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Abstract 

The effect of carbohydrate mouth rinse (CHO MR) on resistance exercise performance is equivocal, 

and may be moderated by carbohydrate availability. This study determined the effect of CHO MR on 

low-load resistance exercise capacity completed in a fed but glycogen-lowered state. Twelve resistance-

trained men (age: 22±4 years; height: 1.79±0.05m; weight: 78.7±7.8kg; bench press 1-RM: 87±21kg; 

squat 1-RM: 123±19kg) completed two fed-state resistance exercise bouts consisting of 6 sets of bench 

press and 6 sets of squat to failure at 40% 1-RM. Each bout was preceded by glycogen-depleting cycling 

the evening before, with feeding controlled to create acute energy deficit and maintain low muscle 

glycogen. During resistance exercise, participants rinsed with either a 6% CHO MR solution or a taste-

matched placebo (PLA) between sets. Total volume workload was greater with CHO MR 

(9354±2051kg vs. 8525±1911kg, p=0.010). Total number of repetitions of squat were greater with CHO 

MR (107±26 vs. 92±16, p=0.017); the number of repetitions of bench press were not significantly 

different (CHO MR: 120±24 vs. PLA: 115±22, p=0.146). This was independent of differences in feeling 

or arousal. CHO MR may be an effective ergogenic aid for athletes completing resistance exercise when 

in energy deficit and with low carbohydrate availability. 

 

Novelty 

• CHO MR can increase low-load resistance exercise capacity undertaken in a glycogen-lowered 

but fed state. 

• This effect was driven by a greater number of repetitions-to-failure in the squat –  using muscles 

lowered in glycogen content with exhaustive cycling on the evening prior to resistance exercise 

– but not bench press.  

 

Key words: 

Ergogenic aid, rinsing, sports performance, muscular endurance, strength training. 
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Introduction 

While debate persists (Brietzke et al., 2019; Li et al., 2019; Borszcz & de Lucsa, 2020), mouth-rinsing 

with a carbohydrate solution has been proposed as a potential ergogenic practice for improving 

endurance exercise performance (Carter et al., 2004; Chambers et al., 2009; Lane et al., 2013; Pottier 

et al., 2010; Rollo et al., 2011). It is proposed that the presence of carbohydrate in the oral cavity 

stimulates oropharyngeal receptors, eliciting a central neural response and resulting in enhanced central 

drive for increased or sustained work output (Carter et al., 2004; Jeukendrup & Chambers, 2010), via 

activation of brain regions associated with reward (Chambers et al., 2009). 

There remains contention regarding the effects of carbohydrate mouth rinse on resistance exercise 

performance. Previous studies have failed to demonstrate improvements in strength and muscular 

endurance with carbohydrate mouth rinse (Clarke et al., 2015; Dunkin & Phillips, 2017; Krings et al., 

2019; Painelli et al., 2011). However, such bouts have typically been of relatively low total workloads 

(Clarke et al., 2015; Dunkin & Phillips, 2017) and have been conducted with high or adequate 

carbohydrate availability (Clarke et al., 2015; Dunkin & Phillips, 2017; Krings et al., 2019; Painelli et 

al., 2011). When performed in the fasted state, increased capacity for resistance exercise has been 

observed with carbohydrate mouth rinse. Clarke et al. (2017), reported that, when exercise was 

performed after an 11-hour overnight fast, the repetitions of the bench press and squat, performed to 

failure at 60% of one-repetition max, were significantly greater with a 10-second rinse of a 6% 

carbohydrate solution. Similarly, administration of a 6% maltodextrin mouth rinse elicited a 12% 

increase in total volume workload during whole-body resistance training session performed after an 8-

hour overnight fast (Decimoni et al., 2018).   

Such findings are perhaps unsurprising, as the effect of carbohydrate mouth rinse on endurance 

performance are suggested to be moderated by carbohydrate availability. Carbohydrate mouth rinse has 

been shown to improve endurance cycling performance (Lane et al., 2013) and capacity (Fares & 

Kayser, 2011) to a greater extent in the fasted state, compared with exercise undertaken after consuming 

a high-carbohydrate meal, while both Beelen et al. (2009) and Ispoglou and colleagues (2015) failed to 

observe an improvement in 1-hour cycle time trial performance when conducted in a postprandial state. 
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However, it is noted that others have failed to observe an ergogenic effect of a sucrose mouth rinse in 

both the fed and fasted state (Trommelen et al., 2015), while Kulaksiz et al. (2016) did not see any 

improvement in 4km time trial performance with carbohydrate mouth rinse in the fasted state. 

