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Abstract

Objectives

Oncology has become more reliant on new testing methods and a greater use of electronic

medical records, which provide a plethora of information available to physicians and

researchers. However, to take advantage of vital clinical and research data for precision

medicine, we must initially make an effort to create an infrastructure for the collection, stor-

age, and utilization of this information with uniquely designed disease-specific registries that

could support the collection of a large number of patients.

Materials andmethods

In this study, we perform an in-depth analysis of a series of lung adenocarcinoma patients (n

= 415) with genomic and clinical data in a recently created thoracic patient registry.

Results

Of the 415 patients with lung adenocarcinoma, 59% (n = 245) were female; the median age

was 64 (range, 22–92) years with a median OS of 33.29 months (95% CI, 29.77–39.48).

The most common actionable alterations were identified in EGFR (n = 177/415 [42.7%]),

ALK (n = 28/377 [7.4%]), and BRAF V600E (n = 7/288 [2.4%]). There was also a discernible

difference in survival for 222 patients, who had an actionable alteration, with a median OS of

39.8 months as compared to 193 wild-type patients with a median OS of 26.0 months

(P 0.001). We identified an unprecedented number of actionable alterations [53.5% (222/

415)], including distinct individual alteration rates, as compared with 15.0% and 22.3% in

TCGA and GENIE respectively.
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Conclusion

The use of patient registries, focused genomic panels and the appropriate use of clinical

guidelines in community and academic settings may influence cohort selection for clinical tri-

als and improve survival outcomes.

Introduction

In response to advances in genomic testing and the rapid integration of new drugs and publi-

cations, oncologists have been adapting the concept of precision medicine where evidence-

based medicine guides treatment decisions for individuals [1]. However, more effort is

required to translate these benefits into real-world durable survivals for patients. Therefore, in

this pursuit, several organizations have implemented the utilization of guidelines and pathways

to ensure that patients receive proper testing and are assigned to proper treatment options,

which in theory should then translate into durable survival outcomes [2–6]. This spur towards

personalized medicine is primarily driven by the advances in genomic testing, biomarker-

driven therapy, and immunotherapy that have transformed the landscape of oncology care

and have greatly improved outcomes for patients [7–12]. Next-generation sequencing (NGS)

has been highly influential in its ability to identify genomic alterations that confer sensitivity to

approved and investigational targeted therapies in patients suffering from a variety of

advanced stage cancers. The application of molecular testing is transforming cancer into a

diverse template of genomic alterations that drive oncogenesis [13].

In view of the vast clinical data offered by NGS in non-small cell lung cancer (NSCLC), City

of Hope (COH) has established a concise and efficient patient registry (Registry of Hope) for

the collection of genomic alterations and outcomes-focused clinical data. Here we present the

results of genomic testing performed as part of routine clinical care and correlative analysis of

415 lung adenocarcinoma (LUAD) patients within the Thoracic Oncology Registry (THOR).

We hypothesized that the application of broad genomic testing provides not only a compre-

hensive overview of clinical heterogeneity in lung cancer but may also guide the future of

oncology care as more and more precision medicine therapeutics emerge. In this study, we

also evaluate the genomic profile of our COH cohort as it compares to national testing results

found in GENIE/TCGA databases.

Materials andmethods

Patients

Patients with advanced LUAD (n = 415), were enrolled in this analysis and evaluated at COH

from 2008 to 2016, the data was collected between 2016 and 2018 through retrospective chart

review on patients who had LUAD diagnosis and molecular testing performed at the discretion

of their primary clinical provider. All 415 patients had metastatic disease, with 89 percent of

patients who presented with metastatic disease at the time of initial diagnosis while others later

developed metastatic disease. THOR was used to perform this study and data was collected

into the registry over time on eligible patients. Different NGS platforms were used as described

in S1 Table. Patients were categorized by race/ethnicity according to what they had reported to

their oncologist and the data was pulled from the electronic medical record. The categories

included African American, American Indian or Alaska Native, Asian, White, Native Hawai-

ian or Other Pacific Island, Other, and Unknown/Declined to answer. Confounding variables,
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through TCGA (https://www.cancer.gov/tcga) and
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such as socioeconomic status, were not adjusted but the researchers felt that it was important

to understand the diverse demographic makeup of the lung cancer patients and how it relates

to their mutational status. The study was approved by the City of Hope institutional review

board and in accord with an assurance filed with and approved by the Department of Health

and Human Services at COH. This study was approved by the Institutional Review Board at

COH under IRB 18217 and was conducted according to the Declaration of Helsinki. Data was

de-identified and analyzed anonymously.

