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Highlights 

x Discrimination speed of angry and fearful faces related to separate networks.   

x Angry faces are discriminated faster by extended emotional face processing 

network. 

x Fearful faces are discriminated faster by cortical visual-attentional regions. 

x Discrimination speed of angry but not fearful faces associated with right 

amygdala. 

x Integrity of inferior longitudinal fasciculus improves threat discrimination 

speed. 
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CONNECTIVITY PREDICTS DISCRIMINATION SPEED 

Abstract 

In social interactions, individuals who are slower at differentiating between facial 

expressions signalling direct and indirect threat might be at a serious disadvantage. 

However, the neurobiological underpinnings of individual differences in face 

processing are not yet fully understood. The aim of this study was to use multimodal 

neuroimaging to investigate how the speed of emotion recognition is related to the 

structural and functional connectivity underlying the differentiation of direct and 

indirect threat displays. Our results demonstrate that individuals, who are faster at 

discriminating angry faces, engaged areas of the extended emotional system more 

strongly than individuals with slower reaction times, showed higher white matter 

integrity in the inferior longitudinal fasciculus, as well as stronger functional 

connectivity with the right amygdala. In contrast, individuals, who were faster at 

discriminating fearful faces, engaged visual-attentional regions outside of the face 

processing network more strongly than individuals with slower reaction times, 

showed higher white matter integrity in the inferior longitudinal fasciculus, as well as 

reduced functional connectivity with the right amygdala. Our findings suggest that the 

high survival value of rapid and appropriate responses to threat has defined but 

separate neurobiological correlates for angry and fearful facial expressions. 

 

Keywords: emotion discrimination; structural-functional connectivity; individual 

differences 
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CONNECTIVITY PREDICTS DISCRIMINATION SPEED 

1. Introduction 

Rapid and accurate discrimination of facial expressions of emotion is 

important for preparing adequate and timely responses in social interactions (Cizek & 

Kalaska, 2010). Rapid discrimination is particularly important for facial expressions 

displaying anger and fear, as these emotions signal direct and indirect threat 

respectively, which might require an immediate fight-or-flight response (Bannerman 

et al., 2009; Hansen & Hansen, 1988; Lo & Cheng, 2015; Whalen et al., 2001). 

Previous research has shown that the ability to rapidly discriminate between 

emotional facial expressions signalling threat depends on the core face-processing 

network, including inferior occipital gyrus, superior temporal sulcus, and fusiform 

gyrus, as well as the extended emotional system centered on the amygdala (Haxby et 

al. 2002; Rossion et al., 2003; Gobbini & Haxby, 2007). During the conscious 

recognition of threatening emotional facial expressions, the core network and the 

extended emotional system interact through bidirectional functional connections 

between the amygdala and the fusiform gyrus (Herrington et al., 2011; Wang et al., 

2016). Functional connectivity between fusiform gyrus and amygdala, together with 

the ability to discriminate emotions depend on white matter pathways within the 

inferior longitudinal fasciculus (Kleinhans et al., 2008; Koldewyn et al., 2014). This 

structural-functional relationship allows the amygdala to exert top-down control on 

the ventral visual pathway during the perception of threat-signalling facial 

expressions (Amaral, Behniea & Kelly, 2003; Villeumier et al., 2003; De Gelder et 

al., 2014). Thus, this evidence suggests that rapid discrimination of threat-related 

emotional facial expressions crucially depends on the functional and structural 

connectivity between the amygdala and fusiform gyrus and that individuals with less 

efficient structural and functional connectivity may be at a disadvantage in threat-
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CONNECTIVITY PREDICTS DISCRIMINATION SPEED 

related social interactions. However, to date, no study has investigated whether the 

functional and structural connectivity between the amygdala and fusiform gyrus 

affects the speed of emotion discrimination in healthy adults. 

