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Abbreviations: 

Ace K: Acesulfame potassium 

BNR: Blinding not reported 

CI: Confidence interval 

CO: Cross-over study design 

D: Double-blind 

iAUC: Incremental area under the curve 

LES: Low energy sweeteners 

NR: Not reported 

O: Open label 

PPG: Postprandial glucose response 

PPI: Postprandial insulin response 

PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

S: Single-blind 

SD: Standard deviations 

SE: Standard Error 

RoB: Risk of bias 

T1D: Type-1 diabetes mellitus 

T2D: Type-2 diabetes mellitus
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Abstract 1 

Background: It has been suggested that low energy sweeteners (LES) may be 2 

associated with an increased risk of metabolic diseases, possibly due to stimulation of 3 

glucose-responsive mechanisms. 4 

Objective: We conducted a systematic review and meta-analysis of human intervention 5 

studies examining the acute effect of LES intake on postprandial glucose (PPG) and 6 

insulin (PPI) responses, in order to comprehensively and objectively quantify these 7 

relationships. 8 

Methods: We systematically searched Medline, OVID FSTA and SCOPUS databases 9 

until January 2020.  Randomized controlled trials comparing acute postprandial effects 10 

on PPG and/or PPI after exposure to LES; either alone, with a meal or other nutrient-11 

containing preloads to the same intervention without LES were eligible for inclusion.  12 

PPG and PPI responses were calculated as mean incremental area under the curve 13 

divided by time.  Meta-analyses were performed using random effects models with 14 

inverse variance weighing.   15 

Results: Twenty-six papers (34 PPG trials and 29 PPI trials) were included.  There were 16 

no differences in the effect of LES on PPG and PPI responses compared to control 17 

interventions.  Pooled effects of LES intake on the mean change difference in PPG and 18 

PPI were -0.02 mmol/l [95% CI -0.09, 0.05] and -2.39 pmol/l [95%CI -11.83, 7.05] 19 

respectively.  The results did not appreciably differ by the type or dose of LES 20 

consumed, co-intervention type or fasting glucose and insulin levels.  Among patients 21 

with type 2 diabetes, the mean change difference indicated a smaller PPG response after 22 

exposure to LES vs. control (-0.3 mmol/l [95% CI -0.53, -0.07]).   23 
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Conclusions: Ingestion of LES, administered alone or in combination with a nutrient-24 

containing preload, has no acute effects on the mean change in postprandial glycemic or 25 

insulinemic responses compared to a control intervention.  Apart from a small beneficial 26 

effect on PPG (-0.3 mmol/l) in studies enrolling patients with type 2 diabetes, the effects 27 

did not differ by type or dose of LES, or fasting glucose or insulin levels.   28 

Keywords: Non-caloric sweeteners; Non-nutritive sweeteners; Artificial sweeteners; 29 

Postprandial; Glucose; Insulin; Diabetes 30 

  31 
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Introduction 32 

Low-energy sweeteners (LES) are often used to replace sugars in food and beverage 33 

formulations because they can provide sweet taste with little or no energy contribution 34 

or cariogenicity.  As such, a range of different LES are common in the global food 35 

supply (1), and frequently used by manufacturers providing lower calorie or sugar 36 

alternatives to various food and beverage products.  In the United Sates National Health 37 

and Nutrition Examination Survey 2007–2012, about 50% of respondents reported 38 

consuming LES-containing products over a 2-day period (2).    39 

Despite extensive safety evaluations of these compounds by regulatory bodies (3-5), 40 

there is an ongoing debate regarding potential detrimental health effects of LES intake 41 

(6, 7).  Concerns have been expressed, mainly based on selected animal and human 42 

observational studies, that LES consumption may increase risks of metabolic disease, 43 

especially obesity and type 2 diabetes (8-11).  It has been suggested that this might arise 44 

in part as a result of LES stimulation of gut or systemic mechanisms responsive to sweet 45 

stimuli and glucose (5, 11, 12).  However, while LES stimulation of such systems has 46 

mainly been demonstrated in vitro and with animal models, it is uncertain whether these 47 

effects are physiologically relevant in humans (13, 14).  Furthermore, a substantial body 48 

of human intervention data suggests that overall, LES intake has no significant acute or 49 

chronic effects on measures of glucose homeostasis (10, 15-18).   50 

A key question underpinning the putative link between LES and metabolism is the 51 

presence and magnitude of an effect of LES, ingested as part of a non-caloric or caloric 52 

