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Abstract

This thesis presents a detailed investigation into the potential of optimising the

geometric profiles of macroscale grooves, to improve their drag reducing performance

in internal laminar flow and spatially developing turbulent flow. The investigation ex-

plored whether the asymmetric profiles of naturally occurring sand ripples constitute

an optimisation over the simple, symmetrical geometric profiles which have formed

the typical focus for past investigations of macroscale grooves. In order to enable this

analysis, the thesis developed and validated methodologies within the open source code

OpenFOAM, which can overcome the bottlenecks associated with both modelling com-

plex geometries in large-scale parametric studies, and implementing surface geometries

into spatially developing turbulent flows.

The first stage of the investigation developed a methodology for resolving laminar-

turbulent transition in OpenFOAM using large-eddy simulation. To the authors knowl-

edge, this work represents the first systematic validation and verification of resolved

laminar-turbulent transition in OpenFOAM to investigate the combined effect of large-

eddy simulation and controlled tripping. The results identify that a purely laminar

boundary layer can be destabilised through imposing a period of psuedo-random, time-

dependant fluctuations in the wall-normal velocity field at the wall. If the magnitude of

these fluctuations match the maximum wall-normal velocity fluctuations in an equiv-

alent boundary layer of equal thickness, then the initially period of two-dimensional

instabilities is bypassed, and transition can be induced almost instantaneously down-

stream of the trip. Under these tripping conditions, the results expand the typical

design criteria for large-eddy simulation spatial resolution, and show that typical de-

sign recommendations can sufficiently converge the flow resistance and shape factor

by the start of the fully turbulent regime. Increasing this resolution by a factor of 2
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achieve this convergence early on in the laminar-turbulent transitional regime.

The second stage of the investigation involved an extensive parametric study of

highly detailed sand ripple profiles within a periodic laminar channel flow. In all cases,

the presence of both ripples and sinusoidal grooves had a negative impact on the flow

resistance, typically due to a reduction in viscous forces being balanced out by the

creation of a larger pressure force. The higher order details of the geometric profiles

did not have a significant impact on the flow resistance, even when such details had

a significant impact on promoting or delaying flow separation. The details of the

geometric profile only became significant for three-dimensional ripples, when applied

with a sufficient depth and and Reynolds number to manipulate the bulk flow field

towards the centre of the channel, and direct high velocity flow from the centre towards

the crests of the ripple profiles.

The final stage of the investigation applied simplified sand ripple profiles into a wall-

resolved spatially developing turbulent boundary layer, through the novel incorporation

of a split-hexahedral mesh, through OpenFOAM’s snappyHexMesh utility. Whilst rip-

ples with a depth of 5% of their wavelength had a negligible impact on flow resistance,

deeper ripples (15%) produced an increase in flow resistance which was independent of

the growing ratio between boundary layer thickness and ripple depth. The local dis-

tribution of turbulent velocity fluctuations was consistent with known drag reducing

phenomenon, with amplified spanwise velocity fluctuations over the shear stress spike

approaching the crest, and amplified streamwise velocity fluctuations accompanying

the free-shear region of flow separation downstream of the crest. It was in this free-

shear region, that the streamwise resolution had the greatest impact on the accuracy

of the local wall shear stress. The present approach confirms the capabilities of split-

hexahedral meshes to efficiently balance the varying requirements of spatial resolution

in near-wall and free-stream regions, regardless of the geometric surface profile.
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CHAPTER 1

Introduction

In the late 20th century, it was observed that shark skin consists of a series of short

staggered blades aligned lengthwise on the shark. Subsequent experiments on simplified

replica structures, known as riblets, discovered that these micro-geometries can work

to reduce the drag force acting on the body of a swimming shark, in relation to smooth

skin.

Riblets with drag reducing properties require a height and width which lie on the

same order of magnitude as the smallest length scale of a turbulent flow (the inner

length scale). In addition to the associated manufacturing difficulties, these small

length scales significantly increase the required spatial resolution for numerical anal-

ysis. Fully resolving turbulent flows is itself cost intensive in terms of the required

computational power. In internal flows, the computational domain, and hence com-
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putational workload, can be significantly reduced by assuming streamwise periodicity.

For an external flow, the boundary layer grows along the streamwise direction, such

that the influence of the upstream conditions cannot be ignored. Hence, the computa-

tional workload cannot be reduced in order to accommodate the finer spatial resolutions

required for investigating drag reducing riblets. For this reason, an overwhelming ma-

jority of numerical investigations into drag reducing surface textures in turbulent flow

focuses on the specific application of internal channel flow.

Macroscale geometries possess geometric dimensions which lie on the same order of

magnitude as the largest length scale of the flow (the outer length scale). Hence, they

may be modelled to a spatial resolution of similar magnitude to a standard smooth

wall flow. As discussed in Chapter 2, macroscale grooves, most notably shallow dim-

ples, have been found to produce a drag reduction of less than 4% in turbulent flows

(Tay et al. 2015). Meanwhile, macroscale grooves have been mostly detrimental in

laminar flows (Mohammadi & Floryan 2013b). In each case, the authors propose the

possibility of an improved performance through the optimisation of the groove profile,

expanding beyond simple geometric shapes. Efficient optimisation of this type requires

a means of constructing a numerical mesh around increasingly complex geometries in a

way which simultaneously minimises the rise in the computational workload, and min-

imises the pre-processing time, sufficiently enough to permit cost effective parametric

investigations.

The main aim of this thesis is to develop new numerical methodologies for the

optimisation of macroscale grooves for drag reduction properties. The thesis focuses

on the application of internal laminar flow and external turbulent flow, where drag

reducing macroscale grooves stand to provide the greatest benefits and novelties in

terms of practical application and fundamental understanding. In diverging from a
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focus on simple geometric shapes, this thesis looks to the patterns of naturally occurring

sand ripples as a means of anchoring the optimisation procedure. These ripples can

form when a bed of loose sediment is submerged in a flow undergoing either uniform

or oscillating motion.

1.1 Objectives

1. To reverse engineer profiles from naturally occurring macroscale grooves, through

direct replication of naturally occurring sand ripple bedforms on a sand beach.

To construct smooth, periodic geometric profiles which capture the geometric

features of asymmetric sand ripples to a high detail.

2. To assess the suitability of applying automatically generated split-hexhaedral

cells (utilising the snappyHexMesh utility in OpenFOAM) for parametric studies

of macroscale grooves with arbitrary geometric profiles.

3. To assess the potential of optimising the drag reducing capabilities of macroscale

grooves in laminar flow by incorporating the geometric profiles of naturally oc-

curring sand ripples. To determine the conditions which are required for the finer

details of surface geometry to have a significant impact on the flow resistance in

internal laminar flow.

4. To develop a methodology in OpenFOAM for modelling the laminar, transitional

and fully turbulent regimes of a spatially developing turbulent boundary layer

within a single domain. This methodology must be optimised to balance realistic

inflow conditions, numerical accuracy and turbulence resolution with practical

computational cost.

5. To incorporate periodic grooves into the optimised smooth wall boundary layer,
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and assess the suitability of applying local cell refinement and automatically gen-

erated split-hexahedral cells for improving spatial resolution over deep periodic

grooves in a spatially developing turbulent boundary layer.

1.2 Thesis Structure

The remainder of the introduction presents fundamental theory regarding fluid flow and

shear layer growth, in preparation for a critical discussion of published works pertaining

to flow control methods, and advances in numerical analysis, in Chapter 2. Chapter 3

then presents theory pertaining to the modelling of fluid flows with the finite volume

approach, with a particular emphasis on the open source code OpenFOAM. The con-

tributions of the thesis are divided into four chapters. Chapter 4 presents the design,

optimisation and validation of a numerical methodology for utilising OpenFOAM to

model spatially developing turbulent boundary layers with an optimal balance between

physical representation, numerical accuracy, and economic computational cost. Chap-

ter 5 presents the two-dimensional and three-dimensional profiles which are reverse

engineered from naturally occurring sand ripples. The suitability of OpenFoam’s auto-

mated mesh generating utility (snappyHexMesh) is investigated and validated; firstly

for replicating published solutions of simple geometric shapes, and then for modelling

highly detailed sand ripple profiles. Chapter 6 provides a detailed parametric study

of two-dimensional and three-dimensional sand ripples in controlling flow resistance

in laminar flow through an internal channel. Finally, in Chapter 7, simplified two-

dimensional profiles, based upon asymmetric sand ripples, are incorporated into the

optimised smooth surface boundary layer simulations from Chapter 4, using the auto-

mated meshing procedure which was explored in Chapter 5 and Chapter 6. This pre-
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liminary investigation assesses the capability of split-hexahedral near-wall cells in cap-

turing laminar-turbulent transition and resolving the geometric profiles of macroscale

grooves in turbulent flow. The thesis concludes with a compilation of key findings and

their implications for further advancement in numerical analysis and surface optimisa-

tion.

1.3 Mechanism of Laminar and turbulent Flow

1.3.1 Laminar Shear Flow

A boundary layer is a region in a flow in which the velocity of the fluid is reduced due

to the presence of a solid body. For a solid planar surface in the absence of a non-

negligible pressure gradient, the boundary layer lies directly adjacent to the wall. The

Reynolds number (Equation 1.1) represents the ratio between the inertial forces and

the viscous forces of the fluid in the flow. There are various definitions of the Reynolds

Number which vary in their selected reference properties for the length scale [L] and

the velocity scale [U ]. The density and dynamic viscosity of the fluid are represented

by ρ and µ respectively.

Re =
ρ [L] [U ]

µ
, (1.1)

The two primary states are referred to as laminar flow and turbulent flow. In

laminar flow, the flow can exist in parallel layers, with little to no interaction between

adjacent layers. Within a laminar flow at equilibrium, the velocity and pressure at a

point in the flow will not vary with time. Stokes flow describes a flow in which the

viscous forces dominate to the extent that the influence of inertia is negligible; i.e when

Re << 1.
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1.3.2 Laminar-Turbulent Transition

An initially laminar Poisuille flow between two smooth plates can theoretically remain

stable up to the limit Reh = 3848.1, where Reh takes the bulk velocity and the half-

height of the channel as the velocity and length scales respectively (Moradi et al.

2017). Surface roughness, Reynolds number and background noise can all influence

the susceptibility of a stable flow to destabilising effects.

Orszag & Kells (1980) produced numerical solutions from direct numerical simu-

lation to compare the response of an initially stable, laminar Poisuille flow to two-

dimensional and three-dimensional disturbances in the velocity field. Their results

found that small-amplitude disturbances significantly constricted the laminar regime

(Reh < 666) when acting in three dimensions, compared with larger disturbances which

are uniform in the spanwise direction (Reh < 2000). Orszag & Patera (1983) identified

a mechanism of transition for which the more unstable three-dimensional instabilities

could not grow without a strong enough two-dimensional instability; approximately

1% of the maximum streamwise velocity.

The experiments and theoretical predictions of Floryan (2005) and Asai & Flo-

ryan (2006) observed that shallow, large wavelength grooves could reduce the critical

Reynolds number by up to 30% and enable two-dimensional instabilities to induce

transition below the limit Reh ≈ 2667. Saha et al. (2015) made similar observations

in their direct numerical simulations of corrugated pipes. The initially laminar flow

remained stable inside all domains with axisymmetric boundary conditions, despite the

presence of asymmetric disturbances.
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1.3.3 Fundamental Behaviour of Turbulent Flow

Turbulent motions are three-dimensional, chaotic and time-dependant. For a turbulent

flow in equilibrium, a flow property at a given point will randomly fluctuate around a

steady, mean value. This behaviour is illustrated in Figure 1.1 for an arbitrary physical

property at a single spatial location in a fully turbulent flow.

φ̄i

φi

time (s)

Figure 1.1: An example of the time dependant behaviour of a property φ(t) at a point
in turbulent fluid flow.

The time-dependant variable can be decomposed into two components; a time-

averaged mean value (Equation 1.3) and a fluctuating, time-dependant value (Equation

1.2).

φ(t) = φ̄+ φ′(t), (1.2)

φ̄ =
1

∆t

∫ ∞

0

φ(t) dt, (1.3)

If the flow field is averaged over a sufficiently large period of time Tav, and the flow

exists in an equilibrium state, the temporal average of the fluctuations will return a

zero value (Equation 1.4).

φ̄′ =
1

∆t

∫ ∞

0

φ′(t) dt = 0, (1.4)

The root mean square (Equation 1.5) of a time-dependant variable expresses the
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strength of the instantaneous fluctuations relative to the time-averaged mean value.

φ̄′
rms =

√√√√ 1

Nt

Nt∑

1

=
(
φ̄− φ(t)

)
, (1.5)

A ‘coherent structure’ refers to an eddy or vortex which exists for long enough

that it can be observed and quantified. These coherent structures can exist over a wide

range of length scales. If the largest eddies in a turbulent shear flow have a length scale

Le, and a velocity scale Ue, then the length and velocity scales of the smallest eddies

can be predicted by the relations in Equation (1.6) and Equation (1.7) respectively.

le ≈ Le

(
LeUe

ν

)−0.75

, (1.6)

ue ≈ Ue

(
LeUe

ν

)−0.25

, (1.7)

When an eddy breaks up due to instability, two smaller eddies are formed which

contain the energy of the previous eddy. Further instability and break-up causes this

energy to be passed down to eddies of increasingly smaller length scales. Once the size of

an eddy is sufficiently small, the increased contribution of viscous forces, relative to the

previously dominant inertial forces, dissipates the energy of the eddies. A continuous

exchange of energy is observed as the random formation of large eddies is followed by

their disintegration into smaller and smaller structures. The dissipation of the smallest

eddies returns the energy to the flow.

1.3.4 Definition of a Vortex

Connected regions of rotational flow which possess temporal coherence are referred to

as either ‘coherent structures’ or vortices. A flow structure has temporal coherence if
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its existence is observable over a time period of at least equal magnitude to the time-

averaging periods of the flow. The mathematical definition of a vortex relies on the

second order tensor or velocity gradients (Equation 1.8).

∇uij =




∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z




, (1.8)

The tensor can be decomposed into two second order tensors (Equation 1.9). The

symmetrical tensor Sij (Equation 1.10), corresponds to the rate-of-strain, and the asym-

metrical tensor Ωij (Equation 1.11), corresponds to the rotational motions (vorticity)

in the flow.

∇uij = Sij + Ωij , (1.9)

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (1.10)

Ωij =
1

2

(
∂ui
∂xj

−
∂uj
∂xi

)
, (1.11)

Vorticity is a vector of three components, which each relate to an axis which is

parallel to the Cartesian vectors ω = (ωx, ωy, ωz). The vorticity of the flow around

an axis is determined from the rotational motions in a two-dimensional plane which

is normal to that axis. These motions can be obtained from the vorticity tensors, as

shown in Equation (1.12).

ω =




Ω32

Ω13

Ω12




=




∂w
∂y

− ∂v
∂z

∂u
∂z

− ∂w
∂x

∂u
∂y

− ∂y

∂x




, (1.12)
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1.3.5 Outer Length Scale

For internal flow in a smooth channel, the growth of a shear layer is constrained by

the dimensions of the channel. Once the flow is fully developed, the shear layers on

opposing walls make contact at the midpoint between them, i.e. the channel half-

height, preventing further growth. Hence, the outer length scale of the shear layer,

defined by the shear layer width, remains fixed along the streamwise direction as a

geometric property of the channel.

For boundary layers which grow along an external boundary, the growth of the

boundary layer is not constrained. The boundary layer simply displaces the fluid in

the uniform free-stream and continues to do so as its thickness increases, as illustrated

in Figure 1.2, where δl and δt denotes the thickness of the laminar boundary layer

and turbulent boundary layer respectively. Hence, even when a boundary layer has

developed enough to reach an equilibrium state, the outer length scale continues to

vary along the streamwise direction. Furthermore, the outer length scale at a physical

geometric location along the streamwise direction is dependant on the behaviour and

structure of the boundary layer upstream.

Figure 1.2: Illustration of a spatially developing boundary layer passing through
laminar-turbulent transition.

Three different definitions of the boundary thickness are given to represent the
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outer length scale. The velocity thickness is defined as the height below which the flow

velocity is reduced from the initial free-stream velocity by the presence of the solid

surface. The exact region in which this occurs is unclear, hence, the velocity thickness

is taken as the point at which the streamwise velocity is equal to 99% of the free-stream

velocity (Equation 1.13).

u (y = δ99) = 0.99u∞, (1.13)

As the boundary layer grows, the free-stream flow is deflected away from the wall.

The displacement thickness δ∗ (Equation 1.14) defines the wall-normal distance by

which the streamlines of velocity u∞ are shifted away from the wall, due to the presence

of the boundary layer.

δ∗ =
1

u∞

∫ ∞

0

(u∞ − u) dy, (1.14)

The shear stress at the wall acts against the flow and reduces the momentum

within the boundary layer. The momentum thickness θ (Equation 1.15), is defined as

the distance that a solid body would have to be moved into the flow to regain this lost

momentum.

θ =
1

u2∞

∫ ∞

0

u (u∞ − u) dy, (1.15)

For laminar and turbulent boundary layers with incompressible flow; Equation

(1.16) displays the relation between the wall shear stress, the displacement thickness

and the momentum thickness.

τ0 = ρ

(
d

dx

(
u2∞θ

)
+ δ∗u∞

du∞
dx

)
, (1.16)

The second term on the right-hand side of Equation (1.16) accounts for a change

in the free-stream velocity due to the presence of a streamwise pressure gradient.
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1.3.6 Inner Length Scale

The shear stress at the local point on the wall is directly related to the wall-normal

gradient of streamwise velocity at that point (i.e. as y → 0), as shown in Equation

(1.17).

τ0 = µ

(
∂u

∂y

)

y=0

, (1.17)

In turbulent flow, the mixing length lm, describes the length scale of the displace-

ment with which a body of fluid moves across the wall-normal direction of the boundary

layer (Schlichting 1978). Equation (1.18) displays Prandtl’s mixing-length hypothesis,

where τt denotes the turbulent shear stress.

τt = ρl2m|
∂ū

∂y
|
∂ū

∂y
, (1.18)

Equation (1.19) displays the relation between the mixing length, streamwise velocity

fluctuations and wall-normal velocity fluctuations (Schlichting 1978), for which − ¯u′v′

is referred to as the Reynolds shear stress.

− ¯u′v′ = l2m|
ū

∂y
|
∂ū

∂y
, (1.19)

In a region near to the wall, the sum of the laminar and turbulent components of

shear stress is approximately constant along the wall-normal direction (Equation 1.20).

ν

(
∂ū

∂y

)
+ l2m|

∂ū

∂y
|
∂ū

∂y
= ν

(
∂ū

∂y

)

y=0

for y << δ99, (1.20)
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Von Karman defined a velocity scale, known as the friction velocity (Equation 1.21),

to represent the magnitude of the turbulent velocity fluctuations.

uτ =

√
τt
ρ
, (1.21)

According to the relation lm ∝ y, the mixing length at the solid surface will be

zero. If the total shear stress at the wall was assumed to be a turbulent shear stress,

then the friction velocity at the wall can be defined by Equation (1.22).

uτ =

√
τ0
ρ

= lm
∂ū

∂y
, for τ0 → τt, (1.22)

By substituting the velocity gradient based upon the laminar component of shear

stress at the wall (Equation 1.17), a hypothetical mixing length scale can be defined

based upon the total shear stress in the near-wall region (Equation 1.23). This property

defines the inner length scale of a turbulent shear flow, and is referred to referred to

as the viscous length lτ .

lτ =
ν

uτ
, (1.23)

1.3.7 Boundary Layer Structure

A fully developed turbulent boundary layer can be divided into two regions based on

the relevant length scale. Within the inner region of the boundary layer, the flow

properties scale with the inner length scale, i.e. the viscous length lτ . The inner-scaled

coordinates for velocity and length are defined in Equation (1.24) and Equation (1.25).

y+ =
y

lτ
=
yuτ
ν
, (1.24)
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u+ =
u

uτ
, ū′

+
rms =

ū′rms

uτ
and ¯u′v′

+
=

¯u′v′

u2τ
, (1.25)

The inner region lies adjacent to the wall and usually has a width equal to ap-

proximately 20% of the boundary layer velocity thickness δ99. The remainder of the

boundary layer makes up the outer region in which the flow properties scale with the

outer length scale δ99. Figure 1.3 displays the inner-scaled streamwise velocity profile

across the inner region and outer region of a turbulent boundary layer.
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Figure 1.3: Structure of a fully turbulent boundary layer flow, in terms of the inner-
scaled velocity profile. (1) viscous sub-layer (2) buffer layer (3) logarithmic layer (4)
outer layer(5) free-stream

The inner region can be further divided into two regions; the viscous sub-layer and

the logarithmic region, with a buffer region connecting the two. The viscous sub-layer

lies directly adjacent to the wall. In a smooth wall boundary layer, the width of the

viscous sub-layer typically extends between the points y+ = 0 and y+ = 5. In this

region there is a direct linear relationship between u+ and y+ (Equation 1.26). The

viscous sub-layer is dominated by high velocity gradients, and hence, high viscous

stresses. Turbulence generation is suppressed through rapid dissipation.

u+ = y+ for y+ < 5, (1.26)
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The limits of the logarithmic region are commonly estimated to lie between the

points y+ > 30 − 50 and y/δ99 < 0.2 (Bradshaw & Huang 1995). The function of y+

takes the form of the linear relationship in Equation (1.27), known as the ’Log-Law

of the Wall’. The validity of this equation relies on an accurate prediction of the Von

Karman Constant κ, and the logarithmic constant C.

u+ =
1

κ
ln
(
y+
)
+ C, (1.27)

The logarithmic region contains the strongest instantaneous fluctuations in the wall-

normal and spanwise components of the velocity field. The strongest instantaneous

fluctuations of the streamwise component of velocity lie closer to the wall, within the

buffer region. Within the buffer region, the streamwise velocity flow field is charac-

terised by longitudinal streaks of alternating high and low velocity.



CHAPTER 2

Literature Review

2.1 Introduction

Some of the most successful designs for functional textured surfaces have arisen from

observing the fruits of evolution. The process of natural selection drives animal and

plant life to adapt for its survival. This review considers three main types of naturally

occurring surface patterns. Textures from natural shark skin (Section 2.2.1) and the

lotus leaf (Section 2.2.2) have been found to produce beneficial drag reducing effects,

although their small length scales limit their applicability. In cases where surface tex-

tures with larger length scales have proved successful for drag reduction, the overall

benefits have been modest (Section 2.3 and Section 2.4), with the reoccurring proposal

that greater potential may be unlocked through optimisation of the geometric profile
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beyond simple geometric shapes. Hence, Section 2.5 discusses the phenomenon of nat-

ural bedform formation and the key mechanisms behind the emergence of asymmetric

and three-dimensional patterns. However, the investigation of such surface contains

one crucial bottleneck. Current limitations in computational cost and capability typ-

ically limit the complexity of both the physical flow scenario and the geometry of the

surface profile which can be investigated through numerical methods. For this reason,

the majority of the numerical analysis covers periodic channel flows and simple geo-

metric designs. The final section (Section 2.6) of this review critically discusses the

ongoing development of numerical methods for modelling spatially developing external

flows over both simple smooth surfaces and textured geometries.

2.2 Naturally Occurring Drag Reduction

2.2.1 Shark Skin

The skin of a shark consists of a series of overlapping scales with three-dimensional

textures containing ridges which are aligned parallel to the length of the shark, samples

of which are shown in Figure 2.1. In 1983, Walsh (1983) performed experiments in

which a replica of this shark skin pattern was placed in a fully turbulent boundary layer,

and compared its performance against the standard smooth, planar surface. These

test surfaces consisted of simplified designs of purely two-dimensional ‘riblets’ with a

triangular cross-section, oriented parallel to the bulk flow direction. When compared

to a smooth surface, the presence of these triangular riblets reduced the overall flow

resistance by up to 8%. Bechert et al. (1997) undertook a comprehensive optimisation

study within an experimental oil channel to compare the flow resistance over riblets

for a variety of profile shapes and dimensions. Riblets with thin blade profiles, which
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contained the smallest crests and the widest troughs out of all profile shapes considered,

resulted in the greatest drag reduction. They observed a drag reduction of 10% for thin

blade riblets of 16 viscous lengths in width and 8 viscous lengths in height. Garcia-

Mayoral & Jimenez (2011a) proposed an alternative optimisation parameter for drag

reducing riblets. After observing the experimental data of Walsh (1983) and Bechert

et al. (1997), they identified that the square root of the cross-sectional area of the riblet

groove could provide a more accurate indicator for optimisation, with an accuracy of

approximately ±10%. For riblets of simple geometric profiles, they proposed an optimal

value of 10.7 viscous lengths.

Though successful in turbulent flows, the potential drag reduction for riblets in

purely laminar flows is not as clear. In an early investigation of streamwise riblets, Choi

et al. (1991) considered a laminar channel flow with a fixed pressure gradient in the

streamwise direction. Implementing triangular riblets (λg/kg = 0.2) into the upper and

lower surfaces caused a drag increase in both cases. The numerical analysis of Djenidi et

al. (1994) suggested that shallower riblets (λg/kg = 0.8) could produce a drag reduction

of 2.6% within a spatially developing laminar boundary layer. However, experimental

validations could not confirm these observations as the potential experimental error

was reported to be 3%.

Attempts to improve the ≈ 10% limit of streamwise riblets and move closer to real

shark skin geometries, have shown limited results. Bechert et al. (2000) experimented

with discontinuous riblet segments, which were geometrically similar to their previous

designs (Bechert et al. 1997), in a staggered arrangement. These new designs degraded

the drag reducing effect by approximately −1.7% of the corresponding smooth surface

drag. The numerical analysis of Martin & Bhushan (2016) confirmed these observa-

tions for an array of scalloped riblet segments, separated into groups of threes; each
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Figure 2.1: Examples of streamwise aligned ridges over the body of a shark. After
Bechert & Bartenwerfer (1989)
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Figure 2.2: Diagram of the three-dimensional shark skin denticles and flow domain in-
vestigated by Boomsma & Sotiropoulus (2016). After Boomsma & Sotiropoulus (2016)

representing a shark skin scale. The discontinuous riblets produced a similar magnitude

change with a −1.2% fall in drag reduction. Boomsma & Sotiropoulus (2016) produced

a numerical solution for highly resolved, three-dimensional shark skin denticles, with

a natural geometry, as shown in Figure 2.2. For turbulent channel flow, the natural

denticles produced a viscous drag increase of up to 25%, with an additional 25% in-

crease caused by the creation of an additional form drag. Benschop & Breugem (2017)

investigated surfaces of converging and diverging riblets, as shown in Figure 2.3. Such

a texture is known as a ‘herringbone’ pattern, which can be observed on bird feathers.

Although the riblet length scales lay within the optimal drag reduction limits, the re-

sultant spanwise motion of the fluid produced a strong secondary flow in the form of

streamwise vortices which could raise the flow resistance by more than 70%.

Prior to their comprehensive optimisation study in Bechert et al. (1997), Bechert

& Bartenwerfer (1989) had established a theoretical link between the riblet height and

the drag reduction. They first defined the protrusion height of riblets as the distance

between the crest of the riblets and the virtual origin of an identical boundary layer

over a reference smooth wall flow. Luchini et al. (1991) later refined this definition

as the difference between the virtual origin in the spanwise direction and the virtual
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Figure 2.3: Diagram of blade riblets in a herringbone formation. After Benschop &
Breugem (2017).

origin of the flow in the streamwise direction. By assuming that the riblets are almost

entirely submerged within a region that is dominated by viscosity, i.e. the laminar sub-

layer, Bechert & Bartenwerfer (1989) predicted that the drag reducing riblets require

a protrusion height that is less than or equal to 22% of the spanwise spacing.

To identify the flow mechanism behind these drag reducing effects, investigations

by Choi & Kim (1993), Goldstein & Tuan (1998) and Chu & Karniadakis (1993),

obtained high resolution numerical solutions for turbulent flow through a channel with

one wall of triangular riblets. Each study identified a reduction in the viscous flow

resistance of approximately 3%−6%, which occurred when the riblet crests were spaced

≤ 23 viscous lengths apart. Furthermore, Choi & Kim (1993) and Goldstein & Tuan

(1998) observed that the drag reducing cases were accompanied by a reduction in the

turbulent fluctuations of spanwise velocity in the vicinity of the riblets. Choi & Kim

(1993) compared visualisation of the flow field data for cases of drag reducing and drag

decreasing riblets. They observed an important correlation between drag reduction

and the near-wall behaviour of small-scale turbulent vortices. They theorised that
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riblets served to restrict the movement of turbulent vortices in the near-wall region

and prevent their penetration into the grooves. This would reduce the percentage of

the wetted area which would be exposed to the high velocity fluid which the vortices

propel towards the wall. Lee & Lee (2001) performed flow visualisation experiments

for a spatially developing turbulent boundary layer over scalloped riblets. Photographs

of the instantaneous flow field showed similar behaviour to the numerical solution of

Choi & Kim (1993).

The behaviour observed by Choi & Kim (1993) and Lee & Lee (2001) would become

more apparent for the optimised thin blade riblets of Bechert et al. (1997). El-Sammi

et al. (2007) and Martin & Bhushan (2014) obtained detailed numerical solutions of

the flow fields for turbulent channel flow over thin blade riblets with a range of riblet

dimensions spanning the proposed drag reducing regime. Figure 2.4 displays the in-

teraction of streamwise vorticies with scalloped ribets observed by Martin & Bhushan

(2014) in the drag reducing (Figure 2.4a) and drag increasing (Figure 2.4b) regimes.

When the spacing between the riblets was smaller than the vortex diameter, the riblets

shifted the vortex away from the trough. The large spikes in shear stress at the crest

were overwhelmed by the reduction in shear stress within the trough. If the width

was increased beyond the vortex diameter then the vortex descended into the trough

and exposed this area to the high turbulent shear stresses normally experienced by

the smooth wall. There was some disparity concerning the point at which this occurs,

where Martin & Bhushan (2014) conclude a limit of 30 viscous lengths and El-Sammi

et al. (2007) concluded a limit of 40 viscous lengths. However, this may be attributed

to the lower mesh resolution and non-physical representation of the solid boundary

in the latter case. These simulations predicted drag reduction values nearly identical

to the experimental findings of Bechert et al. (1997) and predicted similar values for



2.2. NATURALLY OCCURRING DRAG REDUCTION 23

(a) λ+
g = 16.9 (b) λ+

g = 33.0

Figure 2.4: The behaviour of near-wall streamwise vortices over streamwise aligned
riblets in (a) the drag reducing regime and (b) the drag increasing regime. After Martin
& Bhushan (2016)

optimal riblet spacing; 18 viscous lengths in width and 8-10 viscous lengths in height.

Garcia-Mayoral & Jimenez (2011b) produced a high resolution numerical analysis

to compare the flow field of blade riblets in a turbulent channel flow, for varying

values of the groove area. They proposed an alternative mechanism to account for the

transition from a drag reducing effect to a drag increasing effect. In the drag reducing

regime, they observed a low velocity, recirculating vortex within the riblet groove, with

an absence of the restricted small-scale vortices observed in the previous studies of

Choi & Kim (1993), Lee & Lee (2001), El-Sammi et al. (2007). As the riblet area

increased, this vortex became unstable and eventually broke down. Simultaneously,

a large, streamwise oriented recirculating region appeared a short distance above the

riblet crests, within the region y+ ≤ 20, producing a large increase in Reynolds stresses

in this region.

Krieger et al. (2018) investigated the potential of streamwise riblets for stabilising

weakly turbulent flows within the transitional regime. A flow through a plane, periodic

channel, with square grooves on one wall, was initiated with a turbulence intensity of

20%. By optimising the initial grooves, they identified a profile of deep triangular
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geometries, with a large depth to width ratio of 2.5, which could maintain a steady

shear layer along the lower wall, even in the presence of fully turbulent flow across

the bulk of the channel. This produced a resultant drag reduction of more than 60%

compared to a fully developed turbulent channel flow.

2.2.2 The Lotus Leaf

A second crucial breakthrough lay in the discovery of the lotus leaf and its ‘self cleaning’

mechanism (Barthlott & Neinhuis 1997). The micro-textures on the leaf of the lotus

plant serve to resist the penetration of water into its grooves and keep the liquid

mobile whilst in contact with the surface. In addition to the potential for ‘self cleaning’

surfaces, it was soon realised that similar surfaces which are immersed in a bulk flow

could create a continuous region of trapped gas between the fluid and the surface,

reducing the flow resistance at this point (Rothstein 2010). The same effect can occur

for a secondary liquid state in place of trapped gas (Chen et al. 2016), provided that

liquid has a higher viscosity than the bulk flow. Further investigations found that

for a surface with a periodically occurring free-shear region between the bulk and

trapped fluids, the viscous drag forces could be decreased beyond that of a smooth

surface (Maynes et al. 2007; Ou et al. 2004; Davies et al. 2006; Ou et al. 2004), with a

potential reduction to the pressure loss on the order of 50% . A limiting factor of these

investigations was the assumption of a flat interface between the liquid and the trapped

gas. Curvature of the interface can reduce the drag reduction, and create an overall

drag increase if the interface protrudes into the flow (Teo & Khoo 2010). The practical

application of these ‘superhydrophobic’ surfaces with large slip lengths is limited by

the instability of large gas pockets (Lee et al. 2016), and the required viscosity of the

flow.
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2.3 Practical Drag Reduction in Turbulent Flow

2.3.1 Fundamental Mechanisms

Many investigations have identified significant drag reduction by introducing span-

wise motions into the flow through mechanical surfaces. The introduction of spanwise

components into the main flow stream can lead to a drag reduction of up to 40% (Kar-

niadakis & Choi 2003). Du et al. (2002) compared numerical data of flow fields for

turbulent channel flow subject to a body force at the wall, which oscillated in the form

of a spanwise travelling wave. They varied the wavelength between 1.4 and 5.6 times

the channel half-height (or 210− 840 viscous lengths) and found a drag reduction that

increased monotonically with the wavelength. Furthermore, they observed a significant

reduction in the intensity of the near-wall velocity streaks. Within a plane channel flow

of Reτ = 180, Canton et al. (2016) demonstrated these mechanisms directly by induc-

ing artificial, streamwise vortices into the bulk flow through a numerical volume force.

The large-scale structures shifted the distribution of turbulent flow away from the wall

and into the bulk flow, reducing the turbulent stresses at the wall. In practical appli-

cations, these active methods require an energy input to function. When Quadrio &

Ricco (2004) determined the energy requirement to produce a 44.7% drag reduction

through spanwise oscillations, the potential drag reduction fell to only 7.3%. Even

with a significant drag reduction potential, the costs and complexities of active meth-

ods demand an improved benefit over passive methods in order to qualify as practical

solutions.

The real potential, and the greatest challenge, for drag reduction through span-

wise motions lies, in replicating these motions using passive surfaces which require no

energy input. Table 2.1 outlines key numerical and experimental investigations into
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the drag reducing potential of passive surface designs through generation of large-scale

spanwise motions. Depending on the configuration, each study is summarised by the

Reynolds number range (based on either the channel half-height h, or the boundary

layer thickness δ99), groove depth (or dimple depth) kg, groove wavelength (or dimple

diameter) λg, and the minimum change in the total drag which was achieved.

Table 2.1: Overview of key numerical and experimental investigations of flow over
dimples and oblique grooves.

Publication Scenario,Geometry Reh or
Reδ

kg/λg λg/h DRmin(%)

Experimental

Lienhart et al. (2008) channel flow,
dimples

10, 000 ∼
65, 000

0.05 0.53 ∼
1.67

≈ 0%

Nesselrooij et al.
(2016)

spatially develop-
ing flow, dimples

10000 ∼
40000

0.025 ∼
0.05

0.25 ∼
1.5

−6%

Tay et al. (2015) channel flow,
dimples

3333 ∼
23333

0.015 ∼
0.05

0.2 −3%

Tay & Lim (2017) channel flow,
dimples

3333 ∼
22667

0.05 0.2 −4%

Numerical

Lienhart et al. (2008) channel flow,
dimples

10935 0.05 1.67 2%

Ghebali et al. (2017) channel flow,
oblique grooves

6200 0.024 ∼
0.072

1.7 ∼
2.55

−1.7% ∼
3.1

Tay et al. (2017) channel flow,
dimples

2000 ∼
10000

0.015 ∼
0.05

0.2 −1.5%
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2.3.2 Experimental Investigations

Initial numerical and experimental investigations by Lienhart et al. (2008) proved un-

successful for turbulent channel flow. Their dimples, with a depth equal to 5% of the

diameter, produced a negative effect on the overall flow resistance, which grew with

flow strength (Reh ≥ 1 × 104). Further experiments by Tay et al. (2015) investigated

the potential benefits of dimple induced vortices when applied to fully turbulent chan-

nel flow. The dimple depth was limited to 5% and 1.25% of the dimple diameter. In

each case, one or more pairs of counter-rotating streamwise vortices formed over each

dimple. For the deeper dimples, a set of four co-rotating vortices occupied a region

with a spanwise width of 2000 viscous lengths. The overall viscous drag fell as turbu-

lent energy was redistributed towards the larger length scales, and their corresponding

lower frequencies. The accompanying pressure drag initially offset the viscous drag

reduction, but decreased with falling dimple depth or rising Reynolds number. Hence,

by Reh ≥ 2 × 104, both surfaces provided an overall drag reduction of 1% to 3%. Al-

though the flow scenario was similar to that of Lienhart et al. (2008), the surfaces in

Tay et al. (2015) contained a greater texture density with the crests forming less than

10% of the total surface area, which could account for the improved performance in a

similar manner to optimised riblet designs (Bechert et al. 1997).

The experimental investigations of Nesselrooij et al. (2016) applied the dimple ge-

ometries of Tay et al. (2015) to a spatially developing turbulent boundary layer with

otherwise similar flow conditions. Their results indicated that external flows inverted

the optimisation trends, such that the flow resistance fell with increasing crest area,

and that a crest area far greater than 10% was necessary for a beneficial drag reduction.

However, the relationship between dimple depth and Reynolds number in channel flow

was maintained within the low Reynolds number range. Tay & Lim (2017) investigated
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the potential of increasing the drag reducing performance of shallow dimples applying

asymmetry to the dimple profile. Their results showed that moving the minimum point

downstream by a distance equal to 10% of the dimple diameter, could provide a modest

improvement to the drag reduction over a wide range of Reynolds numbers. On the

other hand, shifting the minimum point upstream reduced the drag reduction, with a

severe drag increase of more than 10% occurring for an upstream shift of just 20% of

the dimple diameter.

2.3.3 Numerical Investigations

Crucially, the most significant drag reducing mechanism of the flow exists at a length

scale which is two orders of magnitude greater than traditional streamwise riblets.

The existence of the large-scale drag reducing vortices which were observed by Tay

et al. (2017) was confirmed from numerical solutions of a replica flow scenario for

periodic dimples (Tay et al. 2017). Note that the economically efficient detached-eddy

simulation approach was sufficient to resolve the large-scale turbulent vortices, but

unable to reproduce the small drag reduction benefit to a sufficient accuracy. Figure 2.5

provides an example of a dimple geometry with rounding applied at the edges to limit

flow separation, as applied in the numerical investigations of Tay et al. (2017).

As an alternative to dimples; recent studies have identified the potential of simple,

three-dimensional textures which can recreate the effects of spanwise waves without

the required energy input. Ghebali et al. (2017) explored the drag reducing potential

of misaligned grooves, rotated approximately 70◦ to the flow direction. They achieved

an overall drag reduction of 0.7%. Although minimal, compared to an active surface,

this result was achieved without energy input and with a surface wavelength more

than 45 times that of an optimised riblet spacing. Over the lee-side, Ghebali et al.
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Figure 2.5: Rounded dimple geometry, flow domain and mesh in the numerical in-
vestigation of Tay et al. (2017). After Tay et al. (2017).

(2017) observed a reduction in the strength of the near-wall velocity streaks below

the logarithmic region. Meanwhile the production and dissipation of turbulent kinetic

energy was amplified within the logarithmic region.

2.4 Practical Drag Reduction in Laminar Flow

2.4.1 Drag Reduction Potential

The absence of the key turbulent mechanisms related to flow control would seem to

remove the benefits of oblique grooves and shallow dimples from laminar flow applica-

tions. Figure 2.6 displays a typical configuration of two-dimensional sinusoidal grooves,

applied to one or more walls of an infinite channel and orientated obliquely to the flow

direction. As observed in the case of riblets, two-dimensional sinusoidal grooves com-

monly produce a negative impact on the flow resistance for single phase laminar flow

(Mohammadi & Floryan 2012) and single phase turbulent flow (Henn & Sykes 1999).
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These losses occur due to the resultant pressure drag which exceeds the otherwise

beneficial reduction in viscous drag. However, the need for practical drag reducing

geometries in laminar flow, drives ongoing research to explore the drag reducing po-

tential of such surfaces through extensive optimisation studies of profile shape, surface

orientation and length scale.

(a) Textured lower wall coupled with a smooth upper wall

(b) Textures applied to both walls of the channel

Figure 2.6: Typical application of sinusoidal wavy surfaces in an infinite channel with
profiles misaligned with the flow direction. After Ghebali et al. (2017).

The spectrally accurate numerical code of Mohammadi & Floryan (2012) has formed

the basis for one of the most comprehensive investigations into the drag reducing po-

tential of practical grooves in laminar flow. They first considered a series of shallow,

sinusoidal grooves in laminar Poisuille flow (Mohammadi & Floryan 2013b). These

grooves covered a wide range of Reynolds numbers, wavelengths and depths, in ad-
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dition to varying orientation to the flow. Mohammadi & Floryan (2013b) observed

that orientating the grooves to be parallel to the streamwise direction minimised the

streamwise flow resistance. This lies in contrast to the behaviour in turbulent flow,

in which Ghebali et al. (2017) identified both a minimum drag, and an overall drag

reduction, corresponding to an oblique angle of orientation.

For streamwise sinusoidal grooves, the results of Mohammadi & Floryan (2013b)

suggested that a drag reduction may be achieved if the groove spacing is greater than

π times the channel half-height. However, the effect was marginal, with an overall

drag reduction of only 0.025%. Mohammadi & Floryan (2013b) aimed to improve the

performance of these simple sinusoidal grooves by optimising the geometric profile.

They first explored a systematic optimisation of a universal geometric profile (Mo-

hammadi & Floryan 2013a), and then a parametric study of simple, non-sinusoidal

shapes (Mohammadi & Floryan 2015). The response was improved by amplifying the

groove depth to length scales to be of equal magnitude to the channel half-height.

Under these constraints, the optimisation process revealed possible improvements by

up to 50% of the drag reduction. Whilst a successful confirmation of drag reduction

potential, the large length scales of these surface would in practise require a signif-

icant redesign of the overall flow domain application. Raayai-Ardakani & McKinley

(2017) reported simular success for streamwise sinusoidal grooves in a spatially devel-

oping laminar boundary layer and claimed a drag reduction of up to 20% as the depth

ratio approached kg/λg → 1. However, this may be the result of the unaccounted

modification to the mean flow field, and the shift in the boundary layer origin.
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2.4.2 Impact of Flow Separation

In turbulent flows, previous investigations have indicated a correlation between the

pressure drag in a separated free-shear region, as in the case of shallow dimples, and the

drag reduction or drag increase (Tay et al. 2015). In addition, flow separation is a key

parameter in classifying and predicting the behaviour of naturally occurring bedforms.

However, in the interests of drag reduction for laminar flows, the significance of flow

separation remains unclear. The critical limits of flow separation rely on a combination

of groove depth, profile shape and the contribution of flow inertia.

Mohammadi & Floryan (2013b) observed full attachment for a depth to wavelength

ratio of 0.08 at any laminar Reynolds number in Poisuille flow. However, for deep

grooves with a depth to wavelength ratio of 0.39, even stokes flow was sufficient to

produce a free-shear region which spanned the majority of the trough. In addition,

the shear stress distribution did not change between the two extremes of the laminar

regime. Niavarani & Priezjev (2009) concluded a critical depth to wavelength ratio of

0.126 for the onset of flow separation in highly viscous stokes flow.

Saha et al. (2015) produced numerical solutions of spanwise sinusoidal grooves

around the circumference of a pipe. Both laminar flow and turbulent flow cases dis-

played identical trends between increasing groove depth and the growth in the signifi-

cance of the pressure drag. In addition, whilst the overall flow resistance in the laminar

regime grew with rising Reynolds number, the influence of the Reynolds number fell

with increasing groove depth. However, they observed no behavioural correlation be-

tween the weighted contribution of the pressure interaction drag and flow separation.

