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FTO gene-lifestyle interactions on serum adiponectin concentrations and 42 

central obesity in a Turkish population 43 

 44 

The aim of the study was to investigate whether lifestyle factors modify the association fat 45 

mass and obesity-associated (FTO) gene single nucleotide polymorphisms (SNPs) and 46 

obesity in a Turkish population. The study included 400 unrelated individuals, aged 24-50 47 

years recruited in a hospital setting. Dietary intake and physical activity were assessed using 48 

24-hour dietary recall and self-report questionnaire, respectively. A genetic risk score (GRS) 49 

was developed using FTO SNPs, rs9939609 and rs10163409. Body mass index and fat mass 50 

index were significantly associated with FTO SNP rs9939609 (P=0.001 and P=0.002, 51 

respectively) and GRS (P=0.002 and P=0.003, respectively). The interactions between SNP 52 

rs9939609 and physical activity on adiponectin concentrations, and SNP rs10163409 and 53 

dietary protein intake on increased waist circumference were statistically significant 54 

(Pinteraction=0.027 and Pinteraction=0.044, respectively). This study demonstrated that the 55 

association between FTO SNPs and central obesity might be modified by lifestyle factors in 56 

this Turkish population.  57 

Keywords: FTO gene variant; obesity; gene-diet interaction; adiponectin; genetic risk 58 

score; physical activity 59 

 60 

Introduction 61 

Obesity has been recognised as a worldwide public health problem due to its rising 62 

prevalence and concomitant health problems. The prevalence of overweight and obesity in 63 

Turkey were reported as 64.4% and 28.8%, respectively by WHO (WHO, 2018).  Obesity 64 

can lead to other chronic diseases including type 2 diabetes (T2D), cardiovascular diseases 65 

(CVD), hypertension, cancer and osteoarthritis (Forse et al. 2020). A combination of 66 



interactions between genetic and environmental factors is required for the development of a 67 

complex disease such as obesity (Franks and McCarthy 2016; Milagro et al. 2020). Studies 68 

have identified approximately 140 genes to be associated with obesity, and the fat mass and 69 

obesity associated (FTO) gene has been reported to be the strongest susceptibility gene for 70 

human obesity (Pigeyre et al. 2016).  71 

The FTO gene is located on chromosome 16q12.2 and codes for a protein with 2-72 

oxoglutarate dependent nucleic acid demethylase activity which is involved in DNA repair 73 

and the accumulation of fat in the body (Clifton et al. 2006; Chen and Du 2019). FTO is 74 

highly expressed in the brain, including the hypothalamus, adipocytes, pancreatic islet cells, 75 

and adrenal glands (Frayling et al. 2007). FTO gene has been suggested to control energy 76 

homeostasis and food intake (Abete et al. 2020). Previous studies have shown that, of the 77 

various obesity susceptibility genes, single-nucleotide polymorphisms (SNPs) located in the 78 

first intron of FTO gene has provided the strongest evidence for genetic predisposition to 79 

obesity (Frayling et al. 2007; Scuteri et al. 2007; Speliotes et al. 2010; Loos and Yeo 2014; 80 

Babenko et al. 2019; Fonseca et al. 2020). The minor allele ‘A’ of the FTO SNP rs9939609 81 

has been consistently associated with higher BMI in various populations (Frayling et al. 2007; 82 

Hertel et al. 2011; Peng et al. 2011; Corella et al. 2012; Li et al. 2012; Qi et al. 2014; Wang 83 

et al., 2020; Schlauch et al. 2020). Furthermore, a meta-analysis reported that the association 84 

between the SNP rs9939609 and BMI was replicated in 13 cohorts with 38,759 participants, 85 

where individuals with the ‘AA’ genotype had 1.67-time higher odds of obesity than those 86 

with the ‘TT’ genotype (Frayling et al. 2007). In the Turkish population, the risk alleles of 87 

the FTO rs1421085 and rs9939609 polymorphisms were shown to have significant 88 



associations with the risk of obesity in women and metabolic syndrome (MetS) in men 89 

