50) classification scheme: Old Growth 332 

Forest (VJR), Managed Forest (Ulu Segama Forest Reserve; N=15) and Heavily-333 

degraded Forest (KFR). We also sampled Remnant Forest embedded within an oil palm 334 

matrix, differentiated from Heavily-degraded Forest due to isolation and increased 335 

exposure to anthropogenic stressors.  336 
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Sampling locations comprised two camera trap stations, positioned up to 250 m 337 

apart depending on the terrain and availability of forest cover (mean=185 m), resulting in 338 

a total of 148 deployments. Cameras were unbaited, positioned at a standardized height 339 

(ca. 30 cm) and preferentially placed above flat surfaces, targeting low resistance travel 340 

routes and randomized locations simultaneously to maximize detections. Accounting for 341 

theft, vandalism, malfunction and animal damage, data were obtained from 125 stations 342 

distributed across 74 sampling locations.  Cameras were deployed for a minimum of 42 343 

consecutive nights per camera station, yielding a total survey effort of 5,427 camera trap 344 

nights.  345 

 346 

LiDAR methods and structural covariates 347 

To characterize the structural properties of the landscape, LiDAR surveys were 348 

conducted in November 2014 by NERC’s Airborne Research Facility. LiDAR is an 349 

active remote sensor that emits a laser pulse from an aircraft towards a target object and 350 

quantifies distance based on the time elapsed between emission and reflection (16). 351 

Surveys employed a Leica ALS50-II sensor attached to a Dornier 228-201 light aircraft, 352 

flown at an elevation of 1400-2400 masl and a velocity of 120-240 knots. The sensor 353 

produced pulses at a frequency of 120 kHz, encompassing a scan angle of 12° and a 354 

footprint of 40 cm, resulting in a point-cloud density of 25-50 points m-2. Concurrent 355 

ground surveys using a Leica base station facilitated accurate geo-referencing of the 356 

point-cloud. 357 
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To quantify structural metrics, point-cloud data were subjected to two processing 358 

procedures. Initially, ground and non-ground returns were partitioned from the point-359 

cloud, using the former to generate a 1 m resolution digital elevation model (DEM). We 360 

constructed a canopy height model (CHM) of similar resolution by normalizing non-361 

ground returns and subtracting ground observations derived from the DEM. To develop a 362 

three-dimensional insight into canopy structure, plant area density (PAD) distributions 363 

were generated from point-cloud data using a one-dimensional Beer-Lambert 364 

approximation for the propagation of LiDAR pulses through the canopy (51). We provide 365 

a detailed description of LiDAR processing methods in SI Appendix, S1.1. 366 

We employed Bayesian linear models to determine differences in forest structural 367 

properties across a degradation gradient (see SI Appendix, S1.2 for model specification 368 

details). Structural covariates were extracted as mean values across buffer radii 369 

corresponding to optimal scales of habitat use (SI Appendix, Table S1).   370 

   371 

Modelling framework 372 

We developed a multi-species extension to Bayesian multi-scale occupancy models to 373 

explore occupancy and probability-of-use by medium-large terrestrial mammals relative 374 

to LiDAR-derived structural covariates. We specified models of the form: 375 

logit(ψi,j) = α0i + α1iForest Coverj + α2iCanopy Height Variabilityj + ε(Yearj)i 376 

logit(ϑi,j,l) = β0i + β1iStructurej,l + β2iStructure2
j,l + ε(Yearj,l)i 377 
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logit(pi,j,l,k) = δ0i + δ1iTrap Effortj,l + δ2iPAD Herbj,l + δ3iNlayj,l  378 