(nutrient-containing) preload, on glycemic responses.  To date there has been no 53 

reported quantitative meta-analysis of the effects of LES intake on two-hour (120 min) 54 
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postprandial glucose (PPG) and insulin (PPI) responses, which is a standard way of 55 

testing for and expressing the systemic glycemic and insulinemic exposures induced by 56 

meals.  Dietary patterns giving higher post-meal glycemic excursions are associated 57 

with increased risk of type 2 diabetes (19, 20), whereas drugs lowering PPG have been 58 

shown to reduce the risk of progression from pre-diabetes to diabetes (19, 21).  Our 59 

objective was therefore to perform an up-to-date systematic review with meta-analysis 60 

of controlled human intervention studies investigating the acute effects of LES intake on 61 

PPG and PPI responses. 62 

Methods 63 

The protocol for this systematic review and meta-analysis was registered in the 64 

international prospective register of systematic reviews (PROSPERO, registration 65 

number: CRD42018099608), and conducted and reported in accordance with the 66 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 67 

statement guidelines (22). 68 

Search strategy 69 

To qualify for inclusion, trials had to meet the pre-defined inclusion criteria outlined 70 

in Table 1.   71 

PubMed/Medline, OVID FSTA, and SCOPUS were searched (from the date of 72 

inception until January 2020) to identify potentially relevant studies conducted in 73 

human participants and published in English.  Titles, abstracts and keywords were 74 

searched for variations and combinations of the following terms: Artificial sweetener(s), 75 

non-nutritive sweetener(s), low calorie sweetener(s), low energy sweetener(s), 76 
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sucralose, aspartame, stevia, steviol, saccharin(e), acesulfame, erythritol, diet(beverage 77 

OR drink OR soda), low calorie(beverage OR drink OR soda)), low-energy(beverage 78 

OR drink OR soda), glucose, insulin and glyc(a)emic (full PubMed search syntax in the 79 

Supplementary Methods).  Bibliographies from obtained publications were also screened 80 

for additional potentially relevant studies.  81 

Screening and selection of trials 82 

A two-step screening and selection process was followed.  During the first step, 83 

titles, abstracts and keywords of publications were screened separately by two of the 84 

authors (AG & DJM) to identify potentially eligible studies.  During the second step, 85 

the full texts of these publications were examined to gauge eligibility based on the 86 

stated inclusion criteria.  In cases of inter-reviewer disagreement, questions on study 87 

eligibility were resolved through consensus and consultation with the other co-authors 88 

(KMA & AR). 89 

Data extraction and quantification 90 

The following information was extracted from eligible publications by means of a 91 

predefined data extraction file: 1) publication details (author, year of publication, 92 

country); 2) study design characteristics (crossover or parallel, blinding); 3) subject 93 

characteristics (age, gender and health status); 4) intervention and control treatment 94 

characteristics (type and dosage of LES, presence and type of meal/nutrient-containing 95 

preload, type of control); 5) postprandial glucose and insulin incremental area under the 96 

curve (iAUC) and associated measures of variance; 6) risk of bias indicators.  If no 97 

iAUC values were reported, postprandial data per measured timepoint were extracted 98 

(either from tables and text or from figures by means of a web-based plot digitizing tool 99 
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(23)).  Data were extracted by 2 independent reviewers (AG, DJM) and differences 100 

resolved by consensus. 101 

Data synthesis and statistical analysis 102 

Where postprandial data at individual timepoints were extracted, the iAUC was 103 

calculated by the trapezoidal method (24).  The variances of these iAUCs were based on 104 

the standard deviations (SD) of the respective individual timepoints and, calculated by 105 

means of matrix algebra involving a covariance matrix with the assumed correlation 106 

structure being compound symmetry (25).  For this purpose, the correlation between 107 

timepoints was assumed to be 0.75 for glucose and 0.5 for insulin.  These assumptions 108 

were based on PPG and PPI measurements at repeated timepoints in previous studies 109 

conducted by our group (26-29). 110 

Prior to meta-analysis, all glucose and insulin data were transformed into SI units 111 

(mmol/l for glucose (= 0.0555*mg/dl) and pmol/l for insulin (= 6*µU/ml)).  The 112 

outcomes were expressed as mean postprandial changes by dividing the iAUCs by the 113 

duration of the postprandial measurement period (120 min).  When measures of 114 

variance were not reported, they were imputed using variance data from the other 115 

studies included in the meta-analysis (30).   116 

For both glucose and insulin, the principal effect measure was the difference in the 117 

mean postprandial changes between LES and control interventions.  Pairwise analyses 118 

were applied to all crossover trials as described by Elbourne et al (31).  The weighted 119 

effect estimates and corresponding 95% confidence intervals (CI) were calculated using 120 

random effects models with inverse variance weighting (32) using the PROC MIXED 121 

procedure in SAS (SAS v9.4, SAS Institute, Cary, NC, USA)..   Pooled effects 122 
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calculated by means of fixed effects models served as sensitivity analyses.  Several 123 

trials included in the meta-analyses included two or more different comparisons (e.g. 124 

different doses or types of LES) in the same subjects (33-41).  To ensure that these trials 125 

did not contribute a disproportionate weight to the meta-analyses due to double counting 126 