Genomic analysis

Patient genomic alteration data was collected manually from clinical genomic tests alongside

the clinical information. The molecular testing results in this study were all performed at

around the time of metastatic diagnosis and did not include multiple time points. Clinical

actionability of genomic alterations was assessed for each patient and included genomic alter-

ations that had US Food and Drug Administration (FDA) approved targeted therapy in

NSCLC. The actionable genomic alterations in this study were defined as EGFR exon 19 dele-

tions and L858R mutation, ALK rearrangement, ROS1 rearrangement, NTRK fusions, and

BRAF V600E alterations based on FDA-approved therapy available. MET exon 14 splice site/

deletion was also included as actionable based on FDA accelerated path to approval [14, 15].

These alterations were chosen because they are largely exclusive of one another. Any patient

who had at least one of these six gene alterations was considered to have an actionable alter-

ation and anyone whose genomic testing results did not identify any of the six gene alterations

was considered wild-type. When individual genes were evaluated for survival and various sta-

tistical analyses the patients with alterations were only compared with patients who were tested

negative for that specific gene. Tile plot maps were generated using seaborn library for Python

(version 2.7.14) [16].

Comparison with TCGA and GENIE

For the alteration rate of the THOR data set, each gene that had an alteration was calculated as

an individual patient divided by the number of patients who were tested for that gene. Geno-

mic alteration data were retrieved from TCGA (study id = luad_tcga_pub) and GENIE

(GENIE Cohort v4.1-public) [17, 18]. For each gene, only samples profiled in all molecular

profiles including copy-number alteration, somatic mutations, and structural rearrangement

were counted. Alteration rate for each gene was calculated by number of samples with at least

one alteration divided by the number of profiled samples.

Statistical analysis

Patient characteristic parameters were evaluated using the 2 test to test for association

between characteristic values and age. OS was calculated from the date of diagnosis of meta-

static disease to death or last follow-up visit. Patients who were thought to be alive at the end

of the study were censored at the time of the last visit. Survival estimates for the studied

patients were generated using the Kaplan-Meier method and the Cox proportional hazards

models were used to estimate the hazard ratios. The analysis was performed using survival and

survminer packages for R software (version 3.4.4) and SAS version 9.4 (SAS Institute, Cary,

NC, United States). The assumption of proportional hazards was tested using goodness-of-fit

tests, graphical methods and time-dependent variable methods. The extended Cox models

using time-dependent variables were used to adjust the non-proportionality of variables. By

adding interaction terms between time and the variables that violated the proportional hazards

assumption, the models allow for the possible diverging survival curves over time.

Precision medicine in lung cancer
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Results

Patients

415 eligible patients with LUAD and tumor genotyping results were identified in THOR at the

time of this study. The majority of patients were Stage IV (n = 369/415 [89%]) at the time of

initial diagnosis and 46/415 (11%) patients were stage I-III at diagnosis who eventually

recurred as metastatic disease. There were 281 patients who underwent broad-based genomic

testing (more than 30 genes) using NGS and 134 patients were tested for a few genes in a small

panel (less than 10 genes). 254 (61%) patients were never-smokers (n = 212) or had a smoking

history of fewer than 10 pack-years (light smokers; n = 42) and 161 (39%) patients were smok-

ers with a history of 10–29 pack-years (medium smokers; n = 74) or> = 30 pack-years (heavy

smokers; n = 87). The overall median age at diagnosis was 64 (22–92) and the median OS was

33.29 months (95% CI, 29.77–39.48), with the majority of patients being female (n = 245

[59%]). Detailed patient characteristics noted in Table 1.

