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ABSTRACT  
 

Neurons communicate via Ca2+-dependent release of neurotransmitters packaged into 

vesicles (quanta). Some CNS neurons, especially sensory synapses, can release multiple vesicles 

at a time, increasing information transmission and overcoming the unreliability of a stochastic 

process. Ribbon-bearing neurons, including retinal photoreceptors, face the challenge of encoding 

sensory receptor potentials into an ever-changing train of vesicle release events.  We studied release 

of glutamate using voltage clamp to measure anion currents activated during glutamate reuptake 

into presynaptic terminals (IA(glu)) of salamander and mouse rods, finding that each employ distinct 

mechanisms for multiquantal release. 

In amphibian rods, we found that 1/3 of the spontaneous IA(glu) fusion events involve 

synchronous fusion of multiple vesicles. By varying intracellular buffering to localize Ca2+-

dependent events, we found that multiquantal release occurs near Ca2+ sources. In photoreceptors, 

Ca2+ influx occurs just below synaptic ribbons. Vesicles house SNARE machinery so we 

hypothesized that vesicles on the ribbon undergo homotypic fusion prior to exocytosis. Destruction 

of ribbons and disruption of the SNARE-protein syntaxin3B prevented spontaneous multiquantal 

release, suggesting that salamander rods are capable of multivesicular release due to homotypic 

fusion of vesicles along ribbons.  

In mouse rods, spontaneous release at −70 mV involved the stochastic fusion of single 

vesicles. With depolarization, glutamate release increased linearly with voltage-gated Ca2+ 

currents. As the membrane approached the resting potential in darkness of −40 mV, rods began to 

release glutamate in multivesicular bursts of 17±7 vesicles every 2801±598 ms. Release evoked by 

brief depolarizations and bursts both involved the same pool of ribbon-associated vesicles with 

fusion regulated by the vesicular Ca2+ sensor synaptotagmin-1. A second, slower component of 

release controlled by synaptotagmin-7 is also present in rods but not cones.  We hypothesized a 
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role for coordinated bursts of release in transmitting single photon signals. The rate of bursting was 

responsive to small voltage changes of 1.0-3.5 mV and the voltage waveform that triggered bursts 

most effectively was similar to single photon responses. We propose that multiquantal bursts 

contribute to mechanisms that filter out small noisy events to improve reliable detection of single 

photons by the retina.   
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CHAPTER 1: Introduction 
 

Overview of Vision 

Visual perception begins after photons of light have traveled through the front of the eye 

to reach a thin sheet of neural tissue at the back of the eye called the retina. Light is refracted by 

the cornea and lens to focus light on the retina. Focal length can be adjusted by the shape of the 

cornea and lens and aperture can be adjusted by changing pupil diameter.  On its route to the retina, 

light passes through clear liquids in the anterior chamber between the cornea and lens and the 

vitreous cavity between the lens and retina. Aqueous humor in the anterior chamber bathes 

avascular tissues with nutrients and its circulation helps to maintain physiological intraocular 

pressure. The gelatinous vitreous humor contains mostly water with an ionic content similar to 

plasma along with a few phagocytes, hyaluronic acid, collagen, and other extracellular matrix 

proteins. Vitreous humor does not circulate like aqueous humor, but adheres to the retina and lens 

to support the shape of the globe and proper arrangement of ocular tissues.  

Following photon absorption and transduction into electrical and chemical signals in the 

retina visual signals are transmitted to the brain along the optic nerve (cranial nerve II), which 

travels down the optic tract and across the optic chiasm to terminate in one of several brain areas 

(Murcia-Belmonte and Erskine, 2019). Conscious perception of images arises from signals 

traveling through the lateral geniculate nucleus of the thalamus to the primary visual cortex located 

in the occipital lobe. Pupillary light reflexes and circadian/diurnal rhythms do not depend on 

conscious perception and are instead mediated by projections to the optic pretectum (midbrain) and 

superchiasmatic nucleus (hypothalamus), respectively (Murcia-Belmonte and Erskine, 2019;Yoo 

and Mihaila, 2020). The superior colliculus of the midbrain (called the optic tectum in non-

mammalian vertebrates) receives direct input from the retina in order to direct attention by fixation 
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or saccadic eye movements (Ito and Feldheim, 2018;Farrow et al., 2019). Retinal axons also project 

to the accessory optic system in the midbrain tegmentum.  

Overview of Retinal Anatomy 

The retina is a highly organized thin sheet of neural tissue that is embryologically derived 

from the neural ectoderm, forming an outcropping of the central nervous system.  The retina is 

flanked by vitreous humor along the inner surface and the retinal pigment epithelium at the outer 

surface (Fig. 1). A rich vascular bed called the choroid lies just beyond the retinal pigment 

epithelium.  Behind the choroid is the tough collagenous sclera that makes up the outermost layer 

of the posterior eye.  

The retina contains five major types of neurons and one major glial cell organized into 7 

layers. The most distal layer of the retina, the photoreceptor layer (PL), contains the outer and inner 

segments of photoreceptors.  The next most proximal layer contains photoreceptor cell bodies that 

comprise the outer nuclear layer (ONL). The outer limiting membrane (OLM) separates inner 

segments from photoreceptor cell bodies and is formed from the apical processes of Müller glial 

cells. The outer plexiform layer (OPL) is the site of synaptic contact between photoreceptors and 

second order neurons, horizontal and bipolar cells. Cell bodies of bipolar, horizontal and amacrine 

cells make up the inner nuclear layer (INL). Synaptic contacts between bipolar, amacrine and 

ganglion cells occur in the inner plexiform layer (IPL). The ganglion cell layer (GCL) consists of 

ganglion cell bodies and some displaced amacrine cells.  Ganglion cell axons that project toward 

the optic nerve head make up the nerve fiber layer (NFL) along the anterior surface of the retina. 

Müller glia are the principal glial cell of the retina and span the retina with apical processes forming 

the OLM and their endfeet forming the inner limiting membrane (ILM) that separates the vitreous 

humor from the nerve fiber layer.  
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Figure 1 Vertical section of human retina. PL = Photoreceptor Layer ( outer segments of rods 

and cones) ONL = Outer Nuclear Layer (nuclei of rods and cones) OPL= outer plexiform 

layer (photoreceptor synapses) INL = inner nuclear layer (bipolar cell somata) IPL= inner 

plexiform layer (bipolar cell synapses) GCL= ganglion cell layer (ganglion cell somata) and 

NFL= nerve fiber layer (axons of the ganglion cells). The right panel illustrates the basic 

circuitry of the retinal neurons.   

 

Each of the five major neuronal cell types in the retina has various subtypes. Photoreceptors 

consist of rods and cones.  Most species have a single type of rod and multiple types of cones that 

differ from one another in their spectral sensitivity (Thoreson and Dacey, 2019).  Mammals 

typically have two types of horizontal cells although many non-mammalian species have as many 

as four and some rodents have only one (Thoreson and Mangel, 2012;Diamond, 2017).  Most 

species have more than a dozen types of bipolar cells (Tsukamoto and Omi, 2017) and more than 

25 types each of amacrine and ganglion cells have been described (Masland, 2011;Baden et al., 

2016). 

Photoreceptors 

Rods and cones use similar phototransduction mechanisms to transduce light into 

membrane voltage changes although they differ in their sensitivity and kinetics. Rods are 

specialized to transmit signals in scotopic conditions and can generate detectable membrane voltage 
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changes in response to absorption of only a single photon. Cones operate at higher light levels to 

provide faster, high acuity signals.  The presence of multiple cone subtypes with differing spectral 

sensitivities is also a substrate for color vision (Thoreson and Dacey, 2019).  

Vision originates with the absorption of photons in the outer segments of rod or cone 

photoreceptor cells that lie adjacent to the retinal pigment epithelium (RPE). The outer segment is 

a modified cilium containing the phototransduction apparatus organized in layers of membranous 

disks studded with light-sensitive opsin molecules. In rods, these discs form separate organelles 

that are fully enclosed within the outer segment. In cones, discs are formed from repeated 

invaginations of the plasma membrane. Rods and cones receive their names because outer segments 

of rods are cylindrical whereas the outer segments of cones are more tapered.  

Phototransduction 

The process of converting photon capture to a membrane voltage change, 

phototransduction (Fig. 2), is initiated in the outer segments by absorption of a photon by a 

transmembrane G-protein-coupled receptor, opsin.  The opsin in rods is called rhodopsin. The 

different types of cones have cone opsins that differ in spectral sensitivity from one another.  Opsins 

are located in the disc membranes where they make up the vast majority of the protein content of 

outer segments.  In its light-sensitive state, there is a covalent bond between opsin and its 

chromophore molecule, 11-cis-retinal (vitamin A aldehyde).  Absorption of a photon by 11-cis-

retinal causes it to isomerize to all trans-retinal, producing a conformational change in the opsin 

molecule. The conformational change in rhodopsin activates the associated G-protein, Gt 

(transducin), whose alpha subunit in turn activates cGMP-specific phosphodiesterase. The 

hydrolysis of cytosolic cGMP results in closure of cyclic nucleotide-gated cation (CNG) channels 

in the adjacent plasma membrane, thus hyperpolarizing the photoreceptor. PDE and Gt are rapidly 

inactivated so that the photoreceptor can respond to subsequent incoming photons. Because cGMP 

levels are higher in darkness than in light, many CNG channels are open in darkness leading to a 
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relatively depolarized membrane potential of −40 mV.  By closing these CNG channels, light 

produces hyperpolarizing responses in the photoreceptor cell that increase in amplitude with 

increasing light intensity.   

 

Figure 2 An illustration of anatomical features of rods and cones. The figure of the rod 

includes the various ion channel conductances that contribute to the membrane potential 

(Vm). In darkness, K+ efflux from the inner segment is counteracted by cation influx through 

cyclic-nucleotide gated (CNG) channels in the outer segment maintaining a depolarized V m 

(-40 mV). An Na+/K+-ATPase at the soma and Na+/K+/Ca2+ exchanger in the outer segment 

maintain physiological concentration gradients. The general phototransduction cascade is 

illustrated in the red box. Light converts 11-cis retinal to all-trans retinal causing activation 

of rhodopsin-coupled G-protein transducin (G t). Transducin activates phosphodiesterase 

(PDE) which degrades cGMP. When cGMP levels decline, CNG channels close, 

hyperpolarizing the photoreceptor.  

 

The constant influx of Na+ and Ca2+ ions through CNG channels in darkness requires 

continual extrusion of these ions.  Ca2+ is extruded by Na+/Ca2+ exchangers in the outer segment.  

Just beneath the outer segment, on the other side of the connecting cilium, is the inner segment. 

Na+ is extruded by Na-/K+-ATPase activity in the inner segment, requiring considerable amounts 

of ATP in darkness. The inner segment also houses an abundance of mitochondria, providing the 
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fuel needed to sustain these ATPases and phototransduction (Johnson et al., 2007). The adjacent 

choroidal vascular bed has among the highest unit blood flow in the body, but despite this rich 

supply, the constant activity of these mitochondria is sufficient to reduce the PO2 at the level the 

inner segments to zero in darkness (Linsenmeier, 1986;Braun et al., 1995;Lau and Linsenmeier, 

2012). 

Photoreceptors express various ion channels that help to set the membrane potential, shape 

their responses to light, and regulate synaptic transmission.  Rods and cones both possess inwardly 

rectifying cation currents that are activated by hyperpolarizing voltages (Ih), voltage-dependent K+ 

currents activated by depolarization (IKx), L-type ICa and Ca2+-activated Cl− currents (ICl(Ca))(Van 

Hook et al., 2019). Photoreceptors of some species also possess Ca2+-activated K+ currents  but 

these appear to be absent from primate retina (Yagi and Macleish, 1994;Xu and Slaughter, 

2005;Pelucchi et al., 2008;Ingram et al., 2020).  Unlike most neurons, photoreceptors do not 

normally possess voltage-gated Na+ channels (Van Hook et al., 2019). IKx is typically active at the 

resting potential in darkness of −40 mV.  When CNG close in response to light, K+ efflux through 

IKx channels provides the principal driving force to hyperpolarize the membrane.  Ih is a cation 

channel that is 3 or 4 times more permeable to K+ than Na+, showing a reversal potential of −30-35 

mV (Demontis et al., 1999;Demontis et al., 2002;Van Hook et al., 2019).  The increase in Ih activity 

that accompanies light-evoked hyperpolarization provides a depolarizing influence that makes rod 

and cone light responses more transient.   

As discussed in further detail below, the relatively depolarized membrane potential of rods 

and cones in darkness is sufficient to activate L-type Ca2+ channels that control synaptic 

transmission.  Ca2+ channel activity diminishes when photoreceptors hyperpolarize to light and 

increases when they depolarize in darkness. Thus, Ca2+-dependent release of glutamate-filled 

synaptic vesicles also diminishes in light and increases in darkness.  
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Photoreceptor Synapse  

Synaptic vesicle release from rod and cone photoreceptors involves specialized plate-like 

protein structures known as synaptic ribbons.  Synaptic ribbons are also present in other non-

spiking sensory neurons including retinal bipolar cells and hair cells of the cochlea and vestibular 

apparatus (Schmitz, 2009). These cells share the capability for tonic graded release of 

neurotransmitter and ribbons are thought to be crucial for sustaining release. The main protein 

making up the synaptic ribbon is RIBEYE (Schmitz et al., 2000).  This is a transcript variant of a 

more ubiquitously expressed transcriptional repressor protein CtBP2.  RIBEYE differs from the 

more common CtBP2 variant in that it also contains an additional ribbon-specific A domain 

(Schmitz et al., 2000).  Self-association among A-domains of adjoining RIBEYE molecules is 

thought to form the core of a ribbon. Ribbons are anchored close to the plasma membrane by 

interactions with the proteins, bassoon and piccolo (Schmitz, 2009;Moser et al., 2020).  These 

proteins may make up part of the arciform density, a semilunar-shaped structure beneath each 

ribbon (Fig. 3).  

 Release from most neurons is regulated by activity of N- or P/Q-type Ca2+ channels, but 

photoreceptors and other ribbon-bearing neurons that show graded receptor potentials use L-type 

channels to maintain continuous Ca2+ influx necessary for continuous release (Waldner et al., 

2018).   The Ca2+ channels at photoreceptor ribbon synapses are constructed from CaV1.4 pore-

forming alpha subunit associated with β2A and α2δ4 accessory subunits (Doering et al., 

2007;Waldner et al., 2018).  CaV1.4 activity produces a relatively sustained current exhibiting 

hardly any inactivation by voltage or Ca2+ which makes it well suited for maintaining the 

continuous release of glutamate in times of darkness (Doering et al., 2007).  The voltage at which 

CaV1.4 channels achieve half-maximal activation is close to the dark resting potential of rods and 

cones (Barnes and Kelly, 2002;Babai and Thoreson, 2009).  Thus, Ca2+ channel activity is very 

sensitive to small changes in membrane voltage produced by changes in illumination, with activity 
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decreasing when photoreceptors hyperpolarize to light and increasing when they depolarize at light 

offset.  Cav1.4 channels are clustered below synaptic ribbons (Nachman-Clewner et al., 

1999;Morgans, 2001;tom Dieck et al., 2005a;Mercer and Thoreson, 2011;Dolphin and Lee, 2020) 

and remain there through a relationship with the ribbon-associated protein, Bassoon(tom Dieck et 

al., 2005b). 

Figure 3 The left panel illustrates the arrangement of major protein components of 

the synaptic ribbon in rods and cones. The right panels show the overall organization 

of rod and cone synapses. Cones have multiple ribbons (10-50) whereas mammalian 

rods have only a single ribbon. RBC, rod bipolar cell; on BC, ON-type bipolar cell; 

HC, horizontal cell 

 

Photoreceptor ribbons are adorned with vesicles in a roughly hexagonal array (Thoreson et 

al., 2004).  The surrounding cytoplasm contains many highly mobile vesicles that provide a 

reservoir for replenishing ribbons (Rea et al., 2004).  After attaching to a ribbon, it appears that 

vesicles depart the ribbon only by fusion with the plasma membrane at synaptic release sites along 

the base of the ribbon (Vaithianathan et al., 2016;Wen et al., 2017). Each vesicle is associated with 

the ribbon by a handful of fine tethers (Usukura and Yamada, 1987) but it appears that each 

individual tether provides a relatively weak attachment force, allowing vesicles to move freely 

along the plane of the ribbon (Graydon et al., 2014).  With flash photolytic uncaging of Ca2+ in 

bipolar cells, all vesicles fuse within 2 ms suggesting a rate of  >100 µm/s if all of the vesicles that 

are released must descend down the ribbon (Heidelberger et al., 1994;Parsons and Sterling, 2003). 
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This is considerably faster than the 800 nm/s rate of vesicle approach measured directly by 

visualizing vesicles using total internal reflectance microscopy (TIRFM) in bipolar cells (Zenisek 

et al., 2000) and rods (Parsons and Sterling, 2003;Chen et al., 2014) It has been suggested that the 

travel of vesicles down the ribbon may be aided by the ribbon-associated kinesin molecule Kif3a 

(Muresan et al., 1999). However, if so, the actions of Kif3A do not depend on molecular motors 

driven by ATP hydrolysis, because release of vesicles from bipolar cell ribbons can occur in the 

absence of usable ATP (Heidelberger et al., 2002;Matthews and Sterling, 2008). Also, there is no 

evidence for other molecular motor components other than Kif3A (Muresan et al., 1999). Finally, 

a speed of 100 µm/s is faster than known molecular motors can manage (Kolomeisky, 2013). 

While it is generally thought that ribbons may increase the capacity for continuous release 

of vesicles, computational models suggest that cytoplasmic vesicles can arrive by simple diffusion 

at release sites rapidly enough to sustain tonic release rates in photoreceptors and bipolar cells 

without a ribbon (Graydon et al., 2014).  Thus, ribbons may serve other functions besides delivery 

to release sites.  For example, ribbons also play a role in priming of vesicles for release (Snellman 

et al., 2011).  Another function suggested by experiments described in chapters 2 and 3 is that the 

ribbon situates vesicles near enough to one another to facilitate homotypic and sequential 

multivesicular fusion (Parsons and Sterling, 2003;Matthews and Sterling, 2008).  

Rods possess larger ribbons than cones, averaging about 1 µm along their base and 

extending about 1 µm into the cytoplasm (Sterling and Matthews, 2005).  Mammalian rods 

typically have a single ribbon (Carter-Dawson and LaVail, 1979;Sterling and Matthews, 

2005;Zampighi et al., 2011)  but amphibian rods possess 4-5 ribbons per terminal and up to 3 

terminals per rod, yielding an average of 7 ribbons per rod (Townes-Anderson et al., 1985a).  These 

7 ribbons can accommodate over 3500 vesicles or about 500 vesicles apiece (Thoreson et al., 2004). 

This is similar to the number of vesicles tethered by a ribbon in mammalian rods (~600 vesicles) 

(Sterling and Matthews, 2005).  We took advantage of the fact that mammalian rods have only a 
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single ribbon to study the statistics of release at individual rod ribbons in experiments described in 

Chapter 3.  

Mammalian and amphibian cones contain smaller but more numerous synaptic ribbons 

than rods. Amphibian cones contain an average of 13 ribbons each able to tether 110 vesicles apiece 

(Bartoletti et al., 2010).  The number of ribbons in mammalian cones ranges from 10 to 50, 

increasing as one moves further toward the retinal periphery (Haverkamp et al., 2001).  Cones in 

mouse retina have 6-14 ribbons apiece (Johnson et al., 2007).  

Second and Third Order Neurons 

The light responses encoded by changes in glutamate release act on second-order bipolar 

and horizontal cells.  Horizontal cells are lateral inhibitory neurons that act on photoreceptors and 

bipolar cells to shape the light responses of bipolar cells.  Bipolar cells then contact retinal ganglion 

cells and amacrine cells. Amacrine cells are also lateral inhibitory neurons that further shape light 

responses.  The axons of ganglion cells form the optic nerve that carries signals to other parts of 

the CNS.  Like photoreceptors, horizontal cells and bipolar cells respond to changes in illumination 

with graded changes in membrane potential that are proportional to the stimulus whereas amacrine 

and retinal ganglion cells begin to encode information using sodium-driven action potentials, like 

other CNS neurons.  

Bipolar cells are found in many special sensory systems and are named for having only 

two poles: a dendritic extension and an axon. The cell bodies of retinal bipolar cells lie in the INL 

and project short axons into the IPL where they release glutamate onto amacrine and ganglion cells. 

Like photoreceptors, bipolar cells respond to glutamate with graded membrane changes and are 

suited for continuous release of vesicles by also having synaptic ribbons.  Bipolar cells can be 

classified as “ON” or “OFF” depending on whether they depolarize at light onset or offset.  ON 

and OFF bipolar cells excite ON and OFF amacrine and ganglion cells, respectively.  Recall that 
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photoreceptors hyperpolarize to light by decelerating glutamate release. Bipolar cells in the OFF-

pathway respond to glutamate in a sign-conserving manner and so the decline in glutamate release 

from the photoreceptor that accompanies its hyperpolarizing light response causes OFF bipolar 

cells to hyperpolarize. By contrast, ON bipolar cells participate in a sign-inverting synapse whereby 

their membrane voltage change opposes that of the photoreceptor. In this case, the hyperpolarizing 

response of a photoreceptor to light produces a depolarization of the ON bipolar cell.  The opposing 

responses to glutamate by ON and OFF bipolar cells result from their expression of different 

glutamate receptors (Saito and Kaneko, 1983;Masu et al., 1995). 

Like most excitatory neurons in the CNS, OFF bipolar cells express ionotropic AMPA- or 

KA-type glutamate receptors in which glutamate binding triggers the opening of non-selective 

cation channels (Puller et al., 2007;Ichinose and Hellmer, 2016;Vielma and Schmachtenberg, 

2016).  Thus, the response of OFF bipolar cells to glutamate mirrors that of the photoreceptor in 

response to light: hyperpolarizing when photoreceptors hyperpolarize at light onset and 

depolarizing when photoreceptors depolarize at light offset.  

ON bipolar cells appear to be unique among glutamatergic neurons in that glutamatergic 

inputs to this neuron are not transduced by ionotropic glutamate receptors but instead by a G-protein 

coupled metabotropic receptor.  The ON bipolar cell glutamate receptor, mGluR6, responds to 

glutamate by initiating an intracellular signaling cascade that culminates in the closure of a nearby 

TRPM1 cation channels (Fig. 4)(Koike et al., 2010b). mGluR6 does not form an ion channel itself 

but is coupled to GO whose alpha and beta/gamma subunits both participate in closure of the 

constitutively open TRPM1 (Xu et al., 2016).  The mechanism by which this occurs remains 

unclear.  Applying activated GαO subunit closed TRPM1 channels expressed in CHO cells (Koike 

et al., 2010a) but dialysis of active GβγO subunit also reduced Ca2+ influx in transfected HEK cells 

and human melanocytes (Shen et al., 2012).  More recently, there is evidence that both the Gα and 

βγ subunits act in a cooperative manner to close TRPM1 (Xu et al., 2016). In darkness, while rods 
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are continuously releasing glutamate, mGluR6 are saturated, maintaining the closed state of nearly 

every TRPM1 cation channel at that dendrite causing the bipolar cell to be hyperpolarized (Sampath 

and Rieke, 2004). After photon absorption and the slowing of glutamate release, mGluR6 are de-

saturated and TRPM1 channels open to depolarize the cell in a “sign-inverting” manner.  

 
Figure 4 Photoreceptors communicate with ON-bipolar cells by releasing glutamate. With 

light stimuli, the photoreceptor hyperpolarizes, causing depolarization of the ON bipolar cell. 

The mGluR6 signaling cascade (right) is responsible for this sign inversion. With light, when 

glutamate is reduced in the cleft, cessation of mGluR6 stimulation leads to opening of 

TRPM1 cation channels. Modified from Morgans et al. 2010.(Morgans et al., 2010)  

 

In mammalian retina, the dendrites of ON bipolar cells contact rods and cones by entering 

invaginations within the photoreceptor synaptic terminal.   At both rod and cone synapses, one or 

two ON bipolar cell dendrites occupy the central position in the invagination, flanked by two 

horizontal cell dendrites. At cone synapses, a number of cone-driven OFF bipolar cell dendrites 

also make flat contacts with the cone membrane just outside of the invagination, close enough to 

sense glutamate released at ribbons within the invagination (Hack et al., 1999;Tsukamoto et al., 

2001). Few OFF bipolar cells make contact with rods (Tsukamoto and Omi, 2014). 

As light responses are transmitted from photoreceptors to bipolar cells and then to ganglion 

cells, they are modified by circuits involving inhibitory horizontal cells and amacrine cells 

(Diamond, 2017). With cell bodies residing within the inner nuclear layer and dendritic extensions 
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in the outer plexiform layer, horizontal cells make contact with rod and cone terminals and bipolar 

cell dendrites at invaginating photoreceptor ribbon synapses. Horizontal cells primarily express 

AMPA receptors and depolarize in response to glutamate released from photoreceptor terminals, 

thereby hyperpolarizing to light (Copenhagen et al., 1983;Connaughton, 1995;Kramer and 

Davenport, 2015). They provide feedback inhibition to presynaptic rods and cones and also appear 

to provide feedforward inhibition to at least some bipolar cells (Thoreson and Mangel, 2012), in 

part by the actions of GABA.  

