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ABSTRACT 

Experimental modal analysis (EMA) with oblique excitation (i.e. oblique impact testing) is 

useful in improving the long testing time problem of conventional EMA with normal excitation 

(i.e. tri-axial normal impact testing), in order to extract all important dynamic characteristics 

of a 3D complex structure. In this study, a new methodology involving vector projection 

method is introduced to find the driving point frequency response function (FRF) in the oblique 

direction, without the need of special fixture with oblique-oriented impedance head. Hence, it 

presents a low cost and practical solution to scale the mode shape, as compared to the traditional 
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approach. Moreover, the concurrent forces characteristic of the oblique excitation is used in the 

development of the theoretical relationship between the FRF with oblique excitation and 

normal excitation. This is important for the validation of the oblique impact testing result, such 

as the FRF and modal parameter estimations. Experimental results show that the oblique impact 

testing has reliable and effective results, as compared with the tri-axial normal impact testing 

in terms of the FRF correlation, natural frequency discrepancy, modal damping ratio error and 

modal assurance criterion (MAC) of the unit modal mass (UMM) mode shape. 

 

Keywords: Concurrent Forces Effect; Oblique Frequency Response Function; Oblique Impact 

Testing; Oblique Driving Point Measurement;  Tri-axial Normal Impact Testing; Vector 

Projection Method.
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1. Introduction 

Any mechanical structure will exhibit vibration when the structure is excited by dynamic 

forces. Undesirable vibration presents a major hazard and design limitation, especially when 

excitation matches the structural natural frequency, which greatly amplifies the vibration under 

the resonance phenomenon. Hence, the identification of structural dynamic properties is 

important in allowing engineers to prevent the resonance issue [1]. Frequency response 

function (FRF) testing and modal analysis (MA) are commonly used to identify the dynamic 

characteristics of a structure. These analyses were introduced several decades ago and have 

been applied in a wide range of engineering applications such as: validation and updating of 

finite element model  [2, 3], crack detection [4], damage identification [5], force identification 

[6], linear [7, 8] and nonlinear [9] material property identification, vibration control and 

structural dynamic design [10]. In general, FRF testing experimentally determines the transfer 

function that shows the linear relationship between the input force and output response of the 

system. Then, MA further post-processes the measured transfer function using various curve-

fitting techniques [11-13] to obtain important dynamic characteristic information with relation 

to natural frequencies, mode shapes, and modal damping.  

 

Considering a cheaper and more effective solution for small-size structure [14], FRF testing 

with impact excitation will be implemented in this study. Traditional experimental modal 

analysis (EMA) requires FRF testing to be conducted in a non-operating condition, where the 

interruption of operation incurs huge losses. In this scenario, minimizing the testing time of 

EMA is very crucial. To investigate the dynamic characteristic and dynamic behaviour of a test 

object, single reference EMA with uni-axial impact/shaker testing is commonly used to provide 

the solution. However, the uni-axial testing is not suitable for most practical structures whose 
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motion is generally complex and multi-directional [15], as it is no longer sufficient to excite 

all modes of interest from one reference [16]. For example, it is not suitable for the system that 

will work under a multi-axial excitation environment, such as rotor-induced excitation and 

aerodynamic loading [17, 18], since the uni-axial testing provides only a portion of the 

complete dynamic characteristic that cannot accurately describe and represent the actual 

dynamic behaviour of the system under operating condition. To investigate the comprehensive 

dynamic characteristics of most practical structures, 3 separate uni-axial testing [19] should be 

performed sequentially at 3 principal directions respectively. However, the sequential three-

axial testing is very time consuming (i.e. increase significantly by a factor of three, as compared 

to uni-axial testing) due to the redundant procedure [20]. To solve this issue, multi-reference 

EMA with multi-axial testing such as 3 simultaneous impact/shaker testing in three principal 

directions [17] can be performed to reduce the testing time and improve the quality of dynamic 

information. The drawback of this approach is that it requires higher equipment costs and poses 

difficulty in equipment set-up & control. The conventional testing above can be further 

enhanced by using oblique reference EMA with oblique axial impact/shaker testing [21]. This 

is because a single oblique excitation can induce significant responses in all directions and 

ensure sufficient participation of all the modes [22]. Thus, the oblique approach saves 2/3 of 

its total testing time whilst retaining the important dynamic characteristic details in three 

principal directions.  

 

Oblique reference EMA is firstly introduced and examined in the year 1986, where Døssing 

[21] designed a special fixture with embedded accelerometer or impedance, to measure the 

response and excitation in the oblique excitation direction. Shaker and impact testing with 

oblique reference were conducted and the results were compared with the traditional EMA with 

uni-axial testing. It showed that the oblique reference exhibited a strong decoupling effect for 
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closely spaced mode and thus obtained more accurate modal parameters. Next, Avitabile [23] 

demonstrated that the oblique reference must be carefully selected at a good location (i.e. anti-

node) to ensure all the modes of interest were well excited. Besides, the way to obtain the unit 

modal mass (UMM) mode shape by scaling the residue mode shape using the oblique driving 

point measurement was also described. Warren et al. [24] implemented the oblique reference 

EMA with both oblique shaker and oblique impact testing to obtain the FRFs and modal 

parameters of a base-upright structure. However, the detailed methodology and theoretical 

validation in applying oblique testing were not provided. Moreover, Baqersad et al. [25] 

performed the oblique shaker testing to excite both flap-wise and edge-wise modes of a three-

bladed wind turbine simultaneously. In their experiment, both SIMO and MIMO approaches 

of the oblique shaker testing failed to excite some modes of the structure, as compared to the 

sequential two-axial impact testing. This is likely to be due to limitations of the shaker 

configuration such as the mass loading and rotational inertial loading effects. It is expected that 

oblique impact testing can produce a better result since it is less affected by those loading 

effects. However, they did not examine this in their study. 

 

To date, the majority of EMA studies were conducted by using the traditional normal force or 

perpendicular excitation approach at the desired principal axis. Few studies and publications 

have been found for the oblique reference EMA especially the oblique impact testing despite 

its superior testing speed and comprehensive dynamic information. This demonstrates the 

limitations of the status quo. In many cases, oblique excitation is not desired as it would require 

a special fixture [26]. This fixture is used mainly for two purposes: (i) To ensure consistency 

of the impact in the oblique direction; (ii) To make driving point measurements in the oblique 

direction using a customized impedance head/accelerometer. The need for the special fixture 

reduces its practicality in terms of implementation (such as raising the concern of mass loading 
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and moment effects) as well as increment of equipment cost. On the other hand, the theoretical 

relationship between the oblique reference EMA and the conventional EMA with normal 

excitation is yet to be discovered. Thus, many users are still unclear and unconfident to apply 

the oblique reference EMA, as they prefer to apply the well-established EMA with validated 

theory. To overcome the drawbacks mentioned above, oblique reference EMA with fixture free 

will be introduced in this paper, where the driving point measurement is proposed to be carried 

out by using the vector projection method. Also, this study will establish the theoretical 

knowledge and relationship between the oblique and normal reference EMAs. The FRF and 

modal parameters obtained from the proposed oblique reference EMA will be examined and 

validated with the results of normal reference EMA, to further convince the reliability of the 

proposed technique. 

 

2.  Theory 

2.1  Structural FRF Testing with Oblique Impact 

In structural FRF testing, the normal impact procedure is time consuming due to its redundant 

measurement process. This point is illustrated in Figs. 1(a) – 1(c), where the user needs to 

repeatedly impact the structure at 3 principal coordinates separately in order to excite all the 

desired 3D vibration modes. In this paper, the oblique impact will be used to improve the 

ineffective procedure of the conventional structural FRF testing. A single oblique impact, 𝐹𝑜𝑏 

with pre-determined 3D impact angles (i.e. 𝜃𝑥 , 𝜃𝑦 and 𝜃𝑧), is shown in Fig. 1(d), and it can be 

formulated as an oblique impact vector as follows Eq. (1). 

𝐹⃗𝑜𝑏 = |𝐹⃗𝑜𝑏|{𝑐𝑜𝑠𝜃𝑥𝑖̂ + 𝑐𝑜𝑠𝜃𝑦 𝑗̂ + 𝑐𝑜𝑠𝜃𝑧𝑘̂}                                        (1) 

, where 𝜃𝑥  , 𝜃𝑦 , and 𝜃𝑧  are the angles between the oblique force and the 𝑥-, 𝑦-, and 𝑧-axes 

respectively. 𝑖̂ , 𝑗̂ , and 𝑘̂ are the unit vectors at 𝑥-, 𝑦-, and 𝑧-axes respectively. Theoretically, 

the magnitude of the oblique force, |𝐹⃗𝑜𝑏| or 𝐹𝑜𝑏 can be transformed to 3 principal coordinates 
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using Eq. (2). 