of the same subjects, the weight of each comparison was divided by the total number of 127 

included comparisons in the respective trial (42). 128 

Influence analyses were conducted by systematically excluding one study at a time 129 

and re-analyzing the remaining data to determine whether a specific study was exerting 130 

excessive influence on the overall outcomes.  Where enough data were available, the 131 

potential effects of pre-defined covariates on the overall outcomes were assessed by 132 

means of subgroup (minimum of 4 comparisons per subgroup) and weighted meta-133 

regression analyses (minimum of 10 comparisons per covariate) (43, 44).  The pre-134 

defined covariates were: LES type, health status (healthy; having type 2 diabetes), co-135 

exposure type (i.e. LES consumed in a fasted state; LES consumed with a meal or other 136 

nutrient-containing preload), baseline fasting glucose and insulin and LES dose.   137 

Risk of bias assessment 138 

Assessment of the risk of bias (RoB) in the included studies was done by means of 139 

the Cochrane Collaboration’s tool for assessing RoB (45).  For this purpose, seven 140 

different domains were considered (random sequence generation, allocation 141 

concealment, blinding of participants and personnel, blinding of outcome assessment, 142 

incomplete outcome data, selective reporting and other sources of bias). The 143 

assessments were carried out independently by 2 authors (AG and DJM), and 144 

differences resolved by consensus.  145 
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Publication bias was evaluated by means of visual inspection of funnel plots 146 

(constructed by plotting inverse SE against the respective weighted mean difference in 147 

glucose and insulin iAUC for each trial) and Egger's regression test (with P<0.1 148 

indicating asymmetry) (46).   149 

Heterogeneity was assessed by means of the Cochran’s Q statistic (significant at 150 

P<0.1) and quantified by the I2-statistic (with values of 25%, 50% and 75% considered 151 

to be low-, moderate- and high-level heterogeneity respectively) (47).  In the absence of 152 

a enough studies with head-to-head comparisons of the PPG and PPI effects of the 153 

different LES types included in the review, a post-hoc frequentist network meta-analysis 154 

was conducted in order to study any potential heterogeneity (or informative lack 155 

thereof) in this regard.  Analyses were conducted using the netmeta package on the R 156 

statistical software (48). 157 

 158 

Results 159 

Included trial characteristics 160 

The systematic searches retrieved a total of 5,105 potentially relevant papers after 161 

removal of duplicates (Figure 1).  After exclusion of those that did not meet the pre-162 

defined inclusion criteria, 26 papers remained that were included in the quantitative 163 

synthesis (meta-analysis) (33-41, 49-65).  The 26 included papers reported on 34 trials 164 

(experiments) with information on PPG responses (yielding 55 comparisons) and 29 165 

trials with information on PPI responses (yielding 50 comparisons).  The characteristics 166 

of these trials are summarized in Table 2.  Additionally, 18 papers (66-83) that reported 167 
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glucose and/or insulin responses for time periods <120 minutes post-prandially were 168 

included in the qualitative synthesis, and are summarized in Supplementary Table 1.   169 

A total of 452 individual participants took part in the 55 comparisons for PPG, and 170 

394 participants in 50 comparisons provided data for PPI.  The number of participants 171 

per comparison ranged from 6 to 31.  Mean age ranged from 18 to 66 years.  Forty-one 172 

comparisons included healthy lean participants.  The remaining 14 comparisons were 173 

comprised of patients with diabetes (n = 9 type 2 diabetes and n = 1 type 1 diabetes) and 174 

participants with obesity but no other health condition (n = 4). 175 

In all comparisons, participants started from a fasting baseline. In 12 comparisons, 176 

LES was administered to participants in a non-caloric vehicle (capsules, water, “diet” 177 

beverage or intragastric infusion).  In the remaining comparisons, LES was 178 

administered either in conjunction with a standardized carbohydrate-containing meal (n 179 

= 23) or a 75g glucose load (n = 20).  The types of LES administered were: sucralose 180 

(13 comparisons), l-arabinose (n = 10), aspartame (n = 9), saccharin (n = 5), erythritol 181 

(n = 3), stevia/steviosides (n = 3), acesulfame potassium (n = 4) and combinations of 182 

sucralose and acesulfame potassium (n = 6), and sucralose, acesulfame potassium and 183 

aspartame (n = 1).  The types of control treatments administered were: water or other 184 

unsweetened beverage (31 comparisons), iso-caloric (and iso-carbohydrate) meals or 185 

beverages without LES (n = 21), saline (n = 2), and corn starch placebo capsules (n = 186 

1).  187 

Effects of LES intake on PPG and PPI responses 188 

In the primary meta-analyses using random effects models, there were no statistically 189 

significant effects of LES intake on the mean change differences in PPG and PPI 190 
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responses (-0.02 mmol/l mean PPG [95% CI -0.09, 0.05] and -2.39 pmol/l mean PPI 191 