Non-mammalian vertebrates have up to four types of horizontal cells whereas most 

mammals have two types (Thoreson and Mangel, 2012).  Mouse and some other rodents have only 

a single type of horizontal cell (Peichl and Gonzalez-Soriano, 1994). The chief contribution of 

horizontal cells in vision is to provide lateral inhibitory feedback to rod and cone photoreceptors 

establishing center-surround receptive fields in the retina.  Center-surround receptive fields are 

important for color vision and enhancing spatial resolution and edge detection (Thoreson and 

Mangel, 2012). During feedback inhibition, when a cone hyperpolarizes to light, the post-synaptic 

horizontal cell also hyperpolarizes which reduces the inhibitory signals that it sends to neighboring 

cones. This in turn enhances membrane depolarization and ICa activity in photoreceptors 

surrounding the light-stimulated cone (Verweij et al., 1996). Three candidate feedback mechanisms 

have been proposed to explain how horizontal cell hyperpolarization may activate calcium channels 

in cone terminals (Thoreson and Mangel, 2012;Diamond, 2017).  

The first is simply GABAergic disinhibition. Horizontal cells in most species contain 

GABA and appropriate machinery for GABA synthesis and transport (Yang et al., 1999;Deniz et 

al., 2011). In this scenario, in light when cone glutamate release is reduced, horizontal cells are also 

hyperpolarized reducing the release of GABA (Lam et al., 1978). This causes a disinhibition and 

depolarization at the cone terminal.  However, GABA antagonists failed to block depolarizing 

responses recorded in cones evoked by light stimulation from neighboring horizontal cells, 
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indicating that this is not the principal mechanism mediating inhibitory feedback to cones 

(Thoreson and Burkhardt, 1990;Verweij et al., 2003).  

Byzov et al. proposed an ephaptic feedback mechanism where horizontal cell 

hyperpolarization causes a voltage drop in the synaptic cleft that depolarizes the adjacent cone 

terminal membrane (Byzov and Trifonov Yu, 1981). However, this mechanism should operate 

instantaneously, and feedback develops rather slowly, suggesting it is also unlikely to be the 

principal mechanism of feedback (Warren et al., 2016b).   

Lastly, it is hypothesized that when horizontal cells hyperpolarize to light, this relieves 

proton-mediated inhibition of cone Ca2+ currents. Consistent with this, strongly buffering pH blocks 

feedback from horizontal cells to cones (Cadetti and Thoreson, 2006;Hirasawa et al., 2012;Grove 

et al., 2019) and predicted pH changes have been directly measured in the synaptic cleft by 

attaching a pH sensor (phluorin) to the extracellular surface of presynaptic calcium channels in 

cones (Wang et al., 2014;Beckwith-Cohen et al., 2019).  The mechanism by which pH changes 

occur in the synaptic cleft remain unclear.  Evidence suggests that the ongoing extrusion of protons 

by Na+/H+ exchangers is essential to cleft acidification in darkness and that alkalization of the cleft 

upon the light-evoked hyperpolarization of horizontal cells arises from increased extracellular 

buffering involving bicarbonate efflux through horizontal cell GABA receptors (Warren et al., 

2016a;Grove et al., 2019).  

In addition to negative feedback, horizontal cells can also provide positive feedback to 

photoreceptors (Jackman et al., 2011).  This mechanism involves activation of Ca2+-dependent 

AMPA receptors and operates on a spatially local scale.  By opposing negative feedback, this 

positive feedback mechanism may help to ensure ongoing synaptic activity of cones.  Finally, there 

is also evidence for feedforward synaptic inhibition from horizontal cells to bipolar cells (Yang and 

Wu, 1991;Puller et al., 2014).  
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Amacrine cells are anaxonic but spiking neurons with cell bodies residing primarily in the 

IPL of the retina, along with a few displaced amacrine cells that have cell bodies in the GCL 

(Diamond, 2017). Their dendrites arborize in the IPL to contact bipolar cells, ganglion cells, and 

other amacrine cells. Over 30 types of amacrine cells have been classified by physiological, 

neurochemical and anatomical properties (Diamond, 2017).  Physiological properties include 

whether they are sustained or transient, and whether they show ON, OFF or ON/OFF responses. 

Anatomical properties include their size, shape and termination of dendrites in specific sublaminae 

of the IPL. Most amacrine cells are inhibitory neurons containing GABA and/or glycine, but the 

different subtypes can also contain many other neurotransmitters and neuromodulators (Masland, 

2012).  

 The output cells of the retina, retinal ganglion cells, receive synaptic input from bipolar 

and amacrine cells in the IPL. Ganglion cells express NMDA and AMPA ionotropic glutamate 

receptors and are thus excited by glutamate released from bipolar cells (Stafford et al., 2014). 

Ganglion cells can be classified into almost 30 types (Sanes and Masland, 2015) by their preference 

for certain stimuli (Kim et al., 2008;Vlasits et al., 2019), receptive field size (Wienbar and 

Schwartz, 2018) and characteristics of their post-synaptic currents (Awatramani and Slaughter, 

2000). These include ON and ON-OFF direction-selective ganglion cells involved in controlling 

reflex eye movements (Liu, 1995), bistratified ganglion cells involved in blue/yellow color vision 

(Field et al., 2007), and 4 types of intrinsically photosensitive retinal ganglion cells that contain the 

photopigment melanopsin (Moore et al., 1995;Freedman et al., 1999).  In the primate retina, the 

most common types are magnocellular (M) and parvocellular (P) ganglion cells. M-cells have a 

large receptive field and generally signify motion or luminance changes while P-cells have small 

receptive fields allowing for detailed image formation (Felten et al., 2016). M and P-cells project 

to different layers of the lateral geniculate nucleus (Felten et al., 2016). Ganglion cells transform 

the graded light responses of photoreceptors and bipolar cells into a spike code, encoding 
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information in trains of sodium driven action potentials that can be transmitted up the optic nerve 

to higher visual centers.  Thus, ganglion cells behave more like other neurons in the CNS and PNS.  

 The physiology of the retina is supported by the RPE and Muller glial cells. The RPE is a 

single sheet of epithelium that lies behind the retina with microvilli that surround photoreceptor 

outer segments. Like other epithelia, RPE cells adhere to one another by tight junctions. The sheet 

of RPE cells separates the choroidal vasculature from the neurosensory retina and thus makes up 

part of the blood/retinal barrier in the retina that helps to confer some immune privilege to the retina 

(Naylor et al., 2019).  Due to deep pigmentation by melanin granules, RPE cells also aid in the 

absorption of stray photons to prevent oxidative damage caused by the concentration of light 

focused on the retina (Cai et al., 2000). Additionally, RPE cells phagocytose outer segment discs 

shed by photoreceptors on a daily basis (Naylor et al., 2019). The RPE has a special relationship 

with rods where after photoconversion of cis-retinal to all-trans-retinal, the bleached chromophore 

is transported to the RPE for reconversion to its 11-cis configuration by retinol isomerase and 11-

cis-retinol dehydrogenase (Saari, 2016;Kanow et al., 2017).  

As in other nervous tissue, the retina has accessory glial cells to sustain healthy extracellular 

space and support neuronal processes. The predominant glial cells in the retina are the Muller glia 

with cell bodies in the inner nuclear layer and processes that span the retina radially. The 

terminations of these processes define the outer and inner limiting membranes (Ramirez et al., 

1996).  Functionally, they serve numerous roles in metabolism and homeostasis including: glucose 

provision for neurons, metabolic waste removal, neurotransmitter clearance, and regulation of 

extracellular K+ concentrations throughout the retina (Reichenbach and Bringmann, 2019). They 

also recycle bleached all-trans retinal into photosensitive 11-cis-retinal for cones (Sato and Kefalov, 

2016), serving a similar role as the RPE for rods.   

Astrocytes can be found in the nerve fiber layer and oligodendrocytes sheathe axons with 

myelin as they enter the optic nerve (Reichenbach and Bringmann, 2019). Although the retina 
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exhibits some immune privilege, it also contains microglia that provide some immune response 

capabilities (Li et al., 2015).  

Mechanisms of Synaptic Release 

The central fusion apparatus in Ca2+-dependent exocytosis of synaptic vesicles is a complex 

of proteins known as SNARE proteins. The minimum molecular machinery needed for fusogenicity 

is one vesicle-associated membrane protein (VAMP or synaptobrevin) and two plasma membrane 

proteins (SNAP25 and syntaxin) (Fig. 5) (Kavalali, 2002).  

One of the hallmarks of the SNARE complex participation in synaptic exocytosis is its 

ability to be tightly regulated and coordinated by [Ca2+]i. The three SNARE proteins intertwine 

with one another to form a “SNARE complex” that is intrinsically fusogenic (Risselada and 

Grubmuller, 2012). In order to regulate and coordinate exocytosis with Ca2+ entry, the machinery 

must also include a Ca2+ sensor (Brose et al., 1992;Geppert et al., 1994;Xu et al., 2009;Bello et al., 

2018). Synaptotagmins are the most commonly used exocytotic Ca2+ sensors in neurons, although 

hair cells use otoferlin (Johnson and Chapman, 2010;Michalski et al., 2017). Synaptotagmins 

couple elevated [Ca2+]i to release by binding Ca2+ to their C2A and C2B domains which promotes 

insertion of the n-terminus into phosphatidyl serine-rich areas of target membrane (Fernandez et 

al., 2001;Ubach et al., 2001;Fernandez-Chacon et al., 2002). This insertion brings the vesicle closer 

to the target membrane and promotes the opening of a fusion pore that is stabilized by components 

of the SNARE complex.  Neurons also express complexins that associate with SNARE proteins to 

inhibit and facilitate exocytosis. Complexins 3 and 4 are expressed in photoreceptors and suppress 

tonic release, but promote fast evoked exocytosis (Babai et al., 2016). Photoreceptors express 

synaptobrevin 2 and SNAP-25, common SNARE molecules used at most conventional synapses 

(Rizo and Sudhof, 2002;Ramakrishnan et al., 2012).  However, rather than expressing the more 

common syntaxin 1, photoreceptors contain syntaxin 3 (Curtis et al., 2008;Curtis et al., 2010).  In 
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Chapter 2, we describe the capabilities of this particular molecule to promote synchronous fusion 

of multiple vesicles and speculate on its impact on signaling from rods. 

 

Figure 5 A SNARE complex is formed by the association of vesicular SNARE 

(synaptobrevin 2) with t-SNAREs syntaxin 3 and SNAP25. Vesicle-associated synaptotagmin 

binds Ca2+ molecules causing interactions with target membrane phospholipids which 

physically brings vesicle closer to target membrane, promoting fusion.  

 

Synchronous, Asynchronous, and Spontaneous Release  

Neurotransmitter release is often categorized into three kinetic groups: 1) evoked synchronous, 

2) evoked asynchronous, and 3) spontaneous (Kaeser and Regehr, 2014;Kavalali, 2015) (Fig. 6). 

Evoked release requires a depolarizing stimulus and a subsequent rise in [Ca2+]i to be coupled to 

the release mechanism while spontaneous release occurs at hyperpolarized potentials. It is 

commonly thought that differences in these three modes of release may reflect release at different 

active zones and/or release of functionally distinct pools of vesicles using different combinations 

of SNARE and SNARE-associated molecules (Crawford and Kavalali, 2015b).   
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Figure 6  A. Illustration of synchronous release of many vesicles evoked by a depolarizing 

stimulus, followed by staggered release of single vesicles due to residual intraterminal Ca2+. 

B. Spontaneous release of single vesicles occurs in the absence of a voltage stimulus. Adapted 

from Kaeser and Regehr, Ann Rev Physiol, 2014.  

 

 At many synapses, synchronous, asynchronous, and spontaneous release utilize different Ca2+ 

sensors. There are fourteen synaptotagmin (Syt) isoforms but only eight of these can bind Ca2+ ions 

(Sudhof, 2002). Syts 1, 2, and 9 show relatively low Ca2+ affinity and have been identified as 

sensors for fast synchronous release from neurons (Sudhof, 2014).  The higher affinity sensor, Syt7, 

and another sensor, Doc2, have been proposed as sensors for slower asynchronous release that is 

not tightly coupled to Ca2+ channel openings (Chung et al., 2010;Yao et al., 2011;Bacaj et al., 

2013;Luo and Sudhof, 2017).  Doc2 has also been proposed as a sensor for spontaneous release 

driven by resting Ca2+ levels (Pang et al., 2011;Ramirez et al., 2017). The high affinity of Syt7 for 

phosphatidyl serine and Ca2+ molecules (EC50 = 1-2 µM) (Sugita et al., 2002) allows it to promote 

release with low residual [Ca2+] achieved at more distant release sites by diffusion of Ca2+ from 

VGCCs (Bacaj et al., 2013;Luo et al., 2015;Chanaday and Kavalali, 2018). Although there is 

evidence that Syt7 exhibits slower fusion pore expansion kinetics than Syt1 (Hui et al., 2005), the 
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rate of Ca2+-dependent exocytosis appears to be limited by Ca2+ diffusion, not the speed of sensor 

molecule conformational change (Bendahmane et al., 2018).  

Spontaneous release can be Ca2+-dependent or independent. Both types can occur at 

photoreceptor synapses (Cork et al., 2016). In many neurons, including photoreceptors and cochlear 

hair cells, a fraction of spontaneous release events remain even in the presence of strong Ca2+ 

buffering or Cd2+ blockade of VGCCs (Cork et al., 2016;Williams and Smith, 2018). The 

mechanism for Ca2+ independent release may involve spontaneous interactions between lipid 

molecules and Ca2+ sensor molecules that can arise in the absence of Ca2+ due to thermal 

fluctuations (Rickman and Davletov, 2003;Pang et al.).  

Ca2+-dependent spontaneous release relies on stochastic opening of membrane Ca2+ 

channels or release of Ca2+ from internal stores to stimulate fusion of already docked and primed 

vesicles. L-type Ca2+ channels, such as those found in photoreceptor cell terminals, can 

occasionally open even at hyperpolarized membrane potentials (e.g., −60 to −70 mV) (Kavalali and 

Plummer, 1996;Magee et al., 1996), but the propensity for spontaneous channel openings to drive 

Ca2+-dependent spontaneous release appears to be predominantly a characteristic of inhibitory 

neurons (Goswami et al., 2012;Williams and Smith, 2018). As with evoked release, Ca2+-dependent 

spontaneous release requires a Ca2+ sensor.  There is evidence that the high affinity Ca2+ sensors 

Doc2a and Doc2b can mediate spontaneous release, with Doc2a operating primarily at 

glutamatergic synapses and Doc2b operating at inhibitory synapses (Courtney et al., 2018).  There 

is evidence for segregation between the different vesicle pools that drive evoked and spontaneous 

release (Bal et al., 2013;Crawford and Kavalali, 2015a).  For example, the SNARE protein VAMP7 

appears to be expressed more strongly in vesicles that participate in spontaneous release than 

evoked release (Chanaday and Kavalali, 2018). 

Compared with release from conventional neurons that has an immensely steep dependence 

on [Ca2+]i (Schneggenburger and Neher, 2005), photoreceptors have an unusually shallow Ca2+ 
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dependence. Conventional neurons require the binding of 4-5 Ca2+ molecules to trigger release, 

defining a “cooperativity” that is illustrated as a slope of 4-5 when presynaptic Ca2+ and post-

synaptic responses are related on a log-log plot (Heidelberger et al., 1994;Schneggenburger and 

Neher, 2000;Sun et al., 2007). For photoreceptors, this cooperativity is ≤ 3 (Rieke and Schwartz, 

1996;Thoreson et al., 2004;Duncan et al., 2010). The Ca2+ dependence, cooperativity and 

sensitivity of release is conferred by the population of vesicular Ca2+ sensors at a particular synapse 

(Crawford and Kavalali, 2015a).  

Synaptotagmin 1 (Syt1) is the Ca2+ sensor coupling Ca2+ influx to fast, evoked exocytosis at 

most synapses. While photoreceptors of non-mammalian retina do not possess Syt1 (Heidelberger 

et al., 2003), it is present in terminals of mammalian rods and cones (Berntson and Morgans, 

2003;Fox and Sanes, 2007). Our recent studies showed that genetic deletion of Syt1 from rod and 

cone photoreceptors abolished fast, synchronous glutamate release evoked by a strong depolarizing 

step (Grassmeyer et al., 2019). Syt1 deletion entirely eliminated release from cones and reduced 

release from rods, but spared a slower release component from rods that is not as tightly 

synchronized to Ca2+ channel activation evoked by longer depolarizing steps.  We hypothesize that 

Syt7 may be the sensor that mediates the residual asynchronous release from rods that persists after 

loss of Syt1.  Syt1 deletion also did not diminish spontaneous release of vesicles by rods and cones 

that occurs in the absence of depolarizing stimulation, so we also tested whether the Doc2b isoform 

that is present in rods participates in spontaneous release from photoreceptors.  We describe 

experiments studying the impact of deleting Syt1, Doc2b and Syt7 on release in Chapter 3 of this 

dissertation.  

In photoreceptors, kinetically distinguishable vesicle pools can also be physically defined by 

whether or not they are tethered to the ribbon and would undergo ribbon-mediated release or release 

from ectopic sites. Vesicles tethered to the base of the ribbon that are also in contact with the plasma 

membrane appear to make up a readily releasable pool that can be released almost immediately 
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upon the depolarization-evoked opening of Ca2+ channels (Mennerick and Matthews, 1996;von 

Gersdorff et al., 1996;Datta et al., 2017). With maintained depolarization, a second slower 

component of release can be observed that matches the number of vesicles tethered to the remainder 

of the ribbon (Mennerick and Matthews, 1996).  After depleting these two components, release can 

be maintained at a still slower rate that is thought to reflect replenishment of vesicles from the 

cytoplasmic reserve pool to the ribbon (Babai et al., 2010a).   Conventional neurons have reserve 

pools of vesicles linked together by synapsins and vesicles must be liberated by Ca2+ signaling to 

become releasable (Humeau et al., 2001;Vasileva et al., 2012). This contrasts with photoreceptor 

terminals that have thousands of cytoplasmic vesicles lacking synapsin, allowing them to be 

extremely mobile and facilitating rapid replenishment of releasable pools (Heidelberger, 

2007;Innocenti and Heidelberger, 2008). In amphibian cones, release originates entirely from the 

ribbon (Snellman et al., 2011).  This also appears to be the case in mammalian cones (Mehta et al., 

2013).  Fast release from rods also occurs at ribbons, but rods can also release additional vesicles 

at more distant, non-ribbon sites. Release from these ectopic, non-ribbon sites is promoted by strong 

and sustained Ca2+ signaling from voltage-gated Ca2+ channels as well as by release of Ca2+ from 

intracellular stores in a process called Ca2+-induced Ca2+ release (CICR) (Suryanarayanan and 

Slaughter, 2006;Chen et al., 2014).  In CICR, Ca2+ sequestered in the endoplasmic reticulum (ER) 

is liberated by the activation of ryanodine receptors on the ER membrane. This mechanism is 

present in both mammalian and non-mammalian rods where it contributes to promoting slow 

asynchronous release of vesicles.  

The physical separation between different pools of vesicles in rod and cone terminals allows 

for the spatiotemporal heterogeneity of terminal [Ca2+]i to govern release from distinct pools and 

help to shape the kinetics of release. Ca2+ influx at photoreceptor terminals reaches vesicles located 

within nanometers of channels at the base of the ribbon, contributing to the fast, synchronous 

component of exocytosis. Remaining Ca2+ that diffuses farther from the ribbon can enlist the help 
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of CICR to initiate release from rods of vesicles from non-ribbon sites. The contributions of 

different vesicle populations can often be resolved by the effects of diffusible Ca2+ buffers. BAPTA 

has a similar affinity for free Ca2+ as EGTA, but chelates nearly 40 times as rapidly so inclusion of 

these buffers in intracellular solutions allows for spatial discrimination of Ca2+-dependent events 

(Fig. 7)(Neher, 1998).  

 

Figure 7 Strong buffering by BAPTA chelates free Ca2+ faster than EGTA, constraining 

Ca2+ −dependent events to within nanodomains of channels. In the rod terminal, EGTA 

prevents non-ribbon Ca2+-dependent release events. Graphical model made with an Excel-

based macro from Ward and Kenyon, 2000.  

 

Millimolar levels of intracellular BAPTA limits Ca2+-dependent events to nanodomains 

within 100 nm or less of Ca2+ sources, while EGTA allows further diffusion of Ca2+ molecules into 

microdomains to initiate more distant signaling events (Ward and Kenyon, 2000). In chapters 2 and 

3, we use these buffers to probe the properties of release from rods in salamander and mouse retina.  

 Quantal Theory of Neurotransmission 

Current understanding of chemical synaptic transmission is rooted in observations made 

by Bernard Katz of spontaneous end-plate potentials at the frog neuromuscular junction. Katz and 

colleagues noticed that many of these spontaneous miniature end-plate potentials (mEPPs) were 

roughly the same amplitude and that after lowering Ca2+ to reduce release probability, end plate 

potentials evoked by a depolarizing stimulus were integer multiples of these mEPPs (Fatt and Katz, 
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1952;Del Castillo and Katz, 1954). Later visualization of synaptic vesicles by electron microscopy 

(De Robertis and Bennett, 1955) led to the hypothesis that neurotransmitters are released from 

nerve terminals in discrete “quanta” and that each vesicle contains approximately the same number 

of neurotransmitter molecules, corresponding to a single “quantum” (Del Castillo and Katz, 1954). 

Quantal neurotransmission is commonly assessed by creating frequency distributions of 

post-synaptic potentials or currents (Byrne et al.;Liley, 1956). Typically, the smallest amplitude 

events are defined as “uniquantal events” (release of one vesicle) with the mean amplitude of the 

first peak in the amplitude distribution defined as the “fundamental amplitude.” Succeeding 

amplitudes that are frequently achieved are integer multiples (corresponding to the number of 

vesicles/quanta released) of the “fundamental amplitude.” Many describe the release of multiple 

quanta by expressing quantal content (m) which reflects an average number of quanta released if 

all release events were equal (Byrne, 2014). To understand how quantal content is calculated and 

its significance, we assume that release of a vesicle is probabilistic and can be predicted by Poisson 

statistics. Each synaptic terminal contains docked and primed vesicles (n) with a small chance of 

fusing (p) with the terminal membrane. The mean number of quanta (quantal content = m) released 

after repetitive stimulation will be: 

𝑚 = 𝑛 ∙ 𝑝 

Suppose a terminal contains 5 docked vesicles (n = 5) at any time and the probability of fusion is 

small (p = 0.1). With stimulation, occasionally none will fuse (failure) and more often one vesicle 

will fuse. However, it is possible that up to 5 vesicles may fuse simultaneously. Thus, the quantal 

content or mean number of quanta released (m) will fall somewhere between 0 and 5. On average, 

a stimulus would evoke the release of 0.5 quanta (0.5 = 5*0.1). If there was a way to accurately 

estimate n or p, the binomial distribution could be used to estimate the likely occurrence of release 

of 0, 1, 2, or more quanta. However, because n and p are typically not experimentally accessible, 
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the Poisson model is often used for this estimation and is appropriate given the small probability 

of release at most synapses.  

𝑃/𝑥 =
𝑚𝑥𝑒−𝑚

𝑥!
 

The above equation (Equation 2) describes the fraction of occasions on which the evoked response 

has a quantal content of x. P represents the probability that you would observe a quantal content 

(x), when the mean quantal content over many trials (m) is known. The variability of amplitudes 

predicted by the Poisson distribution can then be compared to those obtained experimentally and 

plotted as an amplitude frequency distribution. The mean and variance of each peak predicted by 

Poisson statistics is a unit multiple of the first peak, made up of uniquantal release events.  

Although most neurons release neurotransmitters from vesicles in discrete packets, there 

are a number of sources for variability in quantal size that can complicate quantal analysis (Pulido 

and Marty, 2017). Non-linear summation of synaptic potentials or currents can obscure quantal 

analysis.  Synaptic potentials that arise in different compartments with different active and passive 

membrane properties will differ in amplitude and kinetics.  If there is poor voltage clamp of 

dendrites, synaptic currents arising in distant dendrites will be smaller and slower than those arising 

close to the soma.    

Variability can also reflect genuine differences in quantal amplitude and kinetics.  These 

can arise from the presence of different inputs from multiple converging neurons. At individual 

synapses, differences in the size of the post-synaptic density and the number of post-synaptic 

receptors can also contribute to heterogeneity in quantal size (Byrne, 2014). The pre-synaptic 

methods used to measure quantal release in experiments described in later chapters avoid post-

synaptic contributions to quantal heterogeneity by measuring glutamate released directly from a 

single presynaptic neuron. 
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 Presynaptic factors can also alter quantal amplitude.  Single vesicles often do not release 

enough glutamate to saturate post-synaptic receptors, so heterogeneity of quantal size can arise 

from variations in vesicle size, neurotransmitter concentration, kinetics of fusion pore closure (e.g., 

kiss-and-run exocytosis vs. full-collapse fusion), and the distance that neurotransmitter molecules 

must travel to reach post-synaptic receptors (Byrne et al.;Ishikawa et al., 2002;Takamori, 2016). At 

central glutamatergic synapses, evidence supports the hypothesis that vesicular glutamate 

concentration is the major source of quantal size variation. Overexpression of vesicular transporters 

and increased cytosolic glutamate concentrations both led to an increase in quantal size whereas 

vesicular size (measured by capacitance jumps) was not correlated with quantal size (Song et al., 

1997;Ishikawa et al., 2002;Wu et al., 2007;Bartoletti and Thoreson, 2011). On the other hand, the 

heterogeneity of excitatory post synaptic current amplitudes arising from inner hair cell glutamate 

release is thought to arise mostly from heterogeneity of vesicle size as measured by capacitance 

jumps (Grabner and Moser, 2018).   

