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Abstract 

 

The high evolutionary value of learning when to respond to threats or when to inhibit 

previously learned associations after changing threat contingencies is reflected in 

dedicated networks in the animal and human brain. Recent evidence further suggests 

that adaptive learning may be dependent on the dynamic interaction of meta-stable 

functional brain networks. However, it is still unclear which functional brain networks 

compete with each other to facilitate associative learning and how changes in threat 

contingencies affect this competition. The aim of this study was to assess the dynamic 

competition between large-scale networks related to associative learning in the human 

brain by combining a repeated differential conditioning and extinction paradigm with 

independent component analysis of functional magnetic resonance imaging data. The 

results (i) identify three task-related networks involved in initial and sustained 

conditioning as well as extinction, and demonstrate that (ii) the two main networks 

that underlie sustained conditioning and extinction are anti-correlated with each other 

and (iii) the dynamic competition between these two networks is modulated in 

response to changes in associative contingencies. These findings provide novel 

evidence for the view that dynamic competition between large-scale functional 

networks differentiates fear conditioning from extinction learning in the healthy brain 

and suggest that dysfunctional network dynamics might contribute to learning-related 

neuropsychiatric disorders. 

 

Keywords: associative learning; dynamic connectivity; neuroimaging 
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Introduction 

Learning the predictive value of external stimuli is fundamental to successful 

behavioural adaptation and is governed by specialized networks in the mammalian 

brain. Current models of cortical dynamics suggest that the human brain exhibits 

dynamic changes in connectivity, resulting in a meta-stable system in which a number 

of brain regions temporarily synchronize their activity to form transiently stable 

functional networks, whereas competing brain regions transiently desynchronize their 

activity (Shanahan, 2010; Deco & Jirsa, 2012). The view of cortical dynamics 

suggests that learning-related disorders, which lead to behavioural maladaptation, 

such as post-traumatic stress disorder or generalized anxiety, may be associated with 

disturbed dynamic interactions between such large-scale functional networks 

(Uhlhaas & Singer, 2012; Calhoun et al., 2014; Kringelbach et al., 2015; Li et al., 

2014; Panzeri et al., 2015; Zalesky et al., 2014). Therefore, the key to understanding 

the pathophysiology of learning-related disorders is the characterization of the 

structure and dynamics of the functional networks that specifically subserve fear and 

extinction learning. To date, however, surprisingly little is known about these 

networks and their interactions in the normal adult human brain.  

Evidence from animal studies identifies several neural circuits, involving the 

amygdala, hippocampus, and ventromedial prefrontal cortex, which are engaged 

during aversive conditioning and extinction (Fanselow, 1994; LeDoux, 2000; Lang, 

Davis & Öhman, 2001; Sah et al., 2003). In primates and rodents, aversive 

conditioning is defined as the reduction of prediction error (Rescorla & Wagner, 

1972) associated with neural plasticity in the basolateral nuclei of the ventral 

amygdala, which receive sensory input from thalamic nuclei and sensory cerebral 

cortex, and project to the centromedial nuclei (Quirk et al., 1995; Fanselow & 
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LeDoux, 1999; Freese & Amaral, 2009; McHugh et al., 2014). The centromedial 

nuclei in the dorsal amygdala then project to the hypothalamus and brainstem nuclei 

and regulate observable physiological fear responses (LeDoux & Schiller, 2009). 

Extinction learning is conceptualized as learning of a novel association between 

external stimuli and the absence of threat, which inhibits behavioral responses 

triggered by previously learned associations (Bouton, 2004). In non-human primates 

and rodents, the circuit that mediates context-dependent inhibition has been shown to 

engage the hippocampus, which relays information to the centromedial amygdala via 

the ventromedial prefrontal cortex (Herry et al., 2008; Milad & Quirk, 2010; Tovote 

et al., 2015). While the circuits underlying fear conditioning and extinction have been 

delineated in animals, neuroimaging studies in humans have focused on specific 

regions of interest rather than on neural networks, functional connectivity, or network 

dynamics. 