(Guclu-Geyik et al. 2016).  90 

Turkish adults are characterized with low levels of total and high-density lipoprotein 91 

cholesterol, and high risk of CVD, that distinguish them from Europeans (Onat 2001). They 92 

also have increased susceptibility to impaired glucose tolerance and MetS primarily driven 93 

by obesity (Onat and Can 2014). Among the non-communicable diseases (NCDs) that 94 

accounted for 88.0% of deaths in Turkey, CVD has shown to contribute to 47.73% of overall 95 

deaths (WHO, 2018). Targeting modifiable risk factors for NCDs including obesity could 96 

prevent many deaths. Therefore, several health promotion campaigns such as “Reducing 97 

Portion Sizes” and “Move for Health” have been implemented for the prevention of obesity 98 

in Turkey (WHO, 2016; OECD, 2017). However, obesity is a multifactorial disorder, and 99 

identifying gene-environment interactions are needed to understand the aetiology and 100 

pathophysiology of obesity and also to develop more effective personalised preventative 101 

strategies (Castillo et al. 2017; Dahlman and Ryden 2020). To date, several FTO-dietary 102 

intake interactions on obesity-related outcomes have been examined in different populations 103 

(Grau et al. 2009; Sonestedt et al. 2009; Lappalainen et al. 2012; Ortega-Azorin et al. 2012; 104 

Phillips et al. 2012; Vimaleswaran et al. 2012; Qi et al. 2014; Merritt et al. 2018; Saber-Ayad 105 

et al. 2019) however, there are no such studies to date in a Turkish population The 106 

investigations of the gene-diet interactions in different ethnic groups are crucial to develop 107 

personalised nutrition strategies for each ethnic group due to the genetic heterogeneity 108 

(Vimaleswaran 2017). The FTO SNP rs9939609 has been associated with several dietary 109 

components including dietary protein intake (Lappalainen et al. 2012; Qi et al. 2014; Merritt 110 



et al. 2018) and the SNP rs10163409 in FTO was among the top associations in a large 111 

genome-wide meta-analysis study (GWAS) for total caloric intake (Chu et al. 2013).  112 

Therefore, this study aimed to assess whether FTO variants, rs9939609 and rs10163409, are 113 

associated with obesity in 400 Turkish individuals and to determine whether these SNPs 114 

interact with dietary intake and physical activity on obesity outcomes.  115 

Materials and Methods 116 

Study population 117 

A total of 400 unrelated individuals, aged 24-50 years, were recruited from the outpatient 118 

clinic of Department of Endocrinology and Metabolism at the Hacettepe University 119 

Hospitals, Ankara, Turkey. This study was conducted as part of the GeNuIne Collaboration 120 

that investigates the interactions between genetic and dietary factors on metabolic diseases 121 

in different ethnic groups (Vimaleswaran 2017). The study participants were screened based 122 

on the following inclusion criteria: 1) routine visits to the outpatient clinic, 2) aged 18-50 123 

years, and 3) having a BMI ≥ 18.50 kg/m2. The exclusion criteria were: 1) having specific 124 

health problems including, liver and kidney diseases, mental and psychological disorders, 125 

history of cancer, and serious endocrine disorders (hypothyroidism, hyperthyroidism or 126 

hypopituitarism), 2) history of bariatric surgery, 3) being pregnant or lactating, 4) using drugs 127 

that affect body weight. Researchers informed and invited the eligible participants for their 128 

participation in to the study. The study was approved by the local ethics committee of 129 

Hacettepe University (GO 15/612-11), and all the participants provided the signed written 130 

consent.  131 

Study design  132 

A cross-sectional case-control study design was used, where participants were divided into 133 

two groups: obese (BMI ≥25.00 kg/m2, n=200) and non-obese (BMI= 18.50-24.99 kg/m2, 134 

n=200). All participants underwent a physical examination by the research endocrinologists, 135 



followed by clinical, biochemical and lifestyle assessments, and genetic analysis of FTO 136 

SNPs rs9939609 and rs10163409.  137 

Anthropometrical Measurements 138 

Body weight and height were measured by standard methods using a calibrated digital scale 139 

(Seca 220 Scale, Germany). BMI calculation was based on the body weight (in kilograms) 140 

divided by the square of height (in meter) (WHO, 2020). BMI classification of the WHO was 141 

used to classify the individuals as non-obese (BMI < 25.00 kg/m2) and obese (BMI ≥ 25.00 142 

kg/m2) (WHO, 2005). The waist circumference (WC) was measured by a standard method 143 