 Spontaneous and asynchronous release of vesicles is generally thought to occur randomly 

(Chapman, 2008).  Ca2+ channel openings also occur randomly (Williams and Smith, 2018).  Thus, 

Poisson statistics can often be used to describe the random timing of vesicle release events. To 

apply Poisson statistics, a number of assumptions must be made: the events must be clearly defined 

and able to be counted only once, the average rate (λ) doesn’t change over time, and each event 

occurs independently of other events. If vesicle release events occur stochastically, then the number 

of release events counted in a given time interval will vary. The average number of release events 

per interval (λ) can be calculated from the observation of many intervals over a long period of time. 

If events occur randomly, plotting the frequency of release events counted during each time interval 

will yield a slightly skewed bell curve. This curve can be defined by Equation 3 the Poisson Model, 

where P is the probability that x number of events will be observed in a defined interval given λ, 
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the average number of events per interval. This is the same probability distribution described for 

assessing quantal content (Equation 2), but applied to the number of events in a given time period. 

𝑃(𝑥) =  
𝜆𝑥 ∙  𝑒−𝜆

𝑥!
 

One derivation of the Poisson distribution is that a frequency distribution of interevent intervals 

can be fit a single exponential decay function (Motulsky, 2010). As we consider further below and 

in chapters 3 and 4 our evidence suggests that the ribbon may help to coordinate release in a way 

that makes release more regular and less dictated by Poisson statistics.   

Multivesicular Release 

For many years, it was accepted that at most CNS synapses, an incoming action potential 

resulted in release of at most only one vesicle. However, more recent evidence has shown that even 

small central synapses containing only a few dozen vesicles can release more than one vesicle per 

action potential, thus regulating the concentration of neurotransmitter in the synaptic cleft (Rudolph 

et al., 2015). Multivesicular release is common in cells of other secretory systems(Blank, 2011;Zhu 

et al., 2013;Messenger et al., 2014;Sanchez et al., 2018;Vakilian et al., 2019), but amongst neurons, 

those with ribbons such as cochlear hair cells and retinal bipolar and photoreceptor cells seem 

particularly adept at coordinating and synchronizing the release of multiple vesicles (Singer et al., 

2004;Graydon et al., 2011;Li et al., 2014).  This greatly increases the bits of information a neuron 

can pass to another, effectively creating an analog code where the cell can continually vary synaptic 

output.  

Multiquantal release increases the capability of a synapse for modulating information 

transmission.  At calyceal synapses, release of multiple quanta desensitize scarce post-synaptic 

AMPA receptors to promote synaptic depression (Trussell et al., 1993). An obvious advantage of 

multivesicular release is that increased cleft neurotransmitter improves the reliability of presynaptic 

release to elicit an action potential in the post-synaptic cell. Such is the case with somatosensory 
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cortical cells, where multiquantal release is promoted by additional active zones, thereby 

strengthening synaptic connections and decreasing response variability (Loebel et al., 2009).  This 

property of multiquantal release is also necessary for phase-locking precision of inner hair cells, 

allowing for reliable spiking of post-synaptic spiral ganglion neurons in synchrony with sound 

waves (Li et al., 2014). Recently in zebrafish retina, James et al. showed that variation in the 

amplitude of multivesicular release events from bipolar cells helps them to encode contrast (James 

et al., 2019). Chapter 2 describes experiments addressing the ability of rod photoreceptors to release 

multiple quanta in response to depolarization and discusses how this might enhance detection of 

light offset or heighten horizontal cell inhibition to surrounding cells to boost contrast sensitivity 

(James et al., 2019).  

Multiquantal release can occur in a number of ways. The first mechanism is synchronous 

release of multiple individual vesicles at adjacent release sites, temporally coordinated by a Ca2+ 

signal (Fig. 8). The second and third mechanisms involve homotypic fusion of synaptic vesicles 

with one another. In sequential compound fusion, a Ca2+ signal causes release of contents from a 

docked vesicle and then the spread of Ca2+ triggers neighboring vesicles to fuse with the first vesicle 

which acts as a conduit to the extracellular space.  In synchronous compound fusion, multiple 

vesicles that have fused with one another prior to Ca2+ entry may be released simultaneously.   

All three of these mechanisms may be used at ribbon synapses.  The multiple release-ready 

vesicles in the readily releasable pool tethered at the base of the ribbon can be released quickly at 

neighboring release sites by the opening of multiple Ca2+ channels beneath the ribbon (Singer et 

al., 2004;Bartoletti et al., 2011;Van Hook and Thoreson, 2015) Simultaneous release of two or 

three close vesicles within a single Ca2+ nanodomains could potentially be synchronized by opening 

of a single nearby Ca2+ channel (Eggermann et al., 2011;Graydon et al., 2011) Experiments 



29 

 

 

described in Chapter 2 show evidence that simultaneous compound fusion may also arise from 

prior homotypic fusion of adjacent vesicles along ribbon.  

 

Figure 8 Illustration of mechanisms for multiquantal release. All of the examples show 

release of 3 quanta. Coordinated multivesicular release involves many individual vesicles 

fusing with the terminal membrane simultaneously, coordinated by Ca2+ signals. In 

sequential fusion, a vesicle fuses with the terminal membrane and as Ca2+ diffuses farther, 

deeper vesicles fuse with the previously exocytosed vesicle. This mechanism may lead to 

slight asynchrony. In compound fusion, there is homotypic fusion of vesicles prior to fusion 

with the terminal membrane and multiple quanta leave a single fusion pore, enhancing 

synchrony. 

 

The structure of the ribbon may promote synchronous and sequential release of multiple 

vesicles by positioning vesicles next to one another along the face of the ribbon. The capability for 

simultaneous multivesicular fusion can also result from the presence of multiple release sites next 

to one another along the ribbon base.  The structure of the ribbon may promote the spread of Ca2+ 

beneath its base, saturating local buffers and coordinating release of multiple nearby vesicles within 

Ca2+ nanodomains in hair cells (Glowatzki and Fuchs, 2002;Graydon et al., 2011) and 

photoreceptors (Mercer and Thoreson, 2011).   The size of the multiquantal EPSCs matches closely 

to the readily releasable pool at the base of the ribbon in hair cells suggesting fusion within Ca2+ 

nanodomains (Graydon et al., 2011). Graydon et al. argue that because multivesicular release was 

not diminished by strong Ca2+ buffering, Ca2+-dependent compound fusion of vesicles up the ribbon 

is unlikely and that Ca2+-dependent events are thus limited to bottom-dwelling vesicles (Graydon 
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et al., 2011).  Others have argued that the heterogenous amplitudes of EPSCs in hair cells are due 

to single vesicles with “flickering fusion pores” that release differing amounts of glutamate 

(Chapochnikov et al., 2014;Grabner and Moser, 2018). 

In retina, coordinated multivesicular release from bipolar cells has been described by 

Singer et al. who discovered that the quanta released from bipolar cells exceeded the number of 

active zones marked by kinesin labeling (Singer et al., 2004). In bipolar cells, not only are evoked 

events comprised of multiple vesicles and lack the temporal jitter associated with multivesicular 

release at other synapses, but spontaneous mEPSCs are also variable in amplitude. Their results 

suggest that the ribbon coordinates highly synchronous release of several individual vesicles due 

to high release probability of multiple vesicles within a single active zone. They argue against 

homotypic fusion, claiming that pre-fused vesicles would contain more fusion proteins, thereby 

enhancing release probability and diverging from the binomial statistics that multivesicular release 

appears to adhere to at the bipolar cell terminal. Singer et al. go on to note that evoked glutamate 

release from bipolar cells does not saturate AMPA receptors at AII amacrine cells which suggest 

that they are able to encode multivesicular release events. Recently, James et al. also verified 

multivesicular release from zebrafish using a fluorescent glutamate reporter (James et al., 2019) 

They go on to show that, functionally, bipolar cells are then able to encode contrast sensitivity with 

an amplitude code, effectively increasing  the amount of information that can be transmitted above 

that which can be obtained using a traditional rate code.  

In contrast, Gary Matthews proposed compound fusion as a mechanism for synchronous 

multiquantal release from bipolar cells (Matthews and Sterling, 2008). Matthews proposed that 

vesicles close to one another on the ribbon undergo homotypic vesicle-vesicle fusion prior to 

exocytosis at the membrane (Parsons and Sterling, 2003;Matthews and Sterling, 2008). Homotypic 

fusion is known to occur in other secretory systems such as mast cells and pancreatic beta cells 

(Blank, 2011;Zhu et al., 2013;Sanchez et al., 2018;Vakilian et al., 2019). Ribbon-tethered vesicles 
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express the minimum fusogenic machinery (Walch-Solimena et al., 1995a) and, consistent with 

homotypic fusion, electron micrographs show large irregularly shaped ribbon-bound vesicles 

following stimulation and rapid fixing (Matthews and Sterling, 2008). Large cisternae have also 

been observed near the ribbon after stimulation of inner hair cells (Lenzi et al., 2002) and rods(Rao-

Mirotznik et al., 1995). This mechanism would provide a means for multiple quanta to be released 

through the same fusion pore, enhancing synchrony. Chapter 2 presents evidence that homotypic 

compound fusion of vesicles on the ribbon may contribute to release in salamander rods. 

 

Glutamate Transporters at the Rod Synapse 

After glutamate is released from photoreceptors and other neurons, it is typically retrieved 

by Excitatory Amino Acid Transporters (EAAT) (Hasegawa et al., 2006). EAATs are found on 

both neurons and glia and are responsible for the rapid removal of glutamate from the synaptic 

cleft. The presynaptic terminals of rods and cones contain an abundance of EAATs.  There are five 

known isoforms (EAATs1-5) that function to transport glutamate but can also act as anion channels 

(Jensen et al., 2015). EAAT1 and EAAT2 are typically expressed in CNS glia while EAATs 3 and 

4 are primarily expressed in neurons of the cerebellum, striatum, and hippocampus (Jensen et al., 

2015;Magi et al., 2019). Splice variants of EAAT2 are also found in the non-mammalian vertebrate 

retina with an isoform present in Muller glia and cone photoreceptor terminals (Schneider et al., 

2014). In mammalian retina, Muller glia express EAAT1 (Magi et al., 2019).  EAAT5 appears to 

be retina specific, expressed in the synaptic terminals of photoreceptors and bipolar cells 

(Schneider et al., 2014;Magi et al., 2019).  

Removal of one glutamate molecule from the synaptic cleft by EAATs into presynaptic 

terminals or glial cells involves the simultaneous inward transport of 3 Na+ ions, 1 H+, with counter-

transport of 1 K+ (Fahlke et al., 2016). Glutamate transport is electrogenic in nature, but the current 

is slow and of negligible scale. However, nearly 3 decades ago, a glutamate transport-
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associated anion current was discovered in salamander photoreceptors (Eliasof and Werblin, 

1993;Picaud et al., 1995). This Cl- current is gated by the glutamate transport process, is highly 

selective for anion, and shows unitary conductances that fall in the ranges of other standalone ion 

channels (Fahlke et al., 2016). Glutamate transporter anion currents (IA(glu)) are activated during 

glutamate transport but are thermodynamically uncoupled from the transport process (Machtens et 

al., 2015). The Cl- currents associated with transport are thought to be more functionally important 

than glutamate uptake for many EAATs, by modulating excitability and other cellular processes. 

In fact, EAAT4 and EAAT5 are now often called “glutamate-gated ion channels.” This contrasts 

with EAATs1-3, which have evolved solely for glutamate handling.   

IA(glu) is linearly related to glutamate in the cleft, so it can be used to measure glutamate 

release (Otis and Jahr, 1998). There are several properties of the retinal isoform EAAT 5 that should 

be considered when measuring IA(glu) in photoreceptors. The first is the large single channel 

conductance of EAAT5 that is estimated to be 0.7- 13.3 pS compared to sub-fS levels for EAAT1 

(Picaud et al., 1995;Palmer et al., 2003;Magi et al., 2019). The activation of Ca2+-activated Cl- 

currents with depolarizing steps longer than a few milliseconds should likewise be given attention 

(Palmer et al., 2003).   

Further consideration should be given to the ionic composition of intracellular solutions 

for electrophysiological measurements. Including Cl– as the principal ion produces a measurable 

current; however, the current is enhanced when Cl– is replaced with the chaotropic anions NO3
– or 

SCN–, with the latter being the most permeant (Wadiche et al., 1995;Palmer et al., 2003). Current 

density is almost doubled when including NO3
– over Cl– with no effects on channel 

kinetics.  EAAT5 IA(glu) is sensitive to the common transporter blocker threo-β-

benzyloxyaspartate (TBOA) (Palmer et al., 2003).  An EAAT2-specific 

blocker, dihydrokainic acid (DHK), does not diminish retinal EAAT5 currents (Palmer et al., 

2003).  EAATs need sufficient transport substrate in order to function. For some EAATs, including 
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the transport substrate K+ in the intracellular solution is necessary to measure anion currents, 

however substituting K+ for Cs+ does not diminish anion currents in EAAT5-expressing cells 

(Palmer et al., 2003). On the other hand, increasing extracellular pH buffering reduces IA(glu), 

suggesting that EAAT5 is more sensitive to the availability of H+ in the synaptic cleft (Palmer et 

al., 2003). Because transport depends primarily on the immense transmembrane Na+ gradient, Na+ 

should be included in the extracellular solution at physiological concentrations (Grewer et al., 

2008).   

The magnitude of anion currents associated with EAAT transport has led to the hypothesis 

that a current leak and anion flux contribute to photoreceptor signaling. For example, EAAT5 

contributes enough to the depolarizing light response of cone ON-BCs in mice to be detected as a 

component of ERG b-waves (Tse et al., 2014).  The following chapters exploit the glutamate 

“sensing” ability of the EAAT5 transporter to examine release from rods.   

 

Reliable Single Photon Responses 

Humans can perceive light at very low intensities, and signals gleaned from 

photoisomerization of a single rhodopsin molecule (Rh*) are able to reach an ON ganglion cell 

(Ala-Laurila and Rieke, 2014;Field and Sampath, 2017;Takeshita et al., 2017). This impressive 

capability was first evaluated in dark-adapted human subjects by Hecht et al. in 1942 when they 

determined that the threshold energy required for reliable detection of a flash was roughly 

equivalent to 50-150 photons (Hecht et al., 1942).  Because these few dozen photons would be 

scattered across the entire retina, this meant that individual rods must be capable of responding to 

single photons. For perspective, approximately 0.1 photons/µm2/s strike the retina in starlight, 

considerably less than 1 photon per rod (Sterling et al., 1987). Several later psychophysical 

experiments presenting humans with a ~500 nm (peak wavelength sensitivity of rhodopsin) 

stimulus replicated the photon requirement of ~50-150 for generating reliable signals (Sharpe et 
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al., 1993;Koenig and Hofer, 2011;Tinsley et al., 2016).  The ability of rods to respond to absorption 

of a single photon was shown directly by recordings from individual rod (Baylor et al., 1979).  Rods 

are thus capable of  achieving the absolute limit of visual sensitivity, since a single photon is the 

irreducible quantity of light energy (Pugh, 2018)! Naarendorp et al. completed a behavioral study 

in mouse demonstrating similar absolute sensitivity (Naarendorp et. al. 2010). This finding provides 

a necessary basis for using mouse to model mechanisms of single photon detection.   

The requirements for reliable single photon detection are 1) high gain of phototransduction, 

2) enhanced signal-to-noise ratio at the rod-to-rod bipolar cell (RBC) synapse, and 3) optimal signal 

processing in the post-rod retinal circuitry.  While the remarkable sensitivity of rods to respond to 

individual photons is well established (Lamb and Pugh, 1992;Pugh and Lamb, 1993;Leskov et al., 

2000), the mechanisms that allow reliable transmission of small single photon responses through 

the retina remain unclear. A substantial portion of this section is devoted to mechanisms that 

increase reliability at the rod-RBC synapse and the experiments described in Chapters 3 and 4 

address pre-synaptic processes that contribute to this capability.  

The ability of rods to produce a detectable voltage change in response to absorption of a 

single photon originates with high efficiency for the absorption of single photons and amplification 

within the enzymatic phototransduction cascade (Lamb and Pugh, 1992;Pugh, 2018)  Photons 

within the visible light spectrum very reliably (50-60%) activate rhodopsin in mouse and human 

due to its high concentration (3 mM) in outer segment disks (Rieke and Baylor, 1998;Nickell et al., 

2007;Reingruber et al., 2015).  Efficient absorption is also promoted by arrangement of rod outer 

segments with hundreds of disks, each packed with rhodopsin, stacked on top of one another.  Thus 

a photon that enters a rod has many opportunities to be captured by a rhodopsin molecule.  When 

a photon is captured, rhodopsin is able to activate nearly 300 transducin molecules per 

second(Krispel et al., 2006) (Krispel et al., 2006). Transducin activates PDE in a 1:1 ratio but the 

prodigious enzymatic efficiency of PDE lends itself to further signal amplification (Krispel et al., 



35 

 

 

2006;Reingruber et al., 2015). The gain provided by activation of many Gt molecules and a high 

rate of catalysis by PDE makes rods exquisitely sensitive to single photons. The membrane voltage 

change resulting from single photon absorption (photovoltage) ranges from 1 mV in macaque 

(Schneeweis and Schnapf, 1995;Hornstein et al., 2005) to 3.44  ± 1.37 mV (mean ± SD) in mouse 

retina (Cangiano et al., 2012). Even this larger value for mouse rods presents a substantial challenge 

for generating a sufficiently large reduction in glutamate release to be detected post-synaptically 

by a RBC, given the stochastic processes that underlie synaptic transmission discussed earlier. 

A membrane voltage change of 3.4 mV is not far outside the range of physiological voltage 

noise in mouse rods (S.D. = 0.4-0.8 mV) (Jin et al., 2015). This physiological voltage noise in rods 

contributes to variation in release rate and quantal noise. If release at the membrane potential in 

darkness is stochastic, the rate of tonic release must be so frequent that the interval between release 

events is not mistaken for a pause in release caused by photon absorption. Rao et al. calculated a 

release rate of  > 40 quanta/s is needed to ensure reliability for detecting only true photon absorption 

events and rejecting false positives (Rao et al., 1994).   The ability to maintain a high tonic release 

rate is served by the rod having a synaptic ribbon. It is not only necessary to have a sufficiently 

high rate of release to avoid false positives, but there must also be a sufficiently large reduction in 

release produced by a single photon voltage change to accurately and reproducibly signal the 

change in release.  Fortunately, release rate in rods is proportional to ICa and the dark potential lies 

at an optimal position in the ICa Boltzmann function such that a 3.4 mV hyperpolarization caused 

by the absorption of one photon should reduce glutamate release rate by ~20% (Schein and Ahmad, 

2005). If the release rate exhibits Poisson statistics, then the range of instantaneous rates observed 

after absorption of a single photon will greatly overlap with instantaneous release rates in total 

darkness. Thus, the change in release caused by absorption of a single photon will be barely 

detectable.  To achieve less overlap between the release rate in darkness and that produced by a 

small hyperpolarization, the variance of release rates can be decreased, thus increasing the 
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likelihood of accurate discrimination by the bipolar cell.  To reduce variance in release rates, Schein 

and Ahmad proposed the “clockwork hypothesis” which postulated that release at rod ribbon 

synapses in darkness may not be purely stochastic, showing Poisson statistics, but instead may be 

more regular (Schein and Ahmad, 2005).  Reducing variability in the rate of release has two 

benefits.  One, making release more regular smooths out glutamate changes in the synaptic cleft, 

thereby reducing RBC membrane voltage changes and improving the signal-to-noise for detecting 

authentic changes.   Making release more regular tightens deviations in number of quanta counted 

by the RBC dendrite in a sampling interval, thus reducing the number of false positives. This 

concept is illustrated in Fig. 9.    

 

Figure 9 Illustration of stochastic and clockwork processes. A. Shows events distributed 

randomly in time. Counts of events in each sampling interval range from 2 -6, average (λ) = 

4. Their distribution can be fit with the Poisson model when λ = 4, R2 = 0.91 (right). B. When 

events occur more regularly in time, the variance of the count in each sampling interval is 

reduced. This example has the same mean number of events λ =4 in each interval but is not 

approximated by the Poisson model, R2 = 0.39 (right). 

 

Rods transmit single photon responses using a specialized scotopic circuit (Fig. 10) (Kolb 

and Famiglietti, 1974;Dacheux and Raviola, 1986). Rods and cones utilize different circuits in the 

retina and so the mammalian retina is sometimes considered to be a “duplex” retina. Cones contact 

ON and OFF cone-driven bipolar cells, which then transmit signals to ON and OFF ganglion cells. 

However, rods signal ganglion cells using a more indirect circuit. First, almost all of the contacts 
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made by rods are with a single ON-type RBC.  Direct contacts between rods and OFF bipolar cells 

are quite sparse (Soucy et al., 1998;Li et al., 2004;Tsukamoto and Omi, 2014).  Furthermore, rod 

bipolar cells do not synapse directly onto ganglion cells but rather contact AII amacrine cells in the 

inner plexiform layer. AII amacrine cells then communicate the response via gap junctions to ON 

cone bipolar cells and glycinergic synapses onto OFF cone bipolar cells. Cone bipolar cells then 

send glutamatergic signals to ganglion cells. This circuit operates primarily under scotopic 

conditions in mouse. As luminance increases, rods can also communicate with the cone circuit by 

sending signals through electrical synapses and direct contacts with OFF bipolar cells.(Grimes et 

al., 2015;Tsukamoto and Omi, 2015;Grimes et al., 2018)   

 

Figure 10 Illustration of the scotopic circuit in the mouse. Rods transmit glutamatergic 

signals to rod bipolar cells (ON-type) which signal AII amacrine cells. AII amacrine cells 

signal ON-cone bipolar via gap junctions that transmit glutamatergic signals to ON-ganglion 

cells. AII amacrine cells also make glycinergic, sign-inverting synapses onto OFF-cone 

bipolar cells that transmit their signals to OFF-ganglion cells. Image from Grimes et al. 2018 

under Creative Commons License type CC-BY. 

 

Non-Linear Thresholding 

Reliable signal transfer of single photon responses of rods is served by postsynaptic 

filtering and gain modification in the rod bipolar cell dendrite. Twenty-to-thirty rods converge onto 

each rod bipolar cell and each rod contacts two rod bipolar cell dendrites (Gray and Pease, 
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1971;Rao-Mirotznik et al., 1995;Berntson et al., 2004b).  The invaginating synapse allows for 

physical separation of dendrites, so it is assumed that only one rod communicates with each 

dendrite.  If receptor potentials are summed linearly, then the noise from all of these rods also gets 

summed. This could obscure the small hyperpolarizing signal (1-3 mV) from a single photon lasting 

~300 ms (Baylor et al., 1984;Taylor and Smith, 2004). Indeed, when measuring photovoltage 

triggered by a train of fixed-strength flashes, the amplitudes of light responses fall within the 

amplitudes of basal cellular noise; thus, true single photon responses cannot effectively be 

separated from failures.(Field and Rieke, 2002) One way to avoid transmitting noisy voltage 

changes that are unrelated to photon absorption is to threshold the signal at the bipolar cell dendrite, 

transmitting only large responses to the soma and excluding small responses that are more likely to 

be due to noise (Baylor et al., 1984;Berntson et al., 2004b;Sampath and Rieke, 2004).  

The presence of such a thresholding non-linearity was shown by Field and Rieke who 

compared photocurrents of rods, which scale linearly with flash strength, to rod bipolar cells which 

responded in a supralinear fashion(Field and Rieke, 2002) (Field and Rieke, 2002). Furthermore, 

when presenting the bipolar cell with a slow train of fixed-intensity flashes, the fluctuations in 

responses were larger than would be expected if they varied linearly with rod responses (Field and 

Rieke, 2002). This non-linear increase in rod bipolar cell responses proportional to light intensity 

provides a means for thresholding the signal. The non-linearity appears to be intrinsic to the rod-

RBC synapse as pharmacologically inhibiting amacrine cell input and voltage-activated 

conductances did not eliminate the relationship (Field and Rieke, 2002). Their data showed that rod 

bipolar cells ignore smaller single photon signals and only respond to larger signals, discarding 

25% of the true single photon responses of presynaptic rods.  Similar findings have been reported 

by other groups although the percentage of discarded responses varies from 50 to 90% (Berntson 

et al., 2004b;Schein and Ahmad, 2006;Trexler et al., 2011).  By discounting small fluctuations in 
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membrane voltage, this non-linearity allows for transfer of multiphoton or large single photon 

responses while avoiding false positives that might arise from noise.      