To date, studies on humans have shown that the amygdala, anterior cingulate 

cortex, and anterior insula are engaged during conditioning (LaBar et al., 1995; 

Büchel et al., 1998; Knight et al., 2003), that amygdala activation correlates with skin 

conductance response (SCR; LaBar et al., 1998), that the hippocampus is activated 

during context conditioning (Marschner et al., 2008), that ventromedial prefrontal 

cortex activity is related to extinction (Phelps et al., 2004; Milad et al., 2007), and that 

regions associated with extinction learning are de-activated during fear acquisition 

(Fullana et al., 2015). To date, however, human studies have not yet delineated the 

essential functional networks and their dynamics, i.e., they have not examined the 

dynamics of interregional functional interactions, which occur in the absence of 

significant changes in mean activity and which might prove crucial for identifying the 
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subtle network changes underlying pathological fear learning (Grady et al., 1998; 

McIntosh et al., 1994). 

The objective of this study was to delineate the functional networks, which 

subserve differential aversive delay conditioning and extinction in healthy humans, 

and to investigate the dynamic interactions between the delineated networks, using 

independent component analysis (ICA). ICA utilizes higher-order statistics to uncover 

the hidden sources (or independent components) that jointly contribute to a complex, 

measured signal, such as functional magnetic resonance imaging (fMRI). ICA results 

in an un-mixing of the contribution of different independent spatial components to the 

fMRI signal, which are interpreted as functional networks. Each component contains 

two anti-correlated patterns of brain activity, as well as the time course of their 

competition. The spatial-temporal structure of the components makes ICA an ideal 

method for investigation of the temporal dynamics of functional networks (Calhoun et 

al., 2009). 

We used fMRI and a differential A-B-A-B conditioning and extinction 

paradigm that included repeated context-dependent reinforcement of conditioned 

stimuli (CS; partially reinforced: CS+, non-reinforced: CS-), in order to capture neural 

processes during initial and repeated phases of learning. By using a repeated learning 

paradigm, we were able to assess the effects of changes in threat contingencies as well 

as separate activity related to initial and sustained learning processes. Based on the 

aforementioned animal and human neuroimaging studies, we hypothesized (i) that an 

amygdala-based thalamo-cortical network would be engaged during conditioning, (ii) 

that a hippocampal-prefrontal network would be activated during extinction, and (iii) 

that these networks would dynamically interact with each other during fear 

acquisition and extinction. Given the recent finding that brain areas associated with 
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extinction are de-activated during conditioning (Fullana et al., 2015), we expected to 

find evidence that the amygdala-thalamo-cortical network would be anti-correlated 

with the hippocampal-prefrontal network, either directly in a single component or in 

the temporal activation patterns. 

Materials and Methods 

Participants  

30 right-handed adults (15 females, mean age = 26 years, age range = 21-34 

years) with normal or corrected to normal vision took part in the experiment, which 

was approved by the Human Ethics Research Committee of the University of 

Queensland, after giving written consent. All participants were screened for 

neuropsychological disorders, brain damage, and substance abuse. Images were 

acquired with a Siemens Magnetom Trio 3T scanner and a 32-channel head coil at the 

Centre for Advanced Imaging, the University of Queensland.  

Procedure 

 Participants took part in a partially reinforced, differential fear conditioning 

experiment, in which two visual stimuli (a triangle and a circle) were repeatedly 

presented in randomized order. Stimuli were presented in each of two contexts (blue 

or orange background) and contexts alternated between experimental blocks (A-B-A-

B paradigm). Participants were asked to identify the stimuli by pressing one of two 

buttons with the second and third digit of their right hand. One of two conditioned 

stimuli (CS+) was paired with electro-dermal stimulation (unconditioned stimulus, 

UCS) in one of two contexts (danger context) but not the other (safe context), while 

the other stimulus (CS-) was never paired with stimulation. Stimuli and contexts were 

randomly assigned and assignments were counterbalanced across individuals. Each 

block started with 15s of background presentation to allow for the electrodermal 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
Dynamic connectivity underlying conditioning and extinction 

 7 

response to settle and the participants to habituate. During each experimental block, 

following 1s of background, 20 stimuli (10 CS+, 10 CS-) were presented for 3s and 

followed by 14s of background in a randomized order. All stimuli were presented 

using Presentation software (Neurobehavioral Systems, Inc.) and projected onto a 

screen, which could be viewed with a mirror attached to the head coil. 