 {

𝐹𝑥
𝐹𝑦
𝐹𝑧

} = |𝐹⃗𝑜𝑏| {

𝑐𝑜𝑠𝜃𝑥
𝑐𝑜𝑠𝜃𝑦
𝑐𝑜𝑠𝜃𝑧

}                                                      (2) 

Eq. (3) can be obtained from Eqs. (1) & (2). It shows that the concurrent normal impacts effect 

of the oblique impact at 3 principal coordinates. In other words, the oblique impact can 

represent 3 normal forces (i.e. 𝐹𝑥 , 𝐹𝑦, and 𝐹𝑧 ) acting on the structure at 𝑥-, 𝑦-, and 𝑧-axes 

simultaneously. With that, the oblique impact could excite all the vibration modes in 3 normal 

directions simultaneously. Thus, the oblique impact is said to be efficient, to excite 3D 

vibration modes of a structure, as compared to normal impact.  

𝐹⃗𝑜𝑏 = 𝐹𝑥 𝑖̂ + 𝐹𝑦  𝑗̂ + 𝐹𝑧 𝑘̂                                                        (3) 
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(d) 

Fig. 1. Structural FRF testing using conventional normal impact at (a) 𝑥-, (b) 𝑦-, and (c) 𝑧- 

axes separately, or using (d) oblique impact with concurrent normal impacts effect. 
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After obtaining the responses due to the oblique impact at various locations by using a roving 

tri-axial acceleration, a complete structural FRF can be obtained as follows. 

[
 
 
 
 
 
𝐻1𝑥:1𝑜𝑏(𝜔) 𝐻1𝑥:2𝑜𝑏(𝜔) 𝐻1𝑥:3𝑜𝑏(𝜔)
𝐻1𝑦:1𝑜𝑏(𝜔) 𝐻1𝑦:2𝑜𝑏(𝜔) 𝐻1𝑦:3𝑜𝑏(𝜔)

𝐻1𝑧:1𝑜𝑏(𝜔)
⋮

𝐻𝑛𝑖:1𝑜𝑏(𝜔)

𝐻1𝑧:2𝑜𝑏(𝜔)
⋮

𝐻𝑛𝑖:2𝑜𝑏(𝜔)

𝐻1𝑧:3𝑜𝑏(𝜔)
⋮

𝐻𝑛𝑖:3𝑜𝑏(𝜔)

⋯ 𝐻1𝑥:𝑚𝑗(𝜔)

⋯ 𝐻1𝑦:𝑚𝑗(𝜔)

⋯
⋱
⋯

𝐻1𝑧:𝑚𝑗(𝜔)

⋮
𝐻𝑛𝑖:𝑚𝑗(𝜔)]

 
 
 
 
 

=

[
 
 
 
 
 
𝑋̈1𝑥(𝜔)

𝑋̈1𝑦(𝜔)

𝑋̈1𝑧(𝜔)
⋮

𝑋̈𝑛𝑖(𝜔)]
 
 
 
 
 

[
 
 
 
 
𝐹1𝑜𝑏(𝜔)
𝐹2𝑜𝑏(𝜔)
𝐹3𝑜𝑏(𝜔)

⋮
𝐹𝑚𝑗(𝜔) ]

 
 
 
 
−1

     (4) 

, where 𝐻𝑛𝑖:𝑚𝑗 is the FRF or the transfer function due to input force, 𝐹 acting at oblique DOF 

(i.e. location 𝑚  and direction 𝑗  ) and its corresponding output acceleration response, 𝑋̈ 

measured at principal coordinates (i.e. location 𝑛 and direction 𝑖). [•]−1 indicates the inversion 

operation for the matrix. FRF demonstrates the complex input-output relationship in the 

frequency domain, 𝜔. For a time-invariant linear system, FRF should remain constant as long 

as the geometric, boundary condition, and material properties of a system are fixed. Moreover, 

it is not affected by the magnitude and type of the input force.  

 

Instead of measuring a complete FRF matrix (i.e. size 𝑛 𝑥 𝑚) as follows Eq. (4), a single 

column or single row of FRF matrix is sufficient to study the dynamic characteristic or the 

vibration mode of a structure, as recommended by Richardson and Schwarz [27]. A single 

column of the FRF matrix (i.e. size 𝑛 𝑥 1) can be obtained through a roving accelerometer 

approach with a single force DOF reference, while a single row of FRF matrix (i.e. size 1 𝑥 𝑚) 

can be obtained using a roving hammer approach with a single response DOF reference [16]. 

Both approaches can ensure a high quality of FRF measurement as long as the chosen reference 

DOF is not located at the node point for the vibration modes within the frequency range of 

interest. By considering these factors, a single-column FRF matrix obtained from the roving 

accelerometer with single oblique force DOF reference at an anti-node point (e.g. Point #1) 

will eventually lead to Eq. (5).   
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[
 
 
 
 
𝐻1𝑥:1𝑜𝑏(𝜔)
𝐻1𝑦:1𝑜𝑏(𝜔)

𝐻1𝑧:1𝑜𝑏(𝜔)
⋮

𝐻𝑛𝑖:1𝑜𝑏(𝜔)]
 
 
 
 

=

[
 
 
 
 
 
𝑋̈1𝑥(𝜔)

𝑋̈1𝑦(𝜔)

𝑋̈1𝑧(𝜔)
⋮

𝑋̈𝑛𝑖(𝜔)]
 
 
 
 
 

[𝐹1𝑜𝑏(𝜔)]
−1                                          (5) 

Furthermore, driving point FRF measurement must be conducted for mode shape scaling of a 

dynamic modal model [28]. The driving point FRF can be obtained from the same response 

and force DOFs in terms of location and direction, e.g. driving point FRF in the oblique 

direction of Point #1 is measured as 𝐻1𝑜𝑏∶1𝑜𝑏. Hence, the driving point is included in the FRF 

measurement with size ((𝑛 + 1) 𝑥 1) as follows Eq. (6). 

[
 
 
 
 
 
𝐻1𝑥:1𝑜𝑏(𝜔)

𝐻1𝑦:1𝑜𝑏(𝜔)

𝐻1𝑧:1𝑜𝑏(𝜔)
⋮

𝐻𝑛𝑖:1𝑜𝑏(𝜔)
𝐻1𝑜𝑏∶1𝑜𝑏(𝜔)]

 
 
 
 
 

=

[
 
 
 
 
 
 
𝑋̈1𝑥(𝜔)

𝑋̈1𝑦(𝜔)

𝑋̈1𝑧(𝜔)
⋮

𝑋̈𝑛𝑖(𝜔)

𝑋̈1𝑜𝑏(𝜔)]
 
 
 
 
 
 

[𝐹1𝑜𝑏(𝜔)]
−1                                          (6) 

Traditional impact testing poses no difficulty in measuring the driving point FRF because the 

tri-axial accelerometer can be easily positioned in the same response direction with the normal 

impact. Driving point FRF measurement of 𝐻1𝑜𝑏∶1𝑜𝑏 involving oblique impact and tri-axial 

accelerometer poses measurement difficulty because the orientation of the response sensor does 

not match or align with the oblique direction. Previous literature [21, 25] implemented special 

fixture with an additional oblique-oriented impedance head sensor for measuring the force and 

response in the oblique excitation direction, which made the oblique reference EMA less 

attractive in practice. To overcome this limitation, the vector projection method is proposed 

next to find the response in the oblique direction without the use of a special fixture. The 

oblique response can be measured from the tri-axial responses located in the conventional 

global coordinate position (i.e. axial, horizontal, and vertical directions of the test object).    
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Assuming that the oblique impact direction (i.e. 𝜃𝑥 , 𝜃𝑦, and 𝜃𝑧) can be pre-defined prior to any 

structural frequency response testing, the corresponding oblique response vector in the time 

domain, 𝑋⃗̈1𝑜𝑏(𝑡) can be found through the vector projection of the resultant tri-axial responses 

to the oblique direction as follows Eqs. (7) - (10). In addition, the magnitude of the oblique 

response, 𝑋̈1𝑜𝑏(𝑡) or |𝑋⃗̈1𝑜𝑏(𝑡)| can be computed using the scalar projection, i.e. dot product 

between the total tri-axial response vector, 𝑋⃗̈1,𝑡𝑜𝑡𝑎𝑙(𝑡) and the unit vector of the oblique impact 

direction, 𝜃𝑜𝑏(𝑡), as follows Eq. (10). Hence, the frequency-domain oblique response, 𝑋̈1𝑜𝑏(𝜔) 

can be obtained through a Discrete Fourier Transform (DFT). Together with the measured 

oblique impact directly from the instrumented impact hammer, the oblique driving point FRF 

can be obtained using 𝐻1𝑜𝑏∶1𝑜𝑏(𝜔) = 𝑋̈1𝑜𝑏(𝜔) /  𝐹1𝑜𝑏(𝜔). 