Nonetheless, carbohydrate mouth rinse has been shown to attenuate reductions in 20-km cycle time trial 

performance when in a glycogen depleted state (Ataide-Silva et al., 2016), while Kasper et al. (2016) 

demonstrated a ~45% increase in the number of 1-minute high-intensity (80% VO2max) running 

repetitions completed to failure after glycogen-depleting exercise with carbohydrate mouth rinse. As 

such, carbohydrate availability may have a moderating effect on the ergogenic effect of carbohydrate 

mouth rinse. 

Current nutritional advice recommends periodising nutrition and fuelling adequately for intense training 

sessions and competition, to avoid low carbohydrate availability (Jeukendrup, 2017; Stellingwerff, 

2012). This may not always be preferred by athletes who suffer nerves and gastrointestinal distress 

during competition, and may not be feasible for athletes seeking an optimal power-to-weight ratio and 

attempting to make weight. Such athletes will have the aim of maintaining or increasing strength and 

muscular endurance, and maintaining muscle mass while in a chronic energy deficit. Thus, resistance 

training, including high-volume, low-resistance resistance exercise for the development of muscular 

endurance and maintenance of muscle mass (ACSM, 2002), is likely to be undertaken in a postprandial 

yet energy-restricted and glycogen-lowered state. In such instances, ergogenic aids that could increase 

training capacity without intake of energy would prove desirable.  

Therefore, the aim of this study was to investigate the effect of a carbohydrate mouth rinse on morning 

low-load resistance exercise capacity in the postprandial state, after a glycogen-depleting bout of 

cycling completed the night before resistance training.  

 

Materials and Methods 

Participants  
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Twelve healthy, resistance-trained young men (age: 22±4 years; height: 1.79±0.05m; weight: 

78.7±7.8kg; bench press 1-RM: 87±21kg; squat 1-RM: 123±19kg) were recruited for the study. 

Inclusion criteria were: a minimum of two years’ experience of resistance training, undertaking of 

resistance training ≥ once per week, with both squat and bench press typically conducted ≥ once per 

week; aged 18-30 years. Exclusion criteria were: illness, such as upper respiratory tract infection; 

smoker; currently taking any ergogenic aid (not including vitamin and mineral supplementation). 

Ethical approval was obtained from the Research Ethics Committee of the Carnegie School of Sport, 

Leeds Beckett University.  

Study Design 

Using a single-blind, within-subject, counterbalanced study design, participants complete two trial 

condition: carbohydrate mouth rinse (6.4% maltodextrin solution, CHO MR), and placebo (taste-

matched sucralose solution, PLA). In each trial, a fed-state morning resistance exercise training session 

was completed, consisting of bench press and squat lifts (6 sets to failures, at 40% of one-repetition 

maximum (1-RM)). This was preceded by a glycogen-depleting cycling session the previous evening, 

with a controlled diet followed until the resistance training sessions. This was done to create an acute 

energy-restricted and glycogen-lowered state, mimicking that which may be experienced by athletes in 

energy deficit. The primary outcome measure was total work done in the session. Secondary measures 

were affective valence and arousal. 

Pre-testing 

Two pre-testing sessions preceded the exercise trials. Participants reported to the Carnegie Research 

Institute, at Leeds Beckett University after a minimum 2-hour fast and having refrained from strenuous 

exercise during the previous 48 hours. Participants were provided with written information about the 

study, which was also reiterated verbally. After being afforded the opportunity to ask any questions 

regarding their potential participation, participants provided informed written consent to partake. Health 

screening (Riebe et al., 2015), screening for food allergies, and measurement of height and weight were 

conducted. An incremental exhaustive exercise test was then completed on an electromagnetically-

braked cycle ergometer (Lode Excalibur Sport, Groningen, Netherlands) to obtain a value for maximal 
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aerobic power (Wattmax). The test, preceded by a five-minute warm-up at a self-selected power output, 

consisted of 3 minute stages, starting at a power output of 95W and increasing in increments of 35W 

(Achten et al., 2002). Participants were adjudged to have reached the end of the test when they 

voluntarily stopped pedalling, or if their cadence dropped to <60 rpm. Wattmax was calculated as:  

Wmax = Wfinal + (t/180) x 35 (Achten et al., 2002). 