Grooves with a maximum surface angle of 30◦ could produce a pressure drag which

exceeds the viscous drag, whilst maintaining shear layer attachment in the trough.
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2.4.3 Impact of Spanwise Motions

Finally, the development and optimisation of passive flow control method needs to

consider the potential to induce large-scale motions even in laminar flow fields. Tay

et al. (2014) carried out flow visualisation investigations of laminar boundary layer flow

over a pair of dimples with depths ranging from 5% to 50% of the dimple diameter,

which in turn ranged from 10% to 50% of the boundary layer width. For a flow strength

within the region ofReθ ≈ 105, a depth to diameter ratio of 10% was sufficient to induce

a stable pair of counter-rotating vortices within the dimples, similar to the hairpin

vortex observed for turbulence transition. This behaviour was further identified by the

steady-state numerical simulations of Xu et al. (2016), where a single vortex existed

at low Reh for a dimple depth equal to 25% of the diameter, then split into two co-

rotating vortices when this rose to 50%. However, their investigation also indicated

that reducing the channel height would produce a similar response to that achieved by

varying the dimple depth.

Moradi et al. (2017) investigated the potential of transverse sinusoidal grooves to

enhance mixing through the creation of streamwise vortices, with a focus on small

amplitudes, with a depth to wavelength ratio of ≤ 0.05, for minimal flow resistance.

Although successful, the Reynolds numbers required were extreme, many limits lying

far within the turbulent regime, and only rising as the depth to wavelength ratio fell.

The experimental investigations of Xu et al. (2018) demonstrated the capability of a

herringbone riblet pattern to produce similar streamwise vortices through the alter-

nating upwash and downwash. Further developments have expanded the spectral code

of Mohammadi & Floryan (2012) to deal with three-dimensional surface geometries

(Sakib et al. 2017), with the persistent limitation on periodic flow conditions.
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2.5 Naturally Occurring Bedforms

2.5.1 Overview

The naturally occurring shark skin and lotus leaf patterns have produced positive

results in flow control. However, these surfaces exist at small length scales in the

flow, thus limiting their application potential and cost effectiveness. As such, ongoing

investigations (as discussed in Section 2.4) have explored the potential of producing

drag reducing surfaces at larger length scales through exploratory optimisation studies

involving profiles of simple geometric shapes. Such efforts have demonstrated either

a negative or marginal success, with suggestions of improvement through geometric

optimisation (Mohammadi & Floryan 2013b; Tay et al. 2015; Ghebali et al. 2017).

Designs for riblets and superhydrophobic surfaces have demonstrated the benefits of

anchoring flow control optimisation on naturally forming patterns and textures.

Consider the view of a sand beach during the receding tide. The once flat sand

surface reveals an array of various two-dimensional and three-dimensional periodic

forms, as displayed in Figure 2.7. In a more general sense, a surface of loose particles

may reform into a pattern of periodic structures when submerged in a moving body

of fluid. Such patterns can emerge from an oscillating flow created by waves travelling

over a free surface, steady flow created by a current, or a combination of the two

(Fredsoe et al. 1999).

The classification of bedforms relies on the streamwise pattern wavelength, where

dunes have a wavelength on the order of 1m or higher, whilst ripples have a wavelength

on the order of 1cm (Charru et al. 2013). For both dunes and ripples, the crest to

trough depth is typically one order of magnitude lower than the wavelength. The
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(a) (b)

Figure 2.7: Bedform patterns formed by a) tidal flow over a sand beach and b) steady,
shallow flow over coarse sediment.

early experiments of Bagnold (1946) defined two primary types of transverse ripples;

rolling grain ripples, for which sand grains move in contact with the surface, and vortex

ripples, for which the flow separates from the crest and carries sediment particles within

it. Meanwhile, the wavelength of a dune is influenced by the flow depth. Due to the

large length scales of dunes, in relation to the bulk flow, dunes are characterised by a

cycle of shear layer detachment from the crest, followed by shear layer growth along

the lee-side (Best 2005). The separated free-shear layer moves into the bulk flow away

from the surface.

2.5.2 Theoretical Predictions

Early stability analysis, though limited to purely viscous flows, demonstrated a process

by which two dimensional ripples, as shown in Figure 2.8a, could grow from a small

perturbation in an otherwise flat sand bed (Blondeaux 1990). However, predicting the

equilibrium amplitude of developing ripples requires consideration of the non-linear

effects. Vittori & Blondeaux (1990) achieved this through an additional assumption

that the ripple amplitude is smaller than the near-wall boundary layer, and that the

flow does not separate from the crests, thus keeping the non-linear effects weak. As

demonstrated by the steady flow model of Charru & Hinch (2006), the inertial effects
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of the decelerating flow along the lee-side, which destabilises the flat sand bed, are

counteracted by erosion of sand grains around the point of maximum shear stress. In

this way, a migrating bedform at equilibrium maintains a balance between the removal

of sand grains from the stoss-side and the deposition of sand grains on the lee-side.

Despite the observed correlations between grain diameter and ripple size, the validity of

discounting the influence of flow depth remains controversial, with alternative theoret-

ical models from Colombini & Stocchino (2011) and Bartholdy et al. (2015) implying

its relevance for steady current flows.

(a) Two-dimensional ripples (b) Asymmetric ripples

(c) Sinusoidal ripples (d) Brick-pattern ripples

Figure 2.8: Sand ripples of varying topology as predicted by the application of linear
and non-linear stability analysis. After Roos & Blondeaux (2001) (a,b) and Vittori &
Blondeaux (1992) (c,d).

Blondeaux et al. (2015) considered the impact of combining an oscillating flow field

with a steady current flow. Whereas a purely oscillating flow produced a symmetrical

ripple profile, the steady current flow produced an asymmetrical profile, with a single
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curved lee-side, and a dual curved stoss-side. At low Reynolds numbers, the asymmetry

index, which is defined as the ratio of the streamwise length of the stoss-side divided by

that of the lee-side, always exceeded one. The asymmetry index falls with increasing

Reynolds number. The trends indicate that as the strength of the steady current

velocity grows, relative to the strength of the oscillating flow, the asymmetry index

tends towards an asymptotic limit. Whilst these theoretical models provide a direct

approach to obtaining exact solutions, and they correlate with the highly scattered

experimental observations, the models cannot be expanded to the analysis of vortex

ripple behaviour. As stated by Blondeaux et al. (2015), a further understanding would

require iterative numerical solutions.

Non-linear stability models which consider the simultaneous growth of both two-

dimensional and three-dimensional perturbations in an initially flat sediment bed, have

predicted the emergence of three-dimensional ripple patterns (Figure 2.8b, Figure 2.8c

and Figure 2.8d) in both oscillating (Vittori & Blondeaux 1992) and steady (Lan-

glois & Valance 2005) viscous flows. The sinusoidal ripples in Figure 2.8c form when

the strength of the three-dimensional instability exceeds that of the two-dimensional

instability. Devauchelle et al. (2010b) concluded that, unlike sand ripples, such three-

dimensional structures can only form in a highly viscous flow if they lie below a free

surface. Their model theorised that these bedforms may form in the absence of a free

surface when inertial effects become significant (Reh >> 1).

2.5.3 Experimental Investigations

Table 2.2 provides an overview of key experimental investigations concerning bedform

geometries in unidirectional, laminar and turbulent flows. In each case, the range of the

flow Reynolds number is provided, along with the geometric pattern of the bedforms.
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The range of streamwise wavelength is scaled by either the flow depth or pipe radius,

depending on the application.

Table 2.2: Overview of key experimental investigations of bedform geometries in steady,
unidirectional laminar and turbulent flows.

Publication Scenario Regime Reh Pattern λx/h

Coleman & Eling (2000) open steady 155 ∼ 440 2D ripples 1 ∼ 2
channel laminar

Devauchelle et al. (2010a) open steady 10 ∼ 420 3D 1 ∼ 50
channel laminar rhomboid

Rauen et al. (2008) open steady 10× 103 2D ripples 0.033
channel turbulent ∼ 49× 103 ∼ 0.6

Edelin et al. (2015) pipe steady < 7500 2D ripples 13.5
turbulent ∼ 11.8

Venditti (2007) open steady 73× 103 2D and 3D 3
channel turbulent dunes

Though initially believed to be a product of turbulent motions, practical experi-

mental investigations have confirmed the formation of both two-dimensional and three-

dimensional bedform patterns in purely laminar flows. The experiments of Coleman &

Eling (2000) displayed clear evidence of small-scale two-dimensional bedforms forming

within an open channel containing a laminar flow with a unidirectional current. As

in turbulent flow, the wavelength was dependant on the size of the sand grains, and

was not influenced by the properties of the flow. Devauchelle et al. (2010a) observed

the growth of three-dimensional rhomboid patterns in laminar channel flow. The angle

between the rhomboid edges and the spanwise axis displayed significant scatter in the

lower laminar regime but settled towards an asymptomatic limit of ≈ 20◦ for flows of

Reh > 200. At this point, the bedform patterns possessed a closer resemblance to a

streamwise riblet than to transverse ripples. Similarly, the wavelength of the pattern
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showed no clear correlation with Reh towards the lower end of the laminar regime, but

grew to around 10 ∼ 40 times the flow depth by Reh > 240.

The traditional narrative considers the wavelength of a subaqueous ripple to be

determined primarily by the grain size, whilst being independent of the flow depth.

Rauen et al. (2008) used acoustic imaging to investigate the transition of the initial

bedforms (referred to as ‘wavelets’) into vortex ripples on a bed of fine sand grains. The

wavelength of the wavelets remained fixed with respect to depth, and was dependant

on the grain size. Once the wavelength height exceeded a critical value, the wavelets

transitioned into vortex ripples, for which the wavelength varied with grain diameter,

such that the ratio between the bedform depth and wavelength remained constant.

Edelin et al. (2015) studied the development of bedforms in a flow of suspended par-

ticles. Two-dimensional ripples were observed to form in laminar flow; however, since

the Reynolds number lay close to the limit of transitional flow, the presence of the sand

ripples induced laminar-turbulence transition. The density of sediment in the flow had

no impact on the bedform geometry, with the wavelength consistently lying between

200 and 300 times the grain diameter. The ripples displayed a depth to wavelength

ratio on the order of 0.05, yet in each case the bedforms transitioned into vortex ripples.

Finally, consider the significance of the more complex geometric features of nat-

ural bedform patterns with three-dimensional variation. The experimental analysis

of Venditti (2007) compared rigid dunes of two-dimensional profiles, sinusoidal three-

dimensional variation, and irregular three-dimensional variation, as displayed in Fig-

ure 2.9, in a unidirectional turbulent channel flow. Although the three-dimensional

dunes suppressed the strength of flow separation compared to the two-dimensional

dune, the overall flow resistance was greater. However, when the three-dimensional

variation followed an irregular pattern, the flow resistance dropped to 20% below the
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two-dimensional dune due to a reduction in turbulence intensity in the region of the

dune.

Figure 2.9: Rigid sand dune geometries which were implemented in the experimental
investigations of Venditti (2007). After Venditti (2007).

2.5.4 Numerical Investigations

Table 2.3 provides an overview of key numerical investigations concerning bedform ge-

ometries in unidirectional turbulent flows. In each case, the range of the flow Reynolds

number is provided, along with the geometric pattern of the bedforms. The range

of streamwise wavelength is scaled by either the flow depth or channel half-height,

depending on the application.

Although bedforms can form in the absence of turbulence motions, the near-wall

turbulent structures may influence the initial destabilisation of the flow. Furthermore,

the bedform structure can exert a strong influence on the distribution of turbulence

throughout the shear layer. Khosronejad & Sotiropoulos (2015) applied finite volume

analysis to produce detailed flow fields over a moveable flat bed in an open turbulent

channel flow. Initially, the near-wall streaks would sweep towards the bed and initiate

a series of perturbations which collectively resembled a cross-hatch pattern. These

perturbations would grow into transverse ripples which enhanced the formation of

spanwise vortices. Finally, the ripples would develop a spanwise geometric variation,

for which the detached spanwise vortices would form into horse shoe structures as they
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Table 2.3: Overview of key numerical investigations of bedform geometries in steady,
unidirectional turbulent flows.

Publication Scenario Reh Pattern λx/h

Bhaganagar & Hsu (2009) closed channel 180 ∼ 400 2D and 3D rip-
ples

2

Grigoriadis et al. (2009) open channel 17, 500 ∼
93, 000

2D dunes 4.2

Lefebvre et al. (2016) open channel 8200 2D bedforms 3.07

Omidyeganeh & Piomelli
(2013a),Omidyeganeh & Pi-
omelli (2013b)

open channel 18, 900 3D dunes 5.71

Khosronejad & Sotiropou-
los (2015)

open channel 75, 900 developing
bedforms

0.26 ∼
3.29

Omidyeganeh & Piomelli
(2011)

open channel 18, 900 2D dunes 5.71

Kidanemariam & Uhlmann
(2017)

open channel 3011 2D ripples 3.9 ∼
11.8

detached from the crest.

The numerical analysis of Kidanemariam & Uhlmann (2017) coupled a domain of

turbulent channel flow over a sediment bed with resolved particle motion. Bedform

growth required a domain to possess a streamwise length greater than 100 times the

sand grain diameter. The bedform would only exceed this critical value when the

domain was unable to accommodate an integer number of bedforms of this critical

wavelength.

From a numerical perspective, accounting for particle motion significantly impacts

the computational workload, and can be crippling when applied in turbulence resolving

simulations. In the moveable bed simulations of Khosronejad & Sotiropoulos (2015),

the average bedform velocity was recorded as being two orders of magnitude lower than
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the bulk flow velocity, lending strong support to the assumption of a rigid bedform

surface as an accurate simplification of moveable bedform problems. Omidyeganeh &

Piomelli (2011) carried out turbulence resolving simulations for a rigid two-dimensional

dune in turbulent flow though an open channel. In this case, the groove depth was equal

to ≈ 30% of the flow depth, which, for a fully developed shear layer, placed the lee-side

length on a greater order of magnitude than the viscous inner region of the boundary

layer. Hence, the flow separates as it leaves the crests which forms a spanwise vortex

over the lee-side with enhanced energy production and dissipation, whilst a separated

shear layer transports turbulent energy away from the surface and into the flow. As

the spanwise rollers pass through the accelerating flow over the stoss-side they deform

and stretch into structures similar to horse shoe vortices (Grigoriadis et al. 2009), as

observed in the moveable bed simulations of Khosronejad & Sotiropoulos (2015).

Further analysis explored the influence of incorporating a spanwise variation by ex-

truding this two-dimensional profile sinusoidal profile in the spanwise direction (Omidye-

ganeh & Piomelli 2013a; Omidyeganeh & Piomelli 2013b). The depth of the spanwise

sinusoidal profile varied between 5% and 20% of the streamwise wavelength. Three-

dimensional variation had a minimal impact on the pressure drag, whilst simultaneously

suppressing the shear layer separation. The redirection of fluid towards the lobe gave

rise to a secondary flow of streamwise oriented vortices above the lobes and the sad-

dles. When the wavelength of the spanwise profile was smaller than the flow depth,

these spanwise vortices failed to materialise within the confined space. The subsequent

redistribution of flow produced stronger eddy separation from the lobe and the saddle.

Bhaganagar & Hsu (2009) investigated ripples with a smaller length scale, and simple

sinusoidal profiles, for which the streamwise wavelength was equal to 50% of the flow

depth (channel half-height). For a friction Reynolds number of Reτ = 180, the three-
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dimensionality of the surface had a negligible impact on the flow resistance, despite

producing a non-negligible reduction in the spanwise and wall-normal velocity fluctu-

ations near the ripple and away from the wall. By Reτ = 400 the three-dimensional

ripples reduced the flow rate by as much as 17.5% compared to the two-dimensional

case.

Lefebvre et al. (2016) investigated the flow resistance over rigid ripple profiles with

a lee-side and stoss-side comprised of multiple straight line segments, including the

common lee-side slip face. The ripples were shallow with a depth to wavelength ratio

of 0.036, lying far below the predicted limit of 0.1 for the onset of vortex ripple growth

(Blondeaux et al. 2015). In all cases produced by Lefebvre et al. (2016), flow separation

occurred when the slip face angle exceeded 18◦. Note that this angle lies close to the

maximum lee-side angle of a sinusoidal wave which lies on the supposed limit of vortex

ripple formation (17.4◦ at a depth to wavelength ratio of 0.1). The flow resistance

depended primarily on the angle of the lee-side slip face. Increasing this angle from

6◦ to 24◦ raised the flow resistance by up to 73%. Applying a sinusoidal profile to

an initially flat stoss-side raised the flow resistance by up to 5%. There was a strong

linear relationship between the flow resistance and the mean turbulent kinetic energy;

the latter increasing with the former. Reducing the length of the slip face, by installing

a shallow 4◦ segment connecting the crest and the slip face, reduced the flow resistance

by 15.8%.
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2.6 Computational Limitations and Complexities

2.6.1 Spatially Developing Flows

External flow applications (relevant to an aircraft wing, car body etc.) provide more

complex physical scenarios. Unlike in channel flow, the flow develops spatially and

exists over length scales that far exceed the small length scales of textures such as

riblets. The assumption of streamwise periodicity is typically considered to be valid

for fully developed channel flow where the channel is of sufficient length and width. As

per its fundamental definition, the flow field of a spatially developing boundary layer

will vary along the streamwise direction and the assumption of periodicity is rendered

invalid. A steady-state, fully laminar flow field is predictable and easily implemented.

A turbulence flow field is random and chaotic, and hence, cannot be exactly repro-

duced through theoretical calculation or approximation. This problem is negated in

periodic channel flow, as the developing instabilities of transitional flows accumulate

through successive passes through the periodic domain, until a naturally occurring

state of fully developed turbulence is reached. The influence of the upstream laminar

and transitional stages are accounted for without directly modelling or approximation.

As with channel flow, the simplest case of a spatially developing turbulent flow con-

tains a smooth planar wall within a rectangular domain of fixed dimensions. Whilst

simulations can differ in the usual parameters of numerical design, the physical flow

scenario can vary depending on the behaviour of the upstream flow.

In a turbulent boundary layer, the coherent structures which lie in the near-wall re-

gion scale against a viscous length derived from the shear stress at the wall (lv = ν/uτ ),

whilst the structures away from the wall scale with the shear layer thickness. Computa-

tional advancements continually increase the feasibility of direct numerical simulation
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for internal flows with an assumed streamwise periodicity, and its associated reduction

in computational cost. Computing a time-dependant flow field under direct numerical

simulation can produce a crippling cost, when combined with the large streamwise

length of spatially developing flow, as the difference between the two scales grows

with Reynolds number. Furthermore, high accuracy, computationally efficient spec-

tral codes, which pioneered fundamental advancements for internal flows (Moser et al.

1999) and passive flow control (Chu & Karniadakis 1993; Garcia-Mayoral & Jimenez

2011b), typically require a periodic flow domain to function. One solution for a zero-

pressure gradient boundary layer, shown in Figure 2.10, adapts the periodic domain of

a spectral code to a spatially developing turbulent boundary layer by artificially forc-

ing the flow into the steady-state laminar regime in a region leading up to the outlet.

This approach has produced highly detailed solutions of continuous laminar-turbulent

boundary layer development up to Reynolds numbers as large as Reθ ≈ 8300 (Schlatter

et al. 2009; Schlatter et al. 2010; Eitel-Amor et al. 2014; Matai & Durbin 2019).
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Figure 2.10: Illustrations of a flow domain for modelling a spatially developing bound-
ary layer flow using resolved laminar-turbulent transition and artificial streamwise pe-
riodicity.

Recent studies have already revealed the potential of a local application of flow

control methods to produce beneficial effects far downstream in spatially developing

flows. Stroh et al. (2016) investigated the downstream effects induced by common
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drag reduction techniques applied in a local region of a spatially developing boundary

layer. Methods of uniform blowing and a near-wall damping force produced a local

drag reduction of more than 50% during application. As the flow moved downstream,

the influence on the drag fell, with the damping force producing a local drag increase.

However, within the region of Reθ < 2500 the total flow resistance showed a reduc-

tion of more than 5%, due to the strong initial response to the control mechanism.

They further suggested that the lingering influence on the local flow resistance may

be expressed by a simple streamwise translation of the effective boundary layer origin.

These observations illustrate that expanding the application of flow control mecha-

nisms in turbulent channel flow to spatially developing flows, is a crucial next step in

the development of drag reduction techniques.

2.6.2 Resolving Transition

The most accurate and realistic numerical solution for spatially developing turbulent

boundary layers comes from resolving the laminar-turbulent transition process in a

single continuous domain. For this process, a steady-state laminar boundary layer is

destabilised to prematurely induce transition. The means of destabilising the boundary

layer is referred to as the ‘trip’. The trip may consist of a physical obstruction at the

wall, referred to as a ‘geometric trip’, or a perturbation applied directly to the velocity

field, referred to as a ‘numerical trip’. Table 2.4 provides details of previously pub-

lished results and investigations concerning the modelling of laminar-turbulent transi-

tion within spatially developing boundary layers over a smooth wall. The table specifies

the classification of turbulence resolution (i.e. the turbulence model), the method of

inducing laminar-turbulence transition, the range of momentum Reynolds number in-

volved (when provided by the source), and the total cell count NT , rounded to three
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Table 2.4: Overview of key numerical studies of laminar-turbulent transition in spatially
developing boundary layers over smooth surfaces.

Publication Model Transition Reθ(min) NT

(min/max)
(
×106

)

Durcos et al. (1996) LES Numerical 386,N/A 0.416
tripping

Schlatter et al. (2009) DNS Numerical 180, 2500 237
tripping

Wu & Moin (2009) DNS Free stream 80, 940 210
turbulence

Schlatter et al. (2010) LES Numerical 180, 4300 606
tripping

Schlatter & Orlu (2012) DNS Numerical 180, 2500 237
Tripping

Eitel-Amor et al. (2014) LES Numerical 180, 8300 817
Tripping

significant figures.

In 1996, a probing investigation by Durcos et al. (1996) produced a highly coarse so-

lution of laminar-turbulent transition (large-eddy simulation). Cell dimensions equated

to approximately 5% of the near-wall velocity streak length, and 35% of their width.

The smallest cell height was approximately equal to the width of the viscous sub-

slayer. Although the wall shear stress varied from experimental results by −25%, and

similar errors were found for the spanwise and wall-normal components of turbulence,

these efforts indicated that transitional behaviour could be reproduced at low spatial

resolutions.

Sayadi & Moin (2012) used the combined periodic domain and numerical tripping

techniques shown in Figure 2.10 to test the performance of various sub-grid scale mod-

els in large-eddy simulation for accurately replicating the unresolved, sub-grid stress

in laminar-turbulence transition. Their results showed that even when the turbulence
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model can successfully minimise dissipation in the laminar regime, the excessive dissi-

pation in the transitional regime and the fully turbulent regime reduces the unresolved

stress, and therefore, underpredicts the wall shear stress. Bae et al. (2018) suggested

that one potential cause lies in an inability to correctly capture the destabilisation

and break-up of the streamwise velocity streaks close to the wall. This will be of par-

ticular importance during transition, where the turbulent mechanisms will be more

unpredictable than in fully developed flow, and will depend heavily on the type of

transition.

By resolving the complex, time-dependant turbulent motions at all length scales

to a high spatial and temporal accuracy with direct numerical simulation (DNS), the

downstream effect from the tripping conditions can be singled out to optimise the

configuration of the destabilisation mechanism (Schlatter & Orlu 2012) with minimal

influence from numerical uncertainty. To reduce the computational cost to more prac-

tical levels, length scales associated with smaller turbulent eddies can be filtered out

of the flow field, thereby reducing the required spatial and temporal resolution of the

simulation. In this case, behaviour associated with the downstream tripping effects

will be blurred with errors deriving from a combination of the resolved spatial resolu-

tion and the method used to approximate the energy transfer to the unresolved length

scales.

As computational power grew, the laminar-turbulent transition region could be

solved with fully resolved turbulence, as seen for periodic channel flow. In one such

case, Wu & Moin (2009) simulated the destabilisation of a laminar boundary layer, us-

ing artificial free stream turbulence, and resolved the resulting turbulence development

up to Reθ ≈ 1000. Despite the high resolution, and the indication of a fully turbulent

boundary layer beyond Reθ ≈ 750, the solution overpredicted the shear stress, partic-
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ularly in the outer region, with errors reaching as high as 10%. Through a comparison

of published numerical solutions (up to the year 2010), Schlatter & Orlu (2010) identi-

fied repeated discrepancies in integral parameters, the wall shear stress and near-wall

velocity fluctuations in supposedly identical flows. Further investigation would confirm

that the means of destabilising the initially laminar flow can impact the boundary layer

structure long after laminar-turbulent transition is complete.

The potential impacts of the trip were observed during the early experimental stud-

ies of Erm & Joubert (1991). Their investigations destabilised a spatially developing

laminar boundary layer using three different geometric trips of varying shapes to in-

vestigate the influence of the trip on the downstream turbulent flow. In this case, with

the trip lying in the range of Reθ ≈ 210 and Reθ ≈ 320, they concluded an upper limit

of Reθ ≈ 3000 beyond which the influence of the trip becomes negligible. The more

recent experiments of Marusic et al. (2015) preformed a similar investigation at higher

Reynolds numbers with more extreme tripping conditions. Where Erm & Joubert

(1991) compared geometric trips of similar heights, the heights of the trips in Marusic

et al. (2015) varied by one order of magnitude. For this excessive size difference they

observed a persistent discrepancy in the flow fields as far as Reθ ≈ 2×105, though this

was confined to outer layer of the boundary layer. From a detailed DNS analysis of

trip configurations, Schlatter & Orlu (2012) concluded that the boundary layer must

be tripped within Reθ < 300 to minimise the required development length. Even un-

der optimal conditions, the flow did not reach self-similarity throughout the boundary

layer until Reθ = 2000. By this point, the outer length scale is more than 600 times

greater than the inner length scale.
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2.6.3 Turbulent Inflow Generation

Due to the high computational costs of modelling laminar-turbulent transition, current

efforts into industrial scale applications or detailed exploratory studies, typically require

compromises to improve economic efficiency. These compromises commonly take the

form of utilising models with a lower order of accuracy, or operating within a finite

domain that is confined to the fully turbulent region (Boomsma & Sotiropoulos 2015;

Lee & Sung 2011; Lee et al. 2012; Arolla & Durbin 2015).

The streamwise length of the computational domain can be limited by discard-

ing the laminar and transitional regimes and replacing the inflow condition with a

fully developed turbulent boundary layer (Wu 2017). Whilst it is possible apply an

approximation of a time-dependant turbulent flow field (Mare et al. 2006), such an

approach would fail to replicate the fundamental three-dimensional coherent struc-

tures. Alternatively, time-dependant inflow conditions can be generated by artificially

growing a turbulent boundary layer within an axillary periodic domain using the ‘recy-

cling/rescaling’ technique of Lund et al. (1998). In this method, the flow velocity field

at the cyclic outlet is rescaled by calculating the boundary layer thickness and compar-

ing this value to the desired thickness specified by the user. The rescaled velocity field,

with a reduced boundary layer thickness, is fed into the inlet. The auxiliary domain

does not need to be a separate domain. It can exist within the main flow domain,

as shown in Figure 2.11, by linking the inflow boundary condition at the inlet to the

flow field of a plane which is located shortly upstream of the inlet. Table 2.5 provides

details of previous investigations which model spatially developing turbulent flow over

a smooth surface, whilst applying a fully turbulent boundary layer at the inflow.

By utilising the recycling/rescaling technique Lee & Sung (2011) computed a fully
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Figure 2.11: Illustrations of flow domain for modelling a spatially developing boundary
layer flow using recycling/rescaling over the initial portion of the domain.

Table 2.5: Overview of key numerical studies for spatially developing turbulent bound-
ary layers over smooth surfaces, with turbulent inflow conditions.

Publication Model Transition Reθ(min) NT

(min/max)
(
×106

)

Inoue & Pullin (2011) LES Recycling/ 103,1012 12.6
rescaling

Lee & Sung (2011) DNS Recycling/ 570, 2560 315
rescaling

Sayadi & Moin (2012) LES Numerical N/A,N/A 1.2
trip

Arolla & Durbin (2015) LES Recycling/ 1520,N/A 2.87
rescaling

Mukha & Liefvendahl (2017) LES Varying 835,2400 20.4
inflow
methods

resolved turbulent boundary layer up to Reθ ≈ 2500, with the domain beginning at a

fully turbulent inflow of Reθ ≈ 1410. However, to minimise the influence of artificial

periodicity, the domain for the recycling/rescaling inflow generation spanned a range of

Reθ ≈ 570 to Reθ ≈ 1600 and contained an equal number of cells as the fully turbulent

domain. Furthermore, the inflow location of Reθ ≈ 1600 lay below the critical limits of

Reθ ≈ 2000 (Schlatter & Orlu 2012), prior to which a practical flow cannot be assumed

to be independent of its upstream tripping conditions.
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If the structure of the boundary layer and its turbulent behaviour is known to a suffi-

cient accuracy, then the resolution of turbulence may be restricted to the outer region of

the boundary layer, whilst flow behaviour in the inner region is approximated through

a suitable numerical model (Bose & Park 2018). Such approximations, combined with

the recycling/rescaling techniques for inflow generation, can reduce the computational

workload sufficiently enough to allow solutions reaching up to Reθ ≈ 1 × 1012 (Inoue

& Pullin 2011). However, such methods rely on the flow maintaining ideal patterns

of behaviour which are known in advance. In the pursuit of beneficial flow control

through near-wall turbulence manipulation, the structure of the inner region cannot

be predicted to any reasonable accuracy. The economic benefits come at a cost of an

overprediction of the turbulent kinetic energy in the near-wall region, and an under-

prediction of the wall shear stress.

The investigations of Arolla & Durbin (2015) and Mukha & Liefvendahl (2017) have

aimed to apply similar methodologies for boundary layer modelling to the open source

computational code OpenFOAM. Compared with spectral methods, OpenFOAM pos-

sesses greater adaptability at the cost of lower orders of numerical accuracy. Arolla

(2016) applied a recycling/rescaling method to a single domain for a turbulent bound-

ary layer of Reθ > 1500. Only the streamwise component of the velocity was rescaled

based on the momentum thickness, and a single factor of scaling was applied to all re-

gions of the boundary layer. In reality, the inner region scales with the viscous length;

however, as this approach is applied with a low resolution large-eddy simulation, the

direct influence of this discrepancy is difficult to assess. Mukha & Liefvendahl (2017)

investigated the applicability of supplying the flow field from a periodic turbulent chan-

nel flow as the inflow to a spatially developing turbulent boundary layer. This approach

was compared to the standard recycling/rescaling approach for an inflow of Reθ = 835,
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and a reference case of fully resolved laminar-turbulent transition, beginning at a uni-

form laminar inflow of Reθ = 0. The periodic channel inflow method had no significant

effect on reducing the required development length compared to the recycling/rescaling

inflow method. Both inflow methods required the boundary layer to develop beyond

Reθ ≈ 1400 before the downstream influence of non-physical behaviour in the inflow

was sufficiently reduced.

2.6.4 Textured Surface Modelling

The introduction of non-planar surfaces into the computational domain places addi-

tional burdens on the model, which only raises the computational workload. The

mechanisms of drag reduction over streamwise riblets takes place at the smallest scales

in the flow, and are often only observable with full DNS resolution. The thin crests of

optimised riblets usually require further resolution, which only serves to increase the

detail of the surface, whilst having a negligible benefit to the detail of the turbulent

flow itself. Table 2.6 outlines key numerical simulations of spatially developing turbu-

lent boundary layers over streamwise riblets and transverse bars. The maximum and

minimum Reynolds numbers are stated, when provided by the source.

Table 2.6: Overview of key numerical studies for spatially developing turbulent bound-
ary layers over surfaces of various textured geometries.

Publication Model Transition Reθ(min) NT Surface
(min,max)

(
×106

)

Boomsma & LES Recycling/ 1200, N/A 124 scalloped
Sotiropoulos (2015) rescaling riblets

Lee et al. (2012) DNS Recycling/ 300,1100 150 shallow
Ahn et al. (2013) rescaling bars/cubes

Nadeem et al. (2015) DNS Recycling/ 300,1400 150 shallow
rescaling bars/cubes
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Boomsma & Sotiropoulos (2015) investigated scalloped riblets in a spatially devel-

oping turbulent boundary layer. Each riblet required more than 30 near-wall cells to

cover its spanwise width, which varied between 10 and 27 viscous units. The resultant

spanwise width of the cells was around 10% of those typically used in smooth surface

DNS (Schlatter & Orlu 2012). To compensate, they supplied an inflow condition from

two auxiliary domains. The first domain grew a boundary layer to Reθ = 860 using the

recycling/rescaling technique. The second domain allowed this flow to grow naturally,

prior to the main simulation, in order to minimise the required development length in

the main simulation. Despite this approach, only 50% of the riblets could be resolved

at the full spatial resolution.

Lee et al. (2012), Ahn et al. (2013) and Nadeem et al. (2015) conducted numerical

parametric studies for a spatially developing turbulent boundary layer over 20 different

configurations of two-dimensional and three-dimensional cubic structures. The flow

domain and a typical geometry are displayed in Figure 2.12. They constrained their

domain to a range of Reθ < 1400 and discarded the laminar and transitional regions

to enforce a fully turbulent inflow of Reθ = 300. The inflow was developed from

the recycling/rescaling method. Whilst these methods made this parametric study

economically viable, they produced results of limited practical application, since a

natural boundary layer would have remained dependant on the upstream tripping

conditions within Reθ < 2000 (Schlatter & Orlu 2012).
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Figure 2.12: Flow domain for a spatially developing boundary layer over transverse
bars. After Nadeem et al. (2015)

2.7 Summary

Whilst both laminar and turbulent flows experience shear drag, the additional Reynolds

stresses in the latter contribute to a significant drag increase. Passive drag reducing

surfaces aim to reduce the Reynolds stresses by suppressing turbulent behaviour close

to the wall. In the case of riblets, a large portion of the wetted area is shielded from

turbulence structures which remain pinned above the crest. Riblets aim to reduce the

Reynolds stresses in the groove by transferring it towards the bulk flow. However, such

riblets operate among the smallest length scales of the flow, in addition to requiring

sharp, narrow crests to achieve a significant drag reduction. These features hamper

their manufacturability and durability in practical application.

Introducing additional streamwise vorticity into the flow can suppress the move-

ment of turbulent energy towards the small length scales motions, thus reducing tur-

bulent stress in the near-wall region. In turbulent channel flows, surfaces of shallow

dimples have been shown to recreate this effect, whilst requiring no energy input or

complex mechanical systems in their application, unlike active methods. Meanwhile,

macroscale surface textures of simple geometric shapes have shown limited benefits for

drag reduction in laminar flows. However, such investigations involving either lam-

inar to turbulent flow have provided modest evidence which identifies the potential
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of further improvement through optimisation of the geometric profile. The present

review has considered potential approaches for such an optimisation through investi-

gation of the unique, asymmetric bedforms which frequently form from flat sediment

beds submerged in both laminar and turbulent flows. As in the case of simplified pe-

riodic groove, these bedforms typically result in a significant viscous drag reduction,

but an overall drag increase due to the inevitable pressure drag. However, increasing

the complexity of the representative bedform geometries under investigation, in a way

which more closely matched their natural shapes, has revealed key geometric features

which can improve the drag performance of the surface. Based on these observations,

the present investigation builds upon a hypothesis that asymmetric profiles of natu-

rally occurring bedforms represent a natural optimisation of a symmetrical geometrical

profile in relation to drag reduction applications.

In spatially developing flows, localised drag reducing effects have been observed to

translate downstream. In practical applications this would reduce the area required for

application of a given method (surface texturing in the present investigation), in order

to provide a beneficial drag reduction over a large area in external flow. This is opposed

to internal flow, which requires a continuous application along the full length of the

channel to maintain a local drag reducing effect. A reduced area of application would

increase the viability of economically manufacturing practical surface textures with an

increased geometric complexity. However, numerical analysis of spatially developing

flows is hindered by the increasing complexity of the flow domain and the required

computational resources, when compared to periodic channel flows. Methodologies for

overcoming these difficulties, i.e. generating turbulent inflows and reducing spatial

resolution, introduce additional uncertainties which could impact the accuracy and

validity of the numerical solution.



CHAPTER 3

Modelling of Laminar and Turbulent Flows: OpenFOAM

3.1 Introduction

This Chapter presents the numerical methodologies which will be applied in the present

analysis. The numerical models for the present analysis are built, solved and post

processed using the code OpenFOAM (version 4.0.1). OpenFOAM, ”Open Source Field

Operation And Manipulation”, is an open source, finite volume solver for computational

fluid problems. First proposed as an object-oriented open source code in 1998 (Weller

et al. 1998), which is based on the extensive work of Hrvoje (1996), the OpenFOAM

toolbox has grown to encompass a vast selection of numerical solvers, numerical schemes

and pre-processing, and post-processing, utilities.

For the present analysis, OpenFOAM was been selected due its wide range of fea-
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tures, utilities and numerical tools, combined with its high parallelisation, whilst not

requiring additional licensing costs for large-scale computation which are commonly

required for commercial codes. Furthermore, the present analysis aimed to make use

of OpenFOAM’s inbuilt open source, automated meshing software, known as snap-

pyHexMesh. A key feature of snappyHexMesh is the ability to construct irregular,

unstructured cells along a surface, whilst preserving regular Cartesian cells through-

out the bulk of a domain. This tool was highly beneficial for the parametric studies

in Chapter 5 and Chapter 6 which contain a wide variation of irregular sand ripple

profiles, which hold a fairly inform bulk flow away from the wall.

3.2 The Finite Volume Method

OpenFOAM solves flow dynamics systems through the finite volume method. In reality,

a fluid consists of particles which are far smaller than the scale of interest moving

through a space. The fundamental aspect of continuum mechanics is an assumption

that the empty space and solid particles can be accurately represented by a solid block

of fluid, known as a control volume. Figure 3.1 displays a cubic control volume with

six faces in a Cartesian coordinate system.

x

y

z

Figure 3.1: Diagram of a cubic cell containing a continuous body of fluid.
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Equation (3.1) displays the momentum conservation equations (Navier-Stokes equa-

tions) for an incompressible, Newtonian fluid. Equation (3.2) displays the requirements

for the conservation of mass. The streamwise, wall-normal and spanwise components

are denoted by u, v and w respectively.
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∂z
= 0, (3.2)

The fluid domain is decomposed into a number of control volumes (cells). Open-

FOAM is designed to work with polyhedron cells of arbitrary shape and size, and with

an arbitrary number of faces. Figure 3.2 displays examples of the layout and nota-

tions for two types of polyhedron meshes. In part (b) the mesh resolution has been

reduced through local refinement, resulting in sharp transitions in cell volume between

adjacent regions. In part (a) the cells within the region of a boundary have been cut

and reshaped to conform to the boundary line. A single cell (labelled P ) has a volume

V [P ], and pressure and velocity values located at the point P . It is surrounded by

an arbitrary number of cells NE. It is connected to the surrounding cells (superscript

[E] = 1, 2, 3...NE), by an equal number of faces (superscript [e] = 1, 2, 3...NE). A

line of vector ~d[PE] and length |~d[PE]| connects point P and point E and intersects the

connecting face at point e. The vector ~S [e] lies perpendicular to the face e.

For a given flow property φ, each cell contains a single value located at the cell

centre; a setup referred to as a colocated grid. This in contrast to the staggered grid

arrangement, where pressure values are stored at the cell centres and velocity values
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a) b)

Figure 3.2: Discretisation of a domain by hexahedral cell volumes using a) cut-cell
boundaries in the near-wall region and b) local cell refinement.

are stored at the cell faces. By comparison, the colocated grid is more versatile as it

provides greater stability in cells which deviate from simple, ideal geometries (i.e. non-

orthogonal) (Peric et al. 1988). However, the velocity and pressure values in the cell

of a colocated grid are decoupled, such that the pressure value would not influence the

pressure gradient at that point, which could produce localised, non-physical pressure

fluctuations in the solution. The solution of Rhie & Chow (1983) expresses the mass-

flux through the cell faces from an interpolation between cell centres, to replicate the

layout of a staggered grid during the solution of the momentum-conservation equations.

3.3 Structure of OpenFOAM

Each simulation in OpenFOAM consists of a case directory containing three main

subdirectories; ‘< time >’, ‘constant’ and ‘system’. All commands for operating Open-

FOAM must be run at the case directory level. Figure 3.3 displays the layout and

contents of a case directory for OpenFOAM. The expanse of files included in Figure 3.3

encompasses all inputs which are utilised in the present analysis.
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Figure 3.3: Structure of an OpenFOAM case directory in the present analysis.

The ‘system’ directory defines the routines, functions and schemes for mesh gen-

eration, pre-processing, solution generation and post-processing. The ‘fvSchemes’ and

‘fvSolution’ files (discussed in Section 3.5 and Section 3.6 respectively) define the nu-

merical methodology for solving the governing equations in the flow domain. The ‘con-

trolDict’ file contains the settings for the physical time and time step for the solver,
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and the settings for outputting the results. The remaining files in the ‘system’ direc-

tory govern the creation and manipulation of the computational domain, mesh and

boundary conditions. The contents and applications of these files are discussed further

in Section 3.4.

The computational mesh is stored in the ‘constant’ directory, along with additional

surface geometries, and directories specifying the physical properties of the flow. The

‘polyMesh’ subdirectory defines the cells of the computational mesh through lists of

vertices (‘points’), faces, and a pair of cells adjoining those faces (i.e. ‘owner’ and

‘neighbour’). The boundary file assigns external faces in the mesh to groups which

can be used to assign boundary conditions to the external surfaces of the flow domain.

When additional surface geometries are required, typically for use in mesh genera-

tion/manipulation and post-processing, the files which define the surface geometries

are stored in the ‘triSurface’ subdirectory. The surface geometries may possess key

geometric geometric features (such as sharp angles) which must be captured during

the mesh generation process. Information concerning such features is stored in the

‘extendedFeatureEdgeMesh’ subdirectory, and also as .eMesh files in the ‘triSurface’

subdirectory. The ‘transportProperties’ file contains the information of the physical

properties of the flow, such as the kinematic viscosity of the fluid. The ‘fvOptions’

specifies the parameters of any source terms to be implemented into the momentum-

conservation equations. The ‘turbulenceProperties’ file specifies the turbulence model

to be used, and specifies the parameters which are required for its implementation. The

turbulent models and parameters which are used in the present analysis are discussed

further in Section 3.7.

Each time directory contains information about the boundary conditions and flow

fields at a given point in physical time. Initial conditions are supplied by a uniform field
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value for the internal mesh and constraints for the patches on the external boundary.

Subsequent time directories are written by the numerical solver, and they specify the

solved flow field at a given time step as a list of field values specifying the value in

each cell. The time directory displayed in Figure 3.3 displays additional flow fields for

the time-averaged values (‘mean’) and root mean square values (‘Prime2Mean’) for a

given property as calculated from the solved flow field, as discussed in Section 3.8.

3.4 Mesh Generation

3.4.1 snappyHexMesh

The snappyHexMesh utility is an automatic mesh generation/manipulation programme

within OpenFOAM. Starting with a coarse cartesian mesh, snappyHexMesh builds a

refined mesh which conforms to a new boundary of a surface of an arbitrary geometry.

The term ’split-hexahedral’ refers to cells which contain more than six faces, but which

are produced by the splitting and morphing of hexahedral cells, as displayed in Fig-

ure 3.2. The snappyHexMesh procedure is demonstrated throughout this section using

the jaggedBoundary.stl geometry supplied in the following location in OpenFOAM.

• openfoam4/tutorials/foamyQuadMesh/jaggedBoundary/constant/triSurface

/jaggedBoundary.stl

The final mesh produced by the snappyHexMesh utility is displayed in Figure 3.4.

The snappyHexMesh utility requires an initial Cartesian mesh, files describing the

surface geometry and, in some cases, information of the key geometric features of the

supplied surface geometries.
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Figure 3.4: A split-hexahedral mesh which was generated for the jaggedBoundary.stl
surface geometry through utilisation of the snappyHexMesh utility.

Preparation stages:

• Initial Mesh Creation of an initial computational domain with coarse Cartesian

mesh.

• Feature Extraction Extract the geometric features from one or more surface

profiles.

The first stage constructs a simple Cartesian mesh as defined in the ‘blockMeshDict’

dictionary. The initial Cartesian mesh should ideally contain cells with an aspect ratio

of 1 in the region of the inserted surface geometries. However, this aspect ratio can be

increased beyond 1 when required, as demonstrated in Chapter 6 and Chapter 7. In

the second stage the features of each surface are extracted from the .stl geometry files

in the ‘triSurface’ subdirectory. Figure 3.5 displays the features edges of the jagged

boundary geometry. The extracted features include all open edges, and closed edges

at which the two faces meet at an angle smaller than 175◦ (or a user-specified value).
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Figure 3.5: Feature lines extracted by performing ‘surfaceFeatures’ on the jagged-
Boundary.stl file.

The snappyHexMesh utility operates in three key stages: castellation, snapping

and layer addition. The outputs of each stage is demonstrated in Figure 3.6, using the

jaggedBoundary.stl geometry as a test case.

• Castellation Insert of the surface profile into their corresponding location within

the computational domain.