Genomic alterations

There were 323 different genes with evidence of genomic alteration in this group of patients. The

most commonly occurring alterations in oncogenes were found in EGFR (n = 207/415 [50%]),

KRAS (n = 97/352 [28%]), and ALK rearrangement (n = 28/377 [7%]), while the most commonly

occurring tumor suppressor genes consisted of TP53 (n = 140/283 [49%]), LRP1B (n = 63/228

[28%]), and STK11 (n = 39/278 [14%]) (Fig 1A). The median number of genes altered in patients

who underwent broad-based sequencing was 10. The most common actionable alterations were

identified in EGFR L858R/exon 19 deletion (n = 177/415 [42.7%]), ALK rearrangement (n = 28/

377 [7.4%]), ROS1 rearrangement (n = 3/257 [1.2%]), BRAF V600E (n = 7/288 [2.4%]), andMET

exon 14 splice site/deletion (n = 7/287 [2.4%]). No NTRK fusion alterations were identified in our

cohort. 86% (177/207) of patients with EGFR alterations had an actionable alteration while 14%

(29/207) consisted of exon 18 mutations, exon 20 insertions and other EGFR alterations including

amplifications or substitution variants of unknown significance. EGFR alterations were split into

five subtypes with the majority of Asians (n = 51/99 [52%]) and whites (n = 46/95 [48%]) present-

ing with an exon 19 deletion. KRAS alterations predominated in whites (n = 77/97 [79%]) and

patients with history of medium (n = 24/97 [25%]) or heavy smoking (n = 47/97 [48%]) (Table 2).

Comparison with TCGA and GENIE

While the gene alteration rates of LUAD patients from TCGA/GENIE were comparable [17,

18], evident differences were observed between the patients of THOR and these two public

consortiums (Fig 1B). Importantly, a large proportion of patients had actionable alterations

[53.5% (222/415)] with the highest rate of actionable EGFR mutations at 42.7% (177/415), as

compared with 9.1% and 17.1% actionable rate in TCGA/GENIE respectively. In particular,

our dataset had a significantly increased prevalence of EGFR (49.9%), BRCA2 (14.1%), and

chromatin modifying genes (ARID1B [18.8%], ARID1A [17.7%], MLL2 [13.6%] and MLL

[13.2%]) as compared to the other datasets (Table 3). Analysis of subgroups of patients in

GENIE that were diagnosed with or without metastasis showed similar gene alteration rates of

these genes, indicating the difference we observed between THOR and TCGA/GENIE patients

was not directly linked to metastasis (Table 3).

Survival

The median OS of all patients was 33.3 months (95% CI; 29.8–39.5) and female patients had a

better median OS of 39.8 months (95% CI, 33.5–45.5 months; HR, 1.56; 95% CI, 1.21–2.00;

Precision medicine in lung cancer
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Table 1. Patient characteristics.

Characteristic Total, No. (%) Age, No. (%) P Value Chi-square Statistic

<70 > = 70

Patients 415 (100) 289 (100) 126 (100) NA NA

Sex 0.341 0.906

Female 245 (59) 175 (61) 70 (56)

Male 170 (41) 114 (39) 56 (44)

Race 0.127 9.956

African American 10 (2) 6 (2) 4 (3)

American Indian or Alaska Native 2 (0) 1 (0) 1 (1)

Asian 136 (33) 107 (37) 29 (23)

White 247 (60) 161 (56) 86 (68)

Native Hawaiian or Other Pacific Islander 3 (1) 3 (1) 0 (0)

Other 12 (3) 8 (3) 4 (3)

Unknown/Declined to Answer 5 (1) 3 (1) 2 (2)

Ethnicity 0.150 3.796

Hispanic or Latino 40 (10) 28 (10) 12 (10)

Not Hispanic or Latino 369 (89) 259 (90) 110 (87)

Unknown/Declined to Answer 6 (1) 2 (1) 4 (3)

Smoking Status 0.036 8.550

Never 212 (51) 159 (55) 53 (42)

Light (<10 pack years) 42 (10) 31 (11) 11 (9)

Medium (10–29 pack years) 74 (18) 44 (15) 30 (24)

Heavy (> = 30 pack years) 87 (21) 55 (19) 32 (25)

Stage 0.004 13.595

I 15 (4) 7 (2) 8 (6)

II 14 (3) 5 (2) 9 (7)

III 17 (4) 10 (3) 7 (6)

IV 369 (89) 267 (92) 102 (81)