[95%CI -11.83, 7.05] respectively) (Figure 2 and 3).  In meta-analyses using fixed 192 

effects models, the overall estimates of PPG and PPI mean change differences remained 193 

similar (-0.01 mmol/l mean PPG [95% CI -0.04, 0.02] and -1.41 pmol/l mean PPI 194 

[95%CI -4.12, 1.29] respectively). 195 

Meta-regression and subgroup analyses 196 

Meta-regression analyses found no statistically significant influence of baseline 197 

fasting glucose and insulin or dose of LES used, on the mean change differences in PPG 198 

and PPI responses to LES (Table 3).  However, sub-group analyses of health status 199 

(Table 4), indicated a statistically significant difference in the mean change difference 200 

in PPG response to LES when comparing healthy participants and those with type 2 201 

diabetes: thus, there was a small statistically significant reduction in mean PPG for LES 202 

vs control in the type 2 diabetes subgroup (-0.3 mmol/l [95% CI -0.53, -0.07]) whereas 203 

no change was evident in the healthy subgroup (-0.01 mmol/l [95%CI -0.07, 0.06]).  No 204 

further influences on PPG or PPI mean change differences were evident when dividing 205 

studies by LES type or co-exposure type (LES consumed in a non-caloric vs a meal or 206 

nutrient-containing preload). 207 

Influence analyses, assessment of potential biases and heterogeneity 208 

Influence analyses conducted by omitting any single study from the meta-analyses 209 

did not materially affect results for PPG or PPI (Supplementary Table 2).  Overall, all 210 

studies had some risk of bias, most notably regarding blinding (most studies were single 211 

blind as participants could not be blinded due to the nature of the interventions), as well 212 

as unclear reporting of random sequence generation and allocation concealment 213 
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(Supplementary Table 3).  To evaluate potential effects of (lack of) blinding, a post-hoc 214 

analysis including only the seven trials (16 comparisons)(34, 36, 38, 63, 64) reported as 215 

being double-blind was conducted.  The outcomes of both random and fixed effect 216 

meta-analyses were similar to those of the main analyses (Supplementary Table 4).  217 

Both PPG and PPI mean change differences showed low to moderate heterogeneity 218 

(P value for Q statistic <0.01; I2 = 44.7% and P <0.01, I2 = 48.3% respectively) between 219 

studies.  Egger’s linear regression test did not indicate the potential presence of 220 

publication bias (P value of intercept = 0.48 and 0.83 for PPG and PPI respectively).  In 221 

addition, visual inspection of the funnel plots did not confirm an obvious presence of 222 

publication bias, with the PPG and PPI changes scattered relatively uniformly around 223 

the overall estimates (Figure 4 A and B). 224 

The network meta-analyses produced similar results to the main analyses. For PPG 225 

and PPI mean change differences, there were no direct evidence of an effect of the 226 

different LES types versus each other or the control intervention. For each outcome, the 227 

posterior between-study SD was below 0, suggesting low heterogeneity and 228 

(Supplementary material, Network meta-analysis section).  For stevia, indirect evidence 229 

suggested a smaller PPG response compared to control -0.79 mmol/l [95%CI -1.56; -230 

0.02], sucralose -0.81 mmol/l [95%CI -1.59; -0.02], aspartame -0.82 mmol/l [95%CI -231 

1.60; -0.04], erythritol -0.87 mmol/l [95%CI -1.65; -0.09] and the combination of 232 

sucralose and aspartame -0.89 mmol/l [95%CI -1.73;-0.05].  233 

 234 

 235 
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Discussion 236 

This meta-analysis quantifying evidence from 34 randomized controlled intervention 237 

trials found that intake of LES had no statistically significant effects on the mean 238 

change differences in acute post-prandial glucose or insulin responses compared with a 239 

control intervention.  Our findings for LES in a non-caloric (e.g. water) vehicle are in 240 

accordance with the outcome of a recent meta-analysis that found no acute effects on 241 

PPG measured over a range of postprandial time periods (15), as well as another recent 242 

systematic review of PPG responses to LES (84). This is now confirmed based on a 243 

standard 120 min postprandial period of analysis for glucose and for insulin as well.  A 244 

somewhat older network meta-analysis that compared the effects of different caloric and 245 

non-caloric sweeteners on 120 min PPG responses, concluded that the data were 246 

inconclusive (85); however, many relevant trials have been published since that 247 

analysis, which included only two of the 34 trials here.  248 

LES are often consumed in conjunction with caloric nutrients i.e. protein, fat and 249 

carbohydrates.  As such, for the first time, our meta-analysis also included studies where 250 

