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ABSTRACT
The problem of minimizing the makespan on parallel identical machines is considered in the presence
of additional resources, provided that some jobs at any time of their processing require one unit of a
particular resource. We establish a lower bound on the worst-case performance of any group technology
algorithm, which schedules the composite jobs formed of the original jobs that require the same resource.
A simple group technology algorithm is given such that in the worst case no group technology algorithm
performs better. An algorithm for the two-machine case is presented which guarantees a tight worst-case
performance ratio of 6/5.
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1. Introduction

The problems of the classical Machine Scheduling are formulated in terms of jobs to be processed
on machines. However, in practical applications to process a job not only a machine is required but
also additional resources, which are different from the processing machines. Thus, within Machine
Scheduling there is an established research area known as Scheduling under Resource Constraints.
There are multiple publications in this area which have been reviewed in a number of surveys, from the
earliest by B lažewicz et al. (1983) till the most recent by B lažewicz et al. (2019).

In this paper, we consider one of the problems on parallel machines under resource constraints. The
jobs of set N = {J1, J2, . . . , Jn} have to be processed non-preemptively on m identical parallel machines
M1, . . . ,Mm. The processing time of job Jj ∈ N is equal to pj . There are also q ≥ 1 additional renewable
resources, so that at any time moment exactly one unit of each resource is available. Set N is partitioned
into q + 1 disjoint sets N0, N1, . . .Nq, where each job of set N0 does not require any resource, while
each job of set Nk at any time of its processing requires one unit of resource k, 1 ≤ k ≤ q. A job of set
N0 is called a non-resource job; all other jobs are called the resource jobs.

For any k, 1 ≤ k ≤ q, at most one job of set Nk can be processed at a time. The objective is to
minimize the makespan, i.e., the maximum completion time. This problem is clearly no easier than
the corresponding problem without resource constraint. The latter problem is well-known to be NP-
hard for any fixed number of machines m ≥ 2. Therefore, a search for an approximation algorithm for
the problem under consideration is of interest. In this paper, we focus on a class of so-called group
technology algorithms, which treat the jobs that require the same resource as a single composite job.

The remainder of this paper is organized as follows. In Section 2, we discuss the issues of the nota-
tion for scheduling problems with resource constraints, briefly review relevant results and address the
motivation for studying the model under consideration. In Section 3, we establish a lower bound on
the worst-case ratio of any group technology algorithm and present a simple algorithm such that in the
worst case no group technology algorithm may perform better. For the two-machine case, an algorithm
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with an improved performance is given in Section 4. Concluding remarks are contained in Section 5.

2. Notation, Motivation and Review

For a scheduling problem, the completion time of a job Jj in a feasible schedule S is denoted by Cj (S);
often, if no confusion arises, the reference to the schedule is omitted and we simply write Cj . The most
popular objective functions for the scheduling problems are the makespan Cmax (S) = max {Cj |Jj ∈ N}
and the total completion time

∑
Jj∈N Cj (S).

In order to denote scheduling problems in a clear and compact way, the three-field classification
scheme of the form α|β|γ is widely accepted, where α describes a machine environment, β is responsible
for presenting the processing conditions and γ is the objective function. For example, the classical
problem of minimizing the makespan Cmax on m parallel machines is denoted either by P | |Cmax if
the number of machines is variable (part of the input) or by Pm | |Cmax if the number of machines
is fixed and equal to m. The middle field is empty, and that means that in a feasible schedule no
preemption is allowed. Similarly, the problem of minimizing the total completion time for the same
machine environment is denoted either by P | |

∑
Cj or by Pm | |

∑
Cj depending on whether the

number of machines is variable or fixed, respectively.
For the scheduling problems under the resource constraints, the notation that has become standard

since its first appearance in B lažewicz et al. (1983) places into the middle field β a string that specifies
the rules of resource usage by addressing three parameters.

Despite its popularity, that notation does not provide enough details in order to distinguish between
various versions of the resource-constrained problems. Below, we propose to extend the number of the
parameters to four and add to the middle field β a string of the form “res ρ1ρ2ρ3ρ4”, where

• ρ1 is the number of available renewable resources;
• ρ2 is an upper bound on the number of resources a job may need;
• ρ3 is an upper bound on the number of units of any resource available at a time;
• ρ4 is an upper bound on the number of units of any resource that can be consumed by a job at a

time.

The value of each of this parameters is either a known constant or the symbol “·” if the value of the
parameter is variable (part of the input). In accordance with this updated scheme, the problem of our
primary concern can be denoted by P |res · 111|Cmax. The notation implies that

• ρ1 = “·”, i.e., that there several renewable resources (as above, we use the variable q to denote
their number);
• ρ2 = 1, i.e., each job needs either none or exactly one resource at any time of its processing;
• ρ3 = 1, i.e., one unit of each resource is available at a time;
• ρ4 = 1, i.e., a resource job consumes one unit of the relevant resource at any time of its processing.

In the traditional scheme the parameter ρ2 was missing. Therefore, in most of the previously consid-
ered models with resource constraints it was assumed that a job might need any number of resources.
The four-parameter scheme is free from that drawback.

In fact, there is a considerable interest, both from the theoretical and practical prospective, in schedul-
ing models in which a job may only need a fixed number of resources, in particular in those models
that are described by the string “res · 111”.

A natural meaningful interpretation of problem P |res · 111|Cmax is related to human resource man-
agement. The projects (jobs) can be performed by any of the available m teams (machines). However,
to be able to perform certain projects a team must additionally include an extra employee with a
special skill. For each skill k, 1 ≤ k ≤ q, there exactly one employee who possesses this skill, i.e., such
an employee can be seen as a renewable resource k. This, for instance, happens if a project is to be
done for a foreign client and a team must additionally include a linguistic expert to deal with issues
of communication and documentation. An individual that knows a particular foreign language (e.g.,
French, Japanese or Norwegian) is understood as an additional resource. Provided that only one person
is available to be included into a team that requires an expert in a particular language, in order to
complete all projects as early as possible, problem P |res · 111|Cmax has to be solved.