Where “Wfinal” is the power output of the final completed stage and “t” is the time (seconds) completed 

of the final uncompleted stage. 

 

Two-to-five days after the incremental exhaustive exercise test, participants returned to the Carnegie 

Research Institute to complete a four-repetition maximum (4-RM) test (Dohoney et al., 2002) for the 

squat and bench press exercises. A short warm-up period preceded the test, consisting of 5-minutes of 

cycling on a cycle ergometer at a self-selected intensity followed by 15-20 repetitions of each exercise 

using a low load of 20kg. The test began at a load identified by the participant as one which they could 

comfortably complete 5-10 repetitions of the bench press. Once four repetitions were completed, fully 

and with correct form, the weight was increased in increments of 5-10%. This was continued until the 

participant was unable to complete four repetitions. At the point of failure, the load was reduced to the 

midpoint between the failure load and the last completed load. The greatest load for which four 

repetitions were successfully completed was determined as the participant’s 4-RM value. All sets of 

lifts were separated by a recovery period of 4-5 minutes.  After a recovery period of ~10 minutes, the 

test was repeated for the squat exercise. During all resistance training procedures participants were 

spotted by a member of the research team with a relevant qualification in gym instruction and personal 

training, to ensure safety and correct lifting techniques. From the 4-RM value, a one-repetition 

maximum (1-RM) was calculated as: 

1-RM (kg) = -24.62 + (1.12 x load(kg)) + 5.09 x 4) (Dohoney et al., 2002) 

Exercise Trials  

Day One. 
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Participants attended the Carnegie Research Institute in the evening, between 17.50 and 19.30 to 

complete a glycogen-depleting bout of exercise on a cycle ergometer. Participants were instructed to 

avoid strenuous exercise on the day of and the day prior to this visit, and to consume a normal diet but 

to avoid eating in the two-hours prior to the exercise bout. An established protocol for depleting muscle 

glycogen was implemented (Kuipers et al., 1987) The bout consisted of 2-minute intervals at 90% 

Wattmax, separated by 2-minute recovery period of cycling at 50% Wattmax. When the participant could 

no longer maintain a cadence of >60 RPM during the 90% Wattmax interval, the intensity of the interval 

was lowered to 80% Wattmax. When this could no longer be maintained, the intensity was lowered to 

70% Wattmax. The bout terminated when a cadence of >60RPM could not be maintained at this intensity. 

The duration of the interval and recovery period remained 2-minutes, and the recovery intensity 

remained at 50% Wattmax throughout. All tests exceeded 60-minutes in duration. Water was consumed 

ad libitum, but no other feeding was permitted. The test was conducted at an ambient temperature of 

20°C.  

After completing the exercise session, participants consumed a chocolate milk beverage (268 kcal, 

41.6g CHO) before leaving the research institute. They were provided with a standardised evening meal 

of chicken and vegetable stir fry (408 kcal, 12.3g CHO; see Supplementary Material S1 for ingredients 

and preparation) with the intention of providing sustenance but only partial repletion of glycogen stores 

(see Table 1 for full nutritional information). 

Day Two 

In the morning of Day Two, participants consumed a standardised, energy restricted and low-

carbohydrate breakfast consisting of scrambled egg on toast (223 kcal, 14.4g CHO; See Table 1 for full 

nutritional information of evening and morning food intake). Participants arrived at the Carnegie 

Research Institute to begin a resistance exercise training session 120 minutes after consuming breakfast. 

The session, preceded by a short warm up of 15 repetitions of each exercise using a low load of 20kg, 

consisted of six sets of bench press and six sets of the squat exercise, each to failure, at an intensity of 

40% 1-RM. Repetitions were completed at a self-selected speed but participants were instructed not to 

pause between repetitions. A two-minute recovery period separated sets, with 5-minute recovery 
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between the bench press and the squat exercises. This intensity of exercise (40% 1-RM) has been 

recommended for muscular endurance by the American College of Sports Medicine (2002). 