(WHO, 2011). Increased WC (central obesity) was defined based on cut-points established 144 

for Turkish adults (WC ≥ 90 cm for men/ ≥ 80 cm for women) (Sonmez et al. 2013). Body 145 

composition was analysed by bioelectrical impedance using the Tanita MC-980 MA Multi 146 

Frequency Segmental Body Composition Analyzer (USA). Fat mass index (FMI) was 147 

calculated based on the fat mass (in kilograms) divided by the square of height (in meter) 148 

(Peltz et al. 2010). All anthropometrical measurements were taken by the research dieticians. 149 

 Biochemical and clinical measures 150 

Serum adiponectin was analysed by ELISA kits (Ebioscience, Austria) at Hacettepe 151 

University Hospitals, Clinical Pathology Laboratory. The physical examination included the 152 

measurement of systolic (SBP) and diastolic blood pressure (DBP) using a stethoscope and 153 

sphygmomanometer in the right arm of the participants after sitting in a comfortable position 154 

in a quiet room for at least 15 min. Both blood pressures were measured twice at 5-minute 155 

intervals and recorded on average (Frese et al. 2011). 156 



Dietary assessment 157 

Dietary intake was assessed using 24-hour dietary recall method that was carried out by 158 

trained research dieticians. A photographic atlas of food portion sizes and common household 159 

measures were used to facilitate the quantification of the amount of food consumed. Total 160 

energy, macro- and micronutrient intakes of participants were analysed from the records 161 

using BeBIS software (BeBIS, Nutrition Information System, Version 8).  162 

Other lifestyle factors 163 

The socio-demographic characteristics, family and medical history, smoking and alcohol 164 

consumption were recorded. The physical activity level was assessed using the Turkish 165 

version of the International Physical Activity Questionnaire (IPAQ) (Saglam et al. 2010).  166 

SNPs selection and genotyping 167 

FTO gene was selected based on its consistent and strong associations with obesity traits in 168 

large-scale GWASs (Frayling et al. 2007). The SNP rs9939609 is the most commonly studied 169 

variant and consistently associated with obesity phenotypes across multiple ethnicities 170 

(Frayling et al. 2007; Hertel et al. 2011; Peng et al. 2011; Corella et al. 2012; Li et al. 2012; 171 

Loos and Yeo 2014; Qi et al. 2014) and SNP rs10163409 has been shown to be associated 172 

with dietary energy intake from macronutrients (Chu et al. 2013). Therefore, FTO SNPs, 173 

rs9939609 and rs10163409, which have been shown to be associated with obesity traits and 174 

dietary intake in large GWASs, were genotyped. The genotype frequencies of the FTO SNPs, 175 

rs9939609 and rs10163409, were in Hardy Weinberg equilibrium (p>0.05). 176 



The genomic DNA was extracted from the whole blood in K2EDTA containing tubes 177 

by the salting out method. Genotyping of the SNPs, rs9939609 and rs10163409, were 178 

performed using KASP assay (a competitive allele-specific polymerase chain reaction that 179 

incorporates a fluorescent resonance energy transfer quencher cassette), and the KASP 180 

primers were designed using Kraken software system (LGC, https://www.lgcgroup.com). 181 

Genotyping assays were carried out according to the manufacturer’s instructions with a 7500 182 

Real time PCR System (Applied Biosystems). The following thermal cycling profile were 183 

used: 15 min at 94°C; 10 cycles of 20 s at 94°C, 60 s at 61°C with decrement -0.6°C/per 184 

cycle and 26 cycles of 20 s at 94°C, 60 s at 55°C; 60 s at 37°C. 185 

Statistical analysis 186 

SPSS software (version 23.0) was used for statistical analysis. The Hardy-Weinberg 187 

equilibrium was assessed using the x2 goodness-of-fit test. Genotype frequencies and 188 

distribution in groups were compared using Pearson’s chi-squared test. Continuous variables 189 

are presented as means and standard deviations (SD), and groups were compared using the 190 

independent t-test.  191 

As the number of individuals with rare homozygous genotypes was low, a dominant 192 

model was used, where common homozygous genotypes were compared to combined rare 193 

homozygous and heterozygous genotypes. A genetic risk score (GRS) was created from both 194 

the FTO SNPs where the presence of one risk allele of any of the variants was scored as one 195 

point. This GRS ranged from 0 (homozygous individuals for non-risk alleles) to 4 points 196 