𝑋⃗̈1𝑜𝑏(𝑡) =  {𝑋⃗̈1,𝑡𝑜𝑡𝑎𝑙(𝑡) . 𝜃𝑜𝑏(𝑡)} 𝜃𝑜𝑏(𝑡)                                                  (7) 

,where  

𝑋⃗̈1,𝑡𝑜𝑡𝑎𝑙(𝑡) = 𝑋̈1𝑥(𝑡) 𝑖̂ + 𝑋̈1𝑦(𝑡)  𝑗̂ + 𝑋̈1𝑧(𝑡) 𝑘̂                                             (8) 

𝜃𝑜𝑏(𝑡) = 𝑐𝑜𝑠𝜃𝑥(𝑡)𝑖̂ + 𝑐𝑜𝑠𝜃𝑦(𝑡) 𝑗̂ + 𝑐𝑜𝑠𝜃𝑧(𝑡)𝑘̂                                           (9) 

𝑋̈1𝑜𝑏(𝑡) = |𝑋⃗̈1𝑜𝑏(𝑡)| = {𝑋⃗̈1,𝑡𝑜𝑡𝑎𝑙(𝑡) . 𝜃𝑜𝑏(𝑡)}                                           (10) 

 

2.2  Experimental Modal Analysis (EMA) with Oblique Impact 

A general procedure of EMA mainly contains two parts: (i) FRF measurement and (ii) modal 

parameter estimation. For part (i), a complete column of the FRF matrix with an additional 

oblique driving point follows Eq. (6) can be successfully obtained using oblique impact testing 

introduced in Section 2.1. Next, part (ii) – modal parameter estimation from the FRF will be 

discussed, to extract the dynamic characteristics of a structure.  
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Curve fitting the measured FRFs to the modal model is a common approach to estimate the 

dynamic characteristics of a linear time-invariant system. According to Richardson and 

Schwarz [27], the experimental FRF matrix obtained from Eq. (6) can be written in partial 

fraction expansion form, as follows Eq. (11), which is a frequency domain curve fitting model. 

[𝐇𝑛𝑖:1𝑜𝑏(𝜔)]⏟        
(𝑛+1)𝑥1

= ∑
[𝐫𝑛𝑖:1𝑜𝑏,𝑘]

(𝑠−𝛌𝑘)

𝑚
𝑘=1 −

[𝐫𝑛𝑖:1𝑜𝑏,𝑘]
∗

(𝑠−𝛌𝑘
∗ )
| 
𝑠=𝑗𝜔

                               (11) 

, where 𝑗 = √−1, 𝜆𝑘 = −𝜎𝑘 + 𝑗𝜔𝑑,𝑘  is the pole location of the 𝑘𝑡ℎ  vibration mode, which 

consists the decay rate, 𝜎𝑘 in the real part and damped natural frequency, 𝜔𝑑,𝑘 in the imaginary 

part, 𝑠  is the Laplace domain coefficient, •∗  is the complex conjugate function and 

[𝐇𝑛𝑖:1𝑜𝑏(𝜔)] is the (𝑛 + 1) by 1 column measurement of the FRF matrix with an additional 

row of the oblique driving point information as follows Eq. (6). Note that the modal model is 

only evaluated along the imaginary axis of the S-plane (i.e. 𝑠 = 𝑗𝜔) because the FRF matrix is 

measured in the frequency domain. [𝐫𝑛𝑖:1𝑜𝑏,𝑘] is the 𝑘𝑡ℎ  mode (𝑛 + 1) by 1 residue mode 

shape matrix. It can be scaled to UMM mode shape by using Eq. (12). 

[𝛗𝑛𝑖,𝑘] =
1

𝐴𝑘𝜑1𝑜𝑏,𝑘
[𝐫𝑛𝑖:1𝑜𝑏,𝑘]                                              (12) 

, where the oblique driving point measurement will eventually produce UMM scaling factor of 

the 𝑘𝑡ℎ vibration mode, 𝐴𝑘 = 𝑟1𝑜𝑏:1𝑜𝑏,𝑘/(𝜑1𝑜𝑏,𝑘)
2
. On the other hand, the scaling factor, 𝐴𝑘 =

1/𝜔𝑑,𝑘 can be obtained according to the UMM property [29] by setting the modal mass equal 

to one. With that, Eq. (12) can be further simplified to Eq. (13), which can be used to determine 

the UMM mode shape from the residue mode shape. 

{
 
 

 
 
𝜑1𝑥,𝑘
𝜑1𝑦,𝑘
𝜑1𝑧,𝑘
⋮

𝜑𝑛𝑖,𝑘
𝜑1𝑜𝑏,𝑘}

 
 

 
 

= √
𝜔𝑑,𝑘

𝑟1𝑜𝑏:1𝑜𝑏,𝑘

{
 
 

 
 
𝑟1𝑥:1𝑜𝑏,𝑘
𝑟1𝑦:1𝑜𝑏,𝑘
𝑟1𝑧:1𝑜𝑏,𝑘
⋮

𝑟𝑛𝑖:1𝑜𝑏,𝑘
𝑟1𝑜𝑏:1𝑜𝑏,𝑘}

 
 

 
 

                                        (13) 
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2.3  Validation of the FRF Result Obtained from the Oblique Impact Testing 

As shown in Eq. (3), an oblique impact can excite a structure at 3 principal coordinates, hence 

makes possible the simplification of the redundancy testing procedure for the conventional, 

normal impacts approach. In fact, an oblique impact can be represented by three concurrent 

normal impacts acting on a structure as shown in Fig. 1(d). To access the FRF measurement 

and modal parameters’ estimation qualities of the proposed oblique impact testing, result 

validation with the conventional tri-axial normal impact testing result will be discussed next. 

 

Firstly, the normal FRF testing will be conducted by using 3 distinct normal impacts (i.e. 𝐹𝑥, 

𝐹𝑦, and 𝐹𝑧 acting at 3 principal coordinates separately) and roving accelerometer at 𝑛 locations. 

In general, a 3D structure requires minimum of 3 rows or columns to comprehensively define 

the dynamic characteristics from each direction. This indicates that the conventional data 

acquisition process has to be repeated 3 times when conducting a normal FRF testing. 

Moreover, the reference force DOF must be located at an anti-node point (e.g. Point #1). By 

considering the factors above, the FRF matrix obtained through tri-axial normal impact testing 

at 3 principal coordinates separately is shown in Eq. (14). 

[
 
 
 
 
 
𝐻1𝑥:1𝑥(𝜔) 𝐻1𝑥:1𝑦(𝜔) 𝐻1𝑥:1𝑧(𝜔)

𝐻1𝑦:1𝑥(𝜔) 𝐻1𝑦:1𝑦(𝜔) 𝐻1𝑦:1𝑧(𝜔)

𝐻1𝑧:1𝑥(𝜔)
⋮

𝐻𝑛𝑖:1𝑥(𝜔)

𝐻1𝑧:1𝑦(𝜔)

⋮
𝐻𝑛𝑖:1𝑦(𝜔)

𝐻1𝑧:1𝑧(𝜔)
⋮

𝐻𝑛𝑖:1𝑧(𝜔)]
 
 
 
 
 

=

[
 
 
 
 
 
𝑋̈1𝑥(𝜔)

𝑋̈1𝑦(𝜔)

𝑋̈1𝑧(𝜔)
⋮

𝑋̈𝑛𝑖(𝜔)]
 
 
 
 
 

[

𝐹1𝑥(𝜔)
𝐹1𝑦(𝜔)

𝐹1𝑧(𝜔)

]

−1

               (14) 

For the concurrent normal impacts acting on the structure in 3 principal directions 

simultaneously, the resultant response due to the superposition of vibration modes can be 

obtained from Eq. (15).  
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[
 
 
 
 
 
𝑋̈1𝑥(𝜔)

𝑋̈1𝑦(𝜔)

𝑋̈1𝑧(𝜔)
⋮

𝑋̈𝑛𝑖(𝜔)]
 
 
 
 
 

=

[
 
 
 
 
 
𝐻1𝑥:1𝑥(𝜔)𝐹1𝑥(𝜔) + 𝐻1𝑥:1𝑦(𝜔)𝐹1𝑦(𝜔) + 𝐻1𝑥:1𝑧(𝜔)𝐹1𝑧(𝜔)

𝐻1𝑦:1𝑥(𝜔)𝐹1𝑥(𝜔) + 𝐻1𝑦:1𝑦(𝜔)𝐹1𝑦(𝜔) + 𝐻1𝑦:1𝑧(𝜔)𝐹1𝑧(𝜔)

𝐻1𝑧:1𝑥(𝜔)𝐹1𝑥(𝜔) + 𝐻1𝑧:1𝑦(𝜔)𝐹1𝑦(𝜔) + 𝐻1𝑧:1𝑧(𝜔)𝐹1𝑧(𝜔)

⋮
𝐻𝑛𝑖:1𝑥(𝜔)𝐹1𝑥(𝜔) + 𝐻𝑛𝑖:1𝑦(𝜔)𝐹1𝑦(𝜔) + 𝐻𝑛𝑖:1𝑧(𝜔)𝐹1𝑧(𝜔) ]

 
 
 
 
 

      (15) 

Since the oblique impact has the concurrent normal impacts effect, Eq. (2) can be substituted 

to Eq. (15) and rearrange it to form Eq. (16). 