EGFR (L858R/exon 19 deletion) � 0.059 3.559

Alteration 177 (43) 132 (46) 45 (36)

Tested Negative 238 (57) 157 (54) 81 (64)

ALK (Rearrangement)� 0.001 10.349

Positive 28 (7) 27 (10) 1 (1)

Tested Negative 349 (93) 235 (90) 114 (99)

ROS1 (Rearrangement)� 0.233 1.422

Positive 3 (1) 3 (2) 0 (0)

Tested Negative 254 (99) 172 (98) 82 (100)

BRAF (V600E)� 0.319 0.995

Positive 7 (2) 6 (3) 1 (1)

Tested Negative 281 (98) 194 (97) 90 (99)

MET (exon 14 splice-site/deletion)� 0.022 5.228

Positive 7 (2) 2 (1) 5 (5)

Tested Negative 280 (98) 194 (99) 86 (95)

KRAS <0.001 12.410

Positive 97 (28) 53 (22) 44 (40)

Tested Negative 255 (72) 189 (78) 66 (60)

(Continued)
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Table 4) as compared to median OS of 27.4 months for male patients. The OS was also better

for never/light smokers (<10 pack years) with a median OS of 39.5 months (95% CI, 32.9–45.5

months; HR, 1.42; 95% CI, 1.10–1.83; Table 4) as compared to medium/heavy smokers (> =

10 pack years) who had a median OS of 25.7 months (95% CI, 22.1–33.3 months). Two genes

had violations of the proportional hazards assumption EGFR in actionable and KRAS in

actionable, therefore, we added an interaction with time to account for changes in the HR.

When comparing the median OS of KRAS positive patient (25.5 months; 95% CI, 17.6–32.9

months) with the median OS of actionable patient who had tested KRAS negative (41.1

months; 95% CI, 39.3–55.0 months), the difference was noticeable (Fig 2A), the HR changes

from high risk of death in the KRAS positive patients initially to less risk over time (Table 4).

Of the six actionable genes only ALK rearrangement patients had a difference in survival with

a median OS of 82.6 months (95% CI, 82.6-NR; HR, 0.35; 95% CI, 0.17–0.68;) as compared to

26.6 months (95% CI, 22.1–33.1 months) for tested ALK rearrangement negative patients (Fig

2B). The genomic testing panel size had no discernible OS difference and broad-based

sequencing had a median OS of 33.4 months (95% CI, 29.2–44.2 months) as compared to 33.5

Table 1. (Continued)

Characteristic Total, No. (%) Age, No. (%) P Value Chi-square Statistic

<70 > = 70

TP53 0.306 1.046

Positive 140 (49) 99 (52) 41 (45)

Tested Negative 143 (51) 93 (48) 50 (55)

�Only patients who had genomic test results were counted for each gene. Total number of patients with ALK, ROS1, BRAF, MET, KRAS and TP53 tested were 377, 257,

288, 287, 352, and 283 respectively.

https://doi.org/10.1371/journal.pone.0228188.t001

Fig 1. Landscape overview of molecular profiling in 415 THOR lung adenocarcinoma patients. A) Tile plot of top 25 most prevalent genes and their demographic
parameters sorted by genomic alteration rate and subtypes, including amplification, complex (more than one type of alteration), frameshift, indel (insertion/deletion),
loss, missense, nonsense, rearrangement, and splice site. For each gene, the alteration rate was calculated by number of patients with alteration divided by the number of
patients tested for this gene. B) Heatmap showing a comparison of the genomic alteration rates between THOR, TCGA, GENIE, and GENIE Metastatic for genes in 1A.

https://doi.org/10.1371/journal.pone.0228188.g001
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months (95% CI, 27.5–41.2 months) for the small panel (Fig 2C). There was a discernible dif-

ference in survival for 222 patients, who had an actionable alteration (such as EGFR L858R/

exon 19 deletion, ALK rearrangements, ROS1 rearrangements, BRAF V600E, NTRK fusions

and MET exon 14 splice site/deletion), with a median OS of 39.8 months as compared to 193

patients who were wild-type with a median OS of 26.0 months (Fig 2D).

Table 2. Patients characteristic table for EGFR and KRAS alteration subtypes.