(homozygous individuals for the risk alleles of both FTO polymorphisms). The GRS variable 197 



was then categorised into two groups based on the number of points; 1st group: individuals 198 

with scores of <2 points; 2nd group: individuals with scores of ≥2 points.  199 

The independent and joint effects of FTO SNPs on the risk of obesity were assessed 200 

using the odds ratios (ORs) and 95% confidence intervals (CIs) that were calculated by 201 

logistic regression models. Also, the associations between FTO polymorphisms (separately 202 

and joint) and the continuous outcomes were tested using general linear models. Models were 203 

adjusted for age, gender, hypertension, CVD and obesity status wherever appropriate. 204 

Furthermore, FTO gene-environment interactions on continuous and categorical outcomes 205 

were tested using linear and logistic regression models, respectively. Interactions were 206 

investigated by including the interaction terms (e.g.,carbohydrate*genotype) in the 207 

regression models. Environmental factors that were investigated included dietary intake 208 

(carbohydrate, protein, fibre and fat intakes in grams/day) and physical activity. Furthermore, 209 

statistically significant interactions were investigated in more depth, where individuals were 210 

stratified by the tertiles of the lifestyle factor. 211 

Results 212 

Characteristics of the Participants   213 

Obese individuals were older, and had higher BMI, WC and FMI and lower adiponectin 214 

levels than the controls (P<0.001, for each). The cases and controls were not statistically 215 

different in terms of their food intake and physical activity levels (P>0.05) (Table 1).  216 

Associations between FTO variants and obesity-related traits 217 

Genotype distributions and minor allele frequencies (MAFs) for both SNPs are shown in 218 

Table 2. The MAFs of the SNPs, rs10163409 and rs9939609, were T=0.37 and A=0.39, 219 



respectively. The associations between SNP rs9939609 and BMI (P=0.001) and FMI 220 

(P=0.002) were found significant where the ‘A’ (AT/AA) allele carriers had significantly 221 

higher BMI and FMI than ‘TT’ homozygotes (Table 3). Furthermore, ‘A’ allele carriers had 222 

significantly higher WC (P=0.007) and lower adiponectin levels (P=0.031) compared to non-223 

carriers. The FTO SNP rs10163409 did not show any significant association with obesity 224 

traits (Table 3).  225 

Interactions between FTO variants and dietary intake on obesity-related traits 226 

FTO gene-dietary protein intake interactions 227 

The significant interactions between SNP rs10163409 and protein intake on the risk of 228 

increased WC (Pinteraction=0.044) and WC as a continuous variable (Pinteraction=0.007) were 229 

observed. Stratification of the dietary protein intake into tertiles showed that, in the highest 230 

tertile group with a mean ± SD of 138±38 g/day protein intake, ‘T’ allele carriers of the SNP 231 

rs10163409 had a significantly higher risk of central obesity [OR= 3.3 (95% CI: 1.149-232 

9.478), P=0.027] than those with ‘AA’ genotype (Figure 1).  233 

Interactions between FTO variants and physical activity on obesity-related traits 234 

The interaction between the SNP rs9939609 and physical activity levels on adiponectin 235 

concentrations was statistically significant (Pinteraction= 0.027), where, among those with 236 

lowest levels of physical activity, the adiponectin concentrations were significantly lower in 237 

the allele ‘A’ carriers compared to individuals with ‘TT’ genotype (P=0.006) (Figure 2). 238 

Associations between GRS and obesity-related traits  239 

The GRS was significantly associated with BMI (P=0.002), FMI (P=0.003) and increased 240 