 There are two hypotheses that consider how non-linearity and thresholding increase the 

reliability of detecting true responses. The first hypothesis is that signals are thresholded in each 

dendrite, filtering out false responses and noise before they are summed linearly at the soma.  To 

model this, rod responses were passed through a non-linearity (cumulative Gaussian) before the 

resulting signals were summed. The model for threshold-like nonlinearity at the dendrite only 

worked if the midpoint of the cumulative gaussian was large, meaning that the bipolar cell rejected 

a substantial amount of true single photon responses.  

The second hypothesis, which the data in Chapter 3 favor, is that the nonlinearity arises 

after pooling signals at the soma. This hypothesis is only feasible if the non-linearity has a 

particularly small standard deviation that allows for the discretization of signals that mirrors the 

measured responses.  

What pre- and post-synaptic mechanisms might contribute to supralinear signal transfer at 

the rod-RBC synapse?  Pre-synaptically, amphibian rods vary glutamate release rate non-linearly 

with membrane voltage (Schmitz and Witkovsky, 1997;Witkovsky et al., 1997). We also find that 

while rod release rate is linearly related to ICa (Thoreson et al., 2004), the current-voltage 

relationship reflects a nonlinearity thresholded by the VGCC activation potential. This relationship 

leads to large changes in release rate with relatively small voltage changes within a range of 

voltages and is further discussed in Chapter 3.   Alternatively, post-synaptic non-linearity may arise 

from the saturation of one of several components of the mGluR6 signaling cascade (van Rossum 

and Smith, 1998). Saturation fixes TRPM1 cation channels closed in darkness and unperturbed by 

small fluctuations in rod release while reductions in release that pass a particular threshold cause 

supralinear changes in voltage (Sampath and Rieke, 2004).   The remarkable sensitivity and 

efficiency of phototransduction of single photon absorption would be wasted if not for reliable 
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signal transfer from the rod to RBC, thus making these mechanisms absolutely vital to visual 

sensitivity. The pre-synaptic mechanisms of release that exist and may contribute to minute signal 

fidelity in darkness are explored in Chapter 3.  
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CHAPTER 2:  Simultaneous Release of Multiple Vesicles from Rod Photoreceptors 

Involves Ribbons and Syntaxin 3B 1  

Abstract 

First proposed as a specialized mode of release at sensory neurons possessing ribbon synapses, 

multivesicular release has since been described throughout the CNS.  Many aspects of 

multivesicular release remain poorly understood. We explored mechanisms underlying 

simultaneous multivesicular release at ribbon synapses in salamander retinal rod photoreceptors. 

We assessed spontaneous release presynaptically by recording glutamate transporter anion currents 

(IA(glu)) in rods. Spontaneous IA(glu) events were correlated in amplitude and kinetics with 

simultaneously measured miniature excitatory post-synaptic currents (mEPSCs) in horizontal cells. 

Both measures indicated that a significant fraction of events is multiquantal, with analysis of IA(glu) 

revealing that multivesicular release constitutes ~30% of spontaneous release events.  IA(glu) charge 

transfer increased linearly with event amplitude showing that larger events involve greater 

glutamate release. The kinetics of large and small IA(glu) events were identical as were rise times of 

large and small mEPSCs, indicating that release of multiple vesicles during large events is highly 

synchronized.   Effects of exogenous Ca2+ buffers suggested that multiquantal, but not uniquantal, 

release occurs preferentially near Ca2+ channels clustered beneath synaptic ribbons.  Photo-

inactivation of ribbons reduced the frequency of spontaneous multiquantal events without affecting 

uniquantal release frequency, showing that spontaneous multiquantal release requires functional 

ribbons.  While both occur at ribbon-style active zones, the absence of cross-depletion indicates 

that evoked and spontaneous multiquantal release from ribbons involve different vesicle pools.  

Introducing an inhibitory peptide into rods to interfere with the SNARE protein, syntaxin 3B, 

selectively reduced multiquantal event frequency.  These results support the hypothesis that 

 
1The content of this Chapter has been published previously:  

Hays CL, Grassmeyer JJ, Wen X, Janz R, Heidelberger R, Thoreson (2020). Simultaneous release of 

multiple vesicles from rods involves synaptic ribbons and syntaxin 3B. Biophys J 118(4): 967-979. 

https://www.sciencedirect.com/science/article/pii/S0006349519308537 

https://www.sciencedirect.com/science/article/pii/S0006349519308537
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simultaneous multiquantal release from rods arises from homotypic fusion among neighboring 

vesicles on ribbons and involves syntaxin 3B.   

Statement of Significance 

It is now recognized that many neurons and non-neuronal secretory cells can release 

multiple vesicles in response to stimulation.  Among other properties, multivesicular release can 

improve the ability to encode timing of events at neuronal synapses.  Synaptic ribbons are protein 

structures in sensory neurons that tether vesicles near release sites and support multivesicular 

release.  We studied mechanisms underlying spontaneous multiquantal release at large ribbon 

synapses of rod photoreceptor cells in salamander retina. Recording release events presynaptically 

in rods using glutamate transporter-associated anion currents, we found that multiquantal release 

involves homotypic fusion among vesicles on synaptic ribbons and believe it shows a novel role 

for the SNARE protein, syntaxin 3B in promoting multiquantal release separate from its role in 

exocytosis. 

Introduction 

Early studies suggested that an action potential triggered fusion of only a single vesicle at 

most synapses, but there is increasing recognition that many synapses can release multiple vesicles 

(Rudolph et al., 2015). Synaptic ribbons in sensory neurons—protein structures that tether 

numerous vesicles near release sites—are specialized to support multivesicular release (Li et al., 

2009;Rudolph et al., 2015).  Ribbon-bearing hair cells, retinal bipolar cells and photoreceptor cells 

respond to sensory stimulation with graded changes in membrane potential that regulate the rate of 

ongoing vesicle release.  While also maintaining release almost indefinitely, ribbons synapses must 

be able to adjust release rapidly in response to changes in membrane potential.  Release of a vesicle 

at synaptic ribbons in a number of different cell types, including rods, requires opening of only a 

few nearby Ca2+ channels (Brandt et al., 2005;Jarsky et al., 2010;Bartoletti et al., 2011;Van Hook 
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and Thoreson, 2015). Stimulating the opening of multiple Ca2+ channels with a rapid, strong 

depolarizing stimulus can thus trigger rapid fusion of multiple vesicles from the readily releasable 

pool docked at the base of a ribbon (Mennerick and Matthews, 1996;Brandt et al., 2005;Cadetti et 

al., 2005).  However, even when Ca2+ channel openings are few and far between, one can observe 

spontaneous post-synaptic events that vary widely in amplitude. While the amplitude of vesicle 

release events may also be shaped by the kinetics of vesicle pore opening (Chapochnikov et al., 

2014;Wen et al., 2017), this suggests that even individual spontaneous events may involve release 

of multiple vesicles (Singer et al., 2004;Cadetti et al., 2005;Grant et al., 2010;Cork et al., 2016).  

Multivesicular release may help ribbon synapses encode sensory information by regulating event 

amplitude as well as frequency (James et al., 2019).  

A number of mechanisms have been proposed to account for multivesicular release. One 

is coincident fusion of individual vesicles located at different release sites along the base of the 

ribbon (Singer et al., 2004).  One way this might occur is if Ca2+ ions entering Ca2+ channels beneath 

the ribbon spread far enough to trigger the fusion of multiple ribbon-associated vesicles (Graydon 

et al., 2011;Mehta et al., 2013). It has also been suggested that amplification of Ca2+ influx by Ca2+-

induced Ca2+ release from intracellular stores may promote multivesicular fusion in rods 

(Suryanarayanan and Slaughter, 2006).   Another potential mechanism for multivesicular release is 

homotypic fusion, where neighboring vesicles fuse with one another either before or after fusion 

with the plasma membrane (Parsons and Sterling, 2003;Blank, 2011;Messenger et al., 2014;Datta 

et al., 2017;Vakilian et al., 2019).  Homotypic fusion of exocytotic vesicles is prominent in parotid 

and pancreatic acinar cells (Messenger et al., 2014), immune cells (Alvarez de Toledo and 

Fernandez, 1990;Lollike et al., 2002;Blank, 2011;Eckly et al., 2016;Sanchez et al., 2018), and 

pancreatic beta cells (Zhu et al., 2013;Messenger et al., 2014;Vakilian et al., 2019). Vesicle-vesicle 

fusion has also been shown to increase quantal size at conventional neuronal synapses (He et al., 
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2009) and may occur at ribbon synapses in the retina(Matthews and Sterling, 2008;Vaithianathan 

et al., 2016;Datta et al., 2017).  

Homotypic fusion among secretory vesicles depends on several SNARE and SNARE-

associated proteins including munc18-2 (Lam et al., 2013;Gutierrez et al., 2018), munc13-4 (Woo 

et al., 2017;Rodarte et al., 2018), SNAP23 (Klein et al., 2017), and VAMP8 (Behrendorff et al., 

2011;Thorn and Gaisano, 2012).   In many secretory cells, vesicle-vesicle fusion involves syntaxin 

3 (Hansen et al., 1999;Zhu et al., 2013;Sanchez et al., 2018). Similarly, retinal ribbon synapses of 

bipolar and photoreceptor cells use syntaxin 3B rather than the syntaxin 1 isoform used by most 

neurons (Curtis et al., 2008;Curtis et al., 2010).  While syntaxin is principally expressed on target 

membranes, it can also be found on vesicular membranes (Walch-Solimena et al., 

1995b;Borisovska, 2018;Yin et al., 2018), including those of ribbon synapses (Liu et al., 2014).  

The close proximity of vesicles tethered next to one another on a synaptic ribbon (Thoreson et al., 

2004) could potentially facilitate vesicle-vesicle fusion. It has therefore been hypothesized that 

syntaxin 3B might promote formation of intervesicular SNARE complexes and homotypic fusion 

among neighboring vesicles on a ribbon (Datta et al., 2017).   

 We studied the frequency and mechanisms of simultaneous multiquantal release at ribbon 

synapses in rod photoreceptor cells of salamander retina. We measured release presynaptically by 

recording glutamate transporter anion currents (IA(glu)) from rods. Excitatory amino acid 

transporters (EAATs) can be found in neurons and glial cells where they retrieve glutamate for 

terminating synaptic transmission and re-use (Arriza et al., 1997;Eliasof et al., 1998a;Eliasof et al., 

1998b). EAATs are electrogenic antiporters, exchanging glutamate, 3 Na+, and 1 H+ for 1 K+ 

molecule, however most of the EAAT current measured by whole cell voltage clamp is due to an 

uncoupled anion conductance (Eliasof et al., 1998b).  Although not directly coupled to glutamate 

transport, the EAAT anion current is linearly proportional to the number of glutamate ions released 

(Otis and Jahr, 1998;Koch et al., 2007).  The principal glutamate transporters in salamander rods 
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are sEAAT2 and 5A; the latter exhibits a particularly large anion conductance (Eliasof et al., 

1998a;Eliasof et al., 1998b).  Measuring release presynaptically eliminates synapse-to-synapse 

variation in the number of glutamate receptors or differences in electrotonic distance among 

synapses that can contribute to quantal variability in post-synaptic measurement (Pulido and Marty, 

2017).   

Our results show that ~30% of spontaneous release events in rods involve the simultaneous 

fusion of multiple vesicles.  We found that simultaneous multiquantal fusion involves vesicles 

situated close to Ca2+ channels, is impaired by damage to ribbons, and is selectively reduced by 

interfering with syntaxin 3B.  These results support the hypothesis that simultaneous multiquantal 

release at rod photoreceptor synapses is largely due to homotypic fusion of vesicles promoted by 

syntaxin 3B at synaptic ribbons. 

Methods 

Retinal Slices 

Vertical slices were prepared from the retinae of aquatic tiger salamanders (Ambystoma 

tigrinum) as previously described (Van Hook and Thoreson, 2013).  Animal husbandry and 

experimental procedures were approved by the University of Nebraska Medical Center’s 

Institutional Animal Care and Use Committee. Salamanders of both sexes were housed in a water 

tank (4 deg C) on a 12:12 hour light-dark cycle. Experiments were typically conducted 1-3 h after 

the beginning of subjective night. Following brief submersion in 0.25 g/L MS222, salamanders 

were sacrificed by decapitation. After enucleating the eye, the cornea and iris were removed and 

the resultant eyecup cut into two or three pieces.  One piece was then placed vitreal side down onto 

a nitrocellulose membrane. Under cold amphibian Ringer’s solution, the retina was carefully 

isolated by removing the sclera, choroid and pigment epithelium. A razor blade tissue slicer 

(Stoelting Co., Wood Dale, IL) was used to cut the retina into 125 µm slices. The thin slices of 
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filter paper with attached retina were rotated 90o and anchored in the recording chamber by two 

strips of vacuum grease. Dissections were performed under cold amphibian Ringer’s solution and 

room light. Retinal slices were visualized on an upright, fixed-stage microscope (Nikon E600FN, 

60x 1.0 NA LWD objective) and continuously superfused (1 ml/min) with an oxygenated 

amphibian saline solution containing (in mM): 116 NaCl, 2.5 KCl, 1.8 CaCl2, 0.5 MgCl2, 5 

Glucose, 10 HEPES (pH 7.8; room temperature). 

Electrophysiology 

Whole cell recordings were obtained from rods and horizontal cells in retinal slices. Patch-

pipettes were crafted on a Narishige (Amityville, NY) PP-830 vertical puller from borosilicate glass 

(1.2 mm outer diameter, 0.9 mm inner diameter with internal filament; World Precision 

Instruments, Sarasota, FL). Each had tip diameters of 1-2 µm and resistances of 5-15 MΩ. 

Recordings of IA(glu) from rod photoreceptors were obtained with a pipette solution using SCN- as 

the principal anion to enhance IA(glu) (in mM): 90 KSCN, 10 TEA-Cl, 3.5 NaCl, 1 MgCl2, 10 

HEPES, 10 ATP-Mg, 0.5 GTP-Na. Except for Ca2+ chelator experiments where we used 0.05 mM 

EGTA or 10 mM BAPTA, the solution also contained 5 mM EGTA. We did not correct for the 

liquid junction potential (LJP) calculated with PClamp (Axon Instruments) to be −4.5 mV. 

Recordings from horizontal cells used a pipette solution containing (in mM): 90 CsGluconate, 10 

TEA-Cl, 3.5 NaCl, 1 MgCl2, 10 HEPES, 5 EGTA, 10 ATP-Mg, 0.5 GTP-Na (18). The LJP for this 

solution was −12.2 mV.  Rod recordings showed an average capacitance of 34.5 ± 3.0 pF, 

membrane resistance of 221.6 ± 24.8 MΩ, and series resistance of 26.5 ± 3.7 MΩ (n =16). 

For fluorophore-assisted laser inactivation (FALI) experiments described below, we 

included 80 µM fluorescein isothiocyanate (FITC)-conjugated RIBEYE-binding peptide or a 

scrambled version of the same peptide in the KSCN pipette solution along with 3 mM reduced 

glutathione and 3 mM trolox as antioxidants (Zenisek et al., 2004). RIBEYE (or CtBP1) is a 

transcript variant of CtBP2 containing a ribbon-specific A domain and a B domain shared with 
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CtBP2 (Schmitz et al., 2000). The FITC-conjugated peptide (FITC-Ahx-EQTVPLDLSKRDR) 

binds to a PXDLS sequence in CtBP2 (Zenisek et al., 2004).  As a control, we used a scrambled 

version of the same peptide (FITC-Ahx-RTSPDKLVLDERQ).   

To test a role for syntaxin 3B, we introduced 250 µM syntaxin 3B inhibitory peptide 

(stx3pep; RHKDIMRLESSIKELHDMFVDVA) or a scrambled version of the same peptide 

(RIALKDDVIHMRESVDHKSFMEL) into the pipette solution along with 1 mM reduced 

glutathione and 1 mM trolox (Curtis et al., 2010).      

Quantal Analysis 

 Spontaneous rod IA(glu) events were recorded while holding rods at −70 mV.  Trials were 

typically 180 s in duration.  Individual IA(glu) events in rods and miniature excitatory post-synaptic 

currents (mEPSCs) in horizontal cells were identified using the “event detection” function in 

Clampfit 10.4 with a template created from an average of 5-15 events from the same cell. During 

simultaneous recordings, rod IA(glu) and horizontal cell mEPSCs were considered to be coordinated 

if onset of an IA(glu) event occurred within 10 ms of the beginning of an mEPSC. Amplitude 

histograms were constructed and fit with a multiple Gaussian function. Events within one standard 

deviation of the mean of the first peak were considered “uniquantal” and remaining larger events 

were considered “multiquantal.”  Quantal content was calculated from weighted averages of the 

area under the curves from a multiple Gaussian fit (GraphPad Prism 4).  

Fluorophore-Assisted Laser Inactivation 

For FALI experiments, we introduced 80 µM FITC-conjugated RIBEYE-binding peptide 

or a scrambled version of the same peptide through the patch pipette into a rod.  Immediately after 

rupture, we applied a 2-ms voltage step from −70 to −10 mV to evoke ribbon-mediated release, 

then recorded spontaneous events for 90 s while holding the rod at −70 mV. We followed this with 

a second 2-ms step and another 90-s measurement of spontaneous events.  A 488 nm laser from the 

spinning disk confocal was then turned on for 60 s to bleach the FITC-conjugated peptide. After 
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bleaching, we applied a 2-ms step followed by 90 s of recording spontaneous events, and then a 

final 2-ms step. We analyzed trials with the RIBEYE-binding peptide in which discrete bright 

puncta were observed showing that the FITC-conjugated peptide had successfully bound to ribbons.  

Results 

Spontaneous Release Events in Rods 

We studied vesicle fusion events in rods by recording presynaptic anion currents activated 

during glutamate uptake by EAATs in rod terminals.  IA(glu) was enhanced by using the permeant 

SCN- as the principal anion in the rod pipette solution.  Although Cl- ions are not directly involved 

in the process of glutamate transport, the amplitude of IA(glu) is linearly related to the number of 

glutamate molecules that are retrieved (Otis and Jahr, 1998;Koch et al., 2007). As illustrated in Fig. 

11A, we observed occasional large spontaneous IA(glu) events interspersed among more numerous 

smaller events in recordings from rods held under voltage-clamp control at −70 mV. Spontaneous 

IA(glu) events could be blocked with a glutamate transport inhibitor, TBOA (Cork et al., 2016).  

Because light hyperpolarizes rods, voltage-clamping them at −70 mV is functionally equivalent to 

strong light adaptation.  Baseline noise during recordings of IA(glu) from rods voltage-clamped at 

−70 mV could be further reduced by applying a bright background light to hyperpolarize 

neighboring rods and cones (data not shown).  This suggests that glutamate released from 

photoreceptors in darkness can reach glutamate transporters of neighboring rods. To minimize the 

possible impact of release from neighbors, recordings were performed in strongly light-adapted 

preparations. The amplitude distributions of mEPSCs in horizontal cells did not differ significantly 

whether measured under scotopic or photopic conditions (Cadetti et al., 2005), suggesting that the 

relative frequency of multiquantal events is not significantly altered by light adaptation.  Under 

these experimental conditions, the amplitude of spontaneous IA(glu) events in rods voltage-clamped 

at −70 mV averaged 15.5 ± 1.61pA (n = 16 rods, n = 49 to 1134 events/cell) with an average rise 

time of 13.8 ± 1.37 ms, half width of 9.65 ± 1.63 ms and decay time of 23.2 ± 2.18 ms.  
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Fig. 11B shows a representative amplitude histogram of spontaneous IA(glu) events.  The 

inset shows a small section of the record from this cell illustrating both small and large events.  

Similar to amplitude histograms of mEPSCs (Cadetti et al., 2005;Pang et al., 2008b;Feigenspan 

and Babai, 2015), amplitude histograms of IA(glu) were skewed to the right (Fig. 11B).  Similar to 

monophasic excitatory post-synaptic currents (EPSCs) at other synapses (Rossi et al., 

1994;Chapochnikov et al., 2014), event amplitude and charge transfer of IA(glu) events increased 

linearly with one another indicating that larger amplitude events involve greater glutamate release 

(Fig. 11C).  

Binomial statistics predict that the distribution of event amplitudes should be fit by a sum 

of Gaussian functions with peaks that are integer multiples of one another (Fig. 11B). The 

individual quantal amplitude obtained by fitting amplitude histograms with multiple Gaussians 

averaged 10.7 ± 2.02 pA compared to an overall mean amplitude of 15.5 ± 1.61 pA in the same 

cells. A multiple Gaussian function fit the amplitude frequency distributions better than a single 

Gaussian (p < 0.001 for 7/8 cells; p = 0.051 for 1 cell). Quantal content was calculated from a 

weighted average of areas under the curves for each peak in the multiple Gaussian. From these 

multiple Gaussians, quantal content was estimated to be 1.53 + 0.11 (n = 10) from rod IA(glu). We 

found a similar quantal content of 1.42 + 0.09 (n = 8) from the amplitude of horizontal cell mEPSCs. 

We defined events within one standard deviation of the mean of the first peak to be “uniquantal” 

and considered larger events to be “multiquantal.”  Multiquantal release events accounted for 34.1 

± 4% of all IA(glu) events (n = 7) and, because some events are quite large, made up an even larger 

fraction of the total spontaneous glutamate release from rods (42.7 ± 8%; n = 7).   
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Figure 11 Amplitude characteristics of spontaneous IA(glu) events are consistent with 

multiquantal release.  A. Spontaneous multiquantal events were observed amongst many 

uniquantal events in rods voltage clamped at −70 mV. B. Representative amplitude histogram 

of spontaneous rod IA(glu) events (n = 325) fit with a multiple Gaussian function. The inset 

shows a representative segment of the recording from which the histogram was derived.  By 

assuming that the mean ± SD of the initial peak represents a single quantum, quantal content 

for this cell was calculated as a weighted average of the areas under the curve and f ound to 

be 1.69. C. Amplitude of IA(glu) events (n = 339) was strongly correlated with event charge 

transfer (R = 0.99) with non-zero slope (F-test, p <0.0001). 

 

We compared pre- and post-synaptic measurements of glutamate release at the same 

synapses by obtaining simultaneous whole cell recordings from rods and a postsynaptic horizontal 

cell.  Both the rod and its post-synaptic partner horizontal cell were voltage clamped at 

hyperpolarized potentials: −70 (-75 mV after correcting for LJP) and −60 mV (-72 mV after LJP 

correction), respectively. We confirmed that these neurons were synaptically connected by 
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determining whether an EPSC could be evoked in the horizontal cell by a strong depolarizing step 

applied to the rod.  We then recorded a long series of spontaneous IA(glu) events in the rod and 

mEPSCs in the horizontal cell (Fig. 12A).  Spontaneous mEPSCs in horizontal cells were faster 

than IA(glu) events in rods (Fig. 12B).  mEPSCs averaged 10.39 ± 0.79 pA (n = 8 cells, n = 451 to 

1715 events/cell) in amplitude with an average rise time of 1.44 ± 0.21 ms, half width of 3.52 ± 

0.71 ms and decay time of 4.30 ± 0.39 ms.  

Occasionally, a pre-synaptic IA(glu) event occurred at the same time as an mEPSC in the 

horizontal cell.  Most pre- and post-synaptic events were not correlated because: 1) Many mEPSCs 

in the horizontal cell arise from release by photoreceptors other than the voltage-clamped rod and 

2) only a few of the roughly 7 ribbons per rod contact any individual horizontal cell (Townes-

Anderson et al., 1985b;Van Hook and Thoreson, 2015). Despite the low frequency of correlated 

events, the cross-correlation between long segments of baseline currents recorded from 

synaptically-coupled rods and horizontal cells (R2 = 0.32 ± 0.076, n = 8 pairs) was significantly 

greater than the cross-correlation observed after time-shifting the horizontal cell current record by 

100 ms (R2 = 0.08 + 0.017; p = 0.025, paired t-test).   

We examined individual rod IA(glu) and horizontal cell mEPSCs in which the peak of the 

IA(glu) event occurred 10 ms or less after onset of an mEPSC. Among such coincident events, the 

amplitude of IA(glu) events and mEPSCs were linearly correlated (R2 = 0.36, Table 1) and showed a 

significant non-zero slope in 6/8 pairs (P < 0.05, Table 1; Fig. 12C). Because of the high frequency 

of spontaneous mEPSCs, a few coincident events can occur by chance.  However, the correlation 

of amplitudes between coincident pre- and post-synaptic events was abolished by time shifting the 

records (R2 = 0.02) and 0/8 pairs showed slopes that were significantly non-zero.  
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Table 1 Descriptions of coincident pre- and post-synaptic events including the number of 

coincident events (n) from paired rod and horizontal cell recordings. Regression statistics are 

reported from amplitudes of coincident events plotted against one another. Events were 

considered coincident if the start of the rod event occurred within 10 ms of the peak of 

horizontal cell (HC) mEPSC.  Six out of 8 pairs show a slope that deviated significantly from 

zero (F-test). Rod and HC quantal amplitudes (QA) are reported, along with a coefficient of 

variance (CV). 

