
Clouds and convective self-aggregation in  
a multi-model ensemble of radiative-
convective equilibrium simulations 

Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open access 

Wing, A. A., Stauffer, C. L., Becker, T., Reed, K. A., Ahn, M.-
S., Arnold, N. P., Bony, S., Branson, M., Bryan, G. H., 
Chaboureau, J.-P., de Roode, S. R., Gayatri, K., Hohenegger, 
C., Hu, I.-K., Jansson, F., Jones, T. R., Khairoutdinov, M., 
Kim, D., Martin, Z. K., Matsugishi, S., Medeiros, B., Miura, H., 
Moon, Y., Mülller, S. K., Ohno, T., Popp, M., Prabhakaran, T., 
Randall, D., Rios-Berrios, R., Rochetin, N., Roehrig, R., 
Romps, D. M., Ruppert, Jr., J. H., Satoh, M., Silvers, L. G., 
Singh, M. S., Stevens, B., Tomassini, L., van Heerwaarden, C. 
C., Wang, S. and Zhao, M. (2020) Clouds and convective self-
aggregation in a multi-model ensemble of radiative-convective 
equilibrium simulations. Journal of Advances in Modeling 
Earth Systems, 12 (9). e2020MS002138. ISSN 1942-2466 doi: 
https://doi.org/10.1029/2020MS002138 Available at 
http://centaur.reading.ac.uk/91972/ 



It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1029/2020MS002138 

Publisher: American Geophysical Union 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 

Reading’s research outputs online

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Clouds and Convective Self‐Aggregation in a Multimodel
Ensemble of Radiative‐Convective
Equilibrium Simulations
Allison A. Wing1 , Catherine L. Stauffer1 , Tobias Becker2 , Kevin A. Reed3 ,
Min‐Seop Ahn4 , Nathan P. Arnold5 , Sandrine Bony6 , Mark Branson7 ,
George H. Bryan8 , Jean‐Pierre Chaboureau9 , Stephan R. De Roode10 ,
Kulkarni Gayatri11 , Cathy Hohenegger2 , I‐Kuan Hu12, Fredrik Jansson10,13 ,
Todd R. Jones14 , Marat Khairoutdinov15 , Daehyun Kim4 , Zane K. Martin16 ,
Shuhei Matsugishi17, Brian Medeiros8 , Hiroaki Miura18, Yumin Moon4, Sebastian K. Müller2,
Tomoki Ohno19 , Max Popp20 , Thara Prabhakaran11 , David Randall7 ,
Rosimar Rios‐Berrios8 , Nicolas Rochetin2,20 , Romain Roehrig21 , David M. Romps22,23,
James H. Ruppert Jr.24 , Masaki Satoh17 , Levi G. Silvers3 , Martin S. Singh25 ,
Bjorn Stevens2 , Lorenzo Tomassini26 , Chiel C. van Heerwaarden27 ,
Shuguang Wang16 , and Ming Zhao28

1Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, USA, 2Max Planck
Institute for Meteorology, Hamburg, Germany, 3School of Marine and Atmospheric Sciences, Stony Brook University,
Stony Brook, NY, USA, 4Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA, 5Global
Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA, 6Laboratoire de
Météorologie Dynamique (LMD)/IPSL/Sorbonne Université/CNRS, Paris, France, 7Department of Atmospheric Science,
Colorado State University, Fort Collins, CO, USA, 8National Center for Atmospheric Research, Boulder, CO, USA,
9Laboratoire d'Aérologie, Université de Toulouse, CNRS, UPS, Toulouse, France, 10Faculty of Civil Engineering and
Geosciences, Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, Netherlands, 11Indian
Institute of Tropical Meteorology, Pune, India, 12Rosenstiel School of Marine and Atmospheric Science, University of
Miami, Miami, FL, USA, 13CentrumWiskunde and Informatica, Amsterdam, Netherlands, 14Department of Meteorology,
University of Reading, Reading, UK, 15School of Marine and Atmospheric Sciences, and Institute for Advanced
Computational Science, Stony Brook University, State University of New York, Stony Brook, NY, USA, 16Department of
Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA, 17Atmosphere and Ocean
Research Institute, The University of Tokyo, Kashiwa, Japan, 18Department of Earth and Planetary Science, Graduate
School of Science, The University of Tokyo, Tokyo, Japan, 19Japan Agency for Marine‐Earth Science and Technology,
Yokohama, Japan, 20Laboratoire de Météorologie Dynamique (LMD)/IPSL/Sorbonne Université/CNRS/École
Polytechnique/École Normale Supérieure, Paris, France, 21CNRM, Université de Toulouse, Météo‐France, CNRS,
Toulouse, France, 22Department of Earth and Planetary Science, University of California, Berkeley, CA, USA, 23Climate
and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA, 24Department of
Meteorology and Atmospheric Science and Center for Advanced Data Assimilation and Predictability Techniques,
Pennsylvania State University, University Park, PA, USA, 25School of Earth, Atmosphere, and Environment, Monash
University, Clayton, Victoria, Australia, 26Met Office, Exeter, UK, 27Meteorology and Air Quality Group, Wageningen
University, Wageningen, Netherlands, 28NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA

Abstract The Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP) is an
intercomparison of multiple types of numerical models configured in radiative‐convective equilibrium
(RCE). RCE is an idealization of the tropical atmosphere that has long been used to study basic questions in
climate science. Here, we employ RCE to investigate the role that clouds and convective activity play in
determining cloud feedbacks, climate sensitivity, the state of convective aggregation, and the equilibrium
climate. RCEMIP is unique among intercomparisons in its inclusion of a wide range of model types,
including atmospheric general circulation models (GCMs), single column models (SCMs), cloud‐resolving
models (CRMs), large eddy simulations (LES), and global cloud‐resolving models (GCRMs). The first results
are presented from the RCEMIP ensemble of more than 30 models. While there are large differences
across the RCEMIP ensemble in the representation of mean profiles of temperature, humidity, and
cloudiness, in a majority of models anvil clouds rise, warm, and decrease in area coverage in response to an
increase in sea surface temperature (SST). Nearly all models exhibit self‐aggregation in large domains and
agree that self‐aggregation acts to dry and warm the troposphere, reduce high cloudiness, and increase
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cooling to space. The degree of self‐aggregation exhibits no clear tendency with warming. There is a wide
range of climate sensitivities, but models with parameterized convection tend to have lower climate
sensitivities than models with explicit convection. In models with parameterized convection, aggregated
simulations have lower climate sensitivities than unaggregated simulations.

Plain Language Summary This study investigates tropical clouds and climate using results from
more than 30 different numerical models set up in a simplified framework. The data set of model
simulations is unique in that it includes a wide range of model types configured in a consistent manner.
We address some of the biggest open questions in climate science, including how cloud properties change
with warming and the role that the tendency of clouds to form clusters plays in determining the average
climate and how climate changes. While there are large differences in how the different models simulate
average temperature, humidity, and cloudiness, in amajority of models, the amount of high clouds decreases
as climate warms. Nearly all models simulate a tendency for clouds to cluster together. There is agreement
that when the clouds are clustered, the atmosphere is drier with fewer clouds overall. We do not find a
conclusive result for how cloud clustering changes as the climate warms.

1. Introduction

For more than 20 years, coordinated model intercomparisons have been undertaken in which simulations
with consistent configurations have been performed with different models to assess whether different mod-
els behave similarly and to aid in the understanding of relevant phenomenon. Many of these intercompar-
isons have been performed with global climate models, such as the Coupled Model Intercomparison Project
(CMIP; Eyring et al., 2016; Meehl et al., 1997, 2000, 2007; Taylor et al., 2012), which was designed to assess
the ability of global climate models to robustly simulate important features of the current climate and to
evaluate potential future climate changes. The most recent phase (CMIP6; Eyring et al., 2016) includes 21
additional CMIP‐Endorsed Model Intercomparison Projects, which address more targeted scientific ques-
tions. Examples include the Cloud Feedback Model Intercomparison Project (CFMIP; Webb et al., 2017),
which aims to reduce uncertainty in cloud feedbacks, and the High‐Resolution Model Intercomparison
Project (HighResMIP; Haarsma et al., 2016), which investigates the impact of horizontal resolution on regio-
nal climate and smaller‐scale phenomena. There are also intercomparisons that exist outside the CMIP
infrastructure, some of which employ versions of global models with idealized boundary conditions (e.g.,
Voigt et al., 2016) or compare specific components of global models, such as the dynamical core (Ullrich
et al., 2017). All of the global models that have participated in the aforementioned intercomparisons make
use of subgrid‐scale parameterizations, and so another class of intercomparisons that have been influential
in the process‐based development of parameterizations is those comparing cloud‐resolving or large eddy
simulations of an observational case to single column versions of global models (e.g., Browning et al.,
1993; Moeng et al., 1996). Some examples include the CFMIP‐Global Atmospheric System Studies (GASS)
Intercomparison of Large eddy models and Single column models (CGILS; Blossey et al., 2013; Zhang et al.,
2012, 2013), which compared for the first time low cloud feedbacks predicted by models with and without
cloud and convective parameterizations, the Global Energy and Water Exchanges project (GEWEX)
Atmospheric Boundary Layer Study (GABLS; Bazile et al., 2014; Bosveld et al., 2014; Cuxart et al., 2006;
Svensson et al., 2011), which investigated the atmospheric boundary layer, and the European Union
Cloud Intercomparison, Process Study, and Evaluation project (EUCLIPSE)‐GASS intercomparison on the
stratocumulus to cumulus transition (de Roode et al., 2016; Neggers et al., 2017). More recently, the transi-
tion of global modeling to kilometer‐scale resolution has motivated the first intercomparison of global
cloud‐resolving models (DYAMOND; Stevens et al., 2019).

To date, all model intercomparisons, including those listed above, have been limited to usually one, or at
most two, different types of models, rather than incorporating a model hierarchy. This is likely a result of
the inherent difficulty in configuring different classes of models in a consistent manner, particularly in com-
plex Earth‐like settings. The Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP;
Wing et al., 2018) overcomes this limitation by employing the idealized framework of radiative‐convective
equilibrium (RCE), which is accessible to nearly every conceivable atmospheric model type. To our
knowledge, there is no other model intercomparison project that has incorporated such a varied range of
model types, including general circulation models (GCMs), single‐column models (SCMs), cloud‐resolving
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models (CRMs), large eddy simulations (LES), and global cloud‐resolving models (GCRMs). Thus, RCEMIP
presents an unprecedented opportunity to compare models with and without convective parameterizations
and in a variety of domain configurations on equal footing.

RCE is the simplest possible description of the climate system, in which radiative cooling of the atmosphere
is on average balanced by convective heating. Despite, or perhaps because of its simplicity, there is a long
history of modeling RCE in one‐dimensional models (e.g., Manabe & Strickler, 1964; Möller, 1963), two‐
and three‐dimensional CRMs with explicit convection (e.g., Bretherton et al., 2005; Held et al., 1993;
Nakajima & Matsuno, 1988; Tompkins & Craig, 1998a), and GCMs with parameterized clouds and convec-
tion (e.g., Held et al., 2007; Popke et al., 2013; Reed et al., 2015). RCE remains a popular setting in which to
phrase fundamental scientific questions about climate because it eliminates the complexity of imposed het-
erogeneities in boundary conditions and forcings (and the resulting dynamical instabilities) but retains the
full complexity of moist convective processes and their interaction with radiation and circulation. An initial
motivation for the renewed interest in RCE is that insights from more fundamental models might improve
more coarse‐grained descriptions of the same phenomena and thus contribute to model development (Popke
et al., 2013; Reed &Medeiros, 2016). The importance of using a hierachy of models to understand the climate
system, in which understanding is built in simpler contexts that can be connected to more complex systems,
has been emphasized by Held (2005, 2014). RCE's status as the simplest representation of the climate system
makes it an essential inclusion in such hierarchies (Jeevanjee et al., 2017; Maher et al., 2019). In addition to
these formal issues, an intriguing result emerging from cloud‐resolving simulations of RCE is that the inter-
action between clouds and circulations can give rise to self‐aggregation of convection, but its importance for
climate and the relative role of different driving mechanisms remain unclear and seemingly model depen-
dent (Wing, 2019; Wing et al., 2017).

As described in Wing et al. (2018), RCEMIP was motivated by the absence of a common baseline in past
simulations of RCE, the accessibility of RCE to a wide range of model types, and the utility of RCE as a fra-
mework in which to address some of the biggest open questions in climate science (Bony et al., 2015). With
this in mind, RCEMIP was designed to address the following three themes:

1. The robustness of the RCE state across the spectrum of models.
2. The response of clouds to warming and the resulting climate sensitivity in RCE.
3. The dependence of convective self‐aggregation on surface temperature.

While clouds, climate sensitivity, and convective self‐aggregation have all been investigated in RCE before,
previous studies have differed in many ways, which has made it difficult to assess whether the diverse results
are a real reflection of model uncertainty and lack of understanding or if they are artifacts of the experimen-
tal design and/or choice of diagnostics. For example, some modeling studies have found that the spatial
extent of tropical anvil clouds decreases with warming (Bony et al., 2016; Cronin & Wing, 2017; Kuang &
Hartmann, 2007; Tompkins & Craig, 1999) while others have found an increase (Chen et al., 2016; Ohno
& Satoh, 2018; Ohno et al., 2019; Singh & O'Gorman, 2015; Tsushima et al., 2014). Convective self‐
aggregation, which is the spontaneous organization of convection despite homogeneous boundary condi-
tions and forcing, has been found to occur across many different models (as reviewed by Wing et al.,
2017), but there are some models that do not exhibit spontaneous aggregation under some conditions
(Jeevanjee & Romps, 2013), and there is disagreement on the details of the physical mechanisms (Arnold
& Randall, 2015; Holloway & Woolnough, 2016; Muller & Bony, 2015; Wing & Emanuel, 2014; Wing et al.,
2017). The manner and extent to which self‐aggregation is temperature dependent also remain unresolved,
with some studies finding that self‐aggregation is favored by high temperatures and others finding no clear
temperature dependence, as reviewed by Wing (2019). Several studies have suggested that self‐aggregation,
through its effect on humidity and cloudiness, may modulate climate sensitivity (Becker et al., 2017; Coppin
& Bony, 2018; Cronin & Wing, 2017; Hohenegger & Stevens, 2016; Mauritsen & Stevens, 2015) and recent
estimates from GCMs configured in RCE suggest a climate sensitivity similar to but slightly lower than that
of the tropics in comprehensive simulations (Becker & Stevens, 2014; Popke et al., 2013; Silvers et al., 2016).
However, the variety of ways in which climate sensitivity in RCE was estimated in these studies, including
the type of forcing, the climate perturbation, the background state, and whether the model is uncoupled or
coupled to an ocean (usually an idealized slab ocean) at the lower boundary, impedes their interpretation.
RCEMIP addresses many of these issues through the specification of a standard protocol.
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The objective of this paper is to provide a first broad overview of the RCEMIP simulations, with a focus on
documenting the RCEMIP ensemble and characterizing the RCE state and its robustness across the spec-
trum of models. We discuss each of the three above‐mentioned RCEMIP themes and point out notable pat-
terns of behavior, such as if models with explicit convection behave differently than models with
parameterized convection. However, it is beyond the scope of this paper to provide an explanation for the
intermodel spread or the behavior of any one individual model or to investigate detailed physical mechan-
isms for changes in response to warming and rigorously test scaling hypotheses. Consistency with prior work
is pointed out where appropriate, but detailed investigation of causality is left to future work that can thor-
oughly investigate an individual process or model. The results presented in the current paper are a small
fraction of the topics that can be explored with the RCEMIP ensemble, so, in addition to serving as a refer-
ence for the RCEMIP simulations, we hope that this paper will also stimulate studies into more specific
questions and process studies that may require additional experimentation.