WC (P=0.02) (Figures 3a, 3b and 3c). However, the interactions between GRS and lifestyle 241 

factors on obesity traits were not found statistically significant.  242 

Discussion 243 

To our knowledge, this is the first study that investigated the interaction between FTO SNPs 244 

and dietary intake on obesity traits in a Turkish population. This study has identified the 245 



associations of the FTO SNP rs9939609 and GRS with obesity traits, and also showed that 246 

the physical activity level can modify the effect of the minor allele ‘A’ of the FTO SNP 247 

rs9939609 on adiponectin concentrations, a biomarker of metabolic syndrome (Stojanovic et 248 

al. 2015). Furthermore, our study has demonstrated that the higher protein intake was 249 

associated with higher risk of central obesity among the ‘T’ allele carriers of the FTO SNP 250 

rs10163409 compared to non-carriers. Since Turkish adults have a sedentary lifestyle (WHO, 251 

2018), our findings contribute to the development of effective public health strategies 252 

focusing on the prevention and management of central obesity and CVD in Turkish 253 

population (IHME, 2017).  254 

This study has shown that the risk allele ‘A’ of the FTO SNP rs9939609 was significantly 255 

associated with higher BMI and FMI, in agreement with the findings from other populations 256 

(Frayling et al. 2007; Do et al. 2008; Hertel et al. 2011; Peng et al. 2011; Corella et al. 2012; 257 

Li et al. 2012; Muc et al. 2015; Merra et al. 2020). A meta-analysis performed on 177,330 258 

individuals from multiple ethnicities have demonstrated an association between FTO 259 

rs9939609 genotype and BMI, suggesting a higher BMI in ‘A’ allele carriers (effect per 260 

allele=0.30 [0.30, 0.35] kg/m2, P=3.6*10-107) (Qi et al. 2014). The reported FTO-related 261 

genetic associations with BMI have also been confirmed in a study in the Turkish population 262 

(Guclu-Geyik et al. 2016), where the FTO risk allele, ‘C’, carriers of the SNP rs1421085, 263 

which is in a high linkage disequilibrium (LD) (D’=0.967, r2=0.85) with the SNP rs9939609, 264 

had significantly increased BMI. Furthermore, parallel to the findings of other studies 265 

(Vimaleswaran et al. 2012; De Luis et al. 2016; Saucedo et al. 2017), we have also found that 266 

the FTO SNP rs9939609 was significantly associated with higher WC and lower adiponectin 267 

concentrations. On the contrary, there were no significant association between SNP 268 

rs10163409 and obesity. This could be explained by the fact that the SNP rs10163409 is not 269 

in LD with other FTO variants that have shown significant associations with BMI (Chu et al. 270 

2013). 271 



Our study has provided evidence for gene-diet interaction in the Turkish population. We 272 

have demonstrated that, among those in the highest tertile of dietary protein intake, the risk 273 

of increased WC/central obesity was higher for the minor allele, ‘T’, carriers of the FTO SNP 274 

rs10163409 compared to those with AA genotype. To date, this is the first study analysing 275 

gene-diet interactions of the SNP rs10163409, suggesting that high intake of dietary protein 276 

might negatively affect WC in genetically susceptible individuals. However, studies 277 

investigating other FTO SNPs (rs1558902 and rs9939609) have reported conflicting results 278 

(Zhang et al. 2012; de Luis et al. 2015; Merritt et al. 2018). It has been suggested that 279 

following a high protein diet can modulate the genetic effect of FTO variants on obesity traits 280 

(Zhang et al. 2012; de Luis et al. 2015; Merritt et al. 2018). According to a 2-year weight loss 281 

intervention program, carriers of the risk allele ‘A’ of the FTO rs1558902 had a greater 282 

weight loss compared to non-carriers when high protein diets were consumed, whereas a 283 

negative genetic effect was found in response to a low-protein intake (Huang et al. 2014). 284 

The potential mechanism of FTO variants - protein intake interaction is still unclear, 285 

however, the regulation of food intake and appetite could be influenced. It has been found 286 

that the risk allele ‘A’ of the SNP rs9939609 was significantly associated with a greater 287 

reduction in food cravings and appetite scores among individuals who consumed high- 288 

protein diet but not in those in the low-protein diet (Huang et al. 2014). Regarding the SNP 289 

rs9939609, there were no significant interactions between the FTO variants and any of the 290 

dietary components on obesity traits. In agreement with our findings, a study of 11,091 adults 291 

from five Europeans countries have found no interactions between the rs9939609 variant and 292 

the dietary intake of carbohydrate, glycaemic index, protein or fat on BMI, WC, weight gain 293 