[
 
 
 
 
 
𝐻1𝑥:1𝑥𝑐𝑜𝑠𝜃𝑥 + 𝐻1𝑥:1𝑦𝑐𝑜𝑠𝜃𝑦 + 𝐻1𝑥:1𝑧𝑐𝑜𝑠𝜃𝑧
𝐻1𝑦:1𝑥𝑐𝑜𝑠𝜃𝑥 + 𝐻1𝑦:1𝑦𝑐𝑜𝑠𝜃𝑦 + 𝐻1𝑦:1𝑧𝑐𝑜𝑠𝜃𝑧
𝐻1𝑧:1𝑥𝑐𝑜𝑠𝜃𝑥 + 𝐻1𝑧:1𝑦𝑐𝑜𝑠𝜃𝑦 +𝐻1𝑧:1𝑧𝑐𝑜𝑠𝜃𝑧

⋮
𝐻𝑛𝑖:1𝑥𝑐𝑜𝑠𝜃𝑥 + 𝐻𝑛𝑖:1𝑦𝑐𝑜𝑠𝜃𝑦 + 𝐻𝑛𝑖:1𝑧𝑐𝑜𝑠𝜃𝑧 ]

 
 
 
 
 

=

[
 
 
 
 
 
𝑋̈1𝑥(𝜔)

𝑋̈1𝑦(𝜔)

𝑋̈1𝑧(𝜔)
⋮

𝑋̈𝑛𝑖(𝜔)]
 
 
 
 
 

[𝐹1𝑜𝑏(𝜔)]
−1           (16) 

Eq. (16) can be further simplified as following: [𝐇𝑛𝑖:1𝑥𝑦𝑧] = [𝐇𝑛𝑖:1𝑥]𝑐𝑜𝑠𝜃𝑥 +

[𝐇𝑛𝑖:1𝑦]𝑐𝑜𝑠𝜃𝑦 + [𝐇𝑛𝑖:1𝑧]𝑐𝑜𝑠𝜃𝑧 , which represents the FRFs matrix due to 3 concurrent normal 

impacts acting at Point #1 and various responses at 𝑛𝑖 DOF. It is worthwhile to mention that 

the FRFs will change depending on the oblique impact direction. For example, if the oblique 

impact is close to the 𝑧-direction (where 𝜃𝑧 ≈ 0
0 and 𝜃𝑥 = 𝜃𝑦 ≈ 90

0), then the FRF due to the 

concurrent impacts can be reduced to FRF due to 𝑧-axis normal impact, i.e. [𝐇𝑛𝑖:1𝑥𝑦𝑧] ≈

[𝐇𝑛𝑖:1𝑧]. Thus, the impact direction, 𝜃𝑜𝑏 should be selected carefully so that it can adequately 

excite the vibration modes at 3 principal coordinates.  

 

In fact, [𝐇𝑛𝑖:1𝑥], [𝐇𝑛𝑖:1𝑦], and [𝐇𝑛𝑖:1𝑧] can be obtained from the conventional FRF testing with 

3 distinct normal impacts at 𝑥 -, 𝑦 -, and 𝑧 -axes respectively (i.e. tri-axial normal impact 

testing).  By comparing the Eqs. (5) and (16), the relationship between the oblique FRF and 

the normal FRF obtained from the oblique impact testing and tri-axial normal impact testing 

respectively, is established, where the oblique FRF, [𝐇𝑛𝑖:1𝑜𝑏]  is equal to the superposition-

normal FRF, [𝐇𝑛𝑖:1𝑥𝑦𝑧]  theoretically. This theoretical relationship will be validated 

experimentally in this study. Once the impact direction, 𝜃𝑜𝑏 is measured in a priori, the FRF 
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result acquired from the experimental oblique impact testing, i.e. [𝐇𝑛𝑖:1𝑜𝑏] in Eq. (5) can be 

validated with the FRF result acquired from the experimental tri-axial normal impact testing 

[𝐇𝑛𝑖:1𝑥𝑦𝑧] in Eq. (16).  

 

In addition, the driving point FRF due to 3 concurrent normal impacts acting at Point #1 can 

be obtained using 𝐻1𝑥𝑦𝑧∶1𝑥𝑦𝑧(𝜔) = 𝑋̈1𝑥𝑦𝑧(𝜔) /  𝐹1𝑥𝑦𝑧(𝜔), where 𝑋̈1𝑥𝑦𝑧(𝜔) and 𝐹1𝑥𝑦𝑧(𝜔) are 

the total response and total concurrent impact force at oblique direction of Point #1 

respectively. They can be obtained through the DFT and vector projection method, similar to 

Eqs. (7)-(10) in Section 2.1 to complete the Eq. (17). For the sake of brevity, the vector 

projection equations to obtain the 𝑋̈1𝑥𝑦𝑧(𝜔) and 𝐹1𝑥𝑦𝑧(𝜔) are not provided here. Note that this 

driving point FRF will be useful for the mode shape scaling purpose later. 

[
 
 
 
 
 
 
𝐻1𝑥:1𝑥𝑐𝑜𝑠𝜃𝑥 + 𝐻1𝑥:1𝑦𝑐𝑜𝑠𝜃𝑦 + 𝐻1𝑥:1𝑧𝑐𝑜𝑠𝜃𝑧
𝐻1𝑦:1𝑥𝑐𝑜𝑠𝜃𝑥 + 𝐻1𝑦:1𝑦𝑐𝑜𝑠𝜃𝑦 + 𝐻1𝑦:1𝑧𝑐𝑜𝑠𝜃𝑧
𝐻1𝑧:1𝑥𝑐𝑜𝑠𝜃𝑥 + 𝐻1𝑧:1𝑦𝑐𝑜𝑠𝜃𝑦 +𝐻1𝑧:1𝑧𝑐𝑜𝑠𝜃𝑧

⋮
𝐻𝑛𝑖:1𝑥𝑐𝑜𝑠𝜃𝑥 + 𝐻𝑛𝑖:1𝑦𝑐𝑜𝑠𝜃𝑦 + 𝐻𝑛𝑖:1𝑧𝑐𝑜𝑠𝜃𝑧

𝐻1𝑥𝑦𝑧:1𝑥𝑦𝑧 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑋̈1𝑥(𝜔)

𝑋̈1𝑦(𝜔)

𝑋̈1𝑧(𝜔)
⋮

𝑋̈𝑛𝑖(𝜔)

𝑋̈1𝑜𝑏(𝜔)]
 
 
 
 
 
 

[𝐹1𝑜𝑏(𝜔)]
−1           (17) 

 

2.4  Validation of the Modal Parameters’ Results Obtained from the Oblique Impact Testing 

Modal parameters obtained from the oblique impact testing, such as the damped natural 

frequency, modal damping ratio, and UMM mode shape will be validated with the conventional 

tri-axial normal impact testing result as follows. Similar to the previous case, the superposition-

normal FRF will be fitted to the model in Eq. (18) for modal parameters estimation. 

[𝐇𝑛𝑖:1𝑥𝑦𝑧(𝜔)]⏟        
(𝑛+1)𝑥1

= ∑
[𝐫𝑛𝑖:1𝑥𝑦𝑧,𝑘]

(𝑠−𝛌𝑘)

𝑚
𝑘=1 −

[𝐫𝑛𝑖:1𝑥𝑦𝑧,𝑘]
∗

(𝑠−𝛌𝑘
∗ )

| 
𝑠=𝑗𝜔

                               (18) 

, where the pole location consists of the damped natural frequency and modal damping ratio 

information at each vibration mode. Note that [𝐇𝑛𝑖:1𝑥𝑦𝑧(𝜔)] is the (𝑛 + 1) by 1 FRF matrix 
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obtained from Eq. (17), with an additional row for the driving point information. [𝐫𝑛𝑖:1𝑥𝑦𝑧,𝑘] is 

the 𝑘𝑡ℎ mode (𝑛 + 1) by 1 residue mode shape matrix and it can be scaled to UMM mode 

shape by using Eq. (19). Then, the extracted modal parameters from the oblique FRF using 

Eqs. (11) and (13) will be compared with extracted modal parameters from the superposition-

normal FRF using Eqs. (18) and (19). Hence, the accuracy of oblique impact testing in modal 

parameter estimation can be validated.  