Thirty-second before beginning each set of lifting, 25mL of a mouth-rinse solution was “swilled” for a 

duration of 10-seconds before being expectorated. In CHO MR, this consisted of a 6.4% maltodextrin 

solution, with the addition of sucralose (0.1g•L-1). The taste-matched solution in PLA consisted purely 

of sucralose. Both solutions were provided at room temperature.  

Due to the single-blind study design, no verbal encouragement was given to participants during the 

session. Blinding was assessed at the end of each participant’s second trial; five of the participants 

correctly identified the CHO MR solution, representing successful blinding. 

Standardised Meals 

Feeding was tightly controlled from the glycogen depletion exercise bout until and throughout the 

resistance exercise session, with the intention of mimicking an energy-restricted, low-glycogen yet fed 

state for the resistance training session. Food and drink were provided immediately after the glycogen-

depletion bout, for the evening of Day One and for the morning of Day Two. For the evening meal of 

Day One and breakfast of Day 2, the participant was provided with weighed ingredients and cooking 

instructions (Supplementary Material S1). Nutritional information is provided in Table 1. In summary, 

carbohydrate intake was restricted to 68.5g, equating to 1.24-1.71g•kg bodyweight-1. (~0.09g•hr-1 intake 

during the ~16-hour period of dietary control). Total energy intake for the ~16-hour period of dietary 

control ranged from 25 to 33% of total energy requirements (estimated using the Mifflin equation 

(Mifflin et al., 1990)). 

Participants were instructed to refrain from consuming any additional food, while water was permitted 

ad libitum. Adherence to dietary control was checked upon arrival to the laboratory on Day Two.  

Measures 

The primary outcome measure was total volume workload for the resistance exercise session. This was 

calculated as the number of completed repetitions, multiplied by the weight lifted. For ease of 

interpretation, number of repetitions was presented and compared between the two conditions 
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separately for each exercise and across sets. As the glycogen depletion exercise session consisted only 

of lower-limb exercise, this allowed for a comparison on training capacity in exercise utilising largely 

glycogen-restricted muscles of the legs (squat) with exercises utilising muscle which are likely to have 

been in a much less glycogen-restricted state (bench press). 

Secondary outcome measures were obtained to assess mood and perception during exercise. Arousal 

was assessed using the Felt Arousal Scale (Svebak & Murgatroyd, 1985) and mood was assessed using 

the Feeling Scale (Hardy & Rejeski, 1989). Measures were obtained immediately prior to the session 

(during a two-minute rest period between the warm-up and commencement of the training session), at 

the midpoint of the exercise session, and immediately post-session. 

Statistical Analysis 

Values are presented as means±standard deviation in the text and tables and means±standard error in 

figures. Total work done in the session was compared between CHO MR and PLA using a paired-

samples T-test. A paired samples T-test was also used to compare the total number of repetitions 

completed during each exercise between CHO MR and PLA. Repetitions completed across each of the 

six sets in each exercise was compared between CHO MR and PLA using a two-way (condition x set) 

repeated-measures analysis of variance (ANOVA). Feeling and arousal scores were also compared 

using a two-way (condition x time) repeated-measures ANOVA. Any significant interaction or main 

effects were investigated further using Bonferroni pairwise comparisons. Trial order effects were 

assessed using paired sample T-tests. For T-tests, effect size was calculated as Cohen’s d (d), with 95% 

confidence intervals (CI) expressed. An effect size of 0.2 or greater was considered small, 0.5 or greater 

considered medium and 0.8 or greater considered large (Cohen, 1988). For ANOVA, effect size was 

calculated as partial eta squared (η2
p).  