LES were administered along with standardized mixed meals, carbohydrate-containing 251 

beverages or a 75g glucose preload.  In this regard, sub-group analyses found a similar 252 

absence of effect of LES on the mean change differences in PPG and PPI when 253 

consumed either with or without a carbohydrate or nutrient containing preload.  This 254 

suggests that nutrient and/or food matrix interactions probably do not play a role in 255 

determining potential effects of LES intake on acute glycemic responses.   256 

The outcomes of the 18 studies in which glucose and/or insulin responses were 257 

measured for time periods <120 minutes postprandially, are mostly consistent with the 258 
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results of our meta-analyses.  Most studies reported no effects (67, 69-78, 83) or very 259 

small changes (70, 74, 76) in PPG and PPI responses after LES ingestion.   260 

The findings of the few included trials of immediate cephalic phase responses were 261 

inconsistent, with four of these (66, 68, 79, 82) reporting no effects on glucose or 262 

insulin, and two (80, 81) reporting increased cephalic phase PPI responses but no effects 263 

on PPG.  This is noteworthy since, although effects of sweetness itself have been 264 

suggested (86, 87), it would seem that sweet taste stimuli alone are not sufficient to 265 

elicit meaningful acute glycemic responses.  A recent systematic review of studies 266 

utilizing pre-ingestive sweet taste stimulation designs, also suggested that oral sweet 267 

taste activation from LES has limited effects on human glucose homeostasis (84). 268 

Meta-analyses of data from some observational studies suggest an association 269 

between LES intake and an increased risk of developing metabolic diseases, particularly 270 

type 2 diabetes (8, 9).  However, difficulties in the accurate assessment of LES exposure 271 

and problems with reverse causality and confounding factors raise concerns regarding 272 

the reliability and interpretation of associations from observational studies (88-90).  273 

Conversely, our meta-analysis and other reviews (15, 84), show that data from human 274 

intervention studies suggest no effects of LES intake on postprandial glucose responses.   275 

We note, however, that among patients with type 2 diabetes, the mean change difference 276 

indicated a smaller PPG response after exposure to LES vs. control.  Similar effects were also 277 

noted in the meta-analysis of Nichol et al. (15).  This might suggest a potential direct 278 

glucose-lowering benefit of LES intake for these individuals.  However, effect sizes are 279 

small and were found from only 9 comparisons, all of which were judged to be of high 280 

risk of performance bias and included only 86 individuals.  Moreover, it is uncertain 281 
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whether the 0.3 mmol/l reduction in PPG response is truly replicable or would be of any 282 

long-term clinical relevance in diabetes management.  A number of longer-term trials of 283 

LES show no significant effects on glycemic control in this population (16).  We have 284 

no obvious explanation or hypothesis for any differential response in the short term, 285 

although this could be related to the poorer glycemic control in people with diabetes. 286 

Several limitations of this meta-analysis should be noted.  Firstly, we did not have an 287 

a priori hypothesis that different types of LES would differ in their effects on the mean 288 

change in PPG or PPI responses.  We therefore assumed that it was appropriate to pool 289 

the effects of different LES types in the same meta-analysis.  Concerns have however 290 

been raised that different LES types might differ in the physiological effects (91).  As 291 

such, a network meta-analysis might therefore have been a more appropriate approach.  292 

Network meta-analysis allows for the pooling of outcomes derived from direct and 293 

indirect evidence across multiple different treatments while preserving the benefits of 294 

randomized comparisons within each trial.  We did conduct a post hoc network meta-295 

analysis to study any potential informative (lack of) heterogeneity in this regard.  The 296 

outcomes were in line with our main analyses, suggesting no direct evidence of a 297 

difference in PPG or PPI effects for the different LES types versus each other or a 298 

control treatment.  The outcome of this analysis should be interpreted with caution 299 

however, since it was conducted after the studies, data and outcomes of the main 300 

analyses were known.   301 

Secondly, most of the included studies had relatively small sample sizes, potentially 302 

obscuring possible intervention effects due to a lack of statistical power.  However, 303 

small study biases are generally associated with the erroneous overestimation of effect 304 

size and statistical significance (92, 93).  Thirdly, as a result of the sweet tasting nature 305 
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of the interventions, only a small number of the included studies that had specific design 306 

considerations (i.e. administration via capsules/gastric infusion or concomitantly with 307 

glucose/sucrose) were double-blinded.  It is possible that detection bias has occurred in 308 

studies where the participants and, in some cases, the investigators were not blinded as 309 

to the treatments.  However, a post-hoc analysis including only the studies reported as 310 

being double-blind had outcomes similar to those of the main analyses.  This suggests 311 

that potential performance bias was likely not an issue in this case.  Regarding the 312 

subgroup and post-hoc analyses, another potential limitation is that many aspects of the 313 

studies covary.  For example, all of the double-blind studies were conducted in healthy 314 

subjects whereas all of the studies in subjects with type 2 diabetes were not blinded 315 