• Snapping Morph the cells in the near-wall region such that the mesh conforms

to surface profiles.

• Layers Morph the mesh away from the surface profile and insert layers between

the surface and the mesh.

The castellation stage performs local refinement of cells based upon the surface
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(a) Refinement and castellation

(b) Surface snapping

(c) Layer addition

Figure 3.6: Three stages of the snappyHexMesh utility in building a mesh around a
boundary consisting of a two-dimensional irregular geometry.
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features and user-specified refinement regions. The location and the level of refinement

can be performed to an exact value, or automatically, depending on the local curvature

of the surface and the angle between surface features. The surface geometry forms a

new boundary of the flow domain. All cells for which 50% (or a user-specified value)

of their volumes lies beyond the new domain boundary are removed from the domain.

In the example in Figure 3.6a a uniform level of refinement has been specified over the

whole jagged boundary surface, with a minimum of 3 cells between refinement levels.

The snapping stage morphs the edges of the refined and castellated mesh to align

with the original surface geometries. Each vertex on the new boundary of the domain

is displaced towards the nearest surface face. Then the internal mesh is smoothed to

accommodate this new displacement. The displacement of each vertex is constrained

by a user-supplied value of tolerance, which defines the maximum distance that a vertex

can move, given as a fraction of the length of the edges of the local cells. The newly

distorted mesh is scaled back until it complies with the user-specified requirements

of mesh quality as discussed in Section 3.4.2. The method of snapping can be either

implicit or explicit. Implicit snapping identifies features from the surface geometries

which were supplied from the castellation stage. Explicit snapping gives priority to the

feature lines which where extracted using the ‘surfaceFeatureDict’ dictionary prior to

the castellation stage, as displayed in Figure 3.5. Explicit snapping typically provides

greater surface conformity at the cost of additional pre-processing time, as the user can

ensure the acknowledgement and prioritizing of specific features, such as sharp corners,

which would otherwise be missed by the automated Implicit snapping procedure. The

mesh in Figure 3.6b has been snapped using explicit features snapping, based on the

features displayed in Figure 3.5, in order to capture the sharp angles which are present

at numerous locations on the jagged boundary surface.
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Figure 3.6c displays the output from the final stage, in which additional layers are

inserted into the mesh at the solid surface. In this case, three layers have been added

along the jagged boundary, with the cell widths being specified as a fraction of the

near-wall cell size. Alternatively, the cell widths can be specified in absolute units, in

order to produce a uniform layer thickness on surfaces which have cells at varying levels

of octree refinement. Note that in Figure 3.6c the snappyHexMesh utility has collapsed

the layers around the sharpest corner in order to avoid the creation of poor quality

cells. Unlike the castellation stage and the snapping stage, the addition of layers is

optional in many applications. However, since the added layers grow perpendicular to

the boundary, the addition of layers can provide two crucial benefits. Firstly, layers

can significantly reduce the near-wall cell size without producing a large increase in

streamwise and spanwise resolution. Hence, increasing spatial resolution through the

addition of layers will provide greater efficiency than additional octree refinement.

This is particularly important when resolving near-wall flows, where the wall-normal

velocity gradient is typically several orders of magnitude greater than the streamwise

and spanwise velocity gradients. Secondly, layers will improve the alignment of the

near-wall cells with the flow direction. In the present analysis, the application of layers

is utilised in Chapter 7, where a series of layers is applied to a spatially developing

turbulent boundary layer over a two-dimensional surface.

3.4.2 Mesh Quality

The geometry of each cell greatly influences both the stability of the solver and the

accuracy of the final solution. A cells quality derives from several criteria which describe

the spatial relation between cell centres and their connecting faces. In OpenFOAM, the

‘meshQualityDict’ dictionary contains the user-defined settings for the desired limits
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of mesh quality. The criteria in the ‘meshQualityDict’ are used by the snappyHexMesh

utility as a guide when morphing the mesh during the snapping and layer stages. Two

of the most important criteria; non-orthogonality and skewness, are defined below, and

the vectors which are required for these definitions are illustrated in Figure 3.7.

(a) Skewed face

P
E~d[PE]

~S[e]

~q[e]

(b) Non-orthogonal cell

P

E

~d[PE]

~S[e]

Figure 3.7: Diagrams illustrating the cell geometric properties which are used to
calculate face skewness and cell non-orthogonality.

Face skewness (Equation 3.3) represents the distance by which the point of inter-

section between the cell-to-cell vector and the face deviates from the centre of area for

that face. The skewness takes the form of a ratio between the magnitude of the offset

vector and the magnitude of the cell-to-cell vector.

face skewness =
|~q[e]|

|~d[PE]|
, (3.3)

Cell non-orthogonality (Equation 3.4) refers to the angle at which a vector con-

necting two cell centres intersects the connecting face. Non-orthogonality references a

vector which is normal to the face, such that if the cell-to-cell vector is perpendicular

to the face, the non-orthogonality is 0◦. Similarly, a cell-to-cell vector which is parallel
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to the face, though realistically impossible, would indicate a non-orthogonality of 90◦.

non-orthogonality =
~S [e] · ~d[PE]

|~S [e]||~d[PE]|
, (3.4)

Noriega et al. (2018a) identified that the primary error associated with mesh non-

orthogonality occurred when non-orthogonal cells lie on the boundary faces with fixed

flow properties or fixed gradient values. They concluded that periodic boundary con-

ditions could maintain schemes of second order accuracy, even in the presence of non-

orthogonality along the boundary. Similarly, non-orthogonality had a minimal effect

far into the flow.

3.4.3 Parallel Processing

For a discretised flow domain, the computational workload can be shared by multiple

processors in order to decrease the workload on a single processor and reduce CPU

time. The ‘decomposePar’ command in OpenFOAM divides a single flow domain into

multiple segments, whereby each segment can be assigned to an individual processor

for computation. The method for splitting the domain is defined in the ‘decomposeP-

arDict’ file. Figure 3.8 displays a simple, two-dimensional domain which has been

divided into four segments with divisions along the streamwise axis and wall-normal

axis. Along the boundary of each segment a new boundary condition is formed which

links adjoining boundaries from two processors (processor boundaries).

The decomposition of the domain can be performed in various ways, depending on

the geometric complexity of the computational domain. The ‘simple’ method and the

‘hierarchical’ method decomposes the domain into a number of segments along each di-

rectional vector. The ‘hierarchical’ method allows user to determine the order in which
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Figure 3.8: Illustration of a discretised computational domain decomposed across 4
processors.

to prioritise each directional vector. The ‘scotch’ method calculates the area of domain

decomposition automatically whilst prioritising the minimisation of processor bound-

aries. In the present analysis, all domain discretisation applies the ‘simple’ method,

due to the general uniformity of cell distribution throughout the computational domain

in each case.

Haddadi et al. (2017) recommends a distribution of no fewer than 100,000 cells

per processor. They suggested that efficiency could be maintained with no fewer than

50,000 cells per processor, for more basic solvers. Further reduction of the number

of cells per processor, below these limits, is expected to provide a limited benefit in

reducing the CPU time for the simulation. Further improvements in the efficiency of

the simulation can be achieved by reducing the bandwidth of the coefficient matrix.

The ‘renumberMesh’ command can reduce the bandwidth by rearranging the placement

of each cell in the matrix to cluster the coefficients around the diagonal of the matrix.

Finally, parallel processing can be used to reduce pre-processing time by applying

the snappyHexMesh utility to a discretised domain across multiple processors. During

the castellation stage, the mesh is accessed after each refinement step. If the refinement
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created an uneven distribution of cells between processors, the mesh is redistributed to

bring the processors into balance before continuing with further mesh refinement. The

‘reconstructParMesh’ command can then combine the discretised domain from each

segment back into a single domain. Similarly the ‘reconstructPar’ command combines

the segmented flow fields back into a single field for the combined domain.

3.5 Numerical Schemes: fvSchemes

The transport equation for an incompressible fluid is displayed in Equation (3.5), where

~u denotes the velocity vector. The term Bφ contains all of the relevant source terms,

including the contribution of the pressure gradient in the case of the momentum trans-

port (i.e. φ = ui), where ui = u, v, w denotes the velocity component along the x-, y-

and z-axis respectively.

∂φ

∂t
+▽ · (~uφ) = Bφ + ν ▽2 φ, (3.5)

The standardized approach of discretisation in OpenFOAM is through the Gaussian

Integration Theorem. Gauss’s Theorem states that the integration over the control

volume equals the sum of the flux through each face. Equation (3.6) displays the

integrated momentum equation over a single control volume.

∫

V [P ]

∂φ[P ]

∂t
dV [P ] = B

[P ]
φ +

∫

V [P ]

▽·(ν ▽ φ)[P ] dV [P ]−

∫

V [P ]

▽·(~uφ)[P ] dV [P ] (3.6)

Temporal terms = Source terms+ Laplacian terms+Convective terms

The ‘fvSchemes’ file defines the discretisation schemes used to apply Equation (3.6)

over the discretised flow domain. In the ‘fvSchemes’ file different discretisation schemes

can be assigned to each flow variable, such that the stability and order of accuracy can
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be adjusted for the needs of each individual variable.

3.5.1 Convective Terms: divSchemes

The ‘divSchemes’ entry defines the discretisation schemes for the convective terms.

Applying Gauss integration to the integrated convection term in Equation (3.6), as

shown in Equation (3.7), simplifies change in a property from convection through the

cell a product of two variables; the kinematic velocity flux
(
~S [e] · ~u[e]

)
, and the value

at a given cell face φ[e].

∫

V [P ]

▽ · (~uφ)[e] dV [P ] =

e=Ne∑

1

~S [e] · (~uφ)[e] =

e=Ne∑

1

(
~S [e] · ~u[e]

)
φ[e], (3.7)

The following divergence schemes are either first-order or second-order accurate

schemes for determining value at each cell face by extrapolating the values from the

cell centres of the corresponding owner and neighbour cells.

Gauss linear

The Gauss linear scheme applies standard central differencing, which determines

the value of φ[e] from a simple linear interpolation along the cell centre vector ~d[P,E], as

shown in Equation (3.8).

φ[e] =

(
|~d[Pe]|

|~d[PE]|

)
φ[P ] +

(
|~d[Ee]|

|~d[PE]|

)
φ[E], (3.8)

The Gauss linear scheme is second-order accurate, but remains unbounded from

the value of the surrounding flow fields, and hence, cannot guarantee stability.

Gauss upwind

The Gauss upwind scheme (upwind differencing scheme) determines the value of
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φ[e] by directly duplicating the value at the cell centre which lies upstream of the mass

flow through the face, as shown in Equation (3.9).

φ[e] =





φ[P ] for
(
~S [e] · ~u[e]

)
≥ 0,

φ[E] for
(
~S [e] · ~u[e]

)
< 0,

(3.9)

The Gauss upwind scheme is highly stable, as the value of φ[e] is bounded to the

value of either φ[P ] or φ[E]. However, the scheme can only provide first-order accuracy.

Therefore, it is typically only useful for converging the early stages of an initially

unstable flow field in transient problems, before a more accurate, but less stable, scheme

is applied to produce the main solution.

Gauss linearUpwind grad(U)

The Gauss linearUpwind scheme provides a compromise between the first-order

accurate Gauss upwind scheme, and the second-order accurate Gauss linear scheme.

The resultant hybrid scheme, shown in Equation (3.10), maintains the second-order

accuracy of the Gauss linear scheme and, although the Gauss linearUpwind scheme

remains unbounded, it possesses an improved stability over the Gauss linear scheme.

φ[e] =





φ[P ] + ~x[e] · ▽φ[P ] for
(
~S [e] · ~u[e]

)
≥ 0,

φ[E] + ~x[e] · ▽φ[E] for
(
~S [e] · ~u[e]

)
< 0,

(3.10)

Firstly, the gradient at the upwind cell centre is determined from values at the

previous time step. The change in a property between the upwind cell centre and the

connecting face is determined from the calculated gradient, and the cell-to-face vector

~x[e]. This change is applied as a correction to the upwind differencing scheme (Equation

3.9) which reduces dissipation.
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3.5.2 Gradient Terms: gradSchemes

The ‘gradSchemes’ entry defines the discretisation method for the gradient terms. The

volume integrated gradient term, and the associated Gaussian integration is shown in

Equation (3.11).
∫

V [P ]

(▽φ)[P ] dV [P ] =

e=Ne∑

1

~S [e]φ[e], (3.11)

Gauss linear

The Gauss linear scheme, shown in Equation (3.12), applies the standard central

differencing method, in which the gradient is determined from the variation between

two cell centres and the magnitude of a vector connecting those centres.

(▽φ)[e] =
φ[E] − φ[P ]

|~d[PE]|
, (3.12)

As for the corresponding divergence scheme in Equation (3.8), the gradient scheme

in Equation (3.12) is second-order accurate but remains unbounded. The validation

studies of Robertson et al. (2015) suggested that all cases where cell non-orthogonality

exceeds 50◦ may require limiting to ensure stability.

Gauss cellMDLimited < γ1 >

To improve stability, OpenFOAM provides a variety of gradient schemes which add

additional diffusion to the Gauss linear scheme by applying a limiting factor γ1, as

shown in Equation (3.8).

(▽φ)[e] = f (γ1)
φ[E] − φ[P ]

|~d[PE]|
, (3.13)

The degree of limiting is determined as a function of the user-defined value of γ1,
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which depends on the type of limiting scheme that is selected. The Gauss cellMDLim-

ited scheme determines the degree of limiting based on the maximum and minimum

cell centre values for the surrounding cells, and applies limiting to each Cartesian vec-

tor component. However, Robertson et al. (2015) warned that if the maximum cell

non-orthogonality exceeds 65◦ the Gauss linear scheme cannot be relied on to maintain

stability even when limiting is applied.

3.5.3 Laplacian Terms: laplacianSchemes

The ‘laplacianSchemes’ entry defines the discretisation schemes for the Laplacian terms

in Equation (3.6). Equation (3.14) displays the Laplacian term with Gaussian integra-

tion.
∫

V [P ]

▽ · (ν ▽ φ)[P ] dV [P ] = ν

e=Ne∑

1

~S [e] · (▽φ)[e] , (3.14)

In OpenFOAM, each Laplacian scheme contains two keywords; the first keyword

specifies the type of discretisation that is applied to the gradient of ▽φ (i.e. linear for

all schemes presented here), whilst the second keyword specifies the treatment of the

face normal vector ~S [e].

Gauss linear orthogonal

The Gauss linear orthogonal scheme, shown in Equation (3.15), does not apply any

modification to the face normal vector. As such it can only maintain second-order

accuracy for purely orthogonal cells, for which ~S [e] is parallel to the vector connecting

the adjacent cell centres ~d[PE].

~S [e] · (▽φ)[e] = |~S [e]| (▽φ)[e] , (3.15)
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Gauss linear corrected

The Gauss linear corrected scheme, shown in Equation (3.17), accounts for cell non-

orthogonality by splitting the face normal vector ~S [e], into two components, as shown

in Equation (3.16) and Equation (3.17). The first component ~χ
[e]
ortho, lies parallel to the

line joining the cell centres ~d[PE]. The second component ~χ
[e]
non, lies across the plane of

the connecting face (i.e. perpendicular to ~S [e]).

~S [e] = ~χ
[e]
ortho + ~χ[e]

non, (3.16)

~S [e] · (▽φ)[e] = ~χ
[e]
ortho · (▽φ)

[e] + ~χ[e]
non · (▽φ)

[e] , (3.17)

The first term on the RHS of Equation (3.17) represents the weight of the orthog-

onal contribution, whilst the second term represents the weight of the non-orthogonal

contribution.

Gauss linear limited corrected < γ2 >

As the non-orthogonality of a cell increases, the contribution from the non-orthogonal

term also increases. On a mesh which contains highly non-orthogonal cells, the non-

orthogonality term may become so excessive that the solution becomes unstable. The

non-orthogonal contribution can be limited to preserve the stability of the solution.

The Gauss linear limited scheme applies a limiting constant γ2, to the non-orthogonal

term in the corrected scheme (Equation 3.17), as shown in Equation (3.18).

~S [e] · (▽φ)[e] = ~χ
[e]
ortho · (▽φ)

[e] + γ2

(
~χ[e]
non · (▽φ)

[e]
)
, (3.18)

The limiting constant takes a value between γ2 = 0 and γ2 = 1. Unfortunately,

the application of the limiting constant reduces the effective value of ~S [e], and hence,
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redefines the decomposition in Equation (3.16), as shown in Equation (3.19).

~S [e] ≥ ~χ
[e]
ortho + γ2~χ

[e]
non, (3.19)

When γ2 = 1, Equation (3.18) returns to the unlimited Gauss corrected formulation

in Equation (3.17). Reducing the value of γ2 increases the stability, whilst reducing

accuracy, due to reduction in value of the RHS in Equation (3.19). Hence, the Gauss

linear limited corrected scheme is only recommended when the maximum cell non-

orthogonality lies between 70◦ and 80◦.

3.5.4 Temporal Terms: ddtSchemes

The ‘ddtSchemes’ entry defines the discretisation schemes for the temporal terms in

Equation (3.6). Temporal discretisation schemes express the spatial integral of the

time-derivative in terms of the discrete values at the cell centre from one or more flow

fields at different time steps.

∫

V [P ]

∂φ[P ]

∂t
dV [P ] =

∂

∂t

∫

V [P ]

φ[P ] dV [P ], (3.20)

Temporal schemes can be sub-divided into two main types: explicit and implicit.

Explicit schemes produce only one unknown variable for the cell centre value at the

current time step φ[P,t], and obtain the values of all other variables from the output of

previous time steps. Therefore, the solver needs only to perform a single calculation

of the scalar transport equation in each cell. Implicit schemes calculate the value of

φ[P,t] from the unknown values in the flow field from the current time step. Hence, the

solver must perform multiple iterations to obtain a converged value of φ[P,t].
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Euler

OpenFOAMs Euler scheme applies an implicit backward Euler method, in which

the temporal derivative is calculated from two flow fields separated by a single time

step, as shown in Equation (3.21). The face values in the spatial terms are taken from

the unknown values of the flow field at the current time step φ[e,t], such that both

the spatial and temporal terms must be solved implicitly. Note, that the backward

Euler method in the Euler scheme is not to be confused with the backward scheme in

Equation (3.26).

∂

∂t

∫

V [P ]

φ[P,t] dV [P ] =
V [P ]

∆t

(
φ[P,t] − φ[P,t−1]

)
, (3.21)

Since the Euler scheme depends on the flow fields from two time steps, the solver

only needs to store a single flow field corresponding to the previous time step φ[P,t−1],

at any given time. Since the Euler scheme only provides first-order accuracy it typi-

cally requires impractically small time steps to produce a sufficient temporal accuracy.

However, due it its high stability and boundedness, the Euler scheme maintains prac-

tical usefulness in transient cases for which the time-dependant behaviour is not of

interest. This includes the early stages of transient simulations, in which the initial

flow field has yet to stabilise, and steady-state flow fields which cannot be stabilised

with steady-state numerical solvers, as discussed in Section 3.6.

CrankNicolson < γcn >

The CrankNicolson scheme applies a variant of the second-order Crank-Nicolson

method. The main feature which separates the Crank-Nicolson method from the im-

plicit Euler method is in the treatment of the spatial terms in Equation (3.6). The

Crank-Nicolson scheme determines the face values by blending the unknown values of

the flow field in the current time step with the known values from flow field from the
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previous time step. This blending is shown for the convective terms in Equation (3.22)

and the Laplacian terms in Equation (3.23).

e=Ne∑

1

(
~S [e] · ~u[e]

)
φ[e] =

1

2




e=Ne∑

1

(
~S [e] · ~u[e]

)
φ[e,t]




+
1

2




e=Ne∑

1

(
~S [e] · ~u[e]

)
φ[e,t−1]


 ,

(3.22)

ν

e=Ne∑

1

~S [e] (▽φ)[e] =
1

2


ν

e=Ne∑

1

~S [e] (▽φ)[e,t]




+
1

2


ν

e=Ne∑

1

~S [e] (▽φ)[e,t−1]


 ,

(3.23)

For the temporal derivative, the Crank-Nicolson method applies an identical ap-

proach to the backward Euler method as shown in Equation (3.24).

∂

∂t

∫

V [P ]

φ[P,t] dV [P ] =
V [P ]

∆t

(
φ[P,t] − φ[P,t−1]

)
, (3.24)

The pure Crank-Nicolson method provides second-order accuracy, without requiring

the solver to store the flow field at more than one time step at any given time. It can

reliably maintain stability provided that the cell size ∆x, time step ∆t, and local

velocity ~u, fulfil the condition which is given in Equation (3.25). The LHS of Equation

(3.25) is referred to as the Courant number Co.

∆x|~u|

∆t
≤ 2, (3.25)

The CrankNicolson scheme in OpenFOAM applies a variant of the Crank-Nicolson

method, which combines second-order accurate method of pure Crank-Nicolson in

Equation (3.24) with the first-order accurate backward Euler method in Equation

(3.21). The contribution from each scheme is controlled using the weighting factor
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γcn. The weighting factor possesses a value between γcn = 0 and γcn = 1. As the

value of γcn decreases, the stability of the CrankNicolson scheme increases at the cost

of decreasing the effective order of accuracy. For typical engineering applications, a

value of γcn = 0.9 is recommended (Greenshields 2016) to provide sufficient balance

between the stability and the effective order of accuracy.

backward

The backward scheme, shown in Equation (3.26), interpolates over three-time steps,

including the unknown flow field of the current time step, and weights each contribution

with fixed constants. The backward scheme achieves full second order accuracy in time,

however, it is less stable than the weighted CrankNicolson scheme as it is unbounded.

∂

∂t

∫

V [P ]

φ[P ] dV [P ] =
V [P ]

2∆t

(
3φ[P,t] − 4φ[P,t−1] + φ[P,t−2]

)
, (3.26)

As for the first-order Euler scheme, the backwards schemes determines the spatial

terms from the unknown values of the flow field from the current time step, which

requires the spatial terms to be solved implicitly. The formulation of the temporal term

in Equation (3.26) means that, at any point in time, the backward scheme requires the

solver to store two flow fields for the previous two time steps, with values of φ[P,t−1]

and φ[P,t−2], which increases the computational workload compared with the first-order

Euler scheme.

3.6 Numerical Solvers: fvSolution

The OpenFOAM source code encompasses a vast library of solvers for a large variety

of flow scenarios. The present study utilised three different OpenFOAM solvers; the
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simpleFoam, pimpleFoam and pisoFoam solvers. Each solver is applicable to incom-

pressible flow in either laminar or turbulent states. All three solvers apply a segregated

approach, such that they work by decoupling the pressure terms and velocity terms, as

described in Section 3.6.1. They produce a converged solution by alternating between

the velocity field and the pressure field, and correcting each in turn.

3.6.1 Pressure-Velocity Coupling

The discretisation of Equation (3.6) relates the unknown scalar value in cell P with

the surrounding scalar values, velocity values and pressure values in the surrounding

cell in the form of Equation (3.27). The coefficients A[P ] and A[E] are dependant on

the discretisation schemes which are selected for the diffusive and convective parts

of Equation (3.6), whilst the pressure gradient is not yet discretised. The term B[P ]

represents the source terms of mass flux for cell P , including the temporal terms but

excluding the pressure gradient.

u
[P ]
i A[P ] = −

E=NE∑

1

A[E]u
[E]
i + B[P ] − (▽p)[P ] , (3.27)

For a given cell P the contributions of the surrounding cells, along with the source

terms, are collected into a single term H[P ], as shown in Equation (3.28).

H[P ] = B[P ] −

E=Ne∑

1

A[E]u
[E]
i , (3.28)

The solver determines the face value φ[e], through linear interpolation between two

cell centres and the connecting face (Equation 3.29, 3.30, 3.31 and 3.32) in the form of a

weighting factor W [e], determined from location of the fact in relation to the cell-to-cell
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vector.

u[e] = W [e]u[E] +
(
1−W [e]

)
u[P ], (3.29)

p[e] = W [e]p[E] −
(
1−W [e]

)
p[P ], (3.30)

A[e] = W [P ]A[P ] +
(
1−W [E]

)
A[E], (3.31)

(
H[P ]

A[P ]

)[e]

= W [e]

(
H[P ]

A[P ]

)[E]

+
(
1−W [e]

)(H[P ]

A[P ]

)[P ]

, (3.32)

Momentum predictor:

The first stage of the solution determines a new velocity field for time t, using the

previous velocity and pressure fields at time t− 1, by solving a conservation equation

of the form in Equation (3.33). The pressure field for the face values p[e], is taken

from the previous time step and remains constant throughout the implicit calculation

of Equation (3.33).

u
[P,t]
i = γu


H[P ]

A[P ]
−

1

A[P ]

e=Ne∑

1

~S [e] · p[e]


+ (1− γu) u

[P,t−1]
i , (3.33)

The final value of velocity is produced by weighting the effective velocity, which is

obtained from the interpolation of momentum flux and point pressure values, against

an exact value taken by simply interpolating the cell centre velocity values of the

previous time step, φ∗[e]. The last term on the RHS, along with the relaxation factor,

γu, weights the new velocity field against the initial velocity field to aid in convergence.

Pressure correction:

Equation (3.34) is derived from the continuity equation and links the pressure

gradient at each face with the updated velocity field for the neighbour cells collected
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in H[P ].
e=Ne∑

1

~S [e] ·

(
1

A[P ]
▽ p

)[e]

=

e=Ne∑

1

~S [e] ·

(
H[P ]

A[P ]

)[e]

, (3.34)

By discretising the pressure gradient term, as described in Section 3.5.2, the pressure

gradient in Equation (3.34) is expressed in term of cell centre values, which can be

solved iteratively to produce an updated pressure field.

Velocity correction:

Equation (3.35) provides the velocity flux through a face, based on the momentum

predictor and the pressure field. The corrected pressure field from Equation (3.34)

is supplied to Equation (3.35) to produce a series of face fluxes which conform more

closely to the corrected pressure field.

~S [e] · u
[e]
i = ~S [e] ·



(
H[P ]

A[P ]

)[e]

−

(
1

A[P ]

)[e]

(▽p)[e]


 , (3.35)

Similarly, the velocity values at each cell centre u[p], are recalculated using the

corrected pressure field using Equation (3.36).

u
[P ]
i =

H[P ]

A[P ]
−

1

A[P ]
(▽p)[P ] , (3.36)

The correction in Equation (3.36) is performed explicitly, with all velocity terms

on the RHS being taken from the velocity field from the momentum predictor step in

Equation (3.33).

3.6.2 simpleFoam

The simpleFoam solver solves the discretised equation using the OpenFOAM variant of

the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm, which
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disregards all temporal terms. Hence, the simpleFoam is only applicable to steady-

state problems. It can solve incompressible laminar flow problems, and incompressible

turbulent flow problems with a steady-state mean flow and the application of time-

averaged turbulence approximations (i.e. Reynolds-averaged stress models). The exact

value of time step ∆t, only serves as a marker for the number of iteration loops.

At the start of each time step the simpleFoam solver calculates a new velocity field

by solving the momentum equation in Equation (3.33). The velocity terms in the

momentum equation are solved implicitly, whilst the pressure terms are kept constant;

being taken from the pressure field at the previous time step. At this stage, the velocity

field is relaxed by using an under-relaxation factor of γu < 1.

Equation (3.34) is solved after the momentum equation, using the values of the

updated velocity field to produce an updated pressure field. An under-relaxation factor

of 0 < γp < 1 is applied, as shown in Equation (3.37), to limit the contribution of the

error in the pressure correction and aid stability. The value of p∗[P,t] in Equation (3.37)

denotes the pressure field obtained from solving Equation (3.34).

p[P,t] = γpp
∗[P,t] +

(
1− γp

)
p[P,t−1], (3.37)

The solver repeats this procedure until the change in the pressure field and velocity

field between time steps satisfies the user-defined convergence criteria given in the

‘fvSolution’ dictionary.
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3.6.3 pisoFoam

The pisoFoam solver is a transient solver for incompressible laminar and turbulent flows

through the PISO algorithm (Pressure Implicit with Splitting of Operators). This

solver can also produce solutions for steady-state flow fields, although at a greater

cost than the steady-state simpleFoam solver. As with the steady-state simpleFoam

solver, the pisoFoam solver begins each time step by solving the momentum equation

(Equation (3.33)), to produce an initial prediction for the velocity field based on the

pressure field from the previous time step. In this case, the term B[P ] in Equation (3.28)

will contain the source which is attributed to the non-zero temporal terms. Typically

no relaxation is applied to the velocity field , such that γu = 1.

To ensure that a converged solution is produced within each time step, the piso-

Foam solver replaces the single pressure correction step from the simpleFoam solver

with a pair of corrector loops. Each corrector loop begins by solving Equation (3.34)

to produce a corrected pressure field. Then the velocity field is corrected through im-

plicitly recalculating the face fluxes (Equation (3.35)), based on the corrected pressure

field, and then correcting the cell centre values by explicitly solving Equation (3.35).

The weighted flux coefficients of the primary cell, neighbour cells and source terms;

A[P ], A[E] and B[P ] are constant throughout the corrector loops. However, the solver

calculates new parameters of H[P ] for each corrector loop.

3.6.4 pimpleFoam

The pimpleFoam solver is a transient solver for incompressible laminar and turbulent

flow, which combines the transient PISO algorithm with the steady-state SIMPLE

algorithm. Multiple steps of the SIMPLE algorithm, referred to as ’outer corrector
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loops’, are applied during each time step. A user-specified number of ’inner’ corrector

steps determines the number of pressure correctors in each iteration of the SIMPLE

algorithm. The outer corrector loop is repeated until the solution achieves a desired

tolerance, or the number of outer corrector loops reaches a use-specified limit, as defined

in the ‘fvSolution’ dictionary. At this point, one final iteration loop is applied without

relaxation factors, with the output being carried over as the initial flow field for the

following time step.

Since the pimpleFoam solver produces a converged solution during each time step,

it can maintain stability over larger time steps than the standard PISO algorithm.

Hence, the time step is constrained by the requirements of the physical flow field as

opposed to those of numerical stability.

3.7 Large-Eddy Simulation

The direct numerical simulation (DNS) approach aims to model the full turbulent

energy cascade, by solving the flow at a spatial and temporal resolution which is suf-

ficient to capture all turbulent coherent structures and eddies across the full range

of length scales. By contrast, ’Reynolds-Averaged Navier-Stokes’ (RANS) methods

reduce computational cost by applying temporal averaging across all length scales to

remove the time-dependant motions of the turbulent eddies. The influence of the unre-

solved eddies is determined by suitable approximation methods. Through this, RANS

methods forgo resolving three-key properties of turbulent flow; chaotic, time-dependant

and three-dimensional motions, and instead apply a numerical model to approximate

the resulting effects of these behaviours. Therefore, in addition to having a reduced

accuracy, RANS models are fundamentally unrepresentative of true turbulent flow be-
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haviour. The large-eddy simulation approach attempts a compromise between these

two primary methodologies by restricting the resolved flow field to only those length

scales which contain the majority of the turbulent energy, and approximating the effect

of the eddies at the smaller length scales.

The capabilities of utilising large-eddy simulation in OpenFOAM have been demon-

strated and validated for benchmark cases of flow separation (Cao & Tamura 2016; Ly-

senko et al. 2013), and a fully developed channel flow . However, the question remains

as to its performance for modelling laminar-turbulent transition under comparable

tripping conditions.

3.7.1 Spatial Filtering

The length scale Λ represents a user-defined limit below which a simulation ceases

to resolve time-dependant turbulent motions. This length scale is referred to as the

spectral cut-off limit. The time-dependant velocity and pressure fields are spatially

filtered to remove any fluctuations which correspond to a length scale smaller than Λ.

The filtering process acts to replace the local velocity at each point with a spatially

averaged value across a region of Λ dimensions. The filter function GL includes or

excludes surrounding cells in the averaging procedure based upon their distance in

relation to Λ. Equation (3.38) displays the filtering procedure of a three-dimensional

field.

φ̃ =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

GL

(
x′, y′, z′,Λ

)
φ
(
x′, y′, z′

)
dx′dy′dz′, (3.38)

Spatially filtered fields are denoted by (◦̃). The top-hat filter, shown in Equation (3.39),

defines two outputs of GL, with a discrete limit based on a spherical volume centred

on the filtering point. The top-hat filter displays good spatial accuracy in preserving
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localised flow behaviour (Meneveau & Katz 2000).

GL

(
~x, ~x′,Λ

)
=





Λ−3, for ~x− ~x′ ≤ Λ/2,

0, for ~x− ~x′ > Λ/2,

(3.39)

The filtered momentum conservation equations for incompressible flow take the form

in Equation (3.40).

∂ũi
∂t

+
∂
(
ũiũj

)

∂xi
= −

1

ρ

∂p̃

∂xi
+ ν

∂2ũi
∂xi∂xj

−
∂τij
∂xj

, (3.40)

The tensor τij represents tensor of sub-grid stresses, as defined in Equation (3.41).

τij = ũiuj − ũiũj, (3.41)

The strain-rate tensor of the filtered velocity field is given in Equation (3.42).

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
S̃ =

√
2S̃ijS̃ij , (3.42)

3.7.2 Smagorinsky Models

Smagorinsky (1963) developed a simple sub-grid stress model which formed the basis

for a whole class of models in use today. Smagoinsky assumed that a single value of

effective viscosity νt, is sufficient to represent the effect of the small-scale motions on

the mean flow at each point. This assumption requires an equal flow of energy into

and out of the unresolved portion of the energy cascade. The ‘Smagorinsky’ model

proposes that the effective turbulent viscosity is proportional to an operator that is

related to the velocity gradient tensor of the resolved scales as defined in Equation
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(3.43).

OP1 (~x, t) =

√
S̃ijS̃ij, (3.43)

Hence, the viscosity of the unresolved sub-grid stresses is determined by Equation

(3.44), where Csgs is the user-defined sub-grid scale constant.

νt = CsgsΛ

√
˜OP1 (~x, t), (3.44)

Whilst the Smagorinsky model is simple; requiring only a single value of the con-

stant Csgs throughout the entire domain, this constant must be able to represent the

damping effects in both the laminar region and the turbulent region of the flow. In

reality, the Smagorinsky model produces excessive dissipation in shear flows. This is

particularity problematic when modelling the transition of spatially developing bound-

ary layers where an initially laminar flow needs to initiate low turbulence production.

In modelling laminar-turbulent transition with a coarse streamwise and spanwise reso-

lution (equal to 90 and 42 viscous lengths respectively), Sayadi & Moin (2012) demon-

strated that the basic Smagorinsky model was too dissipative to induce transition in

the laminar boundary layer.

To reduce artificial dissipation due to shearing, Germano et al. (1991) proposed

a method of replacing the global, user-defined value of Csgs with a variable which is

recalculated locally during each time step. Firstly, they proposed a second filtering

width Λtest, which is larger than the standard filter Λ. The filtering operation is

performed a second time using Λtest as the cut-off length scale, where a second set of

sub-grid stress tensors ξij, are produced corresponding to a length scale of Λtest.

ξij = ˜̃uiuj − ˜̃ui ˜̃uj, (3.45)
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Subtracting the stress tensors for ξij and τ̃ij leaves a fully resolved stress from length

scales within the test filter.

ψij = τij − ξ̃ij , (3.46)

ψij −
1

3
ψkkδij =

(
Csgs

)2
ξij, (3.47)

ζij = 2Λ2

(∣̃∣∣S̃
∣∣∣ S̃ij −

(
Λtest

Λ

)2 ∣∣∣ ˜̃S
∣∣∣ ˜̃Sij

)
, (3.48)

Lilly (1992) proposed a new definition of the sub-grid constant shown in Equation

(3.49)

Csgs =

√
〈ψijζij〉

〈ζijζij〉
, (3.49)

This approach assumes that the sub-grid scale coefficient is independent of the local

length scale, such that a single value of Csgs can be applied for the scales of ∆ and

∆test.

3.7.3 WALE Model

The wall-adapting local eddy-viscosity model was developed by Nicoud & Ducros (1999)

for the purpose of improving the accuracy of sub-grid scale modelling in the low tur-

bulence, near-wall region of a turbulent shear layer. As for the constant Smagorinsky

model, the WALE model applied a single global value to the sub-grid scale constants

at all points in the domain. The behaviour of the WALE model is controlled through

a modified configuration of the operator OP1 (~x, t), which is derived from the velocity

gradient tensor, as shown in Equation (3.50). The symbol δij represents the Kronecker

delta function.

Sd
ij =

1

2

(
▽ũik ▽ ũkj +▽ũjk ▽ ũki

)
−

1

3
δij ▽ ũ2kk, (3.50)
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In an attached shearing flow of purely laminar behaviour the only non-negligible

gradient will be ∂u/∂y > 0. In a spatially developing laminar boundary layer, the

streamwise length scales are considered to be far greater than the wall-normal length

scales (x >> y), such that ∂u/∂y >> ∂u/∂x and ∂u/∂y >> ∂v/∂x. In both of

these cases it may be assumed that Sd
ijS

d
ij ≈ 0. Hence, Nicoud & Ducros (1999)

produced a new operator OP2 (~x, t), shown in Equation (3.51), by scaling Sd
ijS

d
ij with

the combination of the strain rate tensor.

OP2 (~x, t) =

(
Sd
ijS

d
ij

)1.5

(
S̃ijS̃ij

)2.5
+
(
Sd
ijS

d
ij

)1.25 , (3.51)

The WALE model determines the unresolved sub-grid viscosity through the rela-

tionship in Equation (3.52).

νt =
(
CsgsΛ

)2
OP2 (~x, t) , (3.52)

The numerator in Equation (3.52) will maintain a positive, non-zero value, both in

cases of laminar shear flow and rotational flow. Hence, unlike the dynamic variant of the

Smagorinsky model (Lilly 1992) the WALE model does not require spatial averaging to

maintain stability. This is beneficial within flows which do not have a clearly defined,

or unknown, plane which is statistically homogeneous.

The findings of Rezaeiravesh & Liefvendahl (2018) provide a good indication of the

maximum spatial resolution for which the WALE model is suitable. Rezaeiravesh &

Liefvendahl (2018) compared the influence of near-wall spatial resolution in modelling

a periodic turbulent channel flow with WALE models in OpenFOAM. Their solutions

achieved an accurate replication of the inner region, for streamwise and spanwise res-

olutions of < 17 and < 10 viscous lengths respectively. These requirements lie close
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to the high-resolution which is utilised in modelling spatially developing turbulent

boundary layer to a high spectral accuracy (Schlatter et al. 2010). At this resolution,

the use of the WALE model by Rezaeiravesh & Liefvendahl (2018) had a negligible,

if not detrimental, effect on the accuracy. The error was derived primarily from the

spanwise spatial resolution, and its resulting over prediction in the streamwise velocity

fluctuation in the region of high-speed and low-speed streaks.

3.8 Post-Processing

Analysis of the turbulent boundary layer simulations in Chapter 4 and Chapter 7

require velocity profiles for the mean flow, which can be compared with the ideal case

of a fully developed, spanwise invariant, boundary layer profile. The time-dependant

turbulent flow fields are first temporally averaged to produce ideally steady-state flow

fields, with the time-dependant turbulent behaviour removed. Then, through the use

of bash scripts which were created by the author for the present analysis, the velocity

profiles are automatically extracted, spatially-averaged and collapsed to produce the

integral boundary layer properties.

3.8.1 Temporal Averaging in OpenFOAM

The temporal averaging procedure is performed by the ‘fieldAverages’ function, which

is configured in the ‘controlDict’ dictionary. It allows the calculation of both the time-

averaged value of a given property, along with its time-averaged root-mean square

value. The user must specify the size of the temporal averaging window Tav. This

window will contain a number of time steps denoted by nt = (1, 2, 3...Nt). When the

time increment ∆t, is fixed, as in the present analysis, the number of time steps in
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the averaging window can simply be taken as Nt = Tav/∆t, where the physical time is

denoted by t.

In the LES simulations in Chapter 4 and Chapter 7, a continuous averaging proce-

dure was used. For each cell in the domain, OpenFOAM stores a single time-averaged

property at each time step, beginning from initial conditions at the first time step. Dur-

ing the first averaging period the instantaneous values are added to the mean (Equation

3.53) and root mean squared (Equation 3.54) with equal weighting.

φ̄ (x, y, z, t) =

(
t−∆t

t

)
φ̄+

(
∆t

t
φ

)
, (3.53)

φ̄′[t]
rms =

(
t−∆t

t

)
φ̄′

rms +

(
∆t

t

)
φ2 − φ̄2, (3.54)

Once the physical time passes the averaging period Tav, the time-averaged fields

and the instantaneous fields are weighted against the averaging period, as shown in

Equation (3.55) and Equation (3.56). Therefore, the influence of the early transient

states diminishes with time.

φ̄ (x, y, z, t) =

(
Tav −∆t

Tav

)
φ̄+

(
∆t

Tav

)
φ, (3.55)

φ̄′[t]
rms =

(
Tav −∆t

Tav

)
φ̄′

rms +

(
∆t

Tav

)
φ2 − φ̄2, (3.56)

This approach allows for a continuous output of temporal averaging across all time

steps. If temporal averaging begins early in the initial transient stage, the time-

dependant turbulent profiles can be monitored to assess the minimal settling time

required for development of the turbulent boundary layer structure. Thus temporal

averaging is applicable when the required settling time is unknown. Furthermore, it

allows for optimisation of the CPU time required to obtain a fully developed solution.
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3.8.2 Alternative Approach: Continuous Averaging

In many investigations of equilibrium boundary layers, the numerical solution does

not apply temporal averaging procedures, or output time-averaged results, for the

first series of time steps. Temporal averaging is only applied once the boundary layer

reaches a developed state with minimum influence of the initial conditions or initial

transient behaviour. The time-averaged value at each point can obtained by simply

taking the mean of the flow field at all time increments within an averaging window

that begins after equilibrium has been achieved, as shown in Equation (3.57). However,

this approach requires the development time to be pre-known.

φ̄ (x, y, z) =
1

Nt

Nt∑

nt=1

φ (x, y, z, nt) , (3.57)

3.8.3 Spanwise Averaging

The final post-processing stages in Chapter 4 and Chapter 7 used bash scripts, which

were created by the author for use in the present analysis, to log the boundary layer

structure at discrete points along the streamwise direction of a spatially developing

turbulent boundary layer.

The first script, contained in Appendix A.1, extracts spatially averaged velocity pro-

files from user-specified locations along the computational domain. Firstly, a planar

slice of the mesh is extracted from the main domain using the ‘topoSet’ and ‘sub-

setMesh’ commands. This slice is typically one cell thick in the streamwise direction.

Each subset of the mesh is placed into the ‘constant/polyMesh’ directory, in place

of the full domain. Finally, the ‘postChannel’ command is performed on that local

subset on the domain, to produce an averaged profile at a given streamwise location.
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The ‘postChannel’ command is designed for extracting time-averaged data from pla-

nar channels, and as such, it performs the averaging procedure over the spanwise and

streamwise directions. However, by extracting a subset of the mesh, the ‘postChannel’

averaging procedure can be restricted to one cell in the streamwise direction.

Each sample volume spans for Nx cells in the streamwise direction, and Nz cells in

the spanwise direction. For each discrete x-z plane at a distance of y away from the

wall, all cells are collapsed to a single, spatially-averaged point value using Equation

(3.58).

〈φ̄ (y, t)〉 =
1

∆Nx∆Nz

∆Nx∑

nx=1

∆Nz∑

nz=1

φ̄ (nx, y, nz, t) , (3.58)

The script in Appendix A.1 produces a set of wall-normal profiles of spanwise-

averaged, time-averaged properties at each user-specified streamwise location. These

properties include pressure 〈p̄〉, velocity components 〈ū〉, 〈v̄〉 and 〈w̄〉, in addition

to four root mean square components of velocity 〈ū′rms〉, 〈v̄′rms〉 and 〈w̄′
rms〉, and

the Reynolds shear stress −〈 ¯u′v′〉. The final property is the kinetic energy which is

determined from the output of the time-averaged and spanwise-averaged components,

as defined in Equation (3.59).

k =
1

2

(
〈ū′rms〉+ 〈v̄′rms〉+ 〈w̄′

rms〉
)
, (3.59)

The final script in Appendix A.2 cycles through each discrete wall-normal location,

starting with the cell value adjacent to the wall, to calculate the integral boundary

layer, including thickness values which are defined in Equation (1.13), Equation (1.14)

and Equation (1.15), in addition to various Reynolds numbers, free-stream conditions

and wall shear stress.
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3.9 Summary

This Chapter has presented a detailed discussion of the capabilities of the open source

code OpenFOAM for modelling fluid flows. Given the wide variety of utilities available

within OpenFOAM, primary focus has been given to those which were utilised in the

present analysis.

OpenFOAM operates with the finite volume approach, in which the velocity and

pressure fields are solved over a discretised domain. The steady-state simpleFoam

solver, and the transient pimpleFoam and pisoFoam solvers are all applicable to in-

compressible flows in both the laminar and turbulent regimes. Together these three

solvers will be sufficient to cover the range of flows in the present analysis.