An interesting application is reported by Hebrard et al. (2016), who motivate their study of problem
P |res · 111|Cmax by the problem that arise in satellite data download management. The observation
satellite makes multi-frequency optical recordings which are kept in q memory banks on board the
satellite, each bank containing recordings made at the same frequency k, 1 ≤ k ≤ q. When the satellite
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establishes a communication link with a ground station, the observations can be downloaded via m
communication channels, at most one file from each of the q banks at a time. The purpose is to perform
the download as fast as possible due to a rather short communication window. Thus, here a file in each
memory bank can be seen as a job that requires the same resource and the m channels play roles of
the machines.

The following problem that is found in the microelectronic industry motivates the study of problem
P |res · 111|

∑
Cj in Janssen et al. (2018). Pieces of photolithography equipment are used to transfer the

geometric pattern of the chip design onto a wafer. This is done by putting light onto the wafer through a
reticle that contains the required geometric pattern. In scheduling terms, the pieces of photolithography
equipment are (parallel) machines, and reticles are additional resources, one per each chip design.

Now we briefly review the issues of the computational complexity and approximability of scheduling
problems that are relevant to the main object of our study, the problem P |res · 111|Cmax.

We start with the classical problem on identical parallel machines with no resource constraints. It
is well-known that Problem P2 | |Cmax is NP-hard in the ordinary sense, while problem P | |Cmax is
strongly NP-hard. For many years, the main topic of research on problem P | |Cmax has been that of
developing approximation algorithms and schemes. It is beyond the scope of this paper to review all
results on approximability of problem P | |Cmax; we refer the reader to the focused survey Chen (2004).
Below we only mention the definitions and results which are closely related to the content of this paper.

For an NP-hard scheduling problem of minimizing the makespan, the quality of an approximation
algorithm that delivers a feasible schedule SH is measured by bounding the ratio Cmax

(
SH
)
/Cmax (S∗).

A polynomial-time algorithm is called an R-approximation algorithm if the inequality

Cmax

(
SH
)

Cmax (S∗)
≤ R (1)

holds for all instances of the problem. The value of R is tight if the inequality (1) holds as equality for
at least one instance of the problem. A tight value of R is called the worst-case ratio.

Historically, one of the first results on worst-case analysis of scheduling approximation algorithms
belongs to R.L. Graham who described and analyzed a so-called List Scheduling algorithm for problem
P | |Cmax; see Graham (1966). The List Scheduling algorithm scans the jobs in accordance with a list
and assigns the next job to the first available machine. In the case of an arbitrary list, the algorithm
by Graham (1966) is a (2− 1/m)-approximation algorithm. It is shown in Graham (1969) that if the
jobs are sorted in the LPT order, i.e., in non-increasing order of their processing times, then the List
Scheduling algorithm behaves as a (4/3− 1/ (3m))-approximation algorithm. A clarification on the
performance of the LPT List Scheduling algorithm is reported in Chen (1993).

We now pass to considering problems under resource constraints on identical parallel machines. Most
of known results in the area are on the models with unit processing times. In particular, problem
P |res · ·11|Cmax is NP-hard in the strong sense even if all processing times are unit; see B lažewicz et
al. (1983). If the processing times are arbitrary, then clearly problem P2 |res · 111|Cmax with at most
one resource per job is no simpler than the classical problem P2 | |Cmax without resource constraints
and is therefore NP-hard.

All surveys, including B lažewicz et al. (2004), Edis et al. (2013) and B lažewicz et al. (2019),
demonstrate that there is lack of approximation results on parallel machine scheduling with ar-
bitrary processing times under resource constraints. The only result mentioned in these reviews
is a R-approximation algorithm designed in for problem P |res · · · ·|Cmax with q resources, where
R = min

{
1
2m, q + 2− 1

m (2q + 1)
}

is not bounded by a constant and is therefore impractical. Be-
sides, the paper Hebrard et al. (2016) delivers a number of approximation algorithms for problem
P |res · 111|Cmax, in both on-line and off-line settings. In particular, one of the algorithms described
in Hebrard et al. (2016) behaves as an R-approximation algorithm with R = (2m) / (m+ 1), although
this bound is only proved tight for m = 2. One of the results of our paper is a simpler algorithm with
the same worst-case performance that cannot be improved in a certain class of algorithms.

We conclude our brief review with considering the model with parallel dedicated machines under
resource constraints. For this machine environment, denoted by “PD”, it is known in advance on which
machine a particular job must be processed

As shown in Kellerer & Strusevich (2004), problem PD2 |res · 111|Cmax admits a linear time so-
lution algorithm. On the other hand, problem PD3 |res1111|Cmax is NP-hard in the ordinary sense,
while problem PD |res1111|Cmax with a variable number of machines m ≥ 3 is NP-hard in the strong
sense, as proved in Kellerer & Strusevich (2003). In the latter paper it is also shown that problem
PD |res1111|Cmax admits an R-approximation algorithm, where R = 3/2 − 1/ (m+ 1) for an odd m
and R = 3/2 − 1/m for an even m. For m = 3, the worst-case performance ratio can be improved to
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5/4.
Kellerer & Strusevich (2004) show that problem PD2 |res11 · ·|Cmax with a single resource of an

arbitrary quantity and problem PD2 |res2211|Cmax with two resources of unit quantity is solvable in
O (n) time each. On the other hand, each of the problems PD2 |res2222|Cmax and PD2 |res3311|Cmax

is NP-hard. Furthermore, a 2-approximation algorithm is developed for problem PD |res · 111|Cmax

with more than two parallel dedicated machines.