Pair n Slope R2 P (F-test) 
Rod QA 

(pA) 
Rod CV 

HC QA 

(pA) 
HC CV 

1 39 0.47 ± 0.08 0.49 < 0.0001 5.5 0.09 8.6 ± 1.7 0.20 

2 43 1.40 ± 0.35 0.28 0.0003 5.7 0.11 9.5 ± 2.1 0.22 

3 34 2.10 ± 0.60 0.28 0.0014 6.9 0.12 7.6 ± 1.3 0.17 

4 24 2.12 ± 0.90 0.19 0.03 7.8 0.09 
15.2 ± 

0.6 
0.04 

5 34 0.14 ± 0.16 0.02 0.39 6.3 0.10 3.6 ± 0.3 0.08 

6 12 0.47 ± 0.21 0.33 0.05 7.8 0.04 
15.7 ±  

1.3 
0.08 

7 35 0.62 ± 0.13 0.4 < 0.0001 10.8 0.08 
15.3 ± 

0.5 
0.03 

8 11 0.66 ± 0.07 0.9 <0.0001 12.4 0.14 
16.5 ± 

0.9 
0.05 

mean 29 1.00 0.36 0.09 7.9 0.09 11.5 0.1 

σ 12 0.77 0.26 0.17 2.5    

 

Glutamate molecules bind rapidly to EAAT glutamate transporters and this binding 

activates IA(glu).  The cycle time for glutamate transporter is rather slow, ca. 70 ms (Wadiche et al., 

1995), so the increase in IA(glu)  during a pulse of glutamate effectively integrates presynaptic 

glutamate release (Szmajda and Devries, 2011). Differentiating the glutamate transporter current 

should therefore provide a measure of the rise in synaptic glutamate levels.  Consistent with this, 

differentiating the glutamate transporter currents from individual large IA(glu) events yielded 

waveforms with kinetics that closely matched the kinetics of simultaneously recorded mEPSCs that 

reflect glutamate binding to AMPA receptors on horizontal cells (Fig. 12B).  In these recordings, 

the latency to the peak of mEPSCs was attained at 3.13 + 0.19 ms and the peak of the differentiated 

IA(glu) occurred 2.0 + 0.38 ms later (n = 8 events).  Assuming a diffusion coefficient for glutamate 

of 0.33 µm/s (Nielsen et al., 2004), a total latency of 5.1 ms places an upper limit to the average 

distance between release sites and glutamate transporters of 3.37 µm.  The correlated amplitude 
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and kinetic properties of coincident pre- and post-synaptic events in paired recordings indicates 

that IA(glu) provides a dependable presynaptic measure of glutamate release.   

 

Figure 12 Simultaneous recordings of spontaneous IA(glu) events in a rod and miniature 

excitatory post-synaptic currents (mEPSCs) in a horizontal cell. A.  During this record, two 

spontaneous pre-synaptic IA(glu) multiquantal events in rods (upper gray trace) occurred 

simultaneously (arrows) with post-synaptic mEPSCs (lower black trace).  B. Coincident 

mEPSC (upper black trace) and presynaptic IA(glu) (lower black trace) events (panel A, dashed 

gray arrow). The noise gray trace shows the first derivative of IA(glu). The close match between 

the derivative of IA(glu) and mEPSC time course indicates that the increase in IA(glu) integrates 

glutamate release from the rod.   C.  The amplitudes of coincident pre- and post-synaptic 

events were linearly correlated (n = 11, R2 = 0.9) with a slope that was significantly non-zero 

(F-test, p < 0.001), demonstrating that IA(glu) provides a pre-synaptic measure of glutamate 

release. 
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The kinetics of large, multiquantal IA(glu) events matched those of small events. Fig. 13A 

shows the average of small (n = 97) and large (n =20) IA(glu) events from a single rod (selected by a 

template with defined amplitude parameters).  After scaling the average small uniquantal event to 

match the large multiquantal average, the time courses of the two closely matched one another (red 

trace, Fig. 13A). The 10-90% rise time did not differ significantly between uniquantal and 

multiquantal events (p = 0.72; Mann-Whitney test) and the rise time was not correlated with event 

amplitude (Fig. 3B). The variance among 10-90% rise times was greater for small events because 

baseline noise more often hindered accurate detection of start and stop times with smaller events. 

These data suggest that large and small events result from kinetically similar mechanisms.  

We also compared the kinetics of large and small mEPSCs.  Fig. 13C shows an example 

of average large and small mEPSCs from the same horizontal cell.  After scaling the small event to 

match the amplitude of the large event (red trace, Fig. 3C), the rise times of the two waveforms 

closely matched one another. Uniquantal and multiquantal EPSC 10-90% rise times were 1.42 ± 

0.01 vs 1.43 ± 0.03 ms, respectively and did not differ significantly (p = 0.25, n = 9 cells). In this 

example, the average large event decayed more slowly than the average uniquantal event, consistent 

with a greater persistence of glutamate in the cleft following release of multiple vesicles. However, 

because of variability among half-width measurements, the overall difference in half-widths 

between uniquantal and multiquantal mEPSCs was not statistically significant across the entire 

sample (p = 0.18, n = 9 cells).  The similar rise times for large and small events suggests that large 

events arise from the closely synchronized release of multiple vesicles.   
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Figure 13 Large and small spontaneous release events show similar kinetics.  A. Average 

uniquantal (small black trace; n = 97) and multiquantal I A(glu) events (large black trace; n = 

20) from a single rod. There were no kinetic differences between the two after scaling the 

average uniquantal event (red trace, right axis) to match the amplitude of the average 

multiquantal event. B. Graph of individual IA(glu) event amplitudes plotted against 10-90% 

time to rise. The slope of the linear regression (dotted line) did not differ significantly from 

zero (F-test; p = 0.28). C. Average uniquantal mEPSC (small black trace, n = 38) and 

multiquantal mEPSC (n = 16) from a single horizontal cell. Scaling the uniquantal event (red 

trace, right axis) to match the amplitude of the larger event revealed that rise times of the two 

events were equivalent.    
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Comparing Evoked and Spontaneous Release 

We compared the amplitude of spontaneous IA(glu) events to IA(glu) evoked by 2 ms 

depolarizing pulses to −25 mV. For these experiments, we alternated recordings of spontaneous 

and evoked events, waiting at least 45 s between test pulses for replenishment of the releasable pool 

of vesicles.  Evoked release ran down during our recordings and so for this analysis, we only 

included recordings in which evoked release persisted long enough for us to measure at least 10 

trials.  We constructed amplitude histograms for both spontaneous and evoked events.  The example 

in Fig. 14 shows a recording in which the evoked amplitude appears quantized.  When fit with 

multiple Gaussians, the average fundamental amplitude did not differ between evoked and 

spontaneous events (p = 0.29; n = 4, paired t-test), consistent with the hypothesis that the first peak 

in the amplitude histogram reflects release of a single vesicle and subsequent peaks reflect release 

of multiple vesicles (Fig. 14B).  

Figure 14 Comparisons of evoked and spontaneous IA(glu) events supports the interpretation 

that the first peak in the amplitude histogram of spontaneous release events reflects release 

of a single vesicle and subsequent peaks reflect release of multiple vesicles.  A.  A series of 

41 overlaid IA(glu) responses evoked by 2-ms steps to −25 mV in a rod.   Peak amplitudes of 

these evoked responses are plotted in the amplitude histogram in B (solid line).  The 

amplitudes of spontaneous IA(glu) events from the same rod were also plotted in B (dashed 
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line), revealing a similar fundamental uniquantal amplitude (n = 289 events).  The inset in B 

shows an example of spontaneous events from this same cell.   

 

Spontaneous and evoked release appear to access different vesicle pools.  In some trials, 

we tested release using a short, strong test pulse (2 ms, −70 to −10 mV) to maximally activate ICa 

but avoid stimulating Ca2+-activated Cl- currents. In these experiments, we alternated 3-min 

recordings of spontaneous activity with 2-ms test pulses to −10 mV. This depolarizing stimulus 

depletes a large fraction of the readily releasable pool of available vesicles. The readily releasable 

pool in rods averages 25 vesicles/ribbon, matching the number of vesicles that contact the plasma 

membrane at the base of a rod ribbon (Heidelberger et al., 2005), and there are an average of 7 

ribbons per salamander rod (Townes-Anderson et al., 1985b;Pang et al., 2008b;Van Hook and 

Thoreson, 2015) suggesting a total readily releasable pool of ~175 vesicles/rod.  Rod ribbons are 

typically separated from one another by 1 µm or more (Lasansky, 1978;Townes-Anderson et al., 

1985b;Pang et al., 2008b), so it is unlikely that vesicles at neighboring ribbons would spontaneously 

fuse together.  Although spontaneous events presumably arise from individual ribbons whereas 

evoked responses reflect release from all of the functional ribbons, spontaneous events often 

exceeded evoked responses in the same cell.  In 12/18 rods, at least one spontaneous event exceeded 

the amplitude of the largest evoked response in that cell.  An example of large spontaneous events 

recorded before and after a smaller evoked response are shown in Fig. 15A. The largest evoked 

response averaged 73.7 + 12.3 pA (n = 18 rods) while the largest spontaneous event recorded in 

the same cells averaged 92.9 + 13.2 pA.  If the entire readily releasable pool of 25 vesicles/ribbon 

were available for release from all of the ribbons in a rod, then we should have seen much larger 

evoked responses.  This suggests there was considerable rundown of the evoked response even 

before the first test pulse was applied (at least 3 min after patch rupture) but nevertheless rods 

remained capable of large spontaneous responses.   
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We saw no evidence for cross-depletion between spontaneous and evoked release. In Fig. 

15B, we plot the ratio of the amplitude of spontaneous multiquantal events relative to the amplitude 

of the evoked response as a function of time before (open circles) or after (filled circles) a test pulse 

applied at time 0.  For this analysis, we only included events in which both spontaneous and evoked 

events were at least 30 pA in amplitude.  The amplitude of spontaneous events relative to evoked 

events did not vary in any systematic way with time of occurrence relative to the evoked response.  

Consistent with this, the slope of linear regressions fit to the data for spontaneous events occurring 

before or after the test pulse did not differ significantly from zero (p = 0.58 after test pulse; p = 0.77 

before test pulse).  These data suggest that the amplitude of a prior evoked response did not 

significantly influence the amplitude of a subsequent spontaneous event and vice versa (Fig. 5B).   

For the analysis in Fig. 15B, we required that both evoked and spontaneous responses 

exceed 30 pA.  However, as illustrated in Fig. 15C, we often saw cases in which the depolarizing 

test pulse failed to evoke any release whatsoever but a large spontaneous event was nevertheless 

observed in the same cell.  By showing that spontaneous multiquantal release does not require that 

evoked release from ribbons remain intact, this illustrates an extreme case of the absence of cross-

depletion.  The rapid rundown of evoked release and absence of cross-depletion suggest that 

spontaneous multivesicular and evoked release involve different vesicle pools. 
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Figure 15 Large spontaneous events involve a different vesicle pool than evoked release. A. 

Examples of spontaneous events that occurred before and after a smaller event evoked by a 

depolarizing step to −10 mV (2 ms).  B.  Ratio of the amplitude of spontaneous multiquantal 

events relative to an evoked response in the same trial.  These ratios are plotted as a function 

of the timing of the spontaneous event before (open circles) or after (filled circles) the test 

stimulus (2 ms, −10 mV) applied at time 0.  Spontaneous and multiquantal events were 

included in this analysis only if both exceeded 30 pA.  Data were from 1 s (n = 5) and 2 s (n 

= 18) trials. C. Example of a large spontaneous multiquantal event that occurred 650 ms after 

a depolarizing pulse (2 ms to −10 mV) failed to evoke release.   

 

Multiquantal Release Involves Release Sites Close to Ca2+ Channels 

 To determine the dependence of multiquantal IA(glu) events on intracellular Ca2+, we varied 

the Ca2+ buffering capacity of the intracellular solution introduced into rods through the whole cell 

recording pipette.  To localize Ca2+ signaling events relative to the source of Ca2+, we exploited 

differences in the kinetics with which EGTA and BAPTA chelate Ca2+. While both chelators have 

the same affinity, the slower buffer EGTA will have less of an effect on Ca2+ levels near the source 

than the faster buffer BAPTA.  The graph in Fig. 16A plots Ca2+ levels as a function of distance 

from an open Ca2+ channel as predicted by an Excel-based macro, “Pore” (Ward and Kenyon, 

2000). The graph predicts that Ca2+ levels will decline to 100 nM within 100 nm of an open Ca2+ 

channel when the patch pipette solution is buffered with 10 mM BAPTA.  With 5 mM EGTA, Ca2+ 
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levels are predicted to stay above 1 µM for 390 nm from a channel.  Lowering Ca2+ buffering to 

0.05 mM, which approximates endogenous buffering in salamander rods (Van Hook and Thoreson, 

2015), allows Ca2+ to remain above 1 µM for almost 780 nm from an open channel. 

   The frequency of uniquantal events was reduced by limiting the spread of Ca2+ with 5 

mM EGTA compared to 0.05 mM EGTA and further reduced by using 10 mM BAPTA as the 

chelator (Fig. 16B, p < 0.0001; 1-way ANOVA/ Tukey’s multiple comparisons).  This suggests 

that some uniquantal events occur well outside of Ca2+ nanodomains generated by Ca2+ sources, 

consistent with imaging results showing that many spontaneous release events in rods occur at non-

ribbon release sites (Cork et al., 2016).  By contrast, the frequency of multiquantal events did not 

differ between 5 and 0.05 mM EGTA and was only reduced by 10 mM BAPTA (Fig. 16C).  This 

suggests that multiquantal release involves vesicles within a few hundred nanometers of Ca2+ 

channels that are just beneath ribbons (Nachman-Clewner et al., 1999;Morgans, 2001;tom Dieck 

et al., 2005a;Lv et al., 2012a).   

A previous study suggested that activation of Ca2+-induced Ca2+ release (CICR) in rods can 

increase coordinated vesicle release (Suryanarayanan and Slaughter, 2006). We tested 

contributions of CICR during spontaneous release by bath applying a ryanodine receptor inhibitor, 

dantrolene (10 µM), but did not see any significant change in the frequency of spontaneous 

multiquantal release when compared to vehicle control (p = 0.98; 2-way ANOVA).  
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Figure 16 .  Effects of Ca2+ chelators on spontaneous release indicate that multiquantal 

release involves vesicles situated close to intracellular Ca2+ sources.  A. Graph of intracellular 

Ca2+ levels plotted as a function of distance from an open Ca2+ channel, predicted from an 

Excel-based macro “Pore” adapted from Ward and Kenyon, 2000. B.  Frequencies of 

uniquantal events from rods plotted as a function of time after obtaining a whole cell 

recording from a rod with different Ca2+ buffers in the patch pipette solution.  The frequency 

of uniquantal events was reduced significantly when buffering was raised from 0.05 (open 

squares, n = 7 rods) to 5 mM EGTA (filled squares, n = 10) and reduced further with 10 mM 

BAPTA (triangles, n = 5) as the chelator (P < 0.0001; 1-way ANOVA/ Tukey’s multiple 

comparisons).   C.  Multiquantal event frequency did not differ between 0.05 and 5 mM 

EGTA but was reduced significantly by 10 mM BAPTA (P < 0.0001; 1-way ANOVA/ 

Tukey’s multiple comparisons).  
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Multiquantal Events Originate on the Ribbon 

The Ca2+ chelator results suggest that multiquantal release involves release sites close to 

Ca2+ channels beneath synaptic ribbons. As a more direct test of whether multiquantal release 

involves ribbon release sites, we damaged the ribbon by fluorophore-assisted laser inactivation 

(FALI) with a FITC-conjugated RIBEYE-binding peptide. As a control, we used a FITC-

conjugated scrambled version of the same peptide.  We introduced the peptides through a patch 

pipette.  As illustrated in Fig. 17A, the FITC-conjugated RIBEYE-binding peptide binds selectively 

to ribbons, yielding bright spots (arrow) in the synaptic terminal when imaged with a confocal 

microscope.  The pipette solutions included the antioxidants trolox (3 mM) and reduced glutathione 

(3 mM) to limit non-specific oxidative damage.  We waited 5 min to allow time for the peptide to 

enter the cell and then turned on a 488 nm laser for 60 s to bleach the dye.  Bleaching of FITC by 

FALI releases singlet oxygen that causes damage localized to within 50 Å of the FITC moiety 

(Hoffman-Kim et al., 2007).   

Fast synchronous, evoked release from rods is largely ribbon-dependent (Chen et al., 

2013;Chen et al., 2014;Van Hook and Thoreson, 2015) and so a short depolarizing step should 

evoke release almost exclusively from ribbon-associated vesicles. Consistent with this, IA(glu) 

evoked by a 2-ms depolarizing step to –10 mV was nearly abolished after damaging the ribbon by 

FALI (filled squares and insets, Fig. 17B). When using the scrambled peptide, evoked release ran 

down over time but was not abolished acutely by the laser (open squares, Fig. 17B). Laser 

inactivation with FITC-conjugated RIBEYE-binding peptide also reduced the frequency of 

spontaneous multiquantal events (filled squares, Fig. 17C) compared to control (open squares, p = 

0.03) but did not significantly affect the frequency of uniquantal events (Fig. 17D, p = 0.97).  The 

few multiquantal events that remain after FALI may reflect incomplete damage to the ribbon as 

found earlier with this same peptide concentration (Snellman et al., 2011).  These results extend 
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those seen with Ca2+ buffering by revealing that multiquantal release depends on the presence of 

functional synaptic ribbons. 

Figure 17 Fluorophore assisted laser inactivation (FALI) of ribbons with a FITC-conjugated 

RIBEYE-binding peptide indicates that multiquantal release occurs preferentially at ribbon 

release sites.  A. Confocal z-stack image of a rod after introducing the peptide through a 

patch pipette. Weak fluorescence from cytoplasmic dye is visible in the outer (OS) and inner 

segment (IS). Two small bright spots in the terminal (arrow) show dye bound to ribbons prior 

to laser bleaching.   B.  Damaging ribbons by FALI reduced evoked IA(glu) events evoked by 

a brief depolarizing stimulus (2 ms, −25 mV). The insets show examples of responses evoked 

in a rod before and after 60 s bleach with 488 nm laser light.  C. FALI with the RIBEYE -

binding peptide significantly reduced the frequency of multiquantal events (n = 7 rods; p = 

0.0127; 2-way ANOVA/Tukey’s multiple comparisons), but FALI with a scrambled control 

peptide did not (n = 7, p = 0.91; 2-way ANOVA/Tukey’s multiple comparisons).  D. FALI 

did not reduce the frequency of uniquantal events with either the RIBEYE-binding (p = 0.3; 

2-way ANOVA/Tukey’s multiple comparisons) or scrambled control peptide ( p = 0.84; 2-

way ANOVA/Tukey’s multiple comparisons).    

 

Multiquantal Release Involves Syntaxin 3B 

Studies at ribbon synapses and in non-neuronal secretory cells have both suggested a role 

for syntaxin 3 in supporting intervesicular SNARE complexes and vesicle-vesicle fusion (Zhu et 

al., 2013;Eckly et al., 2016). To test whether syntaxin 3B is involved in multiquantal release from 
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rods, we introduced a short peptide based upon the N-terminal region of the SNARE domain of 

syntaxin 3B (stx3pep) or a scrambled version of this peptide (control) into rods through a patch 

pipette. Stx3pep has been shown to inhibit the formation of SNARE complexes in retinal ribbon 

synapses (Datta et al., 2017).  The frequency of all events, tallied in 3-min bins, ran down over time 

during recordings with both peptides, but the stx3pep inhibitory peptide caused a significantly 

greater reduction in the frequency of multiquantal events over time compared to the control peptide 

(Fig. 18, p < 0.007, 2-way ANOVA).  By contrast, there was no change in the frequency of 

uniquantal events with stx3pep compared to the scrambled control peptide after 15 min (Fig. 18, p 

= 0.94, unpaired t-test). These results suggest that multiquantal events are SNARE-mediated and 

preferentially affected by acute perturbation of syntaxin 3B function.  
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Figure 18 . Inhibiting the SNARE protein syntaxin 3B by introducing an inhibitory peptide 

(stx3pep) into a rod through the patch pipette selectively reduced multiquantal but not 

uniquantal release.  A. Spontaneous multiquantal event frequency measured in 3-min bins 

after beginning whole cell recording was reduced by stx3pep (n = 12) compared to a 

scrambled control peptide (n = 9, p = 0.002; 2-way ANOVA).  B.  Comparison of uniquantal 

and multiquantal event frequency measured 15 min after patch rupture.  The frequency of 

uniquantal events did not differ between stx3pep (filled triangles) and scrambled control 

peptide (open triangles), but the frequency of multiquantal events was reduced significantly 

by stx3pep (filled circles) relative to the scrambled control peptide (open circles, P < 0.003; 

1-way ANOVA, Tukey's multiple comparisons). 

 

Discussion  

Our results show that multiquantal release occurs frequently in rods, constituting ~30% of 

spontaneous release events and 40% of the total spontaneous glutamate release.  The identical rise 

times for large vs. small IA(glu) events in rods and for large vs. small horizontal cell mEPSCs suggests 
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that spontaneous multiquantal release involves synchronous, not sequential, fusion of vesicles.  

Experiments with exogenous Ca2+ buffers showed that synchronous multiquantal release occurs at 

sites within a few hundred nanometers of Ca2+ channels that are in turn close to ribbons in rod 

terminals.  Selectively damaging ribbons by FALI and interfering with syntaxin 3B by use of an 

inhibitory peptide both reduced multiquantal but not uniquantal events.  Together, these results are 

consistent with the hypothesis that simultaneous multiquantal release from rods arises from 

homotypic fusion among neighboring vesicles on a ribbon and involves the SNARE protein, 

syntaxin 3B (Datta et al., 2017).  We consider this hypothesis further below. 

In hair cells, there is evidence that the spread of Ca2+ entering the cell via Ca2+ channels 

beneath the ribbon can reach multiple vesicles and thereby facilitate simultaneous multivesicular 

release (Graydon et al., 2011).  By contrast, measurements of release from rods found that a single 

Ca2+ channel opening triggers an average of only 0.17 + 0.12 (S.D.) vesicle fusion events — far 

fewer than needed to account for the frequency of spontaneous multiquantal events observed in 

rods (Van Hook and Thoreson, 2015) . In rods, it has also been suggested that amplification of Ca2+ 

influx by Ca2+-induced Ca2+ release might facilitate coordinated multivesicular release 

(Suryanarayanan and Slaughter, 2006). We did not observe a significant effect of the CICR blocker 

dantrolene on spontaneous multiquantal release, although CICR may play a bigger role in 

amplifying release during evoked release at more depolarized potentials (Suryanarayanan and 

Slaughter, 2006).   Still, consistent with an earlier study on spontaneous release from rods (Cork et 

al., 2016), our results with BAPTA show that the frequency of multiquantal events depends strongly 

on available [Ca2+]i. This is similar to the finding at ribbon synapses of bullfrog hair cells that 10 

mM BAPTA almost completely abolishes release events (Li et al., 2009).  The most likely source 

for Ca2+ ions to support spontaneous release is the stochastic opening of L-type Ca2+ channels 

clustered beneath ribbons.  Consistent with this, deletion of RIM1/2 or RIM-binding proteins from 

ribbon synapses caused a reduction in Ca2+ influx through L-type Ca2+ channels along with a 
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reduction in spontaneous release (Grabner et al., 2015;Luo and Sudhof, 2017). By contrast to the 

apparent Ca2+-dependence of spontaneous release at ribbon synapses, spontaneous release at many 

conventional excitatory synapses depends less on Ca2+ entry from voltage-gated channels than does 

spontaneous release at inhibitory synapses  (Scanziani et al., 1992;Llano and Gerschenfeld, 

1993;Druzin et al., 2002;Tsintsadze et al., 2017;Liu et al., 2018;Williams and Smith, 2018). It is 

hypothesized that these differences in spontaneous release at conventional excitatory and inhibitory 

synapses arise from differences in the protein isoforms used by those synapses (Tsintsadze et al., 

2017). Similarly, the greater dependence of spontaneous glutamate release on voltage-gated Ca2+ 

channels at ribbon synapses may reflect a reliance on particular protein isoforms.  For example, as 

we consider below, the Ca2+-dependence in multiquantal release might involve actions of Ca2+ or 

Ca2+/calmodulin-dependent protein kinase II (CaMKII)  on syntaxin 3B, a t-SNARE protein 

specific to retinal ribbon synapses, that occur prior to final fusion.  

Could the heterogeneous amplitudes of IA(glu) be due to variable dilation of fusion pores 

rather than multiquantal release, as proposed for inner hair cells (Chapochnikov et al., 2014)? We 

found that large and small events showed matching kinetics, as found in bullfrog hair cells (Li et 

al., 2009), and rarely saw multiphasic events that are commonly seen in inner hair cells from rats.  

Multiphasic events at rat hair cell synapses are thought to reflect fusion pore flickering and thus 

show similar charge transfer for both large and small events (Chapochnikov et al., 2014).  However, 

we found that event amplitude and charge transfer increased in parallel with one another indicating 

that larger events result from greater release of glutamate (Rossi et al., 1994;Chapochnikov et al., 

2014). This suggests that the variability in amplitude of release events in rods is unlikely to arise 

from flickering openings of the fusion pore.  