Sixty percent of CS+ presentations co-terminated with a 50ms electro-dermal 

stimulation using two pre-gelled carbon snap electrodes attached to the right wrist 

(EL508, Biopac Systems, Inc.). Prior to scanning, stimulation strength was adjusted to 

individual tolerances following established procedures (LaBar et al., 1998) to ensure 

that stimulation was highly uncomfortable but not painful. Stimulation was 

administered using a STIMISOC isolator connected to a STM100C stimulator, which 

was attached to a MP150 (Biopac Systems, Inc.). 

 Skin conductance responses (SCRs) were sampled at 1kHz using pre-gelled 

carbon snap electrodes (EL508, Biopac Systems, Inc.) attached to the medial 

phalanges of the second and third digits of the left hand and connected to an 

EDA100C module attached to a MP150 (Biopac Systems, Inc.). SCRs were defined 

as the peak response of the low-pass filtered (0.1 Hz) electro-dermal activity 

occurring within 1-4s after the onset of the conditioned stimuli (Lockhardt, 1966). 

SCRs below 0.02 µS were excluded from the analysis. 

Image Acquisition & Pre-processing 

For each participant, a T1-weighted volumetric anatomical MRI was acquired 

with the following parameters: 176 slices sagittal acquisition MP2-RAGE; 1 mm
3
 

isotropic volume; repetition time (TR)  = 4000 msec; echo time (TE) = 2.89 msec; flip 

angle = 6°; FOV = 256 mm, GRAPPA acceleration factor = 3. Functional images 

were acquired using a T2*-weighted echo-planar image pulse sequence with the 
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following parameters: 45 slices; 2.7 mm slice thickness; voxel size = 2.5 x 2.5 x 2.7 

mm; TR = 3000 msec; TE = 30 msec; FOV = 192 mm; flip angle = 90°. Brain 

activation was assessed using the blood oxygenation level dependent (BOLD) effect 

(Ogawa et al., 1990). For functional analysis, T2*-weighted images were pre-

processed with Statistical Parametric Mapping software (SPM8; 

http://www.fil.ion.ucl.ac.uk/spm). Images were realigned to the mean image for head-

motion correction and then spatially normalized into a standard stereotaxic space with 

voxel size of 2 mm
3
 (Montreal Neurological Institute template) using segmented 

white and gray matter T1 maps. Head movement and rotation in the three dimensions 

did not exceed 1 mm and no dataset had to be excluded from analysis. Finally, the 

functional images were spatially smoothed with a 6-mm full width half maximum 

Gaussian kernel. All subsequent analysis of fMRI data is based on non-reinforced 

trials. 

Independent Component Analysis 

Following pre-processing, functional networks were identified with group 

independent component analysis (ICA) using the Group ICA of fMRI Toolbox 

(GIFT; http://mialab.mrn.org/software/gift/index.html). Individual images were first 

normalized to their mean intensity and then concatenated across time. The optimal 

number of independent components was estimated to be 32 using the minimum 

description length algorithm (Li et al., 2007). After data reduction with principal 

component analysis, 32 independent components (ICs) were identified using the 

infomax algorithm (Bell & Sejnowski, 1995). To estimate the stability of ICs, this 

analysis was repeated 20 times using ICASSO (Hirnberg et al., 2004). Only those ICs 

with a stability index larger than 0.95 were selected for further analysis. Finally, 
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GICA back-reconstruction was applied to estimate the spatial maps and time courses 

of each IC for each participant using dual regression (Calhoun et al., 2001). 

To identify task-relatedness of ICs, a general linear model (GLM) was fitted to 

each IC’s time course. First, subject-specific regressors for each combination of 

stimulus and context were created for each of four imaging runs in SPM8 using 

convolution of a canonical hemodynamic response function with the stimulus onsets. 