While the RCEMIP protocol is described comprehensively in Wing et al. (2018), here we provide details of
the configurations of each model participating in RCEMIP and adjustments to the RCEMIP protocol that
emerged through the process of its execution (section 2). Section 3 provides a qualitative overview of the
ensemble. Section 4 focuses on domain‐ and time‐averaged quantities that characterize the RCE state in
the simulations with a surface temperature of 300 K. Self‐aggregation of convection is diagnosed in section
5, including its impact on themean state. Section 6 describes the response of clouds, self‐aggregation, and the
radiative budget to warming by leveraging the suite of simulations performed across three sea surface tem-
peratures (SSTs). Conclusions are presented in section 7.

2. RCEMIP Simulations

The RCEMIP protocol is described inWing et al. (2018); here we briefly review the configuration that is sum-
marized in Table 1. A list of the models participating in RCEMIP is provided in Table 2. Text S1 in the
supporting information provides additional details of the configuration of each model.

RCEMIP consists of simulations at three different SSTs (SST¼ 295, 300, and 305 K) in two different domain
configurations (RCE_small and RCE_large) for a total of six simulations for eachmodel (Table 1). Models
are configured as aquaplanets, with no land or sea ice and a fixed, uniform SST; these are atmosphere‐only
simulations with no planetary rotation. The solar insolation is made spatially uniform by fixing the solar
zenith angle and solar constant; there is no diurnal or seasonal cycle, and the insolation is everywhere equal
to the tropical annual mean (409.6 W m−2). All trace‐gas concentrations other than water vapor are fixed
(Wing et al., 2018) and spatially uniform, and there are no aerosol radiative effects, but shortwave and
longwave radiative heating rates are calculated interactively from the modeled state using the individual
model's radiation scheme. Surface fluxes are calculated interactively from the resolved surface wind
speed and air‐sea enthalpy disequilibrium. The RCE_small simulations are initialized from an analytic
approximation to the moist tropical sounding of Dunion (2011). In most cases, the RCE_large simulations
are initialized from a domain and time average of the equilibrium state in the corresponding
RCE_smallsimulation, though there are a few exceptions in which GCMs that do not have a corresponding
RCE_small configuration use a different initialization procedure. The initial temperature and moisture
sounding is identical at every grid point with zero initial wind; symmetry is broken and convection is
generated by applying random, thermal noise in the lowest model layers.

The first class of models that participate in RCEMIP are those with explicit convection, which includes
CRMs, GCRMs, and LES (Table 2). CRMs employ a three‐dimensional planar domain with doubly periodic
lateral boundary conditions; for RCE_small, the domain is a square of ∼100 × ∼100 km2 with a horizontal
grid spacing of 1 km, while for RCE_large, the domain is an elongated channel of∼6,000 × ∼400 km2 with
a horizontal grid spacing of 3 km (Table 1). We expect that self‐aggregation will be suppressed in
RCE_small and more easily triggered in RCE_large due to the latter's larger domain and coarser resolu-
tion (Muller & Bony, 2015; Muller & Held, 2012), though it is unknown if all models exhibit these dependen-
cies a priori. The model top is at ∼33 km with ∼74 vertical levels (the vertical levels are specified in Wing
et al., 2018). Due to numerical and model configuration constraints, each model does not have precisely
the same domain size or number of grid points but instead uses values as close as possible to those given
above (Text S1). The simulations are run for 100 days. Three models perform GCRM simulations: MPAS,
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NICAM, and SAM‐GCRM. To reduce the computational expense of the simulations, MPAS performed
global simulations with a reduced Earth radius of RE/8 while NICAM and SAM‐GCRM employ a reduced
Earth radius of RE/4. As with the CRMs, the GCRM simulations have grid spacings of ∼3–4 km and ∼74
vertical levels and are run for 100 days (Table 1; Text S1).

Table 1
Simulation Configuration

Simulation type Model type Convection Domain size Grid spacing Vertical levels

RCE_small CRM Explicit ∼100 × ∼100 km2 1 km ∼74
RCE_small SCM Parameterized Single column N/A as in CMIP6
RCE_large CRM Explicit ∼6,000 × ∼400 km2 3 km ∼74
RCE_large GCRM Explicit Reduced sphere global ∼3‐4 km ∼74
RCE_large GCM Parameterized Global ∼1° as in CMIP6
RCE_large WRF‐GCM Parameterized ∼6000 × ∼400 km2 50 km 48
RCE_small_vert CRM Explicit ∼100 × ∼100 km2 1 km ∼146
RCE_small_les LES Explicit ∼100 × ∼100 km2 200m ∼146

Table 2
Participating Models

Model abbreviation Model name/version Model type

CM1 Cloud Model 1, cm1r19.6 CRM/LES
DALES Dutch Atmospheric Large‐Eddy Simulation model v4.2 CRM/LES
DALES‐damping Dutch Atmospheric Large‐Eddy Simulation model v4.2 CRM
DAM Das Atmosphaerische Modell CRM
FV3 GFDL‐FV3CRM CRM
ICON‐LEM ICOsahedral Nonhydrostatic‐2.3.00, LEM config. CRM/LES
ICON‐NWP ICOsahedral Nonhydrostatic‐2.3.00, NWP config. CRM
MESONH Meso‐NH v5.4.1 CRM/LES
MicroHH MicroHH v2.0 CRM/LES
SAM‐CRM System for Atmospheric Modeling 6.11.2 CRM/LES
SCALE SCALE v5.2.5 CRM
UCLA‐CRM UCLA Large‐Eddy Simulation model CRM
UKMO‐CASIM UK Met Office Idealized Model v11.0 ‐ CASIM CRM
UKMO‐RA1‐T UK Met Office Idealized Model v11.0 ‐ RA1‐T CRM
UKMO‐RA1‐T‐hrad UK Met Office Idealized Model v11.0 ‐ RA1‐T CRM
UKMO‐RA1‐T‐nocloud UK Met Office Idealized Model v11.0 ‐ RA1‐T CRM
WRF‐COL‐CRM Weather Research and Forecasting model v3.5.1 CRM
WRF‐CRM Weather Research and Forecasting model v3.9.1 CRM

MPAS Model for Prediction Across Scales v6.1 GCRM
NICAM Non‐hydrostatic Icosahedral Atmospheric Model v16.3 GCRM
SAM‐GCRM System for Atmospheric Modeling v7.3 GCRM

CAM5‐GCM Community Atmosphere Model v5 GCM/SCM
CAM6‐GCM Community Atmosphere Model v6 GCM/SCM
CNRM‐CM6‐1 Atmospheric component of the CNRM Climate Model 6.1 GCM/SCM
ECHAM6‐GCM MPI‐M Earth System Model‐Atmosphere component v6.3.04p1 GCM
GEOS‐GCM Goddard Earth Observing System model v5.21 GCM/SCM
ICON‐GCM ICOsahedral Nonhydrostatic Earth System Model‐Atmosphere component GCM
IPSL‐CM6 IPSL‐CM6A‐LR GCM
SAM0‐UNICON Seoul National University Atmosphere Model v0 GCM
SP‐CAM Super‐Parameterized Community Atmosphere Model GCM
SPX‐CAM Multi‐instance Super‐Parameterized CAM GCM
UKMO‐GA7.1 UK Met Office Unified Model Global Atmosphere v7.1 GCM/SCM
WRF‐GCM‐cps0 Weather Research and Forecasting model v3.5.1 ‐ no conv. param. GCM
WRF‐GCM‐cps1 Weather Research and Forecasting model v3.5.1 ‐ KF GCM
WRF‐GCM‐cps2 Weather Research and Forecasting model v3.5.1 ‐ BMJ GCM
WRF‐GCM‐cps3 Weather Research and Forecasting model v3.5.1 ‐ GF GCM
WRF‐GCM‐cps4 Weather Research and Forecasting model v3.5.1 ‐ SAS GCM
WRF‐GCM‐cps6 Weather Research and Forecasting model v3.5.1 ‐ Tiedtke GCM
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Six models perform LES in addition to the CRM simulations (Table 2).
These experiments use the ∼100 × ∼100 km2 square domain of the
RCE_small setup, but with more vertical levels, smaller horizontal grid
spacing, and, in some cases, different parameterizations for subgrid‐scale
turbulence. The first set of experiments, RCE_small_vert, performed
at each of the three SSTs, are identical to RCE_small but have approxi-
mately double the number of vertical levels (Table 1). The specified 146
levels are in Table 3 and feature a stretched grid with 26 levels in the lowest
3 km, 200 m vertical grid spacing from 3 to 22 km, stretched to 500 m at
25 km, and then 500m between there and the model top of 33 km (note
that some models may use slightly different levels due to their unique
configurations). The second set of simulations, RCE_small_les, per-
formed at each of the three SSTs, has the same vertical levels as
RCE_small_vert but use 200m horizontal grid spacing (Table 1).
These simulations are initialized from the mean profiles of the equili-
brated RCE_small_vert simulation at the corresponding SST and are
run for 50 days.

The second class of models are those that employ parameterized convec-
tion, which includes GCMs and SCMs (Table 2). For RCE_large simula-
tions, GCMs employ a global spherical domain with horizontal and
vertical grids similar to their CMIP6 configuration (Table 1; Text S1). If
GCMs perform RCE_small, they do so with the SCM version of the par-
ent GCM (see CAM5‐GCM, CAM6‐GCM, CNRM‐CM6‐1, GEOS‐GCM,
and UKMO‐GA7.1). The SCM simulations are comparable to the CRM
RCE_small simulations because ∼100 km is a typical GCM grid size.
The simulations are performed for at least 1,000 days, except for IPSL‐
CM6, which was limited to 630 days.

One exception to the GCM configuration is WRF‐GCM, which employs
50 km horizontal grid spacing and GCM column physics (including a con-
vective parameterization) but on the Cartesian geometry used for CRM
simulations, rather than the global sphere. This configuration is intended
to bridge the gap between the limited area CRM setup and the global GCM
setup. Six sets of WRF‐GCM simulations are performed, one with no con-
vective parameterization and five each with a different convective para-
meterization (see Text S1). The same version of WRF is also used to
perform CRM simulations with 3 km grid spacing and explicit convection
(WRF‐COL‐CRM).

With the exception of the RCE_small configuration for models with
parameterized convection, which uses one‐dimensional SCMs, all the
RCEMIP simulations are three dimensional. Two‐dimensional simula-
tions are much more computationally efficient and thus have been used
in many past RCE studies of tropical convection (e.g., Islam et al., 1993;
Grabowski et al., 1996; Nakajima & Matsuno, 1988; Sui et al., 1994;

Randall et al., 1994). Two‐dimensional simulations of RCE have been found to feature self‐aggregation
(Brenowitz et al., 2018; Held et al., 1993; Grabowski & Moncrieff, 2001, 2002; Jeevanjee & Romps, 2013;
Seidel & Yang, 2020; Stephens et al., 2008; van den Heever et al., 2011; Yang, 2018a, 2018b). However,
RCEMIP focuses on three‐dimensional simulations in order to compare CRMs and global models and to
be inclusive in the models that may participate (many models cannot be easily configured in two dimen-
sions). The dimensionality of the simulation is another factor that could affect the simulated RCE state,
which could be considered in a future extension of RCEMIP using a subset of the models.

The hierarchy of models included in RCEMIP offers an opportunity to assess the robustness of the simu-
lated RCE state. In addition to examining the entire ensemble and subsetting by model type (i.e., explicit

Table 3
Vertical Levels for RCE_small_vert and RCE_small_les

Level
(m)

Height
(m) Level

Height
(m) Level

Height
(m) Level Height

1 20 47 7,200 93 16,400 139 29,500
2 60 48 7,400 94 16,600 140 30,000
3 107 49 7,600 95 16,800 141 30,500
4 160 50 7,800 96 17,000 142 31,000
5 220 51 8,000 97 17,200 143 31,500
6 286 52 8,200 98 17,400 144 32,000
7 359 53 8,400 99 17,600 145 32,500
8 439 54 8,600 100 17,800 146 33,000
9 525 55 8,800 101 18,000
10 618 56 9,000 102 18,200
11 717 57 9,200 103 18,400
12 823 58 9,400 104 18,600
13 936 59 9,600 105 18,800
14 1,055 60 9,800 106 19,000
15 1,181 61 10,000 107 19,200
16 1,314 62 10,200 108 19,400
17 1,453 63 10,400 109 19,600
18 1,599 64 10,600 110 19,800
19 1,751 65 10,800 111 20,000
20 1,910 66 11,000 112 20,200
21 2,076 67 11,200 113 20,400
22 2,248 68 11,400 114 20,600
23 2,427 69 11,600 115 20,800
24 2,612 70 11,800 116 21,000
25 2,804 71 12,000 117 21,200
26 3,000 72 12,200 118 21,400
27 3,200 73 12,400 119 21,600
28 3,400 74 12,600 120 21,800
29 3,600 75 12,800 121 22,000
30 3,800 76 13,000 122 22,220
31 4,000 77 13,200 123 22,463
32 4,200 78 13,400 124 22,730
33 4,400 79 13,600 125 23,023
34 4,600 80 13,800 126 23,347
35 4,800 81 14,000 127 23,703
36 5,000 82 14,200 128 24,096
37 5,200 83 14,400 129 24,527
38 5,400 84 14,600 130 25,000
39 5,600 85 14,800 131 25,500
40 5,800 86 15,000 132 26,000
41 6,000 87 15,200 133 26,500
42 6,200 88 15,400 134 27,000
43 6,400 89 15,600 135 27,500
44 6,600 90 15,800 136 28,000
45 6,800 91 16,000 137 28,500
46 7,000 92 16,200 138 29,000
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vs. parameterized) and domain configuration (RCE_small vs. RCE_large), there is the opportunity for
more targeted comparisons. For example, the set of WRF‐GCM simulations allows the impact of different
deep convective parameterizations to be analyzed. Comparing CAM5‐GCM, CAM6‐GCM, SAM0‐
UNICON, SP‐CAM, and SPX‐CAM can reveal how the representation of convection affects the RCE
state across the same parent model. CAM5‐GCM and CAM6‐GCM differ in most of their physics
packages but have the same deep convective parameterization with similar parameter settings. SAM is
used to perform GCRM, CRM, and LES experiments, which allows for the same modeling system to be
examined across different geometries and resolutions. Similarly, ICON is used to perform global
simulations in its GCM configuration, CRM configurations using two different sets of physics packages,
and an LES configuration. UKMO‐CASIM and UKMO‐RA1‐T differ in the microphysics scheme used,
while UKMO‐RA1‐T and UKMO‐RA1‐T‐nocloud differ in that the cloud scheme is disabled in the
latter. DALES‐damping is identical to DALES except weak damping of the horizontal‐mean horizontal
winds to zero is applied (to compensate for the generation of horizontal layers of high winds in the
stratosphere due to weak turbulence production). SP‐CAM and SPX‐CAM differ only in how surface
enthalpy fluxes are calculated (i.e., on the parent GCM grid or superparameterized by the embedded
CRMs). These types of comparisons are useful for determining possible causes of intermodel spread
and will be the focus of future studies with the RCEMIP simulations.