Our results show a role for both ribbons and syntaxin 3B in facilitating synchronous 

multiquantal release. Consistent with these results, genetic deletion of syntaxin 3 reduced 

multiquantal but not uniquantal release frequency in peritoneal mast cells (Sanchez et al., 2018).  
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One way in which syntaxin 3B might facilitate multivesicular release would be to promote 

homotypic fusion among vesicles.  Consistent with the ability of vesicles to fuse with one another 

on the ribbon, repetitive stimulation led to an enlargement of ribbon-attached cisternae in retinal 

bipolar cells (Matthews and Sterling, 2008). While most syntaxin 3B is located on the plasma 

membrane, it can also be found on vesicular membranes at ribbon synapses, where it could 

potentially form SNARE complexes with v-SNAREs on neighboring vesicles (Liu et al., 2014).  

The proximity of neighboring vesicles on the ribbon and their situation near Ca2+ channels would 

facilitate vesicle-vesicle interactions (Datta et al., 2017).   

We observed that spontaneous multiquantal release could occur in rods that are no longer 

capable of evoked release due to rundown.  The ability for spontaneous release to occur in the 

absence of evoked release is consistent with evidence from rods and other neurons that spontaneous 

and evoked pools show functional and molecular differences (Sara et al., 2005;Crawford and 

Kavalali, 2015a;Cork et al., 2016).  Although they involve different pools, FALI experiments 

showed that evoked and spontaneous multiquantal release both occur at ribbons.  The differing 

capabilities for Ca2+-dependent and -independent release may reflect differences in composition of 

the SNARE complexes among different ribbon-associated vesicles (Crawford and Kavalali, 

2015a).   

The rundown of evoked release is not due to rundown of ICa, which remains stable for long 

periods of recording from salamander rods (data not shown). Instead, the loss of evoked release is 

likely due to impairment of the Ca2+-dependent fusion apparatus. This interpretation is in line with 

previous evidence indicating that the final fusion step for spontaneous multiquantal release in rods 

does not necessarily require Ca2+ (Cork et al., 2016) and thus, should be less affected, as observed.  

That spontaneous multivesicular release can occur without being triggered by stimulus-evoked Ca2+ 

entry also argues against the idea that the spontaneous release of multiple vesicles is coordinated 

by the spread of Ca2+ beneath the ribbon or by sequential Ca2+-dependent fusion of vesicles further 
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up the ribbon.  A more likely explanation for spontaneous multivesicular release is prior homotypic 

fusion among vesicles.   

While the final fusion step during spontaneous multiquantal release can occur in a Ca2+-

independent manner, our results also showed a dependence of multiquantal release on Ca2+ levels 

near the ribbon.  This may reflect actions of Ca2+ during the delivery and priming of vesicles on the 

ribbon.   CaMKII is located on ribbons (Uthaiah and Hudspeth, 2010;Kantardzhieva et al., 2012) 

and activation of this enzyme facilitates the open configuration of syntaxin 3B, enhancing its 

interactions with SNAP-25 (Liu et al., 2014). Prior elevation of cytoplasmic [Ca2+] and subsequent 

activation of CaMKII localized to ribbons could thus promote homotypic fusion of neighboring 

vesicles on the ribbon, explaining the preferential reduction of ribbon-mediated multiquantal fusion 

events by the inhibitory peptide, stx3pep.  

The functional role of multiquantal release at this synapse is not entirely clear.   While 

variability in the amplitude of spontaneous release events might be expected to impair detection of 

small light-evoked changes in release, the ability to coordinate fusion of multiple vesicles during 

evoked release could improve the coding for contrast changes, especially when photoreceptors 

depolarize in response to light decrements.  Multiquantal release might provide a thresholding 

mechanism at the rod synapse for selectively transmitting large events. Such a mechanism can 

reduce the impact of noise, although in salamander retina this type of non-linearity is thought to be 

more prominent at bipolar cell synapses (Chichilnisky and Rieke, 2005).  A recent study concluded 

that multivesicular release at bipolar cell ribbon synapses improves temporal precision for detecting 

contrast changes and showed that a single vesicle provides more information about the preceding 

stimulus change during multivesicular release than during univesicular release (James et al., 2019). 
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CHAPTER 3: Voltage dependent release properties in mammalian rods 
 

Abstract 

The vertebrate visual system can detect and transmit signals from single photons. To understand 

how single photon responses are signaled by rods, we characterized voltage-dependent properties 

of glutamate release in mouse rods by making presynaptic measurements of their glutamate 

transporter currents (IA(glu)). Release rates increased in parallel with voltage-dependent increases in 

rod Ca2+ currents (ICa). Ca2+ influx and release rate rose further with temperature attaining a rate of 

~10 vesicles/s/ribbon at −40 mV (35 °C). Ca2+ buffering experiments showed that release evoked 

by brief depolarizing steps to −10 mV occurred at release sites within ribbon-associated Ca2+ 

channel nanodomains.  Longer depolarizing steps (e.g., 500 ms) engaged release from more distant 

non-ribbon sites.  Spontaneous release at hyperpolarized potentials (−60 to −70 mV) occurred at 

random intervals, but when rods were voltage-clamped at −40 mV for many seconds to simulate 

maintained darkness, release occurred in semiregular, coordinated bursts of 17 ± 7 quanta (n = 22).  

Like fast release evoked by short steps, these bursts involved vesicles in the readily releasable pool 

at the base of the ribbon and were triggered by opening of nearby Ca2+ channels. Lowering more 

distant Ca2+ levels lengthened interevent intervals between bursts, perhaps by influencing vesicle 

replenishment. Ribbon-associated fast release and bursts were both absent after genetic elimination 

of the Ca2+ sensor, synaptotagmin-1 (Syt1), from rods whereas slower release evoked by 500 ms 

steps was abolished by eliminating a different sensor, synaptotagmin-7 (Syt7).  This study shows 

that, in darkness, rods release glutamate-filled vesicles at low rates that involve coordinated bursts 

of vesicles from the readily releasable pool at the base of synaptic ribbons. In Chapter 4, we discuss 

functional implications of these release properties for encoding single photon responses at the rod 

synapse.  
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Introduction 

The exquisite visual sensitivity of vertebrates begins with the ability of rod photoreceptor 

cells in the retina to detect single photons. Absorption of a single photon produces small voltage 

changes of 1-3.4 mV in rods that must be transmitted across the synapse to second-order bipolar 

cells (Schneeweis and Schnapf, 1995;Cangiano et al., 2012). In darkness, rods have a resting 

membrane potential near −40 mV that is sufficiently depolarized to activate CaV1.4 L-type Ca2+ 

channels that control synaptic glutamate release from rods (Pangrsic et al., 2018).  Unlike most 

voltage-gated Ca2+ channels, CaV1.4 channels show minimal voltage- and Ca2+-dependent 

inactivation, allowing continued Ca2+ influx into rod terminals during maintained 

darkness.(Baumann et al., 2004;Waldner et al., 2018)   Synaptic release from rods varies linearly 

with Ca2+ influx, faithfully translating light-evoked voltage responses into changes in the rate of 

glutamate release that act on second-order neurons.  The sustained release of glutamate from a rod 

is also facilitated by the presence of a plate-like, presynaptic structure known as the synaptic ribbon 

(Heidelberger et al., 2005). Ribbons help to capture and tether vesicles along their planar surfaces 

and then deliver them to release sites at the base (Snellman et al., 2011;Vaithianathan et al., 2016).  

The stochastic release of synaptic vesicles introduces noise that must be overcome in the 

transmission of single-photon voltage responses at rod synapses.   Two strategies have been 

proposed to distinguish genuine light-evoked changes in release rate from random changes:  1) 

maintain a sufficiently high rate of glutamate release for small changes in membrane voltage to 

cause a large enough reduction in release to be distinguished from basal rates (Rao et al., 1994;Rao-

Mirotznik et al., 1998;van Rossum and Smith, 1998), or 2) make release more regular and 

predictable (Schein and Ahmad, 2005).   

In this study, we measured voltage-dependent changes in rates of release in individual 

mouse rods that possess a single ribbon synapse. We took advantage of the fact that the glutamate 

transporters in rod terminals (largely EAAT5) are linked to an uncoupled anion conductance so that 
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when an anion channel is opened as glutamate is retrieved (Arriza et al., 1997;Schneider et al., 

2014).  Using this approach, release rates increased linearly with Ca2+ influx, but rose only to ~10 

v/s/ribbon at −40 mV (35 °C).   When rods were voltage-clamped at −70 mV, we observed 

spontaneous release of single vesicles at random intervals, but while rates remained low at −40 mV, 

release occurred in bursts of ~17 vesicles apiece at more regular intervals. We found that these 

bursts at −40 mV involved vesicles in the readily releasable pool of vesicles at the base of the 

ribbon and were triggered by opening of nearby Ca2+ channels. Lowering distant Ca2+ levels 

lengthened interevent intervals between bursts, perhaps by influencing ribbon replenishment rates. 

These results suggest that while the rate of release in darkness is too low to overcome noise in 

synaptic transmission, the replenishment and delivery of vesicles to release sites at the base of each 

ribbon may make release more regular.  In Chapter 4, we explore whether this regularization of 

release facilitates transmission of single photon responses to downstream neurons.  

Methods 

Animals 

Control and mutant mice of predominately or wholly C57/Bl6 backgrounds were kept on 

12-hour dark-light cycles. Animal handling and experimental protocols were approved by the 

University of Nebraska Medical Center Institutional Animal Care and Use Committee. RodSyt1cko 

mutants in which Syt1 was selectively eliminated from rods were bred by crossing Rho-iCre mice 

(RRID:ISMR_JAX:015850) with Syt1flox mice (Syt1: MGI: 99667)(Quadros et al., 2017). 

Similarly, rodSyt7cko mice selectively lacking Syt7 in rods were bred by crossing Rho-iCre mice with 

Syt7flox mice.   Syt7flox mice were generated by the UNMC Mouse Genome Engineering Core by 

introducing loxP sites that flanked exon 7 using EasiCRISPR (Quadros, Miura et al. 2017).  Mice 

of both sexes aged 4-12 weeks were euthanized in accordance with the AVMA Guidelines for the 

Euthanasia of Animals by CO2 asphyxiation and cervical dislocation.  
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Electrophysiology 

Rod cells were visualized in a flatmount preparation performed on an upright fixed-stage 

microscope (Nikon E600FN) under a 60x, 1.0 NA water-immersion objective. Rod inner segments 

and cell bodies were identified morphologically and targeted with positive pressure using recording 

electrodes mounted on Huxley-Wall micromanipulators (Sutter Instruments). Rod recordings were 

performed in whole-cell voltage clamp using an Axopatch 200B amplifier (Axon 

Instruments/Molecular Devices) and signals were digitized with DigiData 1550 (Axon 

Instruments/Molecular Devices). Data acquisition and analysis were performed using pClamp 10 

Software (Molecular Devices). Voltages were not corrected for liquid junction potentials unless 

specifically noted (CsGluconate pipette solution: 12.3 mV, KSCN pipette solution: 3.9 mV). 

 Flatmount preparations were continuously superfused with room temperature Ames 

solution (US Biological) bubbled with 95%/5%CO2 at ~1 mL /minute unless otherwise noted. 

Intracellular pipette solutions for IA(glu) measurements contained (in mM): 120 KSCN, 10 TEA-Cl, 

10 HEPES, 1 CaCl2, 1 MgCl2, 0.5 Na-GTP, 5 Mg-ATP, 5 phospho-Creatine, pH 7.3. Intracellular 

solution was buffered with 5 mM EGTA unless otherwise noted. For ICa measurements, 

CsGluconate replaced KSCN and buffering was reduced to 2 mM EGTA. Passive membrane 

properties measured with KSCN pipette solution were not different between control and mutant 

rods (p = 0.9) and averaged Cm = 3.2 ± 0.2 pF and Rm = 2.3 ± 0.04 GΩ (mean ± SD, n = 20). 

 IA(glu) event frequency, kinetics, and charge transfer were identified with the event finder 

function in pClamp directed by a template averaged from approximately 10 events. Statistical 

analysis was performed on GraphPad Prism 7 and all data are represented as mean ± SEM unless 

otherwise noted.  

 In some experiments we used an in-line heater to heat the bath superfusate to 35 °C. We 

calculated the Q10 for IA(glu) frequency, ICa amplitude and Vm using the following equation: 
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Where FH and FL are the features of interest at high and low temperatures, respectively, and ΔT is 

the absolute value of the difference in temperature in °C. 

Results 

Voltage and Calcium Dependent Release Properties 

 IA(glu) can provide a reliable pre-synaptic measure of glutamate release from rods, reflecting 

the timing and magnitude of exocytotic events. In several experimental systems, including 

salamander rods as described in the previous chapter, the anionic charge transfer has been shown 

to be proportional to glutamate concentrations in the cleft and likewise proportional to EPSCs (Otis 

and Jahr, 1998;Koch et al., 2007;Hays et al., 2020).  To measure glutamate release presynaptically, 

we obtained whole cell recordings from mouse rods with the permeant SCN- as the principal anion 

in the patch pipette solution.  When rods were voltage-clamped at −70 mV, we observed occasional 

spontaneous presynaptic currents averaging 5.5 ± 1.7 pA (Fig. 19A). As illustrated by the average 

in Fig. 19B, these events exhibited a waveform typical of quantal post-synaptic currents but with 

slow kinetics, showing a 10-90% rise time of 9.3 ± 0.1 ms and decay time constant of 42.3 ± 2.3 

ms (n > 10 events in each of 12 rods).  As shown in the previous chapter, the rising phase of IA(glu) 

integrates glutamate levels in the synaptic cleft.  The slow rate of decline reflects the slow cycle 

time of glutamate transport (Palmer et al., 2003;Gameiro et al., 2011).  Consistent with Grassmeyer 

et al., IA(glu) events in mouse rods were blocked by bath application of the glutamate transport 

blocker threo-β-benzyloxyaspartate (TBOA), confirming that they reflect glutamate transporter 

activity (Fig. 19C)(Grassmeyer et al., 2019). Event amplitude histograms assumed the shape of a 
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single Gaussian function, suggesting that the distribution consists primarily of single vesicle fusion 

events (Fig. 19D).  

 

Figure 19.  A.  Example trace from a rod voltage clamped at −70 mV showing spontaneous 

IA(glu) release events. B. Waveform averaged from 45 IA(glu) events. C. Bath application of the 

glutamate transport inhibitor TBOA (0.3 mM) abolished spontaneous I A(glu) events. D. 

Amplitude frequency distributions of IA(glu) events measured in a rod at −70 mV were well fit 

by a single Gaussian suggesting single vesicle fusion events (4.9 ± 1.6 pA, mean ± SD, n = 

12).  

The glutamate taken up originated from the voltage- clamped cell and not neighboring 

cells. If glutamate release from neighboring rods reached transporters in the clamped rod, we would 

predict an increase in the number of smaller events when we depolarized surrounding rods with 

bath application of a solution containing 30 mM K+; however, 30 mM K+ did not increase event 

frequency at −70 mV (0.87 ± 0.5 vs 0.62 ± 0.1 quanta/s, p = 0.28, n = 3) or change the magnitude 

of unitary events (4.16 ± 1.82 vs 5.40 ± 2.00 pA, p = 0.47, n = 3). Likewise, hyperpolarizing 
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surrounding photoreceptors by application of a bright white light did not decrease baseline noise 

that would have been generated from extra-synaptic glutamate (SD = 0.50 ± 0.03 pA vs 0.52 ± 0.18 

pA; p = 0.79, n = 5, t-test).  

 The rate at which vesicles were released increased gradually with membrane 

depolarization. The increase in release rate at various membrane potentials tracked voltage-

dependent increases in ICa (Fig. 20C).  ICa was measured in separate experiments using voltage 

ramps and CsGluconate rather than KSCN as the principal ions in the pipette solution.  Fig. 20C 

plots the voltage-dependent changes in release on the same axis as the voltage-dependence of ICa 

after correcting for the different liquid junction potentials.  Increasing temperature to 35 °C from 

room temperature (20 °C) nearly doubled Ca2+ influx and caused a proportional increase in release 

rate (Fig. 20C). The Q10 value for peak ICa was 2.09 ± 0.25 (n =10). Within cells, vesicle release 

rate Q10 at -40 mV was 1.58 ± 0.36 (n = 4) which agreed with Q10 calculated from the overall release 

rates of the unpaired cells (1.49). Temperature affects gating properties of many voltage gated 

channels, although in transfected HEK cells the window current for CaV1.4 was unchanged 

(Peloquin et al., 2008), and in our study, V50 was also not shifted by temperature (Q10 = 1.03 ± 

0.02).  

As illustrated in Fig. 20, the character of release changed dramatically as the membrane 

potential approached −40 mV.  At −70 mV, nearly all of the spontaneous release events were 

uniquantal and roughly equal in amplitude. However, at −40 mV, rods consistently switched to a 

bursting behavior with release of many vesicles that showed an average duration (50% rise time to 

50% decline) of 216 ± 69 ms (mean ± SD, n = 22). IA(glu) amplitude  and variance initially increased 

as a function of membrane voltage along with an increased number of vesicles released during each 

release event, but then diminished above −40 mV as the anion driving force declined further (Fig. 

20B). While overall release rate at depolarized potentials increased with temperature, the number 

of quanta in a burst at −40 mV did not increase (17 ± 7 at room temperature, n =22; versus 11 ± 6 
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at 35 °C, n = 5, p = 0.5, unpaired t-test). Events were speeded by increasing temperature (half-width 

RT = 216 ± 69 ms, n = 22; 35 °C= 125 ± 33, n = 5, p = 0.03, unpaired t-test, n = 5) The interburst 

interval was shortened by higher temperatures (interburst interval RT = 2756 ± 596 ms, n = 14; 35 

°C = 1130 ± 665 ms, n = 5, p < 0.001, unpaired t-test). The overall increase in rate with temperature 

is likely a combination of the slight increase in quanta per burst and an increase in the rate of 

bursting. 

 

Figure 20.  A. Vesicle release events in rods measured from IA(glu) increased in frequency 

with depolarization. As the holding potential approached −40 mV, vesicle release events were 

organized in bursts of 10-20 vesicles (red arrowheads) rather than unitary events that 

predominated in rods held at −70 mV (black arrowhead). The number of quanta released 

during each of these traces is denoted at the right. Quanta in a burst were calculated by charge 

transfer divided by the charge transfer of a unitary event at that voltage. B. As bursts started 

to appear at −50 mV, the amplitude and variance of IA(glu) increases. Data shown is from the 

same cell as the representative trace in panel A.  C. Rates of release increased linearly with 

ICa at room temperature and 35 °C.  Release rates (filled circles) at each voltage (liquid 

junction potential corrected) followed Ca2+ influx. Both voltage and temperature affect 

release rate (p < 0.001, 2-way ANOVA). Release rate at −44 and −34 mV were increased 

significantly by temperature (p = 0.02 and p =0.0002, respectively, 2 -way ANOVA, Tukey’s 
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multiple comparisons) C. The peak amplitude of ICa increased with temperature (p = 0.004, 

paired t-test, n = 9). 

 

Bursts and single vesicle fusion events were both enhanced by using SCN- in the patch 

pipette, but bursts were not an artefact of using this anion since we also observed similar (albeit 

smaller) bursts using a Cl- based pipette solution (n = 4) and did not see bursts in cones using the 

same pipette solution. As described later, bursts were not observed in rods after genetic elimination 

of the exocytotic Ca2+ sensor molecule, synaptotagmin-1 (Syt1). ICa and passive membrane 

properties were unchanged in rods lacking Syt1 and so the absence of bursts in these cells indicates 

that bursts were not due to artefactual bursts of Ca2+ channel activity in synaptic terminals (e.g., 

from a loss of voltage clamp). 

Interspersed between bursts were occasional single vesicle fusion events (Fig. 21A-B).  

Bursts were longer in duration and larger in amplitude than individual events. Fig. 21C and D shows 

the amplitude histogram from a rod voltage-clamped at −40 mV. This rod showed more unitary 

events at −40 mV than most, allowing us to construct frequency distributions for both unitary and 

burst events.  There were a number of small individual events with a mean amplitude of ~4 pA 

along with larger bursts that averaged 12 pA in amplitude.  In order to estimate the number of 

vesicles released during a bursting episode, the charge transfer of each burst was divided by the 

average charge transfer of unitary events in the same cell. The high density of transporters in rods 

is unlikely to be saturated during glutamate release (Hasegawa et al., 2006) and we assumed IA(glu) 

events add linearly. Consistent with this assumption, the amplitude of large, multivesicular IA(glu) 

release events in salamander rods were linearly correlated in amplitude with simultaneously 

measured post-synaptic currents (Chapter 2)(Hays et al., 2020).  Fig. 21C plots the frequency 

distribution for charge transfer measurements of large and small events from this cell.  Fig. 21D 

illustrates a burst and a unitary event recorded at the same potential. While the amplitude of bursts 

was threefold larger than the single quantal amplitude, the charge transfer of bursts was six-fold 



79 

 

 

larger than the single vesicle charge transfer suggesting that the bursts in this example consisted of 

an average of 6 vesicles apiece. Bursts more often (81%, n = 22 cells) consisted of 10-20 vesicles 

with an apparent upper limit of 45-60 vesicles (3%, n = 22 cells). Quanta per burst calculated by 

charge transfer (17 ± 7, n = 22) was always larger than calculated by amplitudes (3 ± 1; p <0.0001, 

n = 22 cells, t-test), suggesting that many vesicles are released sequentially during a burst. 

Figure 21 Bursts are multiples of unitary events. A. Example trace of burst events (arrows) and 

unitary events at −40 mV. B. Bursts (left) typically show a more asynchronous rise compared to the 

smooth rise of the unitary event (right).C. Charge transfer frequency distribution from the same cell 

suggested that each burst consisted of ~6 vesicles. Multiple Gaussian fit with 154.5 ± 32.9 and 689.9 

± 73.8 (mean ± SD) D. A. Amplitude frequency distribution of unitary and burst events in a rod 

voltage clamped at −40 mV. Multiple Gaussian fit with 4.0 ± 0.7 and 11.7 ± 1.0 (mean ± SD). This 

record was chosen for an abundance of unitary events  

 

Consistent with sequential fusion of individual vesicles, many bursts showed multiple 

inflection points during the initial inward current (e.g., Fig. 22A and B).  One could also see 

individual peaks during the burst consistent with sequential fusion of additional vesicles during the 
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burst.  On the other hand, in some cases, multiple vesicles appeared to be released synchronously 

during bursts. In 50 ± 31% (mean ± SD, n = 11 cells) of the cells, bursts began with a large smooth, 

uninterrupted increase in the inward current suggesting that the fusion of some vesicles could also 

be highly synchronized. Event half-widths varied widely (60 − 709 ms) but averaged 216 ± 69 ms, 

n = 22 cells).  The examples in Fig. 22C and D show large smooth increases in IA(glu) that are two 

to three times larger than the corresponding single vesicle events, suggesting the possibility of 

synchronous fusion of two or three vesicles.  

Figure 22. Comparing waveforms of unitary and burst events in cells held at  −40 mV 

suggests both sequential and synchronous fusion of multiple vesicles during bursts. Often, 

the initial inward current during a burst showed multiple inflection points occurring at 

intervals similar to the amplitude as individual single vesicle events, suggesting sequential 

fusion of vesicles during the burst (e.g., A, B.),  In other cases, the initial inward current 

increased smoothly to an amplitude that was two to three times larger than an individual event 

suggesting synchronous fusion of multiple vesicles (e.g., C, D).  In the example in D, one 

can also see multiple peaks suggesting sequential fusion during the burst.  

 

 Cones voltage-clamped at −40 mV did not show the same bursting behavior as rods, but 

instead showed large individual release events that appeared to involve a more synchronous release 

mechanism (Fig. 23).  As suggested by the example recordings and amplitude histogram in Fig. 

23A, even during spontaneous release in cones held at −70 mV, there were many large events that 

appeared to arise from synchronous multiquantal release.  This differed from rods where 
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multiquantal release only emerged at more depolarized potentials. An increase in the number of 

multiquantal release events at more depolarized potentials may explain why event amplitude did 

not diminish with voltage despite a decrease anion driving force (Fig. 23C). Unitary events in cones 

had a faster 10- 90% rise time (7.4 ± 0.5 ms, n > 40 events in 3 cells) than rods (9.3 ± 0.1 ms, n 

=12 rods, p < 0.001, t-test) suggesting a faster rise in synaptic cleft glutamate. The decay time 

constant (49.8 ± 6.9 ms, n > 40 events in 3 cells), which is shaped by the glutamate transporter 

cycle time, was not different from rods (p = 0.33, t-test). These data show that the bursting behavior 

is specific to rods, suggesting it may play a role in signaling information under dim light conditions.  