An a priori power calculation was conducted using G*power, based on the findings of previous studies 

investigating the effect of carbohydrate mouth rinse on performance in a low-carbohydrate-availability 

state (Kizzi et al., 2016; Lane et al., 2013). A sample size of 12 was required to detect a large effect size 

(d = 0.8, performance improvement of >3%), with statistical power of >0.8 and an alpha value of 0.05. 
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Results 

Resistance Training Capacity 

Total volume workload during the training session was significantly greater in CHO MR vs PLA 

(9354±2051kg vs. 8525±1911kg, p = 0.010; d = 0.418, 95% CI = 238kg – 1419kg. Figure 1a and Figure 

1b (individual responses)). For the bench press, there was no significant difference in the total number 

of repetitions completed in CHO MR and PLA (120±24 repetition vs. 115±22 repetitions, p = 0.146; d 

= 0.198, 95% CI = -1.9 – 11.0 repetitions), nor when comparing changes in the number of repetitions 

completed across sets (p = 0.939 for condition x set interaction) (Figure 2). For the squat, total number 

of repetitions completed was significant greater in CHO MR vs PLA (107±26 repetitions vs. 92±16 

repetitions, p = 0.017; d = 0.685, 95% CI = 3.1 – 26.2 repetitions), with no significant difference in 

changes in the number of repetitions completed across sets (p = 0.366 for condition x set interaction) 

(Figure 3).   

There were no trial order effects for any outcome measures (all p ≥ 0.688). 

 

Figure 1a here 

 

Figure 1b here 

 

Figure 2 here 

 

Figure 3 here 

 

Feelings and Arousal 
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Feeling and arousal did not differ between conditions (time x condition interactions and condition main 

effects, p > 0.05). Data not shown. 

 

Discussion 

The novel finding of this study is that carbohydrate mouth rinse can increase resistance exercise capacity 

in a glycogen-lowered state. Total volume workload during the session was increased by 9.7% with 

carbohydrate mouth rinse, equating to 19 more repetitions. Previous studies have failed to demonstrate 

an ergogenic effect of carbohydrate mouth rinse during resistance exercise (Clarke et al., 2015; Dunkin 

& Phillips, 2017; Krings et al., 2019; Painelli et al., 2011), but none of these studies investigated 

responses when resistance exercise was conducted with low carbohydrate availability. The findings of 

the present study are in agreement with studies investigating the ergogenic effects of carbohydrate 

mouth rinse on resistance exercise when performed in a fasted state (Clarke et al., 2017; Decimoni et 

al., 2018). 

Given that the glycogen depletion exercise, completed the evening prior to morning resistance exercise, 

consisted of cycling, it may be assumed that leg muscles but not arm muscles will have been in a low-

glycogen state. This model allowed for the comparison of the effects of CHO mouth rinse on resistance 

exercise capacity in an exercise utilising largely muscles in an adequate glycogen state (bench press) 

with an exercise utilising largely muscles in a low-glycogen state (squat). The number of repetitions 

was greater with CHO mouth rinse in squat exercises, but not in the bench press exercise. This is likely 

due to the enhanced efficacy of CHO mouth rinse to alleviate fatigue and improve performance when 

in a state of low-carbohydrate availability, as has been observed in previous studies (Ataide-Silva et al., 

2016; Fares & Kayser, 2011; Kasper et al., 2016; Kizzi et al., 2016; Lane et al., 2013). Of interest, 

Bastos-Silva, Prestes & Geraldes (2019) observed enhanced fed-state performance with carbohydrate 

mouth rinse in upper-body, but not lower-body resistance exercise, contrasting the findings of the 

present study. This further suggests that our observations can be explained by the likely glycogen 

availability of the primary muscles used, and that the ergogenic effect of carbohydrate mouth rinse 

during resistance exercise is moderated by carbohydrate availability. 
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An alternative explanation for the differing response to bench press and squat exercise is that all 

participants completed the bench press exercise first, followed by the squat exercise. It is possible that 

the ergogenic effect of the CHO mouth rinse simply occurred later in the session, as the participant 

became more fatigued. However, this notion is challenged by the data of Beaven et al. (2013) who 

demonstrated an ergogenic effect of CHO mouth rinse on mean and peak power output in only the first 

of five repeated 6-second sprints on a cycle ergometer. This suggests that the ergogenic effect was 

attenuated later in the exercise bout, rather than becoming more potent. Nonetheless, it would be 

interesting to investigate the response to both exercises when completed in a counterbalance order (half 

of the participants complete the bench press exercise first, half complete the squat exercise first), as this 

will elucidate whether the different response is due to the likely glycogen state of the primary muscles 

used, or the duration of the exercise bout. 