3. Overview of Simulations

First, we provide a general overview of the simulations by examining the hourly averaged outgoing
longwave radiation (OLR) in the RCE_small300, RCE_large300, RCE_small_vert300, and

Figure 1. Time series of domain‐mean outgoing longwave radiation (OLR; W m−2) in the RCE_small300 (left column) and RCE_large300 simulations (right
column). The top row shows GCM simulations with parameterized convection, with the single‐column version of the model in (a) and the global model in
(b). The middle row shows simulations with explicit convection (c, d), including CRM, LES, and GCRM simulations. The bottom row shows the
WRF‐GCM simulations with 50 km resolution and parameterized convection. The black vertical line to the left of each plot is a 25 W m−2

scale bar, but the absolute values of OLR and distance between the curves has no meaning here, as the curves are offset for visual clarity
according to OLR + ⟨OLR⟩ + i*x x, where ⟨ ⟩ is the ensemble mean, i is the model index (according to alphabetical order), and xx ¼ 2
for RCE_large and xx ¼ 10 for RCE_small.
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RCE_small_les300 simulations. The evolution to RCE takes many tens of days (Tompkins & Craig,
1998b; Cronin & Emanuel, 2013), as shown by the domain‐mean OLR time series in Figure 1. The
temporal evolution is similar in all models and emphasizes that RCE is a state of stationarity; that is,
there is temporal variability but the statistics are invariant to time. The RCE_small simulations
(Figures 1a, 1c, and 1e), especially the single‐column simulations in Figure 1a, have more temporal
variability than their RCE_large counterparts (Figures 1b, 1d, and 1f). Based on Figure 1, we compute
temporal averages to represent the RCE state (section 4) by averaging over time and neglecting the first
75 days of simulation (except for RCE_small_les, for which the average is taken over Days 25–50). To
examine the distribution of convection after equilibrium is reached, we examine the spatial structure of
OLR at Day 80 (Day 50 for RCE_small_les). Equivalent figures for precipitable water (PW) and
animations of OLR and PW are included in the supporting information (Figures S1–S5).

Figure 2 shows OLR at Day 80 in the RCE_small300 simulation for all the CRMs. The cloud distribution,
as indicated by the white color shading representing cold cloud tops, varies across models. We note that
DALES and DALES‐damping have larger values of OLR because the radiative properties of ice clouds were
erroneously configured; the grid‐box cloud fraction in the radiation scheme was set to one in the presence of
liquid clouds but not ice clouds. If this is corrected, the OLR distribution looks more realistic (see the
RCE_small_vert300 simulation for DALES‐damping‐rad in Figure 3). While the RCE state is affected
by this error, the sensitivity to SST is similar. The OLR and PW snapshots (Figure S1) and animations indi-
cate that, in all models except UKMO‐RA1‐T, convection is quasi‐randomly distributed in space and time
with nearly spatially uniform PW, reflecting unaggregated convection in the small domain. While
ICON‐NWP appears slightly aggregated toward the beginning of the simulations at 300 and 305 K,
UKMO‐RA1‐T is the only model that exhibits consistent convective aggregation in RCE_small. This sug-
gests that theminimum domain size required for self‐aggregation (Muller &Held, 2012) is model dependent,
since self‐aggregation was not expected in the RCE_small ∼100 × ∼100 km2 domain. Since part of the
objective of the RCE_small simulations is to provide an unaggregated control to compare to, an additional
set of RCE_small simulations was performed with UKMO‐RA1‐T in which the radiative heating rates were
spatially homogenized (UKMO‐RA1‐T‐hrad). This prevents aggregation, and it is these simulations from
which the UKMO‐RA1‐T RCE_large simulations are initialized. Figure 3 shows OLR in the
RCE_small300, RCE_small_vert300, and RCE_small_les300 simulations for the six models that
performed them (CM1, DALES, ICON‐LEM, MESONH, MicroHH, and SAM). All simulations are unaggre-
gated, and the LES simulations have finer spatial structures, but otherwise, there are no obvious differences
compared to the RCE_smallsimulations (see also Figure S2 and animations).

Figure 4 shows OLR at Day 80 in the RCE_large300 simulation for all the CRMs. Except for WRF‐CRM,
the condensate field simulated by all of the models shows evidence of large‐scale clustering or aggregation.
The way in which the condensate is clustered, however, differs. Differences are evident in the number of
aggregated regions, their spatial scale, and their orientation. This clustering is also evident in the distribution
of PW, which varies in association with the condensate field (Figure S3), in contrast to the RCE_small

simulations (Figures S1 and S2). Animations and y‐averaged Hovmöller diagrams reveal a rich spectrum
of variability, including the growth and decay of individual convective cells within the aggregated envelope,
propagation of gravity waves, sloshing of the convection along the x direction, mergers and splitting of
convective bands, and expansion and contraction of dry and clear air regions (Figure S6). Some models
appear visually to be more aggregated than others (e.g., UKMO‐RA‐1‐T appears more aggregated than
UKMO‐CASIM); the degree of aggregation will be quantified in section 5.

Figure 5 shows OLR in the RCE_large300 simulation at Day 80 for all the global model (GCM and GCRM)
simulations. Each GCRM is shown to scale based on its reduced Earth radius, along with an additional
zoomed‐in view. The supporting information contains a figure that shows OLR in a subset of the global
domains that is approximately the size of the CRM domain, for comparison (Figure S9). The global simula-
tions all appear aggregated to some extent, but there is diversity in the spatial structure of convection; some
simulations have one or two hemisphere‐scale aggregated regions (e.g., NICAM and CAM5), some have
quasi‐regularly spaced aggregated clusters (e.g., UKMO‐GA7.1, ECHAM, ICON‐GCM, and IPSL‐CM6),
some have convection organized along irregular lines (e.g., CNRM‐CM6‐1), and others seem only partially
aggregated, with only a few dry, clear patches amidst more uniform convection (e.g., CAM6‐GCM, GEOS‐
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Figure 2. Hourly‐averaged outgoing longwave radiation (Wm−2) at Day 80 of the RCE_small300 simulation for all cloud‐resolving models. Each panel displays
a different model and the size of each panel represents the domain size, which varies slightly across models.
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GCM, and MPAS). These differences are also reflected in the distribution
of PW (Figure S4). Animations indicate that the convective patterns are
approximately stationary in most of the models, with the cloud field as
represented by OLR varying more rapidly than the PW field (see also
Figure S7). SPX‐CAM, SAM0‐UNICON, and CAM6‐GCM have more tem-
poral variability in the convective regions than other models, and the con-
vective clusters in MPAS seem to propagate around a large central dry
patch. The degree of aggregation is quantified in section 5, and discussion
of the qualitative sensitivity of the patterns of aggregation and their
temporal variability to SST is provided in section 6.2.

Figure 6 shows OLR at Day 80 in the RCE_large300 simulation in the
set of WRF simulations that include a CRM configuration (WRF‐COL‐
CRM) and a GCM‐like configuration in Cartesian geometry (WRF‐
GCM). In addition to the obvious difference in fine‐scale structures
between the 3 and 50 km resolutions, for the same parent model, the
GCM versions seem more aggregated than the CRM version (WRF‐
COL‐CRM). Among the different WRF‐GCM versions, there are no
obvious differences in the scale or degree of aggregation (see also PW in
Figure S5). We note that WRF‐COL‐CRM becomes slightly more aggre-
gated later in the simulation with more persistent dry regions (Movie
S27). The only model in the overall RCEMIP ensemble that does not
aggregate, WRF‐CRM, is a newer version of WRF than WRF‐COL‐CRM
that employs different radiation and microphysics schemes.

In summary, while the spatial patterns of convection are diverse, all but
one (UKMO‐RA1‐T) of the RCE_small simulations appear unaggre-
gated, and all but one (WRF‐CRM) of the RCE_large simulations appear
aggregated, to varying extents. The emergence of aggregation is indepen-
dent of the representation of convection (i.e., explicit vs. parameterized).
The next section will analyze whether the diverse spatial patterns lead
to similar or different domain‐mean characteristics of the RCE state.

4. The RCE State

In this section, we characterize the RCE state across the RCEMIP ensem-
ble by considering domain‐ and time‐average quantities, neglecting the
first 75 days. We focus on temperature, humidity, clouds, and quantities
related to the mean top‐of‐atmosphere energy budget. We discuss the
results in RCE_small and RCE_large separately; the difference
between pairs of RCE_small and RCE_large simulations is discussed
in section 5. We focus on the simulations at 300 K, as representative of
the current tropical climate. Results for the simulations at 295 and 305 K
can be found in the supporting information (Figures S11–S18).

4.1. Temperature

The domain‐ and time‐averaged temperature profiles are shown in
Figure 7, in which the first column shows the ensemble mean and spread
across all models while the other columns display the temperature anom-
aly in each subgroup of models as an anomaly from the ensemble mean of
that subgroup. The intermodel spread across all models is similar in the
RCE_small and RCE_large simulations, considering the ensemble
range and the interquartile range (Figures 7a and 7e). We expect that
the troposphere in RCE should evolve toward a roughly moist adiabatic

temperature profile. While the average tropospheric lapse rate (averaged between the surface and the
radiative tropopause) in the RCE_small simulations is 7.5 K km−1 (Figure 11), the temperature profiles

Figure 3. Hourly averaged outgoing longwave radiation (Wm−2) at Day 80
of the RCE_small300 (a, d, g, j, m, p, s) and RCE_small_vert300
(b, e, h, k, n, q, t) simulations and Day 50 of the RCE_small_les300
(c, f, l, o, r, u) simulations for CM1, DALES, DALES‐damping, ICON_LEM,
MESONH, MicroHH, and SAM. The size of each panel represents the
domain size, which varies slightly across models. DALES and
DALES‐damping have larger values of OLR because the radiative properties
of ice clouds were erroneously configured. DALES‐damping‐rad is a
corrected version, shown for reference (note that it is the
RCE_small_vert300 simulation that is shown in panel (i) despite it
being in the column with LES simulations).
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are systematically several degrees cooler than a moist adiabatic profile (not shown). This is consistent with
theory that indicates that tropical temperature profiles are set by dilutemoist adiabats in which entrainment
systematically reduces cloud updraft moist static energy (Seeley & Romps, 2015; Singh & O'Gorman, 2013).
The amount of dilution depends on entrainment rate and precipitation efficiency (Romps, 2016), which may
explain the spread in temperature profiles across the RCEMIP simulations. In fact, preliminary analysis
suggests that there is a larger deviation from a moist adiabat (more instability) in simulations that are on
average moister in the midtroposphere (not shown). An initial calculation indicates that this is
qualitatively consistent with expectations from the simple plume model of Romps (2016) in which both

Figure 4. Hourly averaged outgoing longwave radiation (W m−2) at Day 80 of the RCE_large300 simulation for all
cloud‐resolving models. Each panel displays a different model and the size of each panel represents the domain size,
which varies slightly across models. Note that FV3 is missing from the figure because outgoing longwave radiation was
only reported as daily averages.
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instability and relative humidity depend on entrainment (see also Romps, 2014; Singh et al., 2019), though
this relationship could be complicated by changes in precipitation efficiency across models. The cold point
occurs at different heights and at different temperatures across the models but, in the RCE_small300

simulations, is on average 193 K and occurs at an average height of 15.7 km (the first and third quartiles
are 190.4 and 195.3 K for the temperature and 14.8 and 16.2 km for the height). The radiative tropopause,
defined as the first level at which the radiative cooling rate intersects zero, is on average below the cold
point, with an average temperature of 205 K (interquartile range of 9.5 K) and an average height of
12.7 km (interquartile range of 1.3 km). The average cold point in RCE_large300 is 197 K at an average
height of 16.2 km, and the average radiative tropopause is 205 K at an average height of 15.3 km. While
the temperature profile has the same general shape in all models, when considering the temperature
anomalies from the ensemble mean, the range in temperatures at a given height can be up to 10 K
(Figure 7). UCLA_CRM is notably warmer in the troposphere than the other simulations in both
RCE_small and RCE_large (see yellow line to the right of the ensemble of profiles in Figures 7c and
7g). There are also large temperature differences in the lower stratosphere (∼17–20 km), which is
somewhat surprising given that the RCEMIP protocol enforces the same trace gas profiles and insolation.

Across all simulations, including all SSTs, the average difference between the temperature at the lowest
model level and the SST is −2.4 K, though some of the spread (the interquartile range is 1.0 K) is due to
the lowest model level being placed at different heights in different models. This air‐sea temperature differ-
ence is influenced by the surface sensible heat flux, which is on average 9.4 W m−2 in RCE_small300

(Table A1) and 11.2 W m−2 in RCE_large300 (Table A2). For those models that report 2 m air tempera-
ture, the difference between that and SST is on average −1.7 K, with an interquartile range across models of
0.8 K. The differences reflect differences in boundary layer and surface schemes, including how 2 m air
temperatures are estimated.

Figure 5. Hourly averaged outgoing longwave radiation (W m−2) at Day 80 of the RCE_large300 simulation for all
global models (except for IPSL‐CM6, which reported daily averaged output). All models shown are GCMs with
parameterized convection (panels a–k) except MPAS, NICAM, and SAM (panels l–n), which are global cloud‐resolving
models that employ reduced Earth radius of RE/8, RE/4, and RE/4, respectively, and are shown to scale and, in the box,
zoomed in.
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4.2. Relative Humidity

Relative humidity is calculated based on each model's formulation for saturation over water and ice. Thus,
different formulations may be used in different models, but each formulation is consistent with how that
model's clouds respond to and regulate relative humidity. Several models inadvertently reported relative
humidity with respect to saturation over water at all temperatures. To ensure a representative comparison,
we corrected these calculations to relative humidity with respect to saturation over ice at temperatures below
freezing using the Wagner and Pruß (2002) and Wagner et al. (2011) formulations. There is a large spread in
simulated relative humidity across the RCEMIP ensemble. In the RCE_small simulations, relative humid-
ities in the midtroposphere vary between ∼25% and ∼90% (Figure 8a), with an average minimum relative
humidity between 2 and 10 km of ∼61%. Relative humidity near the surface varies from ∼60% to more than
∼80% with an average of ∼73%, but this does not explain the spread in the free troposphere (i.e., if the rela-
tive humidity profiles are shifted such that all models start from the same relative humidity value at the low-
est model level, the intermodel spread in the free troposphere is actually increased). The large spread in
simulated relative humidity may be a result of its control by detrainment (Romps, 2014; Singh et al.,
2019), and/or precipitation efficiency and downdrafts (Emanuel, 2019), processes that are likely represented
differently across the RCEMIP ensemble. Many of the models are near saturation or supersaturated with
respect to ice near the tropopause; this behavior is expected. The LES models also exhibit a large spread
in relative humidity in the free troposphere (Figure 8d), but it is smaller than the spread across the same
six models in RCE_small300. Half of the LES models have a moister midtroposphere than their
RCE_small300 counterparts while half have a drier midtroposphere; the average magnitude of the differ-
ence is 4.4.