and risk of obesity (Vimaleswaran et al. 2012). Furthermore, a meta-analysis of 40 294 

population-based studies reported that the total energy or macronutrient intakes had no effect 295 

on the association between the SNP rs9939609 and BMI (Qi et al. 2014). In contrast to our 296 

finding, a few large-scale studies demonstrated significant interactions between dietary 297 



macronutrient intakes and FTO variants in determining BMI (Grau et al. 2009; Sonestedt et 298 

al. 2009; Corella et al. 2011; Lappalainen et al. 2012; Ortega-Azorin et al. 2012; Phillips et 299 

al. 2012). A cross-sectional study conducted on 4,839 Swedish participants reported an 300 

association between the risk allele of the SNP rs9939609 and higher BMI only in individuals 301 

with high fat and low carbohydrate consumption (Sonestedt et al. 2009). A similar interaction 302 

between the rs9939609 variant and saturated fatty acids (SFA) intake has been detected in 303 

2,163 individuals from two independent populations of the United States, where individuals 304 

homozygous for the risk allele ‘AA’ had a higher BMI compared to other genotypes, only 305 

when the intake of SFA was high (Corella et al. 2011). Furthermore, the FTO SNP 306 

rs8050136, in LD with rs9939609, significantly interacted with carbohydrate intake on 307 

obesity risk among Asian Indian population (Vimaleswaran et al. 2016).  308 

Regarding genetic interactions with physical activity, a previous study conducted among 309 

200 Turkish adults found that BMI was higher in homozygous risk allele ‘A’ carriers of the 310 

SNP rs9939609 than the homozygote the ‘T’ allele carriers among physically inactive 311 

individuals (Kirac et al. 2016). The same interaction but on a biochemical measure of obesity 312 

(i.e.: adiponectin level), rather than BMI, was replicated in our study using a larger sample 313 

size. We found that, among those with lowest levels of physical activity, the adiponectin 314 

concentrations were significantly lower in the carriers of the risk allele ‘A’ of the FTO 315 

rs9939609 than ‘TT’ homozygotes. Adiponectin is a hormone produced and secreted by 316 

adipose tissue and commonly known for its antihyperglycemic, anti-inflammatory, 317 

antiatherogenic, and cardioprotective effects (Richard et al. 2020; Esmaili et al. 2020; Lee 318 

and Shao 2014). Studies have reported a strong correlation between the dysregulation of 319 

adipokine production and the onset of several metabolic abnormalities including CVD and 320 

cancer (Avogaro and de Kreutzenberg 2005; De Pergola and Silvestris 2013; Xiang et al. 321 

2020). The positive correlation between adiponectin levels and physical activity has been 322 

demonstrated in several studies (St-Pierre et al. 2006; Jurimae et al. 2010; Sirico et al. 2018), 323 



where higher levels of physical activity have been shown to reduce adiposity which decreases 324 

the production of insulin and leptin, and increases adiponectin production (Nurnazahiah et 325 

al. 2016). Indeed, it has been reported that serum concentrations of adiponectin are inversely 326 

related to BMI, visceral body fat and blood concentrations of glucose, insulin, and 327 

triglycerides (De Rosa et al. 2013; Frithioff-Bojsoe et al. 2020). An intervention study 328 

conducted in 400 obese women showed that a weight reduction program resulted in a 329 

significant increase in adiponectin levels (Mavri et al. 2011). Given that this is the first study 330 

to report an interaction between FTO variant and physical activity on adiponectin 331 

concentrations, the findings need to be replicated in a larger Turkish cohort.  332 

The main strengths of this study include the use of a biochemical marker of obesity (i.e., 333 

adiponectin) and a well-characterised population. Nevertheless, there are some limitations 334 

which include the small sample size and the use of self-reported measurements in the 335 

assessment of dietary intake and physical activity. However, this study has still confirmed 336 

the associations between FTO SNP rs9939609 and obesity traits which were also reported in 337 

previous studies (Frayling et al. 2007; Hertel et al. 2011; Peng et al. 2011; Corella et al. 2012; 338 