Occupancy (ψ), probability-of-use (ϑ) and detection probabilities (p) were 379 

modelled on the logit scale with random intercepts (α0, β0, δ0) and slopes (α1-2,  β1-2, δ1-3) 380 

for each species (i). We modelled occupancy of species i, at sampling location j (ψi,j), as a 381 

function of Forest Cover and Canopy Height Variability, at coarse spatial-scales (buffer 382 

radii: 1, 1.5, 2 km). We assessed probability-of-use of species i, within sampling location 383 

j, at camera trap station l (ϑi,j,l), at finer spatial scales (radii: 10, 25, 50, 100, 150, 250, 500 384 

m) relative to covariates associated with our three structural axes (“Structure”; Table 1), 385 

and incorporated second-order polynomial terms (“Structure2”) to account for non-linear 386 

responses. Due to analytically prohibitive levels of multicollinearity (|r|> 0.7; Generalized 387 

Variance Inflation Factor, GVIF >5), independent models were constructed for each 388 

structural predictor (Table 1; N=6). We implemented temporal random effects (ε) for 389 

both the occurrence and probability-of-use models, addressing unmeasured inter-annual 390 

variation due to sampling across multiple years (“Year”). We modelled detection 391 

probability of species i, at sampling location j, camera trap station l, across temporal 392 

replicates k (pi,j,l,k), as a function of structural and sampling covariates presumed to 393 

influence the observation process, including: sampling intensity (“Trap Effort”), 394 

obstructing vegetation features in the camera trap detection zone (“PAI Herb”; plant area 395 

index values extracted from 2-5 m within the vertical column, broadly corresponding to 396 

the herbaceous layer) and alternative pathways in the vertical column (i.e. number of 397 

layers: “Nlay”; Table 1). Detection covariates were extracted across a fixed buffer of 25 398 

m, corresponding to the detection zone of our camera trap models. Prior to analysis, all 399 
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continuous covariates were centered and standardized to place them on a comparable 400 

scale and improve model convergence. We outline a formal model description, including 401 

specification details and predictive performance checks in SI Appendix, S2.1 and S2.2.  402 

We constructed 126 models to identify the most influential structural covariates 403 

and inform scale optimization methods (see SI Appendix, S2.1). We ranked competing 404 

models using WAIC (Watanabe Akaike-Information-Criterion; SI Appendix, Table S2), a 405 

within-sample model selection criteria analogous to AIC and robust to latent parameters 406 

(52). We report findings for occupancy and detection parameters corresponding to the 407 

overall best fitting model, presenting the results according to the highest ranked spatial-408 

scale associated with that structural covariate. Throughout, we consider parameters 409 

influential if their 95% Bayesian credible interval did not overlap zero. 410 

 411 

Delineating restoration and conservation priority areas     412 

Focusing on seven high conservation value species, we implemented change point 413 

analysis to link abrupt shifts in the occurrence state to specific forest structural attributes. 414 

Using the “bcp” package in R, we employed a Bayesian algorithm (10,000 iterations, 415 

2,000 burn-in) to identify upper and lower transition zone thresholds (53), characterized 416 

by high rates of change in probability-of-use relative to spatial variation in structural 417 

covariates. Thresholds were used to partition species response curves into three distinct 418 

occurrence states (zone of stress: below the lower threshold; zone transition: between the 419 

lower and upper threshold; zone of tolerance: above the upper threshold), each associated 420 
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with a specific management intervention (low priority, restoration priority and 421 

conservation priority respectively; Fig. 3a). This protocol was embedded within a 422 

spatially-explicit framework to prioritize degraded forests for conservation and 423 

restoration. For each species, thresholds were implemented to reclassify LiDAR-derived 424 

maps of significant structural covariates, which were averaged to generate single-species 425 

consensus maps delineating priority conservation and restoration areas based on levels of 426 

agreement between structural covariates (Fig. 3b-c). The species-specific prioritization 427 

maps were reclassified according to areas of high consensus (i.e. full agreement between 428 

all structural predictors) and averaged across focal taxa to produce a multi-species 429 

zonation illustrating the proportion of target species that would benefit from management 430 

action (Fig. 3d). 431 

 432 

Data Deposition 433 

Species detection data for 28 medium-large mammals and spatial delineations of LiDAR-434 

derived structural covariates are available for download from the Zenodo online 435 

repository: DOI TBC 436 
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Table/Figure Legends 603 