All numerical schemes presented are of first-order to second-order accuracy, and

are applicable to both orthogonal meshes, which were utilised in Chapter 4, and non-

orthogonal meshes, which were utilised in Chapters 5,6 and 7. The majority of these

non-orthogonal meshes were generated using the snappyHexMesh utility. This chap-

ter has demonstrated the capabilities of snappyHexMesh for generating robust, split-

hexahedral meshes around arbitrary geometries, without a significant increase in the

required pre-processing time which is typically associated with increasing geometric

complexity.

The capabilities of modelling turbulence through large-eddy simulation in Open-

FOAM have been discussed. Whilst OpenFOAM has been validated for modelling

turbulence in fully developed channel flow, the question remains as to its performance

for modelling laminar-turbulent transition in spatially developing boundary layers un-

der comparable tripping conditions. This question was be investigated in detail, as

discussed in Chapter 4.



CHAPTER 4

Spatially Developing Turbulent Boundary Layers in OpenFOAM

4.1 Introduction

The present chapter details a process of developing a numerical methodology for mod-

elling spatially developing laminar-turbulent transition in OpenFOAM, with further

optimisation to balance physical detail and accuracy with economic efficiency. Firstly,

the flow domain is configured and approximate solutions are used to produce a detailed

approximation of the boundary layer properties along the length of the domain. Sec-

ondly, two simulations compare two different configurations for the numerical trip at

a fixed spatial resolution. This stage aims to assess the response of the initially lam-

inar boundary layer to the velocity fluctuations of the tripping plane, independently

of the spatial resolution. As a minimum, it is desired that the boundary layer must
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reach a state of equilibrium within 25% of the domain length. Assessing the boundary

layers state of development involves both a comparison of the base flow parameters

(shape factor, coefficient of friction) and the local structure of the boundary layer,

with particular attention to the outer region (Schlatter & Orlu 2012). The final stage

of development investigates the direct influence of the global spatial resolution on the

accuracy of the numerical solution. This approach assumes that the initial spatial res-

olution is sufficient to capture a realistic representation of the physical behaviour of

the numerical trip and the boundary layer development during the transitional region.

4.2 Numerical Setup

4.2.1 Flow Domain

The boundary layer simulations which are developed in the present analysis are de-

signed in the context of an existing open wind tunnel within Liverpool John Moores

University. A detailed description of the facility can be found in Wharton (2017).

The wind tunnel consists of a high speed air blower which is capable of producing a

bulk flow velocity of up to 120m/s. The air blower connects to the inlet of a working

section which is 400mm in length, 200mm in width and 20mm in height. Wharton

(2017) designed and constructed a force balance which can incorporate interchange-

able plates upon the lower wall between x = 0.07m and x = 0.25m downstream of the

inlet to the working section. This region will be taken as the ‘point of interest’, for

which the smooth surface will be replaced with transverse grooves in Chapter 7. The

working section of the wind tunnel is shown in Figure 4.1, whilst the features of the

force balance are highlighted in Figure 4.1b.
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(a) Side view

(b) Top view

Figure 4.1: Image of the open wind tunnel facility; air blower and working section.
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Figure 4.2 displays the flow domain which is taken to represent the wind tun-

nel working section in the present analysis. The boundary layer outline shown in

Figure 4.2a demonstrates the ideal process of boundary layer growth in the com-

putational domain. The working fluid is air with a constant kinematic viscosity of

ν = 1.568 × 10−5m2/s and a constant density of ρ = 1.177kg/m3. It is assumed that

the flow will enter the working section in a fully laminar state, with a small laminar

shear layer having already developed over the lower wall. The origin of the streamwise

Cartesian vector x is taken to lie at the inflow plane of the working section. The inflow

plane will lie upstream of the location of the effective ‘leading edge’ from which the

inflowing laminar boundary layer originates. The length parameters xl and xt denotes

the distance between a point x and the location of the effective ‘leading edges’ of the

laminar boundary layer and turbulent boundary layer respectively, as illustrated in

Figure 4.2.

For the computational domain, the spanwise width of the working section is reduced

to a width Lz, by assuming that the width of the working section is large enough such

that the solid walls which form the spanwise boundaries have a negligible influence

on the flow field towards the centre of the working section. The front plane and back

plane are specified as periodic boundaries by linking the velocity and pressure fields

at both faces through a ‘cyclic’ boundary condition, as illustrated in Figure 4.2b. The

domain height Ly is restricted to half the height of the working section. Free-stream

boundary conditions are applied at the upper boundary, by assuming that the thickness

of the boundary layer on the smooth upper wall of the working section has a negligible

influence on bulk flow through the working section.
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(a) Streamwise and wall-normal plane
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Figure 4.2: Diagram of the flow domain and boundary conditions for the spatially
developing boundary layer flow.
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4.2.2 Inflow Conditions

Blasius identified that, in a spatially developing laminar boundary layer, the velocity

scales with u∞ and the wall-normal distance scales with the variable
√
vxl/u∞. The

scaled velocity is given by the differential of a function g′ = u/u∞, where g is a function

of the scaled wall-normal distance, such that g = f(y
√
u∞/vxl), and g satisfies the

relationship in Equation (4.1).

gg′′ + 2g′′′ = 0, (4.1)

By substituting the analytical solution for boundary layer thickness δ99 in Equation

(4.3), the wall-normal distance y, and function g, can be rewritten in the form g =

f(5y/δ99). Although an exact form of g is unknown, Table 4.1 displays the solutions for

the function g and its derivatives as determined by Howarth (1938) (referenced from

Schlichting (1978)).

In reality, no single equation describes the distribution of velocity across the full

width of a turbulent boundary layer. Whilst the outer region scales with the mean flow

properties (i.e. u∞, δ99), the velocity distribution in the inner region is independent

of these variables. However, when initial predictions are required, it is sufficiently

accurate to assume that the velocity in the inner region scales with δ99, and that the

relation takes the form of the 1/7th power law in Equation (4.2).

u

u∞
=

(
y

δ99

) 1
7

, (4.2)

Substituting Equation (4.2) and the discrete laminar solutions (Table 4.1) into the

integral relations in Equations (1.13),(1.14),(1.15) and (1.16) leads to approximations

for boundary layer thickness (Equation 4.3), displacements thickness (Equation 4.4),

momentum thickness (Equation 4.5) and wall shear stress (Equation 4.6) at a point
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Table 4.1: Solutions to the Blasius Equation for the velocity distribution in a spatially
developing laminar boundary layer (Howarth 1938).

y/δ99 g g′ g′′ y/δ99 g g′ g′′

0.00 0.00000 0.00000 0.33206
0.04 0.00664 0.06641 0.33199 0.92 2.88826 0.98260 0.02948
0.08 0.02656 0.13277 0.33147 0.96 3.08534 0.98779 0.02187
0.12 0.05974 0.19894 0.33008 1.00 3.28329 0.99155 0.01591
0.16 0.10611 0.26471 0.32739 1.04 3.48189 0.99425 0.01134
0.20 0.16557 0.32979 0.32301 1.08 3.68094 0.99616 0.00793
0.24 0.23795 0.39378 0.31659 1.12 3.88031 0.99748 0.00543
0.28 0.32298 0.45627 0.30787 1.16 4.07990 0.99838 0.00365
0.32 0.42032 0.51676 0.29667 1.20 4.27964 0.99898 0.00240
0.36 0.52952 0.57477 0.28293 1.24 4.47948 0.99937 0.00155
0.40 0.65003 0.62977 0.26675 1.28 4.67938 0.99961 0.00098
0.44 0.78120 0.68132 0.24835 1.32 4.87931 0.99977 0.00061
0.48 0.92230 0.72899 0.22809 1.36 5.07928 0.99987 0.00037
0.52 1.07252 0.77246 0.20646 1.40 5.27926 0.99992 0.00022
0.56 1.23099 0.81152 0.18401 1.44 5.47925 0.99996 0.00013
0.60 1.39682 0.84605 0.16136 1.48 5.67924 0.99998 0.00007
0.64 1.56911 0.87609 0.13913 1.52 5.87924 0.99999 0.00004
0.68 1.74696 0.90177 0.11788 1.56 6.07923 1.00000 0.00002
0.72 1.92954 0.92333 0.09809 1.60 6.27923 1.00000 0.00001
0.76 2.11605 0.94112 0.08013 1.64 6.47923 1.00000 0.00001
0.80 2.30578 0.95552 0.06424 1.68 6.67923 1.00000 0.00000
0.84 2.49806 0.96696 0.05052 1.72 6.87923 1.00000 0.00000
0.88 2.69238 0.97587 0.03897 1.76 7.07923 1.00000 0.00000

x in a spatially developing laminar or turbulent boundary layer (Schlichting 1978).

These approximations assume that the boundary layer immediately transitions from

a laminar state to a fully developed turbulent state at a point x = xtrip, where xtrip

represents the exact point of transition due to either a natural or enforced instability.

Approximation of the boundary layer thickness:

δ99 ≈





5x
1
2
l

(
u∞
ν

)− 1
2

, for xl < xtrip,

0.37x
4
5
t

(
u∞
ν

)− 1
5

, for xl > xtrip,

(4.3)
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Approximation of the displacement thickness:

δ∗ ≈





1.721x
1
2
l

(
u∞
ν

)− 1
2

, for xl < xtrip,

0.0463x
4
5
t

(
u∞
ν

)− 1
5

, for xl > xtrip,

(4.4)

Approximation of the momentum thickness:

θ ≈





0.664x
1
2
l

(
u∞
ν

)− 1
2

, for xl < xtrip,

0.036x
4
5
t

(
u∞
ν

)− 1
5

, for xl > xtrip,

(4.5)

Approximation of the wall shear stress:

τ0 ≈





0.332ρu
3
2
∞

(
ν

xl

) 1
2

, for xl < xtrip,

0.0225ρu
7
8
∞

(
ν

δ99

) 1
4

, for xl > xtrip,

(4.6)

Based upon the recommendations of Schlatter & Orlu (2012), the boundary layer

must be tripped within the limit Reθ < 300. If the conditions of the trip are suitable

to the flow, the turbulent regime of the boundary layer should become fully developed

by the point Reθ ≥ 2000. Two reoccurring estimates involve fixing either the displace-

ment Reynolds number to Reδ ≈ 450 or the momentum Reynolds number to Reθ ≈ 180

(Eitel-Amor et al. 2014; Schlatter & Orlu 2010; Schlatter & Orlu 2012). For all approx-

imations in the present analysis, the Reynolds number of the inflow boundary layer is

taken as Reθ = 180 and it is assumed that acceleration in the free-stream due to bound-

ary layer growth is negligible. Since boundary layer growth during laminar-turbulent

transition is difficult to predict, it is assumed that the boundary layer immediately

transitions to a fully developed turbulent state at the tripping point, whilst maintain-

ing the same value of boundary layer thickness δ99.
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Figure 4.3: Prediction of Reθ for different values of free-stream velocity at the inflow.

The momentum Reynolds number at a point increases non-linearly with both the

free-stream velocity and streamwise location. The magnitude of the free-stream veloc-

ity must be sufficient to ensure that the flow has reached a state of fully developed

turbulence by the start of the region of interest x = 0.07m, and that a state of ideal

turbulence; i.e. without significant influence from the tripping conditions, covers a sig-

nificant portion of this region. For varying values of free-stream velocity at the inlet,

Figure 4.3 displays the predicted values of Reθ at three key points along the streamwise

length of the domain. These three points mark the start point (x = 0.07m), midpoint

(x = 0.16m) and end point (x = 0.25m) of the region of interest. It is estimated that

a free-stream velocity of u∞ > 40m/s is required for the boundary layer to complete

its transition to turbulence by the point x = 0.07m, however, the flow behaviour will

continue to be influenced by the trip whilst the flow remains within the limits of incom-

pressibility. The influence of the trip is predicted to be sufficiently diminished by the

midpoint (x = 0.16m) when the inflow velocity exceeds 90m/s. Of course, this only
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applies if optimal tripping conditions can be determined. Based upon these observa-

tions, the inflow free-stream velocity is set to u∞ = 100m/s (or 110% of the minimum

required value), in order to ensure that a full development exists over half of length of

the region of interest; between x = 0.16 and x = 0.25m.

The laminar boundary layer must be tripped within x < 0.02m, for which Reθ <

300. If the tripping is optimal, the boundary layer will reach an independent state

(Reθ > 2000) at x > 0.14m. Whilst air with a velocity of 100m/s lies close to the

limit of incompressibility (M = 0.3), for which temperature and density variations

in the fluid become significant, the flow in the present analysis is assumed to remain

incompressible along the full length of the domain.

4.2.3 Tripping Mechanism

Schlatter & Orlu (2012) demonstrated that a steady-state laminar boundary layer can

be destabilised by a wall-normal body force with a temporal variation and a spanwise

spatial variation. They identified that this trip should lie within Reθ < 300 to ensure

rapid transition.

The present OpenFOAM simulations demonstrate that these wall-normal motions,

and their destabilising effects, may be replicated by applying a field of synthetic turbu-

lence to the wall-normal velocity components at the no-slip wall. The ‘turbulentInlet’

boundary condition of the OpenFOAM library applies a simple representation of tur-

bulent behaviour to a uniform inflow, as a field of time-dependant velocity fluctuations

to one or more components of a uniform velocity inflow condition. The velocity fluctu-

ations for a given velocity component are fully random in space, and pseudo-random in

time, at each point on the inflow plane. All points are anchored to a uniform value of
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reference velocity
(
uref , vref , wref

)
and scale with a user specified velocity fluctuation

scale
(
u′ref , v

′
ref , w

′
ref

)
. Equation (4.7) displays the weighted adjustment of instan-

taneous wall-normal velocity on the tripping plane at time t, where Gg represents a

Gaussian random number, and αt represents the weighting factor.

v[t] = (1− αt) v
[t−∆t] + αt

(
vref + v′refGg

)
, (4.7)

In this case, the tripping inflow plane lies parallel to the wall at y = 0m. It spans

the full spanwise width of the domain and lies between x = 0.004m and x = 0.006m

along the streamwise direction. The streamwise and spanwise velocity components

comply with the no-slip condition of a traditional solid wall; u+ = 0 and w+ = 0, along

with a zero value Neuman constraint for the pressure variable. Table 4.2 displays the

settings of each trip configuration which is considered in the present investigation. The

wall-normal reference velocity contains a non-zero uniform value of vref = (u∞)in×10−5

to produce a negligible value of bulk mass flow rate through the plane. The velocity

fluctuation values are scaled against the theoretical value of friction velocity for a

turbulent boundary layer at the midpoint of the tripping location assuming that δ99(t) =

δ99(l). This study investigates on two values of tripping velocity; v′+ref = 0.551 and

v′+ref = 1.105, which preliminary investigations confirmed were sufficient to initiate

transition within the first 20% of the streamwise domain.

Table 4.2: Configurations of two numerical trips used in the present analysis.

Trip v′ref(m/s) vref(m/s) αt v
′+
ref

T1 1.817 0.001 0.1 0.551
T2 3.633 0.001 0.1 1.105

The distribution of the time-averaged wall-normal velocity and the time-averaged

root mean square of the wall-normal velocity is not homogeneous across the tripping

plane; varying at each face. The maximum and minimum variation from the specified
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value of v′+ref grew as the value of v′+ref increased. For the weakest trip of v′+ref = 0.551,

the variation in v̄+rms was less than ±1% of v′+ref , but rose to ±10% for the strongest trip

of v′+ref = 1.105. Notably, two different solutions which applied v′+ref = 1.105 produced

nearly identical responses in the local variations of v̄+rms and v̄+. This comparison

suggests that although the exact form of the trip is unknown in a given case, the

averaging period is sufficient to filter out the random fluctuations at each point to

produce a consistent and predictable effect on the time-averaged flow field.

4.2.4 Investigation Configuration

Figure 4.4 displays the layout of the flow domain, and the stages of the spatially

developing boundary layer. The flow enters the domain as a steady-state, laminar

boundary layer with a fixed Reynolds number of Reθ = 180, based upon the momentum

thickness at the inlet θin, and the free-stream velocity u∞. The boundary layer reaches

the outflow plane as a fully turbulent flow of Reθ ≈ 3000. The streamwise and wall-

normal lengths of the computational domain were kept constant for all simulations.

The streamwise length is Lx = 0.27m in real units, or Lx ≈ 9566θin, in relation to

the inflow momentum thickness. The wall-normal height extends for half the height

of the corresponding experimental domain; Ly = 0.01m (Ly ≈ 354θin) or, based upon

initial approximations, 1.77 times the maximum thickness of the boundary layer in

the domain. All smooth wall simulations contain identical boundary conditions, with

the exception of the numerical tripping plane. A free stream boundary condition was

applied to the boundary plane of y = 0.01m by specifying a zero gradient for the

pressure and all three components of velocity. The outlet boundary plane at y =

0.27m was specified as a fixed, uniform value of pressure, with zero gradient velocity

components. Cyclic boundary conditions were applied to two boundary planes at
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z = Lz/2 and z = −Lz/2. The inflow plane at x = 0m contained fixed values of zero

for the spanwise and wall-normal velocity components, and a zero gradient constraint

on the pressure. The streamwise velocity component was applied as a steady-state,

non-uniform field, which varies across the wall-normal direction in the form of the

Blasius profile in Table 4.1.
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Figure 4.4: The flow domain for a spatially developing boundary layer comprising,
laminar, transitional and fully turbulent regimes within a single domain.

Table 4.3 provides the configurations of the five simulation cases in the present

analysis, in terms of the mesh, numerical trip and spanwise domain width. Case M2-

T1-L1 and case M2-T2-L1, investigate the two configurations of the numerical trip;

trip T1 and trip T2, given in Table 4.2, with a fixed spatial resolution (i.e. mesh

M2). Case M1-T2-L2, case M2-T2-L2 and case M3-T2-L2 investigate influence of

spatial resolution by comparing three different meshes with a fixed configuration for the

numerical trip. Table 4.4 displays the inner-scaled cell dimensions of the three meshes;

M1, M2 and M3. The friction velocity for the inner-scaling of the cell dimensions is

taken from the point x = 0.07m (x/θin = 2480). The spanwise length varied as the

methodology developed. For the first stage of simulations (case M2-T1-L1 and case

M2-T2-L1) this width corresponded to over three times the predicted boundary layer

thickness; Lz = 0.012m ≈ 2.25δ99(max). The resulting solution produced more accurate

predictions of δ99(max), and hence, for the remaining investigation of varying spatial

resolution (case M1-T2-L2, case M2-T2-L2 and case M3-T2-L2) the computational
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domain was reduced from Lz = 0.012m ≈ 3δ99 to Lz = 0.008m ≈ 2δ99, based on δ99 at

x = 0.25m.

Table 4.3: Configurations of tripping velocity, spatial resolution and spanwise width
for the cases of spatially developing flow over a smooth wall.

Case Mesh Trip Lz/θin NT

(
×106

)
∆t (u∞)in /Lx

(
×10−5

)

M2-T1-L1 M2 T1 425 42.4 6.11
M2-T2-L1 M2 T2 425 42.4 6.11
M1-T2-L2 M1 T2 283 12.6 7.96
M2-T2-L2 M2 T2 283 28.3 6.11
M3-T2-L2 M3 T2 283 62.9 4.70

Table 4.4: Inner-scaled cell dimensions for three meshes of varying spatial resolution.

Mesh ∆x+ ∆y+max ∆y+min ∆z+

M1 54.9 54.9 1.30 27.6
M2 42.2 42.2 1.00 21.2
M3 32.5 32.5 0.77 16.3

Mesh M2, which is displayed in Figure 4.5, constitutes the base mesh which is

applied in the investigation of the numerical trip in case M2-T1-L1 and case M2-T2-

L1. For this base mesh, the near-wall cells are uniformly distributed in the streamwise

and spanwise directions with a resolution of ∆x+ ≈ 42.2 and ∆z+ ≈ 21.2, based upon

uτ at the start of the fully developed region; x/θ = 2481 (Reθ = 1066).The cells have

a wall-normal resolution of ∆y+min ≈ 1 adjacent to the wall and expand uniformly

between y = 0m and y = 0.04m, where the maximum height is ∆y+max ≈ ∆x+.

The sub-grid stress from the unresolved turbulent length scales are modelled using

the WALE sub-grid scale turbulence model. A recent validation of OpenFOAM for tur-

bulent channel flow by Rezaeiravesh & Liefvendahl (2018) produced a recommended

resolution of ∆x+ ≈ 18 and ∆z+ ≈ 9. However, this resolution rendered the WALE

sub-grid scale either ineffective or detrimental in influencing the accuracy of the so-

lution. Whilst omitting the WALE model reduced the excessive near-wall streamwise

fluctuations, it degraded the accuracy of the friction velocity if the spanwise resolution

was not increased. The streamwise and wall-normal resolution in mesh M2 lies close to
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Figure 4.5: Streamwise and wall-normal mesh distribution for a flow domain with
mesh M2.

that of solution of Arolla (2016), ∆x+,∆z+ ≈ 45, 12. The spanwise resolution is lower

by a factor of 1.7, which more recent investigations have confirmed to be capable of

supporting a resolved laminar-turbulent transition process (Mukha et al. 2019).

Second-order accurate central differencing schemes are used for spatial discretisation

of the gradient (Equation 3.12) and divergence terms (Equation 3.8). Limiting is not

applied to the gradient scheme in Equation (3.12) since all cells are fully orthogonal.

All Laplacian terms are discretised using the Laplacian scheme in Equation (3.18).

The second order accurate backward differencing scheme (Equation 3.26) is used to

discretise all temporal terms.

The values of time shown in Table 4.3 are normalised by the time taken for the

free-stream flow at the inlet to pass through the streamwise length of the domain;

Lx/(u∞)in. The time steps correspond to a maximum value of the Courant number of

Co < 0.7, which produces a global average of Co ≈ 0.1. The time-averaged value φ̄, and

root mean square components φrms, of velocity and pressure are averaged continuously

during the period of initial transience and full development. Once the physical time

passes the averaging period, the time-averaged fields and the instantaneous fields are
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weighted against the averaging period, such that the influence of the early transient

state diminishes with time.

Spatial averaging, denoted by 〈·〉, is applied to the time-averaged velocity values

across the spanwise direction post run time. The wall shear stress value is then deter-

mined from the near-wall velocity gradient, based on the first cell at the wall, and the

stationary wall boundary (Equation 4.8).

〈τ̄0〉 = µ

(
∂〈ū〉

∂y

)

y=0

≈ µ
〈ū〉min

0.5∆ymin

, (4.8)

The spanwise averaged wall shear stress is normalised using the local free-stream

velocity to produce the dimensionless coefficient of friction (Equation 4.9).

Cf =
2

ρ

〈τ̄0〉

〈ū∞〉2
, (4.9)

The total run time in each case equalled 20 passes through the domain; t =

20Lx/(u∞)in. The continuous averaging period spanned for Tav = 10Lx/(u∞)in. Ta-

ble 4.5 displays the temporal convergence in each case by comparing the shape fac-

tor H , and coefficient of friction Cf , at physical times of t = 18Lx/(u∞)in and t =

20Lx/(u∞)in, and assessing the shift in H and Cf over a period of 2Lx/(u∞)in. Fig-

ure 4.6 and Figure 4.7 illustrate the variation in H and Cf over time in relation to the

error associated with spatial resolution.

The temporal convergence is assessed at three points along the computational do-

main x = 0.07m, x = 0.16m and x = 0.25m. The shape factor displays the strongest

convergence compared with the coefficient of friction. At all three locations, the shape

factor does not vary more than 0.1% between t = 18Lx/(u∞)in and t = 20Lx/(u∞)in

in each simulation. As the boundary layer moves along the streamwise direction, the
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Figure 4.6: Temporal convergence of the shape factor H, for three levels of spatial
resolution over a smooth wall.
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Figure 4.7: Temporal convergence of the coefficient of friction Cf , for three levels of
spatial resolution over a smooth wall.
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Table 4.5: Temporal variation of shape factor and coefficient of friction in each smooth
wall boundary layer simulation.

Case x (m) t (u∞)in /Lx H Cf

(
×10−3

)
∆H

(
%
)

∆Cf

(
%
)

M2-T1-L1 0.07 18 1.494 4.157
20 1.494 4.162 +0.01 +0.11

0.16 18 1.374 3.512
20 1.373 3.532 −0.04 0.55

0.25 18 1.356 3.158
20 1.357 3.177 +0.02 +0.61

M2-T2-L1 0.07 18 1.423 3.907
20 1.423 3.910 +0.00 +0.07

0.16 18 1.364 3.437
20 1.364 3.443 +0.03 +0.20

0.25 18 1.354 3.124
20 1.355 3.136 +0.06 +0.37

M1-T2-L2 0.07 18 1.426 3.644
20 1.425 3.646 −0.03 +0.05

0.16 18 1.352 3.279
20 1.352 3.289 +0.03 +0.31

0.25 18 1.334 3.030
20 1.335 3.044 +0.02 +0.48

M2-T2-L2 0.07 18 1.423 3.913
20 1.423 3.911 +0.00 −0.04

0.16 18 1.363 3.434
20 1.364 3.445 +0.03 +0.32

0.25 18 1.354 3.119
20 1.355 3.133 +0.07 +0.45

M3-T2-L2 0.07 18 1.432 4.131
20 1.432 4.136 −0.01 +0.12

0.16 18 1.385 3.506
20 1.385 3.517 +0.04 +0.34

0.25 18 1.381 3.135
20 1.382 3.151 +0.08 +0.52

variation between the three levels of spatial resolution grows, such that the influence

of spatial resolution on H exerts an influence which greatly exceeds that of the error

due to temporal convergence, as shown in Figure 4.6c.

In contrast to the shape factor, the variation in the coefficient of friction between

t = 18Lx/(u∞)in and t = 20Lx/(u∞)in grows along the domain, whilst the influence of

the spatial resolution decreases. This only become significant at the point x = 0.25m

(Figure 4.7c), where the variation in Cf between mesh M2 and mesh M3 is of equal

magnitude to the error due to temporal convergence. At the points x = 0.07m and
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x = 0.16m, the spatial resolution continues to exert a dominant influence on Cf . Of the

three cases displayed in Figure 4.7, case M3-T2-L2 displayed the greatest variation in

Cf of +0.52%. However, running case M3-T2-L2 for a further time of t = 24Lx/(u∞)in

altered the coefficient of friction by less than +0.1% for Reθ < 2000 and by +0.3%

towards the end of the domain, when compared to the solution at t = 20Lx/(u∞)in.

4.3 Trip Response

4.3.1 Coherent Structures

Firstly, consider the response of the physical flow in the region of the trip. Figure 4.8

displays the initiation and growth of coherent turbulent structures downstream of the

trip for tripping velocities of v′+ref = 0.551 (Figure 4.8a) and v′+ref = 1.102 (Figure 4.8b).

These structures are visualised through the second invariant of the velocity gradient

tensor Q. The Q criterion defines a vortex based on the the strain-rate tensor Sij , and

the asymmetric vorticity tensor Ωij . The definitions of Sij and Ωij are presented in

Section 1.3.4. A vortex exists where the square of the norm of the asymmetric vorticity

tensor ΩijΩij , is greater than the square of the norm of the symmetric strain-rate tensor

SijSij , such that Q > 0 (Equation 4.10).

Q =
1

2

(
ΩijΩij − SijSij

)
, (4.10)

Each boundary layer in Figure 4.8 is divided into two segments to visualise different

length scales. One segment displays the large-scale structures in the outer region with

a criterion of Q > 5× 1051/s (left). The other segment displays small-scale structures

closer to the wall with a criterion of Q > 5× 1081/s (right).
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(a) Case M2-T1-L1

(b) Case M2-T2-L1

Figure 4.8: Development of coherent turbulent structures in the laminar and transi-
tional regimes downstream of a numerical trip for two values of the tripping velocity.
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Initial testing investigated a tripping velocity equal to 0.91% of the free stream

velocity at the inlet. The low trip velocity induces large, two-dimensional disturbances,

with minimal spanwise variation, into the laminar boundary layer, similar to those

visible early on in Figure 4.8a. The collection of small scale structures which form at

the trip rapidly dissipate downstream. The two-dimensional disturbances then continue

to propagate downstream and the flow maintains a growth rate for Reθ which correlates

to the theoretical Blasius solution with an upstream shift in the streamwise boundary

layer origin.

Raising the tripping velocity to v′+ref = 0.551 produces the same large-scale distur-

bances as before, whilst the small-scale, three-dimensional structures rapidly dissipate

beyond the trip. Once the flow reaches x = 0.04m these large-scale disturbances give

way to three-dimensional periodic structures, although the resolution is not sufficient,

even in the highest resolution of mesh M3 (case M3-T2-L2), to confirm the existence of

hairpin vortices. This weaker trip does not initiate transition until the flow has reached

the upper limits of the recommended range for the transition point; Reθ < 300. Dou-

bling the strength of the trip to v′+ref = 1.105 produces a rapid destabilisation of the

laminar flow, in which the point of transition lies firmly within Reθ < 200. The small-

scale coherent structures which form at the trip continue to propagate downstream.

As a result the weaker trip of v′+rms = 0.551 reached a Reynolds number of Reθ =

1000 at a distance of x = 3500θin downstream of the inlet. Increasing the strength to

v′+ref = 1.105 reduces this distance to x = 2480θin. After Reθ = 1000, the two boundary

layers continue to grow at similar rates. The lag of the weaker trip case at a fixed

streamwise location behaves as a simple shift of the boundary layer origin. This shift

reduces the effective domain length by approximately 10% in comparison to a trip of

v′+ref = 1.105.
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4.3.2 Free-Stream Constriction

As expected, the growth of the boundary layer within the confines of the domain

produces a favourable pressure gradient as the effective free-stream area shrinks down-

stream of the trip. For a spatially developing boundary layer at equilibrium, the

Clauser pressure gradient parameter β, (Clauser 1956) defined by Equation (4.11), will

be constant along the streamwise length of the domain.

β =
δ∗

〈τ̄0〉

d〈p̄〉∞
dx

, (4.11)

Downstream from the onset of transition, the time-averaged mean static pressure

of the free-stream flow falls non-linearly along the domain. The magnitude of the

negative pressure gradient parameter increases as the boundary layer grow along the

streamwise direction. The maximum value, located shortly upstream of the end of

the domain (x = 7795θin), lies within the range |β| = 0.038 ≈ 0.043. The fixed

atmospheric conditions at the outlet of the domain produces short, periodic pressure

distortions along the domain. However, the effect of these fluctuations is limited to

the time-averaged root mean square of the pressure variables over the full averaging

window.

4.3.3 Boundary Layer Growth

The shape factor is the ratio of the local displacement thickness to the local momentum

thickness H = δ∗/θ, and provides a strong indicator of the local state of boundary layer

development. The value of H falls asymptotically as the scaled free-stream velocity

〈ū〉+∞, rises. The profile in Equation (4.12) approximates the distribution of H as a
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function of Reynolds number, local variable Iu and the constants κ and C.

Hest =

(
1−

Iu

κ−1ln
(
〈ū〉∞δ∗/ν

)
+ C

)−1

, (4.12)

Iu =
1

δ∗〈ū〉+∞

∫ ∞

0

(
〈ū〉+∞ − 〈ū〉+

)2
dy, (4.13)

In a zero-pressure gradient boundary layer at equilibrium, the value of Iu is ideally

constant along the domain, based upon a collapse of published experimental datasets

(Chauhan et al. 2009). The constants take the form of κ = 0.384 and C = 3.3.

Figure 4.9 displays the evolution of the shape factorH , with the Reynolds number, Reθ,

for two different values of tripping velocity (Equation 4.7). The results are compared

against the Clauser relations for an ideal zero-pressure gradient flow.
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Figure 4.9: Evolution of the shape factor H, with the growth of Reθ downstream of
the tripping plane.

Given the non-zero value of β, and the uncertainty of the downstream influence of

the trip, new coefficients are determined for Equation (4.12), based upon the flow field

of case M2-T2-L1. The best fit line for u+∞ as a function of 〈ū〉∞δ
∗/ν produces values
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of κ = 0.3052 and C = −1.908. The value of Iu is dependant on Reθ during transition

and the early turbulent regime, but stabilised at Iu = 6.502 ± 0.12 within the region

of Reθ > 1415. These adjusted constants shift the asymptotic limit for the Clauser

relation whilst maintaining the general profile shape. By Reθ > 1350, the value of

Hest for case M2-T2-L2 lingers below the approximation for a zero-pressure-gradient

solution by roughly 5%.

The tripping velocity displays a mild influence on the shape factor distribution at

low Reynolds numbers. For Reθ > 1000 this influence diminishes as both boundary

layers collapse onto the adjusted shape factor approximations within an error bound of

±1%, and stays within these bounds along the remainder of the domain. At this point,

the relation of H in relation to Equation (4.12) is consistent with the ±1% variation

for similar zero-pressure gradient DNS solutions resulting from differences in domain

dimensions and tripping effects Schlatter & Orlu (2010). However, in case M2-T1-L2

and case M2-T2-L2 the trend of H is not consistent with Hest towards the end of the

domain. Beyond Reθ = 2000 the rate of change of H once again deviates from Hest

and H starts to stabilize around H ≈ 1.35.

Figure 4.10 compares the evolution of the coefficient of friction, Cf (Equation 4.9),

downstream of the numerical trip for two different values of tripping velocity (Equation

4.7). This distribution is assessed against the Coles-Felnholz (Coles 1956) log-law

relation in Equation (4.14), in addition to the results from the numerical solutions

displayed in Figure 4.9.

(
Cf

)
Coles

= 2

(
1

0.384
lnReθ + 4.127

)−2

, (4.14)

The strength of the numerical trip and the numerical spatial resolution produce
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Figure 4.10: Evolution of the coefficient of friction Cf , with the growth of Reθ down-
stream of the tripping plane.

their strongest influence on Cf within the transitioning boundary layer. For case M2-

T2-L1, the delay in transition caused by the weaker trip T1, greatly extends the early

stages of the transitional regime, such that the development of Cf provides no relation

to the log-law relation until Reθ = 700. Beyond this point, the flow rapidly conforms

to the magnitude and form expected for a fully turbulent flow. For both trip con-

figurations, the downstream boundary layer approaches to within a ±3% tolerance of

the log-law relation by Reθ = 1000. However, it is at this point that the location

of the numerical trip appears to exert its strongest influence. As the boundary layer

grows beyond Reθ = 1000, all flows tripped within the limit of Reθ < 300, continue

convergence towards the log-law relation.
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4.3.4 Turbulent Profiles

The time-averaged mean and root mean squared velocity values are taken as spatial

averages across the full width of the domain, and are scaled against a spatially and

temporally averaged friction velocity. Figure 4.11 displays the profiles inner-scaled

mean streamwise velocity profiles for discrete values of Reθ. Figure 4.12 and Figure 4.13

display the distribution of the inner-scaled streamwise velocity fluctuations 〈ū′rms〉
+,

wall-normal velocity fluctuations 〈v̄′rms〉
+, and Reynolds shear stress −〈 ¯u′v′〉+, across

the boundary layer for discrete values of Reθ. For reference, these graphs display

profiles of the flat plate OpenFOAM solutions of Arolla (2016) at Reθ = 1410, and

highly resolved spectral solution of Schlatter & Orlu (2010) for Reθ up to Reθ ≈ 3030.
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Figure 4.11: Distribution of the inner-scaled, time-averaged streamwise velocity. For
clarity, each set of profiles for a given magnitude of Reθ have been vertically offset in
intervals of 5 viscous units.

For the streamwise velocity, all profiles maintain a strong fit to the expected relation

of u+=y+ throughout the viscous sub-layer. Within the log-law region, there is a clear

log-law mismatch which improves only marginally beyond Reθ ≈ 1000. The upwards
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(a) RMS of streamwise velocity fluctuations
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〈ū′
rms〉

+

y+

Case M2-T1-L1 (Reθ = 1429)

Case M2-T2-L1 (Reθ = 1417)

(Schlatter & Orlu 2012) (Reθ = 1421)

(Arolla & Durbin 2014) (Reθ = 1430)

(b) RMS of wall-normal velocity fluctuations
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(c) Reynolds shear stress
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Figure 4.12: Comparison of the distribution of turbulent stress components over a
smooth wall for various tripping velocities.
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(a) RMS of streamwise velocity fluctuations
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(b) RMS of wall-normal velocity fluctuations
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Figure 4.13: Evolution of turbulent stress components over a smooth wall downstream
of the optimal numerical trip.
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shift is consistent with an reduction in the flow resistance for drag reducing flow control,

or in this case, an underprediction of Cf .

For the turbulent shear stresses produced by the current model, the direct influence

of the tripping strength begins to vanish by Reθ = 1000. Figure 4.12 displays minimal

variation between the weaker and stronger trip in the current model at Reθ ≈ 1410. In

relation to the reference DNS solution, the current model overpredicts the maximum

streamwise velocity fluctuations, and underpredicts the wall-normal velocity fluctua-

tions, throughout the shear layer. The scale of these discrepancies remains consistent

along the length of the domain. This includes the region from Reθ > 2000, for which

the effects of the tripping condition are expected have dissipated, and the shape factor

collapses onto the adjusted Clauser relation (Figure 4.10). Notably, despite having a

smaller streamwise resolution, the profiles of Arolla do not contain such a significant

overprediction of 〈ū′rms〉
+ across the across the logarithmic region and more than half

the distance of the outer region 5 < y+ < 300. The improvement in 〈v̄′rms〉
+ is less

significant in the inner region, whilst the larger maximum at y+ ≈ 100 translates into

excessive wall-normal fluctuations throughout the outer region.

As observed in the channel flow of Rezaeiravesh & Liefvendahl (2018), recall that

the accuracy of the wall shear stress for large-eddy simulation in OpenFOAM, at least

within the WALE model, depends first and foremost on the spanwise resolution near

the wall. On the other hand, the outer region, which scales with flow geometry, depends

primarily on the downstream inflow or development conditions. Finally, the Reynolds

shear stress −〈 ¯u′v′〉+ displays the strongest agreement with the DNS solution through

the domain. As for 〈ū′rms〉
+ and 〈v̄′rms〉

+, the inner region collapses onto the DNS

solution first, showing a good, consistent collapse by Reθ = 700. The outer region

follows with a gradual collapse as Reθ grows.
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4.4 Influence of Spatial Resolution

Since the maximum boundary layer thickness resulting from v′+ref = 1.105 is known, the

domain dimensions can be optimised by reducing the spanwise width to the minimum

length that is required to contain two large-scale coherent turbulent structures, which

each have a spanwise width of roughly 0.85δ99 (Schlatter et al. 2010). Reducing the

spanwise domain width to twice the width of the maximum boundary layer thickness

(case M2-T2-L1 → case M2-T2-L2) altered the value of Cf by less than ±0.2% along

the region of Reθ > 1000. A comparison of the wall-normal profiles of 〈ū′rms〉
+, 〈v̄′rms〉

+

and −〈 ¯u′v′〉+ at x = 8858θin displayed no visible change at all points across the full

width of the boundary layer.

The accuracy and validity of the current model in solving a spatially developing,

zero-pressure gradient boundary layer depends on a combination of the usual numerical

errors and the lingering effects of the upstream laminar-turbulent transitional flow.

To isolate and observe the contribution from the spatial resolution errors case M1-

T2-L2, case M2-T2-L2 and case M1-T2-L2 compare three levels of spatial resolution

with a fixed numerical trip of v′+ref = 1.105. The influence of spatial resolution on

boundary layer growth is assessed by the shape factor (Figure 4.14) and the coefficient

of friction (Figure 4.15). Increasing the spatial resolution to ∆x+ = 32.5 and ∆z+ =

16.3 produced a minor delay in the onset of transition. However, downstream of the

transition the rate of growth, in terms of Reθ, appears to accelerate with increasing

spatial resolution.

Under a near-wall cell width of ∆x+,∆z+ = 54.9, 27.6 in mesh M1 (case M1-T2-L2)

and ∆x+,∆z+ = 42.2, 21.2 in mesh M2 (case M2-T2-L2), the boundary layer growth

conforms to the general trend of the Coles-Fernholz log-law relation by Reθ ≈ 300.
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Figure 4.14: Evolution of the shape factor H, with the growth of Reθ downstream of
the tripping plane for three levels of spatial resolution.
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Figure 4.15: Evolution of the coefficient of friction Cf , with the growth of Reθ down-
stream of the tripping plane for three levels of spatial resolution.
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However, whereas case M2-T2-L2 converges onto Equation (4.14) as the boundary layer

grows, case M1-T2-L2 displays an irregular development within the transitional and

early turbulent region of Reθ < 1000, by diverging from the form of Equation (4.14).

Eventually, the growth follows the trend of Equation (4.14) and remains outside the 5%

tolerance bounds whilst not showing signs of further convergence, leaving a continual

under prediction of more than 5%. Despite a minor delay in transition, case M3-T2-L2

displays the fastest convergence towards the Coles-Fernholz relation, and reaches the

±3% error band as early as Reθ ≈ 400, or a distance of x = 531θin downstream of the

inlet. Case M3-T2-L2 showed an improved agreement with both the Coles-Fernholz

log-law relation in Equation (4.14) and the reference DNS results beyond Reθ ≈ 2000.

In contrast to the coefficient of friction, the shape factor growth, shown in Fig-

ure 4.14, displays a negligible dependence on the spatial resolution throughout the

transitional region. As the boundary layer develops beyond Reθ = 800, the rate of

convergence, and the apparent asymptotic limit, increase with the spatial resolution.

The finest resolution brings the shape factor to within 1.5% of the zero-pressure gra-

dient Clauser relation towards the end of the domain, Reθ ≈ 3000.

Figure 4.16, Figure 4.17 and Figure 4.18 display the distribution of streamwise

and wall-normal velocity fluctuations, and Reynolds shear stress, across the boundary

layer, for increasing levels of spatial resolution in cases M1-T2-L2, M2-T2-L2 and M3-

T2-L2 at streamwise locations of x = 0.07m (Reθ ≈ 1000), x = 0.16 (Reθ ≈ 2000)

and x = 0.25m (Reθ ≈ 3000). Additional plots for the distribution of the time-

averaged streamwise velocity and the spanwise velocity fluctuations are provided in

Appendix B. Refining the spatial resolution between the three cases had a minimal

impact on the turbulent stress distribution across the outer region, whilst reducing the

streamwise velocity overshoot in the inner region and scaling the profile of 〈ū′rms〉
+
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(a) RMS of streamwise velocity fluctuations (x = 0.07m)
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(b) RMS of wall-normal velocity fluctuations (x = 0.07m)
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(c) Reynolds shear stress (x = 0.07m)
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Figure 4.16: Comparison of the distribution of turbulent stress components at x =
0.07m along a smooth wall for three levels of spatial resolution.
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(a) RMS of streamwise velocity fluctuations (x = 0.16m)
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(c) Reynolds shear stress (x = 0.16m)
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Figure 4.17: Comparison of the distribution of turbulent stress components at x =
0.16m along a smooth wall for three levels of spatial resolution.
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(a) RMS of streamwise velocity fluctuations (x = 0.25m)
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〈ū′
rms〉

+

y+

Case M1-T2-L2 (Reθ = 2829)

Case M2-T2-L2 (Reθ = 2951)

Case M3-T2-L2 (Reθ = 2988)

(Schlatter & Orlu 2012) (Reθ = 3032)

(b) RMS of wall-normal velocity fluctuations (x = 0.25m)
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(c) Reynolds shear stress (x = 0.25m)
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Figure 4.18: Comparison of the distribution of turbulent stress components at x =
0.25m along a smooth wall for three levels of spatial resolution.
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towards the DNS solution within 10 < y+ < 100. Similarly, the reduction in the

streamwise velocity overshoot accompanies a growth in the under predicted wall-normal

and spanwise velocity fluctuations near the wall. Such behaviour may be attributed

to the inability of the current spatial resolution to capture the break-up of the high

velocity streaks and low velocity streaks in the near-wall region (Bae et al. 2018). Bae et

al. (2018) compared the resulting effect with that of small-scale, drag reducing riblets,

which suppress the wall-normal and spanwise velocity fluctuations near to the wall.

This effect is seen in the underprediction of Cf shown in Figure 4.15, and the improved

agreement as the flow moves from the transitional to the fully turbulent region. For a

spatial resolution of ∆x+ = 32.5,∆z+ = 16.3, an improved resolution of the break-up

cycle may account for the delayed reaction to the trip in case M3-T2-L2, in addition

to the minimisation of artificial ‘drag reducing’ effects for Reθ < 300.

4.5 Summary

A spatially developing boundary layer comprising of laminar, transitional and fully

turbulent regimes has been modelled using the open source libraries of OpenFOAM.

The full boundary layer extends from a steady-state laminar boundary layer of Reθ =

180 to a fully turbulent flow of Reθ = 3000.