The objective of this study was to investigate whether individual differences in 

structural integrity and functional connectivity between the core and extended 

emotional face-processing networks would predict the speed of conscious emotion 

discrimination for angry and fearful facial expressions. In particular, we were 

interested in the three-way relation between structural connectivity, functional 

connectivity, and behaviour during an emotion discrimination task that required 

participants to match facial expressions of fear or anger. As an indicator of structural 

connectivity, we assessed the white matter integrity of the inferior longitudinal 

fasciculus (ILF), which constitutes the major white matter pathway along the ventral 

visual processing stream, mediating the interactions between the amygdala and the 

fusiform gyrus during face processing (Catani et al., 2003; Thomas et al., 2009). As 

an indicator of functional connectivity, we used a seed-based approach and covaried 

functional activity within the amygdala with task-related activity across the whole 

brain. As an indicator of behaviour, we measured reaction times of emotion 

discrimination. Based on previous studies, which show that angry and fearful faces 

are identified equally fast and that processing of both emotions engages the core and 

extended face-processing networks (De Sonneville et al., 2002; Whalen et al., 2001), 

we hypothesized that, as a group, participants would (i) be equally fast to match angry 

and fearful faces and (ii) engage the core and extended face processing networks for 

both facial expressions. Based on the assumption that the discrimination of different 

emotional expressions requires the interaction between the amygdala and fusiform 

gyrus (Herrington et al., 2011; Wang et al., 2016), we further hypothesized that (iii) 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

CONNECTIVITY PREDICTS DISCRIMINATION SPEED 

for both angry and fearful facial expressions, individuals who discriminate emotions 

more rapidly would also have better white matter integrity in the ILF and increased 

functional connectivity within and between the core and extended face-processing 

networks. More specifically, we hypothesized that shorter reaction times should 

correlate with higher FA values as well as connectivity values in the face processing 

network. 

 

2. Methods 

2.1 Participants  

28 right-handed adults (14 females, mean age = 26.3 years, age range = 21-34 

years) with normal or corrected to normal vision gave written consent to take part in 

the experiment, which was approved by the Human Ethics Research Committee of the 

University of Queensland. All participants were screened for neuropsychological 

disorders, brain damage, and substance abuse. Images were acquired with a Siemens 

Magnetom Trio 3T (Siemens Healthcare, Erlangen, Germany) and a standard 32-

channel head coil at the Centre for Advanced Imaging, University of Queensland.  

 

2.2 Experimental Procedure 

 Participants took part in an emotion-matching task adapted from the paradigm 

described in Hariri et al. (2000). During each trial, three images were presented, one 

in the top and two in the bottom half of the screen using Presentation software 

(Neurobehavioral Systems, Inc.). One of the bottom two images was identical to the 

top image and participants were asked to identify the image in the bottom half of the 

screen that matched the top image by pressing the one of two buttons associated with 

the left and right image. Images either showed black elliptical shapes angled at 45º or 
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315º (shapes condition) or facial expressions with a target of angry (angry condition) 

or fearful facial expressions (fearful condition). During presentation of facial 

expressions, all pictures were of the same model and always included one fearful and 

one angry facial expression presented in the bottom row, which makes the two facial 

expression conditions directly comparable. Reaction times were measured and data 

from individual trials was removed from the behavioural analysis if they constituted 

outliers, i.e., a reaction time shorter than 350 ms or longer than 1800 ms. 

Image stimuli consisted of 24 pictures selected from the Radboud Faces 

Database (http://www.socsci.ru.nl:8180/RaFD2/RaFD). In each picture, a trained 

model (young adult Caucasian males and females) displayed either a fearful or an 

angry facial expression with direct gaze (Langner et al., 2010). Control stimuli 

consisted of black ellipses angled at 45º or 315º generated by Presentation software. 

Images were presented in 6 blocks (3 blocks of shapes, 3 blocks of faces), each 

containing 6 trials. The presentation order of blocks was randomized. At the 

beginning of each block, an instruction was presented for 3s to either “match the 

faces” or to “match the shapes”. In each trial, the images were presented for 2s 

followed by a fixation cross for 1s. 

Due to a technical error, the behavioural accuracy of the participants’ 

responses was not recorded. Observations of participants’ responses during the task 

suggested that behavioural accuracy was at ceiling and that accuracy would not be an 

important factor in assessing the relation between behaviour, structure, and function. 