Then, the beta-estimates of each regressor in the GLM that best predicted the back-

reconstructed IC time course were estimated. Finally, a 2 x 2 x 2 ANOVA on beta-

estimates with the factors stimulus (CS+, CS-), context (acquisition, extinction), and 

time (initial or repeated presentation) was used to identify significant differences in 

functional connectivity between CS+ and CS- presentations for each context. For 

display purposes only, the sign of negative task-related beta estimates was flipped and 

the related negative network was plotted as a positive network and vice versa. 

Temporal dynamics were assessed using calibrated back-reconstructed time courses. 

For each participant, the dwell time, i.e., the number of TRs, associated with one 

network (positive values) or the other (negative values) was calculated and averaged 

across participants for each experimental block. 

 

Results 

Electrophysiological evidence of successful differential fear conditioning was 

provided by a 2 x 2 x 2 analysis of variance of the SCRs with factors stimulus (CS+, 

CS-), context (acquisition, extinction), and time (early, late presentations) that yielded 

significant main effects for the factors stimulus (F(1,1) = 5.4, p < 0.05) and context 

(F(1,1) = 17.2, p < 0.001). Repeated two-sided t-tests demonstrated significant 

differences in participants’ SCRs to CS+ and CS- presentations as well as to CS 
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presentations during the acquisition and extinction phases (all t(28) > 2.1, p < 0.05; 

see Figure 1).  

 

(INSERT FIGURE 1 HERE) 

 

ICA yielded 32 independent components (ICs), out of which two stable ICs 

included the hypothesized regions and showed a significant interaction between cue 

and context. Each IC included two anti-correlated networks arbitrarily differentiated 

by their sign, i.e., when the positive network is activated, the negative network is 

deactivated and vice versa. Each IC’s correlation with the task was assessed by fitting 

a general linear model with task-related regressors that have been convolved with a 

standard hemodynamic response function to the IC’s time course.  

 

(INSERT FIGURE 2 HERE) 

 

The first component (IC5) showed a significant three-way interaction between 

cue, context, and time (F(1) = 4.81, p = 0.03). IC5’s positive network was positively 

correlated with the CS+ during the initial, but not repeated acquisition, and included 

the insula, dorsal amygdala, thalamus, brainstem, and anterior hippocampus. This 

network reflects the initial acquisition of a differential expectation of aversive 

reinforcement and can therefore be considered a rapid fear-learning network (see 

Figure 2). 

 

(INSERT FIGURE 3 HERE) 
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The second component (IC15) showed a significant interaction between cue 

and context and was significantly more related to CS+ than CS- processing during 

initial and repeated fear acquisition, but not during extinction (F(1) =  6.46, p = 0.01). 

The positive network of IC15 included regions previously shown to be involved in 

fear learning, such as the ventral amygdala, anterior hippocampus, temporal pole, as 

well as middle frontal and inferior parietal cortex. The negative network of IC15 

included areas that were negatively correlated with fear acquisition and that have 

previously been shown to be activated during extinction-learning, such as the ventral 

striatum, posterior hippocampus, ventromedial prefrontal cortex, anterior cingulate 

cortex, frontal operculum, and posterior cingulate cortex (Phelps et al., 2004; see 

Figure 3). Together, IC15’s networks provide evidence for the view that fear and 

extinction learning engage two separate but anti-correlated networks. To analyze the 

temporal dynamics of these networks, we calculated their individual dwell time, i.e., 

the time each individual’s brain spent in one of the two anti-correlated networks. 

Post-hoc analysis of IC15’s time courses showed context-dependent changes in dwell 

time. On average, the results show a non-significant increase in dwell time by 0.44% 

in the fear acquisition network between acquisition phases, as well as a non-

significant decrease in dwell time by 0.34% in the fear acquisition network between 

extinction phases (all t29<2; see Figure 4). These results suggest that changes in 

associative contingencies affect the dwell time and hence bias the dynamic 

competition between networks. 