{
 
 

 
 
𝜑1𝑥,𝑘
𝜑1𝑦,𝑘
𝜑1𝑧,𝑘
⋮

𝜑𝑛𝑖,𝑘
𝜑1𝑥𝑦𝑧,𝑘}

 
 

 
 

= √
𝜔𝑑,𝑘

𝑟1𝑥𝑦𝑧:1𝑥𝑦𝑧,𝑘

{
 
 

 
 
𝑟1𝑥:1𝑥𝑦𝑧,𝑘
𝑟1𝑦:1𝑥𝑦𝑧,𝑘
𝑟1𝑧:1𝑥𝑦𝑧,𝑘

⋮
𝑟𝑛𝑖:1𝑥𝑦𝑧,𝑘
𝑟1𝑥𝑦𝑧:1𝑥𝑦𝑧,𝑘}

 
 

 
 

                              (19) 

 

3.  Material and Method 

3.1  Experimental Setup 

In this study, a T-shaped aluminium plate consisting of a motor coupled to a rotor shaft is used 

as a test rig. The motor’s maximum operating frequency is 50 Hz and it is in shutdown 

condition during the FRF testing. A total of 19 measurement points are set across the plate, as 

shown in Fig. 2. A tri-axial accelerometer (model PCB® 356B18) with sensitivity 1000 mV/g 

is used to measure the corresponding translational accelerations at 3 principal directions of the 

plate, as illustrated in Fig. 2. The measurement frequency range (±10%) of the accelerometer 

is 0.5-5000 Hz, which is sufficient to measure the vibration due to impact. A modally tuned 

impact hammer (model Dytran® 5800B30) with sensitivity 10.91 mV/N is used to excite the 

test rig. The allowable amplitude range of the impact hammer is 444.8 N. The impact hammer 

with a rubber tip is chosen as it can excite the vibration modes of interest up to 100Hz.  
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Fig. 2. T-shaped aluminium plate. 

Both force and response signals are acquired by a 4-channel data acquisition system (DAQ 

model NI® 9234) and the raw data is collected using an in-house measurement system with a 

virtual instrument software (DASYLAB®). The block size and sampling rate of the FRF 

measurement are set at 4096 samples and 2048 Hz respectively. This setting gives a time 

resolution of 0.0004882 s and frequency resolution of 0.5 Hz, which are sufficient to measure 

both impact force and response signals satisfactorily. The measurement time of each block is 

around 2s. Once the impact force exceeds the threshold value (i.e. 10 N) of a trigger function, 

both response and force signals will be measured with a pre-trigger of 50 samples. Besides, the 

post-trigger of the remaining 4046 is selected. A total of 50 averages for each measurement are 

selected to reduce the measurement noise. Zero ends are observed in the response and force 

signals, where the entire signals are captured within the sample interval. Therefore, a 

rectangular window with a magnitude of one is selected before applying the fast Fourier 

transform (FFT) function. No spectrum leakage is observed in the FFT result indicates the 

selection of windowing function is appropriate. As follows ISO 7626-1:2011 [30], the FFT 

results of both response and force signals due to transient vibration are used to determine the 

FRF result as following: 𝐻𝑛𝑖:𝑚𝑗(𝜔) = 𝑋̈𝑛𝑖(𝜔)/𝐹𝑚𝑗(𝜔), where 𝑛 and 𝑚 are the position DOFs, 

while 𝑖  and 𝑗  are the direction DOFs, for the response and force signals respectively. 𝜔 

indicates that the operation is in the frequency domain. With that, the setting of the FRF 

measurement is ready.  

x 

y 

z 
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Next, the post-processing of the vibration data will be performed. Firstly, the calculation of 

vector projection is performed in a numerical computing software (Matlab®) to project the tri-

axial response or tri-axial normal force signals into the oblique direction. Hence, driving point 

FRF in the oblique direction can be obtained. Once all FRF data including the driving point 

FRF is ready, ME’scope® will be used to curve fit the FRF for modal parameter extraction 

purpose. In this study, a polynomial curve fitting algorithm is used to obtain the natural 

frequencies, modal damping ratio, and residue mode shapes. The residue mode shapes are then 

scaled to UMM mode shapes by using the scaling function in ME’scope®. A 3D wire-linked 

structural model of the T-plate test rig can be drawn in ME’scope® so that the animation of 

mode shape can be performed. With that, the setting of the oblique driving point FRF and 

modal parameter estimation is ready. 

 

3.2  Experimental Procedure for Oblique Impact Testing 

The single input single output (SISO) approach is adopted for the FRF measurement with 

oblique excitation. The current research scope focuses on a single oblique direction. The 

oblique reference point (i.e. fixed oblique impact) is set at Point #1 with oblique angle 

{𝜃𝑥, 𝜃𝑦, 𝜃𝑧} of {600, 600, 450}, by using global coordinate defined in Figs. 1 and 2. In this 

study, supporting component and protractor tools are used as a guide rail for oblique impact as 

shown in Fig. 3.  

 

Fig. 3. Supporting component for oblique impact. 

Supporting 

component 

Protractor 
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Similar to the traditional normal impact testing approach, the user is required to maintain the 

oblique impact at the pre-determined location and direction. The steps to ensure consistent 

oblique impact are given below:  

 

(i) Perform the polar-to-spherical coordinate transformation. For example, {𝜃𝑥, 𝜃𝑦, 𝜃𝑧}  in 

polar coordinate can be converted to {𝜃𝑎, 𝜃𝑝}  in spherical coordinate, where 𝜃𝑎 =

𝑡𝑎𝑛−1(𝑐𝑜𝑠𝜃𝑦/𝑐𝑜𝑠𝜃𝑥) and 𝜃𝑝 = 𝜃𝑧 are the azimuthal and polar angles respectively. Hence, 

{𝜃𝑎, 𝜃𝑝} = {45
0, 450} can be obtained from {𝜃𝑥, 𝜃𝑦, 𝜃𝑧} = {60

0, 600, 450}.  

 

(ii) Adjust the supporting component to the desired impact direction according to the spherical 

coordinate as illustrated in Fig. 4. A protractor tool is used to measure the angle of the 

supporting component. The supporting component is initially pointing at the 𝑥-axis of 

Point #1, then rotates 45o towards positive y-axis (i.e. 𝜃𝑎 in Fig. 4(b)). Lastly, rotate it 45o 

towards positive 𝑧-axis (i.e. 900 − 𝜃𝑝 in Fig. 4(c)).  

 

(iii) Additional supporting component #2 is added parallel to the supporting component #1, in 

order to form the guide rail for the oblique impact as shown in Fig. 5. In this way, impact 

in the oblique direction can be held within acceptable limits as follows ISO 7626-5:1994 

[31]. Hence, consistent oblique impact can be achieved.  
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Fig. 4. The positioning of the supporting component to the pre-determined oblique direction. 

   

  

Fig. 5. (a) Side and (b) isometric views of the oblique impact with the guide rail. 

 

Next, the tri-axial accelerometer is roved from Points #1 to #19 to record the corresponding 

impact-induced response at the 𝑥-, 𝑦-, and 𝑧-axes. A total of 50 averages are used for each 

measurement. Thus, in total, 57 FRFs are collected at 19 measurement points and the data 

acquisition procedure requires 950 impacts. In Matlab®, the response in the direction of the 

oblique impulse can be calculated through the proposed vector projection method by using Eqs. 

(7) - (10). Hence, the additional oblique driving point FRF can be obtained. All the measured 

Point #1 

y 

z 

 x 

(a) 

y 

 

z 
x 

 

𝜃𝑎 = 45o 

Supporting 

component #1 

(a) 

(b) (c) 
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Point #1 
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𝐹1𝑜𝑏 
𝐹1𝑜𝑏 
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data (57+1) by 1 FRF matrix can be arranged as follows Eq. (6) and it will be further post-

processed to obtain the dynamic characteristics such as damped natural frequencies, residue 

mode shape, and UMM mode shape using ME’scope®. Next, the accuracy of the oblique 

impact testing result will be benchmarked with the tri-axial normal impact testing result.  