3. Group Technology Approach

In this section, we present and analyze an approximation algorithm for problem P |res · 111|Cmax that
is based on the group technology approach. A group technology approach is a scheduling technique
which is based on substitution of a group of jobs sharing a certain property by a single composite job.
Such a technique is often used in scheduling with precedence constraints (see, e.g., Lawler (1978)) and
with batching (see, e.g., Strusevich (2000)). An approximation algorithm for problem PD |res1111|Cmax

presented in Kellerer & Strusevich (2003) is also based on the group technology approach.
Given an instance of the problem, for a non-empty set Q ⊆ N of jobs denote

p (Q) =
∑
j∈Q

pj ;

for completeness, define p (∅) = 0.
For a schedule S that is feasible for problem P |res · 111|Cmax, the job that completes last is called

the terminal job, and the machine to which that job is assigned is called the critical machine. The
makespan is equal to the sum of the processing times of the jobs assigned to a critical machine.

Similarly to the classical problem P | |Cmax with no resource constraints, the makespan of any
schedule that is feasible for problem P |res · 111|Cmax cannot be smaller that the processing time of
any job of set N0 that does not require any resource. Additionally, the makespan cannot be smaller
than the average machine load p (N) /m. Besides, for any k, 1 ≤ k ≤ q, no two jobs of set Nk cannot
be processed in parallel. Thus, the following lower bound

Cmax (S) ≥ max

{
1

m
p (N) ,max {pj |Jj ∈ N0} ,max {p (Nk) |1 ≤ k ≤ q}

}
(2)

holds. A schedule that is optimal for problem P |res · 111|Cmax is denoted by S∗.
Given an instance of problem P |res · 111|Cmax, associate each set Nk of the resource jobs with a

composite job Vk, 1 ≤ k ≤ q. The processing times of these composite jobs are defined by

p (Vk) = p (Nk) , 1 ≤ k ≤ q.

Here Vk is a new composite job, while Nk is the set of initially given jobs that require resource k,
1 ≤ k ≤ q, and the processing time of the composite job Vk is equal to the sum of the processing times
of the jobs in the corresponding set Nk.

For consistency, each non-resource job Jj ∈ N0 is also treated as a composite job, and after an
appropriate renumbering, these jobs are denoted by Vq+1, . . . , Vq+n0

, where n0 = |N0|. The processing
time p (Vq+i), 1 ≤ i ≤ n0, of a composite job associated with some non-resource job is equal to the
processing time of that non-resource job.

Thus, with introduction of the composite jobs, we may associate the initial instance I of the problem
that consists of n jobs, some of which require a resource, with a new instance IG that consists of q+n0
composite jobs. For illustration, consider the instance presented in Table 1. For such an instance I, the
associated instance IG will contain 10 composite jobs, each of duration 3.

The group technology approach is based on scheduling an instance IG of composite jobs. Let SG be
a schedule for instance IG on m parallel machines. In such a schedule, we need not worry about the
resource constraints, since all jobs that require the same resource are processed as a block on one of
the machines. We will call a schedule SG of the composite jobs a group technology schedule. Clearly, a
schedule SG can be converted to a feasible schedule for the original instance by replacing a composite
job by the block of the corresponding original jobs.

Let S∗G be an optimal group technology schedule, i.e., the inequality

Cmax (S∗G) ≤ Cmax (SG)
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Resource

1

2

3

4

5

6

7

8

9

10

Sets

N1 = {J1, J4}

N2 = {J2, J5}

N3 = {J3}

N4 = {J6, J7, J8}

N5 = {J9}

N6 = {J10}

N7 = {J11}

N8 = {J12}

N9 = {J13}

N10 = {J14}

Durations

p1 = 1, p4 = 2

p2 = 2, p5 = 1

p3 = 3

p6 = p7 = p8 = 1

p9 = 3

p10 = 3

p11 = 3

p12 = 3

p13 = 3

p14 = 3

Table 1. Illustration: Input with m = 3 machines, q = 10 resources and 14 original jobs

holds for any group technology schedule SG. The following lemma shows how bad a group technology
schedule could be with respect to the overall optimal schedule. Consider the ratio Cmax (S∗G) /Cmax (S∗)
of the makespan for an optimal group technology schedule to the makespan of the overall optimal
schedule. In order to show that in the worst case the above ratio cannot be smaller than a particular
value, we need to exhibit at least one instance of the problem for which the ratio is equal to such a
value. In the proof above we construct a series of instances that depend on an integer r. The required
instance in built in such a way that in the optimal group technology schedule S∗G the terminal job is
scheduled in the rth position on the critical machine.

Lemma 3.1. For any integer r ≥ 2, there exists an instance of problem P |res · 111|Cmax such that

Cmax (S∗G)

Cmax (S∗)
=

rm

(r − 1)m+ 1
.

Proof. Given an integer r ≥ 2, consider the following instance of problem P |res · 111|Cmax with
n = (r + 1)m−1 jobs, q = (r − 1)m+1 resources, and the following structure of resource requirements

Nk = {Jk, Jm+k} ; pk = k, pm+k = m− k, 1 ≤ k ≤ m− 1;

Nm = {Jm} ; pm = m;

Nm+1 = {J2m, J2m+1, . . . , J3m−1} , p2m+i−1 = 1, 1 ≤ i ≤ m.

Additionally, if r ≥ 3 define

Nk = {J2m−2+k} ; p2m−2+k = m; m+ 2 ≤ k ≤ (r − 1)m+ 1.

In the described instance, there are no non-resource jobs, i.e., N0 = ∅.
If we apply the group technology approach, we get q = (r − 1)m+ 1 composite jobs Vk, 1 ≤ k ≤ q,

with p (Vk) = m. In an optimal group technology schedule S∗G, there will be a machine that processes
r composite jobs, so that Cmax (S∗G) = rm.