 

(INSERT FIGURE 4 HERE)  
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Both components (IC5 and IC15) included connectivity with the amygdala 

during fear acquisition. Previous studies found differences in activation of the dorsal 

(including the superficial nuclei) and the ventral regions (including the basolateral 

nuclei) related to initial and sustained fear acquisition, respectively (Morris et al., 

2001). A post-hoc comparison of the networks revealed that IC5 engaged the dorsal 

region of the amygdala, whereas IC15 engaged the ventral region of the amygdala 

(see Figure 5). In other words, while both amygdala regions were related to fear 

acquisition, the dorsal region was only engaged during the initial acquisition, whereas 

the ventral region was engaged during the initial and the repeated acquisition. These 

results replicate previous findings about local amygdala activations during initial and 

sustained conditioning and confirm the validity of the results (Morris et al., 2001). 

 

(INSERT FIGURE 5 HERE) 

 

Discussion 

 The results of this study demonstrate that two learning-related brain networks 

dynamically compete with each other during associative learning and that the 

outcome of this competition distinguishes conditioning from extinction. The results  

specifically show that in the human brain, activity in the amygdala-thalamo-cortical 

network associated with aversive learning is anti-correlated with activity in the 

hippocampal-prefrontal network associated with extinction learning. Our results 

therefore replicate and extend previous findings about the activation of brain regions 

during fear conditioning and extinction (Büchel et al., 1998; Marschner et al., 1998; 

Phelps et al., 2004; for a meta-analysis of neuroimaging studies, see Fullana et al., 

2015). Furthermore, the analysis of the temporal dynamics revealed that the 
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oscillation between these two network states is sensitive to changes in associative 

contingencies, such that the net outcome of their competition predicts the difference 

between fear conditioning and extinction. In other words, whether a cue-context 

combination is being associated with an aversive outcome or not seems to depend on 

the relative time the brain spends in one network state over the other. 

 The evidence of dynamic oscillations between learning-related neural 

networks lends support to the view that the human brain forms a meta-stable system, 

in which transient networks compete with each other (Shanahan, 2010; Deco & Jirsa, 

2012; Mazzucato et al., 2015). The dynamic view of brain connectivity aligns with 

the proposal that competition is the underlying brain mechanism by which neural 

resources are allocated to different learning systems without prior knowledge about 

the nature of the learning problem (Fanselow, 2010). Our findings add to the evidence 

that learning systems compete with each other and further suggest that not only is 

there competition between learning systems but that the competition between learning 

systems is sensitive to changes in associative contingencies. Previous research 

suggests that the transient networks in a meta-stable system are stabilized by sensory 

input (Churchland et al., 2010; Litwin-Kumar & Doiron, 2012; Ponce-Alvarez et al., 

2015). Our results show that changes in associative contingencies bias the 

competition towards a particular state resulting in an increased net dwell time in the 

respective network. In other words, a cue-context combination that is presented with 

an unconditioned stimulus biases the competition between meta-stable networks and 

leads to an increased net dwell time in the amygdala-thalamo-cortical network 

whereas the absence of an unconditioned stimulus leads to an decreased net dwell 

time in the amygdala-thalamo-cortical network. 
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Interestingly, our results show an overall longer net dwell time for the 

amygdala-thalamo-cortical network compared to the hippocampal-prefrontal network. 

This finding suggests that the competition between the conditioning and the extinction 

networks might initially be biased towards conditioning. Such a competition bias 

might possibly reflect the result of evolutionary pressure to minimize losses due to the 

higher prize for error in dangerous rather than safe situations. This interpretation is 

consistent with the idea that the human brain is constantly optimizing its organization 

towards reducing surprise (Grossberg, 2009; Friston, 2010; Clark, 2013), and thus 

effectively forming a survival optimization system (Mobbs et al., 2015). 