 

3.3  Experimental Procedure for Tri-Axial Normal Impact Testing 

Conventional tri-axial normal impact testing is carried out to validate the result of oblique 

impact testing. SISO roving accelerometer approach is adopted, where the Point #1 is set as 

the reference point for the normal force (i.e. fixed normal impact). Firstly, the test rig is 

impacted at Point #1 in the 𝑥-direction (i.e. {𝜃𝑥, 𝜃𝑦 , 𝜃𝑧} = {0
0, 900, 900}), as shown in Fig. 6(a) 

while the tri-axial accelerometer is roving from Points #1 to 19 for 19 measurements. A total 

of 50 averages are used for each measurement. This procedure is repeated for the impact in the 

y- and 𝑧-directions respectively (i.e. {900, 00, 900} & {900, 900, 00}) as shown in Figs. 6(b) 

and (c). A total of 57 FRFs are collected for each normal impact, at 19 measurement points and 

the data acquisition procedure requires 2850 impacts (i.e. 950 impacts 𝑥  3 directions). 

Therefore, the FRF matrix with size (57 x 3) can be obtained as follows Eq. (14).  

 

   

Fig. 6. Normal impact testing in (a) 𝑥-, (b)  𝑦-, and (c) 𝑧-directions.   

(a) 

Point #1 

𝐹1𝑥 

𝐹1𝑦 

𝐹1𝑧 

(b) (c) 
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3.4  Validation Method for FRF Results Obtained from Oblique Impact Testing 

Theoretically, FRF results of oblique impact testing have the same effects as the tri-axial 

normal impact testing with concurrent forces, as discussed in Section 2. To validate this point, 

the measured FRFs due to the oblique impact from Eq. (5) will be compared with the measured 

FRFs due to 3 concurrent normal impacts from Eq. (16), as illustrated in Eq. (20). Note that 

the validity of Eq. (20) will greatly demonstrate the time effective oblique impact testing can 

be performed instead of the time-consuming normal impact testing. 

[
 
 
 
 
 
 
𝐻1𝑥:1𝑜𝑏(𝜔)
𝐻1𝑦:1𝑜𝑏(𝜔)

𝐻1𝑧:1𝑜𝑏(𝜔)
⋮

𝐻19𝑥:1𝑜𝑏(𝜔)
𝐻19𝑦:1𝑜𝑏(𝜔)

𝐻19𝑧:1𝑜𝑏(𝜔)]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
𝐻1𝑥:1𝑥𝑐𝑜𝑠𝜃𝑥 +𝐻1𝑥:1𝑦𝑐𝑜𝑠𝜃𝑦 + 𝐻1𝑥:1𝑧𝑐𝑜𝑠𝜃𝑧
𝐻1𝑦:1𝑥𝑐𝑜𝑠𝜃𝑥 + 𝐻1𝑦:1𝑦𝑐𝑜𝑠𝜃𝑦 + 𝐻1𝑦:1𝑧𝑐𝑜𝑠𝜃𝑧
𝐻1𝑧:1𝑥𝑐𝑜𝑠𝜃𝑥 + 𝐻1𝑧:1𝑦𝑐𝑜𝑠𝜃𝑦 + 𝐻1𝑧:1𝑧𝑐𝑜𝑠𝜃𝑧

⋮
𝐻19𝑥:1𝑥𝑐𝑜𝑠𝜃𝑥 + 𝐻19𝑥:1𝑦𝑐𝑜𝑠𝜃𝑦 + 𝐻19𝑥:1𝑧𝑐𝑜𝑠𝜃𝑧
𝐻19𝑦:1𝑥𝑐𝑜𝑠𝜃𝑥 + 𝐻19𝑦:1𝑦𝑐𝑜𝑠𝜃𝑦 + 𝐻19𝑦:1𝑧𝑐𝑜𝑠𝜃𝑧
𝐻19𝑧:1𝑥𝑐𝑜𝑠𝜃𝑥 + 𝐻19𝑧:1𝑦𝑐𝑜𝑠𝜃𝑦 + 𝐻19𝑧:1𝑧𝑐𝑜𝑠𝜃𝑧 ]

 
 
 
 
 
 
 

               (20) 

In this study, the oblique direction is set at {600, 600, 450}. Hence, Eq. (20) can be simplified 

to Eq. (21). It shows that the oblique FRF is due to the superposition of normal reference FRFs 

in three principal directions, which illustrates the ‘concurrent forces effect’.  

[
 
 
 
 
 
 
𝐻1𝑥:1𝑜𝑏(𝜔)
𝐻1𝑦:1𝑜𝑏(𝜔)

𝐻1𝑧:1𝑜𝑏(𝜔)
⋮

𝐻19𝑥:1𝑜𝑏(𝜔)
𝐻19𝑦:1𝑜𝑏(𝜔)

𝐻19𝑧:1𝑜𝑏(𝜔)]
 
 
 
 
 
 

= 0.5 

[
 
 
 
 
 
 
𝐻1𝑥:1𝑥(𝜔)
𝐻1𝑦:1𝑥(𝜔)

𝐻1𝑧:1𝑥(𝜔)
⋮

𝐻19𝑥:1𝑥(𝜔)
𝐻19𝑦:1𝑥(𝜔)

𝐻19𝑧:1𝑥(𝜔)]
 
 
 
 
 
 

+ 0.5 

[
 
 
 
 
 
 
 
𝐻1𝑥:1𝑦(𝜔)

𝐻1𝑦:1𝑦(𝜔)

𝐻1𝑧:1𝑦(𝜔)

⋮
𝐻19𝑥:1𝑦(𝜔)

𝐻19𝑦:1𝑦(𝜔)

𝐻19𝑧:1𝑦(𝜔)]
 
 
 
 
 
 
 

+ 0.707 

[
 
 
 
 
 
 
𝐻1𝑥:1𝑧(𝜔)
𝐻1𝑦:1𝑧(𝜔)

𝐻1𝑧:1𝑧(𝜔)
⋮

𝐻19𝑥:1𝑧(𝜔)
𝐻19𝑦:1𝑧(𝜔)

𝐻19𝑧:1𝑧(𝜔)]
 
 
 
 
 
 

    (21) 

If Eq. (21) is true, then the ‘concurrent forces effect’ of the oblique FRF can be validated. 

Validation of oblique FRF is conducted against the superposition-normal FRF, via the 

comparison of peak location, peak amplitude, and the number of peaks. Further validation is 

conducted by investigating the correlation between the oblique FRF and superposition-normal 

FRF. A total of 57 oblique FRFs from oblique impact testing and 57 superposition-normal 
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FRFs from tri-axial normal impact testing at three axes are averaged respectively. Correlation, 

𝐶𝑜𝑟𝑟 between both mean FRFs are inspected using Eq. (22).  

𝐶𝑜𝑟𝑟 =  
|∑ (𝑂𝑟𝑆𝑟

∗)𝐵𝑆−1
𝑟=0 |

2

(∑ (𝑂𝑟𝑂𝑟
∗)𝐵𝑆−1

𝑟=0 )  (∑ (𝑆𝑟𝑆𝑟
∗)𝐵𝑆−1

𝑟=0 )
                                         (22) 

, where 𝑂𝑟 and 𝑆𝑟 are the 𝑟𝑡ℎ samples of the mean oblique FRF and the mean superposition-

normal FRF respectively. •∗  is the complex conjugate function. Block size, 𝐵𝑆 is the total 

number of collected samples per block. Note that the correlation value greater than 0.9 indicates 

an excellent agreement between the measured oblique FRF and the conventional superposition-

normal FRFs.  

 

3.5 Validation Method for Modal Parameters Result Obtained from Oblique Impact Testing 

By using ME’scope® software, the measured oblique FRFs and superposition-normal FRFs 

are curve-fitted separately to extract its corresponding natural frequency, modal damping ratio, 

and residue mode shapes. The deviation between the natural frequency, and modal damping 

ratio will be compared for both tests. As a rule of thumb, natural frequency and modal damping 

ratio errors within 5% deviation is considered good and acceptable. To obtain UMM mode 

shape, additional driving point FRF in the oblique direction is required for the oblique and tri-

axial normal impact testing respectively, as follows Eqs. (6) and (17). Hence, the mode shape 

animation by these two tests will be compared side by side. Moreover, the mode shape 

comparison can be done using the modal assurance criterion (MAC) function, as shown in Eq. 

(23).  

MAC ({𝜙𝑜}, {𝜙𝑠}) =  
|{𝜙𝑜}

𝐻{𝜙𝑠}|
2

({𝜙𝑜}𝐻{𝜙𝑜}) ({𝜙𝑠}𝐻{𝜙𝑠})
                                      (23) 

, where 𝜙𝑜  is the UMM shape vector of oblique MA, and 𝜙𝑠  is the UMM shape vector of 

superposition-normal MA. •𝐻  denotes the Hermitian transpose, i.e. complex conjugate 

transpose function. MAC value is calculated between 0 and 1.  MAC value of 1 indicates a 
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perfect correlation between two mode shapes, while the MAC value of 0 indicates uncorrelated 

mode shape. In practice, MAC value greater than 0.9 is commonly recognized as similar mode 

shapes or consistent correspondence [32]. 