(potentially high risk of performance bias), and all of the sucralose and l-arabinose 316 

studies are relatively recent whereas most of the aspartame and saccharin studies are 317 

older.  As such, the outcomes of the sub-group analyses should be interpreted with 318 

caution.  Lastly, most of the studies included in this meta-analysis investigated the 319 

effects of a single LES administered alone.  No differences were found based on LES 320 

type, but many current food and beverage products contain combinations of two or more 321 

types of LES.  We only had enough data to perform a sub-group analysis on one 322 

potential combination (acesulfame potassium + sucralose).  Our conclusions in this 323 

regard can, therefore, not be extrapolated to other combinations of LES.  There is, 324 

however, currently no evidence or reasonable explanatory hypothesis as to why the 325 

intake of a combination of LES would have different effects on glucose homeostasis 326 

compared with a single LES alone. 327 

In conclusion, this review provides an up-to-date overview of controlled human 328 

intervention studies on the effects of LES consumption on acute postprandial glycemic 329 
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and insulinemic responses.  Our analyses indicate that under acute conditions, whether 330 

administered alone or in combination with a nutrient-containing load, LES do not exert 331 

an independent effect on the mean change in postprandial blood glucose or insulin 332 

responses compared to a control intervention.  Some small reductions in PPI, based on 333 

limited studies, were found in studies enrolling patients with type 2 diabetes, but overall 334 

the null results do not seem to differ appreciably by the type of LES consumed, dose of 335 

LES, or fasting glucose or insulin levels.  A post-hoc network meta-analysis suggested 336 

no direct evidence of a difference in PPG or PPI effects for the different LES types 337 

versus each other or a control treatment.  In light of concerns that different LES types 338 

may differ in their physiological effects, future work adopting an a priori network meta-339 

analysis approach is recommended. 340 
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Tables 

Table 1. Trial selection criteria. 

Inclusion Exclusion 

Participants/population  

Human children (3-10 years of age), adolescents (10-18 years of 

age) and adults (≥18 years of age);  

 

Healthy participants and those with impaired glucose homeostasis 

(i.e. prediabetes, diabetes type 1 or 2, impaired glucose tolerance 

and overweight or obese individuals) 

Hospitalized/critically ill patients 

Intervention  

Acute exposure to LES; either alone, in water, as diet beverage or 

intragastric infusion, or with a meal or other nutrient-containing 

preloads 

Co-intervention with insulin or drugs affecting glucose 

homeostasis 

Comparators  

The same intervention without inclusion of LES  

Outcomes  

Acute postprandial blood glucose response (defined as incremental 

Area Under the Curve) after exposure to LES or Control 

Trials measuring postprandial blood glucose or insulin responses 

for < 120 min (for quantitative meta-analysis only) 

Acute postprandial insulin response (defined as incremental Area 

Under the Curve) after exposure to LES or Control 
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Table 2. Characteristics of studies included in the meta-analysis 

First author, year 

[country] 

Study 

design 

N Mean Age 

(years) 

Health 

status 

LES type LES dose 

(mg) 

Control Meal test Meal carbohydrate 

content (g) 

Outcome 

Ahmad, 2018 (49) 

[Pakistan] 

CO, S 20 24.1 Healthy Stevia 3000 Isocaloric 

meal 

Mixed meal 50 PPG 

Azari, 2017 (50) 

[US] 

CO, S 10 33.5 Healthy Saccharin 18 Water 75g glucose 75 PPG, PPI 

Brown, 2009 (51) 

[US] 

CO, BNR 22 18.5 Healthy Sucralose + Acesulfame K 45.6; 25.9 Carbonated 

water 

75g glucose 75 PPI 

Brown, 2012 (52) 

[US] 

CO, BNR 25 18.8 Healthy Sucralose + Acesulfame K 45.6; 25.9 Carbonated 

water 

75g glucose 75 PPG 

9 18.2 T1D 

10 17.9 T2D 

Burns, 1991 (33) 

[US] 

CO, BNR 8 26.1 Healthy Aspartame 500 Unsweetened 

beverage 

100g sucrose 100 PPG, PPI 

None 0 

Cooper, 1988 (53) 

[Australia] 

CO, BNR 17 62.2 T2D Saccharin 93* Isocaloric 

meal 

Mixed meal 47 PPG, PPI 

Ford, 2011 (54) 

[UK] 

CO, S 8 22-27 Healthy Sucralose 41.5 Water None 0 PPG, PPI 
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First author, year 

[country] 

Study 

design 

N Mean Age 

(years) 

Health 

status 

LES type LES dose 

(mg) 

Control Meal test Meal carbohydrate 

content (g) 

Outcome 

Gregersen, 2004 (55) 

[Denmark] 

CO, BNR 12 65.8 T2D Stevioside 1000 Corn starch Mixed meal 55 PPG, PPI 

Halschou-Jensen, 2015 

(34) 