For this instance, p (N) = ((r − 1)m+ 1)m. Due to (2), for any feasible schedule Cmax (S) ≥
(r − 1)m+ 1 = q. An optimal schedule S∗ for which Cmax (S∗) = (r − 1)m+ 1 can be constructed as
follows. For each k, 1 ≤ k ≤ m − 1, machine Mk processes job Jk ∈ Nk in the time interval [0, k] and

5

Page 5 of 17

URL: https://mc.manuscriptcentral.com/ors-jors

Journal of the Operational Research Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

M1

M2

M3

V1 V4 V7 V10

V2 V5 V8

V3 V6 V9

0 3 6 9 12

7 10

(a)

M1

M2

M3

J1 J4J6 J9 J12

J2 J7 J5 J10 J13

J3 J8 J11 J14

0 1 2 3 4 7 10
(b)

Figure 1. (a) an optimal group technology schedule S∗
G; (b) an overall optimal schedule S∗

the other job Jm+k of set Nk in the time interval [k + 1,m+ 1]. Machine Mm processes job Jm ∈ Nm

in the time interval [0,m]. Additionally, each machine Mi, 1 ≤ i ≤ m, processes job J2m+i−1 ∈ Nm+1

in the time interval [i, i+ 1].
Besides, if r ≥ 3, the remaining (r − 2)m jobs of duration m time units each are processed in

the time intervals [m+ 1, 2m+ 1], [2m+ 1, 3m+ 1] , . . ., [(r − 2)m+ 1, (r − 1)m+ 1], m jobs in each
interval, each job on one machine. This schedule is feasible, since the jobs that require the same resource
k, 1 ≤ k ≤ m, are processed on machine Mk, while the jobs of set Nm+1 are processed without
overlapping. The makespan of the constructed schedule is (r − 1)m+ 1, and it is optimal for problem
P |res · 111|Cmax.

Comparing the expressions derived for Cmax (S∗G) and Cmax (S∗), we deduce that the lemma holds.

For illustration of the above proof, consider the following example of the input described above for
the case of m = 3 and r = 4. In this case, there are q = 10 resources and n = 14 jobs as shown in
Table 1, including the color scheme to denote each resource. In an optimal group technology schedule
S∗G, 4 of the 10 composite jobs are assigned to one of the machines, while each of the remaining two
machines processes 3 composite jobs; see Figure 1(a). On the other hand, there is an overall optimal
schedule S∗, built as described above and shown in Figure 1(b). Thus, for this instance Cmax (S∗G) = 12
and Cmax (S∗) = 10, as required.

We now present a simple group technology algorithm that schedules the composite jobs in accordance
with the famous LPT List scheduling algorithm by Graham (1969). Recall that the original Graham’s
algorithm is an approximation algorithm for problem P | |Cmax. It creates a list of jobs by sorting them
in the LPT (Longest Processing Time) order, i.e., in non-increasing order of the processing times, and
assigns the next job in the list to the first available machine. In the presence of the resource jobs, the
algorithm can be stated as follows.

Algorithm GT

Step 1. Create composite jobs Vk, 1 ≤ k ≤ q, and compute their durations p (Vk) = p (Nk). If N0 6= ∅,
replace the non-resource jobs by the composite jobs Vq+1, . . . , Vq+n0

, where n0 = |N0|.
Step 2. If necessary, renumber the composite jobs in such a way that

p (V1) ≥ p (V2) ≥ · · · ≥ p (Vq+n0
) .

Step 3. Considering the composite jobs in the order of their numbering, assign the next job to the
first available machine, breaking ties arbitrary.

Step 4. Output the resulting schedule as schedule SLPTG .
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Let us estimate the running time of Algorithm GT. Steps 1 and 2 require O (n) and
O ((q + n0) log (q + n0)) time, respectively. Step 3 can be implemented in O ((q + n0) logm) time by
maintaining a non-decreasing sequence of the machine completion times in the current partial schedule.
Thus, the overall time complexity of the algorithm is O ((q + n0) (logm+ log (q + n0)) + n).

For schedule SLPTG , let r be the position of the terminal job V` on the critical machine. Clearly, if
r = 1, then Cmax

(
SLPTG

)
is equal to either the processing time of a non-resource job or to the total

processing processing time of the set of jobs that require the same resource. Thus, in the case of r = 1,
schedule SLPTG corresponds to an optimal schedule S∗. The a posteriori behaviour of Algorithm GT is
studied in the theorem below.

Theorem 3.2. Suppose that schedule SLPTG found by Algorithm GT terminates by processing a com-
posite job V` that is the rth on its machine, where r ≥ 2. Then the bound

Cmax

(
SLPTG

)
Cmax (S∗)

≤ rm

(r − 1)m+ 1
(3)

holds.

Proof. Suppose that in schedule SLPTG the terminal job V` starts on its machine at time R`, so that

Cmax

(
SLPTG

)
= R` + p (V`) .

Notice that due to the LPT List scheduling in Step 3 we have that

R` ≥ (r − 1) p (V`) . (4)

Suppose that the theorem does not hold, so that

R` + p (V`) >
rm

(r − 1)m+ 1
Cmax (S∗) ,

which due to (2) implies that

R` + p (V`) >
r

(r − 1)m+ 1
p (N) . (5)

Every machine is busy in the time interval [0, R`]; otherwise, job V` would have started earlier than
time R`. Thus, we deduce that

(m− 1)R` < p (N)− (R` + p (V`))

≤
(

1− r

(r − 1)m+ 1

)
p (N) =

(r − 1) (m− 1)

(r − 1)m+ 1
p (N) ,

i.e.,

R` <
r − 1

(r − 1)m+ 1
p (N) .

However, to guarantee (5) we must have p (V`) >
1

(r−1)m+1p (N), which contradicts (4).

Lemma 3.1 and Theorem 3.2 imply that Algorithm GT finds a group technology schedule which
deviates from the overall optimum no more than an optimal group technology schedule does in the
worst case.