To confirm this observation, we subsequently tested the same paradigm behaviourally 

in a separate sample of 28 young, right-handed adults (mean age = 22 years, age range 

= 18-30 years, 19 females). As predicted, participants’ accuracies showed a ceiling 

effect for each of the three stimulus types: angry faces group mean score = 0.96, SD = 
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0.04; fearful faces group mean score = 1.0, SD = 0.0; and shapes group mean score = 

0.94, SD = 0.09. To ensure comparability between the two groups, we further 

compared their reaction times. A 2 x 3 mixed-design ANOVA of the dependent 

variable reaction time with a fixed effects factor group (first, second) and a random 

effects factor stimulus (angry, fearful, shapes) yielded a significant factor of group 

(F(1) = 40.167, p < 0.001) and a significant factor of stimulus (F(2) = 20.603, p < 

0.001), but no interaction between factors. Using only data from the second group, 

two-sided t-tests of the reaction times to different stimulus types showed significantly 

faster responses to shapes than to angry and fearful facial expressions (both t(27) > 

6.4, both p < 0.001) but not between facial expressions (t(27) = 0.5, p = 0.7). These 

results replicate the results reported below for the first group although participants in 

the second group were overall faster across all stimulus types (significant main effect 

of the factor group). This group difference can be attributed to the different testing 

conditions because the first group was tested in the MRI whereas the second group 

was tested in a behavioural laboratory. Taken together, these results confirm that 

reaction time but not accuracy should be considered an important factor when 

investigating the relation between behaviour, structure, and function during the 

emotion-matching task. 

 

2.3 Image Acquisition 

For each participant, a T1-weighted volumetric anatomical MRI was acquired 

with the following parameters: 176 slices sagittal acquisition MP2RAGE; 1mm3 

isotropic volume; repetition time (TR)  = 4000 msec; echo time (TE) = 2.89 msec; flip 

angle = 6°; FOV = 256 mm, GRAPPA acceleration factor = 3. Functional images 

were acquired using a T2*-weighted echo-planar image pulse sequence with the 
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following parameters: 45 slices; voxel size = 2.5 x 2.5 x 2.7 mm; TR = 3000 msec; 

TE = 30 msec; FOV = 192 mm; flip angle = 90°. Diffusion-weighted images with a 

high angular resolution (HARDI) were acquired for each participant using a fast echo-

planar sequence with the following parameters: b1-value = 3000 s/mm2; 64 gradient 

directions; TR = 8600 msec; TE = 109 msec; FOV = 240 mm; 60 slices; voxel size = 

2.3 mm isotropic; GRAPPA acceleration factor = 2.  

 

2.4 fMRI Preprocessing & Whole-Brain Analysis 

 Brain activation was assessed using the blood oxygenation level dependent 

(BOLD) effect (Ogawa et al., 1990) with optimal contrast. For functional analysis, 

T2*-weighted images were preprocessed with Statistical Parametric Mapping 

software (SPM8; http://www.fil.ion.ucl.ac.uk/spm). Images were realigned to a mean 

image to correct for head motion and then spatially normalized into standard 

stereotaxic space with voxel size of 2 mm3, using the Montreal Neurological Institute 

(MNI) template. Head movement and rotation did not exceed 1 mm or 1.5º and no 

dataset had to be excluded from the analysis. Finally, the functional images were 

spatially smoothed with a 6-mm full width half maximum Gaussian kernel. 

Following preprocessing, images were submitted to whole-brain analysis 

using PLS software (PLS, http://www.rotman-baycrest.on.ca/index.php?section=84). 

PLS analysis proceeds in several steps (McIntosh et al., 1996, 2004; Krishnan et al., 

2011). First, data from individual trials and participants are sorted by condition and 

collated into a single data matrix and a second matrix containing task design (for task-

PLS) as well as covariates of interest (seed-PLS) is created. Second, the data and 

covariate matrices are mean-centered and normalized. Third, a covariance matrix is 

created from the dot product of the data and covariates matrices. Fourth, PLS uses 
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singular value decomposition  - a form of principal components analysis – to identify 

brain activity patterns related to task conditions (task PLS) and task conditions as well 

as seed values (seed PLS). Since PLS analyzes the data in a single analytical step, no 

corrections for multiple comparisons are necessary. Singular value decomposition 

yields latent variables that relate to the largest dimensions of variation within the data. 