A tripping plane of wall-normal velocity fluctuations, with pseudo-random tempo-

ral variance and random spatial variance, destabilises a steady-state laminar boundary

layer. The tripping plane can reproduce time-averaged velocity fluctuations with a root

mean square values within ±10% of the desired strength, provided that the averaging

window is sufficiently large. The highest fluctuation velocity which was investigated

was comparable to the maximum value of the v̄′
+
rms component in a turbulent boundary
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layer of an identical thickness. For this tripping configuration, the onset of transition

was nearly instantaneous, such that initial period of large-scale, two-dimensional dis-

turbances was not observable. This reaction suggests that, under the current tripping

mechanism, the strength of the wall-normal fluctuations in the near-wall region of a

turbulent boundary layer represents a critical optimised limit for the rapid initiation

of laminar-turbulent transition.

By Reθ = 1000 the strength of the numerical trip on the local flow resistance

and turbulent stress profiles diminishes. In the inner region, the variations between

profiles of velocity fluctuations and the Reynolds shear stress are negligible, in compar-

ison to the discrepancies produced by spatial numerical error. Limiting the near-wall

streamwise and spanwise spatial resolution to ∆x+ ≈ 42.2 and ∆z+ ≈ 21.2 brings the

coefficient of friction to within a ±3% tolerance of the Coles-Fernholz relation within a

region of 1000 < Reθ < 3000. Refining this resolution to ∆x+ ≈ 32.5 and ∆z+ ≈ 16.3

maintains the ±3% tolerance limits in the fully turbulence regime, but expands this

tolerance far into the transitional regime; 400 < Reθ < 3000.

The simulations in the present Chapter were initially designed through theoretical

approximations of ideal boundary layer. To the authors knowledge, this is the first

study of its kind to produce a systematic verification and validation of OpenFOAM

for revolving laminar-turbulent transition with controlled tripping and large-eddy sim-

ulation. The results of the present analysis provide more detailed design criteria for

modelling laminar turbulent transition in OpenFOAM, and building future simulations

for the investigation of large-scale textured geometries. The present results suggest that

a spatial resolution of ∆x+ ≈ 42.2, ∆y+min ≈ 1 and ∆z+ ≈ 21.2 provides an optimal

starting point for determining the initial spatial resolution, prior to incorporating tex-

tured geometries into the domain. This base resolution should only be increased if such
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textures are to be applied within the transitional regime. Whilst the flow contains the

influence of the trip up to Reθ ≈ 2000, the coefficient of friction and the shape factor

can converge to within the theoretical error bounds by the point Reθ ≈ 1000. Hence,

when applying LES in OpenFOAM, the design criteria may take Reθ < 1000 as a suit-

able approximation of the location of the transitional regime. These recommendations

will be carried forward into Chapter 7 to construct simulations of spatially developing

flow over two-dimensional periodic ripples. The numerical trip will be applied with

a tripping velocity of v′+ref = 1.105 to achieve Reθ ≈ 1000 by the time the flow has

reached the textured region, which lies 0.07m downstream of the inlet.



CHAPTER 5

Laminar Channel Flow: Arbitrary Geometry

5.1 Introduction

Chapter 4 validates a method for modelling chaotic turbulent flows over planar sur-

faces, with high economic efficiency. The current chapter provides and validates a new

methodology for automated modelling of grooved surfaces of arbitrary geometry and

complexity. This method is first applied (in isolation from the methodology in Chap-

ter 4) to a simpler steady-state laminar flow in an infinite channel. The first section

outlines the procedure which was used for producing digital samples which replicate

naturally occurring sand ripples from the sediment surface of a natural beach. The nu-

merical methodology outlined in the following sections is developed with these specific

surface profiles in mind. However, the model is designed to accommodate a wide range
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of geometric profiles, features and length scales.

5.2 Natural Profile Development

Samples of naturally occurring sand ripple profiles were obtained at Crosby Beach,

Merseyside. The ripple bedforms had formed under the action of free surface tidal

motions. Once the tide had receded, the emerged bedforms were left for two hours to

dry. Two individual locations were identified, each corresponding to a different form

of ripple structure; one sample of symmetrical sinusoidal ripples (Figure 5.1a) and

one sample of asymmetric vortex ripples (Figure 5.1b). Liquid gypsum plaster was

applied to the sand surface in the sample area and left to solidify with one rigid surface

conforming to a mirror image of the ripple profile, as shown in Figure 5.1c.

(a) (b)

(c)

Figure 5.1: Photographs displaying the sample sand ripple surfaces, wooden frame
and gypsum plaster.

The geometric profile of each gypsum plaster cast was measured using The ROMER

Absolute Arm, model RA-7520S1, shown in Figure 5.2. The arm uses a positional laser
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to produce a three-dimensional point cloud field of a geometric object. The sand ripple

profiles contained a crest-to-crest wavelength on the order of 70mm, and a crest-to-

trough depth on the order of 7 ∼ 10mm. The ROMER arm provided a stated accuracy

of ±0.079mm. The raw point cloud data was filtered until there was a minimum

distance of 0.2mm between adjacent points. Considering that the exact dimensions

only serve as a baseline for designing a suitable geometry, these measurement errors

and filtering limits were considered to be acceptable. The filtered point cloud data was

triangulated to construct a continuous surface consisting of connected two-dimensional

triangular planes which was stored in an ‘.stl’ format.

Figure 5.2: Photograph of the Romer Absolute Arm, Model RA-7520S1.

Figure 5.3 displays the final triangulated digital profiles for the two natural sand

ripple surfaces. These digital profiles capture the complex geometric profiles with a

streamwise periodicity that remains generally consistent over the area of each sample.
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However, the surfaces also contain random perturbations from debris embedded within

the sand surface. In addition, the unpredictable flow behaviour has induced small, but

significant, random geometric variations in both the streamwise and spanwise direc-

tions.

Figure 5.3: Three-dimensional digital images of the sand ripple casts.

The numerical methodology aims to reduce the computational workload by assum-

ing periodicity in one or more flow directions. As such, the final sand ripple surfaces

require periodicity in both the streamwise and spanwise directions. Hence, the final

surfaces require a predictable, periodic geometry which correctly replicates only the

key repeating features of the natural surfaces displayed in Figure 5.3. Rather than

attempting to achieve ideal periodicity by smoothing the digital profiles, periodic pro-

files were created manually. For each surface, sample slices of the surface profile, from

a plane which lay normal to the spanwise direction, were taken at five evenly spaced

spanwise locations. The approximate coordinates of key geometric features (curves,

straight edges, inflection points etc.) were determined visually by projecting each slice

onto a grid of streamwise and wall-normal dimensions. Average coordinate values for
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each surface were calculated from the five spanwise profiles. From these coordinates,

a two-dimensional profile was developed by constructing a series of segments, each

consisting of either a single plane or curve and connecting a single pair of adjacent

coordinates. Each segment was intended to join with two adjacent segments at as close

to a tangent as possible. The resulting coordinates were shifted by a small distance,

relative to each other, to minimise the angle between connecting surface segments. As

a result, each ripple profile closely resembles a single continuous line with minimal

instantaneous variations in the surface direction. Figure 5.4 and Table 5.1 define the

streamwise width ai, and wall-normal depth bi, of each surface segment, along with the

streamwise crest length s1, and trough length s2, as a scaling of either the streamwise

wavelength λx, or the groove depth kg. For future reference, the final forms of the

two-dimensional sand ripple profiles are referred to as RN1 and RN2.

Table 5.1: Scaled values of the streamwise and wall-normal length of each profile
segment, as illustrated in Figure 5.4

RN1 RN2 RN1 RN2
a1/λx 0.167 0.08 b1/kg 0.5 0.25
a2/λx 0.167 0.073 b2/kg 0.5 0.5
a3/λx 0.331 0.08 b3/kg 0.5 0.25
a4/λx 0.216 0.514 b4/kg 0.5 1
s1/λx 0.119 0.119 s2/λx 0 0.134

The crests of RN1 and RN2 contain a short, flat plateau of length s1, as opposed

to the more common single point maximum. The scaled groove depth k∗g , as a ratio

between depth and wavelength, disregards the width of the flat crest and only considers

the groove wavelength λg, such that k∗g = kg/λg. With the exception of its crest, profile

RN1 closely replicates the geometric pattern which Blondeaux et al. (2015) predicted

would occur under the combined action of a uniform current flow and an oscillating

wave induced flow. As in Blondeaux et al. (2015), the lee-side of RN1 consists of a

pair of curves which form a continuous sinusoidal profile. However, the similarity is

most notable in the unique stoss-side profile, which resembles two unequal pairs of
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(a) Profile: RN1, Orientation: ϕ = 0◦

(b) Profile: RN2, Orientation: ϕ = 0◦

Figure 5.4: The geometric definitions of the two-dimensional sand ripple profiles RN1
and RN2.

sinusoidal curves. The two pairs intersect at a tangent, forming an inflection point, the

orientation of which lies parallel to the streamwise axis. Note that the sample surface

contains a depth to wavelength ratio of k∗g ≈ 0.15, which lies beyond the predicted

theoretical limit of flow separation (k∗g = 0.1), and hence, the range of the stability

analysis in Blondeaux et al. (2015).

Similar to the geometries considered in Lefebvre et al. (2016), the lee-side of profile

RN2 consists of a planar slip face which is connected to the crest and trough by a

pair of additional geometric features. However, the additional features in RN2 are

rounded such that they intersect the trough and crest close to a tangent, forming an
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almost continuous lee-side profile. The stoss-side of RN2 consists of a sinusoidal profile

produced from a pair of continuous curves, similar to the lee-side of RN1, as opposed to

simpler geometries of flat, inclined segments. In turbulent flows, Lefebvre et al. (2016)

suggested that the former case can produce small, but significant, benefits to flow

resistance when applied alongside an optimised geometrical feature connecting the lee-

side slip face and the crest (defined in RN2 by the segment of a1, b1). Note that their

numerical analysis utilised Reynolds-Averaging to model all turbulent length scales,

which would suggest that the mechanism responsible for this observation is not related

to the presence or behaviour of time-dependant coherent turbulent structures. The

final deviation lies in the trough, which consists of a flat plane of length s2, which

lies parallel to the streamwise direction, as opposed to a single point minimum. The

natural profiles of RN2 have a depth to wavelength ratio of k∗g = kg/λg ≈ 0.11

To produce a fully periodic three-dimensional surface, the two-dimensional pla-

nar profiles in Figure 5.4 are extruded in the spanwise direction along a line in the

streamwise-spanwise plane, as illustrated in Figure 5.5. This extrusion profile is peri-

odic along the spanwise direction, with a spanwise wavelength of λz, and a streamwise

orientated maximum-to-minimum length of kz, which is normalised by the spanwise

wavelength (k∗z = kz/λz). It has a sinusoidal spatial variation, as defined in Equa-

tion (5.1) When k∗z = 0 the surface geometry is invariant in the spanwise direction

and is referred to as ‘two-dimensional’, whilst a surface of k∗z > 0 is referred to as

‘three-dimensional’.

x =
kz
2

(
cos

(
2πz

λz

)
− 1

)
, (5.1)
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Figure 5.5: Diagram of the spanwise sinusoidal profile of a three-dimensional sand
ripple.

5.3 Numerical Methodology

5.3.1 Overview

The present analysis considers a laminar flow through a three-dimensional channel with

one smooth wall and one textured wall. The domain contains a single phase flow, which

consists of an incompressible, Newtonian fluid. However, the current methodology is

designed to be adaptable to multiple flow conditions and surface configurations. The

following types of surface profile should be accommodated with similar applications

of the domain configuration, the near-wall mesh and the meshing procedure between

different cases.

• The simulation must be capable of incorporating arbitrary profiles in place of the

lower and/or upper walls.
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• The simulation must accommodate groove profiles of either two-dimensional or

three-dimensional periodic spatial variation.

• The simulation must enable free rotation of the surface about the y-axis.

5.3.2 Flow Domain and Boundary Conditions

Figure 5.6 illustrates the layout of the channel domain and its boundaries. The channel

is assumed to have a sufficient length and width that the flow is fully developed, and

that the bulk flow field does not vary along the streamwise or spanwise directions.

Hence, the channel consists of a three-dimensional section of an infinite domain, with

periodic constraints applied to the streamwise (inlet and outlet) boundary planes and

the spanwise (front and back) boundary planes. In a practical flow the motion of

the fluid results from a pressure gradient along the streamwise length of the channel.

Within a periodic domain, the bulk streamwise pressure gradient is equal to zero. In

its place a body force drives the flow in a streamwise direction to produce a pre-defined

value of bulk velocity Uav, along the channel.

The streamwise and spanwise lengths of the domains are denoted by Lx and Lz

respectively. The channel has a full height of Ly = 2h0, where h0 is the unadjusted

channel half-height. The lower wall consists of either a planar surface at y = 0, or a

non-planar surface with crests located on the plane y = 0 and a trough which lies within

the region y < 0. Similarly, the upper wall of the channel may consist of either a planar

surface at y = Ly or a non-planar surface with crests located at y = Ly and a trough

which lies within the region of y > Ly. The average depth for a textured surface kav,

refers to the magnitude of the wall-normal distance between its crests and its centre of

area. The effective channel half-height becomes h = 0.5
(
Ly + (kav)lower + (kav)upper

)
.
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Figure 5.6: Diagram of the flow domain and boundary conditions for present channel
flow simulations, displayed with a textured lower wall and a smooth upper wall.

In this way, the structure of the mesh across the bulk of the channel is independent of

the surface geometry. The flow Reynolds number is defined by Reh = Uavh/ν.

The upper and lower surfaces are solid boundaries enforced by a ‘no-slip’ constraint

for the velocity components (u, v, w = 0), and a zero value Neumann constraint for the

pressure (p · ▽ = 0). The boundaries at the inlet plane and outlet plane, as shown
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in Figure 5.6a, form the inlet boundary (y = 0) and the outlet boundary (y = Lx)

along the streamwise direction. The ‘Cyclic Arbitrary Mesh Interface’(‘Cyclic AMI’)

boundary condition links the inlet and outlet boundaries on the finalised mesh to

enforce periodicity.

The boundaries at the front plane and back plane, as shown in Figure 5.6b, form

the front boundary (z = +0.5Lz) and back boundary (z = −0.5Lz) along the spanwise

direction. The spanwise boundary conditions are varied depending on the stability of

the flow field. Under the ideal approach, periodicity would be applied to the span-

wise direction using the ‘Cyclic AMI’ boundary conditions. Noriega et al. (2018b)

identified that cell non-orthogonality does not reduce the order of accuracy when ap-

plied to domain boundaries with periodic conditions. More importantly, periodicity

in the spanwise direction is necessary for accommodating arbitrary surface rotation,

as such surfaces may produce a considerable bulk flow across the spanwise direction

(Mohammadi & Floryan 2013b; Ghebali et al. 2017). However, when surfaces of three-

dimensional ripples were applied in place of the lower wall, the solution could not

maintain stability towards the higher end of the laminar regime (Reh > 400) whilst

periodic boundary conditions were enforced in the spanwise direction. To maintain sta-

bility in these cases, the cyclic boundary condition at the front plane and back plane

was replaced with a symmetry boundary condition enforced by a zero value Neumann

constraint for the velocity. Note that this phenomenon occurred in test cases for which

the ripple profiles lay parallel to the streamwise direction, which creates a geometric

symmetry at the spanwise boundaries. Towards the higher end of the laminar regime,

the three-dimensional surface geometry manipulates the bulk flow field away from the

wall to create a rotational secondary flow which induces additional streamwise and

wall-normal motions along the spanwise boundary planes, in the absence of any sig-
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nificant spanwise velocity component. Hence, whilst the present analysis is limited to

parallel and perpendicular surface orientations, further work which expands the model

to a greater range of surface orientations, for which the surface geometry induces strong

spanwise motions through the spanwise boundary planes, is required to enhance the

stability of the solution in the presence of fully periodic spanwise boundary conditions.

The simpler ‘Cyclic’ boundary condition links each face on a boundary patch with

a single face on its neighbour patch, and assigns a single value of a given flow prop-

erty to the pair. This approach assumes that the shape and decomposition of each

patch is identical, such that each face connects with a single face through a global

transformation of translation and rotation. The ‘Cyclic AMI’ boundary condition may

compensate for any deviation between two patches. After applying a user specified

translation and rotation to a pair of patches, the value of a property on a given face is

determined from the value of all overlapping faces on the neighbour patch. Each value

from each overlapping face on the neighbour patch is weighted as a fraction of the area

of its contact with the boundary face and the total area of the boundary face. Although

this method requires the connected faces to be similar in geometry and decomposition,

it allows for minor distortion of the boundary cells.

Figure 5.7 illustrates the layout of a channel with a three-dimensional sand rip-

ple profile forming the lower wall. Steady-state laminar channel flow may often be

restricted to a single wavelength of the surface geometry. This maximises economic

efficiency when the structure and stability of the flow field is predictable. In the cur-

rent model, channel dimensions are expanded to cover 6 wavelengths in the streamwise

direction and 2 wavelengths in the spanwise direction. These dimensions lie closer to

the common limits for modelling large-scale motions in turbulent flow. The dimen-

sions are selected to ensure a full realisation of secondary flow which may materialise,
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and to minimize the impact of cell misalignment between connected pairs of periodic

boundary patches.

Lx
Lz

Ly

λz
λx

x

y

z
Figure 5.7: Layout of the fluid domain with a lower wall consisting of a sample
three-dimensional ripple profile.

5.3.3 Characterisation of Flow Resistance

In a confined flow, the flow resistance acts against a driving force which propels the

fluid along the streamwise direction. In practical applications, the driving force results

from a change in static pressure along the streamwise direction. For a numerical model

which assumes the flow to be periodic, the pressure gradient may be replaced with an

artificial body force to produce a specified flow velocity or mass flow rate. Mohammadi

& Floryan (2012) described the pressure loss over grooved surfaces in a laminar channel

as a decomposition of three main components. The viscous drag component describes

the effects of wall shear stress between the fluid and the solid surface. Two pressure

drag components describe the contribution of the spatial variation in the bulk pressure

field, and the contribution of the interaction between the pressure field and the surface
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profile.

The unscaled flow resistance is obtained as a spatially averaged drag force over the

full surface area of each wall. It comprises of two viscous forces; Fv1 on the lower wall,

and Fv2 on the upper wall, and two pressure forces; Fp1 on the lower wall, and Fp2

on the upper wall. The dimensionless friction factor represents the flow resistance by

a scaling of drag force with a reference surface area and velocity scale. The present

analysis assumes a velocity scale of bulk velocity averaged across the modified channel

Uav. In the current analysis, the total friction factor is decomposed into two components

(Equation 5.4). The pressure component of the friction factor fp (Equation 5.3), refers

only to the sum of the contribution from pressure interaction drag on the lower wall

fp1, and upper wall fp2. All remaining drag contributions are expressed in the viscous

drag component fv (Equation 5.2) as a sum of remaining drag on the lower wall fv1,

and upper wall fv2.

fv = fv1 + fv2, fv1 =
〈Fv1〉

ρ(LxLz)U2
av

, fv2 =
〈Fv2〉

ρ(LxLz)U2
av

, (5.2)

fp = fp1 + fp2, fp1 =
〈Fp1〉

ρ(LxLz)U2
av

, fp2 =
〈Fp2〉

ρ(LxLz)U2
av

, (5.3)

f = fv + fp, (5.4)

With a velocity scale of Uav, and a Reynolds number defined by Uav and h, the

friction factor in a reference smooth channel is proportional to the Reynolds number

such that Rehfsmooth = 6 (Mohammadi & Floryan 2013b). Note that in the presence of

non-planar walls, the value of the channel half-height which determines Reh accounts

for the modification to bulk channel opening, based on groove geometry. In such

cases, the value of (Rehf)smooth corresponds to a reference flow between two flat walls

located at the centre of area for each textured surface. Furthermore, the friction factor
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compensates for changes in the wetted surface area, with quantities of force on a wall

being divided by the area of a reference smooth wall LxLy, as opposed to the total

physical area of the surface.

5.3.4 Automatic Meshing Procedure

The files containing the textured surface geometries were supplied in an ‘.stl’ format

which describes the surface as a series of triangular planes. The natural sand ripple

profiles consists of a series of connected geometric forms which cannot be described

by a single universal form. In addition, the current investigations examine a limited

range of profile shapes, with a focus on length scales and orientation. Therefore, in

the present investigation, the ‘.stl’ files were created manually through the GUI of the

SALOME CAD package.

Firstly, a two-dimensional profile was created within an x-y oriented plane and ex-

truded along the spanwise direction to create a three-dimensional surface. For a two-

dimensional surface geometry the path of extrusion was a single continuous line. For a

three-dimensional surface geometry the path of extrusion was another two-dimensional

profile comprised of discrete segments with a length equal to half of the intended width

of the near-wall cells. Finally, the surface was meshed using two-dimensional quadri-

lateral cells. This mesh was exported as an ‘.stl’ file, in which each two-dimensional

quadrilateral cell was split in a pair of triangular planes. The triangular planes of the

three-dimensional geometric profiles had a maximum length equal to at least half the

width of the near-wall cells (∆xmin ≈ ∆zmin) in both the spanwise and streamwise di-

rections. The two-dimensional geometric profiles contained a single pair of triangular

planes in the spanwise direction, with a streamwise length equal to that used for the

three-dimensional geometric profiles.
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The mesh for each domain and geometry was generated using the snappyHexMesh

utility, as outlined in Section 3.4.1. Figure 5.8 displays the streamwise and wall-normal

distribution of a locally refined mesh in a smooth wall channel. The region around the

centreline contains cubic cells of 5.88 × 10−3h0 in width. The cells in the near-wall

refine have been refined to 4 octree levels. The cells of the highest refinement levels are

located above the plane y = Ly −6∆ymin, and below the plane y = 6∆ymin. Figure 5.9

displays the streamwise, wall-normal and spanwise distribution of cells over surfaces

of a two-dimensional ripple profile (Figure 5.9a) and a three-dimensional ripple profile

(Figure 5.9b). The cells in Figure 5.9a and Figure 5.9b contain spanwise spacings of

∆z = 3.5∆x and ∆z = ∆x respectively.

Figure 5.8: Distribution of the locally refined mesh along the streamwise and wall-
normal directions in a smooth channel.

An initially coarse mesh was refined near the upper and lower walls using local octree

refinement. Each orthogonal cell (before surface snapping) had an equal width in the

streamwise and wall-normal directions; ∆x = ∆y. The spanwise width was varied

depending on the surface profile; ∆z = 3.5∆y for spanwise uniformity (k∗z = 0), and

∆z = ∆y for spanwise variation (k∗z > 0). Local mesh refinement in snappyHexMesh

may be specified manually, based upon user specification, or automatically, based upon

requirements in the vicinity of fine geometric features. In order to preserve the form of

the bulk flow, and maintain acceptable levels of non-orthogonality in the bulk flow, the
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(a) RN1, k∗g = 0.15, k∗z = 0, ϕ = 0◦

(b) RN1, k∗g = 0.15, k∗z = 0.25, ϕ = 0◦

Figure 5.9: The three-dimensional mesh consisting of split-hexahedral cells and local
refinement; as shown by images of cell distribution over the lower textured wall and the
boundary plane z = −0.5Lz.
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mesh was refined manually in layers defined by ordered rectangular regions. Hence, the

boundary of the region for the finest refinement level was defined by a pair of flat x-z

planes, located at a distance of 6∆ymin from the upper and lower walls. In this way, a

single cell in the domain was connected to no more than 9 neighbour cells. Allowing

the local refinement regions to conform to the surface geometry could have potentially

doubled the maximum number of neighbour cells possessed by a single cell in the

domain. Furthermore, the maximum non-orthogonality in the smooth wall channel

(i.e. throughout the bulk flow) lay below 52◦. Hence, based on the observations of

Robertson et al. (2015), the solution in the bulk channel would not require limiting

constraints on the numerical schemes. Each layer of refinement contained a minimum

of 5 cells and a maximum of 6 cells. The boundary between refinement regions was

constant in the streamwise and spanwise directions.

5.3.5 Solver Configuration

All investigation cases involving the infinite channel domain sought a temporally steady-

state solution. The Reynolds number and the geometry of the lower wall profile had a

significant impact on the stability of the flow field. Hence, multiple configurations of

the flow solver and discretisation schemes were utilised to compensate for these insta-

bilities where necessary. The numerical schemes and algorithms which are discussed in

the present section here been presented in Section 3.5 and Section 3.6. In general, flow

scenarios may be subdivided into four distinct groups based upon the stability of the

solution;

• Two-dimensional surface profiles in low Reynolds number flow (Reh ≈ 50, 100).

• Three-dimensional surface profiles in low Reynolds number flow (Reh ≈ 50, 100).
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• Two-dimensional surface profiles in high Reynolds number flow (Reh ≈ 500, 1000).

• Three-dimensional surface profiles in high Reynolds number flow (Reh ≈ 500, 1000).

Since the solutions in all cases are assumed to be temporally steady-state, the

steady-state simpleFoam solver was the natural choice for pressure-velocity coupling.

However, during preliminary testing, this solver could only maintain stability towards

the lower end of the laminar regime. Based upon observations from preliminary testing,

the flow would become unstable and diverge for flows of Reh > 400, even within a

smooth wall channel. Replacing the periodic spanwise boundaries with symmetrical

Neuman boundary conditions, and adding limiting terms to the gradient schemes, failed

to improved stability.

The steady-state SIMPLE algorithm produced solutions for all flows at the lower

end of the laminar regime; Reh ≈ 50 and Reh ≈ 100. Each iteration loop solved

the velocity and pressure fields to a relative tolerance of 0.1, with maximum absolute

tolerances of 1 × 10−10 and 1 × 10−12. The correction step used under relaxation

factors of γp = 0.1 for the pressure field and γu = 0.7 for the velocity field. At low

Reynolds numbers the geometric complexity of the surface negatively impacted the

rate of convergence towards a steady-state solution, however, it produced no noticeable

impact on stability.

Flows at higher Reynolds numbers of Reθ > 400 required a temporal term to main-

tain stability, but successfully converged to a steady-state solution through successive

time steps (known as a psuedo-transient solution). This was implemented using the

PIMPLE algorithm in the pimpleFoam solver, which, as a hybrid of the SIMPLE and

PISO algorithms can maintain stability at larger time steps than the purely transient

PISO algorithm. To improve the convergence rate, the pseudo-transient solver took
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the output from a low-Reynolds number, steady-state solution as the initial velocity

and pressure fields. The psuedo-transient model reduced the viscosity by a factor of

ten, which produced a higher Reynolds number for an identical value of bulk velocity.

For the more stable cases involving two-dimensional surface geometries, the flow field

was marched through 200 time steps for Reh ≈ 500 and 400 time steps for Reh ≈ 1000.

The time increment was fixed producing a maximum Courant number (Equation 3.25)

of approximately 40. The temporal terms were discretised using the first order accu-

rate Euler scheme in Equation (3.21). Each outer loop iteration converged the velocity

and pressure fields to a relative tolerance of 0.1. Once the pressure values varied by

less than ±1× 10−5, and the three velocity components varied by ±1 × 10−5 between

consecutive outer loops, the solver entered a final outer loop, which converged the ve-

locity and pressure fields to tolerances of 1 × 10−10 and 1 × 10−12 respectively. The

pressure correction had an increased relaxation (γp = 0.3) compared to that used for

the simpleFoam solver at low Reynolds numbers.

For the pseudo-transient approach, the more complex three-dimensional profiles

required finer time steps and a greater accuracy in the temporal term to maintain

stability. In these cases, the time increment was allowed to vary at each time step to

ensure a maximum Courant number of 1. For the temporal terms, the first order accu-

rate Euler scheme was replaced by the second order accurate Crank-Nicolson scheme

in Equation (3.24), with a weighting factor of γcn = 0.9. The pimpleFoam solver was

modified to contain only one outer correction step, as in the fully transient PISO algo-

rithm. Since these near-wall cells contained a maximum non-orthogonality of up to 65◦

at the lower wall, two non-orthogonal correction steps were included in each time step.

Furthermore, the final tolerances for pressure and velocity were raised to 1× 10−8.

The gradient terms for pressure and velocity were discretised using a second-order
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central differencing scheme (Equation 3.12). The convective velocity terms were dis-

cretised using the second order accurate linear upwind differencing scheme (Equation

3.10), with interpolation derived from the velocity gradient. When the maximum non-

orthogonality across all cells in the domain exceeded 53◦, limiting was applied to the

gradient and Laplacian terms. The gradient was limited using a multi-direction cell-

centred scheme. In cases of k∗z = 0, for which the maximum non-orthogonality and

skewness did not exceed 50◦ and 0.8 respectively, limitless gradient terms and full

non-orthogonal correction were applied; γ1 = 0 and γ2 = 0. In cases of k∗z ≥ 0, the

maximum non-orthogonality and skewness did not exceed 65◦ and 1.3 respectively. In

such cases, limiting was applied to the gradient and Laplacian terms with limiting

factors of γ1 = 0.5 and γ2 = 0.5.

5.4 Validation for Simple Geometries

5.4.1 Overview

Before the model could be applied to detailed geometric profiles, its accuracy and lim-

itations were verified over simpler geometric surface profiles with pre-known solutions.

This analysis was limited to test cases involving pressure driven flow of a laminar,

single phase fluid. The accurate prediction of the Poisuille number Rehf , was assessed

for smooth wall channel flow (Figure 5.10a) and shallow, transverse grooves of a simple

sinusoidal profile (Figure 5.10b). The periodic hill in (Figure 5.10c) represents a classic

benchmark scenario for assessing flow separation and reattachment.
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(a) Plane channel

Lx

Lz

Ly

x

y

z

(b) Sinusoidal grooves

Lx

Lz

Ly

λx

(c) Periodic hill

Lx

Lz

Ly

kg

Figure 5.10: Domain configurations for three geometries with published solutions.

5.4.2 Smooth Channel

Firstly, the model was assessed for plain Poisuille flow with numerical solutions for

Reh = 100 with the steady-state approach and Reh = 1000 with the pseudo-transient

approach. The computational domain and mesh were identical to that displayed in

Figure 5.8. Under the present definition of Reh, the theoretical prediction of the

Poisuille number is (Rehf)smooth = 6 (Mohammadi & Floryan 2013b). In both cases

(Reh = 100 and Reh = 1000), results for the split-hexahedral mesh produced identical

Poisuille numbers of Rehfv = 5.98; or 99.67% of its predicted value, with the error

evenly distributed between the upper and lower walls.

The error in the velocity field was determined by comparison to the theoretical

velocity distribution for plane Poisuille flow (Equation 5.5) (Mohammadi & Floryan
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2013a).

u (y) =
3

2

Uav

h2
(
2hy − y2

)
, (5.5)

The wall-normal distribution of streamwise velocity was obtained at discrete points

across the channel, which correspond to the distribution of cell centres over the wall-

normal direction. At each wall-normal location, a single velocity value was obtained

from a spatial average of all cells along the streamwise direction and spanwise direction.

Figure 5.11 compares the streamwise velocity field from the split-hexahedral mesh with

the corresponding approximation from the theoretical solution in Equation (5.5) for a

flow of Reh = 1000.

0
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Split-hexahedral mesh
Approximate solution

Figure 5.11: Streamwise velocity profile across the smooth wall channel.

Within all but the coarsest region (y < 0.29 and y > 0.71), the error varied between

−0.3% and −0.5% of the local velocity value at each point. The highest errors of −0.7%

occurred around the centre of the channel (0.29 < y < 0.71), where the cell resolution

was at its lowest. The distribution of error between the numerical solution and Equation

5.5 showed negligible change between the steady-state solution for Reh = 100 and the

pseudo-transient solution for Reh = 1000.
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5.4.3 Sinusoidal Grooves

Mohammadi & Floryan (2013b) produced solutions for shallow, sinusoidal grooves

which were oriented transverse to the flow direction, with a profile defined in Equation

(5.6).

y =
kg
2

(
cos

(
2π

x

λx

)
− 1

)
, (5.6)

From their results, a groove was selected based upon the greatest depth (kg =

0.05h), and a wavelength that lies close to that of the natural sand ripple profiles in

the present analysis (λx = 0.628h). The flow domain and automatically generated

mesh for the current simulation are displayed in Figure 5.12

(a) Full channel

(b) Lower wall

Figure 5.12: Split-hexahedral mesh in a channel containing a lower wall of the refer-
ence sinusoidal grooves.

Mohammadi & Floryan (2013b) evaluated the Poisuille number using the centreline
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velocity of a reference smooth channel as the the velocity scale, as opposed to the

bulk velocity Uav. Here, their findings are reported in terms of Rehf by assuming a

relation of umax = 2Uav/3 (Mohammadi & Floryan 2013a) for plane Poisuille flow. At

Reh = 666.6, a groove with a depth of k∗g = 0.08 and a wavelength of λx = 0.31Ly

produced a total Poisuille number of Rehf ≈ 6.075. This amounts to a +0.075 drag

increase compared to the smooth wall value of the numerical domain (Rehf = 6). For

the current numerical domain, identical sinusoidal grooves produced a total Poisuille

number equivalent to a +0.077 increase, compared with the reference plane channel

flow of Rehf = 5.98. This amounts to a 2.7% error in the total drag increase. For

comparison, Mohammadi & Floryan (2013b) accepted a 10% error in the predicted

drag increase when utilising their spectral code, in order to reduce the detail of their

geometric surface in Fourier space, and reduce economic cost. Similarly, an error in the

region of 2.7% in the present analysis is considered to be tolerable given the significant

reduction in the pre-processing time with the current meshing procedure.

Figure 5.13 compares the distribution of normalised shear stress over the groove

profile for the current simulation and the solution of Mohammadi & Floryan (2013b).

The normalised wall shear stress produced by the split-hexahedral shows a strong

correlation with Mohammadi & Floryan (2013b) throughout the trough. The reduced

cell quality along the lee-side produces local distortions in the shear stress profile.

However, these distortions are small compared to the local magnitude of the shear

stress, and hence, has a negligible impact on the overall trend of the shear stress

distribution. Furthermore, the split-hexahedral mesh produces a mild under prediction

of the normalised wall shear stress at the crest. This would suggest that the error

observed in the value of the total Poiseuille number Rehf , results from errors in either

the interaction of the pressure field with the lower wall, or the viscous stresses on the
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upper wall. Confirmation of this assumption would require a method of separating out

the flow resistance into the pressure interaction and pressure form drag components,

as defined and reported in Mohammadi & Floryan (2013b)
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Figure 5.13: Profiles of the normalised wall shear stress over the reference sinusoidal
grooves, compared with the reference solution of Mohammadi & Floryan (2013a).

5.4.4 Periodic Hill

The periodic hill solution is an established benchmark for separated, internal flows with

streamwise periodicity, operating under steady and unsteady conditions. Breuer et al.

(2009) presented a detailed comparison of experimental and numerical results for both

laminar and turbulent flows based upon this geometry. The geometry for the current

solutions is shown in Figure 5.10c. The hill has a depth of kg = 0.49Ly and a length

of λx = Lx = 4.42Ly, whilst the hill crest is located at the points x = 0 and y = 0.

The mesh shown in Figure 5.14 contains a maximum non-orthogonality of 36.4◦ and a

maximum skewness of 0.713.

Breuer et al. (2009) defined the Reynolds number based upon the groove depth kg,

and the mean bulk velocity Uav, at the narrowest point of the channel. In the present

analysis, the velocity was specified as a bulk velocity which was averaged throughout
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Figure 5.14: Split-hexahedral mesh in a channel containing the periodic hill geometry
of Breuer et al. (2009).

the streamwise direction. The resulting Reynolds number, as defined by Breuer et al.

(2009), was Re = 100.7 in the present case, compared with an ideal value of Re =

100 given in the benchmark solution. Under these conditions, the flow remained in

the laminar regime with steady-state behaviour. The streamwise distribution of the

normalised wall shear stress along the periodic hill is displayed in Figure 5.15.

Breuer et al. (2009) did not produce a full shear stress profile for the present con-

figuration. However, Breuer et al. (2009) stated that the flow separated from the

surface at a location of x/Lx = 0.05 and reattached to the surface at a location of

x/Lx = 0.859. These points have been marked on Figure 5.15b, where they display

strong agreement with the separation and reattachment of the flow solution produced

by the split-hexahedral mesh in the current simulation. The normalised wall shear

stress profile in Figure 5.15b intersects the limit of flow separation (τ0/ρUav = 0) at

locations of x/Lx = 0.051 and x/Lx = 0.861. Therefore, the separation point and the

reattachment point from the split-hexahedral mesh vary from the solution of Breuer

et al. (2009) by an upstream shift of distances equal to 0.08% of Lx and 0.21% of Lx

respectively.
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(a) Full profile
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Figure 5.15: Profiles of the normalised wall shear stress over the periodic hill geom-
etry, compared with the reference solution of Breuer et al. (2009).

5.5 Near-Wall Resolution for Sand Ripple Profiles

The computational setup was assessed using ripple profiles to determine its accuracy

and efficiency for the parametric study in Chapter 6. Firstly, the impact of the refine-

ment level for the locally refined near-wall cells was determined, using sample surfaces

of two-dimensional and three-dimensional ripples. The solutions for a single sample

two-dimensional ripple profile were compared for both the split-hexahedral mesh with
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local refinement, which was produced by the automated meshing procedure, and a

hexahedral mesh with gradient refinement, which was built and meshed in the SA-

LOME Mech package. For all cases, the channel had dimensions of Lx = 6.18h and

Lz = 2.06h, whilst the lower wall consisted of a ripple geometry with streamwise and

spanwise wavelengths of λx = λz = 1.03h.

5.5.1 Near-Wall Spatial Resolution

The influence of the near-wall spatial resolution on the natural sand ripple profiles was

assessed for three sample cases of sand ripple profiles. These cases covered one two-

dimensional profile at the highest Reynolds number which was considered in Chapter 6

(Reh ≈ 1000), and two cases of a three-dimensional profile, covering flows towards the

lower end (Reh ≈ 50) and higher end (Reh ≈ 500) of the laminar regime. For each

case, solutions were obtained for three different levels of near-wall spatial resolution,

which were varied through local octree refinement. Table 5.2 displays the layout of

each case configuration, along with the dimensions of the coarsest cells around the

centreline of the channel, and the surface orientation relative to the flow ϕ. Although

the reported value of maximum skewness is high, these cells remain confined to a small

portion of the textured wall. The finest resolution of the three-dimensional ripple

produced a maximum skewness of 0.995 in the domain, with 2.75% of the near-wall

cells possessing a skewness greater than 0.5, and 0.02% possessing a skewness greater

than 0.7. A similar resolution of the two-dimensional surface produced similar results

with 3% of the cells possessing a skewness within the range of 0.5 and 0.58.

Table 5.3 provides the individual components of Poisuille number for the varying

level of mesh refinement in each validation case. The two-dimensional ripple case (LV1),

and the low Reynolds number, three-dimensional ripple case (LV2), displayed a similar
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Table 5.2: Flow and geometry configurations for three mesh independence validation
cases involving natural ripple profiles.

Case Profile k∗z k∗g ϕ Reh
∆xmax

h

∆ymax

h
∆zmax

h
)

LV1 RN2 0.11 0 0◦ 1024.3 0.118 0.118 0.412
LV2 RN1 0.15 0.5 0◦ 51.6 0.118 0.118 0.118
LV3 RN1 0.15 0.5 0◦ 515.8 0.118 0.118 0.118

behaviour in the response to the near-wall refinement level. In both cases, refinement

of the near-wall mesh caused the pressure component Rehfp, to fall with an equal

magnitude to that by which the lower wall viscous component Rehfv, increased, such

that ∆fp ≈ −∆fv. The change in the total Poisuille number was negligible between

all levels of mesh refinement, with the maximum variation ∆|f | = 0.05% lying within

acceptable error limits.

Table 5.3: The total Poisuille and its individual components for the test cases outlined
in Table 5.2

Case ∆xmax/∆xmin Rehfp Rehfv1 Rehfv2 Rehf
LV1 3 1.115 2.063 3.078 6.256

4 1.133 2.047 3.079 6.258
5 1.140 2.040 3.079 6.259

LV2 3 0.461 2.696 3.071 6.228
4 0.483 2.676 3.072 6.231
5 0.494 2.663 3.072 6.229

LV3 3 0.981 2.948 3.348 7.276
4 1.024 2.978 3.373 7.375
5 1.043 2.977 3.381 7.401

The mesh resolution exerted a greater influence on all Poisuille components for

a combination of high inertial effects (Reh ≈ 500) and a three-dimensional profile.

In case LV3, the balance between the errors in Rehfp and Rehfv vanished. Firstly,

increasing the refinement level from 3 to 4 caused the overall viscous and pressure

contributions, Rehfp and Rehfv, to rise on the order of 1% of Rehfsmooth. In addition,

this refinement exerted a nearly identical influence on the viscous drag on the upper

and lower walls. A further increase in the near-wall refinement level to 5 displayed

a negligible change in the lower wall viscous drag (≈ 0.03% of Rehfsmooth), whilst
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the upper wall component continued to increase by more than 0.1%. The results in

Chapter 6 show that a three-dimensional surface variation in a laminar flow containing

high inertial effects (Reh ≈ 500) produces strong modifications in the flow field away

from the wall, including beyond the channel centreline. This behaviour is absent for all

other configurations in Chapter 6, which contain either two-dimensional ripples or low

Reynolds number laminar flows, and may account for the enhanced dependence of the

flow resistance on the upper wall and the near-wall spatial resolution. At a refinement

level of 4, the pressure drag was found to provide the greatest contribution to the error,

with additional refinement producing an increase in Rehfp of more than 0.3%.

5.5.2 Hexahedral Comparison

The results for a sample split-hexahedral mesh were compared to an alternative hexa-

hedral mesh, for a sample two-dimensional ripple profile. The lower wall consisted of

the two-dimensional profile RN1 (k∗z = 0), at a depth of k∗g = 0.15 and an orientation

of ϕ = 0◦, as depicted in Figure 5.9a. Two solutions were produced for each mesh,

corresponding to flows of Reh ≈ 50 and Reh ≈ 500.

Figure 5.16 displays the layout of the split-hexahedral mesh and the hexahedral

mesh in the near-wall region. The hexahedral mesh contained identical values of ∆z

at each layer of mesh refinement, and identical values of ∆y for all layers, except

that adjacent to the lower wall. In this region, ∆y was graded in the wall-normal

direction and varied across the ripple profile to aid in wall conformity. In this region,

the maximum value of ∆y was equal to ∆ymin for the split-hexahedral mesh. The

hexahedral mesh contained a constant value of ∆x = ∆xmin throughout the domain.

The split-hexahedral mesh contained over 1.633 million cells with a maximum skewness

of 0.715 and a maximum non-orthogonality of 50.8◦ near to the wall. The hexahedral
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mesh contained a over 8.66 million cells with a maximum skewness of 0.532 and a

maximum non-orthogonality of 42.4◦ near to the wall. Applying a hexahedral mesh

reduced the streamwise width of cells within the channel centre by a factor of 16.

Whilst the pseudo-transient time step was reduced to compensate, the total physical

time required for convergence remained unchanged. The simultaneous increase in the

total cell count and the required number of time increments raised the total CPU run

time by a factor of 14.

(a) Split-hexahedral (b) Hexahedral

Figure 5.16: Near-wall cells in the split-hexahedral mesh and hexahedral mesh for a
two-dimensional sand ripple profile.

Table 5.4 displays the components of Poisuille number for the four combinations of

mesh type and Reynolds number. For both values of Reh, the mesh type had a minimal

effect on the flow resistance on the upper wall, with a difference in the magnitude of

∆Rehfv2 = ±0.001. This result indicates that, for the current range of two-dimensional

profiles, the coarsening of the streamwise resolution of the cells at the centre of the

channel does not hinder the transfer of pressure or velocity variations (induced by the

lower wall) to the high resolution at the upper wall. This behaviour may be expected,

where Saha et al. (2015) observed that the influence of sinusoidal grooves, with similar

dimensions to the current profiles, was confined to the near-wall region of laminar flow.

For both the steady-state solution and the pseudo-transient solution, the absolute

variation in Rehfp, was equal to the absolute variation in Rehfv1, between the split-
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Table 5.4: Poisuille number for the steady-state and pseudo-transient solutions of a
split-hexahedral mesh and a hexahedral mesh over a two-dimensional sand ripple pro-
file.

Case Reh Rehfp Rehfv1 Rehfv2 Rehf
hexahedral 51.6 0.673 2.489 3.074 6.236

515.8 1.205 2.015 3.102 6.322
split-hexahedral 51.6 0.632 2.530 3.074 6.236

515.8 1.173 2.047 3.103 6.323

hexahedral mesh and the hexahedral mesh. Relative to the solution, the most signif-

icant error occurs when transitioning from a hexahedral mesh to the split-hexahedral

mesh in a flow of Reh = 51.6, for which the value of Rehfv1 shifts by −8.2% of the

viscous drag reduction on the lower wall. In context, even the largest shift in any

component of Rehf (i.e. 8.2%) remains within the ±10% accuracy range which was

identified by Mohammadi & Floryan (2013a) for shallow, misaligned grooves, when

employing a minimal resolution of the surface geometry. In the present analysis, both

simulations were computed in parallel over 22 cores using a 2.20 GHz Intel Xeon CPU

combined with 125Gb RAM memory capacity. With this configuration, the error asso-

ciated with the split-hexahedral cells in the near-wall region, and local mesh refinement

throughout the bulk of the flow domain, is accompanied by a reduction of 93% in the

required CPU time.