Theorem 3.2 provides an a posteriori bound on the performance of Algorithm GT. To derive an a
priori bound, without the knowledge of the position of the terminal job, define

RGT =
2m

m+ 1
. (6)
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Corollary 3.3. Given any instance of problem P |res · 111|Cmax, for schedule SLPTG found by Algo-
rithm GT the bound

Cmax

(
SLPTG

)
Cmax (S∗)

≤ RGT (7)

holds.

To see that Corollary 3.3 holds, notice that in schedule SLPTG the terminal job is either the only job
on its machine and the schedule is optimal, or it is at least the second on its machine and (7) follows
from (3) with r = 2.

Thus, there is a limit on the use the group technology approach: if we want an approximation
algorithm which guarantees a worst-case ratio lower than RGT defined by (6), we need to search for
a heuristic schedule in which the jobs that require the same resource are not always kept as a single
composite job.

Notice that Hebrard et al. (2016) present an algorithm, called Algorithm MaxLoad in their paper,
that guarantees the same worst-case ratio of RGT as Algorithm GT. However, Algorithm MaxLoad is
more complicated than a group technology algorithm. Its running time is not explicitly estimated in
Hebrard et al. (2016), but it is definitely larger than the running time of Algorithm GT. Besides, in
Hebrard et al. (2016) the bound RGT is only proved tight for m = 2. In our case, the tightness of RGT
follows from Lemma 3.1, the corresponding instance is obtained by setting r = 2.

4. Two-Machine Case

In this section, we focus on the two-machine case and present an algorithm that for problem
P2 |res · 111|Cmax finds a heuristic schedule SH such that the bound

Cmax (SH)

Cmax (S∗)
≤ 6

5
(8)

holds.
Let the composite jobs Vk, 1 ≤ k ≤ q + n0, be as defined in Section 3. In what follows, we assume

that q + n0 ≥ 3; otherwise, we have either n0 = 0 and q ≤ 2 or n0 = 1 and q = 1, so that problem
P2 |res · 111|Cmax is trivial.

The algorithm to be presented consists of two stages. The first stage is essentially a modified and
simplified version of Algorithm GT. We present conditions which guarantee that a schedule found by
that algorithm is of the required quality; otherwise, additional actions are taken in the second stage.

For a schedule S, let C(i) (S) denote the completion time of the last job assigned to machine Mi,
i ∈ {1, 2}.

A composite job Vk, 1 ≤ k ≤ q, made up of the resource jobs is called splittable, if |Nk| ≥ 2, i.e., job
Vk can be split in at least two (composite) jobs each formed of the jobs of set Nk. All other jobs are
called non-splittable; in particular all jobs Vq+i associated with the non-resource jobs are non-splittable.

In the algorithm to be used in the first stage there is no need to have a complete LPT list of the
composite jobs. In fact, it suffices to preorder only three longest composite jobs.

Identify three composite jobs with the longest processing times. If necessary renumber the composite
jobs in such a way that these longest composite jobs get the numbers 1, 2 and 3 so that

p (V1) ≥ p (V2) ≥ p (V3) .

If q+n0 ≥ 4, the remaining composite jobs are numbered arbitrary, starting from V4. This renumbering
requires O (n) time.

Consider the following approximation algorithm, which is an adapted version of Algorithm GT.

Algorithm A0

Step 1. From time zero, assign composite job V1 to be processed on machine M1 and the sequence of
composite jobs (V2, V3) on machine M2.

Step 2. If n0 +q ≥ 4, scanning the remaining composite jobs in an arbitrary order, assign the next job
to the first available machine; ties are broken in favour of machine M2. Call the resulting schedule
S0.
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We now present conditions under which Algorithm A0 delivers a schedule of the required quality.

Theorem 4.1. For schedule S0 found by Algorithm A0 the bound

Cmax

(
S0
)

Cmax (S∗)
≤ 6

5
(9)

holds and this bound is tight, provided that for schedule S0 at least one of the following conditions is
satisfied:

(a) the critical machine is M1;
(b) the critical machine is M2, which processes more than two composite jobs;
(c) the critical machine is M2, which processes only jobs V2 and V3 such that p (V2) + p (V3) ≤ 3

5p (N);
(d) the critical machine is M2, which processes only jobs V2 and V3, and each job V1, V2 and V3 is not

splittable.

Proof. Suppose that condition (a) holds. Exclude from consideration the case that only job V1 is
processed on that machine; otherwise, S0 is an optimal schedule. Thus, the terminal job is job V`,
where ` ≥ 4, and therefore

p (V`) ≤ p (V3) ≤ p (V2) . (10)

Let R` denote the start time of job V`. Thus,

Cmax

(
S0
)

= C(1)
(
S0
)

= R` + p (V`) ;

C(2)
(
S0
)
≥ R`.

Suppose that the theorem does not hold, so that

R` + p (V`) >
6

5
Cmax (S∗) ≥ 3

5
p (N) . (11)

This implies that

R` ≤ C(2)
(
S0
)

= p (N)− C(1)
(
S0
)
≤ 2

5
p (N) , (12)

so that in order satisfy (11) we must have

p (V`) >
1

5
p (N) . (13)

However,

C(2)
(
S0
)
≥ p (V2) + p (V3)

which contradicts (12) due to (10).
From now on, assume that in schedule S0 the critical machine is M2. No matter how many jobs are

assigned to machine M2 for the terminal job V` the inequalities (10) hold.
Under condition (b), the terminal job is job V`, where ` ≥ 4. Thus,

Cmax

(
S0
)

= C(2)
(
S0
)

= R` + p (V`) ;

C(1)
(
S0
)
≥ R`.