 604 
 605 
Table 1: Structural covariates quantified from LiDAR-derived point-cloud data (25-50 606 

pulses m-2; aggregated at 20 m resolution), capturing three distinct axes of forest structure 607 

(horizontal structure, vertical structure, vertical heterogeneity). The covariates were 608 

derived from either canopy height models (CHM) or plant area density (PAD) 609 

distributions, estimated based on a one-dimensional Beer-Lambert-type model of light 610 

propagation through the canopy  (51). We calculated landscape context covariates to 611 

describe forest extent and quality across broader spatial scales. Covariates were 612 

aggregated across spatial extents informed by scale optimization methods to characterize 613 

optimal scales of selection for predictors and determine sensitivity to spatial scale (SI 614 

Appendix, Table S2).  615 

Figure 1: Map of the study site and sampling design showing the broader geographic 616 

context of the study site in Malaysia (inset), the classification of forest across the 617 

disturbance gradient within the Stability of Altered Forest Ecosystems project area, 618 

LiDAR flight path (black outline) and camera trap sampling locations (N=74). 619 

Figure 2: Habitat use by tropical forest mammals in response to the degradation of three 620 

structural axes: horizontal structure, vertical structure and vertical heterogeneity (see 621 

Table 1 for a formal description of structural covariates). The top row represents 622 

structural modification across a tropical disturbance gradient. Violin plots depict the 623 

kernel density distribution of the data (colored shapes), wider sections indicate greater 624 

probability that structural characteristics within a disturbance class will take a given 625 

value. Boxplots contained therein describe the median (central vertical line), interquartile 626 
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range (outer vertical lines of the box) and 95% Bayesian Credible Interval (thin 627 

horizontal lines). The middle row demonstrates probability-of-use of the mammal 628 

community relative to structural alterations. Community trends are presented as predicted 629 

responses derived from posterior means and 95% Bayesian Credible Intervals (BCI). The 630 

bottow row denotes effect sizes for species-specific responses to structural modification. 631 

We present effect sizes for species parameters as posterior means (points) and BCI 632 

(horizontal lines). Grey points and horizontal lines represent non-responsive species, blue 633 

suggests influential unimodal effects and red indicates influential non-linear associations 634 

described by second-order polynomial terms. Effects for species-specific associations are 635 

considered substantial if the BCI does not overlap zero (vertical dashed black line). 636 

Figure 3: A spatial delineation of conservation and restoration priority areas for high 637 

conservation value mammals, defined as endemic or classified as threatened 638 

(Vulnerable/Endangered/Critically Endangered) by the IUCN (banded civet, binturong, 639 

Bornean yellow muntjac, marbled cat, sambar deer, Sunda clouded leopard and tufted 640 

ground squirrel), based on records of active habitat selection. Using the Sunda clouded 641 

leopard as an example, response curves for each structural covariate (blue lines) were 642 

partitioned into occurrence states (dashed vertical black lines), corresponding to priority 643 

conservation and restoration areas using Bayesian change point analysis. Areas of the 644 

curve exhibiting the highest rate of change in occupancy (peaks in the probability of 645 

change red line graphs) were deemed optimal restoration (yellow-brown gradient), while 646 

areas characterized with high stable occurrence were deemed optimal conservation areas 647 

(green gradient) (a). Agreement between structural covariates was visualized in a 648 
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consensus map (b). This process was replicated for the remaining six other species (c). 649 

Single-species consensus maps were combined to produce a multi-species zonation 650 

indicating taxonomic agreement between proposed conservation/restoration areas. Forest 651 

areas only qualified for intervention in areas of highest consensus for each species (d). 652 