An increased capacity to perform resistance exercise to failure with a CHO mouth rinse was observed 

in the absence of any improved perception of feeling or felt arousal. This is perhaps surprising, as 

improvements in resistance exercise performance with carbohydrate mouth rinse in the study of Clarke 

et al. (2017) were accompanied by greater felt arousal, and carbohydrate mouth rinse has been shown 

to increase felt arousal without improving maximal strength or muscular endurance (Clarke et al., 2015).  

Yet, other studies have failed to observe enhanced feelings of arousal with carbohydrate mouth rinse 

during resistance exercise when no performance improvements have been achieved (Dunkin & Phillips, 

2017; Krings et al., 2019). Lower rating of perceived exertion during resistance exercise have been 

demonstrated with carbohydrate mouth rinse (Decimoni et al., 2018), but as the current study involved 

exercise to failure, it was felt that this was not a relevant measure. 

It was decided to use a low-load protocol for the current study to target muscular endurance exercise 

(ACSM, 2002). It was considered that this is a key focus for athletes of weight-category sports, seeking 

to maintain strength and muscle endurance during periods of weight-loss and hence energy and 

carbohydrate restriction. It is acknowledged that some athletes may wish to gain strength and optimise 

the maintenance of muscle mass while losing fat and total body mass. However, each set was completed 

to failure; it has previously been demonstrated that resistance exercise to failure with low-weight (30% 
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1-RM) can stimulate myofibrillar protein synthesis to a greater extent as resistance exercise to failure 

with high-weight (90% 1-RM) (Burd et al., 2010). The meta-analysis of Schoenfeld et al. (2017) 

evidenced that low-load resistance training can elicit hypertrophy to a similar extent as high-load 

resistance training, but that maximal gains in strength are achieved with high-load training. Nonetheless, 

future research should investigate the ergogenic effects of carbohydrate mouth rinse in the glycogen-

lowered state during acute bouts of resistance exercise of a greater load. 

A strength of the current study is that dietary intake was manipulated to create an acute state of energy 

restriction and low-glycogen availability but yet avoid conducting a resistance exercise training session 

in the fasted state. This was deemed important to acutely replicate the training and dietary habits of 

athletes seeking to maintain strength and muscular endurance while losing body mass. This was 

achieved through standardised dietary controls which were not individualised for each participant. This 

was deemed appropriate given the homogeneity of the participants with regard to body mass and activity 

level. A total carbohydrate intake during the period of dietary control of 68g equated to a range of 1.25-

1.71 g·kg bodyweight-1 for participants. This resulted in an approximate rate of carbohydrate intake of 

0.09g·hour-1 for the ~16 hours between the glycogen depletion bout and the resistance exercise training 

session, and a rate of approximately 0.36g·hour-1 during the ~4 hours post-glycogen-depleting exercise. 

This ensured that all participants ingested carbohydrate at an amount and rate well below that required 

to adequately restore muscle glycogen after glycogen-depletion (Jentjens & Jeukendrup, 2003). 

Similarly, relative energy intake, represented as a percentage of estimated total energy requirements, 

did not differ considerably across participants.  

The findings of this study could relay some important practical implications for athletes and those 

supporting athletes. Periods of energy restriction can increase fatigue and reduce exercise performance 

of athletes seeking to control bodyweight (Drew et al., 2018; Franchini et al., 2012; Fogelholm, 1994; 

Koral & Dosseville, 2009; Rossow et al., 2013). During such periods, increases in or maintenance of 

lean mass, and improvements in strength and power are difficult to achieve (Garthe et al., 2011; Koral 

& Dosseville, 2009), but can be observed with increased strength training (Donnelly et al., 1993; 

Sundgot-Borgen & Garthe, 2011) or the combination of resistance exercise and a high protein intake 
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(Arteta et al., 2014, Churchward-Venne et al., 2013; Thomas et al., 2016). Our data suggest that rinsing 

the mouth with a carbohydrate solution during resistance exercise may increase training capacity when 

exercising with low energy and carbohydrate availability, which could lead to preferred changes in body 

composition and enhanced performance. As such, the use of a carbohydrate mouth rinse could be 

considered for athletes undertaking resistance exercise in a state of energy restriction or low 

carbohydrate availability, such as when attempting to make weight, obtain an optimal body 

composition, or when observing a period of fasting for religious or cultural reasons.   