Assume that (11) holds. This implies that both

R` ≤ C(1)
(
S0
)

= p (N)− C(2)
(
S0
)
≤ 2

5
p (N) (14)

and (13) are true. However,

R` ≥ p (V2) + p (V3)
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Resource

1

2

3

4

Sets

N1 = {J1}

N2 = {J2}

N3 = {J3}

N4 = {J4, J5}

Durations

p1 = 4

p2 = 2

p3 = 2

p4 = p5 = 1

Table 2. The input for m = 2

M1

M2

V1

V2 V3 V4

0 2 4 6
(a)

M1

M2

J1 J4

J5 J2 J3

0 1 3 5
(b)

Figure 2. (a) schedule S0; (b) optimal schedule S∗

which contradicts (14), due to (10).
Under condition (c) we have

C(1)
(
S0
)
≤ C(2)

(
S0
)

= Cmax

(
S0
)
≤ 3

5
p (N) ≤ 6

5
Cmax (S∗) .

Finally, under condition (d), in any optimal schedule S∗ two of the jobs V1, V2 and V3 are assigned
to the same machine, so that Cmax

(
S0
)

= C(2)
(
S0
)

= p (V2) +p (V3) ≤ Cmax (S∗) and S0 is an optimal
schedule.

To see that the bound (9) is tight, consider an instance with five jobs and four resources presented
in Table 2.

Algorithm A0 manipulates four composite jobs, such that

p (V1) = 4, p (V2) = p (V3) = p (V4) = 2.

In schedule S0 the composite job V1 is assigned to machine M1, while the sequence (V2, V3, V4) is
assigned to machine M2, so that Cmax

(
S0
)

= 6; see Figure 2(a).
In order to construct an optimal schedule S∗ of the original jobs, assign the sequence of jobs (J1, J4)

to machine M1 and the sequence of jobs (J5, J2, J3) to machine M2. Such a schedule is clearly feasible
since the jobs J4 and J5 do not overlap. The makespan is equal to 5, which corresponds to the lower
bound (2); see Figure 2(b). Thus, (9) holds as equality.

We are left with the situation that for schedule S0 none of the conditions of Theorem 4.1 holds. In
such a schedule the critical machine is M2 and the terminal job is V3. Let Ṽ denote the composite job
(possibly, dummy) formed of jobs processed on M1 after job V1. The structure of schedule S0 that does
not satisfy the conditions of Theorem 4.1 is shown in Figure 3. In that figure and in the subsequent
illustrative figures we assume that each composite job V1, V2 and V3 is formed of the jobs that require
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M1

M2

V1 Ṽ

V2 V3

Figure 3. Schedule S0 that does not satisfy the conditions of Theorem 4.1

a resource. In general, the composite job Ṽ is a block of both the resource and the non-resource jobs,
so that we do not highlight it by color.

For schedule S0 we have that

Cmax

(
S0
)

= C(2)
(
S0
)

= p (V2) + p (V3) ≥ p (V1) ;

C(1)
(
S0
)

= p (V1) + p
(
Ṽ
)
.

At least one of the composite jobs V1, V2 and V3 is splittable and

C(2)
(
S0
)

= p (V2) + p (V3) >
6

5
Cmax (S∗) ≥ 3

5
p (N) . (15)

Since C(1)
(
S0
)

= p (N)− C(2)
(
S0
)
, we have that

C(1)
(
S0
)
<

2

5
p (N) ,

which implies that

p (V2) ≤ p (V1) ≤ C(1)
(
S0
)
<

2

5
p (N) .

Since p (V3) = p (N)− p (V2)− C(1)
(
S0
)
, we obtain

1

5
p (N) < p (V3) .

Additionally, notice that p
(
Ṽ
)
≤ 1

10p (N); otherwise, p (V1) = p (N)−C(2)
(
S0
)
− p

(
Ṽ
)
< 3

10p (N),

which leads to a contradiction p (V2) + p (V3) ≤ 2p (V1) ≤ 3
5p (N) .

Thus, we need additional actions if at least one of the composite jobs V1, V2 and V3 is splittable, (15)
holds and additionally each of the inequalities

1

5
p (N) < p (V3) ≤ p (V2) ≤ p (V1) <

2

5
p (N) ; (16)

p (V1) + p
(
Ṽ
)

<
2

5
p (N) ; (17)

p
(
Ṽ
)
≤ 1

10
p (N) . (18)

holds.
The algorithm below performs further processing by partitioning either one or two splittable com-

posite jobs.

Algorithm Split

Step 1. If among V1, V2 and V3 there exists a splittable composite job which contains no original jobs
longer than 1

5p (N), then go to Step 2, otherwise go to Step 3.
Step 2. Renumber the composite jobs V1, V2 and V3 using a bijection ϕ : {1, 2, 3} → {λ, µ, ν} in such

a way that the splittable job with no original jobs longer than 1
5p (N) becomes Vλ. If necessary,

renumber the actual jobs in such a way that the jobs of set Nλ are numbered by the integers
starting from 1. Considering the jobs of Nλ in the order of their numbering, find the job Ju such
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that

p (Vµ) + p
(
Ṽ
)

+

u∑
j=1

pj ≤
3

5
p (N) ;

p (Vµ) + p
(
Ṽ
)

+

u+1∑
j=1

pj >
3

5
p (N) . (19)

Define the composite jobs W ′ and W ′′ comprised of the jobs of set {J1, J2, . . . , Ju} and of

set Nλ\ {J1, J2, . . . , Ju}, respectively. From time zero, assign the sequence
(
Vµ, Ṽ ,W

′
)

to be

processed on machine M1 and the sequence (W ′′, Vν) on machine M2, provided that the composite

job W ′ starts on M1 as early as possible, i.e., at time max
{
p (Vµ) + p

(
Ṽ
)
, p (W ′′)

}
. Output the

resulting schedule SH .
Step 3. If exactly one of V1, V2 and V3 is splittable, go to Step 4; if two of these composite jobs are

splittable, go to Step 5; if all three composite jobs are splittable, go to Step 6.
Step 4. Renumber the composite jobs V1, V2 and V3 using a bijection ϕ : {1, 2, 3} → {λ, µ, ν} in such

a way that the splittable composite job is Vλ, while the non-splittable jobs are Vµ and Vν , where
p (Vµ) ≥ p (Vν). Create two schedules, SH1 and SH2 . In schedule SH1 , machine M1 processes the

sequence
(
Vλ, Ṽ

)
, while machine M2 processes the sequence (Vµ, Vν). For schedule SH2 , identify

job Jw, the longest job contained in Vλ and determine Wλ as the composite job formed of the
jobs of set Nλ\ {Jw}. In schedule SH2 , machines M1 and M2 process the sequences (Jw, Vν) and(
Vµ, Ṽ ,Wλ

)
, respectively, where the composite job Wλ starts as early as possible, i.e., at time

max
{
pw, p (Vµ) + p

(
Ṽ
)}

. Output the better of the two schedules SH1 and SH2 as schedule SH .