While there is still a large spread across the models in the RCE_large simulations, there is a more consis-
tent shape to the relative humidity profile with a pronounced mid‐level minimum in all models and overall
better model agreement (smaller standard deviation and interquartile range, relative to the mean values)

Figure 6. Hourly averaged outgoing longwave radiation (W m−2) at Day 80 of the RCE_large300 simulation for all
versions of WRF 3.5.1. Panel (a) displays the same WRF‐COL‐CRM configuration as in Figure 4l. The other panels
(b–h) show WRF‐GCM in the Cartesian RCE_large300 configuration but with 50 km grid spacing and convective
parameterizations.
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than in RCE_small (Figure 8e). The models with parameterized convection are in closer agreement than
the CRM and GCRM simulations (cf. Figures 8f, and 8g and 8h). ICON_GCM (Figure 8f) is an outlier that
is unusually dry in the boundary layer compared to the other models; this is also found in realistic
AMIP‐style simulations with ICON and is suspected to be a bug. IPSL‐CM6 (Figure 8f) is also an outlier
with generally lower relative humidity. The spread across models in RCE_large is not correlated with
the spread across those same models in RCE_small, suggesting that the spread in RCE_large may
reflect differences in aggregation moreso than differences in the baseline RCE state.

4.3. Clouds

As with relative humidity, the RCEMIP ensemble exhibits large variability in cloud fraction profiles in the
RCE_small simulations (Figures 9a–9d; Table S2), with the peak high (“anvil”) cloud fraction varying an
order of magnitude from a low value of ∼0.08 in UCLA‐CRM to 1.0 in several of versions of the UKMO

Figure 7. Horizontal‐mean temperature profile, averaged in time excluding the first 75 days of simulation of the RCE_small (top row: a–d) and RCE_large
(bottom row: e–h) simulations at 300 K. The first column (a, e) includes all models that performed each type of simulation, where the black line is the
ensemble mean, the blue shading shows the range across all models, and the orange lines indicate the interquartile range (IQR). The other columns
display the temperature anomaly in each subgroup of models as an anomaly from the ensemble mean of that subgroup, for models with parameterized
convection (second column: b, f), CRMs (third column: c, g), models that performed RCE_small_vert (dashed) and RCE_small_les (solid)
simulations (panel d; RCE_small_les simulations are averaged over Days 25–50), and GCRMs (panel h).
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cloud‐resolving model. A cloud fraction of 1.0 at a particular model level indicates that the entire domain is
covered in cloud at that level. In this study, a cloud is defined according to a threshold value of cloud
condensate (10−5 kg kg−1 or 1% of the saturation mixing ratio over water, whichever is smaller) or the
output of a cloud scheme (if utilized by a given model). The ICON_LEM simulations also exhibit high
cloud fractions very close to 1.0, which stems from clouds that are very optically thin (due to the settings
in the microphysics scheme, in which the threshold value for self‐collection is set at 10−6 for ice and there
is a small sedimentation velocity of ice particles). If an alternate threshold for identifying a cloud is used
(e.g., cloud condensate must be larger than 5 × 10−7 kg kg−1), the ICON_LEM cloud fractions are more in
line with the other models. In addition to simulating very different amounts of high cloud, there is also a
large spread in the height at which the anvil cloud peak occurs (∼9–17 km; Table S4). The intermodel
spread in cloud fraction does not collapse when plotted against temperature as a vertical axis, indicating
that the models have anvil cloud peaks at different heights because they form them at different

Figure 8. Horizontal‐mean relative humidity profile, averaged in time excluding the first 75 days of simulation of the RCE_small (top row a–d) and RCE_large
(bottom row: e–h) simulations at 300 K. The first column (a, e) includes all models that performed each type of simulation, where the black line is the
ensemble mean, the blue shading shows the range across all models, and the orange lines indicate the interquartile range (IQR). The other columns display each
subgroup of models: models with parameterized convection (second column: b, f), CRMs (third column: c, g), models that performed RCE_small_vert (dashed)
and RCE_small_les (solid) simulations (panel d; RCE_small_les simulations are averaged over Days 25–50), and GCRMs (panel h).
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temperatures (the interquartile range of anvil cloud temperature is 11.9 K; Table S3). With the exception of
CNRM‐CM6‐1, CAM5, and CAM6 (the single‐column versions of GCMs with parameterized convection), all
models have very small amounts of mid‐level cloud (∼3–8 km). There is also variability in the amount of low
cloud, though generally less variability in the models with explicit convection (Figures 9c and 9d). However,
it should be noted that because of the absence of strong subsiding motions, which in nature are generally
forced by horizontal heterogeneities in surface boundary conditions, the RCE setup is not favorable to
certain tropical low‐cloud regimes such as stratocumulus. MESONH is an outlier among the CRMs, with
approximately twice the amount of low cloud than the other models (Figure 9c). The low cloud amount
exhibits some sensitivity to resolution, though not always consistently across models (compare curves in
Figures 9c and 9d). For the six models that performed RCE_small, RCE_small_vert, and
RCE_small_les simulations, low cloud amount increases with an increasing number of vertical levels
in ICON_LEM and DALES, decreases in DALES‐damping, and has no change in the other models. Low

Figure 9. Domain‐wide cloud fraction profile, averaged in time excluding the first 75 days of simulation of the RCE_small (top row: a–d) and RCE_large
(bottom row: e–h) simulations at 300 K. The first column (a, e) includes all models that performed each type of simulation, where the black line is the
ensemble mean, the blue shading shows the range across all models, and the orange lines indicate the interquartile range (IQR). The other columns display each
subgroup of models: models with parameterized convection (second column: b, f), CRMs (third column: c, g), models that performed RCE_small_vert (dashed)
and RCE_small_les (solid) simulations (panel d; RCE_small_les simulations are averaged over Days 25–50), and GCRMs (panel h).
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cloud amount decreases with decreasing horizontal grid spacing in all models except CM1 andMicroHH, for
which there is no change.

There is also substantial spread in cloud fraction profiles in the RCE_large simulations (Figures 9e–9h;
Table S5), but the high cloud fraction spans a narrower range than in the RCE_small simulations.
UCLA‐CRM has notably fewer high clouds than the other CRMs (Figure 9g), and IPSL‐CM6 stands out as
an outlier with few high clouds compared to the other models with parameterized convection (Figure 9f).
If WRF‐GCM is excluded, there is a suggestion that models with parameterized convection (Figure 9f) have
better agreement of anvil cloud amount and exhibit cloudiness that is more uniform throughout the column
than the CRMs (Figure 9g). CRMs have more notable anvil and low cloud peaks, consistent with CRMs
having fewer mid‐level clouds. WRF‐GCM‐cps0 and WRF‐GCM‐cps3 are outliers that have much higher
low cloud fraction than other models with parameterized convection (Figure 9f). In general, there are

Figure 10. Horizontal‐mean total cloud water condensate profile, averaged in time excluding the first 75 days of simulation of the RCE_small (top row: a–d) and
RCE_large (bottom row: e–h) simulations at 300 K. The first column (a, e) includes all models that performed each type of simulation, where the black line is
the ensemble mean, the blue shading shows the range across all models, and the orange lines indicate the interquartile range (IQR). The other columns
display each subgroup of models: models with parameterized convection (second column: b, f), CRMs (third column: c, g), models that performed
RCE_small_vert (dashed) and RCE_small_les (solid) simulations (panel d; RCE_small_les simulations are averaged over Days 25–50), and GCRMs
(panel h).
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fewer high clouds and more mid‐level clouds in the RCE_large simulations than in the RCE_small simu-
lations (Figure 9e cf. Figure 9a).

Cloud fraction depends sensitively on the semiarbitrary threshold used to identify clouds. Therefore, we also
examine the horizontal‐mean profiles of total cloud water condensate, which is primarily liquid at low levels
and ice at high levels (Figure 10). Consistent with the spread in cloud fraction profiles (Figure 9a), the total
cloud water profiles in the RCE_small simulations (Figure 10a) exhibit widely varying amounts of cloud
water (by an order of magnitude or more) and differ both in the amount of upper level cloud condensate
and the height at which the anvil cloud condensate peak occurs (Figures 10b–10d). The total cloud water
profiles vary smoothly with height in the CRM RCE_small simulations (Figure 10c). Among the models
with explicit convection (Figures 10c and 10d), the models differ in whether themaximum of the cloud water
profile occurs at low altitudes or at high altitudes. For example, the maximum of the cloud water profile of
the UKMO family of models is in the upper troposphere whereas the maximum of the cloud water profile for
UCLA‐CRM, MPAS, and DAM is in the lower troposphere. Some models, like ICON‐LEM, SAM‐CRM, and
WRF‐COL‐CRM, have similar peaks of cloud water in the upper and lower troposphere (Figure 10c). Finer
grid spacing does not reduce the spread; among models that performed both CRM and LES simulations, the
LES simulations differ as much as their counterparts at coarser resolution (Figure 10d).

The total cloud water profiles appear to have a wider spread in the RCE_large simulations (Figure 10e),
with more disagreement in the amount of cloud water than in the RCE_small simulations, but this impres-
sion may be a result of the behavior of individual models (i.e., UKMO family in Figure 10g). Models with
parameterized convection place their cloud water peaks at very different heights and many models lack a
distinct upper level peak (Figure 10f).

The differences in simulated cloudiness in the RCE_small simulations reflect fundamental differences in
how the different models handle clouds and in the equilibrium state that each model converges to. The dif-
ferences in simulated cloudiness in the RCE_large simulations reflect these differences as well as differ-
ences in the degree of aggregation simulated by each model and differences in how each model represents
the response of cloudiness to self‐aggregation. This will be explored further in later sections.

4.4. Energy Budget and Hydrological Cycle

Appendix A1 provides a summary of domain‐average statistics in each of the simulations at 300 K, including
variables related to the energy budget and hydrological cycle. The intermodel spread in a subset of those vari-
ables is summarized in Figure 11, which includes domain‐average precipitation rate, net radiation at the top
of atmosphere (RTOA), condensed water path, PW, and tropospheric lapse rate. RTOA is calculated as the dif-
ference between the net absorbed solar radiation at the top of the atmosphere and the OLR (ASRTOA−OLR).
RTOA is positive, representing a net downward radiative flux, or a net energy gain for the climate system. The
condensed water path is calculated as the sum of the cloud ice water path and the cloud liquid water path.
The tropospheric lapse rate is calculated as dT/dz averaged over the troposphere, where the top of the
troposphere is defined as the height at which the radiative cooling rate first intersects zero.

There are several outliers indicated in Figure 11, defined as points beyond 1.5 times the interquartile
range. For precipitation, DALES (4.8 mm day−1) and DALES‐damping (4.6 mm day−1) are outliers
from RCE_small300; DALES (5.5 mm day−1), DALES‐damping (4.7 mm day−1), and MicroHH
(4.5 mm day−1) are outliers from RCE_small_vert300; and DALES (5.5 mm day−1) is an outlier from
RCE_small_les300 (Figure 11a). ICON‐NWP‐CRM (2.2 mm day−1) is the outlier for precipitation in
the large simulation. For RTOA, CNRM‐CM6‐1 (58.88W m−2), WRF‐CRM (57.70W m−2), and WRF‐
GCM‐cps3 (35.68W m−2) are the outliers in the small simulation in Figure 11b; WRF‐GCM‐cps3
(12.00W m−2) is the outlier in the large domain simulation. For lapse rate, WRF‐GCM‐cps2
(−6.08 K km−1), WRF‐GCM‐cps4 (−6.28 K km−1), and WRF‐GCM‐cps6 (−6.21 K km−1) are the outliers
in the small simulation (Figure 11e). Overall, there are more outliers in Figures 11a–11e in the
RCE_small simulations, contributed by the single‐column versions of models with parameterized con-
vection, the very small WRF‐GCM domain, and configurations of DALES and MicroHH. It is notable that
all lapse rate outliers are contributed from WRF‐GCM.

There is substantial intermodel spread in all quantities, but tropospheric lapse rate exhibits the best agree-
ment, as measured by the interquartile range relative to the mean value (Figure 11e). For some variables
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(i.e., net radiation and lapse rate), the spread in the RCE_large simulations is larger than that in the
RCE_small simulations, but for other variables the spread is larger in RCE_small or similar between
the two configurations. It is therefore difficult to determine whether the intermodel spread in the
representation of the RCE state is due to differing degrees of aggregation or to more fundamental
differences in model physics and numerics. Furthermore, there is no consistency in whether the
intermodel spread is larger in models with explicit or parameterized convection; it is larger in models
with explicit convection for precipitation, condensed water path, and PW, but larger in models with
parameterized convection for net radiation and lapse rate (Figures 11f–11j).

5. Self‐Aggregation
5.1. Degree of Self‐Aggregation

There is no single agreed upon quantitative measure of the degree of aggregation (Wing, 2019); therefore,
here we quantify the degree of aggregation using three different metrics: the organization index (Iorg;
Tompkins & Semie, 2017), subsidence fraction (fsub; Coppin & Bony, 2015), and the spatial variance of col-
umn relative humidity (σ2CRH Wing &Cronin, 2016). An alternate metric, the spatial variance of PW scaled by
its mean value, is presented in the supporting information (Figures S24 and S25). Iorg is a clustering metric
that compares the nearest neighbor distribution of deep convective entities to that of a random distribution.

Figure 11. Box and whiskers plots of domain‐average quantities, averaged in time excluding the first 75 days of the RCE_small300 and RCE_large300
simulations. RCE_small_vert300 and RCE_small_les300 simulations are included in the “Small” statistics. The top row (panels a–e) includes all
models in the statistics while the bottom row (panels f–j) splits the models into those with explicit (“SE” and “LE”) and parameterized convection (“SP” and “LP”),
where the “S” and “L” indicate small and large simulations, respectively. The variables shown are precipitation rate (mm day−1; panels a and f), net
radiation at the top of atmosphere (RTOA; W m−2, downward defined as positive; panels b and g), condensed water path (CWP; mm; panels c and h),
precipitable water (PW; kg m−2; panels d and i), and the tropospheric lapse rate (K km−1; panels e and j). The asterisk indicates the multimodel mean,
the horizontal line the median, the shaded region the interquartile range, and the circles the outliers. The whiskers are defined as 1.5 times the interquartile range;
this does not extend beyond the range of the data.
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fsub is the area fraction of the domain where the daily‐average large‐scale vertical velocity at 500 hPa is
directed downward. Vertical velocity is first averaged in time over a day and in space over ∼100 ×
∼100 km2 blocks. Column relative humidity (CRH) is defined as the ratio of PW to saturated PW (mass
weighted vertical integrals of specific humidity and saturation specific humidity, respectively). Its spatial
variance (σ2CRH ) is calculated as the domain mean of the squared anomalies of CRH (anomalies taken

from the domain mean). σ2CRH is not calculated for SCMs. More details about the calculation of each
metric can be found in Appendix B. A simulation that is aggregated is indicated by fsub greater than 0.5
and Iorg greater than 0.5. There is no specific value of σ2CRH that indicates aggregated as opposed to
unaggregated conditions; this metric should instead be interpreted to indicate relative differences in the
degree of aggregation. For all three metrics, larger values indicate more aggregated convection.

