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1. Introduction

Haloheteroarenes serve as versatile building blocks in organic
This article has been edited by the Royal Society M v ' g . &

i chemistry, most notably as coupling partners in transition metal-
of Chemistry, including the commissioning,

catalysed cross-coupling reactions for the formation of C-C
peer review process and editorial aspects up to and C-N bonds. Owing to their utility, haloheteroarenes have
the point of acceptance. been used in the construction of molecules of biological interest
including natural products [1-3] and small molecules in drug
Electronic supplementary material is available discovery programmes such as Merck’s recent LRRK2 inhibitor,
online at https://dx.doi.org/10.6084/m9. MLi-2 [4] and Vertex’s PKC ¢ inhibitor (figure 1), [5] )
Few methods are documented that describe the selective
figshare.c.4T16533. monohalogenation of heteroaromatic scaffolds [6-8]. A traditional
approach to the regiospecific installation of a halogen atom
on a substrate is the thermal halodecarboxylation of a silver(I)
carboxylate salt in the presence of a halide source known
as the Hunsdiecker-Borodin reaction (HBR) (figure 2) [10-12].
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Figure 1. Chemical bonds in red can be constructed through cross-coupling with haloheteroarene precursor.
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Figure 2. Strategies for halodecarboxylation [8,9].
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Substrates for the HBR are often aliphatic carboxylates with limited aromatic and heteroaromatic
caboxylates being employed successfully [9]. The preparation of bromopyridines under basic aqueous
conditions at elevated temperatures offers a rare example of the HBR being successfully applied to
heterocyclic acid substrates [13,14]. The major shortcoming of the HBR is the requirement to isolate the
dry silver carboxylate salt in sufficient purity to undergo decarboxylation and afford the corresponding
halide in good yield [15]. Accordingly, modifications of the HBR such as the Cristol-Firth modification
(CFM) and Kochi modification (KM) avoid the need to isolate the silver salt by employing more
stable metal salts such as red mercury [16] and lead acetate [17] that undergo halodecarboxylation on
heating in situ. The CFM and KM suffer from the same major limitation that they both employ toxic
metal reagents to initiate the decarboxylation. The Barton modification avoids the use of toxic and
expensive metals yet requires the preparation of the respective thiohydroxamate ester (Barton ester).
Halodecarboxylation of the Barton ester results in the formation of both the desired halide and the
undesired 2-(alkylthio)-pyridine side-product, limiting the atom efficiency of the reaction (figure 2)
[18]. Recent advances in the field include the metal-free decarboxylative halogenation of unsaturated
carboxylic acids with N-halosuccinimides in the presence of tetrabutylammonium trifluoroacetate [19],
LiOAc [20] or photolysis with bromine and PhI(OAc); [21,22]. Hypervalent iodine has also been used by
Hamamoto & Miki [23] for the synthesis of polybromoindoles. However, this methodology is seemingly
unable to produce mono-halogenated products and requires the use of alkali metal salts as the halide
source. Since preparing this manuscript, a recent report by Larrosa [24] has described the decarboxylative
iodination of benzoic and heterobenzoic acids through the use of iodine and potassium phosphate.
Although this protocol is very diverse, it requires the use of stoichiometric amounts of base, elevated
temperatures (100°C) and currently suffers from over bromination (wWhen bromine is used in place of
iodine) of substrates owing to the increased electrophilicity of bromine in comparison to that of iodine.

With the above in mind, current methods of halodecarboxylation suffer from the use of highly toxic
and expensive metals employed in stoichiometric amounts, requires the use of corrosive elemental halide
sources or suffer over halogenation. It is, therefore, desirable to establish a more reliable and economical
method for mono-halodecarboxylation of heteroarene carboxylic acids to furnish synthetically useful
haloheteroarenes. Presently, we describe a simple base-free method for the regiospecific mono-
halodecarboxylation of substituted and unsubstituted heteroarene carboxylic acids under mild and
metal-free conditions at room temperature with N-bromosuccinimide (NBS) and N-chlorosuccinimide
(NCS).

2. Results and discussion

Our interest in the synthesis of haloheteroarene precursors peaked when exploring indazoles as a
potential scaffold for an in-house kinase inhibitor project. Our studies began somewhat fortuitously
with the bromodecarboxylation of indazole 1 with NBS. The reaction proceeded with two equivalents of
NBS in N,N-dimethylformamide (DMF) at room temperature affording product 2 in 35% yield (table 1,
entry 1) after just 1h. Inspection of the reaction mixture by liquid chromatography-mass spectrometry
(LCMS) analysis appeared to show that a dibrominated product had also formed as a major impurity.
Gratifyingly, by decreasing the equivalents of NBS it was observed that no measurable amount of
dibrominated product was formed. Despite the reaction being facile it was found that by extending the
reaction time from 1 to 16 h, the reaction reliably went to completion. Under the optimized conditions
product 2 was furnished in 77% isolated yield (table 1, entry 2).