Figure 5.17 and Figure 5.18 compare the distribution of the normalised pressure

and normalised wall shear stress along the ripple profile for the split-hexahedral and

the hexahedral mesh at two values of Reh. The locally distorted cells on the split-

hexahedral boundary display localised spikes and spatial fluctuations, when compared

to the smooth distribution of the hexahedral boundary. However, these local errors

are most significant in the pressure field, and become masked by the large, undistorted

pressure gradients at higher Reynolds numbers of Reh = 515.8.
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(a) Shear stress: Reh = 51.6

0

2

4

6

8

3 3.2 3.4 3.6 3.8 4

Reh

(
τ0

ρU2
av

)

x/λx

Split-hexahedral mesh
Hexahedral mesh

τ0/ρU
2
av = 0

Geometric profile

(b) Pressure: Reh = 51.6
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Figure 5.17: Comparison of the distribution of the normalised wall shear stress and
pressure over a sand ripple profile using a split-hexahedral mesh and a hexahedral mesh
(Reh = 51.6).
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(a) Shear stress: Reh = 515.8
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(b) Pressure: Reh = 515.8
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Figure 5.18: Comparison of the distribution of the normalised wall shear stress and
pressure over a sand ripple profile using a split-hexahedral mesh and a hexahedral mesh
(Reh = 515.8).
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5.6 Summary

The applied numerical approach is highly adaptable for different surface geometries.

Both walls of the channel can comply with an arbitrary two-dimensional or three-

dimensional periodic pattern, and this mesh is generated automatically. Given the

instability issues arising from the union of spanwise motion and spanwise periodic

boundaries, further development and testing will be required to expand its applicability

to oblique surface alignments. The model was validated against existing numerical and

theoretical solutions of plane Poisuille flow, shallow grooves and flow separation over

large-scale periodic hills. However, the initial validation in Section 5.4 would benefit

from a more direct experimental validation utilising surface profiles of a similar detail

to those presented here

The spatial resolution along all three axis vectors was varied across the domain

using local octree refinement to produce a split-hexahedral mesh. This is opposed to a

hexahedral mesh which contains consistent spanwise and streamwise spacings through-

out the bulk of the channel. For a simple two-dimensional ripple profile, applying a

split-hexahedral mesh produced significant savings in resources, with reductions in the

total cell count and the overall CPU time by 80% and 93% respectively. For this ef-

ficiency, the split-hexahedral mesh produced errors in the viscous and pressure drag

components of up to ±8% of the viscous drag reduction increase, relative to the solu-

tion obtained using the hexahedral mesh. However, the balance between pressure and

wall shear stress was such that the change to flow resistance was negligible.



CHAPTER 6

Natural Sand Ripples in Poisuille Flow

6.1 Introduction

The following investigation comprises a detailed parametric study involving transverse

grooves in Poisuille flow along an infinite channel, as outlined in Chapter 5. The

parametric study covers a range of flows at varying Reynolds numbers in the laminar

regime. Two-dimensional and Three-dimensional profiles of naturally occurring sand

ripples are investigated for varying values of groove depth, spanwise spatial variation

and surface orientation. The individual impacts and interactions of these control factors

are assessed to determine their influence on the flow resistance, shear stress distribution

along the groove and the velocity flow field.
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6.2 Parametric Configuration

The flow domain contains a single phase fluid flow which is incompressible, laminar

and fully developed. The upper wall of the channel is a smooth, planar surface at the

point y = Ly. The lower wall consists of a non-planar surface with its crests located at

the point y = 0. The computational domain has a streamwise length of Lx = 3.088Ly,

and a spanwise length of Lz = 1.029Ly. The domain contains six periodic grooves

in the streamwise direction (Lx = 6λx), and, in the case of spanwise variation, two

wavelengths of the spanwise geometric profile (Lz = 2λz). The setup of this domain is

explained and discussed in Section 5.3, and is illustrated in Figure 5.6 and Figure 5.7.

This study considers three geometric profiles for the two-dimensional groove profile;

two profiles developed from reverse engineering naturally occurring sand ripples (de-

noted RN1 and RN2), and one profile of a simple sinusoid (denoted RS). The profile

RS, shown in Figure 6.1e, serves as a reference case, representative of a commonly

used geometric profile, by which to assess the influence of the highly detailed geomet-

ric features present in the asymmetric sand ripple profiles. The profile RS has been

modified by adding a flat crest between adjacent sinusoidal curves to ensure similarity

with profiles RN1 and RN2, and to allow for a direct comparison of the normalised

ripple depth k∗g = kg/λg, between surfaces.

For each individual case which contains an asymmetric groove profile (i.e. RN1

and RN2) two solutions are produced, corresponding to two different values of surface

orientation; ϕ = 0◦ and ϕ = 180◦. When the surface is oriented at ϕ = 0◦ to the flow

direction the steepest slope of the ripple forms the lee-side, as shown in Figure 6.1a

and Figure 6.1c, whilst the shallower slope forms the stoss-side. This is the typical

orientation of naturally occurring spanwise bedforms. An orientation of ϕ = 180◦, as
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(a) RN1, k∗g = 0.15, ϕ = 0◦

(b) RN1, k∗g = 0.15, ϕ = 180◦

(c) RN2, k∗g = 0.15, ϕ = 0◦

(d) RN2, k∗g = 0.15, ϕ = 180◦

(e) RS, k∗g = 0.15, ϕ = 0◦

Figure 6.1: Orientation of the two-dimensional grooves, visualised by the near-wall
mesh distribution.
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shown in Figure 6.1b and Figure 6.1d, sees the placement of these slopes reversed, in

direct contrast to the typical ripple formation. The normalised depth of the streamwise

profile k∗g = kg/λg, varies over three discrete values of 0.075 (denoted KG1), 0.11

(denoted KG2) and 0.15 (denoted KG3). The depths of KG2 and KG3 correspond to

the scales of the naturally occurring sand ripples which formed the profiles of RN2

and RN1 respectively. The shallowest depth of KG1 was selected to lie below the

generally stated limit for the onset of vortex ripples (k∗g > 0.1) (Vittori & Blondeaux

1990; Blondeaux et al. 2015).

The control factor for flow strength covers fixed values of the ratio between the bulk

flow velocity and the kinematic viscosity; Uav/ν. For clarity, these values are converted

into the Reynolds numbers by multiplying this factor by the effective channel half-

height h. The value of h will vary depending the average depth kav, for a given profile

shape and depth. In some cases, the effective channel height will be reduced due to the

‘lifting’ of the flow away from the grooves (Mohammadi & Floryan 2013b). Considering

all cases presented in Tables 6.1 and 6.2 for a given value of Uav/ν, the value of Reh

between different surface profiles varies within ±1% about the mean value. When

referring to multiple cases of fixed flow strength (i.e. fixed Uav/ν), the value of Reh

is stated as an order of magnitude. The precise values of Reh for each case are given

in Table 6.1 and Table 6.2. The four different flows, defined by the value of Reynolds

number, correspond to two flows which lie fully within the laminar regime; flow F1

(Reh ≈ 50) and flow F2 (Reh ≈ 100), one flow lying around the boundary of the

laminar and transitional regimes; flow F3 (Reh ≈ 500) and one flow lying far into the

transitional regime; flow F4 (Reh ≈ 1000).

Table 6.1 displays the full range of cases for two-dimensional grooves in Poisuille

flow. A two-dimensional surface geometry is denoted by the setting KZ0. For the
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two-dimensional natural ripple profiles, the parametric investigation covers 24 different

configurations (cases) of Reh, k
∗
g and profile shape. Two solutions are produced for each

case involving an asymmetric surface profile; with different flow directions parallel to

the streamwise direction. For comparison, an additional 12 cases are investigated using

a symmetric sinusoidal profile.

The second stage involves surface textures with a spanwise surface variation. The

two-dimensional groove profile is extruded along a sinusoidal profile, as defined in

Equation (5.1) in Section 5.2, oriented on the streamwise-spanwise plane. This profile

has an amplitude of 0.5kz, a full depth kz, and a wavelength λz. In the present analysis,

the spanwise wavelength is equal to the wavelength of the streamwise groove (λz = λx).

Surfaces with a three-dimensional spatial variation give rise to an increase in the

total cell count by a factor of three, and present an additional control factor for in-

vestigation; kz. To offset the increased computational demand, this stages limits the

number of possible settings for each control factor to two. The Reynolds number is

varied between two magnitudes of Reh ≈ 50 (i.e. flow F1) and Reh ≈ 500 (i.e. flow

F3). The relative groove depth is varied between k∗g = 0.075 (i.e. KG1) and k∗g = 0.15

(i.e. KG3), whilst the amplitude of the spanwise profile is varied between two dis-

crete non-zero values, which correspond to k∗z = 0.25 (denoted by KG1) and k∗z = 0.5

(denoted by KG2). The surface profiles are a single asymmetric ripple profile RN1,

and the reference sinusoidal profile RS. As before, each case involving an axisymmet-

ric ripple profile produces solutions for two different surface orientations of ϕ = 0◦

and ϕ = 180◦. Table 6.2 displays the configurations for all cases involving surfaces of

three-dimensional grooves.

The mesh decompositions and solver configurations for the respective two-dimensional

and three-dimensional surfaces are identical to those described in Section 5.5.1. As
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Table 6.1: Configuration of the control factors for investigating two-dimensional surface
profiles.

Case Profile k∗g k∗z Reh ϕ

RN1-KG1-KZ0-F1 RN1 0.075 0 50.8 0◦ & 180◦

RN1-KG1-KZ0-F2 101.6 0◦ & 180◦

RN1-KG1-KZ0-F3 507.8 0◦ & 180◦

RN1-KG1-KZ0-F4 1015.6 0◦ & 180◦

RN1-KG2-KZ0-F1 RN1 0.110 0 51.2 0◦ & 180◦

RN1-KG2-KZ0-F2 102.3 0◦ & 180◦

RN1-KG2-KZ0-F3 511.5 0◦ & 180◦

RN1-KG2-KZ0-F4 1023.0 0◦ & 180◦

RN1-KG3-KZ0-F1 RN1 0.150 0 51.6 0◦ & 180◦

RN1-KG3-KZ0-F2 103.2 0◦ & 180◦

RN1-KG3-KZ0-F3 515.8 0◦ & 180◦

RN1-KG3-KZ0-F4 1031.5 0◦ & 180◦

RN2-KG1-KZ0-F1 RN2 0.075 0 50.8 0◦ & 180◦

RN2-KG1-KZ0-F2 101.7 0◦ & 180◦

RN2-KG1-KZ0-F3 508.4 0◦ & 180◦

RN2-KG1-KZ0-F4 1016.9 0◦ & 180◦

RN2-KG2-KZ0-F1 RN2 0.110 0 51.2 0◦ & 180◦

RN2-KG2-KZ0-F2 102.5 0◦ & 180◦

RN2-KG2-KZ0-F3 512.5 0◦ & 180◦

RN2-KG2-KZ0-F4 1024.9 0◦ & 180◦

RN2-KG3-KZ0-F1 RN2 0.150 0 51.7 0◦ & 180◦

RN2-KG3-KZ0-F2 103.4 0◦ & 180◦

RN2-KG3-KZ0-F3 517.1 0◦ & 180◦

RN2-KG3-KZ0-F4 1034.1 0◦ & 180◦

RS-KG1-KZ0-F1 RS 0.075 0 50.7 0◦

RS-KG1-KZ0-F2 101.5 0◦

RS-KG1-KZ0-F3 507.3 0◦

RS-KG1-KZ0-F4 1014.6 0◦

RS-KG2-KZ0-F1 RS 0.110 0 51.1 0◦

RS-KG2-KZ0-F2 102.2 0◦

RS-KG2-KZ0-F3 510.8 0◦

RS-KG2-KZ0-F4 1021.6 0◦

RS-KG3-KZ0-F1 RS 0.150 0 51.5 0◦

RS-KG3-KZ0-F2 103.0 0◦

RS-KG3-KZ0-F3 514.8 0◦

RS-KG3-KZ0-F4 1029.6 0◦
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Table 6.2: Configuration of the control factors for investigating three-dimensional sur-
face profiles.

Case Profile k∗g k∗z Reh ϕ

RN1-KG1-KZ1-F1 RN1 0.075 0.25 50.8 0◦ & 180◦

RN1-KG1-KZ1-F3 507.8 0◦ & 180◦

RN1-KG1-KZ2-F1 RN1 0.075 0.50 50.8 0◦ & 180◦

RN1-KG1-KZ2-F3 507.8 0◦ & 180◦

RN1-KG3-KZ1-F1 RN1 0.150 0.25 51.6 0◦ & 180◦

RN1-KG3-KZ1-F3 515.8 0◦ & 180◦

RN1-KG3-KZ2-F1 RN1 0.150 0.50 51.6 0◦ & 180◦

RN1-KG3-KZ2-F3 515.8 0◦ & 180◦

RS-KG1-KZ1-F1 RS 0.075 0.25 50.7 0◦

RS-KG1-KZ1-F3 507.3 0◦

RS-KG1-KZ2-F1 RS 0.075 0.5 50.7 0◦

RS-KG1-KZ2-F3 507.3 0◦

RS-KG3-KZ1-F1 RS 0.150 0.25 51.5 0◦

RS-KG3-KZ1-F3 514.8 0◦

RS-KG3-KZ2-F1 RS 0.150 0.5 51.5 0◦

RS-KG3-KZ2-F3 514.8 0◦

such, cases of k∗z = 0 and k∗z > 0 contain approximately 2 × 106 cells and 6× 106 cells

respectively. All cases with a Reynolds number of Reh ≈ 50 and Reh ≈ 100 utilise

the steady-state simpleFoam solver. These particular cases were computed in parallel

across 9 computational cores, with the domain decomposed along the streamwise di-

rection. All remaining cases utilise a psuedo-transient setup of the pisoFoam solver.

These psuedo-transient cases were computed in parallel across 22 processing cores, with

the domain decomposed once in the wall-normal direction, and 11 times in the stream-

wise direction. Convergence of the steady-state solver required 3000 iteration steps

for k∗z = 0, and 5000 iteration steps for k∗g > 0. Convergence of the psuedo-transient

solver required a time period of t ≈ 430h/Uav for Reh ≈ 500 and t ≈ 215h/Uav for

Reh ≈ 1000. The precision of the time-step varied depending on the complexity of the

flow field. For k∗z = 0, the time-step was fixed to produce a maximum Courant number
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(Equation 3.25) of approximately 40. The PIMPLE algorithm maintained stability

by performing multiple SIMPLE iterations during each time-step. For k∗z > 0, the

time-step was allowed to vary so that the maximum Courant number was restricted

to 1, whilst the number of SIMPLE iterations in each time-step was limited to 1. The

results presented here are taken from the instantaneous flow field at the final time-step.

The full set of results for the flow resistance and shear stress distribution for each case

is presented in Appendix C and Appendix D.

6.3 Two-Dimensional Ripples

6.3.1 Poisuille Number

Figure 6.2 displays values of the pressure contribution fp/f (Figure 6.2b), viscous

component of Poiseuille number Rehfv (Figure 6.2c), and the total Poisuille number

Rehf (Figure 6.2d), for discrete values of Reynolds number. Only the results for an

orientation of ϕ = 180◦ are shown for surfaces RN1 and RN2, as the small influence of

ϕ = (0◦, 180◦) would not be clearly observable from these graphs, as will be discussed.

Figure 6.2a displays the balance between the pressure component of Poisuille num-

ber and the combined viscous component. The line Rehfv = 5.98 − Rehfp represents

the point at which the viscous drag through a channel falls by an equal magnitude

to the additional drag which arises from the interaction of pressure with the textured

wall. In all cases, the viscous component of the Poiseuille number was lower than

that for the reference smooth channel Rehfv < 5.98, with a maximum reduction of up

to 18.7% for the natural ripple profiles and up to 15.7% for the reference sinusoidal

groove. The variation of pressure along the lower wall gave rise to the inevitable ‘pres-
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Figure 6.2: Properties of flow resistance for the two-dimensional surface profile cases
outlined in Table 6.1.
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sure interaction’ drag. For all cases in Table 6.1, the results show that the additional

pressure drag exceeds the reduction in viscous drag, resulting in an overall increase in

the total flow resistance. At a fixed Reynolds number, the relationship between Rehfv

and Rehfp generally follows a linear trend for which the shift of best-fit lines across

different values of Reh is significantly greater than the scatter about each line.

The 24 cases (48 solutions) involving two-dimensional surfaces of profile RN1 and

RN2 (Table 6.1), are analysed using an Analysis of Variance approach to quantify the

impact of four control factors on the analysis of variance approach. Since this analysis

include the factor ϕ it excludes cases which contain the symmetrical profile of RS. For a

fixed profile shape and groove depth, the total Poisuille number rises non-linearly with

Reynolds number, such that the effect of Reh diminishes as the flow moves from the

lower laminar regime to the theoretical limit of laminar-turbulent transition. Whilst

varying the value of ripple depth does not alter the general form of the Reh − Rehf

curve, raising the ripple depth produces two significant effects. Firstly, it increases the

Poisuille number, as represented by an upwards shift in the curve. Secondly it amplifies

the dependence that the Poisuille number has on the Reynolds number, as represented

by a positive scaling of the curve. Comparing the variances confirms a non-negligible

interaction between the ripple depth and Reynolds number, which accounts for 1.2%

of the variation in the Poisuille number across all cases of natural ripple profiles. The

Poisuille number is influenced overwhelmingly by the ripple depth, which accounts for

83.5% of the variation, compared with 11.3% for the Reynolds number.

Figure 6.2b shows that the relations for the pressure contribution ratio are similar

those observed for the total Poisuille number. However, the upwards shift and scaling

with ripple depth is smaller in relation to the gradient across the range of Reynolds

numbers investigated. The variance statistics confirm that the influence of ripple depth
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and Reynolds number are more balanced, with these parameters accounting for 50.7%

and 44.7% of the variation respectively. The interaction between these factors becomes

more significant; accounting for 2.9% of the variation. This additional effect presents

a positive shift in fp/f as k∗g increases at higher Reynolds numbers, whilst the reverse

occurs for Reh . 100. At the highest depth and Reynolds number, the pressure contri-

bution ratio accounted for less than 20% of the total drag over sinusoidal grooves, and

25% of the total drag over the natural ripple profile RN2. Compare these observations

to the sinusoidal grooves of Saha et al. (2015), which displayed a pressure contribution

ratio of over 55% for an equivalent Reynolds number of Reh ≈ 750 and a groove depth

of k∗g = 0.152. In that analysis, sinusoidal grooves covered the full circumference of a

circular pipe, whereas in the present analysis the grooves lie on one wall of an infinite

channel. Limiting the pressure ratio to consider the pressure drag and total drag on

the lower wall only; fp1/(fv1 + fp1), suggests an equivalent pressure contribution ratio

of fp/fv1 within the range of 32% and 40.1%, based upon the Reynolds number of

Reh = 514.8 and Reh = 1029.6, for simple sinusoidal grooves of k∗g = 0.15.

For a given combination of k∗g and Reh, the profile RN1 produced a larger value

of Rehfv over the lower wall than RN2 in spite of its smaller surface area. Substitut-

ing RN1 for the simple sinusoidal groove raises the lower viscous component further.

Furthermore, the change in Rehfv between profiles RN1 and RS was smaller than that

between profiles RN2 and RN1, despite the larger reduction in surface area. The orien-

tation of the ripple profile ϕ, exerted the weakest influence on the total flow resistance.

Varying ϕ between two discrete limits of 0◦ and 180◦ accounted for less than 0.02% of

the total variation in flow resistance. This is the case whether considering either the

total Poisuille number, or comparing each of its decomposed components individually.

Assuming that the influence of ϕ is non-negligible, and primarily attributable to nu-
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merical error, the present results indicate that a reversed orientation ϕ = 180◦ produces

a small reduction in both the total Poisuille number and the pressure contribution ra-

tio. The singular profile RN2 was found to be most sensitive to ϕ, with maximum

reductions of ∆Rehf = −8× 10−3 and ∆(fp/f) = −0.8%, which were observed for the

largest depth and highest Reynolds number. Such behaviour would correlate with past

findings for the large-scale asymmetric grooves of Osorio-Nesme & Delgado (2017) and

the shallow, asymmetric dimples of Tay et al. (2017). By shifting the surface orienta-

tion from ϕ = 180◦ to ϕ = 0◦, the former case observed a 2% reduction in flow rate

for steady-state laminar flow, whilst the latter case observed a 6% drag reduction for

channel flow at the lower end of the turbulent regime. The negligible influence of ϕ in

the present analysis may result from the combinations of small ripple dimensions and

the laminar flow conditions.

In the present analysis, the value of ϕ is restricted to cases where the ripples are

perpendicular to the flow. If the definition of ripple orientation is expanded to a greater

number of values spanning the range 0◦ < ϕ < 180◦ then its influence may be expected

to grow. In the case of shallow sinusoidal grooves, Mohammadi & Floryan (2013b)

observed that the Poiseuille number could fall by almost 60% from a maximum over

transverse grooves (ϕ = 0◦) to a minimum over longitudinal grooves (ϕ = 90◦). In

theory, the pressure contribution will reduce to zero when ϕ = 90◦, for which there is

no streamwise variation along the lower wall.

6.3.2 Local Wall Shear Stress

Figure 6.3 displays the normalised streamwise shear stress; a product of Reynolds

number and the local friction factor, along a sinusoidal groove at Reh =≈ 50, Reh ≈

100, Reh ≈ 500 and Reh ≈ 1000. The profiles display two phenomenon commonly
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observed in sinusoidal grooves. Firstly, the streamwise shear stress distribution within

the groove takes the form of a parabolic curve that lies out of phase with the geometric

profile. Secondly, the reduction in shear stress throughout the groove is matched by a

rise in the shear stress near the crests. Although the maximum and minimum values of

Reh(τ0/ρU
2
av) grow along with the groove depth, the enhanced resistance at the crests

cannot overcome lower resistance over the larger area of the trough. Hence, the overall

viscous flow resistance falls, as shown in Figure 6.2. In the present analysis, where the

crest is not confined to a single point, the maximum of Reh(τ0/ρU
2
av) moves from the

stoss-side to the point where the stoss-side meets the flat crest. Here, the maximum

forms a single spike just downstream of the stoss-side, which then falls to a plateau

over the remainder of the crest. The pressure minimum lies at the downstream edge of

the crest, whilst the pressure maximum forms around the midpoint of the stoss-side.

For all cases of Reh ≈ 50 and Reh ≈ 100 in Figure 6.3, the local shear stress

remains positive along the surface for all values of k∗g , which includes maximum lee-

side angles of up to 25.2◦. When the maximum lee-side angle is 19.1◦ (k∗g = 0.11),

and the surface lies in a flow of Reh ≈ 500, the shear stress approaches the limit

of separation; Reh(τ0/ρU
2
av) = 0, towards the minimum of the trough but does not

achieve separation. As case RS-KG2-KZ0-F4 shows, whilst flow separation is possible

for sufficiently high inertial forces (Reh ≈ 1000), the point of separation does not occur

until the steepest point of the lee-side is reached, leaving a flat, highly asymmetric

vortex which is compressed by the shallow trough. For deeper grooves of k∗g = 0.15, the

separation point moves above the midpoint of the lee-side, increasing both the length

and depth of the free-shear region, and hence, increasing the area that is available to

the backwash. The length of the free-shear region and the strength of the backwash

grow more substantially for an increasing groove depth, than they do for an increasing
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(a) RS, k∗z = 0,Reh ≈ 50, ϕ = 0◦
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(c) RS, k∗z = 0, Reh ≈ 500, ϕ = 0◦
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(d) RS, k∗z = 0, Reh ≈ 1000, ϕ = 0◦
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Figure 6.3: Distribution of the normalised streamwise shear stress over two-
dimensional sinusoidal profiles for flows of Reh ≈ 50, Reh ≈ 100, Reh ≈ 500 and
Reh ≈ 1000.

Reynolds number.

Now consider the effects of imposing a naturally occurring asymmetry onto a simple

sinusoidal groove. Figure 6.4 displays the distribution of the normalised shear stress

over the lower wall for two-dimensional geometries of natural sand ripple profile RN1

and RN2 in a flow of Reh ≈ 500. As in Figure 6.3, this distribution is assessed against

two key values. The first value corresponds to the shear stress over the reference
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smooth wall; Reh(τ0/ρU
2
av) = 2.99. The second value corresponds to the limit of

flow separation and flow reversal; Reh(τ0/ρU
2
av) = 0. For generalised sand ripples

forming under laminar flow conditions, the limits for vortex ripple formation, i.e. flow

separation, is determined by the critical depth of k∗g = 0.1 (Vittori & Blondeaux 1990;

Blondeaux et al. 2015). This value was determined as the point at which a weakly non-

linear analysis for combined oscillating and steady bulk flow becomes unstable. For

asymmetric ripples comprised of flat planar section, Lefebvre et al. (2016) identified a

slip face angle of 18% as the critical limit of flow separation in unidirectional turbulent

flow. The present results indicate that the the critical limit of k∗g for the onset of flow

separation over rigid ripple profile is heavily influenced by two additional factors; the

Reynolds number and the geometric features of the lee-side. Although, for profiles

which go beyond simple geometric profiles, a critical limit of k∗g fails to represent a key

property of the surface profile; the steepness of the lee-side.

When considering a combination of Reh, k
∗
g and the maximum face angle, Fig-

ure 6.5a displays the first requirements for the development of a free-shear region.

The profile of RN2 at the deepest depth with its natural orientation of ϕ = 0◦ is the

only surface to produce flow separation without approaching the limits of the laminar

regime (Reh . 100). For its maximum depth of k∗g = 0.15, the slip face angle becomes

42.2◦. The length of the resulting free-shear region is small, within which a small span-

wise vortex remains pinned between the lee-side and the upstream portion of the flat

trough, indicating that for a flow of Reh ≈ 100, a slip face angle of 42.2◦ lies not far

above the critical limit of flow separation. Based purely upon the maximum lee-side

angle, a critical limit of ≈ 40◦ would correlate with that observed for sinusoidal grooves

in a purely viscous stokes flow (Niavarani & Priezjev 2009). As for the profile RN1,

sinusoidal grooves themselves have a single localised point at which the lee-side slope
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(a) RN1, k∗z = 0, Reh ≈ 500, ϕ = 0◦
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(b) RN2, k∗z = 0, Reh ≈ 500, ϕ = 0◦
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(c) RN1, k∗z = 0, Reh ≈ 500, ϕ = 180◦
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(d) RN2, k∗z = 0, Reh ≈ 500, ϕ = 180◦
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Figure 6.4: Distribution of the normalised streamwise shear stress over two-
dimensional sand ripple profiles for a flow of Reh ≈ 500.

reaches an angle of ≈ 40◦. Separation does not occur for the profile of RN1 under

identical conditions, for which the maximum steepness on the natural lee-side reaches

43.2◦. Reducing the angle of the slip face in RN2 to 24.4◦ (k∗g = 0.075) raises the

required Reynolds number for flow separation by a factor greater than 5. Whilst shear

layers remain attached throughout the groove at Reh ≈ 500, by Reh ≈ 1000 a large

spanwise vortex covers the majority of the flat trough.
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(a) Case RN2-KG3-KZ0-F2, ϕ = 0◦

(b) Case RN1-KG3-KZ0-F4, ϕ = 0◦

(c) Case RN1-KG3-KZ0-F4, ϕ = 180◦

Figure 6.5: A visualisation of flow trajectory (black lines), and normalised pressure
field for three cases in Table 6.1.
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When the lee-side consists of multiple curves/faces, a single value of the maximum

slope angle may be insufficient for even a general indication of flow separation. In

profile RN1 the steepest point on the natural stoss-side is located at the highest point

of inflection (y = −0.25kg). When the natural stoss-side is placed to form the lee-

side (ϕ = 180◦), the flow remains attached to the the upper segment in any case of

Reh ≈ 500, for which it separates below the plane of y = −0.5kg. This is in spite of

the reverse case promoting flow separation with a smaller angle of 32◦ (k∗g = 0.11) at a

similar magnitude of Reh. When the configuration of the former surface does promote

flow separation, by raising the Reynolds number to Reh ≈ 1000, it produces a pair

of co-rotating vortices, as shown in Figure 6.5c, which form two distinct separation

regions, as opposed to the single vortex which is present when the surface orientation

is reversed, as shown in Figure 6.5c. At the connecting point the flow briefly reattaches

to lee-side prior to the second free-shear region. As the flow that lies adjacent to the

lee-side approaches the second point of inflection at y = −0.5kg, it goes through a

period in which the rate of acceleration/deceleration reduces, before rising again. This

behaviour leads to a third localised spike in the shear stress.

For combinations of sufficiently deep, asymmetrical grooves combined with Reynolds

numbers in the range of Reh & 500, the direction of the flow plays a significant role

in promoting or delaying the onset of flow separation from the lee-side. This in turn

significantly impacts the length of the free-shear region and the strength of the back-

wash from the spanwise vortex. However, in no case did a reversal of the flow direction

produce a non-negligible change to either the ratio of the pressure contribution, or the

individual components of Poisuille number. As Figure 6.4 shows, even when alternat-

ing the flow orientation determines the existence of a free-shear region, the solution for

ϕ = 180◦ already produces a strong reduction in shear stress throughout the groove
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and lies close to the limit of separation at Reh(τ0/ρU
2
av) = 0. Hence, the negative shear

stress from the backwash only produces a marginal improvement within the trough.

Furthermore, this reduction in shear stress in the trough is counteracted by higher

shear stress at the crests, and particularly during the initial velocity spike. For simple

sinusoidal grooves, Saha et al. (2015) observed that flow separation over the majority

of the groove, and the formation of large spanwise vortices, are not necessary for the

pressure drag to match the viscous drag on a corrugated surface. This observation

existed in the context of comparing the flow field within grooves for varying values of

depth and Reynolds number. In the present analysis, this phenomenon is confirmed

when the geometries of the lee-side and stoss-side are altered whilst keeping both the

centre of area and the total surface area constant.

6.4 Three-Dimensional Ripples

6.4.1 Poisuille Number

Figure 6.6 compares results for natural sand ripple surfaces for varying magnitudes of

spanwise variation k∗z . For all cases for which the flow lies firmly within laminar regime

(Reh ≈ 50), the spanwise amplitude displays a negligible impact on the total Poisuille

number. In no instance does raising the spanwise amplitude from k∗z = 0 to k∗z = 0.5

shift Rehf by more than 0.1% of (Rehf)smooth. The viscous component on the upper

wall displays an equally small response. As observed for two-dimensional ripples, the

lack of response in Rehf may be attributed to the balance between its pressure and

viscous components. As k∗z increases, Rehfp falls by an equal magnitude to the rise in

Rehfv, which reaches up to ±1.8% of (Rehf)smooth for the deepest ripples.
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Figure 6.6: Properties of flow resistance for the three-dimensional surface profile cases
outlined in Table 6.2.
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Bringing the Reynolds number towards the upper limits of the laminar regime

(Reh ≈ 500) strongly amplifies the effect of k∗z . For the shallowest ripples (k
∗
g = 0.075),

as k∗z grows the viscous drag increase begins to grow at a faster rate than the drop in

the pressure component. The total shift in Rehf between k∗z = 0 and k∗z = 0.5 lies

below +1.26% of (Rehf)smooth. As seen for the lower Reynolds numbers of Reh ≈ 50,

the individual components of Poisuille number display a minimal dependence on the

flow orientation. Doubling the groove depth, thus combining these higher Reynolds

numbers of Reh ≈ 500 with the deep ripple profiles of k∗g = 0.15, significantly amplifies

the influence of k∗z . Applying a spanwise amplitude of k∗z = 0.25 to this two-dimensional

ripple raises the Poisuille number by more than 7% of (Rehf)smooth for ϕ = 0◦. This

shift is already greater than that observed for the range of any of the control factors

considered in Section 6.3.1, and rises to +17.5% of (Rehf)smooth at k∗z = 0.5. In

addition, the flow direction begins to play a significant role in determining the flow

resistance. Reversing the flow over the naturally oriented ripple (ϕ = 0◦ → 180◦)

raises the Poisuille number by roughly 5% of (Rehf)smooth (≈ 5± 0.5%), depending on

the value of k∗z in contrast to the small improvement observed when k∗z = 0. Reversing

the flow direction produced a greater change in Rehf than replacing the ripple profile

of RN1 at ϕ = 0◦ with a symmetrical sinusoidal groove.

The sharp rise in Rehf with k∗z , which was observed for cases of Reh ≈ 500 and

k∗g = 0.15, may be attributed primarily to the lower wall viscous drag, which increases

rapidly enough that by k∗z = 0.5, the value of Rehfv1 alone can exceed the value of

a reference smooth wall. This trend is accompanied by a similar trend in the values

of the viscous component on the upper wall, although to a far smaller magnitude. In

comparison, the impact of k∗z on the flow resistance from pressure remains negligible

and the drop in fp/f in Figure 6.6a reflects the rapid climb in f . The drop in Rehfp is
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of a small magnitude for all combinations of Reh and k∗g , such that varying k∗z within

the current range never reduces the value of Rehfp by more than 3%.

6.4.2 Local Wall Shear Stress

The value of k∗z only produces a significant effect on the Poisuille number when the

ripple has a depth of k∗g = 0.15 and lies within a flow of Reh ≈ 500. The changes in the

Poisuille number in this case are dependant primarily on the viscous resistance of the

textured lower wall and, to a lesser degree, the smooth upper wall. Figure 6.7 displays

the distribution of the normalised shear stress over three-dimensional ripple patterns at

two key spanwise locations; one located over the lobe (z/Lz = 0) and the other located

over the saddle (z/Lz = 0.5). The cases correspond to a flow of strength of Reh ≈ 500

over ripples of depth k∗g = 0.15 (Figure 6.7a & Figure 6.7b) and k∗g = 0.075 (Figure 6.7c

& Figure 6.7d). Applying a sinusoidal spanwise variation with an amplitude of k∗z =

0.25 to an initially two-dimensional profile produces a redistribution of the shear stress

along the lower wall, such that the streamwise distribution of Reh(τ0/ρU
2
av) within the

grooves varies in relation to the spanwise location.

First, consider the region of reduced shear stress in the region connecting two lobes

(z/Lz = 0), as shown in Figure 6.7a and Figure 6.7b. For k∗z = 0.25 and k∗z = 0.5 the

normalised shear stress falls below the the smooth wall reference Reh(τ0/ρU
2
av) = 2.99

along the full profile of the groove and the majority of the crest, and only exceeds this

value during the usual spike upon reaching the crest. The usual correlation between

the shear stress at the crest and in the trough is maintained, whereby, as k∗z rises, the

fall in the maximum value of Reh(τ0/ρU
2
av) is matched by a rise in the minimum value.

However, this marginal rise in shear stress within the trough is negligible compared to

the reduction over the crest. In case RN1-KG3-KZ2-F3 (Reh ≈ 500, k∗g = 0.15) the
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Figure 6.7: Distribution of the normalise streamwise shear stress over surfaces of the
three-dimensional ripple profile RN1 in flows of Reh ≈ 500.

loss of momentum at the lobe is such that the flow passing over the lee-side of the lobe

fails to separate for either solution of ϕ = 0◦ and ϕ = 180◦.

In cases RN1-KG3-KZ1-F3 and RN1-KG3-KZ2-F3, the reduction in the shear stress

at the lobe is accompanied by a sharp rise in the shear stress in the region of the

saddle (z = ±0.5λz). This rise is primarily focused on the crests, where the value of

Reh(τ0/ρU
2
av) at both the initial localised spike and the remainder of the flat crest rises
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by more than ≈ 80% when compared with the two-dimensional ripple in case RN1-

KG3-KZ0-F3 (Figure 6.4). The rise in shear stress over the stoss-side and the crest at

the saddle exceeds the reduction in shear stress over the full width of the lobe. This

difference only grows with the increasing amplitude of the spanwise profile. Reducing

the ripple depth by a factor of 0.5 to k∗g = 0.075 (Figure 6.7d) disproportionately

reduces the shear stress at the crests whilst maintaining a similar magnitude of shear

stress over the stoss-side. In addition, Figure 6.7b shows that the orientation of the

groove at k∗g = 0.15 and Reh ≈ 500 has a significant influence on the shear stress in

over the crest of the lobe. The natural orientation of ϕ = 0◦ produces a reduction in

the shear stress along the whole length of the high shear region at the crests of the

saddle, in comparison to ϕ = 180◦. The flow mechanism which generates the high

shear stress at the lobes has a non-negligible dependence on the geometric profiles of

the lee-side and stoss-side.

Over the three-dimensional profile the flow is characterised by a pair of streamwise,

counter-rotating vortex cores which form on either side of each lobe. As each pair of

vortices move downstream they grow in size and move away from the wall. Half-way

along the ripple profile the vortices begin to converge before reattaching to the crest

of the downstream lobe. The trajectory of the flow in the streamwise-wall-normal

plane between consecutive lobes (z = 0 ± λz) is always primarily directed towards

the upper wall. This even applies to the region over the lee-side, where the local

channel opening in these two-dimensional planes is increasing with x. Although the

slow moving fluid from the trough accelerates over the lee-side of the lobe, its upwards

momentum is rapidly reversed as it feeds into the stronger downwash. At this point

the magnitude of the minimum wall-normal velocity (located within the downwash)

exceeds the maximum positive value (located within the upwash), by a factor of ≈ 2.
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(a) x/λx = 0 (b) x/λx = 0.60

(c) x/λx = 0.83
(d) Streamwise locations

Figure 6.8: A visualisation of spanwise vortex formation, based on the flow fields over
the reference sinusoidal profile in case RS-KG3-KZ2-F3. Vectors display illustrate the
wall-normal and spanwise velocity component.

Figure 6.9 provides a clear depiction of the main impact of the upwash and down-

wash over the flow field. In the region over the saddle points (z = ±0.5λz), within

the bulk of the channel, the flow maintains a constant trajectory towards the lower

wall. In contrast to that over the lobes (z = 0 ± λz) the flow within the trough and

in a small region above the crests, varies in wall-normal trajectory, in relation to the

two-dimensional surface profile. As the flow passes beyond the crest of the saddle, the
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momentum of the downwash feeds the flow directly into the groove, where it follows the

contour of the lee-side, as in the case of k∗z = 0. Hence, the distribution of stress stress

along the lee-side maintains a similar form, although with significant scaling, with the

corresponding two-dimensional cases; Figure 6.4a and Figure 6.7c. As the flow moves

towards the trough the shape of the spanwise periodic profile funnels the flow towards

the enclave force behind the lobe. As the flow stream accelerates over the stoss-side it

collides with the high velocity flow from the bulk of the channel, which passes through

the downwash between the streamwise vortices. The flow on the stoss-side is restricted,

producing a greater rate of acceleration prior to the crest.

The presence of a patterned surface will modify the shape of the steady-state flow

field, in relation to the planar distribution of a reference smooth channel. The ultimate

effect of the spatially alternating upwash and downwash generated by the streamwise

vortices is to redistribute the streamwise velocity across the spanwise surface profile.

Figure 6.11 and Figure 6.10 represent the interaction between the lower wall and the

three-dimensional flow field as the spatial distribution of the streamwise velocity com-

ponent on a streamwise-spanwise plane over the lower wall, for asymmetric ripple pro-

files with a depth of k∗g = 0.15. When the flow lies firmly within the laminar regime, i.e.

Reh ≈ 50 (Figure 6.10), and the amplitude of the spanwise variation is equal to half of

the streamwise wavelength (λx = 2kz), the spanwise deviation in the flow field remains

the dominant feature at a distance of y/h0 = 0.147. When the spanwise amplitude is

halved (λx = 4kz), the streamwise deviation dominates. Moving into the transitional

regime (Reh = 515.8), the streamwise variation rapidly diminishes away from the wall,

and the streamwise flow field is dominated by a two-dimensional wavy profile. The

maximum and minimum values lie along a pair of parallel streamwise axis which lie

over the lobe and saddle points of the lower wall. Throughout the bulk of the channel,



6.4. THREE-DIMENSIONAL RIPPLES 199

(a) RN1-KG3-KZ1-F1

(b) RN1-KG3-KZ1-F3

Figure 6.9: Three-dimensional streamlines of flow trajectory passing over the crest of
three-dimensional sand ripple profiles.
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including the region beyond the centreline (y > h), the flow field maintains this dis-

tribution, though the maximum and minimum value of streamwise velocity degrades

with increasing distance from the lower wall.

(a) RN1-KG3-KZ1-F1 (y/h0 = 0.029) (b) RN1-KG3-KZ1-F1 (y/h0 = 0.147)

(c) RN1-KG3-KZ2-F3 (y/h0 = 0.029) (d) RN1-KG3-KZ2-F3 (y/h0 = 0.147)

Figure 6.10: Surfaces contours of the streamwise component of velocity in a flow of
Reh ≈ 500 for an asymmetric sand ripple profile with varying spanwise variation.
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(a) RN1-KG3-KZ0-F3 (y/h0 = 0.029) (b) RN1-KG3-KZ0-F3 (y/h0 = 0.147)

(c) RN1-KG3-KZ1-F3 (y/h0 = 0.029) (d) RN1-KG3-KZ1-F3 (y/h0 = 0.147)

(e) RN1-KG3-KZ2-F3 (y/h0 = 0.029) (f) RN1-KG3-KZ2-F3 (y/h0 = 0.147)

Figure 6.11: Surfaces contours of the streamwise component of velocity in a flow of
Reh ≈ 500 for an asymmetric sand ripple profiles for three levels of spanwise variation.
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6.5 Summary

A large-scale parametric study has been completed that investigates the theorised po-

tential for laminar drag reduction of grooved Poisuille flows through the application and

optimisation of highly detailed geometric surface features. The two primary surface

profiles replicate the detailed profiles of bedforms of sand ripples which form naturally

under tidal motions over a sand beach. The analysis considers the influence of groove

depth, profile shape, flow direction, Reynolds number and spanwise geometric variation

on the flow resistance through the channel, in addition to the near-wall flow field and

the shear stress distribution along the surface. The results presented here contribute

a higher understanding to the existence of critical limits, in regards to surface geom-

etry and flow strength, for which a detailed surface modification has the potential to

manipulate flow resistance.

For all cases involving two-dimensional grooves, the natural sand ripple profiles had

a negative impact on the overall flow resistance, in comparison to simplified sinusoidal

grooves. Across the ranges considered here, the groove depth proved to be the primary

factor in determining the total flow resistance, displaying an overwhelming influence

when compared to the Reynolds number. The direction of the flow, in relation to the

surface profile, displayed a negligible influence on both the total Poisuille number and

its individual components. This influence remained negligible in cases for which the

flow field was irreversible, and the size and shape of the separation bubble varied sig-

nificantly with the flow direction. Where previous investigations have failed to observe

such correlations by comparing the output of varied surface geometries, the current

results demonstrate that such a correlation remain absent when comparing identical

domains and flow conditions. These observations do not lend support to recent the-

ories (Mohammadi & Floryan 2013b; Saha et al. 2015) which suggest a potential for
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achieving a drag reduction in single phase laminar flow by reducing the separation

length within a groove to reduce the pressure drag, or by encouraging the growth of

a separation bubble to reduce viscous drag on a surface. The current results show

that the mechanisms which dominate the pressure drag and viscous drag in single

phase laminar flow exist in opposition to each other, usually in close balance, and that

these mechanisms have, at most, a weak connection to any free-shear region within the

groove.

Imposing a sinusoidal spanwise variation onto a two-dimensional profile did not

exert any significant change in the flow resistance, until applied with a combined groove

depth of k∗g = 0.15 and a flow of Reh ≈ 500. Under these conditions, the viscous

resistance of the lower wall, and to a lesser degree the upper wall, grew rapidly with an

increasing spanwise amplitude, whilst the effect on the pressure interaction drag was

minimal. This change results from a redistribution of the shear stress between the lobes

and the saddles. The crests of the lobes are supplied by an upwash of low velocity fluid

from the troughs. The crests of the saddles are supplied by a counteracting downwash

of high velocity flow from the bulk of the channel. With this high concentration of

shear stress at the saddle, the high geometric details of the lee-side begin to exert a

significant influence on the resulting shear stress at the crest, and hence, become a

primary source of viscous flow resistance. It is only under such conditions that the

orientation of such transverse grooves can be considered as an important design factor.