Our findings demonstrate the dynamic competition between learning-related 

networks in healthy young adults and suggest that flexible modulation of network 

dynamics is essential for adaptive behaviour. The implications of these findings 

extend to clinical conditions characterized by excessive or chronic fear. Many 

learning-related disorders, such as PTSD, can be characterized by a difficulty to 

engage a particular type of learning, such as extinction learning (Kim et al., 2011; 

Jovanovic et al., 2012). In this context, our findings suggest that maladaptive 

associative learning might be the result of dysfunctional network competition. As 

such, characterizations of maladaptive dynamics of the conditioning and extinction 

networks may be essential to shed light on learning-related pathogenesis and guide 

the development of clinical biomarkers of learning-related disorders, such as PTSD 

(Uhlhaas & Singer, 2012; Michopoulos et al., 2015; Kringelbach et al., 2015). 
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Figure Legends: 

 

Figure 1: Skin conductance responses (SCRs). Bar graphs show group mean SCRs in 

response to presentations of CS+ (left) and CS- (right) during acquisition / ACQ (dark 

grey) and extinction / EXT learning (light grey) for early phases, i.e., initial 

acquisition and extinction, (top) and late phases, i.e.,  repeated acquisition and 

extinction (bottom). Stars indicate significant main effects of stimulus and context. 

 

Figure 2: Rapid fear-learning network (IC5). Left: Insula, amygdala, ventromedial 

prefrontal cortex, and hippocampus form a network (warm colors) that is anti-

correlated with a network that includes orbitofrontal cortex, striatum, brainstem, and 

cerebellum (cool colors). Right: The graph plots group means and SEMs of task-

relatedness (beta estimates) for CS+ (gray) and CS- (white) during initial and repeated 

fear acquisition (ACQ/RACQ) and extinction (EXT/REXT). ANOVA shows that the 

initial fear-learning network is significantly more related to the CS+ during the early 

(but not the later) stages of fear acquisition than the CS-. 

 

Figure 3: Sustained fear-learning network (IC15). Left: Amygdala-thalamo-cortical 

network (warm colors) that is anti-correlated with a hippocampal-prefrontal network 

(cool colors). Right: The graph plots group means and SEMs of task-relatedness (beta 

estimates) for CS+ (gray) and CS- (white) during initial and repeated fear acquisition 

(ACQ) and extinction (EXT; beta estimates are collapsed across initial and repeated 

phases). ANOVA shows that the amygdala-thalamo-cortical fear conditioning 

network is significantly more related to the CS+ than the CS- during fear acquisition 

but not extinction.  
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Figure 4: Left: Dynamic competition between networks. The line plots of time 

courses of IC15 (group ICA) show temporal oscillations between the two anti-

correlated sub-networks of for acquisition (top row) and extinction training (bottom 

row). Positive values show dwell time in the amygdala-thalamo-cortical fear 

conditioning network, whereas negative values show dwell time in the hippocampal-

prefrontal extinction network. Dotted lines show oscillations for initial phases of 

training, whereas solid lines show oscillations for repeated phases of training in the 

Acquisition-Extinction-Acquisition-Extinction paradigm. Right: The bar graphs show 

the mean differences and SEMs in network dwell times between the amygdala-

thalamo-cortical and the hippocampal-prefrontal networks across all participants 

(back-reconstructed ICs), which increase from initial to repeated acquisition and 

decrease from initial to repeated extinction. 

 

Figure 5: Dissociation between ventral and dorsal amygdala connectivity. Bottom: 

Coronal (y = -3) and sagittal (x = 23, MNI coordinates) slices show peak amygdala 

activations within the positive networks of IC5 (warm colors) and IC15 (cool colors). 

Top: Magnified sections show that IC5 (warm colors) engages dorsal amygdala 

during initial fear acquisition whereas IC15 (cool colors) engages ventral amygdala 

during initial and repeated fear acquisition. 
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Highlights 



Networks underlying fear acquisition and extinction are anti-correlated 

Competition between amygdala-thalamo-cortical and hippocampal-prefrontal 

networks 

Meta-stable dynamic learning is stabilized by external associative contingencies 

Flexible modulation of network dynamics is essential for adaptive behaviour 

Maladaptive associative learning might be result of dysfunctional network dynamics 