The current investigation is not without limitations. It is acknowledged that a double-blind design would 

have been preferred. However, the absence of any verbal encouragement helped to negate any effect of 

a single-blind design, and blinding was shown to be successful when assessed. It is also acknowledged 

that the exercise bout itself, consisting of 6 sets of just two exercises, may lack ecological validity. 

However, as explained earlier in this section, this model allowed for the comparison of resistance 

exercises completed primarily using muscles of likely adequate- and low-glycogen availability, within 

the same exercise bout. Further, the study population was a convenience sample of resistance trained 

males, and not weight-category sport athletes or athletes currently seeking to optimise body 

composition. Such athletes would have made for a more relevant study population and for enhanced 

ecological validity of the findings. 

Measuring muscle glycogen was not possible. As such, assumptions were made regarding the glycogen 

availability of the exercising muscles after the glycogen depleting exercise and at the time of conducting 

the resistance exercise. However, the depletion protocol followed has been shown to result in very low 

muscle glycogen concentrations of the vastus lateralis (Jentjens et al., 2001; Kuiper et al., 1987; van 

Loon et al., 2000) and such low CHO intake in the post-exercise period ensured minimal glycogen 

resynthesis. Lastly, it is acknowledged that measures of blood glucose concentration prior to and during 

the resistance exercise bout would have been an interesting addition; this would have confirmed a state 

of adequate CHO availability in blood at the onset of exercise, as would be representative of fed-state 

exercise, and would have confirmed that no CHO was ingested form the mouth rinse. 
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In conclusion, rinsing with a carbohydrate mouth rinse throughout a low-load resistance exercise bout 

can increase exercise capacity when performed in the fed but glycogen-lowered state. This was 

specifically driven by an increase in the workload achieved in exercise primarily using muscle of low-

glycogen availability. As such, carbohydrate mouth rinse could constitute an effective ergogenic aid for 

athletes seeking to maintain muscular endurance and muscle mass through resistance exercise during 

periods of energy deficit and low carbohydrate availability.  
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Tables and Figures 

Table 1. Nutritional information of the standardised meals. 

Meal Nutritional Information 

Energy (kcal) Carbohydrate (g) Fat (g) Protein (g) Mean±SD 

%TER 

Mean±SD g•kg-1 

Carbohydrate 

Post-exercise beverage: 

Chocolate milk 

268 41.6 5.2 16.4 8.6±0.7% 0.53 ± 0.06 

Evening meal: Chicken and 

vegetable stir fry 

408 12.3 18.0 50.0 12.7±1.0% 0.16 ± 0.02 

Total evening intake 676 53.9 12.6 66.4 21.1±1.8% 0.69 ± 0.07 

Breakfast: Scramble egg on 

toast 

267 14.6 13.9 21.7 8.3±0.7% 0.19 ± 0.02 

Total evening and 

morning intake 

943 68.5 37.1 88.1 29.4±2.4% 1.41 ± 0.15 
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Figure 2. 
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Figure Captions 

 

Figure 1a. Total volume workload (kg) in CHO MR and PLA. The large horizontal bar represents the 

mean. The vertical lines represent SEM. The symbols represent individual responses (● = CHO MR, ■ 

= PLA). * = significant difference between conditions, p < 0.05. 

 

Figure 1b. Individual differences in total volume workload (kg) in CHO MR (●) and PLA (■). 

 

Figure 2. Mean±SEM values for total number of repetitions (dotted bars) and repetitions per set (plan 

bars) for the bench press exercise in CHO MR (white bars) and PLA (grey bars).   

 

Figure 3. Mean±SEM values for total number of repetitions (dotted bars) and repetitions per set (plan 

bars) for the squat exercise in CHO MR (white bars) and PLA (grey bars). * = significant difference 

between conditions, p < 0.05. 

 