Each latent variable consist of a pattern of brain activity, a singular value, and a 

matrix of loadings that indicate how each pattern relates to the task design and the 

seed values. Fifth, PLS assesses the reliability of the brain activity patterns at each 

voxel using a bootstrap estimation of the standard error with 100 iterations. All brain 

activity patterns were thresholded at a bootstrap ratio of 2 as this equates to a p-value 

of < 0.05. Sixth, PLS calculates a brain score for each experimental condition and 

each participant, which indicates how strong a pattern is represented in the 

experimental sample (McIntosh et al., 2004). Brain scores therefore represent 

individual differences. 

 

2.5 White Matter Analysis 

 Structural connectivity was assessed using MRtrix3 software 

(https://github.com/MRtrix3/) and tools from the FMRIB Software Library (FSL 

5.0.6; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). HARDI images were first corrected for 

motion and eddy current artefacts using eddy_correct, after which vectors were 

reoriented using fdt_rotate_bvecs (Graham, Drobnjak & Zhang, 2016). Then, a brain 

mask was created from the corrected b0 image using fslroi and skull-stripped using 

bet (Smith, 2002). Tensors were fitted using dwi2tensor, and fractional anisotropy 

(FA) values were computed for each voxel using tensor2metric (Veraart et al., 2013). 

Next, the DWI response function was estimated using dwi2response and the fiber 
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orientation distribution (FOD), which was derived using constrained spherical 

deconvolution (CSD) with harmonic order 8 as implemented in dwi2fod (Tournier et 

al., 2004, 2007). 

 For tractography, each individual’s T1-weighted image was first segmented 

using FSL’s first to derive individual masks for gray matter and cerebro-spinal fluid 

(CSF; Patenaude et al., 2011). Then, masks for left and right amygdala, as well as left 

and right fusiform gyrus were defined as anatomical regions of interest using the AAL 

atlas and masked using individual gray matter masks (Tzourio-Mazoyer et al., 2002). 

All masks were transformed into individual diffusion space using flirt (Jenkinson & 

Smith, 2001; Jenkinson et al., 2002). Unidirectional probabilistic streamlines between 

amygdala seed masks and fusiform gyrus inclusion masks were computed for each 

hemisphere using tckgen, the FODs derived from CSD, an exclusion mask derived 

from each individual’s CSF, and the iFOD2 algorithm with a step size of 1.15 and a 

cut-off of 0.15 (Tournier et al., 2010, 2012). After visual inspection, streamlines were 

converted to track-density images with tckmap, thresholded using mrthreshold, 

binarized with fslmaths, and used as masks to extract the mean values for each 

individual from the FA images using fslstats (Calamante et al., 2010). 

 

2.6 Structure-Function-Behaviour Analysis 

To assess the relation between reaction time, ILF FA values, and amygdala 

functional connectivity, average time-courses of seed regions in left and right dorsal 

amygdala were first extracted from each individual using a 5-mm sphere centered at 

MNI coordinates [-20 -8 -12] and [22 -6 -12]. The coordinates were chosen based on 

a priori anatomical information about the location of the left and right amygdala as 

well as the results of the whole-brain analysis, where the coordinates represent peak 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

CONNECTIVITY PREDICTS DISCRIMINATION SPEED 

amygdala activations differentiating the processing of fearful and angry faces from 

shapes. Then, the mean reaction times, mean ILF FA values, and functional seed 

values were correlated with each participant’s whole-brain activity and submitted to 

seed PLS analysis (Krishnan et al., 2011). In seed PLS analysis, the results display the 

Pearson product-moment correlation coefficient between brain scores of the LV and 

the reaction times, ILF FA values, and amygdala functional seed values for each 

condition (Marstaller et al., 2015). As a consequence, these correlations reflect 

individual differences in the three-way relation between structure, function, and 

behavior. 

 

3. Results 

3.1 Reaction times 

Repeated measures two-sided t-tests revealed that participants responded 

significantly faster to shapes (mean RT = 899.14 ms, SD = 163.89 ms) than angry 

(mean RT = 1096.11 ms, SD = 170.78 ms; t(27) = 6.3, p < 0.001) and fearful faces 

(mean RT = 1065.88 ms, SD = 153.61 ms; t(27) = 5.8, p < 0.001). There was no 

significant difference in reaction times between angry and fearful faces (t(27) = 1.3, p 

= 0.21; see Figure 1A). Reaction times for angry and fearful faces were highly 

correlated (r = 0.7). 