Figure 23 Bursting appears to be a characteristic exclusive to rods. A. Example recording of 

spontaneous events in in a cone held at −70 and −40 mV. B. Amplitude histogram of spontaneous 

IA(glu) release events (n = 61) recorded in a cone voltage-clamped at −70 mV. Inset shows the 

waveform of a single multiquantal (30 vesicles) spontaneous release event.  The presence of many 

large events in this plot and the example traces in A suggest cones are capable of synchronous 

release of multiple vesicles.  C. Plot of IA(glu) event amplitude as a function of holding potential in 

this same cone. D Amplitude histogram of spontaneous IA(glu) release events (n = 72) recorded in a 

cone voltage-clamped at −40 mV shows the presence of numerous large events. The waveform of a 
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synchronous multiquantal (34 vesicles) release event at −40 mV (inset). showed the same kinetics 

as events at −70 mV suggesting a more synchronized mechanism of multivesicular release than 

occurs in rods. 

Bursts in rods held steadily at −40 mV and release events evoked by brief strong 

depolarizing stimuli both appear to originate from the same pool of vesicles. With a strong 

depolarizing test step (25 ms, −70 to −10 mV) that should release the entire readily releasable pool, 

release events averaged 21 ± 12 vesicles (n = 9) as measured from IA(glu) charge transfer following 

termination of the step. This is similar to the number of vesicles in bursts (p = 0.17, unpaired t-

test). To compare these pools more directly, we voltage clamped rods at −40 mV for 30 s and then 

applied a brief depolarizing step to −10 mV (25 ms) to deplete the releasable pool, and then returned 

the membrane potential to −40 mV for another 30 s.  Bursts measured before and after the 

depolarizing step were nearly equal in amplitude.  Mean burst/evoked response ratio did not differ 

significantly from unity (before = 1.10 ± 0.17, p = 0.9, t-test, n =10; after = 0.88 ± 0.06, p = 0.8, t-

test, n = 10). This is illustrated in Fig. 24A in which the depolarizing step evoked an inward current 

that was similar to bursts that occurred before and after the step.  Interestingly, in the next trial, a 

burst occurred immediately before the step to −10 mV and the subsequent depolarizing step failed 

to evoke release (Fig. 24B). Because bursts were relatively infrequent, we were not fortunate 

enough to see other examples where the burst immediately preceded the test step, but the recording 

shown in Fig. 24 provides evidence that bursts can deplete the releasable pool available for 

depolarization-evoked release.   
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Figure 24 Rod voltage clamped at −40 mV and stepped briefly to −10 mV to test for cross-

depletion of pools that contribute to bursting and evoked release.  A. The amplitude of an 

IA(glu) release event evoked by a 25 ms step to −10 mV matched the amplitude of preceding 

and subsequent burst events before. B.  Release was not evoked when a burst immediately 

preceded the step to −10 mV, suggesting a shared vesicle pool. 

 

Bursts Depend on Calcium 

The increased rate of release with depolarization tracked the increase in ICa suggesting it 

was Ca2+-dependent. The essential role of Ca2+ influx was confirmed by eliminating this voltage-

dependent in increase in release rate with addition of the voltage gated Ca2+ channel blocker Cd2+ 

to the external solution (n = 3) (Fig. 25A).  The persistence of some release events even in the 

presence of Cd2+ is consistent with studies in salamander retina showing the capability for Ca2+-

independent spontaneous release from rods(Cork et al., 2016) (Cork et al., 2016).  

As shown in Fig. 20C the membrane voltage of −40 mV approaches the midpoint activation 

voltage (V50) for rod ICa (Babai and Thoreson, 2009) so we investigated whether increasing the 
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open time of L-type Ca2+ channels extended burst duration by recruiting extra vesicles. Lengthening 

Ca2+ channel openings by bath application of BayK8644 (2 µM) did not significantly alter release 

properties at –40 mV. Bursts consisted of 24 ± 9 (n =3, mean ± SD) vesicles in control conditions 

compared to 25 ± 14 vesicles in BayK8644 (p = 0.8, n = 3 cells, paired t-test). Burst event duration 

was also unchanged by extending Ca2+ channel open times (control half-width was 209 ± 87 ms, n 

=3, versus 211± 143 ms in BayK8644, p = 0.96, paired t-test, n = 3 cells). The frequency of 

individual uniquantal events in periods of 30 seconds (2.5 ± 0.7 events) was also not significantly 

increased with BayK8644 treatment (4.0 ± 0.9 events; n =3, p = 0.2, paired t-test). Thus, overall 

release rates at −40 mV were not increased with BayK8644 treatment (Figure 25B). These data 

suggest that while the influx of Ca2+ through Ca2+ channels is required to trigger a burst, the number 

of vesicles in each burst is not strongly shaped by further influx and diffusion of Ca2+ from voltage-

gated Ca2+ channels.  

Results from mouse and salamander retina have shown that Ca2+ released from internal 

stores by Ca2+-induced Ca2+ release (CICR) helps to promote release when rods are tonically 

depolarized(Cadetti et al., 2006;Suryanarayanan and Slaughter, 2006;Babai et al., 2010b) (Cadetti 

et al., 2006;Suryanarayanan and Slaughter, 2006;Babai et al., 2010b). We tested contributions from 

CICR by introducing a ryanodine receptor inhibitor, dantrolene (100 µM), through the patch pipette 

and observed a modest reduction in release rate when CICR was blocked (p = 0.006; mixed model 

ANOVA), suggesting that Ca2+ from internal stores may boost release at depolarized potentials 

(Fig. 25C). However, CICR was not required for coordinating bursts as they persisted after 

introducing dantrolene into rods through the patch pipette (Fig. 26A).  Dantrolene did not extend 

interburst intervals (3340 ± 2489 ms, n = 6) compared with control (2756 ± 596 ms, n = 14, p = 
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0.3, unpaired t-test) nor did it reduce the number of quanta in each burst from control (dantrolene: 

21 ± 9, n = 6; control: 17 ± 7, n = 22, p = 0.1, unpaired t-test).  

Figure 25 Bursting depends on Ca2+ from voltage-gated Ca2+ channels. A. Including CdCl2 

in the extracellular medium abolished bursts of release at depolarized potentials, although 

some Ca2+-independent spontaneous release events remained (p = 0.0009, 2-way ANOVA). 

B. Including BayK8644 (2 µM) in the extracellular solution did not increase release rate 

measured at either −70 or −40 mV (p = 0.93, paired t-test). C. Application of a ryanodine 

receptor inhibitor, dantrolene (100 µM), in the pipette solution modestly reduced overall 

release frequency (p = 0.006, 2-way ANOVA) 

 

Bursts were also not blocked by introducing a high antagonist concentration (100 µM) of 

ryanodine (n = 4) through the patch pipette (Fig. 26B). Likewise, the replenishment of internal 

stores by store operated channels (SOC) does not appear necessary for bursts as application of SOC 

Orai/Stim1 blocker SKF96368 through the patch pipette did not eliminate bursting behavior (Fig. 

8C, n = 3). We also tested whether horizontal cell feedback might be responsible for organizing 

bursts, but bursts at −40 mV appeared to be unchanged by bath application of 10 µM AMPAR 

blocker NBQX (n = 3, Fig. 26D).  



86 

 

 

 

Figure 26 A, B. Inhibiting CICR with a high concentration of dantrolene (100 µM) or 

ryanodine (100 µM) in the patch pipette did not eliminate bursting behavior. C.  Inhibiting 

the replenishment of internal Ca2+ stores with the SOC channel blocker SKF96368 (10 µM) 

in the bath also did not eliminate bursts. D. Adding an AMPAR blocker NBQX (10 µM) to 

the bath to block horizontal cell feedback did not eliminate bursting.   

 

We manipulated intracellular Ca2+ buffering to probe the spatiotemporal Ca2+ distribution 

controlling release rates and bursting behavior. Typically, our pipette solution contained 5 mM 

EGTA as the principal Ca2+ buffer.  Replacing this with the faster Ca2+ buffer, BAPTA, reduced 

the voltage-dependent increase in release rates to a similar extent with both 1 and 10 mM BAPTA 

(p = 0.0004, n = 5-8, mixed model ANOVA, Fig. 27). Neither concentration of BAPTA eliminated 

the bursting behavior observed at −40 mV and the number of quanta in each burst was unchanged 

(12.5 ± 1.4 versus 13.1 ± 2.1 and 11.3 ± 1.3 for 1 and 10 mM BAPTA, respectively; p = 0.9, 1-way 

ANOVA, n =5 cells in each condition). However, switching from EGTA to BAPTA lengthened 

the intervals between burst events from 2756 ± 596 in control conditions with 5 mM EGTA (n = 

14 cells) to 4805 ± 1524 ms with 1 mM BAPTA (p = 0.02, ANOVA, n = 5 cells) and 6523 ± 2535 

with 10 mM BAPTA (p = 0.008, ANOVA, n = 4 cells). The number of individual quanta released 
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between bursts was also not reduced by 1 or 10 mM BAPTA buffering (10 mM, p = 0.6, t-test, n = 

5 cells of each condition) consistent with other evidence that these events result from Ca2+-

independent spontaneous release. 

 
Figure 27 Replacing EGTA in the 

patch recording pipette with the faster 

Ca2+ buffer BAPTA reduced overall 

release rates during 30 s steps (p = 

0.0004, 2-way ANOVA). A. Release 

rate was reduced by 1 mM BAPTA 

buffering compared to control 5 mM 

EGTA at −40 mV (p = 0.004; 2-way 

ANOVA, Tukey’s multiple 

comparisons). Ten mM BAPTA 

significantly reduced release rates at 

−40 and −30 mV (p < 0.01; 2-way 

ANOVA, Tukey’s multiple 

comparisons). B. Buffering by BAPTA 

did not eliminate bursting, and bursts 

consisted of the same number of quanta 

compared to control (p > 0.05, 1-way 

ANOVA, Tukey’s multiple 

comparisons) Boxes represent 

interquartile range and median, and 

whiskers show minimum to maximum 

values. 
 

 

Unlike individual single-vesicle release events, bursts were blocked by Cd2+ and so the 

persistence of bursts in the presence of 10 mM BAPTA indicates that they must involve release 

sites located within Ca2+ nanodomains extremely close to Ca2+ channels. Ca2+ channels are clustered 

beneath ribbons (Morgans, 2001;Specht et al., 2009;Mercer and Thoreson, 2011;Lv et al., 2012b) 

and so this suggests that ribbon-associated vesicles participate in bursting.  This agrees with results 

suggesting that bursts share the readily releasable pool with evoked release, which is commonly 

thought to be ribbon-dependent. The finding that use of a faster buffer BAPTA increased the 

intervals between bursts suggests that more distant changes in [Ca2+] play a role in preparing bursts 
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for release.  This may reflect the Ca2+-dependence of vesicle replenishment at ribbons (Babai et al., 

2010a;Van Hook et al., 2014;Van Hook and Thoreson, 2015).   

Calcium-Activated Chloride Currents Emerge with Depolarization 

In addition to bursts of release, another characteristic of rods that becomes apparent around 

−40 mV are large sustained inward currents that involve activation of Ca2+-activated Cl- currents 

(ICl(Ca))(Thoreson and Burkhardt, 1991;Barnes and Deschenes, 1992). Much of the time, these 

currents were observed immediately after a step to −30 or −40 mV as illustrated in Fig. 28A (arrows 

show the initiation of these large currents), but they could also arise in the middle of long periods 

of depolarization as well. They were blocked by bath application of CdCl2 (0.1 mM, Fig. 28A) and 

promoted by lower Ca2+ buffering from 5 to 0.1 mM EGTA.  In fact, with weak intracellular Ca2+ 

buffering (0.1 mM EGTA), the frequency of large ICl(Ca) during 30-s steps at −30 and −40 mV 

obscured accurate measurements of glutamate release during bursts. These large inward currents 

appeared to be anion currents since they were reduced at more positive potentials and by replacing 

KSCN with CsGluconate (n = 5) in the pipette solution, but were not blocked by TBOA (100 µM, 

n = 3).  These large inward currents persisted even after strong buffering with 10 mM BAPTA, 

suggesting that sustained Ca2+ influx can saturate buffering. 
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Figure 28 Large, long Ca2+ activated Cl- currents (ICl(Ca)) emerge during sustained depolarization. 

Many time these currents were initiated after depolarization as in Panel A, but were also 

occasionally preceded by large burst events as in panel B. A. Representative current trace with 5 

mM EGTA buffering shows that these large inward currents were eliminated when CdCl2 was 

included in the Ames extracellular solution. Black arrow indicates start of ICl(Ca) B. Using a 

CsGluconate-based internal solution rather than the KSCN solution reduced ICl(Ca). ICl(Ca) persisted 

even with 10 mM BAPTA in the KSCN internal solution suggesting that Ca2+ buffers could be 

saturated by the sustained Ca2+ influx during 30-s depolarizing steps. Black arrow shows onset of 

ICa(Cl) immediately after a burst event, dashed arrow shows onset of ICa(Cl) not preceded by a burst 

event with CsGluconate internal solution.  

 

We also tested effects of Ca2+ buffering on release evoked by a strong depolarizing step.  

As illustrated in Fig. 29, steps from −70 to −10 mV evoked inward currents in rods as glutamate 

was retrieved.  Fig. 29 examines the impact of different intracellular Ca2+ buffers.  Panels A, B and 

C, show example recordings under four different buffering conditions evoked by steps of 5, 25, and 

500 ms duration, respectively.  With 5 mM EGTA, steps of 5 and 25 ms duration evoked similar 

amplitude inward currents.  Larger currents were evoked by a 500-ms step (filled circles, Fig. 29D).  
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Using 1 mM BAPTA to restrict the spread of Ca2+ to nanodomains close to Ca2+ channels, similar 

amplitude currents were evoked by 5- and 25-ms steps, but there was no further increase with 500-

ms steps (open triangles).  More strongly buffering Ca2+ with 10 mM BAPTA eliminated IA(Glu) at 

all step durations (filled triangles) compared to 5 mM EGTA (5 ms p = 0.002, 25 ms p = 0.003, 

500 ms p < 0.0001, 2-way ANOVA, Tukey’s multiple comparisons). While 10 mM BAPTA is 

capable of buffering Ca2+ during relatively short steps, the persistence of ICl(Ca) currents and bursts 

described above suggests that this buffer can be saturated with continued influx of Ca2+ during 30-

s steps. With weaker Ca2+ buffering using 0.1 mM EGTA, responses evoked by 5-ms steps were 

unchanged (p = 0.92) and responses to longer steps were enhanced, although the change was not 

significant (p = 0.1).  Taken together, these data say that fast synchronous release evoked by short 

5-ms test steps involves vesicles located within Ca2+ nanodomains close to Ca2+ channels whereas 

slower release evoked by longer steps involves more distant sites.  Since Ca2+ channels are clustered 

beneath ribbons, this suggests that fast release that is closely synchronized with Ca2+ channel 

activation occurs predominantly at the ribbon whereas slower release that is less tightly 

synchronized to the initial depolarization involves ectopic non-ribbon site.    
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Figure 29 Effects of intracellular Ca2+ buffering on IA(glu) evoked in rods from C57Bl6 mice 

using strongly depolarizing steps (-70 to −10 mV). A. Representative IA(glu) evoked by 5 (A), 

25 (B) and 500 (C) ms steps. Overlaid traces show currents evoked with different intracellular 

Ca2+ buffers introduced into rods through the patch whole cell recording pipette (0.1 mM 

EGTA, n =10, gray; 5 mM EGTA, black; 1 mM BAPTA, red; 10 mM BAPTA, blue). The 

stimulus trace is shown at the top of each panel. D. Summary data showing changes in I A(glu) 

with the various buffers. Buffering with 1 mM BAPTA (n =11) reduced IA(glu) evoked by 500 

ms step significantly compared to control conditions (5 mM EGTA, n =16, p=0.0086, t-test 

corrected for multiple comparisons). 0.1 mM EGTA (n =10) significantly enhanced responses 

evoked by 25 ms steps (p=0.0018). Responses evoked by strong depolarizing steps were 

abolished by 10 mM BAPTA (n =3) compared to 5 mM EGTA with all step durations (p = 

0.002, 5 ms; p = 0.008, 25 ms; p < 0.0001; 500 ms; Tukey’s multiple comparisons test)  

 

Ca2+ Sensors, Syt1 and Syt7, Contribute to Sustained Release 

We then tested how Ca2+ sensors Syt1 and Syt7 shape evoked and sustained release. 

Selective elimination of Syt1 from mouse rods abolished fast, synchronous Ca2+-dependent 

exocytosis evoked by brief depolarizing steps but a slower component of release persisted 

(Grassmeyer et al., 2019).  The high affinity Ca2+ sensor, Syt7, is believed to be the sensor for slow, 

asynchronous release at bipolar cell ribbon synapses as well as a number of conventional synapses 

(Sun et al., 2007;Bacaj et al., 2015;Luo et al., 2015). To examine the role of Syt7 in release from 
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rods, the UNMC Mouse Genome Engineering core used EasiCRISPR to generate a floxed mouse 

line with loxP sites flanking exon 7 (Quadros et al., 2017).  PCR experiments showed proper 

insertion of both LoxP sites. For selective elimination of Syt7 from rods, this line was crossed with 

mice that express Cre recombinase specifically in rods under control of the rhodopsin promoter 

(Rho-iCre) (Li et al., 2005). The generation of Syt1 flox mice was described previously (Quadros 

et al., 2017;Grassmeyer et al., 2019).   

Fig. 30 shows examples of inward IA(glu) in rods from different mouse lines with and without 

Syt1 and Syt7.  Fig. 30D plots the amplitude of IA(glu) as a function of test step duration.  All data 

were obtained using 5 mM EGTA as the buffer and the data from control C57Bl6 mice are the same 

as those plotted in Fig. 29 (black, filled circles).  Blocking the glutamate transporter with the 

inhibitor TBOA blocked depolarization-evoked inward currents, confirming that they arise from 

activation of glutamate transporter anion currents (filled triangles).  Consistent with data from 

Grassmeyer et al. (2019), eliminating Syt1 from rods abolished responses to 5 ms steps (p = 0.002) 

and greatly reduced responses to 25 ms steps (p = 0.01, 2-way ANOVA, Tukey’s multiple 

comparisons) (Grassmeyer et al., 2019).  The earlier study only tested step durations up to 25 ms. 

As shown in Fig. 30C, eliminating Syt1 did not reduce the amplitude of IA(glu) evoked at the end of 

long 500 ms steps (p = 0.97, 2-way ANOVA, Tukey’s multiple comparisons).  Presumably, the 

glutamate released by Syt1 early during the step does not contribute significantly to the level of 

glutamate present after 500 ms.   

We next recorded from rods in which Syt7 had been eliminated.  Elimination of Syt7 had 

no effect on release evoked by 5- and 25-ms steps (p = 0.99, 2-way ANOVA, Tukey’s multiple 

comparisons), but substantially reduced release evoked by 500-ms steps (p = 0.003).  This suggests 

that Syt7 is the sensor that mediates slow release from rods.  Consistent with this, in double 

conditional knockout mice where we eliminated both Syt1 and Syt7 from rods, release appeared to 

be entirely eliminated at all step durations (p < 0.03).  The small residual inward currents that 
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remained in these rods did not differ significantly from the small inward currents that remained 

after bath application of TBOA (Fig. 30D).  Together with the results of Fig. 29 suggesting that 

fast release occurs predominantly at the ribbon whereas slow release involves non-ribbon sites, 

these results suggest that Syt1 mediates ribbon release whereas Syt7 predominately mediates non-

ribbon release.  

Figure 30 Single cell recording shows that eliminating Syt7 diminishes slower components of 

depolarization-evoked glutamate release. The traces in A, B and C show overlaid examples of 

glutamate transporter anion currents (IA(glu)) recorded from rods in four different mouse lines: 

wildtype C57Bl6 (black traces), RodSyt1CKO (red traces), RodSyt7CKO (gray traces), and 

RodSyt7Syt1CKO (red traces) Currents were leak subtracted using a P/8 protocol to remove 

passive membrane properties.. C. Plot of IA(glu) amplitude as a function of test step duration (-

70 to −10 mV) in single cell rod recordings from Wildtype (n =16), wildtype + TBOA (0.3 

mM, filled triangles, n =8), RodSyt1CKO (filled squares, n = 29), RodSyt7CKO (n = 5), and 

RodSyt1Syt7CKO (open circles, n = 6). The amplitude of IA(glu) was measured immediately 

following the test step. 

 

While deletion of Syt1 eliminates fast, evoked release, it also significantly elevates the rate 

of spontaneous release in rods voltage-clamped at −70 mV(Grassmeyer et al., 2019) (Grassmeyer 
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et al., 2019).  This is consistent with findings from other systems that Syt1 helps to clamp the 

SNARE apparatus and prevent spontaneous fusion(Xu et al., 2009;Courtney et al., 2019;Grushin 

et al., 2019) (Xu et al., 2009;Courtney et al., 2019;Grushin et al., 2019).  In rods lacking Syt1, we 

saw a significant overall increase in spontaneous release (p < 0.001) but there was also a further 

increase in release rates with depolarization at membrane potentials above −50 mV.   Rates at −40 

and −30 mV in Syt1CKO rods matched those in rods from control mice (Fig. 31).  The smaller 

voltage-dependent increase seen after eliminating Syt1 suggests that unclamping Syt1 may 

facilitate fusion of vesicles that would normally be released only by an increase in Ca2+.  The 

residual voltage-dependent increase in release at −40 and −30 mV that remained after eliminating 

Syt1 from rods was abolished by replacing 5 mM EGTA with 1 mM BAPTA in the patch pipette 

(Fig 13B).  This suggests that this residual release occurred at non-ribbon release sites and thus 

may be mediated by the high affinity sensor, Syt7(Xu et al., 2009) (Xu et al., 2009).  Eliminating 

Syt7 from rods did not change the rate of spontaneous release at −60 or −70 mV but slightly 

depressed the increase at more positive potentials, although the effect was not significant (p = 0.6, 

2-way ANOVA, n = 7-8 cells, Fig. 31).  After eliminating both Syt1 and Syt7 from rods, 

spontaneous release at −60 and −70 mV was increased but the voltage dependent increase in release 

rates at −40 and −30 mV was eliminated (p > 0.05, 2-way ANOVA).  Genetic elimination of the 

Ca2+ sensors Syt9 and Doc2B, also expressed in rods, did not have an effect on voltage dependent 

sustained release rates (p = 0.45, n = 3-8, mixed model ANOVA)(Fig. 31D).  

Interestingly, when the calcium sensor Syt1 was conditionally knocked out in rods, roughly 

the same number of quanta were released over long periods of time (30 s) but events were largely 

uniquantal and not organized in bursts (Fig. 31A). These data suggest that the clamping function 

of Syt1 is necessary to maintain inactive periods between bursts, thus allowing accumulation of a 
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sufficient number of vesicles to initiate a burst at −40 mV. The absence of the sensors Syt7, Syt9, 

or Doc2b had no effect on bursts.  

Figure 31. Syt1 and Syt7 mediate sustained release during long (30 s) depolarizations  A.  

Representative traces at −40 and −70 mV illustrate the differences in release characteristics 

in wildtype and RodSyt1CKO knockout rods. B. After Syt1 elimination, voltage-dependent 

increases in release rate at −40 and −30 mV remained but were reduced by using the fast Ca2+ 

buffer, BAPTA (1 mM), rather than EGTA (5 mM).  C. After eliminating Syt1, the voltage 

dependent increases in release rate that remained were attenuated by additionally removing 

Syt7 from rods. Syt7 knockout alone did not unclamp fusion at hyperpolarized potentials like 

Syt1 removal. D. Whole animal knockout of Syt9 and rod-specific elimination of Doc2b did 

not eliminate spontaneous release, prevent bursting or alter the voltage-dependent increase 

in sustained release rates. 

 

Discussion 

An appreciation of mechanisms of tonic release of glutamate-containing vesicles from 

rods, graded by membrane potential, is critical to understanding how synaptic transmission is 

regulated by light-evoked changes in rod membrane potential. Using IA(glu) we were able to show 
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that Ca2+ sensors Syt1 and Syt7 both contribute to the voltage-dependence of sustained and evoked 

vesicle release. At depolarized potentials in times of darkness, rods release vesicles at a slow rate, 

using a method for multivesicular release that recruits ribbon-associated vesicles near Ca2+ 

channels.  

Glutamate release from vertebrate rods has been found to show a linear dependence 

on intraterminal [Ca2+] and a shallow Ca2+ cooperativity (Thoreson et al., 2004;Heidelberger et al., 

2005). Earlier assessments of Ca2+-dependence of release were performed in non-mammalian retina 

and relied on techniques such as capacitance jumps, postsynaptic current measurements evoked by 

brief depolarizing steps, and fluorescent probes to evaluate fusion over longer period(Thoreson et 

al., 2004;Choi et al., 2005) (Thoreson et al., 2004;Choi et al., 2005).  In the present study, we show 

that the sustained release of vesicles from mouse rods possessing a single ribbon also show the 

linear dependence on ICa demonstrated earlier.  