Characteristic EGFR, No. (%)� KRAS, No. (%)

Total exon 18
mutation

exon 19
deletion

exon 20
insertion

exon 21
mutation

Others Total G12 G13 Q61 Others

Patients 207
(100)

9 (4) 106 (51) 16 (8) 72 (35) 7 (3) 97
(100)

79
(81)

7 (7) 9 (9) 2 (2)

Sex

Female 130 (63) 4 (44) 65 (61) 12 (75) 47 (65) 3 (43) 49 (51) 39
(49)

5
(71)

4
(44)

1 (50)

Male 77 (37) 5 (56) 41 (39) 4 (25) 25 (35) 4 (57) 48 (49) 40
(51)

2
(29)

5
(56)

1 (50)

Age

<70 155 (75) 5 (56) 84 (79) 15 (94) 48 (67) 6 (86) 53 (55) 45
(57)

3
(43)

4
(44)

1 (50)

> = 70 52 (25) 4 (44) 22 (21) 1 (6) 24 (33) 1 (14) 44 (45) 34
(43)

4
(57)

5
(56)

1 (50)

Race

African American 4 (2) 0 (0) 3 (3) 0 (0) 1 (1) 0 (0) 4 (4) 3 (4) 0 (0) 1
(11)

0 (0)

American Indian or Alaska
Native

0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 2 (2) 2 (3) 0 (0) 0 (0) 0 (0)

Asian 99 (48) 6 (67) 51 (48) 6 (38) 37 (51) 2 (29) 11 (11) 9 (11) 1
(14)

0 (0) 1 (50)

White 95 (46) 3 (33) 46 (43) 10 (63) 32 (44) 4 (57) 77 (79) 62
(78)

6
(86)

8
(89)

1 (50)

Native Hawaiian or Other Pacific
Islander

0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (1) 1 (1) 0 (0) 0 (0) 0 (0)

Other 8 (4) 0 (0) 6 (6) 0 (0) 1 (1) 1 (14) 1 (1) 1 (1) 0 (0) 0 (0) 0 (0)

Unknown/Declined to Answer 1 (0) 0 (0) 0 (0) 0 (0) 1 (1) 0 (0) 1 (1) 1 (1) 0 (0) 0 (0) 0 (0)

Ethnicity

Hispanic or Latino 17 (8) 0 (0) 13 (12) 1 (6) 2 (3) 1 (14) 11 (11) 10
(13)

0 (0) 1
(11)

0 (0)

Not Hispanic or Latino 188 (91) 9 (100) 92 (87) 15 (94) 69 (96) 6 (86) 84 (87) 68
(86)

6
(86)

8
(89)

2 (100)

Unknown/Declined to Answer 2 (1) 0 (0) 1 (1) 0 (0) 1 (1) 0 (0) 2 (2) 1 (1) 1
(14)

0 (0) 0 (0)

Smoking Status

Never 137 (66) 5 (56) 72 (68) 9 (56) 50 (69) 3 (43) 17 (18) 14
(18)

1
(14)

1
(11)

1 (50)

Light (<10 pack years) 23 (11) 1 (11) 11 (10) 3 (19) 7 (10) 2 (29) 9 (9) 7 (9) 1
(14)

1
(11)

0 (0)

Medium (10–29 pack years) 39 (19) 3 (33) 21 (20) 3 (19) 11 (15) 1 (14) 24 (25) 19
(24)

1
(14)

3
(33)

1 (50)

Heavy (> = 30 pack years) 8 (4) 0 (0) 2 (2) 1 (6) 4 (6) 1 (14) 47 (48) 39
(49)

4
(57)

4
(44)

0 (0)

�Three patients carried two subtypes of EGFR alteration (e.g., exon 19 deletion and exon 18 mutation) and were counted two times.

https://doi.org/10.1371/journal.pone.0228188.t002
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Discussion

The actualization of tyrosine kinase inhibitors, monoclonal antibodies, and immunotherapy

drugs has pushed the treatment of lung cancer forward, however, the reality remains that lung

cancer is the leading cause of cancer deaths [19]. Genomic testing has become more crucial in

oncology care and recently there have been several studies launched that aim to match targeted

therapy to patients based on their omic profile [20–27]. It is now a standard recommendation

that patients with advanced NSCLC undergo routine molecular testing for identification of

certain known genomic abnormalities, most notably ALK rearrangements, EGFR mutations,