 

4. Results and Discussion  

4.1 Comparison of FRF Results between Oblique and Tri-Axial Normal Impact Testing 

Measured oblique FRFs of 57 sets and superposition-normal FRFs of 57 sets are overlaid in 

Figs. 7 and 8 respectively. Both figures show three global peaks within the first 50 Hz. Each 

global peak indicates the vibration modes of the T-shaped structure. From the visual 

comparison, both FRFs show good agreement of FRF pattern from 0 to 50 Hz. The location of 

the peak, as well as the peaks’ magnitude are close and similar. The discrepancy between the 

maximum peak magnitude of oblique and superposition-normal FRFs are shown in Table 1. 

The percentage of differences between the magnitudes of the peaks are less than 3%, which 

indicates good agreement between both FRFs. 

 

Fig. 7. Overlaid of all oblique FRFs result from oblique impact testing. 
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Fig. 8. Overlaid of all superposition-normal FRFs result from tri-axial normal impact testing. 

 

Table 1 

Comparison of maximum peak magnitude of superposition-normal and oblique FRFs. 

Peak Oblique FRF ,  

ms-2/N 

Superposition-Normal FRF,  

ms-2/N 

Percentage of Difference, 

% 

1 1.0065 0.9894 1.73 

2 0.5683 0.5865 3.00 

3 1.3644 1.3416 1.70 

 

Furthermore, oblique and superposition-normal FRFs are averaged respectively and the results 

are plotted in Fig. 9. Then, the correlation value is calculated to examine the closeness of 

oblique FRF to superposition-normal FRF. As a result, a correlation value of 0.92 is obtained, 

which indicates that the oblique FRF has good agreement with the superposition-normal FRF.  
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Fig. 9. Mean superposition-normal FRF versus mean oblique FRF. 

 

Side by side comparison of the oblique and superposition-normal FRFs in various directions 

of the response DOF is shown in Fig. 10. Closer examination of it shows great agreement in 

terms of the peak magnitude and peak location as well as the FRF pattern for various directions 

of FRF’s response DOF. The result shows that the oblique FRF matches well with the 

superposition-normal FRF, and thus the ‘concurrent forces effect’ of the oblique FRF is 

validated. With that, significant improvement is successfully demonstrated in this study, 

against the oblique impact testing result reported in the previous studies [20, 21]. Those studies 

did not consider the theoretical linkage of the oblique FRF with normal FRF, therefore these 

studies could not explain well the variations in the obtained FRF pattern and mode shape, as 

compared to the normal FRF result from the uni-axial impact testing. The main reason for the 

variation is discovered in this study, where a single column/row of normal FRF obtained from 

the uni-axial normal impact testing is only a part of the oblique FRF. Considering the 

‘concurrent forces effect’ of oblique FRF that excites the structure in all principal directions, 

oblique FRF is validated to closely approximate the superposition-normal FRF, which is 

formed from the superposition of all columns/rows of normal FRF obtained from the trial-axial 

normal impact testing, as follows Eq. (20).  
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Fig. 10. Side by side comparison between oblique (left) and superposition-normal (right) 

FRFs due to response DOF in (a) 𝑥-, (b) 𝑦-, and (c) 𝑧-directions. 

 

4.2 Comparison of Modal Parameter Results between Oblique and Tri-Axial Normal Impact 

Testing 

To examine the accuracy of the proposed oblique impact testing in determining the structural 

dynamic characteristics, benchmarking with the modal parameter result from the conventional 

(c) 

(b) 

(a) 
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tri-axial normal impact testing is necessary. This can be done by taking the oblique and 

superposition-normal FRFs including its driving point measurement into a modal curve fitting 

process. A total of 3 vibration modes are obtained from the curve fitting result, as they manifest 

predominantly vertical and horizontal motions. Hence, a comparison of various modal 

parameters is performed in terms of the natural frequency result (Table 2), modal damping ratio 

result (Table 3) and mode shape result (Figs. 11 – 13 and Table 4).  

 

Table 2 shows that the natural frequencies obtained from the oblique impact testing have an 

accuracy range within 98.34% - 98.83%, as compared to the result of tri-axial normal impact 

testing. Since the obtained percentage of discrepancy is less than 2%, oblique impact testing 

can estimate the natural frequencies accurately. Table 3 shows the modal damping ratios 

obtained from both tests. Note that the absolute error is being adopted in comparing the results 

instead of using the percentage of discrepancy, as follows the previous literature [33]. This is 

because the examination of the damping ratio in the percentage of discrepancy could easily 

incur the exaggeration effect that may cause wrong analysis. The obtained absolute error has 

range within 0.07% - 0.99%. Usually, accurate modal damping ratio estimation is difficult in 

nature and it is often expected to be less certain. This is because the measurement of this 

parameter is very sensitive to the small change of the boundary and ambient conditions, as 

reported on the finding of Luis et al. [34] and Philip et al. [35]. In this study, small inconsistency 

of impact direction, small deviation of the test rig’s position, and small variation of the loading 

position for various loading conditions, such as oblique and normal impacts, may lead to 

notable variation in the modal damping ratio estimation.  Despite the estimation variation, since 

the modal damping ratios obtained from both tests are relatively small for structural 

applications (i.e. lightly damped structure) as they are less than 5% [36]. The proposed testing 
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can estimate the lightly damped characteristic of the test rig successfully. Thus, the estimation 

of the modal damping ratio is satisfactory.  

 

Table 2 

Natural frequencies obtained from oblique and tri-axial normal impact testing. 

Mode Natural Frequency from 

Oblique Impact Testing  

(Hz) 

Natural frequency from Tri-

Axial Normal Impact Testing  

(Hz) 

Percentage of 

Discrepancy  

(%) 

1 11.00 10.83 1.57 

2 14.81 15.06 1.66 

3 18.09 17.88 1.17 

 

Table 3 

Modal damping ratio obtained from oblique and tri-axial normal impact testing. 

Mode Modal Damping Ratio 

from Oblique Impact 

Testing  

 (%) 

Modal Damping Ratio from 

Tri-Axial Normal Impact 

Testing  

 (%) 

Absolute Error 

(%) 

1 3.47 2.48 0.99 

2 1.99 2.50 0.51 

3 1.26 1.33 0.07 

 

The third dynamic characteristic is the UMM mode shape. Both UMM mode shapes obtained 

from the oblique and normal impact tests are compared side by side in various views, as shown 

in Figs. 11 - 13. For the vibration mode #1, the mode shape is dominated by the swaying and 
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pitching motions, which is clearly shown in Figs. 11(a) and 11(d). Mode #2 is dominated by 

swaying and rolling motions, as shown in Figs. 12(a) and 12(c).  Figs. 13 shows that mode #3 

is dominated by the heaving motion. From the visual comparison, it shows that both mode 

shapes agree well with each other for all examined vibration modes. Furthermore, mode shapes 

are compared quantitatively using MAC in Table 4. It shows that all modes have MAC values 

greater than 0.9 at the diagonal term, which indicates that all mode shapes obtained from the 

proposed oblique impact testing are very similar to the UMM mode shapes obtained from the 

conventional tri-axial normal impact testing result. A non-correlated relationship is found at 

the off-diagonal term (MAC < 0.1) which indicates that the mode shapes are unrelated or 

independent between two mode shapes at different modes. Besides, the off-diagonal term with 

near-zero value indicates that it is free of spatial aliasing issue [32]. In overall, the oblique 

impact testing successfully estimates the UMM mode shape with high accuracy. 

 

 

Fig. 11. Side by side comparison between UMM mode shape #1 obtained from oblique (left) 

and normal (right) impact testing: (a) top, (b) front, (c) isometric, and (d) right views. 

 

(a) 

(b) 

(c) 

(d) 
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Fig. 12. Side by side comparison between UMM mode shape #2 obtained from oblique (left) 

and normal (right) impact testing: (a) top, (b) front, (c) isometric, and (d) right views. 

 

 

Fig. 13. Side by side comparison between UMM mode shape #3 obtained from oblique (left) 

and normal (right) impact testing: (a) top, (b) front, (c) isometric, and (d) right views. 

 

 

 

(a) 

(b) 

(c) 

(d) 

(a) 

(b) 

(c) 

(d) 
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Table 4 

MAC result between UMM mode shapes obtained from the oblique and tri-axial normal impact 

testing.  

 

5. Conclusion  

In this study, the reliability of the fixture-free oblique impact testing has been examined. 