The degree of aggregation can also be qualitatively estimated by examining the distribution of PW, which
has a much wider spread in the RCE_large simulations compared to the RCE_small simulations, indicat-
ing that nearly all the RCE_large simulations are aggregated while the RCE_small simulations are gen-
erally not (Figure S10). Quantitative estimates of the degree of aggregation in RCE_large300 are shown in
Figure 12; similar figures for RCE_large295 and RCE_large305 may be found in the supporting infor-
mation (Figures S19 and S20). All RCE_large300 simulations have subsidence fractions greater than 0.5
exceptWRF‐GCM‐cps4 (Figure 12). All RCE_large300 simulations have Iorg values greater than 0.5 except
WRF‐CRM, CAM6‐GCM, GEOS‐GCM, and the WRF‐GCM simulations. The low Iorg values in the
WRF‐GCM simulations are an artifact of the coarse grid that does not allow for short distances between clus-
ters of convection; these simulations are aggregated based on the other metrics and visual inspection.
CAM6‐GCM and GEOS‐GCM have high fsub values so are considered to be aggregated, though less so than
other models (as mentioned in section 3). WRF‐CRMhas a value of Iorg that is less than 0.5, a fsub value that is
marginally higher than 0.5 (0.517), and the lowest value ofσ2CRH among the RCE_large simulations (0.001).
This, combined with the visual appearance of convection throughout the domain noted in section 3 and the
narrow PW distribution (Figure S10), indicates that WRF‐CRM is not aggregated. The value of σ2CRH exclud-
ing the unaggregated WRF‐CRM varies between 0.006 and 0.050, all of which are much larger than the
values in the unaggregated RCE_small300 simulations of, on average, 0.001.

Figure 12. Degree of aggregation in RCE_large300 based on subsidence fraction (red circles), Iorg (blue squares), and spatial variance of column relative
humidity (green triangles) in all models, averaged in time excluding the first 75 days of simulation. The models are ordered such that the models with explicit
convection are to the left of the dashed line and models with parameterized convection are to the right of the dashed line. Within each group of models,
they are ordered according to their values of subsidence fraction. The two models for which subsidence fraction could not be computed are listed first.
Box plots indicate the spread of each metric across all models.
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Despite nearly all simulations being aggregated, the degree of aggregation varies from barely aggregated
(Iorg values just above 0.5 in CNRM‐CM6‐1, ICON‐GCM, and SPX‐CAM, for example) to strongly aggregated
(Iorg values near 0.9 in MESONH, SAM‐CRM, SAM‐GCRM, and UCLA‐CRM). The relative spread of σ2CRH
(measured by its interquartile range divided by its mean) is greater than for Iorg or fsub. Iorg values are gener-
ally higher in themodels with explicit convection than in those with parameterized convection (compare the
left side of Figure 12 to the right side), but fsub and σ2CRH do not vary consistently in this manner, so it is more

Figure 13. Horizontal and time mean (average excluding the first 75 days) of the difference between pairs of RCE_small300 and RCE_large300 simulations,
for cloud fraction (a), total cloud water (b), relative humidity (c), temperature (d), precipitation rate (e), net radiation at the top of the atmosphere (f),
condensed water path (g), precipitable water (h), and the tropospheric lapse rate (i). The difference is taken as RCE_large300‐RCE_small300. In the box
and whiskers plots (e–i), the asterisk indicates the multimodel mean, the horizontal line the median, the shaded region the interquartile range, and the open
circles the outliers. The whiskers are defined as 1.5 times the interquartile range; this does not extend beyond the range of the data.
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likely that Iorg is ill‐suited for models with coarse resolution than that models with parameterized convection
are actually less aggregated. Within the group of models with explicit convection, the three metrics are cor-
related, such that models with higher values of fsub also have higher values of Iorg (r ¼ 0.84) and σ2CRH (r ¼
0.83). Iorg andσ2CRH are also correlated (r¼ 0.74). Within the group of models with parameterized convection,

fsub and Iorg are correlated (r¼ 0.81), but σ2CRH does not vary similarly. The lack of correlation with σ2CRH may
be skewed by the set of WRF‐GCM simulations.

5.2. Impact on Mean State

The occurrence of self‐aggregation has a dramatic impact on the modeled mean state, as could be inferred by
comparing the small and large simulations in section 4. An advantage of the RCEMIP protocol is that an
explicit comparison between unaggregated and aggregated RCE mean states can be made by taking the dif-
ference between pairs of small and large‐domain simulations, for each model and SST. Here we discuss the
300 K simulations as a representative example. While the exact differences between small and large simula-
tions vary across the models, due to differences between the degree of aggregation (cf. section 5.1) and how a
given amount of self‐aggregation imprints on the mean state, there are robust qualitative responses to
self‐aggregation across the RCEMIP ensemble. The RCE_large300 simulations, which are generally
aggregated, have a larger precipitation rate than their RCE_small300 counterparts (Figure 13e). This is
energetically consistent with greater net atmospheric radiative cooling and larger surface enthalpy fluxes
(Table A3). The existence of self‐aggregation results in a reduction in high cloud cover, as indicated by
changes in cloud fraction and total cloud water (Figures 13a and 13b). Figures 13a and 13b also indicate that,
while less robust, most models have an increase in low‐level and mid‐level cloudiness with aggregation. We
note, however, that the difference in horizontal grid spacing between the RCE_small and RCE_large

CRM configurations may also contribute to the difference in low cloudiness (Blossey et al., 2009; Vial et al.,
2019). The opposing changes in low, middle, and high clouds result in a difference in total cloud water path
that may be positive or negative, depending on the model, but is on average near zero (Figure 13g; Table A3).
These changes in clouds with aggregation are consistent with the conclusions from past studies of self‐
aggregation, as presented by Wing (2019).

Comparing the aggregated state in RCE_large300 to the disaggregated state in RCE_small300, most
models experience a substantial reduction in PW (an average reduction of 4.9 mm; Table A3; Figure 13h),
in relative humidity at most individual levels in the free troposphere, with the largest reductions in the mid-
troposphere (Figure 13c), and in column relative humidity (not shown), consistent with prior studies of
self‐aggregation (Wing, 2019, and references therein). All models except WRF‐CRM (which is not aggre-
gated) also have an increase in atmospheric temperature by several degrees (Figure 13d), and an associated
decrease in the tropospheric lapse rate (Figure 13i). Regarding the radiative budget, the net radiation at the
top of atmosphere is reduced in the RCE_large300 simulations by ∼24 W m−2, indicating that less radia-
tive energy is entering the top of atmosphere, reducing the radiative energy source to the climate system
(Figure 13f; Table A3). This is largely explained by greater OLR in the RCE_large300 simulations due
to, on average, a drier and more transparent atmosphere with fewer high clouds. The average difference
in OLR between pairs of RCE_large300 and RCE_small300 simulations is∼25Wm−2 (Table A3), while
the average difference in clear‐sky OLR is ∼14 W m−2 (not shown), indicating that clear‐sky processes con-
tribute a bit more than half of the difference between aggregated and unaggregated simulations. There is a
minimal change in the top of atmosphere absorbed solar radiation due to opposing changes in low, middle,
and high clouds (Table A3). The cancellation in the changes in the shortwave fluxes and resultant
longwave‐driven decrease in net top of atmosphere radiation are consistent with other RCE simulations
(Wing & Cronin, 2016) and some observations (Bony et al., 2020), but in opposition to other observations
of more/less aggregated (by any mechanism) convection (Tobin et al., 2012).

6. Sensitivity to SST

Having assessed the robustness of the RCE state across the spectrum of models (section 4) and the impact of
self‐aggregation on mean climate (section 5), we now turn to the response of clouds, convective aggregation,
and the radiative budget to warming. In all cases, we assess the response to warming using the change
between simulations at 295 and 305 K (the end points of our SST range). Note that with three simulations,
this is equivalent to the slope of the line of best fit (using linear regression) across the three simulations.
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We also examine changes between individual pairs of simulations (295–300 K and 300–305 K), to check for
nonmonotonic behavior and variations in the rate of change in simulation properties with temperature.

6.1. Clouds

The anvil cloud peak was determined by identifying the maximum domain‐wide cloud fraction above a
height of 8 km, using each model's own levels. A more restricted height range was used in several models
based on subjective interpretation of their cloud fraction profiles to ensure the correct cloud peak was iden-
tified: CAM6‐GCM, 8–12.5 km; WRF‐GCM, greater than 10 km; SAM‐GCRM, 8–20 km; DALES, 8–15 km;
and SAM‐CRM RCE_small_vert and RCE_small_les, 8–15 km. After the anvil cloud peak was iden-
tified, the height and temperature at that location were taken to represent the anvil cloud height and anvil
cloud temperature. In the UKMO‐RA1‐T, UKMO‐RA1‐T‐hrad, andMPAS RCE_small simulations, there is
a thick layer of 100% high cloud coverage. Therefore, in these simulations, the anvil cloud height and tem-
perature were taken to be the average of the values between the bottom and top of the anvil cloud layer. In all
cases, temporal averages neglecting the first 75 days of simulation are considered.
6.1.1. Anvil Cloud Height
Across both the RCE_small and RCE_large sets of simulations at 295, 300, and 305 K, the anvil cloud
peak shifts upward with warming (Figures 14a and 14c; Tables S4 and S7), as expected from previous work
(Hartmann & Larson, 2002). The average height increase is 0.2 kmK−1 in the RCE_small simulations, with
57% of models giving values within 0.2–0.3 kmK−1 and 24% exhibiting increases in anvil height smaller than
0.2 km K−1 (Figure 14a; Table S4). In the RCE_large simulations, the average height increase is
0.3 km K−1, with 79% of models within 0.2–0.4 km K−1 and 9% below 0.2 km K−1 (Figure 14c; Table S7).
The cloud heights themselves in an individual simulation have less spread in RCE_large than in
RCE_small (Figures 14a and 14c; Tables S4 and S7). There are several outliers with notably smaller or lar-
ger height increases across the three simulations. In the RCE_smallsimulations, WRF_CRM has a rate of
height increase that is an order of magnitude less, due to nonmonotonic behavior (the height of the anvil
cloud increases from 295 to 300 K but decreases from 300 to 305 K), whereas DALES and
DALES‐damping have no change in anvil height across the SSTs and ICON‐LEM‐LES has no change due
to nonmonotonic behavior. In the RCE_large simulations, five of the GCMs have a much larger increase
in anvil cloud height than the other models, whereas WRF_CRM has no overall trend from 295 to 305 K
because of nonmonotonic behavior. Overall, 70% of the models have an increase in anvil cloud height that
is larger from 300 to 305 K than it is from 295 to 300 K, indicating that the anvil cloud height increases with
warming at an increasingly faster rate.
6.1.2. Anvil Cloud Temperature
Prior work has shown that the location of anvil clouds is determined by the vertical gradient in radiative
cooling, which is in turn controlled by water vapor concentrations and thus occurs at a fixed temperature
(FAT; Hartmann & Larson, 2002) independent of surface temperature or is proportionally higher at
higher surface temperature since the anvil rises into an environment with greater static stability
(PHAT; Zelinka & Hartmann, 2010). While the FAT/PHAT hypothesis is generally found to hold
(Harrop & Hartmann, 2012; Khairoutdinov & Emanuel, 2013; Kluft et al., 2019; Kuang & Hartmann,
2007), its validity has recently been questioned (Seeley, Jeevanjee, Langhans, & Romps, 2019; Seeley,
Jeevanjee, & Romps, 2019). A detailed investigation of the validity of FAT/PHAT in the RCEMIP ensem-
ble is deferred to future work, but we present a brief analysis here. Across the RCEMIP simulations, the
anvil cloud temperature generally increases with warming, by an average of 4.4 K across the 10 K increase
in SST, in line with Zelinka and Hartmann (2010) and Kluft et al. (2019) (Figures 14b and 14d; Tables S3
and S6). However, 25% of the RCE_small simulations actually have a decrease in anvil cloud tempera-
ture with warming; five of these 11 simulations were those with higher vertical (RCE_small_vert) and
horizontal resolution (RCE_small_les; Figure 14b; Table S3). The coarse‐resolution counterparts of
these five RCE_small_vert and RCE_small_les models do not have a decrease in anvil cloud tem-
perature with warming, which is suspicious and requires further investigation. The result that some simu-
lations have a decrease in anvil cloud temperature is surprising and may indicate that our method for
diagnosing the anvil cloud peak may need to be modified in future work, though we note that the anvil
cloud height changes in those models were comparable to the others. In the RCE_large simulations, less
than 20% of the models have a decrease in anvil cloud temperature with warming (Figure 14d; Table S6).
All of the models with a decrease are global models, some of which have anomalously large changes in
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anvil cloud height. It is possible that in these models, the diagnosed high cloud peak does not correspond
to actual anvil cloud detrainment and thus would not be constrained by radiative processes (i.e., PHAT)
in the same way. Of those models that have an overall increase in anvil temperature with warming,
which is the majority of models, in about half the rate of increase of anvil temperature with SST is
larger at higher SSTs. To the extent that there is nonmonotonic behavior in the change in anvil cloud

Figure 14. Horizontal‐ and time‐mean height (a, c) and temperature (b, d) at the location of the domain‐wide anvil cloud
peak as a function of SST in the RCE_small simulations (a, b) and RCE_large simulations (c, d). The dashed lines
are linear regression lines of best fit.
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temperature, in the RCE_small simulations it mostly occurs in CRMs, while in the RCE_large simula-
tions it mostly occurs in global models.

In summary, in the majority of models, anvil cloud temperatures increase with warming (Figures 14b and
14d) in line with PHAT (Kluft et al., 2019; Zelinka & Hartmann, 2010). Of those that instead have a decrease
in anvil cloud temperatures, most are LES or global models (Figure S27).
6.1.3. Anvil Cloud Fraction
In the RCE_small simulations, 27 models exhibit an overall decrease in anvil cloud fraction with warming
consistent with the stability‐iris hypothesis of Bony et al. (2016), while 12 models instead have an overall
increase in anvil cloud fraction with warming (Figures 15a and 15b; Table S2). Three models have domains
filled with cloud at every SST, according to the threshold used here to define cloud, and therefore do not have
a changing anvil cloud fraction (Figure 15a; Table S2). Nine of the models have a trend in anvil cloud frac-
tion from 300–305 K that is 1 or 2 orders of magnitude below that of 295–300 K. A third of the models are
nonmonotonic, consisting mostly of those whose rate of change of anvil cloud fraction is roughly equal in
magnitude and opposite in sign from 295–300 K and 300–305 K. Of the 12 models that have an increase in
cloud fraction with warming in the RCE_small simulations, seven have a rate of change less than
0.0015 K−1, which is substantially less than those models that have a decrease (they have a mean rate of
change of −0.006 K−1).