BRAF V600E, ROS1 rearrangements, and NTRK fusions [5]. More so several inhibitors for

various markers, such as ERBB2, MET, and RET are quickly being implemented in standard

clinical care and several others await FDA approval [28–32]. Thus, this study aims to highlight

a unique single-site perspective into the clinical heterogeneity found in our cohort of patients

that is largely composed of clinically relevant markers that will benefit from recent advances in

precision medicine and a cohort that is distinctly different from other databases [17, 18]. To

achieve durable survivals for patients it vital to implement appropriate testing at diagnosis and

Table 3. Genomic alteration rates of THOR referring to TCGA/GENIE/GENIEmetastasis patients.

Gene Altered Tested THOR Alteration Rate
(n = 415)

TCGA Alternation Rate
(n = 507)

GENIE Alternation Rate
(n = 6529)

GENIE Metastasis Alternation Rate
(n = 2697)

EGFR 207 415 50% 16% 25% 25%

TP53 140 283 50% 52% 47% 55%

LRP1B 63 228 28% 37% 22% 23%

KRAS 97 352 28% 33% 34% 30%

ARID1B 36 191 19% 7% 5% 6%

MLL3 35 190 18% 15% 6% 7%

SPTA1 35 190 18% 31% 10% 13%

ARID1A 41 232 18% 7% 8% 9%

FAT1 29 191 15% 12% 9% 10%

BRCA2 33 234 14% 6% 5% 6%

STK11 39 278 14% 16% 14% 15%

MLL2 31 228 14% 8% 9% 10%

MLL 30 228 13% 7% 5% 5%

GPR124 29 228 13% 7% 5% 6%

ATM 35 276 13% 10% 8% 9%

KEAP1 27 228 12% 20% 15% 17%

MET 33 287 12% 7% 5% 7%

NKX2-1 26 228 11% 14% 8% 9%

ALK 42 377 11% 7% 5% 6%

SETD2 25 228 11% 7% 7% 7%

NFKBIA 24 228 11% 12% 4% 6%

SMARCA4 24 228 11% 10% 9% 11%

APC 28 274 10% 6% 5% 6%

SDHA 19 191 10% 14% 4% 6%

NOTCH1 27 276 10% 5% 3% 4%

Genomic alteration data were collected for 415 THOR lung adenocarcinoma patients, 507 TCGA Lung Adenocarcinoma patients (study

id = luad_tcga_pan_can_atlas_2018), 6529 GENIE Lung Adenocarcinoma patients (GENIE Cohort v5.0-public, cancer type detailed = lung adenocarcinoma), and 2697

GENIE metastasis lung adenocarcinoma patients (GENIE Cohort v5.0-public, cancer type detailed = lung adenocarcinoma, sample type = Metastasis).

https://doi.org/10.1371/journal.pone.0228188.t003
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upon progression, and guided treatment plans (both guidelines and pathways) through consol-

idation of clinical data into patient registries [33].

Precision genomics

In a recent study that compared the use of broad-based genomic sequencing versus small-

panel testing, it was shown that there was no significant difference in OS [34]. While our data

recapitulates that broad-based sequencing panels were not independently associated with bet-

ter median OS, our results also show that patients with actionable alterations had a discernibly

improved median OS as compared to wild-type patients who did not have an actionable alter-

ation. Most notably ALK rearrangement patients had an improved OS as compared to tested

ALK rearrangement negative (median OS 82.6 vs 26.6 months), which is suspected due to

appropriate molecular testing at presentation and apt selection of therapy based on results [35,

36]. While Presley et al. include ALK in their small routine panel it should be noted that in a

study evaluating the methods of ALK rearrangement testing it was found that comprehensive

Table 4. Cox proportional hazard regression models for univariate survival.