Additional driving point FRF measurement in the oblique direction has been successfully 

obtained by using the proposed vector projection method. This method eliminates the need of 

a special fixture for the placement of an oblique-oriented accelerometer/impedance head which 

greatly increases the practicality of oblique impact testing. The theoretical relationship between 

the oblique and conventional tri-axial normal impact testing is successfully developed in this 

study. Validation of the proposed oblique impact testing is successfully performed through the 

comparison of the measured FRF and curve-fitted modal parameters, with the results of tri-

axial normal impact testing. Experimental results show that the oblique FRF matches the 

superposition-normal FRF well, with a high correlation value of 0.92. Furthermore, the 

percentage of discrepancies less than 2% is obtained for the natural frequencies estimation, and 

          Normal 

           Impact 

               Case 

Oblique 

Impact 

Case 

  

Mode Shape 

#1 

Mode Shape 

#2 

Mode Shape  

#3 

Frequency 

(Hz) 

 10.83 15.06 17.88 

 

Damping 

(%) 

2.48 2.50 1.33 

Mode Shape #1 11.00 3.47 0.903 0.046 0.054 

Mode Shape #2 14.81 1.99 0.063 0.949 0.033 

Mode Shape #3 18.09 1.26 0.036 0.040 0.972 
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absolute errors of less than 1% are obtained for the modal damping ratios estimation. Driving 

point FRF is successfully used to scale the residue mode shape, and the obtained UMM mode 

shapes have great accuracy, with MAC value greater than 0.903 for all the examined modes. 

To a great degree, oblique impact testing is validated to be an alternative and reliable solution 

for performing the experimental modal analysis, rather than performing a time-consuming tri-

axial normal impact testing.  

 

6. Acknowledgement  

The authors wish to acknowledge the financial support given by the Fundamental Research 

Grant Scheme (FP057-2015A) and the advice given by the Advanced Shock and Vibration 

Research (ASVR) Group of University of Malaya and other project collaborators.  

 

Reference 

1. Herman, V.d.A., et al., Structural Design Changes as a Solution to a Resonance 

Fatigue Problem of a Sports Car. 1993, SAE Technical Paper. 

2. Eiras, J.N., et al., Experimental modal analysis and finite element model updating for 

structural health monitoring of reinforced concrete radioactive waste packages. 

Construction and Building Materials, 2018. 180: p. 531-543. 

3. Roy, H. and S. Chandraker, Dynamic study of viscoelastic rotor: Modal analysis of 

higher order model considering various asymmetries. Mechanism and Machine 

Theory, 2017. 109: p. 65-77. 

4. Wu, Q., et al., Crack diagnosis method for a cantilevered beam structure based on 

modal parameters. Measurement Science and Technology, 2019. 31(3): p. 035001. 

5. Fan, W. and P. Qiao, Vibration-based damage identification methods: a review and 

comparative study. Structural health monitoring, 2011. 10(1): p. 83-111. 

6. Khoo, S.Y., et al., Impact force identification with pseudo-inverse method on a 

lightweight structure for under-determined, even-determined and over-determined 

cases. International Journal of Impact Engineering, 2014. 63: p. 52-62. 

7. Kong, K.K., et al., Identification of material properties of orthotropic composite plate 

using hybrid non-destructive evaluation approach. Materials Research Innovations, 

2014. 18: p. 423-428. 

8. Kouroussis, G., L.B. Fekih, and T. Descamps, Assessment of timber element 

mechanical properties using experimental modal analysis. Construction and Building 

Materials, 2017. 134: p. 254-261. 

9. Li, H., et al., An iterative method for identification of temperature and amplitude 

dependent material parameters of fiber-reinforced polymer composites. International 

Journal of Mechanical Sciences, 2020. 184: p. 105818. 



33 

 

10. Ewins, D., Basics and state-of-the-art of modal testing. Sadhana, 2000. 25(3): p. 207-

220. 

11. Keyhani, A. and S. Mohammadi, Structural modal parameter identification using local 

mean decomposition. Measurement Science and Technology, 2018. 29(2): p. 025003. 

12. Yanez-Borjas, J.J., et al., Nonlinear mode decomposition-based methodology for modal 

parameters identification of civil structures using ambient vibrations. Measurement 

Science and Technology, 2019. 31(1): p. 015007. 

13. XiaoLi, Z., et al., An inverse decaying frequency modulation EMD method for closely 

spaced modal parameter identification in high precision with Laplace wavelet 

correlation filtering. Measurement Science and Technology, 2020. 

14. Brown, D.L., R.J. Allemang, and A.W. Phillips, Forty years of use and abuse of impact 

testing: a practical guide to making good FRF measurements, in Experimental 

Techniques, Rotating Machinery, and Acoustics, Volume 8. 2015, Springer. p. 221-241. 

15. Ewins, D.J., Modal Testing: Theory, Practice, and Application. 2000, England: 

Research Studies Press LTD. 

16. Schwarz, B.J. and M.H. Richardson, Experimental modal analysis. CSI Reliability 

week, 1999. 

17. Daborn, P.M., P. Ind, and D. Ewins, Enhanced ground-based vibration testing for 

aerodynamic environments. Mechanical Systems and Signal Processing, 2014. 49(1-2): 

p. 165-180. 

18. Aykan, M. and M. Celik, Vibration fatigue analysis and multi-axial effect in testing of 

aerospace structures. Mechanical Systems and Signal Processing, 2009. 23(3): p. 897-

907. 

19. Okyay, A., K. Erkorkmaz, and M. Khamesee, Modal Analysis, Metrology, and Error 

Budgeting of a Precision Motion Stage. Journal of Manufacturing and Materials 

Processing, 2018. 2(1): p. 8. 

20. Khoo, S.Y., et al., Time effective structural frequency response testing with oblique 

impact, in 20th International Conference on Acoustics, Vibration and Noise Control 

Engineering (ICAVNCE). 2018: Venice, Italy. 

21. Døssing, O., Improvement to monoreference modal data by adding an oblique degree 

of freedom for the reference, in Proceedings of the International Modal Analysis 

Conference IMAC IV. 1986: Los Angeles Airport Marriott Hotel, Los Angeles, CA. p. 

pp. 23-42. 

22. Herlufsen, H., Modal analysis using multi-reference and multiple-input multiple-output 

techniques. Brüel & Kjær, Application Note, 2004: p. 16. 

23. Avitabile, P., MODAL SPACE: If I run a shaker test with the input oblique to the global 

coordinate system, how do I decompose the force into the specific components in each 

direction? Experimental Techniques, 2009. 33(5): p. 11-12. 

24. Warren, C., et al., Comparison of FRF measurements and mode shapes determined 

using optically image based, laser, and accelerometer measurements. Mechanical 

Systems and Signal Processing, 2011. 25(6): p. 2191-2202. 

25. Baqersad, J., et al., Comparison of modal parameters extracted using MIMO, SIMO, 

and impact hammer tests on a three-bladed wind turbine, in Topics in Modal Analysis 

II, Volume 8. 2014, Springer. p. 185-197. 

26. Lauffer, J.P., T.G. Carne, and T.D. Ashwill, Modal testing in the design evaluation of 

wind turbines. 1988: Sandia National Laboratories. 

27. Richardson, M. and B. Schwarz, Modal parameter estimation from operating data. 

Sound and Vibration, 2003. 37(1): p. 28-39. 

28. Richardson, M. and C. Jamestown, Modal mass, stiffness and damping. Vibrant 

Technology, Inc., Jamestown, CA, 2000: p. 1-5. 



34 

 

29. Richardson, M.H. and C. Jamestown, Modal mass, stiffness and damping. Vibrant 

Technology, Inc., Jamestown, CA, 2000: p. 1-5. 

30. ISO 7626-1:2011 Vibration and shock - Experimental determination of mechanical 

mobility, in Part 1: Basic terms and definitions, and transducer specifications. 2011. 

31. ISO 7626-5:1994 Vibration and shock - Experimental determination of mechanical 

mobility, in Part 5: Measurements using impact excitation wth an exciter which is not 

attached to the structure. 1994. 

32. Pastor, M., M. Binda, and T. Harčarik, Modal Assurance Criterion. Procedia 

Engineering, 2012. 48(0): p. 543-548. 

33. Mbarek, A., et al., Comparison of experimental and operational modal analysis on a 

back to back planetary gear. Mechanism and Machine Theory, 2018. 124: p. 226-247. 

34. Felipe-Sesé, L., et al., FP+ DIC for low-cost 3D full-field experimental modal analysis 

in industrial components. Mechanical Systems and Signal Processing, 2019. 128: p. 

329-339. 

35. Reu, P.L., D.P. Rohe, and L.D. Jacobs, Comparison of DIC and LDV for practical 

vibration and modal measurements. Mechanical Systems and Signal Processing, 2017. 

86: p. 2-16. 

36. Giurgiutiu, V., Structural health monitoring: with piezoelectric wafer active sensors. 

2007: Elsevier. 

 

  