In the RCE_large simulations (Figures 15c and 15d; Table S5), most models have a decrease in cloud frac-
tion with warming, but there is an increase in 30% of the models, which includes the majority of those that
have nonmonotonic changes. However, of those with nonmonotonic changes, only half have substantial
nonmonotonic behavior, characterized by a large jump in cloud fraction from an otherwise negative trend
(e.g., CAM6‐GCM whose upper atmosphere completely fills with clouds at 305 K). The other half have a
decrease in cloud fraction from 295 to 300 K and only a slight increase (near zero change) from 300 to 305 K
(e.g., CNRM‐CM6‐1).

The rate of change of anvil cloud fraction in the RCE_large simulations is either constant with SST or
decreases as SST increases, which suggests a potential limit to how much anvil cloud fraction can decrease
with warming SST (Bony et al., 2016). In RCE_small there is no trend in the rate of change of anvil cloud
fraction with SST.

In summary, in the majority of models, anvil cloud fraction decreases with warming (Figure 15), with no
obvious differences in the responses between models with parameterized and explicit convection
(Figure S28).
6.1.4. Low‐Level and Mid‐Level Clouds
While our focus is on anvil cloud changes, here we briefly discuss changes in low‐level and mid‐level clouds.
As described in section 4.3, most models have an identifiable low‐level peak in cloudiness near the top of the
boundary layer (∼0–3 km). Mid‐level clouds are defined subjectively as the part of the cloud fraction profile
between the low‐level and anvil peaks (roughly∼3–8 km). The low‐level clouds, if a notable peak exists, tend
to not change with warming. In the RCE_small simulations, 63% of the models do not have an obvious
change in low‐level cloudiness while 11% have no discernible low‐level cloud peak. In the RCE_large

simulations, 47% of the models do not have an obvious change in low‐level cloudiness while 16% have no
discernible low‐level cloud peak at any SST.

The mid‐level cloud fraction in the RCE_small simulations also seems to remain constant with warming
whereas half of the RCE_large simulations exhibit a reduction in mid‐level cloud fraction with warming,
and the other half have no change. Of those models whose mid‐level cloud fraction does decrease with
warming, about half have a cloud fraction that changes more from 295–300 K than from 300–305 K.
6.1.5. Summary
The response of cloud properties to warming varies across models, but some common behavior is found.
Anvil cloud height and temperature, on average, increase with increasing SST at rates of ∼0.3 km K−1

and ∼0.44 K K−1, respectively. While there are some outliers, the rising and warming of anvil clouds are
robust across types of models and domain configurations and occur regardless of the occurrence of self‐
aggregation. Anvil cloud fraction decreases with warming across a majority of models, at a rate that
decreases with warming, but approximately 30% of the models exhibit an increase in anvil cloud fraction
with warming instead. There is no obvious difference in behavior between models with parameterized
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and explicit convection (Figures S26–S28). We note that these results should be interpreted cautiously, as
some of the anvil clouds identified by the current definition may be thin and radiatively unimportant.
Future work on the changes in cloud properties may consider an alternate metric for determining the
spatial coverage of ice clouds.

6.2. Self‐Aggregation

There is no consistent response of the degree of aggregation to warming; across the set of three RCE_large
simulations from 295 to 305 K, about half of the models have a net increase in aggregation with warming

Figure 15. Domain‐wide anvil cloud fraction as a function of SST in the RCE_small simulations (a, b) and RCE_large
simulations (c, d). The left panels (a, c) show the actual value of the anvil cloud fraction while the right panels
(b, d) show the value of the anvil cloud fraction as an anomaly from its value in the simulation at 300 K.
The dashed lines are linear regression lines of best fit.
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while the other half have a net decrease in aggregation with warming (Figure 16). This is true regardless of
whether Iorg, fsub, or σ2CRH is used to quantify the degree of aggregation. Averaged across all models, the

average values of Iorg, fsub, andσ2
CRH at 295, 300, and 305 K are not statistically distinguishable fromeach other.

Even within a given model, different metrics of aggregation may indicate different behavior regarding the
response of aggregation to warming, as was also noted by Cronin and Wing (2017). For those models in
which all three metrics are available (all but three), ∼53% of models have disagreement on the sign of the
response of aggregation to warming between the metrics (Figure 16). It is roughly evenly split among which
of three metrics disagrees. Of those models in which all three metrics agree on the sign of change, two thirds
have an increase in aggregation with warming. As for the magnitude of the change in aggregation with
warming, most models are within the same order of magnitude of change, while ∼30% of models have rates
of changes of the metrics that are an order of magnitude larger. Across the entire ensemble of models, there
is no obvious sensitivity of the rate of change of aggregation to temperature; roughly half of the models have
a larger magnitude of a change in aggregation for 295 to 300 K, while the other half have a larger magnitude
of change for 300 to 305 K (cf. Figures 16 and S21). Several individual models, however, exhibit nonmono-
tonic behavior; for example, WRF‐CRM is not aggregated in RCE_large300 (section 5), but it appears to
be weakly aggregated in RCE_large295 and RCE_large305with several dry patches, a somewhat wider
distribution of PW (Figure S10; Movie S28), and opposing signs in the rate of change of aggregation metrics
between 295–300 K and 300–305 K (Figure S21).

As noted in section 3, UKMO‐RA1‐T is the only RCE_small300 simulation that is aggregated. Compared
to other models, UKMO‐RA1‐T, DALES, and DALES‐damping have broader PW distributions in
RCE_small305, indicating higher SSTs may increase the likelihood of RCE_small simulations aggregat-
ing (Figure S10). The temporal variability of aggregation is also temperature dependent in some models; for
example, the convective clusters move less in ECHAM at the simulations at higher SSTs (Movie S6). In many
of the GCMs, the spatial scale of the aggregation qualitatively appears to increase with warming (see anima-
tions in the supporting information). Several of the CRMs indicate a decrease in the scale of aggregation with
warming (i.e., FV3, ICON‐NWP, and UKMO‐RA1‐T‐nocloud), while others show no obvious change.
A detailed quantification of the spatial scale of aggregation is deferred to future work.

Figure 16. The rate of change of the aggregation metrics per degree K in the RCE_large simulations based on Iorg (blue squares), subsidence fraction
(red circles), and spatial variance of column relative humidity (green triangles) in all models, based on the difference between simulations at 295 and 305 K.
The models are ordered such that the models with explicit convection are to the left of the dashed line and models with parameterized convection are to the
right of the dashed line. Within each group of models, they are ordered according to their values of dfsub/dSST. The two models for which subsidence
fraction could not be computed (due to missing output) are listed first. Box plots indicate the spread of each metric's rate of change across models,
with outlier indicated with symbols.
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6.3. Radiative Budget

The changes in clouds and convective aggregation described above have implications for the atmospheric
radiative budget and climate sensitivity. We compute the Cess‐type net climate feedback parameter,
λ¼dRTOA/dT, which is the rate of change of net top‐of‐atmosphere energy gain RTOA with increasing surface
temperature (Cess & Potter, 1988) (Figure 17a; Tables S8 and S11). The average net climate feedback para-
meter in the RCE_small simulations is λ¼−1.08 W m−2 K−1 (Table S8) and, in the RCE_large simula-
tions, λ¼−1.90 W m−2 K−1 (Table S11). This indicates that, averaged across all models, aggregated
RCE_large simulations have lower climate sensitivity than the unaggregated RCE_small simulations
(consistent with Cronin & Wing, 2017). However, there is a wide spread in λ (Tables S8 and S11), and the
difference in average λ between RCE_small and RCE_large is primarily contributed bymodels with para-
meterized convection and is less apparent in those with explicit convection. Of those models that completed
both RCE_large and RCE_small simulations, ∼70% have a more negative λ in RCE_large, which
breaks down to ∼90% of models with parameterized convection and ∼50% of models with explicit
convection.

Averaged across all models with explicit convection, λ becomes less negative with increasing SST, indicating
an increase in climate sensitivity with warming (Figure 17a). The models with parameterized convection do
not have this dependency. The average net climate feedback parameter in the RCE_small simulations is
the same in models with explicit and parameterized convection. However, in the RCE_large simulations,
the average net climate feedback parameter is more negative in the models with parameterized convection
(λ¼−2.61 W m−2 K−1) than in the models with explicit convection (λ¼−1.20 W m−2 K−1), indicating that
the models with parameterized convection have lower climate sensitivity (Table S11). Across all models, the
longwave component of λ is on average negative while the shortwave component is on average positive
(Tables S9 and S12).

We estimate the cloud radiative feedback (λcloud¼ dCRE/dT) as the change in cloud radiative effect (CRE)
with increasing surface temperature, where CRE is computed by subtracting the clear‐sky from the all‐sky
top‐of‐atmosphere radiative fluxes (RTOA−RTOA,clear−sky). We find that the cloud feedback is on average
λcloud¼ 0.08 W m−2 K−1 in the RCE_smallsimulations and λcloud¼−0.03 W m−2 K−1 in the RCE_large
simulations (Figure 17b; Tables S8 and S11), but this small difference is within the error bars and thus does
not explain the difference in the net climate feedback between RCE_small and RCE_large simulations.
The cloud feedback in the RCE_small simulations is positive from 295 to 300 K and negative from 300 to
305 K, resulting in a small residual near zero when considering the net feedback across all simulations.
Considering only the models with explicit convection, λcloud is near zero across all temperature ranges. In
the RCE_large simulations, the cloud feedback is negative in the models with parameterized convection
(λcloud¼−0.25 W m−2 K−1) but positive in the models with explicit convection (λcloud¼ 0.21 W m−2 K−1).
This results from differences in the magnitude of the longwave cloud feedback (Figure 17d; Table S13).
However, as the difference in the average λcloud is within the error bars, the difference in cloud feedback
between models with parameterized and explicit convection is not sufficient to fully explain the difference
the net climate feedback noted above. We also note that the uncertainty in the λcloud estimate is substantially
smaller, in both RCE_small and RCE_large, in models with explicit convection, as indicated by the smal-
ler interquartile range compared to those with parameterized convection (Figure 17b; Tables S8 and S11).

When splitting the cloud feedback into its longwave and shortwave components, we find that the shortwave

cloud feedback is in general positive (λSWcloud ¼ 0:42 W m−2 K−1 when averaged over all models across all
RCE_large simulations; Figure 17c; Table S13). In the RCE_small simulations, the shortwave cloud

feedback is positive in models with explicit convection (λSWcloud ¼ 0:44 W m−2 K−1) but on average negative

(λSWcloud ¼ −0:13 W m−2 K−1) in those with parameterized convection (Figure 17c; Table S10). λSWcloud is even

more negative (λSWcloud ¼ −1:26Wm−2 K−1) when considering only single‐column versions of GCMs (exclud-
ing WRF‐GCM). For comparison, in comprehensive global climate model simulations, decreasing tropical
low cloud amount leads to a positive shortwave feedback (Ceppi et al., 2017). Deviations from this in some
of the RCEMIP simulations may reflect a lack in RCE of low clouds that in nature occur in regions of strong
subsidence and high lower tropospheric stability and/or cloud masking effects. Notably, there is a large tem-
perature dependence of the shortwave cloud feedback in the RCE_small simulations in models with
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parameterized convection that is diminished in the RCE_large simulations and absent in models with
explicit convection. The longwave cloud feedback is in general negative, except in the RCE_small

simulations in models with parameterized convection and is of similar magnitude to the shortwave cloud
feedback (Figure 17d). The negative longwave cloud feedback is a combination of anvil cloud altitude and
amount feedbacks but is consistent with the decrease in anvil cloud fraction with warming across most
models. Of those models that completed both RCE_large and RCE_small simulations, ∼60–70% have a

more positive λSWcloud in RCE_large across both model types. Approximately 55% have a more negative

λLWcloud in RCE_large, but this is dominated by the response in models with parameterized convection, in

which ∼80% have a more negative λLWcloud in RCE_large compared to only ∼30% of models with explicit
convection. These combined results indicate that aggregationmay play a role inmodulating cloud feedbacks.

We caution that these estimates of cloud feedbacks are crude and neglect cloud masking effects, which gen-
erally are on the order of ∼0.3–0.4 Wm−2K−1 and can be enough to change the sign of the cloud feedback
(Soden et al., 2004). Indeed, Cronin and Wing (2017) found that corrections to changes in cloud radiative
forcing with warming based on radiative kernel calculations (Soden et al., 2008) were important for obtain-
ing an overall positive cloud feedback in RCE simulations. We intend to perform these more accurate

Figure 17. Net climate feedback parameter λ¼ dRTOA/dT (a), change in cloud radiative effect λcloud¼ dCRE/dT
(b), change in shortwave cloud radiative effect λSWcloud ¼ dCRESW=dT (c), and change in longwave cloud radiative
effect λLWcloud ¼ dCRELW=dT (d). RCE_large simulations are shown in filled symbols; RCE_small simulations are
shown in open symbols. Averages over all models are shown in black, averages over models with parameterized
convection are shown in red, and averages over models with explicit convection are shown in blue.
The feedbacks are calculated over 295–300, 295–305, and 300–305 K, as indicated on the x axis.
The error bars indicate the interquartile range.
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calculations of cloud feedbacks using the approximate kernel method developed for RCE (Cronin & Wing,
2017) in future work.

In summary, there is a wide range of net climate feedbacks in the RCEMIP simulations, but in the
RCE_large simulations, models with parameterized convection robustly have more negative climate feed-
backs (corresponding to lower climate sensitivity) than models with explicit convection. There is also evi-
dence that, particularly in the models with parameterized convection, RCE_large simulations have
more negative climate feedbacks than the RCE_small simulations. In both cases, the differences cannot
be completely explained by our rough estimate of cloud feedbacks and are thus more likely to be due to
clear‐sky processes or cloud masking effects. The intermodel spread in the estimate of cloud feedbacks is
notably smaller in models with explicit convection.

7. Conclusions

This paper has presented the first results of RCEMIP, the first model intercomparison to include CRMs,
GCRMs, LES, GCMs, and SCMs, with a focus on providing a broad overviewwith respect to each of the three
themes of RCEMIP.

The first theme of RCEMIP is the robustness of the radiative‐convective equilibrium (RCE) state across the
spectrum of models. RCE is a simple concept, in which models achieve a balance between convective heat-
ing and radiative cooling of the atmosphere. However, because moist convection is transient and involves
complex interactions with radiation and circulation, this balance is only achieved in a statistical sense and
is sensitive to how convection is simulated. Indeed, when confronted with the same boundary conditions
and forcing, the models in the RCEMIP ensemble exhibit a diversity of responses. As described in
section 4, there are substantial differences in the representation of temperature, humidity, and cloudiness.
Temperature profiles are robustly several degrees cooler than a moist adiabatic profile, but the range of tem-
peratures at a given height in the troposphere across models can be up to 10 K, the tropopause height and
tropopause temperature vary, and 2 m air temperature varies by more than 1 K. Relative humidity varies
by more than a factor of 2 in the free troposphere and by one third near the surface. In both simulations with
and without aggregated convection, there is a wide spread in the amount of upper level cloudiness and the
height at which the anvil cloud peak occurs (in addition to disagreements for low‐level and mid‐level
clouds). The large spread across models is also apparent in variables related to the top‐of‐atmosphere energy
budget and hydrological cycle. These disagreements occur both in models with explicit convection and those
with parameterized convection.