[Denmark] 

CO, D 17 22.5 Healthy L-Arabinose 2900 Isocaloric 

meal 

Mixed meal 68 PPG, PPI 

5900 

2500 72 

4900 

6 23.3 Healthy L-Arabinose 10200 Isocaloric 

meal 

Solid mixed 

meal 

72 

Semi-solid 

mixed meal 

15000 Liquid 

mixed meal 

75 

Helou, 2019 (64) 

[Lebanon] 

CO, D 15 20.1 Healthy Acesulfame K 3500 Isocaloric 

meal 

Mixed meal 116 PPG, PPI 

15 21.7 Obese  3500 
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First author, year 

[country] 

Study 

design 

N Mean Age 

(years) 

Health 

status 

LES type LES dose 

(mg) 

Control Meal test Meal carbohydrate 

content (g) 

Outcome 

Horwitz 1988, (35) 

[US] 

CO, O 12 28 Healthy Aspartame 400 Unsweetened 

beverage 

Fasted 0 PPG, PPI 

Saccharin 135 

10 57 T2D Aspartame 400 

Saccharin 135 

Krog-Mikkelsen, 2011 

(36) 

[Denmark] 

CO, D 15 25 Healthy L-Arabinose 1000 Isocaloric 

beverage 

75g sucrose 75 PPG, PPI 

2000 

3000 

Ma, 2009 (37) 

[Australia] 

CO, S 7 24 Healthy Sucralose 800 Saline Fasted 0 PPG, PPI 

80 

Nichol, 2020 (65) 

[US] 

CO, BNR 10 27 Healthy Sucralose 48 Water 75g glucose 75 PPG, PPI 

11 29.5 Obese 

Overduin, 2016 (56) 

[UK] 

CO, S 10 33.4 Healthy Erythritol 8000 Isocaloric 

meal 

Mixed meal NR PPG, PPI 

10 33.6 Obese 

Parimalavalli, 2011 

(57) 

[India] 

CO, BNR 6 NR T2D Stevia 2000 Isocaloric 

meal 

Mixed meal 50 PPG 
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First author, year 

[country] 

Study 

design 

N Mean Age 

(years) 

Health 

status 

LES type LES dose 

(mg) 

Control Meal test Meal carbohydrate 

content (g) 

Outcome 

Pepino, 2013 (58) 

[US] 

CO, BNR 17 35.1 Obese Sucralose 48 Water 75g glucose 75 PPG, PPI 

Prat-Larquemin, 2000 

(59) 

[France] 

CO, BNR 24 23.2 Healthy Aspartame 270 Isocaloric 

meal 

Mixed meal 90 PPG, PPI 

Slama, 1984 (60) 

[France] 

CO, BNR 12 51-57 T2D Saccharin 40 Isocaloric 

meal 

Mixed meal 70 PPG, PPI 

Solomi, 2019 (61) 

[UK] 

CO, BNR 10 27.2 Healthy Aspartame + Acesulfame K 

(Diet Coke) 

55.9; 38.5† Water 25g glucose 25 PPG 

Steinert, 2011 (38) 

[Switzerland] 

CO, D 12 23.3 Healthy Acesulfame K 220 Water Fasted 0 PPG, PPI 

Aspartame 169 

Sucralose 62 
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First author, year 

[country] 

Study 

design 

N Mean Age 

(years) 

Health 

status 

LES type LES dose 

(mg) 

Control Meal test Meal carbohydrate 

content (g) 

Outcome 

Sylvetsky, 2016 (39) 

[US] 

CO, BNR 30 29.7 Healthy Sucralose 68 Water 75g glucose 75 PPG, PPI 

170 

205 

31 27.4 Healthy Sucralose + Acesulfame K 

(Diet Rite Cola) 

68; 41 Carbonated 

water 

75g glucose 75 PPG, PPI 

Sucralose + Acesulfame K 

+ Aspartame (Diet 

Mountain Dew) 

18; 18; 57 

Sucralose + Acesulfame K 68; 41 

Temizkan, 2015 (40) 

[Turkey] 

CO, S 8 45 Healthy Aspartame 72 Water 75g glucose 75 PPG, PPI 

Sucralose 24 

8 51.5 T2D Aspartame 72 

Sucralose 24 
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First author, year 

[country] 

Study 

design 

N Mean Age 

(years) 

Health 

status 

LES type LES dose 

(mg) 

Control Meal test Meal carbohydrate 

content (g) 

Outcome 

Wolf-Novak, 1990 (62) 

[US] 

CO, BNR 7 27 Healthy Aspartame 200 Isocaloric 

beverage 

Beverage 60 PPG, PPI 

Wölnerhanssen, 2016 

(63) 

[Switzerland] 

CO, D 20 25.9 Healthy Erythritol 75000 Water Fasted 0 PPG, PPI 

Wu, 2016 (41) 