Reactions involving NBS can be exothermic and can pose a risk when undertaken on a large scale
[25], therefore, we sought to employ a solvent that was predicted to be safe to use on a large scale and in
addition would furnish the desired product in high yield. A small solvent screen was undertaken with
solvents that were reported to cause negligible exotherms when used with NBS (table 1, entries 3-5)
[25]. Unfortunately, none of these solvents facilitated the halodecarboxylation reaction in as high yield as
observed when the reaction was carried out in DMF (table 1).

With the halodecarboxylation procedure in hand, the indazole carboxylic acid scope was investigated
(figure 3). A variety of indazole carboxylic acids were subjected to the reaction with NBS in DMF
(products 2-13). Examples of indazole acids bearing electron withdrawing (products 3-5) and electron
donating substituents (products 8 and 9) underwent decarboxylative bromination in excellent yields
under the reaction conditions. However, when the electron donating methoxy group was moved to
the 4, 6 and 7 positions on the indazole (10, 11 and 12), no product could be detected. The use of
N-methyindazole to afford compound 13 appeared to be unsuccessful, with no halodecarboxylated
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Table 1. Screening of optimal conditions. Reaction conditions: 1(0.2 mmol), NBS, solvent (1.5 ml) at room temperature (rt).
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Figure 3. Halodecarboxylation of indazoles. Reaction conditions: heteroarene carboxylic acid (0.2 mmol), NBS (0.2 mmol), solvent
(1.5 ml) at room temperature (rt).

product observed by LCMS—it appears as though the presence of the free indazole N-H is a requirement
for decarboxylation when using the current set of reaction conditions. Halodecarboxylation to afford the
5-amino indazole analogue (product 7) also proved unsuccessful. Initial mechanistic investigations reveal
that the reaction possibly proceeds through a non-radical pathway, as the reaction continued to proceed
when performed in the absence of light. However, detailed mechanistic investigations are continuing
within our laboratory, and so a clearer insight into the lack of reactivity of some substrates will be detailed
in due course.

We now turned our attention to chlorodecarboxylation and iododecarboxylation reactions using the
optimized conditions but employing NCS and N-iodosuccinimide (NIS) as halide sources (table 2, entries
2 and 3). Although the chlorodecarboxylation product (table 2, entry 2) was obtained in lower yield
than the bromodecarboxylation product (table 2, entry 1) using similar conditions, the current procedure
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Table 2. Screening of halodecarboxylation conditions. Reaction conditions: 1 (0.2 mmol), N-halosuccinimide, DMF (1.5 ml) at room
temperature (rt).

OH X
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Figure 4. Halodecarboxylation of heteroarene carboxylic acids. Reaction conditions: heteroarene carboxylic acid (0.2 mmol), NBS
(0.2 mmol), solvent (1.5 ml) at room temperature (rt).

represents one of the few ways to synthesize chloroheteroarenes under mild conditions. Unfortunately,
the iododecarboxylation was not facilitated under the current reaction conditions.

To demonstrate the versatility of the halodecarboxylation procedure for heteroarenes, further
reactions with NBS were investigated (figure 4). Although halo-indoles (products 14-16) have been
reported in the literature to be problematic to isolate [26,27], under the current procedure we have been
able to furnish 15 and 16 in reasonable yields.

Aza-indole and aza-indazole acids underwent halodecarboxylation smoothly to furnish the
corresponding haloheteroarenes 17 and 18 in good yield, implying that more electron deficient systems
undergo halodecarboxylation efficiently under the current conditions. Attempts to further expand this

methodology to simple benzoic acids have currently proved unsuccessful, although this remains an
active area of research within our group.

3. Conclusion

In summary, a mild and efficient protocol for the mono-halodecarboxylation of heteroarene carboxylic
acids has been developed. It is noteworthy that this halodecarboxylation is metal-free and displays
significant advantages over traditional methods of halodecarboxylation that commonly require harsh
reaction conditions, toxic reagents or suffer over bromination. The proposed method extends the
substrate scope of traditional halodecarboxylations to heteroarene substrates. This methodology
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provides a novel and direct route to haloheteroarene building blocks that can be used in transition metal-
catalysed cross-coupling reactions to construct molecules of scientific importance. Investigations into the

site-selective halodecarboxylation of other heteroarene acid precursors are currently underway in our
laboratory.
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