RCEMIP also aims to determine the response of clouds to warming and the climate sensitivity in RCE.
Across simulations at 295, 300, and 305 K, high clouds shift upward and warm in response to increasing
SST. This response is found in the majority of models across different types of models and domain configura-
tions. In ∼70% of models, high clouds reduce in area fraction with warming at a rate that decreases with
warming. There is no clear response of low‐level andmid‐level clouds to warming, though low cloud fraction
is low to begin with (RCE is unfavorable for certain tropical low clouds, such as stratocumulus), which may
contribute to a smaller change in cloud fraction and weaker low cloud feedback (Brient & Bony, 2012). The
average net climate feedback parameter is generally more negative in the aggregated RCE_large simula-
tions compared to the unaggregated RCE_small simulations, mostly due to clear‐sky effects. However, this
is only robustly true in models with parameterized convection, in which RCE_small is performed with
SCMs or a four‐column configuration of WRF‐GCM, which may reflect issues other than the absence of
aggregation. In the models with explicit convection, the net climate feedback parameter becomes less nega-
tive with warming and both the shortwave and net cloud radiative effect generally increase with warming.
This response differs in models with parameterized convection. Models with explicit convection in
RCE_large have a less negative climate feedback parameter than those with parameterized convection,
corresponding to higher climate sensitivity, which is mostly attributed to clear‐sky effects. The intermodel
spread in the estimate of cloud feedbacks is also notably smaller in models with explicit convection.

The final theme of RCEMIP is the dependence of convective self‐aggregation on temperature. With a few
exceptions, self‐aggregation is absent in RCE_small simulations and present in RCE_large simulations.
However, the spatial patterns of convection are diverse and quantitative metrics of the degree of aggregation
vary widely. Models agree that self‐aggregated simulations produce atmospheres that are warmer, drier,
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have reduced high cloudiness, and cool more to space than their unaggregated counterparts. However, there
is no consensus on whether self‐aggregation increases or decreases with warming; about half of the models
have a net increase in aggregation with warming while the other half have a net decrease in aggregation with
warming.

In summary, despite some robust behaviors, there is substantial disagreement across the RCEMIP ensemble
in representations of cloudiness, self‐aggregation, and climate sensitivity. Some readers may find this dis-
couraging or surprising (perhaps hoping that models with explicit convection might have agreed better),
while some readers may have anticipated that the many degrees of freedom in how models may achieve
RCE would result in divergent behavior. Indeed, because RCE is relatively unconstrained, with convection
left free to evolve as long as energy balance is still met, it is a tough test for models. We argue that this is a
benefit of RCE, rather than a weakness. The divergent behavior in RCEMIP reveals the true sensitivities to
representations of convection, microphysics, turbulence, and dynamical cores, sensitivities that might be
masked in other comparisons by constraints imposed by large‐scale circulations. Furthermore, the
RCEMIP results show that the wide range of equilibrated states is not due to differences in the basic config-
uration such as SST, CRM grid spacing, insolation, or initialization, as there is a large spread despite con-
straining these factors to be the same. Instead, the different responses must be due to differences in model
physics and/or numerics.

The results presented here introduce many further questions, some of which will be addressed in separate
papers planned on (i) climate sensitivity and self‐aggregation, (ii) explanation of cloud changes with warm-
ing, and (iii) behavior of specific families of models. Other questions, such as further details of self‐
aggregation, including its spatial scale, should also be addressed in future work. One of the biggest open
questions is why these models disagree so much, even in such a simplified setting. While much of the simu-
lation setup was designed to be consistent across models, the models differ enormously in their choice of
subgrid‐scale parameterizations, grids, and numerics. This was a conscious choice in the design of
RCEMIP, as Wing et al. (2018) sought to make it as easy as possible for models to participate with something
close to their “out of the box” configuration and sought to know how different the resulting RCE states actu-
ally would be. Is there one particular aspect of the model configuration that has a dominant impact on the
spread? Answering this question will likely require targeted parameter perturbation experiments with par-
ticular models that represent the range of the RCEMIP ensemble, which could motivate a second phase of
RCEMIP in which the model configurations are constrained to be more similar, such as by imposing simpli-
fied, or at least consistent, physics packages.

The RCEMIP ensemble presents a large collection of simulations in an idealized framework spanning a wide
range of model types. The results presented here are just the beginning of what we can learn from this
ensemble, and we hope that they motivate further analyses of this now public data set.

Appendix A: Domain‐Average Statistics
This appendix presents tables of domain‐average statistics for the small and large domain simulations at 300
K (Tables A1 and A2) and, for models who performed both simulations, the difference between the two
(Table A3). Domain and time averages (neglecting the first 75 days of simulation, except for
RCE_small_les300 for which an average over Days 25–50 is used) are provided for each model for the
following variables: the atmospheric energy imbalance (FNet, the magnitude of difference between the
energy imbalance at the surface and top of atmosphere), the net radiation at the top of atmosphere (RTOA

¼ ASR − OLR, where positive values indicate net radiation into the atmosphere), the implied ocean heat
uptake at the surface (QOCN ¼ RSFC − LHF − SHF, where positive values indicate a flux into the ocean),
the column net radiative flux convergence (RNet ¼ RTOA − RSFC, where negative values indicate net atmo-
spheric radiative cooling), the OLR, the top of atmosphere absorbed solar radiation (ASR), the surface latent
heat flux (LHF), the surface sensible heat flux (SHF), PW, surface precipitation rate (Precip.), liquid water
path (LWP), ice water path (IWP), and tropospheric lapse rate. The last rows of the tables indicate the multi-
model mean and measures of the intermodel spread (standard deviation and interquartile range); an entry is
listed as NaN if that variable was not provided.

The average magnitude of atmospheric energy imbalance across RCE_small300 is FNet ¼ 4.67 W m−2

(Table A1), but the models with explicit convection are more out of balance (FNet ¼ 5.55 W m−2) than
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those with parameterized convection (FNet ¼ 2.19 Wm−2). This relationship is also true in RCE_large300

(Table A2). Note that FNet should be zero if energy is conserved and the simulation is equilibrated. The
actual value of FNet is positive in some models and negative in others; here we consider the magnitude
only. The implied ocean heat update is on average QOCN ¼ 98.14 W m−2 in RCE_small300 (Table A1)
and is larger in models with explicit convection (QOCN ¼ 101.75 W m−2) than those with parameterized
convection (QOCN ¼ 87.96 W m−2). This relationship is also true in RCE_large300 (Table A2), but in
those simulations, the implied ocean heat uptake is smaller (QOCN ¼ 66.47 W m−2).

In RCE_small300, RNet and OLR are on average larger in magnitude in the models with explicit convec-
tion, indicating the atmosphere is cooling more strongly compared to models with parameterized convection

Table A1
RCE_small300

FNET RTOA QOCN RNet OLR ASR LHF SHF PW Precip. LWP IWP Lapse rate
Model W m−2 W m−2 W m−2 W m−2 W m−2 W m−2 W m−2 W m−2 mm mm day−1 mm mm K km−1

CAM5‐GCM 0.03 82.99 82.96 −72.38 229.04 312.03 63.50 8.91 35.5 2.2 0.028 0.012 −7.50
CAM6‐GCM 0.10 97.51 97.42 −65.03 233.35 330.87 54.15 10.98 34.4 1.9 0.017 0.026 −7.36
CM1 5.51 105.91 111.42 −88.50 243.03 348.94 75.07 7.92 42.6 2.8 0.051 0.094 −7.54
CM1‐VER 8.68 103.97 112.65 −90.51 245.37 349.34 74.58 7.24 41.7 2.7 0.045 0.095 −7.50
CM1‐LES 7.53 103.21 110.74 −91.42 245.02 348.23 76.78 7.11 43.1 2.8 0.052 0.093 −7.61
CNRM‐CM6‐1 1.83 58.88 57.05 −62.06 204.61 263.48 53.78 10.11 39.0 1.9 0.048 0.025 −7.80
DALES 5.99 101.73 107.71 −92.72 258.99 360.72 76.14 10.59 34.1 4.8 0.007 0.004 −7.44
DALES‐VER 11.76 98.96 110.72 −102.06 256.39 355.34 83.98 6.33 46.2 5.5 0.013 0.013 −7.03
DALES‐LES 7.23 103.05 95.82 −96.38 255.81 358.87 93.28 10.33 42.0 5.5 0.014 0.012 −7.32
DALES‐damping 5.28 101.91 107.19 −90.89 259.71 361.62 74.76 10.85 31.9 4.6 0.006 0.003 −7.54
DALES‐damping‐VER 5.24 105.04 110.27 −88.81 258.20 363.24 73.86 9.71 33.2 4.7 0.007 0.004 −7.48
DAM 5.47 101.34 95.88 −83.76 250.22 351.56 77.64 11.58 40.4 2.6 0.029 0.012 −7.54
GEOS‐GCM 1.78 88.10 89.88 −61.59 215.29 303.40 55.66 4.16 36.2 1.9 0.053 0.033 −7.30
ICON‐LEM 6.66 111.18 104.52 −65.29 226.00 337.18 62.29 9.66 39.3 2.1 0.034 0.021 −7.22
ICON‐LEM‐VER 6.57 110.15 103.58 −70.20 230.31 340.46 67.63 9.14 38.7 2.3 0.006 0.021 −7.16
ICON‐LEM‐LES 8.93 113.17 104.24 −64.01 220.08 333.25 64.43 8.51 44.0 2.2 0.018 0.026 −7.22
ICON‐NWP 3.89 108.56 104.66 −52.01 225.08 333.63 47.35 8.56 29.2 1.6 0.022 0.025 −7.51
MESONH 0.59 106.03 106.62 −72.56 226.59 332.61 63.01 8.97 38.5 1.7 −0.022 0.036 −8.06
MESONH‐VER 2.10 105.92 108.02 −73.25 226.78 332.70 62.13 9.02 39.4 1.9 −0.015 0.029 −7.68
MESONH‐LES 1.39 105.16 103.76 −69.14 224.53 329.69 62.16 8.37 38.3 1.6 −0.027 0.038 −7.95
MicroHH 4.21 110.89 115.10 −85.66 239.79 350.68 71.12 10.33 40.2 3.4 0.002 0.008 −7.02
MicroHH‐VER 1.61 112.91 111.30 −84.72 234.78 347.69 75.99 10.34 44.3 4.5 0.015 0.010 −6.97
MicroHH‐LES 7.62 114.49 122.12 −82.26 231.85 346.34 66.27 8.37 43.5 2.5 0.015 0.012 −7.17
MPAS 16.31 86.27 69.95 −82.44 267.67 353.93 86.07 12.68 26.9 3.0 0.035 0.095 −7.91
SAM‐CRM 3.62 100.97 97.35 −85.42 238.05 339.02 79.12 9.92 41.6 2.7 0.038 0.044 −7.56
SAM‐CRM‐VER 2.75 103.73 100.98 −94.05 249.69 353.42 86.80 10.00 41.3 3.0 0.028 0.036 −7.43
SAM‐CRM‐LES 12.66 109.69 97.03 −82.23 237.90 347.59 85.00 9.90 41.1 2.9 0.019 0.039 −7.53
SCALE 4.42 104.74 100.32 −87.94 252.57 357.31 79.60 12.75 34.5 2.8 0.035 0.057 −7.83
UCLA‐CRM 7.72 88.79 96.51 −121.81 259.55 348.34 103.29 10.80 38.3 3.5 0.024 0.066 −6.70
UKMO‐GA7.1 0.34 115.89 115.55 −75.98 230.91 346.80 70.74 5.58 NaN 2.4 0.021 0.011 −7.55
UKMO‐CASIM 0.67 92.30 92.97 −100.05 263.39 355.69 92.18 7.20 37.9 3.2 0.006 0.074 −7.40
UKMO‐RA1‐T‐hrad 2.85 93.68 96.54 −93.30 258.02 351.70 85.64 4.81 34.3 3.0 0.006 0.043 −7.48
UKMO‐RA1‐T 3.05 87.30 90.35 −96.84 263.22 350.52 89.25 4.53 31.6 3.1 0.007 0.056 −7.38
UKMO‐RA1‐T‐nocloud 1.49 95.90 97.40 −91.41 255.06 350.96 85.16 4.75 35.8 3.0 0.005 0.060 −7.50
WRF‐COL‐CRM 3.23 109.65 106.42 −89.28 237.25 346.90 84.34 8.16 48.0 2.9 0.018 0.008 −7.13
WRF‐CRM 6.91 57.69 50.78 −108.66 254.53 312.23 80.09 35.49 44.6 2.7 0.069 0.081 −6.97
WRF‐GCM‐cps0 1.62 69.38 67.76 −83.34 223.21 292.59 78.17 6.79 43.5 2.8 0.095 0.015 −6.54
WRF‐GCM‐cps1 4.31 113.48 109.17 −97.21 253.12 366.60 91.07 10.45 37.7 3.2 0.000 0.004 −6.34
WRF‐GCM‐cps2 3.15 119.66 116.50 −82.30 228.95 348.61 78.20 7.25 46.7 2.6 0.000 0.015 −6.08
WRF‐GCM‐cps3 2.14 35.68 37.82 −97.96 232.79 268.46 84.63 11.19 37.6 3.0 0.121 0.011 −6.35
WRF‐GCM‐cps4 4.01 106.25 102.24 −94.55 262.13 368.38 93.02 5.54 27.5 3.2 0.000 0.004 −6.28
WRF‐GCM‐cps6 4.77 79.71 74.93 −85.77 223.23 302.93 82.38 8.17 43.2 2.8 0.048 0.017 −6.21

STD 3.53 17.18 18.13 13.92 15.67 23.98 12.33 4.66 5.1 1.0 0.028 0.028 0.48
IQR 4.74 16.73 13.05 19.22 26.65 20.16 18.30 3.09 7.1 0.8 0.029 0.032 0.48
Mean 4.67 98.14 97.48 −84.66 241.24 339.38 75.96 9.36 38.7 2.9 0.024 0.033 −7.26
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(RNet ¼ −86.37 W m−2 vs. −79.84 W m−2, OLR ¼ 245.01 W m−2 vs. 230.60 W m−2). This is consistent with
the larger values of RTOA, ASR, surface latent and sensible heat fluxes, and precipitation in the models with
explicit convection (RTOA¼ 101.75 Wm−2 vs. 87.96 Wm−2, ASR¼ 346.76 Wm−2 vs. 318.56 Wm−2, LHF¼
76.94Wm−2 vs. 73.21Wm−2, SHF¼ 9.80Wm−2 vs. 8.10 Wm−2, Precip¼ 3.1 mm day−1 vs. 2.5 mm day−1).
The models with explicit convection also have a higher fraction of condensed water in ice form (IWP/
(LWP + IWP) ¼ 0.68 vs. 0.59). In RCE_large300 (Table A2), models with explicit and parameterized
convection are more similar to each other, except that models with explicit convection again have more
net radiation into the atmosphere than those with parameterized convection (RTOA ¼ 71.60 W m−2 vs.
61.34 W m−2), which is due to greater top of atmosphere absorbed solar radiation (ASR ¼ 339.19 W m−2

vs. 327.28 W m−2), and again have a higher fraction of condensed water in ice form (IWP/(LWP + IWP)
¼ 0.60 vs. 0.34).