  

3.2 ILF white-matter integrity 

Group-mean FA-values were 0.42 (SD = 0.03) for the left and 0.41 (SD = 

0.06) for the right ILF. A two-sided repeated measures t-test showed no significant 

differences between the two hemispheres (t(27) = 1.5, p = 0.13; see Figure 1B). 
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(INSERT FIGURE 1 HERE) 

 

 

3.3 Whole-brain task-related functional activity 

PLS analysis resulted in two significant whole-brain activity patterns. The first 

pattern of activity differentiated the control condition (shapes) from face presentations 

and demonstrated a shared activation pattern for angry and fearful expressions. Angry 

and fearful faces were associated with increased activity in the core and extended 

emotional face processing system, including bilateral inferior occipital gyrus, 

fusiform gyrus, and dorsal amygdala (see cool colours in Figure 2). Presentation of 

shapes resulted in greater activity in posterior parietal cortices (see warm colours in 

Figure 2; see Table 1).  

 

(INSERT FIGURE 2 HERE) 

 

The second significant pattern of activity differentiated angry from fearful 

faces. For angry faces, the pattern showed increased activity in the right orbitofrontal 

cortex, left caudate nucleus, and middle frontal cortex, as well as in areas commonly 

associated with semantic processing (right hippocampus and middle temporal gyrus; 

Binder et al., 2009), salience detection (anterior cingulate cortex; Critchley, 2005), 

and bottom-up attention (right ventrolateral prefrontal cortex and right supramarginal 

gyrus; Fox et al., 2006; see warm colours in Figure 3). For fearful faces, the pattern 

showed increased activity in the right ventral amygdala, fusiform gyrus, and left 

pallidum (see cool colours in Figure 3; see Table 2). 
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(INSERT FIGURE 3 HERE) 

 

3.4 Three-way relation between reaction time, ILF integrity, and amygdala functional 

connectivity 

PLS analysis revealed two significant whole-brain patterns of amygdala 

functional connectivity that showed a different relation between functional 

connectivity, behaviour and ILF white matter integrity for angry and fearful faces. 

During perception of angry facial expressions, a set of limbic-temporal regions was 

functionally connected to the right (r = 0.37) but not the left amygdala (r = -0.028). 

This functional network was negatively correlated with reaction times (r = -0.72), but 

positively correlated with FA values of the left (r = 0.45) and right ILF (r = 0.37) and 

included bilateral hippocampus, brainstem, and the right temporal pole (see Figure 4). 

These results therefore show that individuals, who were faster at identifying angry 

faces, engaged this extended amygdala network more strongly, had better 

connectivity with the right amygdala, and a higher ILF white matter integrity 

bilaterally. Individual differences in the three-way relation between behaviour, white 

matter integrity, and functional connectivity are displayed as scatter plots that indicate 

how much each factor correlated with the depicted pattern of activity across the 

sample (see Figure 4). 

 

(INSERT FIGURE 4 HERE) 

 

A second frontal-parietal-occipital network showing negative functional 

connectivity with the right (r = -0.53) but not the left amygdala (r = -0.15) was 

engaged during perception of fearful facial expressions. This functional network was 
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negatively correlated with reaction time (r = -0.37) but positively with FA values of 

the left (r = 0.3) and right ILF (r = 0.51) and included bilateral lingual gyrus, 

precuneus, middle and superior frontal gyrus, supramarginal gyrus, and precentral 

gyrus meaning that individuals, who were faster at differentiating fearful faces, 

engaged this fronto-parietal-occipital network more strongly, had lower connectivity 

with the right amygdala, and a higher ILF white matter integrity bilaterally. Individual 

differences in the three-way relation between behaviour, white matter integrity, and 

functional connectivity are displayed as scatter plots that indicate how much each 

factor correlated with the depicted pattern of activity across the sample (see Figure 5). 