Further investigation is required to increase the precision of the control factors,

and hence, improve and understanding of the critical limits of the flow phenomenon

observed here. From the current parametric study, the range of geometric properties

can be expanded to include a larger range of geometric parameters and profile shapes.

In addition, the influence of the spatial resolution within the bulk of the channel when
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the surfaces induce a large shift in the flow distribution away from the wall, (i.e. deep,

three-dimensional grooves), should be investigated further.



CHAPTER 7

Ripples in Spatially Developing Turbulent Flow

7.1 Introduction

The present Chapter investigates the application of the numerical methodology devel-

oped in Chapter 4 to a spatially developing boundary turbulent layer over a surface of

periodic, two-dimensional ripple profiles. One asymmetric ripple profile from Chapter

5 and Chapter 6 is simplified in order to accommodate the optimal smooth wall spatial

resolution from Chapter 4, in addition to improving manufacturability.

Three simulations investigate the spatially developing boundary layer over ripple

profiles with three values of ripple depth, using the spatial resolution which is opti-

mised for the reference smooth wall, but which is relatively coarse in relation to the

requirement of the ripple profile. One additional boundary layer simulation applies the
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automatically generated split-hexahedral mesh from Chapter 5 to the deepest ripple

profile, in order to investigate the capability of a split-hexahedral mesh to overcome

the difficulties associated with modelling non-planar geometries in resolved turbulent

flow.

The final section of this Chapter validates the meshing procedure by comparing

coarse and fine hexahedral meshes, with the automatically generated split-hexahedral

mesh, within the simplified domain of a periodic channel. A channel domain is selected

due to the crippling computational costs associated with increasing spatial resolution

in a hexahedral mesh; a problem which the automatically generated split-hexahedral

mesh alleviates.

7.2 Physical Scenario

7.2.1 Groove Geometry and Case Configuration

The present analysis utilises the simulation setup from Chapter 4 which was de-

signed and optimised for modelling spatially developing turbulent boundary layers over

smooth walls, as shown in Figure 7.1. In Figure 7.1 a region of the smooth surface lying

between x = 0.07m (x = 2480θin) and x = 0.25m (x = 8858θin) has been replaced

with a surface of two-dimensional, periodic ripples which are oriented perpendicular

to the streamwise direction. The ripples consist of a single profile at three different

dimensionless depths, k∗g = 0.025, k∗g = 0.05 and k∗g = 0.15. Two values correspond

to the drag reducing limits of k∗g ≤ 0.05 observed for circular dimples in turbulent

channel flow (Tay et al. 2015). The highest value corresponds to the natural depth

ratio observed in the natural ripple profile RN1 in Chapter 5. A depth of k∗g = 0.15 lies
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beyond the proposed critical limit of separation k∗g > 0.1 (Blondeaux et al. 2015). Fur-

thermore, the analysis in Chapter 6 revealed that a ripple depth of k∗g = 0.15 combined

with a spanwise geometric variation could produce strong iterations with the flow field,

characterised by large three-dimensional flow structures within a two-dimensional, high

Reynolds number, laminar channel flow.

Free-Stream Plane

Lower Wall (Ripples)

Inlet
Plane

Outlet
Plane

xl xt

x

y

x = xtrip

Turbul
ent Boundary

Layer

Laminar
Boundary Layer

0.07m 0.18m

(u∞)in

Lx

Figure 7.1: Diagram of the flow domain and boundary conditions for the spatially
developing boundary layer flow over a surface of periodic ripples.

The original surface is a two-dimensional profile of a manufactured, groove with

a ripple-inspired profile, based upon the naturally occurring profile RN1, defined in

Chapter 5. The manufactured geometry is created through milling, in which a pair

of overlapping arcs are cut into a flat surface. The total distance from the midpoint

of a crest, to the midpoint of an adjacent crest is λx = 7.46mm. The length of the

ripple is λz = 3.46mm, with a crest to trough depth of kx = 0.519mm, such that

k∗g = kg/λg = 0.15. The manufactured ripple profile was designed such that the length

of λg is roughly equal to the thickness of the smooth wall boundary layer at the end of
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the textured region (λg ≈ δ99 at x = 0.25m). The shallower ripple profiles are created

by scaling the manufactured profile in the wall-normal direction. In this initial study,

the ripple is orientated with the a shallow lee-side and steep stoss-side (ϕ = 180◦).

Each geometry is defined by the centre and radius of a pair of circles which produce

the pair of overlapping arcs which are cut into the surface. Table 7.1 provides these

values as a scaling of the full ripple wavelength λx.

λx

λg = 0.464λx

kg
0.423kg

0.137λx 0.184λx

Figure 7.2: Schematic of the two-dimensional, simplified ripple profile denoted as G3
in Table 7.1.

Table 7.1: The geometry of each ripple profile applied in the present analysis.

Rippleconfiguration k∗g radius/λx xcentre/λx ycentre/λx
G1 0.025 1.180 0.379 1.175

1.482 0.546 1.470
G2 0.050 0.595 0.379 0.585

0.749 0.546 0.725
G3 0.150 0.216 0.380 0.185

0.276 0.548 0.207

The reference smooth wall boundary layer is taken from the solution for case M2-

T2-L2 in Chapter 7, which is denoted as case M2-SW-TB in the present chapter. Table

7.2 displays the configuration of four simulations of the spatially developing turbulent

boundary layer over two-dimensional ripple geometries. Case M2-G1-TB, case M2-G2-

TB and case M2-G3-TB compare ripple profiles at three different depths of k∗g = 0.025,
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k∗g = 0.05 and k∗g = 0.15 respectively. Each case resolved the near-wall flow using a

hexahedral mesh with a spatial resolution equivalent to that in case M2-SW-TB, which

was optimised for the reference smooth wall flow. For the deepest ripple geometry,

the steepest ripple face meets the crest at an outward angle 230◦, which requires an

orientation of 49◦ between the connecting cells at this point. The sudden changes in the

geometry, combined with the high-aspect ratio of the cells, produced cells with a high

skewness (≈ 0.95) near the ends of the crest. This high skewness could significantly

impact the shear stress and pressure force acting at these points. Case M4-G3-TB

remodels the deepest ripple geometry of k∗g = 0.15 using a split-hexehedral mesh, in

which the spatial resolution in the near-wall region is increased by a factor of 4. Split-

hexahedral meshes were utilised extensively in Chapter 6 to resolve highly detailed sand

ripple profiles in laminar channel flow, whilst minimising pre-processing time and total

cell count. In the present chapter, the solutions for case M2-G3-TB and case M4-G3-

TB are compared to assess the viability of this same meshing procedure, to accurately

model wall-resolved turbulent boundary layers with textured surface profiles, whilst

minimising the pre-processing time and cell count, compared to the optimised smooth

wall flow simulations which were produced in Chapter 4.

Table 7.2: Setup for four simulation cases of a spatially developing turbulent boundary
layer over periodic ripples, in addition to a reference smooth surface in case M2-SW-TB,
as defined in Table 4.3.

Case k∗g Mesh type Lz/θin NT

(
×106

)

M2-SW-TB 0 M2 283 28.3
M2-G1-TB 0.025 M2 286.5 29.0
M2-G2-TB 0.05 M2 286.5 29.0
M2-G3-TB 0.15 M2 286.5 29.0
M4-G3-TB 0.15 M4 286.5 66.4
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7.2.2 Mesh Construction

In the present analysis, three distinct types of meshes were constructed for the ripple

surfaces. Figure 7.3 and Figure 7.4 display the layout of each mesh over a ripple of depth

k∗g = 0.15 (denoted surface G3). Table 7.3 provides the cell types and dimensionless

cell spacing in each mesh. The friction velocity for the inner scale is taken as the

theoretical value of uτ = 4.25m/s, as established in Chapter 4. Mesh M2 contains a

spatial resolution which was optimised for the smooth wall boundary layer in Chapter

4. Mesh M4 utilises the snappyHexMesh utility to construct a mesh with similar wall-

normal spacing and spanwise spacing as mesh M2, but which increased streamwise

resolution in the region of the wall. The purpose of mesh M4 is to examine the impact

of streamwise resolution on resolving flow over the sharp angles, without a significant

increase in mesh size throughout the bulk of the flow. In the present analysis, mesh

M4 is applied to ripple G3.

Table 7.3: Inner-scaled cell dimensions over the ripple surface, based on a theoretical
friction velocity of uτ = 4.25m/s as established in Chapter 4.

Mesh hexahedral ∆x+min ∆x+max ∆y+min ∆z+

M2 hexahedral 42.2 42.2 0.95 21.2
M4 split-hexahedral 10.6 42.2 0.95 21.2
M5 hexahedral 5.3 42.2 0.95 21.2

The cell dimensions in mesh M2 are equal to those of the optimised smooth surface

simulations in case M2-SW-TB. For three cases of k∗g = 0.025, k∗g = 0.05 and k∗g = 0.15,

a hexahedral mesh was built over the domain with the graphical user-interface of the

SALOME Mecha programme. Along the full streamwise length of the domain, the

cells have inner-scaled streamwise and spanwise widths of ∆x+ ≈ 42.2 and ∆z+ ≈ 21.2

respectively. Below y < 0.6Ly, the wall-normal height uniformly decreases to produce

∆y+min = 0.95 at the wall. Mesh M5 contains identical wall-normal and spanwise cell

widths as mesh M2, however, the streamwise cell width is decreased over the region
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(a) Mesh M2

(b) Mesh M4

(c) Mesh M5

Figure 7.3: Cell distribution over the ripple profile G3 , (as defined in Table 7.1) for
the three different types of mesh which are defined in Table 7.3.
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(a) Key feature locations

(b) Mesh M2 (Point A) (c) Mesh M2 (Point B)

(d) Mesh M4 (Point A) (e) Mesh M4 (Point B)

(f) Mesh M5 (Point A) (g) Mesh M5 (Point B)

Figure 7.4: Cell distribution around two key features of the deepest ripple profile,
denoted by G3 in Table 7.1, for three different types of mesh, as defined in Table 7.3.
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of the surface containing large angles. Hence, the streamwise cell width varies from

∆x+ ≈ 42.2 at the crest and in the trough, to ∆x+ ≈ 5 at the edges of the ripple

segments. All cells in mesh M5 are hexahedral, and hence, the increased streamwise

resolution is not limited to the near-wall region as it is in mesh M4. This has the

effect of increasing the Courant number at a given time step in the high velocity flow

which lies away from the wall. A smaller time-step is required to maintain stability,

which further increases the required computational workload, in addition to increasing

the total mesh size in the domain. For this reason, the mesh M5 is computed in an

simplified simulation comprising of a periodic channel domain, and compared with

matching channel simulations for mesh M2 and mesh M4.

The near-wall cells in the optimised smooth wall models contain a uniform aspect

ratio of 40 in the x-y plane. For the snapping process of the snappyHexMesh utility,

the functionality of the algorithm improves as the aspect ratio of the initial mesh tends

towards one. The aspect ratio of the initial orthogonal mesh was reduced by first,

increasing the wall-normal width of the cells adjacent to the wall, and improving the

streamwise resolution. Local cell refinement allowed for a further reduction in the

aspect ratio of the near-wall cells, whilst minimising the increase in the overall mesh

density throughout the domain. The configuration of the ‘refineMesh’ module applied

a single division along the x-axis of each cell within a specified area of the domain. All

but the final levels of refinement lay between the trough of the surface profile and a

parallel x-z plane at a wall-normal point above the crests. The final level conformed

to the surface profile, with an offset of 0.2mm along the normal surface vector at

each point. With these changes the initial grid contained minimum cell dimensions of

∆x+min ≈ 10.6, ∆y+min ≈ 3.8 and ∆z+ ≈ 21.2 in the near-wall region.

The maximum non-orthogonality showed a minimal dependence on the configura-



7.2. PHYSICAL SCENARIO 214

tion of the near-wall meshing parameters. All cases could achieve the minimum quality

requirement of 65◦ (Robertson et al. 2015) for all points in the domain. Limiting the

movement of edges to no more than 10% of their initial length caused a collapse of all

constructed layers. In these cases, the algorithm failed to show any sign of convergence

within as many as 50 smoothing iterations.

Producing a domain with a maximum skewness of less than 0.7 requires an excess

of 100 million cells, bringing the domain size to within 43% of an equivalent DNS solu-

tion, with no significant improvement in the resolution of the turbulent length scales.

Reducing the local refinement level in the streamwise direction requires a similar re-

duction in the initial wall-normal resolution to maintain a suitable aspect ratio and

minimise skewness. However, the domain requires a larger number of layers which must

lie within the 2nd level of local refinement. Similarly, reducing the initial wall-normal

width to reduce the number of layers requires those layers to have an additional level

of refinement to maintain the same skewness. The final mesh contains a maximum

streamwise width of ∆xmax ≈ 42.2 for all points of above y/Ly > 0.67. Two levels of

local refinement are applied to the streamwise width within the boundary layer, to pro-

duce a streamwise resolution of ∆xmin ≈ 10.6 over the full surface of the ripple profile.

Note that the streamwise resolution varies within the ripple due to cell distortion, but

it stays below a maximum limit of approximately ∆xmin < 0.5∆xmax. The near-wall

region has a maximum non-orthogonality of 62.3◦ and a maximum skewness of 0.89.

The average non-orthogonality throughout the domain is 4.37◦.
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7.3 Numerical Solution and Post-Processing

All numerical solutions were calculated using the transient PISO algorithm. The

second-order accurate backward differencing scheme was used for the discretisation

of the temporal terms. The total physical time was kept constant for all simulations.

For the reference smooth wall boundary layer in case M2-SW-TB this corresponds to

1440 inertial time scales, based on δ99/u∞ towards the end of the domain. The time

interval was kept fixed during the run time; however, in each individual case this user

supplied value was reduced as required to keep the maximum Courant number below

1, in order to maintain stability. As in the reference smooth surface simulations, the

discretisation of the gradient and divergence terms was performed using second-order

accurate central differencing schemes, whilst the Laplacian scheme in Equation (3.18)

was used for the discretisation of the Laplacian terms.

In case M4-G3-TB, which contains variable streamwise cell dimensions across the

wall-normal direction, the the streamwise profile was averaged over a streamwise length

of ±71θin from the midpoint of the crest. Since the postChannel calculation cannot

collapse split-hexahedral cells, each refinement level was collapsed individually, and the

resulting profiles were compiled into a complete boundary layer. Note that this process

must discard one layer of cells in each refinement layer which lies beyond the near-wall

layer.

Along the textured surface the boundary layer properties are determined at the

midpoint of ripple crests, x = 2480θin + nλz for n = 1, 2...24. For each periodic

ripple, a ‘ripple averaged’ free-stream velocity and free-stream pressure are obtained

from a streamwise and spanwise spatial average from the cell-centred values adjacent

to the free-stream plane directly above the ripple profile. The averaging procedures
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are defined in Equation (7.1) and Equation (7.2).

〈p̄∞〉n =
1

∆Nx∆Nz

∆Nx∑

nx=1

∆Nz∑

nz=1

p̄∞(x, y, z), (7.1)

〈ū∞〉n =
1

∆Nx∆Nz

∆Nx∑

nx=1

∆Nz∑

nz=1

ū∞ (x, y, z) , (7.2)

Where,

∆Nx = λx/∆xmax, ∆Nz = Lz/∆z, (7.3)

x (nx) = 2480θin + nλx + nx∆xmax, (7.4)

y = Ly − 0.5∆ymax, (7.5)

z (nz) = nz∆z − 0.5Lz, (7.6)

The results in Chapter 4 identified that the smooth wall boundary layer could be

considered to have reached temporal convergence once the flow completed 20 passes of

the domain. At this point, the error due to temporal convergence in the coefficient of

friction and shape factor was negligible compared with the error from spatial resolu-

tion and the variation due to transitional behaviour in the upstream flow. However,

the presence of ripples, and varying ripples depth, may impact the rate of temporal

convergence throughout the domain. Table 7.4, Figure 7.5, Figure 7.6 and Figure 7.7

show the rate of temporal convergence in relation to ripple depth through comparison

of shape factor, and the individual pressure and viscous contributions to the coefficient

of friction for case M2-G1-TB, case M2-G2-TB and case M2-G3-TB.

As for the smooth wall simulations, the shape factor over the ripple surfaces show

the fastest convergence in time, compared to the pressure component Cp, and viscous

component Cv. The largest variation in the shape factor between t (u∞)in /Lx = 18 and
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(b) x = 0.15952m
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(c) x = 0.24904m
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Figure 7.5: Temporal convergence of the shape factor H, for three values of ripple
depth with a fixed spatial resolution.
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(b) x = 0.15952m
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(c) x = 0.24904m
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Figure 7.6: Temporal convergence of the viscous component of the coefficient of fric-
tion Cv, for three values of ripple depth with a fixed spatial resolution.
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(b) x = 0.15952m

0

0.5

1

1.5

2

2.5

3

3.5

5 10 15 20 25

Cp

(
×10−3

)

t (u∞)in /Lx

Case M2-G1-TB

Case M2-G2-TB

Case M2-G3-TB

(c) x = 0.24904m
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Figure 7.7: Temporal convergence of the pressure component of the coefficient of
friction Cp, for three values of ripple depth with a fixed spatial resolution.
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Table 7.4: Temporal variation of the shape factor and the pressure and viscous com-
ponents of the coefficient of friction for each ripple wall simulation that is outlined in
Table 7.2.

Case x (m) t (u∞)in /Lx H Cp

(
×10−3

)
Cv

(
×10−3

)

M2-G1-TB 0.07 18 1.391 0.143 1.892
20 1.391 0.143 1.895

0.15952 18 1.358 1.28 1.664
20 1.359 0.128 1.669

0.24904 18 1.357 0.118 1.501
20 1.357 0.118 1.508

M2-G2-TB 0.07 18 1.397 0.573 1.812
20 1.397 0.573 1.814

0.15952 18 1.366 0.490 1.599
20 1.366 0.490 1.599

0.24904 18 1.374 0.445 1.432
20 1.375 0.444 1.428

M2-G3-TB 0.07 18 1.458 4.282 1.440
20 1.458 4.277 1.438

0.15952 18 1.453 2.763 1.106
20 1.453 2.757 1.105

0.24904 18 1.484 2.454 0.957
20 1.487 2.438 0.952

M4-G3-TB 0.07 18.5 2.598 0.981 0.493
20 2.624 0.902 0.472

0.15952 18.5 1.460 1.495 0.480
20 1.461 1.489 0.479

0.24904 18.5 1.491 2.456 0.803
20 1.493 2.446 0.801

t (u∞)in /Lx = 20 occurs towards the end of the domain (x = 0.24904m) for the deepest

ripples (case M2-G3-TB), and does not exceed 0.2%. Compare this error with the effect

of increasing the ripple depth from k∗g = 0.05 (case M2-G2-TB) to k∗g = 0.15 (case M2-

G3-TB), for which the shape factor at the crest of x = 0.24904m grows by more

than 8%. For the pressure component Cp, the rate of temporal convergence falls with

increasing ripple depth, however, even the deepest ripples of k∗g = 0.15 showed similar

convergence rates to the smooth wall surface. For a ripple of k∗g = 0.15, the maximum

variation in CP between tu∞/Lx = 18 and tu∞/Lx was 0.66% at x = 0.24904m,

compared with a maximum of 0.52% for the coefficient of friction Cf , over a smooth

surface at the same location. Finally, the viscous component Cv, did not shown any

clear trend between ripple depth and temporal convergence. However, the largest
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variation in Cv between tu∞/Lx = 18 tu∞/Lx = 20 occurred towards the end of the

domain, with a variation of 0.45% at x = 0.24904m, which lies close to that seen

for the smooth surface simulations. The weakest convergence occurs early on in case

M4-G3-TB, where the value of Cp at x = 0.07m varies by more than 8% between

t (u∞)in /Lx = 18.5 and t (u∞)in /Lx = 20. It will be shown that at x = 0.07m case

M4-G3-TB remains in a state of laminar flow, and only enters a turbulent state over the

ripple profiles. By x = 0.15952m, the boundary layer in case M4-G3-TB has reached

a fully turbulent state and the flow demonstrates similar rates of convergence to the

other cases, with the largest variation occurring in the value of Cp, which changes by

≈ −0.4% between t (u∞)in /Lx = 18.5 and t (u∞)in /Lx = 20.

7.4 Transition and Boundary Layer Growth

In all three cases of k∗g = 0.025, k∗g = 0.05 and k∗g = 0.15, for which ∆x+ ≈ 42.2 prior

to the ripple surface, the boundary layer exhibited laminar-turbulent transitional be-

haviour nearly identical to the reference smooth surface case. Figure 7.8 and Figure 7.9

display the wall-normal distribution of the streamwise velocity and spanwise velocity

fluctuations at the first upstream crest of the textured region (x = 2480θin), whilst

the distribution of the streamwise velocity fluctuations, wall-normal velocity fluctua-

tions and Reynolds shear stress are shown in Figure 7.10. When the boundary layer

has entered the fully turbulent regime by this point, the downstream presence of the

ripple with a depth of k∗g ≤ 0.15 exerts a negligible influence on the wall-normal and

spanwise velocity fluctuations. When the ripple depth lies below the limit of k∗g ≤ 0.05,

this negligible influence is extended to the streamwise mean velocity and streamwise

velocity fluctuations. However, for a ripple of depth k∗g = 0.15, the flow lying within
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the inner region, excluding that within the viscous sub-layer, begins to accelerate as

it approaches the ripple. Within this region the maximum streamwise component of

turbulent stress and Reynolds turbulent stress are amplified.
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Figure 7.8: Comparison of the distribution of the inner-scaled, time-averaged stream-
wise velocity at a streamwise location of x = 0.07m for varying values of ripple depth
and spatial resolution.
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Figure 7.9: Comparison of the distribution of the spanwise velocity fluctuations at
a streamwise location of x = 0.07m for varying values of ripple depth and spatial
resolution.

The split-hexahedral mesh in case M4-G3-TB displayed a diminished response to

the trip. The boundary layer remained in a laminar state until it made contact with

the first ripple geometry. Figure 7.11 displays the formation of coherent structures

downstream of the trip in case M4-G3-TB. The structures are visualised by the second

invariant of the velocity gradient tensor Q, for values of Q > 5 × 105 1/s (left)
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(a) RMS of streamwise velocity fluctuations
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Figure 7.10: Comparison of the distribution of the turbulent stress components at
a streamwise location of x = 0.07m for varying values of ripple depth and spatial
resolution.
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and Q > 5 × 108 1/s (right). The visualised region covers the full length of the

smooth wall and the first four ripples of the textured surface. In case M4-G3-TB, the

initial response to the trip mimics that of the coarse streamwise spatial resolution of

≈ 42.2 viscous lengths when coupled with a 50% reduction in the strength of the trip

v+ref = 1.105 → 0.551, as applied in the reference smooth wall in case M2-T1-L1 (shown

in Chapter 4), and observed in Figure 4.8. The trip induces large-scale disturbances

which persist downstream, whilst smaller scale disturbances near to the wall dissipate

immediately upon leaving the tripping plane. In case M4-G3-TB the boundary layer

maintained stability beyond the point of transition in case M2-T1-L1 (x/θin = 1500).

Along the remainder of the initial smooth wall region, the two-dimensional distur-

bances became increasingly distorted in the spanwise direction. Although the boundary

layer lies within the laminar regime, as indicated by the streamwise velocity distribu-

tion in Figure 7.10, the increasing three-dimensionality of the disturbance correlates

with the onset of turbulent motions in the near-wall region. Figure 7.10 illustrates

the state of turbulent behaviour through the wall-normal distribution of the turbu-

lent stress components at the starting point of the textured region (x = 2480θin). By

this point, streamwise velocity fluctuations, shown in Figure 7.10a, reach an overshoot

throughout the region of a corresponding viscous sub-layer, whilst correlating closely

with the form of the inner region turbulent profile. Figure 7.10b and Figure 7.9 show

a growing strength in the wall-normal and spanwise velocity fluctuations, along with

the Reynolds shear stress in Figure 7.10c, which, although weaker than the smooth

reference case, already display a tenancy towards the general trend expected for a fully

turbulent boundary layer.

By Reθ ≈ 2600 the initially laminar boundary layer in case M4-G3-TB has transi-

tioned into a fully developed turbulent state. Figure 7.12 and Figure 7.13 display the
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(a) Initial smooth wall

(b) Transition to the ripple surface

Figure 7.11: Development of coherent turbulent structures in case M4-G3-TB. Con-
tours are coloured by the instantaneous wall-normal velocity fluctuation as a percentage
of the free-stream velocity at the inlet.
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wall-normal distribution of the streamwise velocity and spanwise velocity fluctuations

at the first upstream crest of the textured region (x = 2480θin), whilst the distribution

of the streamwise velocity fluctuations, wall-normal velocity fluctuations and Reynolds

shear stress are shown in Figure 7.14. The presence of shallow ripples, with depths of

k∗g = 0.025 and k∗g = 0.05, has a negligible impact on the structure of the boundary

layer in the inner region, in comparison to the reference smooth wall case. Ripples

of k∗g = 0.05 only produce mild changes in the outer region, with smaller increases

in the the wall-normal and spanwise velocity fluctuations. However, at Reθ ≈ 2600

the deeper ripples (k∗g = 0.15) in case M2-G3-TB and case M4-G3-TB exert a strong

influence on the boundary layer structure at the crest. Whilst there is good correlation

with the reference smooth wall profile in the viscous sub-layer, the full velocity profile

displays a large downward shift throughout the logarithmic region and the outer layer

of the boundary layer, which is typically associated with increased drag forces at the

wall. Both the wall-normal and spanwise velocity fluctuations show a strong increase

through the inner and outer regions, including within the viscous sub-layer. The be-

haviour of each case becomes more inconsistent for the distribution of the streamwise

velocity fluctuations, with the case M4-G3-TB predicting a decrease in the maximum

value of 〈ū′rms〉
+, and case M2-G3-TB predicting a significant increase in the value of

〈ū′rms〉
+ throughout the whole of the viscous sub-layer, and at the point of maximum

streamwise velocity fluctuations. Whilst both case M2-G3-TB and case M4-G3-TB

predict an increase in the streamwise velocity fluctuations in the outer region, case

M2-G3-TB displays a much smoother trend than case M4-G3-TB. The rugged nature

of the distribution in case M4-G3-TB may be due to error that comes from the sudden

shift in the streamwise spatial resolution between refinement regions. The location

and impact of the boundary between refinement regions can clearly be seen in Fig-

ure 7.14c, where the refinement regions meet at the point where the Reynolds shear
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stress reaches its maximum, and the proximity of the refinement region boundaries

produce clear oscillations in the profile of −〈 ¯u′v′〉+.
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Figure 7.12: Comparison of the distribution of the inner-scaled, time-averaged stream-
wise velocity at streamwise locations corresponding to Reθ ≈ 2600 for varying values of
ripple depth and spatial resolution.
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Figure 7.13: Comparison of the distribution of the spanwise velocity fluctuations at
streamwise locations corresponding to Reθ ≈ 2600 for varying values of ripple depth
and spatial resolution.

Figure 7.15 displays the growth of the boundary layer along the streamwise length

of the domain in terms of the momentum Reynolds number Reθ, and the velocity

thickness δ99. Figure 7.16 displays the variation of shape factor H, and the Clauser

pressure gradient parameter β, along the streamwise length of the domain. Equation

(7.7) defines two methods used to approximate the streamwise pressure gradient which

was used to determine β. Prior to the textured surface (x/θmin ≤ 2480), the free-stream
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(a) RMS of streamwise velocity fluctuations
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(b) RMS of wall-normal velocity fluctuations
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(c) Reynolds shear stress
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Figure 7.14: Comparison of the distribution of the turbulent stress components at
streamwise locations corresponding to Reθ ≈ 2600 for varying values of ripple depth
and spatial resolution.
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pressure gradient is obtained from upstream pressure variation. Along the length of

the textured surface (x/θin > 2480), the values of δ∗ are taken directly from the crest

profile, whilst the friction velocity and free-stream pressure gradient are determined

from the ripple averaged values of the adjacent ripples in the upstream and downstream

directions.

β =





δ∗

τ̄0

(
〈p̄∞(x−177θin)〉−〈p̄∞(x)〉

117θin

)
, for x ≤ 2480θmin,

δ∗

τ̄0

(
〈p̄∞〉n−〈p̄∞〉n+1

λx

)
, for x > 2480θmin,

(7.7)

In case M2-G1-TB and case M2-G2-TB, the inflowing laminar boundary layer main-

tains its strong response to the trip, and during the period of laminar-turbulent transi-

tion the growth of Reθ and H , and the variation of β, strongly correlate to the reference

smooth surface in case M2-SW-TB. A similar agreement in Reθ is observed in case M2-

G3-TB within x/θin < 2000, but the boundary layer growth stalls as it approaches the

first upstream crest of the deeper ripples (k∗g = 0.15). Its shape factor profile maintains

the expected form for the transitioning boundary layer and only differs by a uniform

offset. Once the boundary layer has developed over 7− 8 ripples, the steady variation

of H is distorted by periodic variations, characterised by sharp shifts, with a spatial

period of 4 ripple wavelengths. Matching variations can be observed in both the local

displacement and momentum thickness, and hence, in the pressure gradient parameter

which depends on δ∗. Meanwhile, both the streamwise pressure gradient and ripple

averaged friction velocity maintain a steady, smooth variation along the streamwise

direction.

For ripples of k∗g = 0.15 the growth rate of the boundary layer width, as defined

by the velocity thickness δ99, accelerates once the boundary layer has adapted to the
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(a) Momentum Reynolds number
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Figure 7.15: Comparison of the growth of the momentum Reynolds number Reθ, and
velocity thickness δ99, in a spatially developing turbulent boundary layer for varying
values of ripple depth and spatial resolution.
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(a) Shape factor
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Figure 7.16: Comparison of the growth of the shape factor H, and pressure gradient
parameter β, in a spatially developing turbulent boundary layer for varying values of
ripple depth and spatial resolution.
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presence of the textured surface and has achieved its new equilibrium. Since the growth

rate of Reθ accelerates at the same rate, the relationship between Reθ and δ99, which

was observed for smooth wall boundary layer, is maintained at the higher values of Reθ

present in case M2-G3-TB. However, it should be noted that these values of δ99 take

the origin at the ripple crest, and do not compensate for the origin shift throughout

the ripple trough.

7.5 Flow Resistance

Figure 7.17 displays the variation of each individual component of flow resistance with

the growth of Reθ along the streamwise length of the domain. The coefficient of friction

Cf , its individual viscous component Cv, and its individual pressure component Cp,

are determined for each individual ripple (n = 1, 2...24) spanning a wavelength of λx.

These ripple averaged values; Cv ≈ 〈C̄v〉n, 〈C̄p〉n, and 〈C̄f〉n, are defined in Equation

(7.8) and Equation (7.9). Each component is determined from the spatially averaged

drag forces, 〈F̄v〉n and 〈F̄p〉n, produced post-run time from the time-averaged flow

fields ū and p̄. The surface area and the reference velocity are taken as the reference

smooth wall area λx × Lz, and the ripple averaged free-stream velocity 〈ū∞〉n defined

by Equation (7.2). In addition, Figure 7.18 provides the relationship between the

momentum Reynolds number Reθ and the ratio between the outer and inner length

scales δ99/lv, (also referred to as the friction Reynolds number Reτ = δ99uτ/ν).

〈C̄v〉n =
〈F̄v〉n

0.5ρλxLz〈ū∞〉n
, 〈C̄p〉n =

〈F̄p〉n
0.5ρλxLz〈ū∞〉n

, (7.8)

〈C̄f〉n = 〈C̄v〉n + 〈C̄p〉n, (7.9)
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Figure 7.17: Comparison of the growth of the ripple averaged coefficient of friction,
and its individual pressure and viscous components, with momentum Reynolds number
Reθ, for varying values of ripple depth and spatial resolution.



7.5. FLOW RESISTANCE 234

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6

Reτ
(
×103

)

Reθ
(
×103

)

Case M2-SW-TB

Case M2-G1-TB

Case M2-G2-TB

Case M2-G3-TB

Case M4-G3-TB

Figure 7.18: Comparison of the growth of friction Reynolds number Reτ , with mo-
mentum Reynolds number Reθ, for varying values of ripple depth and spatial resolution.

The solutions for k∗g = 0.15 (case M2-G3-TB and case M4-G3-TB) predict a re-

duction in the viscous drag over all ripples which lie beyond the transitional regime.

Moreover, each solution shows a consistent trend in the gradual decline of Cv with

growing Reθ. However, there is a considerable variation between the values of Cv, with

case M4-G3-TB producing a further reduction of approximately −0.5 in Cv at equiv-

alent values of Reθ, compared to the lower spatial resolution in case M2-G3-TB. This

behaviour could be attributed to either the large reduction in the streamwise spatial

resolution, or a lingering effect of the upstream transitional regime. Analysis of the

shear stress distribution in Section 7.6 shows that the finer spatial resolution in case

M4-G3-TB enhances the strength of flow separation from the lee-side, and suppresses

local shear stress spikes within the trough, all of which suggests a beneficial effect on

the overall viscous drag reduction. Meanwhile, the near-wall spatial resolution shows

a greatly diminished sensitivity on the ripple averaged pressure drag, relative to the

absolute value of Cp. Since the pressure drag eclipses the viscous drag for a ripple of
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depth of k∗g = 0.15, the relative error in Cv is suppressed in influencing the relative

error in the total flow resistance.

Overall, the relative contribution of the pressure drag grows with ripple depth. At

k∗g − 0.15 the pressure drag accountes for up to ≈ 71.5% of the total drag over each

individual ripple. This relative contribution is constant along the full streamwise length

of the textured region, settling within the range of 71.3% and 71.6%. Case M4-G3-TB

predicts that the relative pressure contribution gradually declines along the domain,

from 76.5% after a distance of 5λx, to 75.7% after a distance of 22λx. For shallower

ripples of k∗g = 0.025 and k∗g = 0.05, the relative pressure contribution is ≈ 7.1% and

≈ 23.4% respectively, and, similar to case M2-G3-TB, displays a negligible variation

along the full streamwise length of the textured region.

Throughout all cases, the thickness of the fully turbulent boundary layer varies

between 40% and 150% of the ripple spacing λg. Within this range, the streamwise

length of the ripple in relation to the boundary layer thickness (i.e. the outer length

scale) has a negligible impact on the pressure contribution ratio. Similarly, in an indi-

vidual domain, where the ripple length is fixed whilst δ99/kg grew along the domain,

the growth of δ99 in relation to kg also displays a negligible influence on the relative

pressure contribution. Whilst increasing the near-wall streamwise spatial resolution for

the deepest ripple geometry (case M2-G3-TB) indicates a linear interaction between

the relative pressure contribution and boundary layer growth; this interaction is negli-

gible compared to the effect of increasing the ripple depth k∗g , in relation to the ripple

wavelength. On the other hand, increasing the ripple depth increases the size of the

outer length scale in relation to the inner length scales, and this increase is consistent

in the region spanning Reθ ≈ 1000 and Reθ ≈ 3300. For Reθ > 1000, the relations

between Reθ and Reθ collapse onto a single linear relationship with good agreement
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between the two mesh configurations. This suggests that the near-wall mesh configu-

ration has not had a significant influence on the ratio between the largest and smallest

length scales. In each case, the coefficient of friction continues to fall with Reθ, with

no significant interaction between the boundary layer thickness (in relation to ripple

depth or ripple wavelength) and the flow resistance.

When the initially laminar boundary layer in case M4-G3-TB reaches the textured

surface, it enters the transitional regime, characterised by the rapid accent in the

coefficient of friction and its individual pressure and viscous components. Once the

boundary layer has reached the 5th ripple geometry it has grown to Reθ = 1000 which

typically lies just beyond the limit of the transitional regime. At this point, Figure 7.17

indicates that the streamwise growth of Cf , Cp and Cv closely conforms to case M2-

G3-TB, where a fully turbulent regime exists prior to the ripples. Between Reθ ≈ 1000

and Reθ ≈ 2000 the coefficient of friction in case M4-G3-TB follows the expected

smooth log-law relation, whilst case M4-G3-TB displays considerable scatter around

a similar trend. This distance correlates to approximately 5λx ∼ 6λx, similar to the

length of the transition regime in case M4-G3-TB. This suggests that, under current

conditions, the deepest depth of k∗g = 0.15 requires a length of at least 5λx to transition

from a smooth wall boundary layer to the corresponding rough wall boundary layer.

Furthermore, this transition can take place within either the fully turbulent regime

or the transitional regime. Finally, the general structure of the boundary layer, at a

given streamwise location of Reθ downstream of the smooth-rough transition region, is

independent of the state of the boundary layer during the smooth-rough transition. In

the present analysis, it cannot be conclusively determined whether local discrepancies

in the growth of the viscous flow resistance between case M2-G3-TB and case M4-

G3-TB can be attributed to smooth-rough transition state or the near-wall spatial
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resolution, cell quality and type.

7.6 Turbulent Stress Distribution

The current section focuses on the boundary layer structures and wall shear stress

distribution within a fully turbulent boundary layer in the region of Reθ ≈ 2600. At

this point, the boundary layer may be assumed to have completed the smooth-rough

wall transition based on the streamwise growth of flow resistance in Figure 7.17. The

point of interest in each case is taken as the midpoint of the ripple crest at which

the boundary layer development lies closest to Reθ = 2600. Table 7.5 provides the

streamwise location, momentum Reynolds numbers and boundary layer thickness which

correspond to the point of interest in each case. The wall-normal distributions of

velocity and turbulent stress components are assessed locally at each point in Table

7.5, and are displayed in Figure 7.19.

Table 7.5: Properties of the boundary layer at a point corresponding to Reθ ≈ 2600 in
each case.

Case x/θin Reθ δ/λg
M2-SW-TB 7795 2668.3 1.053
M2-G1-TB 7766 2635.3 1.013
M2-G2-TB 7238 2663.9 1.013
M2-G3-TB 4595 2616.8 0.806
M4-G3-TB 5652 2660.4 0.895

The distribution of shear stress along the groove profile is assessed from the ripple

which lies immediately upstream of the point of interest. Figure 7.19 displays the

local distribution of shear stress, along a plane z = 0m, which is normalised using

the local free-stream velocity 〈ū∞〉. Figure 7.20, Figure 7.21 and Figure 7.22 display

the two-dimensional flow field in terms of the inner-scaled streamwise, wall-normal

and spanwise turbulent stress components, in the near-wall region of the same ripple
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profiles displayed in Figure 7.14. The inner length scale uτ , for each flow field is taken

from the local value at midpoint of the crest immediately downstream of the ripple

(Table 7.5).

Firstly, consider the preservation of the viscous sub-layer as it moves into the ripple.

For shallow ripples of k∗g = 0.025 and k∗g = 0.05, the viscous sub-layer remains in contact

with the surface over the full length of the trough. As the boundary layer passes over the

point connecting the crest to the lee-side, the sharp change in the surface tangent causes

a sudden acceleration in the near-wall flow. This is characterised by a modest spike in

the shear stress which grows with increasing ripple depth. A similar acceleration and

shear stress spike occurs at the transition between the two segments of the lee-side.

Upon leaving the crest, the viscous sub-layer expands along the first segment of the lee-

side, which lowers the velocity gradient adjacent to the wall and produces a sharp drop

in the wall shear stress. As it approaches the crest, it compresses to retain its previous

width, bringing the shear stress to a similar magnitude as that observed at the crest.

Immediately downstream of both points, the shear stress falls to a local minimum.

When the viscous sub-layer maintains contact with the surface, as in case M2-G1-TB

and case M2-G2-TB, the minimum shear stress occurs at two points along the lee-side,

for which the local shear stress lies at approximately equal values, with each point lying

immediately downstream of an instantaneous shift in the surface tangent. In case M2-

G3-TB, the point of minimum shear stress correlates with two isolated vortices with

the backwash creating a shear stress which acts in the direction of the flow.

The streamwise velocity fluctuations 〈ū′rms〉
+, which reaches a maximum close to

the wall at y+ ≈ 15, is enhanced as the viscous sub-layer moves along the lee-side.

For k∗g ≥ 0.05, the region of high 〈ū′rms〉
+ expands and the strength of the streamwise

velocity fluctuations grow, as the viscous sub-layer moves into the ripple. By the time
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(c) Case M2-G3-TB (Reθ ≈ 2600)
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Figure 7.19: Distribution of the local streamwise wall shear stress over the midline
of two-dimensional ripple profiles at streamwise locations corresponding to Reθ ≈ 2600
for varying values of ripple depth and spatial resolution.
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(a) ū′
+
rms (M2-G1-TB, n = 20)

(b) ū′
+
rms (M2-G2-TB, n = 18)

(c) ū′
+
rms (M2-G3-TB, n = 8)

(d) ū′
+
rms (M4-G3-TB, n = 12)

Figure 7.20: Comparison of contour plots of the streamwise velocity fluctuations over
ripple profiles at streamwise locations corresponding to Reθ ≈ 2600. The inner-scale
values are provided in Table 7.5.

the flow reaches the following crest, the layer of high streamwise fluctuations which

originates from the downstream crest has dissipated. Hence, a new region develops

over the length of the crest. As shown in Figure 7.14b, by the midpoint of the crest, the

streamwise velocity fluctuations have been replenished and their distribution collapses

onto the smooth wall boundary layer profile from case M4-G3-TB.
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(a) v̄′
+
rms (M2-G1-TB, n = 20)

(b) v̄′
+
rms (M2-G2-TB, n = 18)

(c) v̄′
+
rms (M2-G3-TB, n = 8)

(d) v̄′
+
rms (M4-G3-TB, n = 12)

Figure 7.21: Comparison of contour plots of the wall-normal velocity fluctuations over
ripple profiles at streamwise locations corresponding to Reθ ≈ 2600. The inner-scale
values are provided in Table 7.5.

When the boundary layer reaches the downstream end of a crest on a ripple of

k∗g = 0.15 the viscous sub-layer immediately detaches from the surface and forms a

free-shear layer over the ripple trough. The near-wall spatial resolution exerts a clear

influence not only on the length of the separation region, but also on the structures of

the resulting vortices. With the coarser spatial resolution in case M2-G3-TB, the free

shear layer regains contact with the lee-side immediately prior to the point connecting
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(a) w̄′+
rms (M2-G1-TB, n = 20)

(b) w̄′+
rms (M2-G2-TB, n = 18)

(c) w̄′+
rms (M2-G3-TB, n = 8)

(d) w̄′+
rms (M4-G3-TB, n = 12)

Figure 7.22: Comparison of contour plots of the spanwise velocity fluctuations over
ripple profiles at streamwise locations corresponding to Reθ ≈ 2600. The inner-scale
values are provided in Table 7.5.

the two segments. Under the finer streamwise resolution in case M4-G3-TB the free-

shear layer passes over the full length of the lee-side, only regaining contact with the

surface once it reaches the stoss-side.

The resolution of the free-shear region exerts a significant influence on the preserva-

tion of the streamwise velocity fluctuations throughout the trough. The detached shear
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layer in case M2-G3-TB produced a greater amplification of the streamwise velocity

fluctuations immediately downstream of the crest, compared to that in case M4-G3-

TB. However, the streamwise fluctuations are rapidly suppressed above the point at

which the detached shear layer rejoins the lee-side (Figure 7.20b). The strength of the

weaker streamwise fluctuations in case M4-G3-TB is preserved as the free-shear layer

maintains its elevation from the surface. As a result, the flow reaches the stoss-side

with a greater strength of the streamwise velocity fluctuations when compared with

case M2-G3-TB. This in turn suppresses the growth of the streamwise velocity fluctu-

ations in the new inner region which grows along the flat crest, leading to a reduction

in the strength of the streamwise velocity fluctuations at the midpoint of the crest, as

seen in Figure 7.19b.

Similarly, increasing the steepness of the lee-side, and enhancing the strength of

flow separation, exerts a strong influence on the amplification of wall-normal velocity

fluctuations within the trough. For a depth of k∗g = 0.025, the region of high 〈v̄′rms〉
+

which lies away from the wall, beyond y+ = 100, maintains its structure over the full

length of the ripple, with minimal variation in the strength of 〈v̄′rms〉
+. When the ripple

depth is raised to k∗g = 0.05, as in case M2-G2-TB, the previously unperturbed region of

high 〈v̄′rms〉
+ begins to distort, particularly over the lee-side, however, turbulent spots

containing concentrations of high 〈v̄′rms〉
+ are not yet observed. For k∗g = 0.15, the wall-

normal velocity fluctuations are amplified within the trough, with high concentrations

focused around the regions of flow separation. These high concentrations of turbulent

motion move out of the trough and propagate downstream, which amplifies the wall-

normal velocity fluctuations over the crest throughout the inner region, including the

viscous sub-layer, as seen in Figure 7.19c, Figure 7.21c and Figure 7.21d.