Risk Factor Median Survival (95% CI), months Hazard Ratio (95% CI) P Value

Sex, Male vs Female 27.4 (20.6–31.7) vs 39.8 (33.5–45.5) 1.56 (1.21–2.00) <0.001

Age,> = 70 vs<70 29.0 (19.5–36.5) vs 36.3 (31.4–42.9) 1.41 (1.08–1.85) 0.012

Smoking Status,
Medium + Heavy vs Never + Light 25.7 (22.1–33.3) vs 39.5 (32.9–45.5) 1.42 (1.10–1.83) 0.006

EGFR (Actionable)ab

Positive vs Negative
EGFR x time

39 (32.6–43.8) vs 26 (22.1–32.9) 0.46 (0.31–0.68)
1.02 (1.01–1.03)

0.0001
0.0022

ALK (Rearrangement)b

Positive vs Negative 82.6 (82.6-NR) vs 26.6 (22.1–33.1) 0.35 (0.17–0.68) 0.002

ROS1 (Rearrangement)b

Positive vs Negative NR vs 26 (20.8–33.3) - -

BRAF (V600E)b

Positive vs Negative 73.4 (11.6-NR) vs 28.0 (22.2–34.4) 0.70 (0.26–1.91) 0.487

MET (exon 14 Splice-site/Deletion)b

Positive vs Negative 17.2 (8.77-NR) vs 28.0 (22.2–34.4) 0.59 (0.19–1.89) 0.377

KRAS in Actionablec

Positive vs Negative
KRAS x time

25.5 (17.6–32.9) vs 41.4 (39.3–55.0) 2.80 (1.70–4.61)
0.98 (0.97–0.99)

<0.0001
0.0065

KRAS in Non-Actionabled

Positive vs Negative 25.5 (17.6–32.9) vs 27.7 (22.2–42.9) 1.06 (0.73–1.53) 0.769

TP53 in Actionablec

Positive vs Negative 25.5 (20.6–34.9) vs 67.6 (39.5-NR) 1.87 (1.12–3.12) 0.017

TP53 in Non-Actionabled

Positive vs Negative 25.5 (20.6–34.9) vs 30.1 (21.6–54.0) 1.13 (0.75–1.69) 0.561

a. EGFR All patients had EGFR tested.
b. For each gene, patients carrying actionable alterations were compared with patients who were tested negative, with patients carrying actionable alterations from other

genes excluded from its analysis.
c. For KRAS and TP53, patients who were tested positive with no actionable alteration were compared with patients who were tested negative but had actionable gene

alterations.
d. For KRAS and TP53, patients who were tested positive were compared with patients who were tested negative and patients who had actionable gene alterations were

excluded from both groups.

https://doi.org/10.1371/journal.pone.0228188.t004
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genomic profiling by NGS was able to identify a number of patients who had previously tested

negative using the standard ALK fluorescence in situ hybridization (FISH) assay [37]. While

there were several studies that showed improved PFS with targeted therapy which did not

Fig 2. Kaplan-Meier estimates of overall survival.A) Overall survival among KRAS altered and tested KRAS negative patients with actionable alteration. B) Overall
survival among ALK rearrangement and tested ALK rearrangement negative patients. C) Overall survival among broad-based panel tested and small-panel tested
patients. D) Overall survival among actionable altered and wild-type patients. P values comparing risk groups were calculated with the log-rank test.

https://doi.org/10.1371/journal.pone.0228188.g002
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translate into OS benefit [7–12], more recent results in lung cancer have shown there is a dura-

ble survival benefit for patients who are properly treated with appropriate inhibitors as

opposed to patients who do not receive targeted therapy [30, 38–41]. 53.5% (222/415) of

patients presented with actionable alterations in our cohort had specific targeted therapies

approved by the FDA. While many question the utility to targeted therapy due to low action-

able alteration rates [42–44], this study shows that actionable alterations rates may vary demo-

graphically and by location presenting a challenge for improving outcomes that may be

addressed through the implementation of clinical pathway guidelines and continuing genomic

education [45].

Guided value-based medicine

Several studies have been performed that have determined the cost-effectiveness of NGS panels

over single gene testing and in one study there was an improvement in PFS without additional

health care costs to the patient [46–48]. In several meta-analyses of prospective clinical trials

for solid tumors and hematological malignancies, personalized treatment strategies showed

superior outcomes to those in control arms [49–54]. Therefore, the question becomes not

whether genomic testing should be performed with a specific panel but whether the patient is

treated accordingly based on all information available to improve their individual outcomes

[54]. For this purpose, several associations including the National Comprehensive Cancer Net-

work (NCCN) have issued guidelines which strongly emphasize not only testing for EGFR,

ALK, ROS1, BRAF, and PD-L1 alterations but more importantly advise to conduct broader

molecular profiling to identify rare mutational drivers [5, 6]. In practice, it was reported that

the majority of oncologists (60%) in North America did not utilize genomic alteration results

in their treatment decision making [55, 56].