Li et al. 2012; Merra et al. 2020; Schlauch et al. 2020). Given that obesity is a multifactorial 339 

condition, several genetic factors and lifestyle behaviours provide a predisposition to obesity; 340 

even though we have focused on the two important lifestyle factors, diet and physical activity, 341 

only two genetic variants were examined. However, to date, the FTO gene has been shown 342 

to be the strongest susceptibility gene for common obesity (Frayling et al. 2007; Scuteri et 343 

al. 2007; Speliotes et al. 2010; Loos an Yeo 2014). Furthermore, the cross-sectional design 344 

of this study limits the proof of causality. Even though our analysis was adjusted for several 345 

confounders, we cannot rule out the residual confounding caused by unknown factors. 346 

Therefore, the observed interactions needed to be confirmed in further studies with larger 347 

sample sizes. 348 

Conclusion 349 



In summary, this study has confirmed the associations between the risk allele ‘A’ of the FTO 350 

rs9939609 and GRS, with obesity related traits including BMI and FMI in this Turkish 351 

population. Our study suggests that the impact of the FTO polymorphisms, rs10163409 and 352 

rs9939609, on obesity among Turkish adults might be affected by dietary protein intake and 353 

physical activity levels, respectively, suggesting that increased consumption of protein-rich 354 

foods and sedentary lifestyle could possibly increase the genetic risk ofc central obesity. Our 355 

results provide significant public health implications, given that the rising prevalence of 356 

central obesity is a major public health problem in Turkey (Pekcan et al. 2017; WHO, 2018). 357 

Further studies with large sample size and objective measures of environmental factors are 358 

required to provide a better understanding of how these variants interact with lifestyle factors 359 

to develop effective prevention and treatment strategies for obesity. 360 
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Figure Captions 

Figure 1. Interactions of the FTO rs10163409 with tertiles of protein intake (g) on 

increased WC. WC, Waist Circumference. Black bars implicate the ‘T’ allele carriers 

(TA+TT). FTO SNP rs10163409 showed a significant interaction with protein intake (g) 

on the risk of increased WC (Pinteraction= 0.044). Among those in the highest tertile of 

protein intake (mean ± SD: 138±38 g/day), the minor ‘T’ allele carriers of the SNP 

rs10163409 had a significantly higher risk of increased WC [OR= 3.3 (95% CI: 1.149-

9.478), p = 0.027] than those carrying ‘AA’ genotype. *Odds ratio adjusted for age, 

gender, hypertension, cardiovascular diseases, total energy intake and obesity status 
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Figure 2. Interactions between FTO rs9939609 variant and physical activity on 

adiponectin levels. White bars indicate carriers of ‘TT’ genotype. Black bars implicate 

the risk allele, ‘A’, carriers (AT +AA). The regression model was adjusted for age, gender 

hypertension, cardiovascular diseases and obesity status. There was a significant 

interaction between the FTO SNP rs9939609 and physical activity on adiponectin levels 

(Pinteraction= 0.027), where, among those with low physical activity levels, carriers of the 

‘A’ allele had significantly lower adiponectin levels compared to those with  ‘TT’ 

genotype (p=0.006).  

 

Figure 3. Association between the genetic risk score of the FTO SNPs, rs9939609 

and rs10163409s and anthropometric measures of obesity.  

BMI, Body Mass Index; FMI, Fat Mass Index; WC, Waist Circumference. White bars: 

means of individuals with genetic risk score (GRS) of <2 risk alleles. Black bars: means 

of individuals with GRS of ≥2 or more risk alleles. The GRS was significantly associated 

with BMI (3a), FMI (3b) and WC (3c). Figure 3a; carriers of ≥2 or more risk alleles of 

the FTO variants (rs9939609 and rs10163409) had higher BMI (P=0.002) compared to 

individuals carrying <2 risk alleles.  Figure 3b; carriers of ≥2 or more risk alleles of the 

FTO variants (rs9939609 and rs10163409) had higher FMI (P=0.003) compared to 

individuals carrying <2 risk alleles. Figure 3c; carriers of ≥2 or more risk alleles of the 

FTO variants (rs9939609 and rs10163409) had higher WC (P=0.020) compared to 

individuals carrying <2 risk alleles. P values were obtained from linear regression 

analysis and adjusted for age, gender, hypertension, cardiovascular diseases and obesity 

status. 

 

 