 

(INSERT FIGURE 5 HERE) 

 

5. Discussion 

 In social interactions, individuals who are slower at distinguishing between 

facial expressions signalling direct and indirect threat might be at a serious 

disadvantage. However, the neurobiological underpinnings of individual differences 

in face processing are not yet fully understood. The aim of this study was to 

investigate how the speed of emotion recognition is related to the structural and 

functional connectivity underlying the differentiation of direct and indirect threat 

displays. The analysis of the three-way relation between behaviour, structure, and 

function underlying the core and extended systems for angry and fearful face 

processing revealed behaviourally relevant individual differences. Individuals who 

were faster at identifying angry faces engaged areas of the extended emotional system 

more strongly than individuals with slower reaction times. These faster individuals 

further showed higher white matter integrity in the ILF and stronger functional 
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connectivity with the right amygdala, suggesting that an efficient structural and 

functional connectivity between the core and extended emotional systems is crucial 

for the rapid processing of facial expressions signalling direct threat. This finding 

implicates that the high survival value of rapid and appropriate responses to direct 

threat has a defined neurobiological correlate.  

With respect to fearful faces that signal indirect threat, our results showed that 

individuals who were faster at discriminating fearful faces also had more intact white 

matter in the ILF but less functional connectivity between the face processing 

network and the amygdala. Those faster individuals engaged more regions outside of 

the face processing network related to attention and visual processing, suggesting that 

the processing speed of facial expressions signalling indirect threat profits from the 

recruitment of additional visual-attentional systems, which are engaged in searching 

for novel cues that help reduce the ambiguity associated with indirect threat 

expressions (Whalen et al., 2001; Phelps, Ling, & Carrasco, 2005). In contrast to 

direct threat, the rapid recognition of indirect threat, therefore, seems to depend less 

on the cortical face-processing network and instead might rely more on a subcortical 

pathway (Villeumier et al., 2003). In addition, individual differences in the rapid 

recognition of indirect threat displays seem to directly translate into the ability to 

gather additional information that reduces the ambiguity associated with fearful facial 

expressions, and individuals who rapidly reduce ambiguity might profit from higher 

white matter integrity in the ILF along the ventral visual stream. 

The whole-brain results confirm previous findings by demonstrating the 

engagement of the core face-processing network, which consists of inferior occipital 

and fusiform gyrus and the extended emotional system centered around the amygdala, 

for both angry and fearful faces (Adolphs, 2002; Haxby et al. 2002; LaBar et al., 
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2003; Gobbini & Haxby, 2007). The results further show that the dorsal amygdala and 

fusiform gyrus are engaged during the perception of both angry and fearful faces, 

which is in accordance with previous findings demonstrating increased vigilance 

during perception of threat (Davis & Whalen, 2001; Williams et al., 2001). The 

absence of activity in the superior temporal sulcus and premotor cortices in our data is 

possibly related to the static stimuli used in this experiment (Grèzes, Pichon & de 

Gelder, 2007; Said, Haxby & Todorov, 2011). Perception of angry faces additionally 

activated cortical regions associated with evaluative processing, such as the salience 

(Menon & Uddin, 2010; Pichon, de Gelder & Grèzes, 2012) and ventral attention 

networks (Corbetta & Shulman, 2002), as well as regions associated with memory 

processing (Haxby et al., 1996; Frey & Petrides, 2003; Tsukiura & Cabeza, 2008). 

This finding suggests that angry faces might engage cortical regions related to 

evaluative, contextual processing more strongly than fearful faces, perhaps because 

anger directs attention towards the angry individual, whereas fear directs attention 

towards the ambiguous cause of the threat (Grosbras & Paus, 2006; Pichon, de Gelder 

& Grèzes, 2009). Fearful faces additionally engaged the amygdala and fusiform 

gyrus, which is in line with previous findings and suggests increased processing of 

fearful compared to angry facial expressions within regions of the core and extended 

emotional faces processing systems (Whalen et al., 2001). Perception of fearful faces 

further engaged the left globus pallidum, which might be related to the initiation of a 

fight-or-flight response (Korzeniewska, Kasicki & Zagrodzka, 1997; Grèzes & 

Dezecache, 2014).  