The maximum point of shear stress for each ripple occurs at the endpoint of the
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stoss-side. As the flow accelerates over the stoss-side the wall shear stress rapidly in-

creases until it spikes at the point where the stoss-side meets the crest. For a spatial

resolution of ∆x+ ≈ 42.2 in case M2-G3-TB, the maximum shear stress at the lead-

ing edge reached more than 300% of the reference smooth wall value. Increasing the

streamwise spatial resolution to ∆x+ ≈ 10.6 simultaneously amplified the shear stress

spike to more than 600% of the reference smooth wall value. This rapid growth in the

local shear stress is accompanied by a strong increase in the spanwise velocity fluctua-

tions in a region immediately adjacent to the wall (Figure 7.22). The strength of high

spanwise velocity fluctuations grow with the magnitude of the local shear stress spike,

and hence, they grow with increasing ripple depth. As the viscous sub-layer grows

along the ripple crest, the highly turbulent spot of large spanwise velocity fluctuations

is forced away from the wall and gradually dissipates downstream. Although, by the

mid-point of the crest, its presence still persists in the enhanced spanwise velocity

fluctuations throughout the inner region, including the viscous sub-layer, as shown in

Figure 7.19d. For a shallower depth of k∗g = 0.05, the amplification of spanwise fluctu-

ations on the lee-side is sufficiently weak (Figure 7.22b) to dissipate within a viscous

sub-layer, resulting in only a marginal increase in the spanwise velocity fluctuations

within the remainder of the inner region (Figure 7.19d).

Figure 7.23a and Figure 7.23b display the wall shear stress distribution in case M2-

G3-TB and case M4-G3-TB, after further boundary layer development (Reθ ≈ 4550).

At this point, the outer length scale has grown from δ99/λg ≈ 0.8 ∼ 0.9 to δ99/λg = 1.35.

However, the variation of shear stress, in relation to the reference smooth wall values

at an equivalent value of Reθ, shows minimal change across the full width of the ripple,

compared to a boundary layer of Reθ ≈ 2600.
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(a) Case M2-G3-TB (Reθ ≈ 4500)
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Figure 7.23: Distribution of the local streamwise wall shear stress over the midline of
ripple profiles at streamwise locations corresponding to Reθ ≈ 4500 for a fixed value of
ripple depth (k∗g = 0.15) and varying values of spatial resolution.

7.7 Channel Flow Validation

The present section compares the coarse hexahederal mesh M2, and the refined split-

hexahederal mesh M4, with a high quality hexahederal mesh M5, with local refinement

over the sharp angles of the ripple profile. The layout of all three meshes are given in

Section 7.2.2. Due to the combination of high cell count and small time step which is

associated with mesh M5 all three simulations for this comparison were performed in a

simplified channel flow domain. Figure 7.24 displays the domain of the periodic channel

simulations with periodic ripples on the lower wall and upper wall. The channel has

a streamwise length of Lx = 0.02238m, covering three periodic ripple profiles on each

wall, and a spanwise width of Lz = 0.0081m. The channel has height of Ly = 2h0 =

0.005968m, where h0 denotes the channel half-height as shown in Figure 7.24. This
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value of h0 was selected based on the results of case M2-G3-TB and case M4-G3-TB,

in which a boundary layer width of δ99 ≈ 0.003m corresponds a boundary layer of

Reθ ≈ 2660, when the surface consists of the ripple profile of depth k∗g − 0.15. The

flow is driven by a body force which produces a bulk flow velocity of Uav = 92m/s

(corresponding to u∞ ≈ 105m/s in case M2-G3-TB) at the periodic inlet and outlet

boundaries of the domain.

Upper Wall

Lower Wall

Inlet
Plane

Outlet
Plane

Cyclic Velocity and Pressure Fields

Body Force

x

y
2h0

Lx

Figure 7.24: Diagram of the flow domain and boundary conditions for a periodic
turbulent channel flow with periodic ripples on the lower and upper walls.

Table 7.6 outlines the three simulations which are used to compare three different

mesh types in the channel domain. Each simulation involves a lower wall and upper

wall consisting of periodic ripples with a depth of k∗g = 0.15 (denoted by G3). Each

simulation runs for a physical time of t = 0.005s, which corresponds to 20 passes

through the domain (20Lx/Uav) based on the bulk flow velocity.

Figure 7.25 displays the temporal convergence of the drag forces in the channel,

in terms of the dimensionless friction factor f , along with its pressure component fp,

and viscous component fv, as defined in Section 5. The drag forces in the channel flow
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Table 7.6: Setup for three simulation cases of a periodic turbulent channel flow over
ripple profiles with the three types of mesh outlined in Table 7.3.

Case k∗g Mesh ∆t (s) NT

(
×106

)

M2-G2-CH 0.15 M2 1.6× 10−7 3.36
M4-G3-CH 0.15 M4 6× 10−8 9.69
M5-G3-CH 0.15 M5 2.8× 10−8 15.7

simulations display a similar rate of convergence to the boundary layer simulations. For

all variables, the coarser hexahedral mesh M2, and the refined split-hexahedral mesh

M4 produce significantly different effects on the error, in relation to mesh M5. Case

M4-G3-CH consistently underpredicts the values of f , fp and fv by approximately

4.1% ∼ 4.9% in comparison to mesh M5. The coarse hexahedral mesh in case M2-

G3-CH produces similar magnitudes of error in Cp, although, instead producing an

over-prediction of 4.3%, compared with mesh M5. However, the decreased streamwise

resolution shows a more significant effect on the value of the viscous component of the

friction factor fv. Mesh M2 over-predicts the value of fv by 14%, compared with Mesh

M4, which under-predicts the value of Cv by only 4.7%.

The impact of the mesh structure and the spatial resolution on local viscous forces,

and hence on fv, is shown in Figure 7.26, which displays the distribution of time-

averaged, streamwise shear stress over the centreline (z = 0m) of the lower wall of

the channel. As for the spatially developing turbulent boundary layer, the coarsest

resolution in mesh M2 fails to correctly capture the pattern of flow separation over

the lee-side. Whilst mesh M2 underpredicts the maximum value of shear stress at the

crest, the coarse streamwise resolution around the crests translate what should roughly

be a single point of maximum shear stress, to an expansive area of high stress. On

the other hand, whilst increasing the streamwise resolution raises the maximum shear

stress at the crest, as in the case of mesh M4 and mesh M5, this high shear stress

converges onto a single point maximum. This may have the effect of reducing the area
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Figure 7.25: Temporal convergence of the friction factor and its individual pressure
and viscous components for turbulent channel flow over periodic ripples.
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of effect for high shear stress, under a similar principle to the drag reducing mechanism

of streamwise riblets, although, in this case it acts to reduce the error in the resolved

flow field. Along the remainder of the surface, mesh M4 and mesh M5 displays a strong

correlation in the resolved shear stress distribution, particularly around the important

region of separation from the lee-side.

The impact of the mesh structure and the spatial resolution on the boundary layer

structure is displayed in Figure 7.27, Figure 7.28 and Figure 7.29, which show the

profiles of streamwise velocity, velocity fluctuations and the Reynolds shear stress across

one half of the channel width, over the midpoint of the ripple crest at x = 2λx. At

the crest, mesh M4 and mesh M5 show strong agreement in the distribution of the

streamwise velocity across the full half-height of the channel, whilst mesh M2 produces

only minor divergence in the logarithmic region in the region around the centreline of

the channel. A strong agreement between all three cases is present in the distribution

of spanwise velocity fluctuations in Figure 7.28.

The most significant influence of the mesh can be seen in the streamwise and wall-

normal velocity fluctuations in Figure 7.29. Mesh M2 produces a strong amplification

in the value of 〈ū′rms〉
+ throughout the inner region of the flow, in comparison to mesh

M4 and mesh M5. The amplified values of 〈ū′rms〉
+, in relation to the increased flow

resistance of mesh M2, are consistent with previous findings on the relation between

drag reducing/increasing effects (or drag variations due to error) and the streamwise

velocity fluctuations in the inner region of the flow. The over-prediction in the max-

imum value of 〈ū′rms〉
+ in mesh M2, compared with mesh M4, is consistent with the

results from the inner region from the spatially developing boundary layer, as seen

in Figure 7.14, when comparing mesh M2 and mesh M4 over a ripple of k∗g = 0.15.

Note that mesh M5 does not produce a similar over-prediction in 〈ū′rms〉
+ to that seen
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(c) Case M5-G3-CH
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Figure 7.26: Distribution of the local streamwise wall shear stress over the lower wall,
along the centreline of the channel (z = 0m) between streamwise locations of x/Lx = 1
and x/Lx = 2.
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〈ū〉+

y+

Case M2-G3-CH

Case M4-G3-CH

Case M5-G3-CH

Figure 7.27: Comparison of the distribution of the inner-scaled, time-averaged stream-
wise velocity at a streamwise location of x = 2λx in a periodic channel for varying values
of spatial resolution.
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Figure 7.28: Comparison of the distribution of the spanwise velocity fluctuations at
a streamwise location of x = 2λx in a periodic channel for varying values of spatial
resolution.

for mesh M2, despite mesh M2 and mesh M5 having an almost identical streamwise

resolution around the midpoint of the crest. This would suggest that the amplified

streamwise velocity fluctuations created by mesh M2, originate from within the trough

and propagate downstream, as shown for the spatially developing turbulent boundary

layer. As in the spatially developing boundary layer, mesh M4 produces an increase in

the wall-normal velocity fluctuations as seen in the profile of 〈v̄′rms〉
+ in Figure 7.29b.

The enhanced values of 〈v̄′rms〉
+ are not present in mesh M2 and mesh M5, and are

only present in the near-wall region in mesh M4; specifically the regions in which the
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Figure 7.29: Comparison of the distribution of the turbulent stress components at
a streamwise location of x = 2λx in a periodic channel for varying values of spatial
resolution.
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streamwise resolution is increased through local octree refinement. The boundary of

the refinement region in mesh M4 can be clearly identified by the presence of distor-

tions in the profile of −〈 ¯u′v′〉+ in Figure 7.29b. Hence, it can be concluded that, whilst

the accuracy of 〈ū′rms〉
+ is dependant on the streamwise resolution in the trough, the

accuracy of 〈v̄′rms〉
+ is dependant on the streamwise resolution at the crest.

7.8 Summary

This section investigates the influence of simplified asymmetric ripple profiles on a

spatially developing turbulent boundary layer. A selected ripple profile from Chap-

ter 6 was substituted into the domain of the smooth wall boundary layer simulations

developed in Chapter 4.

When the ripple depth lay within the limit of k∗g ≤ 0.05, the presence of ripples

had minimal impact on the flow resistance and turbulent stress distribution within the

boundary layer. For a depth of k∗g = 0.15, the presence of the ripples created strong

increases in the flow resistance throughout the domain, which were accompanied by

strong amplification of the wall-normal and spanwise velocity fluctuations throughout

the inner region of the boundary layer. The size of the outer length scale, i.e. the

boundary layer thickness, in relation to the ripple depth and wavelength, did not

display any significant influence on the flow resistance along the full streamwise length

of the textured region. Similarly, the local distribution of wall shear stress within the

ripple displayed no significant dependence on the outer length scale. Locations of high

gradients in the wall shear stress are accompanied by large concentrations of highly

turbulent spots containing amplified spanwise velocity fluctuations. This would be

expected based upon the observation that suppression of spanwise motions within the
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near-wall turbulent region are linked to drag reduction in drag reducing riblets.

To assess the quality of the meshing procedure, an automatically generated split-

hexahedral mesh was compared against a refined hexahedral mesh in a periodic chan-

nel. By only refining the streamwise spatial resolution in the near-wall region, the

split-hexahedral mesh was able to accurately replicate the distribution of shear stress

at the wall, and the distribution of velocity and velocity fluctuations across the chan-

nel. It also showed a strong correlation with the results from refining a fully hexahedral

mesh. In addition, by maintaining a coarser streamwise spatial resolution away form

the wall, the split-hexhedral mesh could maintain stability with a time-step that was

three times larger than the refined hexahedral mesh which projected the fine spatial

resolution at the wall into the bulk of the channel. In exchange, the split-hexahedral

mesh compromised on accuracy of the drag forces in the channel, which were under-

predicted with an error of the order of 5%, relative to the solution from the refined

hexahedral mesh.



CHAPTER 8

Conclusions and Future Work

8.1 Introduction

Whilst passive macroscale grooves have practical benefits in terms of manufacturability,

previous investigations involving both laminar and turbulent flows have found such

surfaces to produce either a detrimental or marginal effect on the flow resistance. Where

these studies focused on simple geometric profiles, their findings allude to the potential

for improved performance through geometric optimisation. This thesis has investigated

the drag reducing potential of the geometric profiles of naturally occurring sand ripples,

when applied as rigid periodic grooves in periodic laminar flow and spatially developing

turbulent flow.

Even with current advances in computational power, the computational workload
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of modelling physically realistic laminar-turbulent transition typically limits numerical

investigations to periodic internal flows and simple textured geometries. This thesis has

presented novel methodologies within the open source code OpenFOAM for combining

automatically generated split-hexahedral meshing techniques with wall-resolved large-

eddy simulations for modelling the laminar, transitional and fully turbulent regimes of

a spatially developing turbulent boundary layer, along with with periodic macroscale

grooves, within a single, continuous domain. In particular, these methods aim to

reduce economic difficulties typically associated with geometric optimisation through

increasing profile complexity, and the application of macroscale grooves to spatially

developing turbulent flows.

8.2 Conclusions

8.2.1 Turbulent Boundary Layers in OpenFOAM

To achieve a controlled boundary layer transition in OpenFOAM, the methodology

incorporates a novel tripping technique which destabilises a spatially developing lam-

inar boundary layer, by imposing pseudo-random fluctuations onto the wall-normal

velocity component of the flow adjacent to the solid wall. The trip produced a near

instantaneous onset of transition when the velocity fluctuation imposed on the lam-

inar boundary layer was of similar magnitude to the maximum velocity fluctuation

in a turbulent boundary layer of equivalent thickness. A trip of half this strength

could induce transition by inducing large-scale, two-dimensional disturbances in the

flow which propagated downstream and rapidly destabilised, breaking up into smaller

three-dimensional turbulent structures. It should be noted that the required strength

of the trip was dependant on the near-wall spatial resolution. However, the current
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results show that the aforementioned criteria for trip strength can be followed when

the near-wall streamwise spatial resolution lies between 32.5 and 54.9 viscous lengths,

and the spanwise and minimum wall-normal resolution lie on the order of ≈ 50% and

≈ 2.5% of the streamwise spatial resolution respectively.

The wall-adapting local eddy-viscosity model produced a significant overshoot in the

maximum streamwise velocity fluctuations even at the finest resolution of ∆x+ ≈ 32.5,

in addition to an under prediction of the maximum wall-normal velocity fluctuations.

Despite these discrepancies in turbulent stress, a coarsely resolved wall-adapting local

eddy-viscosity model could still predict the fundamental properties of flow resistance

and shape factor to a sufficient accuracy, even with near-wall cell dimensions that were

more than 4.4 times greater than is required for a resolved direct numerical simulation

approach. For streamwise and spanwise cell widths of 42.2 viscous units and 20 viscous

units respectively, both data sets converged to within ±3% of the theoretical Coles-

Fernholtz relation by Reθ ≈ 1000. When the near-wall cell dimensions were increased

by only 30% in each direction, the coefficient of friction failed to converge within a ±5%

error bound across the full domain, suggesting that wall-resolved laminar-turbulent

transition should begin with initial cell dimensions which are no more than 4.5 times

those applied in direct numerical simulation. From this resolution, by reducing the cell

width by 30% in each direction is sufficient to extend this accuracy to the transitional

regime, where the coefficient of friction converges into the ±3% error bounds by Reθ ≈

300. The results show that great care must be taken when comparing the trends

for shape factor between boundary layers. A new theoretical trend for the shape

factor should be calculated in each case, to account for the influence of the streamwise

variation in the free-stream velocity on the boundary layer growth.
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8.2.2 Laminar Channel Flow: Arbitrary Geometry

Plaster casting was used to capture the profiles of asymmetric ripple bedforms which

had formed naturally on a sand beach. These cases were reverse engineered and con-

verted into digital surfaces which captured the detailed geometric features of the natural

profiles whilst possessing an ideal streamwise and spanwise periodicity. Two distinct

types of sand ripple geometries were identified. The first profile (denoted RN1) con-

tained a unique stoss-side consisting of a pair of sinusoidal curves, as theoretically

predicted for a ripple in an asymmetric laminar flow (Blondeaux et al. 2015). The sec-

ond profile (denoted RN2) formed the classic ‘vortex ripple’ identified by a wide trough

and a planar lee-side. These surfaces were investigated to determine their potential for

reducing flow resistance in internal laminar flow.

The present analysis confirms that the ‘snappyHexMesh’ utility in OpenFOAM,

and the discretisation of a domain through a split-hexahedral mesh, has great po-

tential for reducing the economic impact of performing extensive parametric studies

involving surfaces of arbitrary macroscale grooves, whilst still modelling flow resistance

and flow separation to an acceptable accuracy. In addition to reducing pre-processing

time, generating a split-hexahedral mesh has the potential to reduce the required CPU

time by more than 80%, when compared to a fully structured hexahedral mesh, for

investigating macroscale, two-dimensional transverse grooves. Notably, errors in the

viscous drag are accompanied by errors of a similar magnitude of the additional pres-

sure drag, leading to negligible errors in the overall flow resistance. The methodology

was validated against a limited number of macroscale grooves with previously published

solutions. These included; sinusoidal grooves to test the accuracy in predicting flow

resistance, and periodic hills to test the accuracy in predicting flow separation. The

automatically generated split-hexahedral meshes were able to produce the distribution
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of wall shear stress, and predict the points of flow separation to a high accuracy, despite

local distortions in the wall shear stress profile due to distorted unstructured cells at

the wall.

Whilst snappyHexMesh was found to be highly effective in reducing the pre-processing

time, the configurations of the domain and numerical solver were not fully independent

of the surface geometry or flow properties. The stability of the channel flow was depen-

dant on the Reynolds number of the flow. When the Reynolds number lay within the

lower laminar regime (Reh << 500), a solution could be converged using a steady-state

solver. For Reynolds numbers lying above the theoretical limits of laminar-turbulent

transition (Reh > 500), the solution requires temporal terms in order to maintain sta-

bility, even though the final solution exhibited steady-state behaviour in all cases. In

addition, three-dimensional ripple profiles in a flow of Reh > 500 could not maintain

stability with cyclic boundary conditions, even with a time-dependant numerical solver.

8.2.3 Natural Sand Ripples in Poisuille Flow

An extensive parametric study into the drag reducing potential of two-dimensional and

three-dimensional sand ripples in laminar Poisuille flow was carried out. The Reynolds

number range spanned the laminar and theoretically transitional regimes, whilst depth

exceeded shallow groove depths studied previously and crossed the theoretical limit

of flow separation for sand ripples. The investigation explored the impact of profile

shape, Reynolds number, ripple depth and orientation on flow resistance, wall shear

stress distribution and the velocity flow field. Whilst the current sand ripple profiles

did not positively influence the flow resistance in purely, laminar flows, their features

revealed the necessary criteria required for further optimisation of the surface geometry.
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For two-dimensions ripple geometries in laminar channel flow, the investigation

revealed a consistent correlation between the drop in the viscous component of the

flow resistance and the rise in the total flow resistance. As such, whilst replacing a

symmetrical sinusoidal groove profile with the naturally occurring asymmetric ripple

profiles provided a greater overall reduction in the wall shear stress, they produced a

detrimental effect on the overall flow resistance.

For two-dimensional ripples, whilst orientation could severely impact flow separa-

tion, it produced a negligible impact on flow resistance. This is contrary to the theories

developed from previous investigations, most notably that of Mohammadi & Floryan

(2013b) and Saha et al. (2015), which suggest a potential to achieve a drag reduction

with spanwise oriented, two-dimensional grooves, through the geometric optimisation

to reduce the pressure drag, whilst maintaining a region of shear layer detachment

within the trough. The results identified that reversing the flow direction over an asym-

metric ripple, and hence, changing the geometric forms of the lee-side and stoss-side,

does not have any significant effect on the flow resistance until three key conditions

are met. This applies even if this reversal suppresses or enhances the onset of flow

separation. The first two conditions are that the ripple must have a geometry with

three-dimensional spatial variation, and that the ripple depth, in relation to its peri-

odic wavelength, must surpass a critical limit. The results suggest that limit this lies

between the value of 7.5% and 15% of the groove wavelength. For the final condition,

the inertial forces of the flow must be sufficient for the flow impact of the ripple on

the flow field to extend beyond the near-wall region. In the current investigation, such

a condition was found to exist when the Reynolds number lay close to the theoretical

laminar-turbulent transitional regime for laminar channel flow. When these conditions

are met, the viscous drag grows rapidly with an increasing amplitude of the spanwise
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spatial variation, as the redistribution of flow diverts the high velocity fluid from the

centre of the channel towards the crest of the lobe, and the details of the geometry of

the lee-side and the stoss-side exert a non-negligible influence of the greatly amplified

shear stress at this point. This influence is such that reversing the direction of the flow

over an asymmetric ripple profile can have a greater impact on the flow resistance than

would be achieved by replacing the entire ripple profile with a symmetrical sinusoidal

profile.

8.2.4 Ripples in Spatially Developing Turbulent Flow

The present analysis applied a simplified two-dimensional ripple profile at three values

of depth to wavelength ratio of k∗g = 0.025, k∗g = 0.05 and k∗g = 0.15, into the numerical

domain of the spatially developing turbulent boundary layer. Initially, the optimal

resolution for a smooth wall boundary layer, where cell widths are equivalent to 4.5

times that required for a fully resolved direct numerical simulation, was applied for each

depth. For the deepest ripple, an additional mesh was created using snappyHexMesh,

in which the spatial resolution in the streamwise direction was increased using layers of

local refinement in the near-wall region, without altering the wall-normal and spanwise

cell width. Additionally, this new split-hexahedral mesh was against the initial ‘smooth

wall’ hexhahedral mesh, and against a hexahedral mesh with a refined streamwise

resolution across the full wall-normal height of the domain, for deep ripples in a periodic

channel flow. The split-hexahedral mesh proved to be a suitable approach to improving

the accuracy of shear stress profiles and turbulent stress distribution, whilst minimising

the negative impact on computational efficiency, with regards to total cell count and

required time step. In the present case, this amounted to a 75% reduction in the

near-wall streamwise cell width, whilst producing only a 100% increase in the total cell
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count and a 30% reduction in the required time-step.

The split-hexahedral mesh with a resolution of ∆x+ ≈ 10.6 reduced the effective-

ness of the trip. Whilst the trip succeeded in inducing large-scale, two-dimensional

disturbances in the boundary layer, these disturbances failed to destabilise until they

reached the first ripple profile. When a fully turbulent boundary layer reached the

grooves with a depth of k∗g = 0.15, the boundary layer required a further 4 groove

wavelengths to reach a new equilibrium state. When the boundary layer remained

laminar over the smooth wall, the first groove geometry triggered the onset of laminar-

turbulent transition. The transitional regime extended for approximately 4 groove

wavelengths, during which the boundary layer achieved its new equilibrium state. The

main influence of transition downstream from this point took the form of a shift of the

virtual flow origin, relative to the initial ‘smooth wall’ resolution. The late transition of

the boundary layer due to increased spatial resolution produced no significant impact

on the pressure flow resistance, and the ratio between Reτ and Reθ, for a given value of

Reθ. The sudden change in the streamwise spatial resolution between refinement lay-

ers had a negligible impact on the time-averaged wall-normal and spanwise turbulent

motions throughout the inner and outer regions of the boundary layer.

Within the spatially developing turbulent boundary layer, all ripple profiles had

a negative impact on flow resistance, in which the flow resistance grew with ripple

depth, and comprised of a viscous drag reduction which was counteracted by a large

pressure drag component. Notably, the distribution of shear stress in the groove was

independent of Reθ, as was the ratio between Reτ and Reθ, for a fixed value of ripples

depth. This shows that the impact of the ripples on flow resistance was independent

on the ratio between the outer length scale of the boundary layer and the length scale

of the ripple.
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8.3 Current Limitations of Study

• Whilst large-eddy simulation makes a single boundary layer simulation econom-

ically feasible, it does not enable extensive parametric studies, as is the case

for periodic channel flow. Hence, the investigation in the present analysis was

limited to two values of trip strength, which were tested for a fixed spatial resolu-

tion, prior to the mesh independence study. A more extensive investigation into

the interactions between trip configuration and spatial resolution, will provide a

more robust set of criteria for designing future simulations, particularly in cases

of large-eddy simulation.

• Whilst the simulations of periodic groove in spatially developing boundary layers

have been compared for different mesh types, and varying spatial resolution, they

have not yet been compared with comparable experimental results. Whilst the

smooth wall boundary layers have been validated against high resolution direct

numerical simulation results, similar tripping configurations can produce a strong

variation in the structure of the downstream flow, and hence any experiments

must be initially configured and validated against these smooth surface results.

• Due to the large number of control factors in the parametric studies each con-

figuration could only be tested at two values of orientation, both of which lay

parallel to the streamwise direction. The observations regarding the relatively low

influence of orientation on flow resistance are only applicable to surfaces which

lie parallel to the streamwise axis. However, such a limitation was necessary at

the present stage, as exploring a sufficient number of oblique orientation angles

would not be practical alongside a multi-variant analysis of Reynolds number,

groove depth and profile shape.
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8.4 Recommendations For Future Work

Building on the findings of the present analysis, the following section discusses areas

of further investigation into drag reducing surfaces in laminar and turbulent flow.

8.4.1 Oblique Grooves in Laminar Flow

• The parametric study of two-dimensional and three-dimensional ripples in lam-

inar flow should be expanded to investigate the influence of surface orientation

for oblique grooves which are not parallel to the streamwise axis.

• Further development and testing should aim to confirm the suitability of the

methodology for incorporating oblique grooves in the domain. Particular atten-

tion should be directed to ensuring stability once the necessary periodic boundary

conditions are applied to the spanwise direction. This includes the impact of cir-

culation in the bulk flow with spanwise cyclic boundary conditions.

• The impact of cell refinement across the bulk of the channel should be inves-

tigated with regard to capturing the large scale rotating vortices induced by

three-dimensional grooves in high Reynolds laminar flow.

• Within the laminar flow investigations, the number of discrete Reynolds numbers

may be increased within the range of 100 < Reh < 500, whilst the number

of discrete of groove depths values may be increased between k∗g = 0.075 and

k∗g = 0.15, with particular attention around the point k∗g = 0.1. This enhanced

precision will provide clearer indications for the critical limits of i) the onset of

vortex ripple behaviour, and ii) the onset of rotational motions throughout the

bulk flow in three-dimensional ripple geometries.
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8.4.2 Expansion of the Criteria for modelling Laminar-Turbulent

Transition

• The modifications to a domain which are required to incorporate a given textured

surface may impact the optimal configuration of upstream tripping conditions.

Further optimisation of the pseudo-transient numerical trip is required to account

for the influence of the spatial and temporal resolution on the response of the

laminar boundary layer. A more extensive parametric study should be performed

regarding the numerical trip, spatial resolution and turbulence model to assess

the interaction.

• The impact of the downstream outlet conditions is unknown, pressure distortions

cannot be identified and isolated from the results. The simulations may benefit

from the addition of a damping region prior to the outlet boundary in order to

eliminate reflections.

• The present analysis has focused the optimisation on pre-processing time and

balancing spatial resolution and cell count. With the optimal methodologies now

established, further optimisation should consider the impact of the configuration

of the pressure-velocity coupling solver and the geometric matrix solver on the

overall computational workload and calculation time.

• The wall-adapting local eddy-viscosity model was used to model the sub-grid

scale turbulence in all simulations. Alternative sub-grid scale model should be

tested to assess the interaction of the sub-grid scale model/modelling coefficient

with spatial resolution and trip configuration.
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8.4.3 Three-Dimensional Grooves in Turbulent Flow.

• The refined split-hexahedral mesh should be compared with a high resolution

hexahedral mesh in a spatially developing turbulent boundary layer. The in-

creased computational cost in the reduced time-step and increased cell count is

too high to consider for the present analysis.

• To provide a more detailed understanding on the accuracy of the various mesh-

ing strategies, experimental investigations could be carried out using the LJMU

high speed air blower facility, which can be directly compared with the numerical

results. In preparation for future investigation, the high speed air blower facility

governed the design of the numerical simulations for both the smooth and tex-

tured surface relations, and the ripple designs were simplified in part to improve

their manufacturability.

• Simplification of the ripples removes some of the key geometric features in the

naturally occurring sand ripple profiles. Since the present analysis has demon-

strated the viability of the split-hexahedral mesh in modelling spatially devel-

oping turbulent flow, the present methodology can be expanded to incorporate

increasingly complex geometric profiles. Further effectors to achieve a net drag

reduction should consider utilising a split-hexahedral mesh to investigate either

natural ripple profiles or applying three-dimensional geometries of shallow sand

ripples (k∗g ≤ 0.05).
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APPENDIX A

Post-Processing Scripts

A.1 Boundary Layer Profile Extraction

surfaceTransformPoints -translate ”(0.07 0 0)” setDicts/planeZero.stl setDicts/planeOne.stl
surfaceTransformPoints -translate ”(0.16 0 0)” setDicts/planeZero.stl setDicts/planeTwo.stl
surfaceTransformPoints -translate ”(0.25 0 0)” setDicts/planeZero.stl setDicts/planeThree.stl
topoSet

cd timeFiles
declare -a files=( * )
cd ..
declare -i Length=6

for i in $(seq 0 $Length) do

filename=”$files[$i]”
cp -r timeFiles/$filename ./
subsetMesh selectedCellsOne -resultTime 1
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subsetMesh selectedCellsTwo -resultTime 2
subsetMesh selectedCellsThree -resultTime 3
postChannel -time 1
postChannel -time 2
postChannel -time 3
cd graphs
cd 1
declare -a profiles=( * )
cd ..
for j in $(seq 1 3)
do

cd $j
for k in $(seq 0 7)
do

pname=”$profiles[$k]”
csvtool trim l $pname ¿¿ $pname

done cd ..

done

mv 1 x-0.07
mv 2 x-0.16
mv 3 x-0.25
cd ..

mv graphs resultsPlots/$filename rm -r $filename

done

A.2 Profile Collapsing

#!/bin/bash
rm streamwiseProperties
filename 1=’x-0.01’
filename 2=’x-0.04’
filename 3=’x-0.07’
filename 4=’x-0.10’
filename 5=’x-0.13’
filename 6=’x-0.16’
filename 7=’x-0.19’
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filename 8=’x-0.22’
filename 9=’x-0.25’

declare -a files=($filename 1 $filename 2 $filename 3 $filename 4 $filename 5 $file-
name 6 $filename 7 $filename 8 $filename 9)

declare -i Length

declare -i i

declare -i j

echo ”Location BoundaryLayerThickness DiscplaementThickness MomentumThick-
ness ShapeFactor DisplacementReynoldsNumber MomentumReynoldsNumber Friction-
ReynoldsNumber FrictionVelocity SkinFrictionCoefficient Iww U99 P99” >> stream-
wiseProperties

for j in $(seq 0 8);

do

time=”${files[$j]}”
filename=$time/Uf.xy
U1=0
U2=0
Iw=0
Dy=0
y99=0

Length=$(csvtool -t SPACE height $filename)
u0=($(csvtool -t SPACE sub 1 2 $Length 1 $filename))
y=($(csvtool -t SPACE sub 1 1 $Length 1 $filename))
infty=$(csvtool -t SPACE sub $Length 2 1 1 $filename)
infty99=‘echo ”0.99*$infty” — bc -l‘
length=‘echo ”$Length-1” — bc -l‘
p99=$(csvtool -t SPACE sub $Length 2 1 1 $time/pMean.xy)
echo $Length
TauOne=$(csvtool -t SPACE sub 1 1 1 1 $filename)
TauTwo=$(csvtool -t SPACE sub 1 2 1 1 $filename)
TauOne=‘echo ”$TauOne” — sed -e ’s/[eE]+*/\\*10\\ˆ/’ — bc -l‘
’s/[eE]+*/\\*10\\ˆ/’‘
ut=‘echo ”sqrt(0.00001568*$TauTwo/$TauOne)” — bc -l‘

echo $ut

Tau=‘echo ”$utˆ2”— bc -l‘

cf=‘echo ”$Tau/(0.5*($inftyˆ2))” — bc -l‘
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for i in $(seq 0 $length );

do

u=‘echo ”${u0[$i]}” — sed -e ’s/[eE]+*/\\*10\\ˆ/’ — bc -l‘

if (( $(bc <<< ”$u < $infty99”) ))

then

y99=‘echo ”${y[$i]}” — sed -e ’s/[eE]+*/\\*10\\ˆ/’ — bc -l‘
fi

y2=‘echo ”${y[$i]}” — sed -e ’s/[eE]+*/\\*10\\ˆ/’ — bc -l‘
if [ $i -eq 0 ]; then y3=‘echo ”${y[$i+1]}”— sed -e ’s/[eE]+*/\\*10\\ˆ/’
— bc -l‘
Dy=‘echo ”$y2*2” — bc -l‘
elif [ $i -eq $length ];
then
y1=‘echo ”${y[$i-1]}” — sed -e ’s/[eE]+*/\\*10\\ˆ/’ — bc -l‘
Dy=‘echo ”(0.01-$y2)*2” — bc -l‘
else
y1=‘echo ”${y[$i-1]}” — sed -e ’s/[eE]+*/\\*10\\ˆ/’ — bc -l‘
y3=‘echo ”${y[$i+1]}” — sed -e ’s/[eE]+*/\\*10\\ˆ/’ — bc -l‘
cell=‘echo ”($y3-$y2)/($y2-$y1)” — bc -l‘
Dy=‘echo ”($y3-$y1)/2” — bc -l‘
fi

u1=‘echo ”(1/$infty)*($infty-$u)*$Dy” — bc -l‘
U1=‘echo ”$U1+$u1” — bc -l‘
u2=‘echo ”(1/($inftyˆ2))*$u*($infty-$u)*$Dy” — bc -l‘
U2=‘echo ”$U2+$u2” — bc -l‘
iw=‘echo ”((($infty/$ut)-($u/$ut))ˆ2)*$Dy” — bc -l‘
Iw=‘echo ”$Iw+$iw” — bc -l‘

done

H=‘echo ”$U1/$U2” — bc -l‘
Re1=‘echo ”$U1*$infty/0.00001568” — bc -l‘
Re2=‘echo ”$U2*$infty/0.00001568” — bc -l‘
Re3=‘echo ”$y99*$ut/0.00001568” — bc -l‘
Iww=‘echo ”$Iw/($U1*$infty/$ut)” — bc -l‘
echo $H
echo ”$time $y99 $U1 $U2 $H $Re1 $Re2 $Re3 $ut $cf $Iww $infty $p99”
>> streamwiseProperties

done
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Figure B.1: Distribution of inner-scaled, time-averaged streamwise velocity over a
smooth wall, for varying levels of spatial resolution.



281

(a) x = 0.07m

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 10 100 1000

〈w̄′
rms〉

+

y+

Case M1-T2-L2 (Reθ = 1020)

Case M2-T2-L2 (Reθ = 1065)

Case M3-T2-L2 (Reθ = 1054)

(b) x = 0.16m

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 10 100 1000

〈w̄′
rms〉

+

y+

Case M1-T2-L2 (Reθ = 1974)

Case M2-T2-L2 (Reθ = 2069)

Case M3-T2-L2 (Reθ = 2094)

(c) x = 0.25m

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 10 100 1000

〈w̄′
rms〉

+

y+

Case M1-T2-L2 (Reθ = 2829)

Case M2-T2-L2 (Reθ = 2951)

Case M3-T2-L2 (Reθ = 2988)

Figure B.2: Comparison of the RMS of spanwise velocity fluctuations over a smooth
wall, for varying levels of spatial resolution.
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Table C.1: Flow resistance components for all parametric simulations containing the
two-dimensional profile of RN1.

Case ϕ Reh Rehfp Rehfv1 Rehfv2
RN1-KG1-KZ0-F1 0◦ 50.8 0.194 2.845 3.014

180◦ 50.8 0.200 2.845 3.014
RN1-KG1-KZ0-F2 0◦ 101.6 0.236 2.811 3.017

180◦ 101.6 0.236 2.805 3.017
RN1-KG1-KZ0-F3 0◦ 507.8 0.420 2.641 3.024

180◦ 507.8 0.420 2.64 3.024
RN1-KG1-KZ0-F4 0◦ 1015.6 0.567 2.501 3.032

180◦ 1015.6 0.561 2.513 3.031
RN1-KG2-KZ0-F1 0◦ 51.2 0.386 2.702 3.039

180◦ 51.2 0.386 2.702 3.039
RN1-KG2-KZ0-F2 0◦ 102.3 0.454 2.646 3.046

180◦ 102.3 0.46 2.64 3.045
RN1-KG2-KZ0-F3 0◦ 511.5 0.773 2.357 3.056

180◦ 511.5 0.773 2.356 3.055
RN1-KG2-KZ0-F4 0◦ 1023 1.000 2.149 3.066

180◦ 1023 0.987 2.154 3.067
RN1-KG3-KZ0-F1 0◦ 51.6 0.630 2.532 3.074

180◦ 51.6 0.642 2.519 3.074
RN1-KG3-KZ0-F2 0◦ 103.2 0.738 2.440 3.081

180◦ 103.2 0.744 2.427 3.077
RN1-KG3-KZ0-F3 0◦ 515.8 1.176 2.049 3.105

180◦ 515.8 1.175 2.047 3.101
RN1-KG3-KZ0-F4 0◦ 1031.5 1.437 1.805 3.114

180◦ 1031.5 1.436 1.804 3.113
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Table C.2: Flow resistance components for all parametric simulations containing the
two-dimensional profile of RN2.

Case ϕ Reh Rehfp Rehfv1 Rehfv2
RN2-KG1-KZ0-F1 0◦ 50.8 0.231 2.816 3.017

180◦ 50.8 0.237 2.81 3.017
RN2-KG1-KZ0-F2 0◦ 101.7 0.28 2.778 3.021

180◦ 101.7 0.286 2.771 3.021
RN2-KG1-KZ0-F3 0◦ 508.4 0.507 2.572 3.024

180◦ 508.4 0.507 2.571 3.030
RN2-KG1-KZ0-F4 0◦ 1016.9 0.674 2.414 3.039

180◦ 1016.9 0.668 2.42 3.038
RN2-KG2-KZ0-F1 0◦ 51.2 0.45 2.662 3.050

180◦ 51.2 0.462 2.649 3.050
RN2-KG2-KZ0-F2 0◦ 102.5 0.531 2.588 3.057

180◦ 102.5 0.543 2.575 3.057
RN2-KG2-KZ0-F3 0◦ 512.5 0.891 2.261 3.072

180◦ 512.5 0.903 2.254 3.069
RN2-KG2-KZ0-F4 0◦ 1024.9 1.133 2.046 3.079

180◦ 1024.9 1.132 2.044 3.079
RN2-KG3-KZ0-F1 0◦ 51.7 0.723 2.478 3.091

180◦ 51.7 0.748 2.453 3.094
RN2-KG3-KZ0-F2 0◦ 103.4 0.84 2.373 3.099

180◦ 103.4 0.871 2.347 3.098
RN2-KG3-KZ0-F3 0◦ 517.1 1.296 1.967 3.122

180◦ 517.1 1.314 1.946 3.119
RN2-KG3-KZ0-F4 0◦ 1034.1 1.547 1.739 3.132

180◦ 1034.1 1.551 1.725 3.131

Table C.3: Flow resistance components for all parametric simulations containing the
two-dimensional profile of RS.

Case ϕ Reh Rehfp Rehfv1 Rehfv2
RS-KG1-KZ0-F1 0◦ 50.7 0.171 2.866 3.013
RS-KG1-KZ0-F2 0◦ 101.5 0.209 2.833 3.015
RS-KG1-KZ0-F3 0◦ 507.3 0.385 2.673 3.023
RS-KG1-KZ0-F4 0◦ 1014.6 0.52 2.549 3.028
RS-KG2-KZ0-F1 0◦ 51.1 0.338 2.748 3.037
RS-KG2-KZ0-F2 0◦ 102.2 0.406 2.688 3.041
RS-KG2-KZ0-F3 0◦ 510.8 0.702 2.42 3.054
RS-KG2-KZ0-F4 0◦ 1021.6 0.904 2.234 3.062
RS-KG3-KZ0-F1 0◦ 51.5 0.559 2.596 3.070
RS-KG3-KZ0-F2 0◦ 103 0.659 2.508 3.076
RS-KG3-KZ0-F3 0◦ 514.8 1.058 2.15 3.096
RS-KG3-KZ0-F4 0◦ 1029.6 1.293 1.935 3.106
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Table C.4: Flow resistance components for all parametric simulations containing the
two-dimensional profiles of RN1 and RS.

Case ϕ Reh Rehfp Rehfv1 Rehfv2
RN1-KG1-KZ1-F1 0◦ 50.8 0.185 2.853 3.013

180◦ 50.8 0.185 2.853 3.013
RN1-KG1-KZ1-F3 0◦ 507.8 0.380 2.705 3.033

180◦ 507.8 0.375 2.710 3.033
RN1-KG1-KZ2-F1 0◦ 50.8 0.159 2.879 3.013

180◦ 50.8 0.159 2.879 3.013
RN1-KG1-KZ2-F3 0◦ 507.8 0.29 2.824 3.043

180◦ 507.8 0.286 2.83 3.043
RN1-KG3-KZ1-F1 0◦ 51.6 0.585 2.573 3.073

180◦ 51.6 0.591 2.569 3.073
RN1-KG3-KZ1-F3 0◦ 515.8 1.150 2.380 3.212

180◦ 515.8 1.206 2.520 3.279
RN1-KG3-KZ2-F1 0◦ 51.6 0.483 2.676 3.072

180◦ 51.6 0.483 2.676 3.072
RN1-KG3-KZ2-F3 0◦ 515.8 1.024 2.978 3.373

180◦ 515.8 1.052 3.182 3.452
RS-KG1-KZ1-F1 0◦ 50.7 0.162 2.874 3.013
RS-KG1-KZ1-F3 0◦ 507.3 0.348 2.731 3.031
RS-KG1-KZ2-F1 0◦ 50.7 0.140 2.896 3.013
RS-KG1-KZ2-F3 0◦ 507.3 0.269 2.838 3.040
RS-KG3-KZ1-F1 0◦ 51.5 0.518 2.634 3.069
RS-KG3-KZ1-F3 0◦ 514.8 1.037 2.466 3.201
RS-KG3-KZ2-F1 0◦ 51.5 0.432 2.720 3.068
RS-KG3-KZ2-F3 0◦ 514.8 0.913 2.992 3.339
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(a) RN1, k∗z = 0, Reh ≈ 50, ϕ = 0◦
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(b) RN2, k∗z = 0, Reh ≈ 50, ϕ = 0◦
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(c) RN1, k∗z = 0, Reh ≈ 50, ϕ = 180◦
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(d) RN2, k∗z = 0, Reh ≈ 50, ϕ = 180◦
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Figure D.1: Distribution of the normalised streamwise shear stress over two-
dimensional sand ripple profiles for a flow of Reh ≈ 50.
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(a) RN1, k∗z = 0, Reh ≈ 100, ϕ = 0◦
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(b) RN2, k∗z = 0, Reh ≈ 100, ϕ = 0◦
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(c) RN1, k∗z = 0, Reh ≈ 100, ϕ = 180◦
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Figure D.2: Distribution of the normalised streamwise shear stress over two-
dimensional sand ripple profiles for a flow of Reh ≈ 100.
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(a) RN1, k∗z = 0, Reh ≈ 500, ϕ = 0◦
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Figure D.3: Distribution of the normalised streamwise shear stress over two-
dimensional sand ripple profiles for a flow of Reh ≈ 500.
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(a) RN1, k∗z = 0, Reh ≈ 1000, ϕ = 0◦
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Figure D.4: Distribution of the normalised streamwise shear stress over two-
dimensional sand ripple profiles for a flow of Reh ≈ 1000.
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(a) RS, k∗z = 0,Reh ≈ 50, ϕ = 0◦
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(c) RS, k∗z = 0, Reh ≈ 500, ϕ = 0◦
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Figure D.5: Distribution of the normalised streamwise shear stress over two-
dimensional sinusoidal profiles for flows of Reh ≈ 50, Reh ≈ 100, Reh ≈ 500 and
Reh ≈ 1000.
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Figure D.6: Distribution of the normalised streamwise shear stress over three-
dimensional sand ripple profiles for a flow of Reh ≈ 50.
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(a) RN1, k∗g = 0.15, Reh ≈ 500
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Figure D.7: Distribution of the normalised streamwise shear stress over three-
dimensional sand ripple profiles for a flow of Reh ≈ 500.
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Figure D.8: Distribution of the normalised streamwise shear stress over three-
dimensional sinusoidal profiles for a flow of Reh ≈ 50.
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Figure D.9: Distribution of the normalised streamwise shear stress over three-
dimensional sinusoidal profiles for a flow of Reh ≈ 500.