Step 5. Renumber the composite jobs V1, V2 and V3 using a bijection ϕ : {1, 2, 3} → {λ, µ, ν} in
such a way that the non-splittable job is Vν , while the splittable composite jobs are Vλ and Vµ;
additionally if Jw1

is the longest job contained in Vλ and Jw2
is the longest job contained in Vµ

under the chosen numbering the inequalities

1

5
p (N) < pw1

≤ pw2
(20)

hold. Let Wλ and Wµ be the composite jobs formed of the jobs of set Nλ\ {Jw1
} and of set

Nµ\ {Jw2
}, respectively. Create two schedules, SH1 and SH2 . In schedule SH1 machines M1 and M2

process the sequences (Jw1
, Jw2

) and
(
Wµ, Vν , Ṽ ,Wλ

)
, respectively, where the composite job Wλ

starts as early as possible, i.e., at time max
{
pw1

, p
(
Wµ ∪ Vν ∪ Ṽ

)}
. In schedule SH2 machines

M1 and M2 process the sequences
(
Jw1

, Vν , Ṽ
)

and (Vµ,Wλ), where the composite job Wλ starts

as early as possible, i.e., at time max {pw1
, p (Vµ)}. Output the better of the two schedules SH1

and SH2 as schedule SH .
Step 6. Renumber the composite jobs V1, V2 and V3 using a bijection ϕ : {1, 2, 3} → {λ, µ, ν} that

the longest jobs in sets Nλ, Nµ and Nν are the jobs Jw1
, Jw2

and Jw3
, respectively, where Jw3

≥
max {Jw1

, Jw2
} and the inequalities (7) hold. Let Wλ and Wµ be the composite jobs formed

of the jobs of set Nλ\ {Jw1
} and of set Nµ\ {Jw2

}, respectively. Output schedule SH , which is
essentially schedule SH1 created in Step 5, provided that the composite job Wλ starts at time

p
(
Wµ ∪ Vν ∪ Ṽ

)
.

It is clear that the running time of Algorithm Split is linear in n. We now prove that in any case for
schedule SH found by Algorithm Split the bound

Cmax

(
SH
)

Cmax (S∗)
≤ 6

5
(21)

holds.

Lemma 4.2. For schedule SH found in Step 2 of Algorithm Split the bound (21) holds.
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M1

M2

Vµ Ṽ W ′

W ′′ Vν

(a)

M1

M2

Vµ Ṽ W ′

W ′′ Vν

(b)

Figure 4. Schedule SH found in Step 2 of Algorithm Split; λ = 1, µ = 2, ν = 3

Proof. Consider machine M1 first. Notice that if p (W ′′) > p (Vλ) +p
(
Ṽ
)

, then C(1)
(
SH
)

= p (W ′′) +

p (W ′) = p (Vλ) ≤ Cmax (S∗); see Figure 4 (a). Otherwise, for machine M1 by construction we have that

C(1)
(
SH
)

= p (Vµ) + p
(
Ṽ
)

+ p
(
W ′
)
≤ 3

5
p (N) ;

see Figure 4 (b).
On the other hand, in any case for machine M2 we have that

C(2)
(
SH
)

= p
(
W ′′
)

+ p (Vν) =

p(Nλ)−
u∑
j=1

pj

+ p (Vν)

= (p(Nλ) + p (Vν))−
u+1∑
j=1

pj + pu+1 =

= p (N)−
(
p (Vµ) + p

(
Ṽ
))
−
u+1∑
j=1

pj + pu+1.

Applying (19) and the inequality pu+1 ≤ 1
5p (N), we deduce

C(2)
(
SH
)

= p (N)−

p (Vµ) + p
(
Ṽ
)

+

u+1∑
j=1

pj

+ pu+1

<
2

5
p (N) +

1

5
p (N) =

3

5
p (N) ,

as required.

Lemma 4.3. For schedule SH found in Step 4 of Algorithm Split the bound (21) holds.

Proof: Notice that job Jw and the composite jobs Vµ and Vν are non-splittable, i.e., there exists an
optimal schedule S∗ in which at least two of these jobs are assigned to the same machine.

If there exists an optimal schedule S∗ in which jobs Vµ and Vν are assigned to the same machine,
then for schedule SH1

C(2)
(
SH1
)

= p (Vµ) + p (Vν) ≤ Cmax (S∗) .
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M1

M2

Jw Vν

Vµ Ṽ Wλ

(a)

M1

M2

Jw Vν

Vµ Ṽ Wλ

(b)

Figure 5. Schedule SH
1 found in Step 4 of Algorithm Split; λ = 1, µ = 2, ν = 3

On the other hand, it follows from (17) that

C(1)
(
SH1
)

= p (Vλ) + p
(
Ṽ
)
≤ p (V1) + p

(
Ṽ
)
≤ 2

5
p (N) .

For illustration, notice that for λ = 1, µ = 2 and ν = 3 schedule SH1 coincides with schedule S0, see
Figure 3.