In terms of the differences between pairs of RCE_small300 and RCE_large300 simulations (Table A3),
models with parameterized convection have a greater average increase in atmospheric cooling, OLR, latent
heat fluxes, precipitation, and lapse rate with aggregation than models with explicit convection
(ΔRNet ¼ −31.90 W m−2 vs. −18.80 W m−2, ΔOLR ¼ 32.29 W m−2 vs. 19.63 W m−2, ΔLHF ¼ 30.12

Table A2
RCE_large300

FNET RTOA QOCN RNet OLR ASR LHF SHF PW Precip. LWP IWP Lapse rate
Model W m−2 W m−2 W m−2 W m−2 W m−2 W m−2 W m−2 W m−2 mm mm day−1 mm mm K km−1

CAM5‐GCM 0.09 56.40 56.32 −107.94 258.01 314.41 97.10 10.93 36.7 3.4 0.038 0.018 −7.12
CAM6‐GCM 0.05 66.23 66.28 −96.96 260.40 326.62 84.31 12.59 31.6 2.9 0.033 0.020 −7.43
CM1 7.58 86.09 93.67 −107.77 266.40 352.49 91.22 8.97 35.4 3.4 0.046 0.091 −7.40
CNRM‐CM6‐1 0.46 44.87 44.41 −115.80 270.49 315.36 105.58 10.68 30.5 3.6 0.014 0.031 −7.56
DAM 3.87 81.41 77.54 −104.80 268.33 349.74 97.30 11.37 36.3 3.3 0.032 0.010 −7.35
ECHAM6‐GCM 0.09 76.28 76.19 −107.83 273.64 349.91 90.33 17.60 32.0 3.1 0.017 0.009 −7.16
FV3 2.57 31.27 33.84 −121.70 274.82 306.09 109.05 10.09 29.4 3.7 0.060 0.020 NaN
GEOS‐GCM 2.02 65.35 67.37 −87.41 244.22 309.57 75.42 9.97 37.7 2.6 0.076 0.034 −6.43
ICON‐GCM 0.32 48.83 48.51 −105.28 271.22 320.04 90.76 14.84 26.6 3.1 0.034 0.019 −7.50
ICON‐LEM 6.80 90.20 83.40 −82.69 249.03 339.23 78.61 10.88 31.3 2.7 0.029 0.023 −7.13
ICON‐NWP 9.73 94.28 84.55 −63.99 235.05 329.33 63.62 10.11 28.2 2.2 0.026 0.034 −7.36
IPSL‐CM6 0.73 41.60 40.87 −136.58 284.34 325.93 126.97 10.34 33.2 4.3 −0.014 0.113 NaN
MESONH 1.23 68.13 69.35 −109.03 272.75 340.88 98.26 9.54 25.8 3.2 −0.004 0.022 −7.69
MPAS 6.80 73.50 66.70 −101.02 273.92 347.43 97.51 10.31 28.8 3.4 0.047 0.078 −7.50
NICAM 26.42 77.50 51.08 −110.28 265.93 343.43 129.15 7.55 31.0 3.6 0.060 0.050 −7.03
SAM0‐UNICON 0.00 48.14 48.14 −123.72 284.61 332.75 112.89 10.83 27.9 3.9 0.009 0.005 −6.87
SAM‐CRM 3.87 72.47 68.60 −118.05 274.66 347.12 113.15 8.77 31.2 3.9 0.048 0.025 −7.20
SAM‐GCRM 4.10 67.83 63.73 −121.32 276.43 344.26 116.68 8.74 31.9 4.0 0.082 0.026 −5.47
SCALE 3.18 87.40 84.22 −110.36 268.36 355.76 101.56 11.97 32.8 3.6 0.041 0.046 −7.47
SP‐CAM 2.10 73.62 71.53 −99.28 256.41 330.04 92.31 9.07 35.6 3.2 0.066 0.036 −7.23
SPX‐CAM 2.35 68.54 66.18 −105.06 259.07 327.60 98.30 9.11 36.1 3.4 0.072 0.034 −6.88
UCLA‐CRM 5.29 22.61 27.90 −157.66 294.71 317.33 135.60 16.77 26.4 4.8 0.039 0.052 −6.36
UKMO‐GA7.1 0.16 58.67 58.83 −125.92 273.84 332.51 120.22 5.53 34.5 4.2 0.047 0.024 −6.88
UKMO‐CASIM 3.90 74.28 70.38 −102.53 262.20 336.48 95.69 10.75 39.5 3.2 0.026 0.160 −6.90
UKMO‐RA1‐T 0.65 72.78 73.42 −110.86 281.21 353.99 102.35 7.87 28.6 3.6 0.009 0.089 −6.89
UKMO‐RA1‐T‐nocloud 1.54 68.71 67.17 −107.12 277.89 346.60 100.33 8.33 29.2 3.5 0.016 0.130 −6.84
WRF‐COL‐CRM 2.15 92.74 90.58 −103.21 251.77 344.51 97.10 8.27 41.7 3.4 0.019 0.013 −6.97
WRF‐CRM 21.73 56.07 34.34 −106.54 255.46 311.53 90.37 37.90 41.2 3.1 0.065 0.097 −6.91
WRF‐GCM‐cps0 4.46 26.57 22.11 −126.33 267.46 294.03 114.44 16.36 31.2 4.0 0.088 0.008 −5.63
WRF‐GCM‐cps1 6.70 88.27 81.58 −115.06 264.79 353.06 112.85 8.91 35.9 4.0 0.006 0.009 −5.88
WRF‐GCM‐cps2 3.72 96.24 92.51 −105.63 259.89 356.13 101.37 7.98 34.0 3.4 0.001 0.011 −5.89
WRF‐GCM‐cps3 0.91 12.00 12.90 −130.05 268.21 280.21 111.62 17.52 31.6 3.8 0.107 0.007 −5.64
WRF‐GCM‐cps4 1.81 99.31 97.50 −102.37 260.97 360.28 98.16 6.02 33.7 3.4 0.001 0.008 −6.06
WRF‐GCM‐cps6 2.85 71.86 69.01 −115.63 263.49 335.36 115.58 2.91 37.1 4.0 0.034 0.014 −5.82

STD 5.66 21.84 21.17 16.08 12.02 19.00 15.29 5.74 4.1 0.5 0.028 0.039 0.65
IQR 3.59 24.28 28.05 13.88 13.88 25.84 19.73 2.51 6.2 0.7 0.041 0.036 0.93
Mean 4.12 66.47 63.55 −110.17 266.76 333.24 101.93 11.16 32.8 3.5 0.037 0.040 −6.83
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W m−2 vs. 18.70 W m−2, ΔPrecip ¼ 1.0 mm day−1 vs. 0.7 mm day−1, ΔLapse Rate ¼ 0.45 K km−1 vs. 0.31
K km−1). This suggests that models with parameterized convection may be, on average, more aggregated
than those with explicit convection. However, this is not apparent from the metrics of aggregation
presented in section 5, so it is perhaps instead that models with parameterized convection have a greater
mean state response to the same amount of aggregation. It also may be possible that SCMs are not
consistent with a statistical ensemble of randomly convecting GCM grid columns, and so the difference
between a SCM RCE_small simulation and a GCM RCE_large simulation may not solely reflect
aggregation.

Appendix B: Aggregation Metrics
Iorg is calculated as in Tompkins and Semie (2017) where deep convective entities are identified as four‐point
connected convective pixels. Deep convective pixels are defined as those with an OLR value less than
173 W m−2 corresponding to cold cloud top temperatures (Wing et al., 2018), as opposed to the previously
used updraft threshold. The cumulative distribution function (CDF) of the nearest neighbor distances of
the centroids of these convecting entities is plotted against the theoretical CDF of a two‐dimensional
Poisson point process, with the area under this curve defining Iorg. Since an aggregated state has convective
entities clustered in limited areas of the domain instead of randomly occurring over the whole domain, the
CDF is skewed toward smaller nearest neighbor distances. Therefore, an Iorg value greater than 0.5 indicates
that convection is clustered, while Iorg¼ 0.5 indicates the convection is randomly distributed and an Iorg
value less than 0.5 indicates that convection is regularly distributed. To account for the geometry of a sphere,
the calculation of Iorg in the global simulations is limited to the tropical band, 30°S–30°N. In the supporting
information, we discuss the sensitivity of using four‐point connectivity versus zero connectivity for defining
convective entities in the GCMs (Figures S22 and S23) as well as the sensitivity of the calculation to various

Table A3
RCE_large300‐RCE_small300

ΔRTOA ΔRNet ΔOLR ΔASR ΔLHF ΔSHF ΔPW ΔPrecip. ΔLWP ΔIWP ΔLapse Rate
Model W m−2 W m−2 W m−2 W m−2 W m−2 W m−2 mm mm day−1 mm mm K km−1

CAM5‐GCM −26.59 −35.55 28.96 2.38 33.60 2.02 1.2 1.2 0.010 0.006 0.38
CAM6‐GCM −31.28 −31.93 27.04 −4.24 30.17 1.62 −2.8 1.0 0.016 −0.006 −0.06
CM1 −19.82 −19.26 23.37 3.55 16.14 1.06 −7.2 0.6 −0.005 −0.003 0.14
CNRM‐CM6‐1 −14.01 −53.74 65.89 51.87 51.80 0.57 −8.5 1.8 −0.034 0.005 0.24
DAM −19.93 −21.04 18.11 −1.82 19.66 −0.21 −4.1 0.6 0.003 −0.002 0.19
GEOS‐GCM −22.75 −25.82 28.93 6.18 19.76 5.82 1.5 0.7 0.023 0.000 0.86
ICON‐LEM −20.98 −17.40 23.03 2.05 16.32 1.22 −8.1 0.5 −0.004 0.002 0.09
ICON‐NWP −14.28 −11.99 9.98 −4.30 16.27 1.55 −1.0 0.5 0.004 0.009 0.15
MESONH −37.90 −36.46 46.17 8.26 35.26 0.57 −12.7 1.5 0.018 −0.013 0.37
MPAS −12.76 −18.58 6.26 −6.51 11.44 −2.37 1.9 0.5 0.012 −0.018 0.41
SAM‐CRM −28.50 −32.63 36.60 8.10 34.02 −1.14 −10.4 1.1 0.010 −0.020 0.36
SCALE −17.34 −22.42 15.79 −1.55 21.96 −0.78 −1.8 0.8 0.006 −0.011 0.35
UCLA‐CRM −66.18 −35.85 35.17 −31.01 32.31 5.97 −11.9 1.2 0.015 −0.015 0.34
UKMO‐GA7.1 −57.22 −49.93 42.93 −14.29 49.48 −0.05 NaN 1.7 0.026 0.014 0.67
UKMO‐CASIM −18.02 −2.48 −1.19 −19.21 3.51 3.55 1.7 0.0 0.020 0.086 0.51
UKMO‐RA1‐T(L)‐hrad(S) −20.91 −17.57 23.20 2.29 16.71 3.06 −5.7 0.6 0.003 0.046 0.59
UKMO‐RA1‐T‐nocloud −27.19 −15.72 22.83 −4.36 15.17 3.58 −6.6 0.6 0.011 0.070 0.66
WRF‐COL‐CRM −16.91 −13.93 14.52 −2.39 12.76 0.10 −6.3 0.5 0.000 0.005 0.16
WRF‐CRM −1.62 2.12 0.92 −0.70 10.29 2.41 −3.4 0.4 −0.004 0.016 0.07
WRF‐GCM‐cps0 −42.81 −43.00 44.25 1.43 36.27 9.57 −12.2 1.2 −0.007 −0.007 0.91
WRF‐GCM‐cps1 −25.21 −17.85 11.66 −13.54 21.78 −1.54 −1.8 0.7 0.006 0.005 0.46
WRF‐GCM‐cps2 −23.42 −23.33 30.94 7.52 23.17 0.73 −12.7 0.8 0.001 −0.003 0.19
WRF‐GCM‐cps3 −23.68 −32.09 35.43 11.75 26.99 6.34 −6.0 0.9 −0.014 −0.004 0.72
WRF‐GCM‐cps4 −6.95 −7.82 −1.16 −8.10 5.14 0.48 6.2 0.2 0.001 0.004 0.23
WRF‐GCM‐cps6 −7.85 −29.86 40.27 32.42 33.20 −5.26 −6.1 1.2 −0.014 −0.003 0.40

STD 14.55 13.67 16.36 15.82 12.41 3.11 5.2 0.4 0.013 0.025 0.25
IQR 10.28 15.23 20.91 10.54 17.06 3.11 6.6 0.6 0.016 0.012 0.32
Mean −24.16 −24.57 25.20 1.03 23.73 1.55 −4.9 0.8 0.004 0.006 0.38
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assumptions applied to the CDF calculation (Text S2). While the absolute value of Iorg is affected by the
choice of connectivity, its dependence on SST and the intermodel spread are not. Values of Iorg are also sen-
sitive to choices such as how to compute the empirical CDF; while most of these differences are small, they
are important to consider if it is desired to reproduce identical results.

Subsidence fraction (fsub) is the area fraction of the domain where the daily‐average large‐scale vertical velo-
city at 500 hPa is directed downward. Vertical velocity is first averaged in time over a day, and in space over
∼100 × ∼100 km2 blocks. For CRMs, the RCE_large domain, which is roughly 6,000 × 400 km2, is divided
into 60 blocks on the long side and four blocks on the short side. When the domain size s is not divisible by
the number of blocks k, then some blocks have one grid point more than the others. The index that follows
when rounding s/k*i down belongs to block i, the rounded up index belongs to block i+ 1. This methodmini-
mizes the difference in box size across models, which is important because subsidence fraction is sensitive to
the area over which vertical velocity is averaged (Cronin &Wing, 2017), though the tendency with tempera-
ture is less sensitive than the absolute values in any one simulation. The resulting boxes are roughly 100 ×
100 km2 (the smallest is 96 × 96 km2 while the largest is 108 × 108 km2). For the GCRMs the same approach
is used, except we divide the global domain in boxes that would represent a 1 × 1° grid on a full‐size globe,
which is why we use 90 × 45 blocks in NICAM and SAM_GCRM and 45 × 23 blocks in MPAS. The GCMs
already are on a coarse grid and are not further smoothed in space.

Data Availability Statement

We thank the German Climate Computing Center (DKRZ) for hosting the standardized RCEMIP
data, which is publicly available online (at http://hdl.handle.net/21.14101/d4beee8e-6996-453e-bbd1-
ff53b6874c0e).
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