[Australia] 

CO, S 10 33.6 Healthy Acesulfame K 200 Water 75g glucose 75 PPG, PPI 

Sucralose + Acesulfame K 46; 26 

Sucralose 52 

*dose not given but reported as equivalent sweetness to 28g sucrose; dose calculated considering a sweetness equivalence of 300:1 

†dose not reported; estimated according to content of Aspartame + Acesulfame K in commercially sold diet cola 

BNR: Blinding not reported; CO: Cross-over study design; D: Double-blind; PPG: Postprandial glucose; PPI: Postprandial insulin; LES: Low energy sweetener; NR: 

Not reported; O: Open-label; S: Single-blind; T1D: Type-1 diabetes mellitus; T2D: Type-2 diabetes mellitus  
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Table 3. Impact of continuous covariates on PPG and PPI responses to LES 

Covariates Mean change difference in PPG Mean change difference in PPI 

 β SE P β SE P 

Baseline fasting glucose (per 1 mmol/l increase) -0.059 0.04 0.15 2.17 2.87 0.45 

Baseline fasting insulin (per 1 pmol/l increase) -0.001 0.001 0.32 -0.04 0.11 0.75 

Sucralose dose (per 10 mg increase) 0.004 0.003 0.22 0.08 0.19 0.66 

L-Arabinose dose (per 1000 mg increase) 0.001 0.024 0.96 0.96 3.93 0.81 

PPG: Postprandial glucose; PPI: Postprandial insulin 
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Table 4. Mean change difference in PPG and PPI after LES intake within different subgroups. 

  Mean change difference in PPG  Mean change difference in PPI 

Subgroup 

No. of 

studies 

Effect 

(mmol/l) 95% CI 

P within 

subgroup 

I2 Chi2 df P between 

subgroups 
No. of 

studies 

Effect 

(pmol/l) 95% CI 

P within 

subgroup 

I2 Chi2 df P between 

subgroups 

LES type      7.11 6 0.31      2.57 6 0.86 

Sucralose 13 0.05  -0.07, 0.18 0.40 33.45 
   

13 -3.58 -21.06; 13.90 0.69 12.99 
   

L-Arabinose 10 -0.03 -0.22, 0.16 0.77 34.91 
   

10 -6.90 -32.63; 18.83 0.60 45.41 
   

Aspartame 9 0.05 -0.09, 0.20 0.46 0 
   

9 1.82 -13.27; 16.92 0.81 49.51 
   

Sucralose + 

Ace K 
6 0.12 -0.14, 0.38 0.36 0 

   
4 25.32 -24.28; 74.92 0.32 0 

   

Saccharin 5 -0.04 -0.20, 0.13 0.66 0 
   

5 -0.29 -17.03; 16.44 0.97 0 
   

Ace K 4 -0.12 -0.29, 0.05 0.16 0 
   

4 2.74 -21.07; 26.54 0.82 0 
   

Co-exposure      0.48 1 0.48      0.09 1 0.77 

Without 

nutrient 

preload  

12 0.02 -0.11, 0.15 0.76 

44.8    

12 

-0.57 -15.85, 14.71 0.94 

0 

   

With nutrient 

preload 
43 -0.03 -0.11, 0.04 0.40 

41.46    
38 

-3.48 -15.38, 8.42 0.57 
56.31 

   

Health status      5.56 1 0.02*      0.45 1 0.5 

Healthy 41 -0.01 -0.07, 0.06 0.80 36.31    39 -2.86 -12.01, 6.30 0.54 56.31    

Type 2 

diabetes 
9 -0.30 -0.53, -0.07 0.01* 

32.69    
7 

4.87 -15.63, 25.37 0.64 
18.67 

   

Ace K: Acesulfame potassium; Df: degrees of freedom; PPG: Postprandial glucose; PPI: Postprandial insulin 
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Figure legends 

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) flow diagram of the study selection procedure. 

Figure 2. Forest plot showing mean change difference in PPG after LES intake.  

Horizontal lines represent 95% confidence intervals.  The diamond represents the 

pooled estimate determined using a random effects model. 

Figure 3. Forest plot showing mean change difference in PPI after LES intake.  

Horizontal lines represent 95% confidence intervals.  The diamond represents the 

pooled estimate determined using a random effects model. 

Figure 4. Funnel plot used to assess risk of publication bias for (A) PPG and (B) PPI.  

Weights (1/SE2) are plotted against the changes in PPG (A) and PPI (B) from a total of 

55 comparisons (452 individual participants) for PPG and 50 comparisons for PPI (394 

individual participants) respectively. Both PPG and PPI effects showed moderate 

heterogeneity (P value for Q statistic <0.01; I2 = 59.5% and P <0.01, I2 = 61.2% 

respectively) between studies. 

 