Assume now that in any optimal schedule jobs Vµ and Vν are assigned to different machines. Then in
any optimal schedule job Jw is on the same machine with one of the jobs Vµ and Vν . Since p (Vν) ≤ p (Vµ),

it follows that pw+p (Vν) ≤ Cmax (S∗). Then for SH2 we have that C(1)
(
SH2
)

= pw+p (Vν) ≤ Cmax (S∗).
On the other hand, either

C(2)
(
SH2
)

= pw + p (Wλ) = p (Nλ) ≤ Cmax (S∗) ,

as in Figure 5(a) and SH2 is an optimal schedule or

C(2)
(
SH2
)

= p (Vµ) + p
(
Ṽ
)

+ p (Wλ) ,

as in Figure 5(b). In the latter case, applying (16), (17) and the inequality pw >
1
5p (N) we deduce

C(2)
(
SH2
)
≤

(
p (V1) + p

(
Ṽ
))

+

(
p (Vλ)− 1

5
p (N)

)
≤ 2

5
p (N) +

1

5
p (N) =

3

5
p (N) ,

as required.

Lemma 4.4. For schedule SH found in Step 5 of Algorithm Split the bound (21) holds.

Proof. Notice that jobs Jw1
and Jw2

and the composite job Vν are non-splittable, i.e., there exists an
optimal schedule S∗ in which at least two of these jobs are assigned to the same machine.

If for any optimal schedule S∗ we have that pw1
+ p (Vν) > Cmax (S∗) then in any optimal schedule

job Vν cannot be assigned to the same machine with any of the jobs Jw1
and Jw2

. Thus, in any optimal
schedule the jobs Jw1

and Jw2
are assigned to the same machine, so that pw1

+ pw2
≤ Cmax (S∗).

Let us analyze schedule SH1 . It follows from (16) that

p (Wµ) = p (Nµ)− pw2
<

2

5
p (N)− 1

5
p (N) < pw1

(22)
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M1

M2

Jw1
Jw2

Wµ Vν Ṽ Wλ

(a)

M1

M2

Jw1
Jw2

Wµ Vν Ṽ Wλ

(b)

Figure 6. Schedule SH
1 found in Step 5 of Algorithm Split; λ = 1, µ = 2, ν = 3

and job Jw2
may start on machine M1 at time pw1

. Thus, for schedule SH1 we have that

C(1)
(
SH1
)

= pw1
+ pw2

≤ Cmax (S∗) .

On the other hand, it follows that either C(2)
(
SH1
)

= pw1
+ p (Wλ) = p (Nλ) ≤ Cmax (S∗) as in

Figure 6(a), so that SH1 is an optimal schedule or

C(2)
(
SH1
)

= p
(
Wµ ∪ Vν ∪ Ṽ

)
≤ p (N)− (pw1

+ pw2
) ≤ 3

5
p (N) ,

as in Figure 6(b).
Assume now that pw1

+ p (Vν) ≤ Cmax (S∗) and analyze schedule SH2 . Due to (18) we deduce that

C(1)
(
SH2
)

= pw1
+ p (Vν) + p

(
Ṽ
)
≤ Cmax (S∗) +

1

10
p (N) ≤ 6

5
Cmax (S∗) .

On the other hand, either

C(2)
(
SH2
)

= pw1
+ p (Wλ) = p (Nλ) ≤ Cmax (S∗) ,

as in Figure 7(a), so that SH2 is an optimal schedule or

C(2)
(
SH2
)

= p (Vµ) + p (Wλ) ,

as in Figure 7(b), so that applying (16), (17) and (20) we deduce

C(2)
(
SH2
)
≤ p (V1) +

(
p (Nλ)− 1

5
p (N)

)
≤ 2

5
p (N) +

1

5
p (N) =

3

5
p (N) ,

as required.

Lemma 4.5. For schedule SH found in Step 6 of Algorithm Split the bound (21) holds.
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M1

M2

Jw1
Vν Ṽ

Vµ Wλ

(a)

M1

M2

Jw1
Vν Ṽ

Vµ Wλ

(a)

Figure 7. Schedule SH
2 found in Step 5 of Algorithm Split; λ = 1, µ = 2, ν = 3

Proof. In Step 6, the instance contains three jobs Jw1
, Jw2

and Jw3
, each longer than 1

5p (N). There
exists an optimal schedule S∗, in which at least two of these jobs are assigned to the same machine.
Since pw3

≥ max {pw1
, pw2
}, it follows that pw1

+ pw2
≤ Cmax (S∗).

As in the proof of Lemma 4.4, the inequalities (22) hold, so that job Jw2
starts on M1 at time pw1

,
so that C(1)

(
SH
)

= pw1
+ pw2

≤ Cmax (S∗) .

By construction, p (Vν) ≥ pw3
≥ max {pw1

, pw2
} and we deduce that p

(
Wµ ∪ Ṽ ∪ Vν

)
≥ pw1

, so that

Wλ can start at time p
(
Wµ ∪ Ṽ ∪ Vν

)
. See Figure 6(b).

Putting together the statements proved for problem P2 |res · 111|Cmax, we obtain the following the-
orem.

Theorem 4.6. For problem P2 |res · 111|Cmax, a schedule SH for which the bound (21) holds and is
tight can be found in O (n) time by running Algorithm A0 and, if required, Algorithm Split.

5. Conclusion

In this paper, we analyze the power of the group technology approach applied to the problem of min-
imizing the makespan on parallel identical machines subject to resource constraints. Both a posteriori
and a priori bounds are derived on the performance of the LPT group technology algorithm. For two
machines, a 6/5-approximation algorithm is designed.

It remains to be seen whether the two-machine problem admits a fully polynomial-time approximation
scheme. In an attempt to answer this question we should start with trying to design a pseudopolynomial-
time algorithm for the problem. Design of approximation algorithms for problem P |res · 111|Cmax and
its variants with a fixed number of machines that would deliver a better performance guarantee that
those established in this paper is also of interest. The search for approximation algorithms and schemes
for other scheduling problems with arbitrary processing times under resource constraints is a promising
direction of research.
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