To improve these statistics, the American Society of Clinical Oncology (ASCO) established

in 2015 a task force on clinical pathways to improve treatment decision making through evi-

dence-based clinical pathway guidelines [3]. Since then, ASCO revealed in a 2017 State of Can-

cer Care in America report a 42% increase from 2014 to 2016 of practices complying with a

pathway program [57, 58]. Moreover, a recent study that evaluated 7 cancer programs, includ-

ing COH (both academic and community), that employed clinical pathways demonstrated

unprecedently high rates of molecular testing and concordant appropriate first-line treatment

decision making based on actionable biomarkers [59]. Thusly, the end-goal for improvement

of outcomes can only be achieved under the right circumstances where the appropriate testing

is performed and the accurate treatment decisions are made.

THOR in comparison with TCGA and GENIE

While there is some overlap in the alteration rates between our cohort and the publicly avail-

able datasets (TCGA/GENIE), there are more differences in the comparable rates of occur-

rences. Our study identified a disproportionally high rate of EGFR alterations with 49.9%

(207/415) and actionable alteration rate with 53.5%, which was notably higher than the

TCGA/GENIE rates [17, 18]. However, these results are consistent with a large gene profiling

study of NSCLC from the Icahn School of Medicine at Mount Sinai that was able to identify

actionable alterations in 65% of the cases [60]. While it is estimated that the actionability rate

for NSCLC is around 30%, the results of this single-site analysis warrant further consideration

to understand the heterogeneity of lung cancer in different populations and how this may

impact survival outcomes [17]. This may in part be due to referrals to COH for clinical care

and potential clinical trials, but it cannot be discounted that the high rates of EGFR alterations

may be due to a large number of Asian never-smokers at presentation. In fact, 72.8% (99/136)
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of Asians in our cohort presented with an EGFR alteration as compared with 50.0% EGFR

incidence rate found in the GENIE dataset [17]. This large occurrence of EGFR in Asian

never-smokers is consistent with another study that identified 75.3% of Asian never-smokers

who harbored EGFR mutations [61].

Unexpectedly a number of chromatin modulating genes were irregularly prevalent in our

cohort as compared with TCGA/GENIE. ARID1A alterations were highly expressed in our

cohort alongside ARID1B and the two are known to be mutually exclusive within individual

SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complexes [62]. How-

ever, ARID1A has been shown to be the strongest tumor suppressor gene amongst the ARID

genes in various cancers [63–66] and ARID1A is known to have the highest alteration rate

among the SWI/SNF subunit genes [67]. The dysfunction of these complexes is known to

destabilize the lung cancer genome by affecting chromatin remodeling and also disrupt DNA

repair [68–70]. Furthermore, the high prevalence of genes such as MLL, MLL2, and BRCA2

suggest that other chromatin remodeling motifs may be involved in tumorigenesis of these

patients rather than an event specific to a particular tumor type [71, 72].

Conclusion

The limitation of current oncology practice is the speed of integration and adaptation to the

rapidly advancing testing modalities and multiple therapeutic options that are garnering swift

approval in various cancer types [73]. These efforts will require standardization of molecular

testing modalities, cohesive guidelines, and pathways for precision medicine, and focused

patient registries to enable cohort management and efficient clinical trial accrual. While our

study was limited by the sample size and the demographics of our patients, it is still important

to utilize these tools to guide physicians in determining which patient groups can benefit from

clinical trials, tumor resistance or chemotherapy sensitivity. Review of the genomic data of our

lung cancer patient cohorts in THOR showed significantly different incidences of actionable

mutations as compared to the public datasets. Thus, instead of relying on generalized demo-

graphics and genomic results within the public datasets, the individual centers are required to

perform their own assessments of their cohorts in order to have a proper analysis of their clinic

population.
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