 In sum, our results extend our current knowledge about the networks involved 

in the processing of emotional facial expressions by demonstrating that individual 

differences in the structural and functional connectivity within and between the core 
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and extended emotional face-processing systems affect the speed at which emotional 

faces are discriminated. The associated adaptive value of efficient structural and 

functional connectivity between the core and extended emotional face-processing 

systems points towards a neurobiological cause for individual differences in social 

interactions. As a consequence, genetic and environmental factors that influence the 

development and age-related degeneration of structural and functional connectivity 

underlying emotional face discrimination might determine an individual’s success in 

responding to threat in social interactions and hence impart a high survival value 

(Cohen Kadosh, 2011; Scherf et al., 2014; Shaw et al., 2016). 
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Figure Captions: 

 

Figure 1: Behaviour and white matter integrity. A: Mean reaction times (+/- SEM) 

show significantly slower responses when matching angry and fearful facial 

expressions than when matching shapes. B: Mean fractional anisotropy (FA) values 

(+/- SEM) for left and right inferior longitudinal fasciculus (left). Tractography results 

from a representative subject (right). 

 

Figure 2: Whole-brain activity differentiating faces and shapes. Warm colours show 

functional activity in posterior parietal cortices during processing of shapes. Cool 

colours depict functional activity in the core and extended emotional face processing 

regions, including inferior occipital gyrus, fusiform gyrus, and dorsal amygdala, 

during processing of angry and fearful facial expressions. 

 

Figure 3: Whole-brain activity contrasting angry and fearful facial expressions. Warm 

colours show functional activity related to angry facial expressions. Cool colours 

depict functional activity related to fearful facial expressions. 

 

Figure 4: Individual differences in the three-way relation between behaviour, 

functional connectivity, and ILF white matter integrity for angry faces. Left: Whole-

brain patterns showing functional connectivity with the right amygdala negatively 

correlated with reaction times and positively with ILF FA values, including 

hippocampus, brainstem, and the right temporal pole. Right: Scatter plots demonstrate 

correlations between individual PLS brain scores (indicating how strongly each 

individual expressed the whole-brain pattern) on the ordinate and the covariates 
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reaction time (in msec), left and right amygdala functional seeds (in % signal change), 

as well as mean FA values of left and right ILF (in arbitrary units) on the abscissa. 

 

Figure 5: Three-way relation between behaviour, functional connectivity, and ILF 

white matter integrity for fearful faces. Left: Whole-brain patterns showing functional 

connectivity with the right amygdala correlated with reaction times and ILF FA 

values, including bilateral lingual gyrus, precuneus, middle and superior frontal gyrus, 

supramarginal gyrus, and precentral gyrus. Right: Scatter plots demonstrate 

correlations between individual PLS brain scores (indicating how strongly each 

individual expressed the whole-brain pattern) on the ordinate and the covariates 

reaction time (in msec), left and right amygdala functional seeds (in % signal change), 

as well as mean FA values of left and right ILF (in arbitrary units) on the abscissa. 
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Table 1: MNI coordinates of peak voxels of whole-brain results differentiating shapes 
from angry and fearful face processing. 
 
Region Hem MNI Coordinates Ratio 

  x y z  

 
Shapes > Angry & Fearful Faces 
 

Postcentral gyrus L -42 -36 54 6.1 

 R 44 -36 64 7.6 

Superior parietal lobule L -26 -46 56 6.7 

 
Angry & Fearful Faces > Shapes 
 

Amygdala L -20 -8 -12 -4.0 

 R 22 -6 -12 -4.3 

Fusiform gyrus L -34 -50 -14 -6.8 

 R 38 -46 -20 -9.4 

Superior occipital cortex L -24 -94 0 -8.3 

 R 28 -94 4 -8.1 
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Table 2: MNI coordinates of peak voxels of whole-brain results differentiating angry 
from fearful face processing. 
 
Region Hem MNI Coordinates Ratio 

  x y z  

 
Angry > Fearful Faces 
 

Middle frontal gyrus L -30 32 50 3.7 

 R 28 34 52 5.0 

Ventrolateral prefrontal cortex R 56 26 16 4.0 

Frontal orbital cortex R 32 30 -16 3.6 

Anterior cingulate cortex L -2 42 10 4.8 

Supramarginal gyrus R 42 -48 34 3.4 

Middle temporal gyrus L -64 -8 -18 3.4 

 R 64 -14 -16 5.3 

Caudate L -10 12 10 4.3 

 
Fearful > Angry Faces 
 

Amygdala R 18 -4 -18 -2.5 

Pallidum L -12 -4 -6 -4.0 

Fusiform gyrus R 38 -46 -18 -2.3 

 

Table 2