Voltage-dependent changes in glutamate release rate tracked with ICa, even when the 

temperature of the system was increased to physiological levels. Fusogenicity of the SNARE 

complex, employed by rods for exocytosis, is controlled by entropic forces, so complex formation 

and zippering is not aided by increases in temperature (Mostafavi et al., 2017). Thus, rate appears 

to depend chiefly on the increase in ICa that accompanies increasing temperature that we found to 

have Q10 = 2.1. Voltage-gated Ca2+ channels in rods are L-type channels containing the CaV  

subunit 1.4, with several splice variants that have different kinetics and gating properties (Tan et 

al., 2012;Haeseleer et al., 2016). While the gating properties of some voltage gated ion channels 

are strongly temperature-dependent (Q10 5-10) (Lee and Deutsch, 1990;DeCoursey and Cherny, 

1998;Hille, 2001), our experiments agree with the relatively weaker temperature-dependence of 

Cav1.4 (Q10 = 2-4) measured in various systems (Herve et al., 1992;Allen, 1996;Hope et al., 

2005).   Studies of synaptic release from bullfrog inner hair cells that also contain synaptic ribbons 

and employ L-type Ca2+ channels (Brandt et al., 2005) describe a stronger temperature 
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dependence of release frequency, but agree with the present study that increases in release are likely 

due to enhanced ion currents rather than changes in the fusion machinery itself (Sabatini and 

Regehr, 1996;Chen and von Gersdorff, 2019). It is possible that other parts of the synaptic vesicle 

cycle are speeding with temperature; however, the mouse rod is less reliant on fast endocytosis for 

refilling of the RRP than conventional neurons (von Gersdorff and Matthews, 

1997).  The tight relationship of release with Ca2+ influx improves linearity in the transformation 

of light-evoked changes in membrane potential into synaptic release. 

We have previously shown that Ca2+-dependent release evoked by brief depolarizing steps 

in rods and cones are both mediated by Syt1 (Grassmeyer et al., 2019).  While Syt1 appears to 

mediate all of the evoked release in cones, rods retained the capability for a slower component of 

release after removal of Syt1.  In the present study, we found that release could be evoked by strong 

depolarizing steps of 500 ms duration after deletion of Syt1 from rods. This slow release was 

abolished by eliminating Syt7.  At other CNS synapses, including retinal bipolar cells, Syt1 and 

Syt7 work together, with the former initiating fast fusion and the latter slow, asynchronous fusion 

of vesicles from a separate pool (Geppert et al., 1994;Weber et al., 2014;Deng et al., 

2020). Similarly, our results show that Syt1 mediates fast synchronous release and Syt7 mediates 

slow asynchronous release from rods.  Slow asynchronous release was also abolished in rods by 

using 1 mM BAPTA as the Ca2+ buffer.  Replacing the slower buffer EGTA with this fast buffer 

constrains the spread of Ca2+ to nanodomains close to Ca2+ channels. Since Ca2+ channels in rods 

are clustered near ribbons (Nachman-Clewner et al., 1999;Morgans, 2001;Dolphin et al., 2020), the 

persistence of fast release mediated by Syt1 suggests it involves vesicles at the base of synaptic 

ribbons.  Conversely, the loss of slow release with 1 mM BAPTA suggests that Syt7-mediated 

asynchronous release involves sites further from ribbon-associated Ca2+ channels.  There may also 

be a role for Syt7 in maintaining release during prolonged (e.g., 30 s) steps. At potentials above 

−50 mV when more Ca2+ channels are opening, non-ribbon vesicles appear to be recruited for 
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release. Buffering with 1 mM BAPTA eliminated the voltage dependent increase in ongoing vesicle 

release rates at −40 and −30 mV in Syt1 knockout rods. Eliminating Syt7 also reduced ongoing 

release rates at −40 and −30 mV but the effects were small suggesting a minor contribution from 

this sensor. 

Spontaneous release can be important for circuit development, synaptic plasticity and 

shaping spiking patterns (McKinney et al., 1999;Carter and Regehr, 2002;Andreae et al., 2012). As 

in other neurons, spontaneous release in rods can be triggered by the stochastic opening of L-type 

Ca2+ channels, but vesicles can also be released independent of Ca2+ influx (Cork et al., 2016). Our 

results show that mouse rods are also capable of Ca2+-independent spontaneous release since strong 

buffering by 10 mM BAPTA or inclusion of CdCl2 in the extracellular medium did not eliminate 

spontaneous fusion events.  At hyperpolarized potentials where Ca2+ channels are minimally active, 

spontaneous release rate were slow, consistent with previous measurements in mouse rod of ~0.9 

Hz at −70 mV (Grassmeyer et al., 2019). This is similar to the rate of Ca2+-independent release in 

amphibian rods after accounting for differences in the number of ribbons (1.3 v/s/ribbon)(Cork et 

al., 2016;Hays et al., 2020). The spontaneous rate in mouse cones averaged ~5 Hz and our serial 

reconstructions of mouse cones (n = 4 cones) show they have ~10 ribbons/cone (Li et al., 2005), 

yielding a rate of 0.5 v/s/ribbon.  Salamander cones have 13 ribbons/cone (Pang et al., 

2008a;Bartoletti et al., 2010) and a spontaneous rate of 11-12 Hz or 0.8-0.9 v/s/ribbon.(Sterling and 

Matthews, 2005).   

While spontaneous release from rods held at −70 mV appeared to involve the stochastic 

release of individual vesicles, when rods were depolarized to −40 mV, we saw the emergence 

of multiquantal bursts of release, each involving 10-20 vesicles.  We consider the mechanisms 

involved in the bursts below.  In addition to their voltage-dependence, bursts were blocked by Cd2+ 

indicating that they require activation of voltage-dependent Ca2+ channels.  Like Ca2+-dependent 

release evoked by brief depolarizing steps, bursting at −40 mV was not observed in rods lacking 



99 

 

 

Syt1 (Grassmeyer et al., 2019).  Elimination of Syt7 did not alter bursting.  The loss of bursting 

that accompanied the loss of Syt1 may directly interrupt bursting or indirectly deplete an 

overlapping pool of vesicles, but these results nevertheless indicate that the vesicles involved in 

bursting can be released by Syt1-mediated mechanisms. Inclusion of 10 mM BAPTA in the patch 

pipette did not abolish the bursting that accompanied depolarization maintained for tens of second 

but did block release evoked by short depolarizing steps.  It is likely that the buffering capacity was 

overwhelmed by the continued influx of Ca2+ during prolonged depolarizing stimulation.  

Consistent with this, large inward currents reflecting the activation of Ca2+-activated Cl− channels 

also persisted with 10 mM BAPTA. The persistence of bursting in the presence of BAPTA indicates 

that it involves vesicles that are within nanodomains that are close to Ca2+ channels and thus likely 

involves ribbon-associated vesicles.  

The periods between bursts are not likely to be due to cessation of Ca2+ influx since CaV1.4 

channels show minimal inactivation.  The failure of AMPAR blocker NBQX to eliminate bursting 

suggests that horizontal cell feedback is not required for bursting behavior. The dihydropyridine 

agonist BayK8644, which extends the open time of L-type Ca2+ channels, did not reduce interburst 

intervals or extend burst duration. The interburst intervals were, however, extended by BAPTA, 

which may be due to a slower rate of replenishment with less available intracellular Ca2+ (Babai et 

al., 2010a). CICR contributes to slow release from rods (Cadetti et al., 2006;Babai et al., 

2010b;Chen et al., 2014;Chen et al., 2015), but bursts were not abolished by a high concentration 

of ryanodine, the ryanodine receptor inhibitor dantrolene or an SOC inhibitor. 

Burst sizes are likely constrained by the number of vesicles available for release.  Synaptic 

ribbons appear specialized for multiquantal release. Multiquantal release can be sequential or 

tightly coordinated so that multiple vesicles are released simultaneously(Glowatzki and Fuchs, 

2002;Singer et al., 2004;Graydon et al., 2011;Hays et al., 2020) (Glowatzki and Fuchs, 2002;Singer 

et al., 2004;Graydon et al., 2011;Hays et al., 2020).  Synchronous fusion of multiple vesicles can 
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occur if multiple nearby vesicles are located within the same rapidly rising Ca2+ nanodomains 

(Graydon et al., 2011) or it can result from homotypic fusion of vesicles prior to release (Matthews 

and Sterling, 2008;Hays et al., 2020).   

The BAPTA results suggest that vesicles involved in bursts are closely associated with 

ribbons.  The apparent cross-depletion between vesicle pools involved in bursts and depolarization-

evoked release, along with evidence that the number of vesicles in bursts roughly matched the 

number of vesicles released by a brief strong depolarizing step, together suggest that the pool of 

vesicles involved in bursts overlaps with the readily releasable pool of vesicles evident during 

strong depolarization.  This latter pool is thought to reflect vesicles tethered at the base of the ribbon 

(Mennerick and Matthews, 1996;LoGiudice and Matthews, 2009).  While bursts appear to be 

initiated by vesicles at the base of the ribbon located within Ca2+ channel nanodomains, the release 

of subsequent vesicles during the burst appears to involve sequential fusion of additional vesicles. 

The large smooth rise of the initial inward current during bursts suggests that some vesicles may 

also fuse synchronously as seen in salamander rods and mouse bipolar cells (Singer et al., 

2004;Hays et al., 2020).  The sequential nature of vesicle fusion during these bursts may be similar 

to multiquantal release in hair cells (Grant et al., 2010).  In hair cells, it has been suggested that the 

complex release events reflect flickering of fusion pores (Chapochnikov et al., 2014).  In our hands, 

IA(glu) were very uniform in both kinetics and magnitude at −70 mV suggesting full vesicle fusion, 

releasing one whole quantum during spontaneous release. The burst events at −40 mV consistently 

had larger charge transfer than spontaneous events, so it seems unlikely that they originate from a 

single vesicle.  

One strategy for achieving reliable transmission of single photon responses at the rod 

synapse is to maintain extremely fast release rates; however, we found that release from rods at 

−40 mV and 35 °C averaged only ~10 v/s/ribbon, substantially lower than the rate of ~100 

vesicles/s that is needed for reliable transmission assuming a purely Poisson release process (Rao 
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et al., 1994;Rao-Mirotznik et al., 1998;van Rossum and Smith, 1998). There may be two 

advantages to keeping the overall release rate low. First, as the quantal rate increases, the fractional 

change in rate produced by photon absorption increases (Schein and Ahmad, 2006). Furthermore, 

maintaining a high rate of release during long periods of darkness requires a tremendous amount 

of energy and other cellular resources (Okawa et al., 2008;Linton et al., 2010;Yuan et al., 2018). An 

alternative strategy for making release more reliable is to make it more regular.  This can improve 

the ability of downstream bipolar cells to detect small changes in release rate caused by small single 

photon responses (Schein and Ahmad, 2005;2006). At the dark resting membrane potential of −40 

mV, we consistently observed large multivesicular release events that occurred at semi-regular 

intervals.  These bursts were characteristic of rods but not cones, suggesting a particular role for 

transmitting scotopic signals. The role of bursting in transmission of single photon light response 

of rods is explored further in Chapter 4.  
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CHAPTER 4: Rod signaling at the dark potential 

Abstract 

Rod photoreceptors are specialized to transduce and transmit single photon responses to 

the visual system. This remarkable proficiency depends on reducing the rate of glutamate release 

sufficiently to be appreciated post-synaptically in rod bipolar cells. We discovered that at their 

resting membrane potential in darkness, rods release coordinated bursts of vesicles rather than rapid 

stochastic uniquantal release events. In this chapter, we examined the statistical properties of 

release and tested sensitivity of bursting to small voltage changes similar to those produced in rods 

by absorption of a single photon. Spontaneous release of individual vesicles in rods voltage-

clamped below the threshold for activating voltage-gated Ca2+ currents occurred stochastically and 

obeyed Poisson statistics. The transition from uniquantal release to bursts appeared reliably as the 

membrane potential approached −40 mV in rods. Hyperpolarizing rods from −40 to −43.5 mV, 

similar to the voltage change evoked by a single photon response, reduced burst frequency. The 

interval between bursts immediately following this step was significantly longer than the average 

interevent interval measured at −40 mV. Application of a voltage stimulus that mimicked the 

waveform of a 3.4 mV single photon response reduced the probability of seeing a burst nearly to 

zero with a rebound increase in probability at stimulus offset. Using white noise stimuli, the 

waveform that preferentially triggered bursts was a small hyperpolarization followed by 

depolarization with a time course similar to single photon responses.  Simulations of release 

frequency suggest that the sensitivity of bursting to small voltage changes may contribute to a non-

linearity at the rod synapse that discards responses below a certain threshold to favor larger 

responses.  
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Introduction 

One of the most impressive features of the vertebrate visual system is the ability to detect 

signals from single photons. Pioneering psychophysical studies showed that humans can see light 

flashes consisting of a dozen or less photons falling on the retina, suggesting that individual rods 

must be capable of responding to absorption of single photons of light (Hecht et al., 1942).  The 

ability of rods to respond to single photons was later confirmed by electrophysiological recordings 

from single rods (Baylor et al., 1984;Rieke and Baylor, 1998;Gross et al., 2015;Reingruber et al., 

2015). In primates, absorption of a single photon evokes a response of approximately 1 mV 

(Schneeweis and Schnapf, 1995;Hornstein et al., 2005).  In mouse rods, single photon responses 

are a bit larger, averaging around 3.4 mV (Cangiano et al., 2012). The perception of single photons 

by the visual system requires that rods reliably transmit these small voltage changes to downstream 

neurons. 

 In darkness, rods maintain a relatively depolarized membrane potential near −40 mV. This 

membrane potential is sufficiently depolarized to activate CaV1.4 L-type Ca2+channels that control 

synaptic glutamate release from rods.  CaV1.4 channels show minimal voltage- and Ca2+-dependent 

inactivation, allowing for sustained Ca2+ influx into rod terminals in darkness (Baumann et al., 

2004;Waldner et al., 2018). This in turn promotes the continued release of glutamate by rods that 

acts on ON-type rod bipolar cells.  As rods hyperpolarize to light, the resulting decline in Ca2+ 

channel activity slows the rate of ongoing vesicle release leading to the opening of TRPM1 cation 

channels in rod bipolar cells and thus membrane depolarization.   

Synaptic release is an intrinsically noisy process that is typically described by Poisson 

statistics (Zhang and Peskin, 2015;Malagon et al., 2016;Miki, 2019). The challenge for a recipient 

rod bipolar cell is to distinguish a genuine slowing of release caused by a small hyperpolarizing 

single photon response from a random pause in release.  One proposed solution is to sustain a very 

high rate of release.  Given Poisson statistics, for true single photon- driven pauses to be reliably 
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distinguished from a random long interevent interval, the minimum quantal release rate has been 

calculated to be 80-100 vesicles per second (Rao et al., 1994;Rao-Mirotznik et al., 1998;van 

Rossum and Smith, 1998;Schein and Ahmad, 2005).  This is substantially faster than most 

conventional neurons (Rao et al., 1994) although ribbon synapses in turtle cones may be capable 

of sustaining release rates of up to 80 v/s/ribbon (Copenhagen et al., 1983). However, salamander 

rods, salamander cones, and gecko rods all appear to release vesicles at slower rates of 10-20 

v/s/ribbon (Sheng et al., 2007). Post-synaptic measurements suggest that release from mammalian 

cones is also relatively slow with a rate of 18 v/s/ribbon (Berntson and Taylor, 2003).  Our results 

reported in Chapter 3 report the first direct measurements of release rates at a mammalian rod 

synapse and find a sustained release at a rate of ~10 v/s/ribbon at −40 mV, much slower than that 

required for accurate single photon detection.     

A second strategy to avoid detection of false positive events due to random intervals is to 

make release more regular.  Schein and Ahmad formulated the clockwork hypothesis which 

proposes that the rate of release is not purely Poisson, but is a more regular Erlang process that 

waits for a large number of Poisson event intervals before triggering a release event(Schein and 

Ahmad, 2005) (Schein and Ahmad, 2005).  The sustained release of glutamate from rods involves 

a plate-like, presynaptic structure known as the synaptic ribbon. Ribbons tether vesicles along their 

planar surfaces and then deliver them to release sites at the base (Snellman et al., 

2011;Vaithianathan et al., 2016).  Sustained release at photoreceptor ribbon synapses is thus limited 

by the rate at which vesicles are delivered to release sites (Jackman et al., 2009). It was proposed 

that the wait times required for delivery and docking of vesicles at the base of the ribbon (i.e., 

replenishment) would be one possible mechanism that could yield an Erlang process at rod 

synapses.     

 Spontaneous release of vesicles from salamander rods and cones shows an exponential 

distribution of interevent intervals consistent with Poisson release statistics (Cadetti et al., 
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2005;Cork et al., 2016) but amphibian rods have ~7 ribbons and amphibian cones have ~13 ribbons 

making it difficult to assess release properties at an individual ribbon.  By contrast, mammalian 

rods have only a single ribbon.  We took advantage of this feature and recorded individual 

glutamate release events from mouse rods to examine release statistics at single ribbon synapses.  

To measure release, we recorded presynaptic anion currents coupled to glutamate transporter 

activity in rod terminals.  The glutamate transporters in rods (largely EAAT 5) are linked to an 

uncoupled anion conductance so that as glutamate is retrieved, an anion channel is opened (Arriza 

et al., 1997;Schneider et al., 2014).  Using this approach, we found that when rods were voltage-

clamped at −70 mV, spontaneous release of single vesicles occurred stochastically at rates that 

followed Poisson statistics; however, when rods were held at the typical resting membrane potential 

in darkness of −40 mV, sustained release occurred in regularly spaced bursts of ~17 vesicles apiece.  

Small hyperpolarizing steps and voltage waveforms that simulated single photon responses both 

produced abrupt decrements in the rate of these bursts.  Event-triggered average waveforms 

obtained from white noise stimuli showed that bursts were preferentially triggered by a small 

hyperpolarizing voltage excursion followed by a larger depolarizing excursion, with a time course 

similar to single photon responses of rods.  A key property of transmission from rods to rod bipolar 

cells is the presence of a thresholding non-linearity that discards synaptic noise along with some 

small but genuine responses.  Our results are consistent with other evidence that this non-linear 

threshold occurs prior to summation of rod inputs in the rod bipolar cell (van Rossum and Smith, 

1998;Field and Rieke, 2002;Sampath and Rieke, 2004). Furthermore, we suggest that the sensitivity 

of this bursting behavior to small voltage changes may be an important presynaptic component to 

this thresholding non-linearity.    
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Methods 

Animals 

Control mice of predominately or wholly C57/Bl6 backgrounds were kept on 12-hour dark-

light cycles and experimentation was performed with the approval of the University of Nebraska 

Medical Center Institutional Animal Care and Use Committee. Mice of both sexes aged 4-12 weeks 

were euthanized in accordance with the AVMA Guidelines for the Euthanasia of Animals by CO2 

asphyxiation and cervical dislocation.  

Electrophysiology 

Rod cells were visualized in a flatmount preparation performed on an upright fixed-stage 

microscope (Nikon E600FN) under a 60x water-immersion objective. Rod inner segments and cell 

bodies were identified morphologically and targeted with positive pressure using recording 

electrodes mounted on Huxley-Wall micromanipulators (Sutter Instruments). Rod recordings were 

performed in whole-cell voltage clamp using an Axopatch 200B amplifier (Axon 

Instruments/Molecular Devices) and signals were digitized with DigiData 1550 (Axon 

Instruments/Molecular Devices). Data acquisition and analysis was performed on pClamp 10 

Software (Molecular Devices). Voltages were not corrected for liquid junction potential (KSCN 

pipette solution: 3.9 mV). All experiments were performed in room light.  

 Flatmount preparations were continuously superfused with room temperature Ames 

solution (US Biological) bubbled with 95% O2 /5%CO2 at ~1 mL /minute unless otherwise noted. 

Intracellular solutions for IA(glu) measurements contained (in mM): 120 KSCN, 10 TEA-Cl, 10 

HEPES, 1 CaCl2, 1 MgCl2, 0.5 Na-GTP, 5 Mg-ATP, 5 phospho-creatine, pH 7.3. Intracellular 

solution was buffered with 5 mM EGTA. Passive membrane properties averaged Cm = 3.2 ± 0.2 

pF; Rs = 2.3 ± 0.04 GΩ (mean ± SD, n = 20).  
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 IA(glu) event frequency, kinetics, and charge transfer were identified with the event finder 

function in pClamp directed by a template that included a sampling of  ~10 manually curated 

events. Statistical analysis was performed on GraphPad Prism 7 and all data are represented as 

mean ± SEM unless otherwise noted.   

Statistical Analysis 

To test whether release rate reflected a Poisson process at −70 and −40 mV, interevent interval 

histograms were fit with a one-phase exponential decay. In another approach, the number of release 

events was tallied over a long period (30 s) to calculate the average number of release events per 

second (λ). A fractional frequency distribution of events was then made using 1-second bins and 

fit with a Poisson model (see equation 1 below) where P is the probability of observing x number 

of events, and e is Euler’s constant. We calculated the best fit λ value (mean events in an interval) 

in that cell using GraphPad Prism 7.  

Equation 1:  𝑃(𝑥) =  
𝜆𝑥𝑒−𝜆

𝑥!
 

Results 

As described in chapter 3, we recorded IA(glu) from individual rods in flatmount mouse 

retina preparations to study the voltage- and Ca2+- dependent changes in release at single rod 

ribbons (Fig. 32). Spontaneous inward currents in rods voltage-clamped at −70 mV showed a 

unimodal amplitude distribution suggesting they consist entirely of uniquantal events (Fig. 19, 

Chapter 3).   The increased rate of vesicle release with membrane depolarization involves a switch 

to more coordinated forms of release with semiregular bursts dominating release in rods held at 

−40 mV (Fig. 32).  As described in the last chapter, these bursts consist of 10-20 vesicles (17 ± 7, 

mean ± SD), are triggered by Ca2+ influx and derive from a readily releasable pool of vesicles 

shared with evoked release. Release rates increase with temperature in proportion to rod ICa (Ref. 

Chapter 3), attaining a rate of ~10 v/s/ribbon at the dark resting membrane potential of −40 mV at 
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35 °C. This is too slow to reliably encode small single photon voltage responses by simple changes 

in rate, assuming Poisson release statistics (Rao et al., 1994;Schein and Ahmad, 2006).  

 

Figure 32 The quantity of glutamate released, measured by IA(glu), increases with 

depolarization but near −40 mv, release is coordinated in bursts of 10-20 vesicles rather than 

single vesicle fusion events.  A. Representative traces from a single rod clamped at various 

voltages.  B. Panel B illustrates a burst and unitary event at −40 mV and a unitary event at 

−70 mV.  C. Panel C shows long recording segments to illustrate the stochastic release of 

individual events at −70 mV and more regular bursting at −40 mV.  

 

Release in Bursts is not Modeled by Poisson Statistics 

It is generally accepted that under conditions of low release probability, vesicle exocytosis 

occurs stochastically, obeying Poisson statistics (Zhang and Peskin, 2015;Malagon et al., 

2016;Miki, 2019).  Spontaneous release can occur due to chance openings of voltage-gated Ca2+ 

channels or can be Ca2+-independent (Kavalali, 2015;Cork et al., 2016;Kavalali, 2019).  The 

persistence of spontaneous release events in rods held at −70 mV even in the presence of 
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extracellular Cd2+ or intracellular 10 mM BAPTA showed that they are Ca2+-independent events 

(Chapter 3). For analyzing frequency distributions of events, only rods in which we observed >50 

spontaneous or burst events were included in the data set. The frequency distributions of interevent 

intervals for release events detected in rods voltage-clamped at −70 mV consistently exhibited a 

one-phase exponential decay as predicted for a Poisson release process (R2 = 0.96 ± 0.05, mean ± 

SD, n = 8) (Fig. 33A) The probability of the number of release events that occur in a 1 s interval 

was also well fit by assuming a Poisson distribution (Fig. 33C). The Poisson fit for spontaneous 

events was robust (R2= 0.94 ± 0.07, mean ± SD, n = 8) and the best fit value of the mean number 

of events per second, λ, was similar to the actual mean number of events observed in the sample (p 

= 0.72, n = 8).  

These results indicate that the rate of Ca2+-independent spontaneous release from rods is a 

Poisson process. What about higher rates when Ca2+-dependent release is engaged at more 

depolarized potentials?  If we treat bursts as single release events, histograms of interburst intervals 

cannot be fit by single exponential decay (Fig. 33C). Fitting the interburst intervals with a Gaussian 

function yielded better fits (mean R2 = 0.84 ± 0.12) than an exponential decay and suggested a 

coefficient of variation of 0.64 ± 0.20 (n =8).  If the multiple vesicles released in a burst are 

considered as separate events, the distribution of such events in time also cannot be modeled by a 

Poisson distribution. When time was binned into 1-second intervals, there were either many 

vesicles (a burst) or none released during each time interval. This caused events to be distributed 

in a bimodal fashion. We attempted fitting the frequency distribution with the Poisson model 

equation (equation 1), with λ constrained to the measured number of mean events/s.  As illustrated 

in Fig. 33D, the fit was quite poor and yielded −R2 values (-0.5 ± 05, n = 8) indicating that the 

Poisson distribution does not appropriately model this phenomenon.  



110 

 

 

 

Figure 33 Sustained release rate in bursts is not Poisson. Panels A and C show spontaneous 

release obeys the Poisson model. A. Interevent intervals fit a one phase exponential decay (τ 

= 220). B. If bursts are considered single events, their interevent intervals do not show an 

exponential decline consistent with a Poisson model, even when also considering the unitary 

events between bursts. C. Using equation 1, we fit the probability of seeing a number of 

events in 1 second bins to the frequency per second measured over 90 − 180 s recording.   We 

obtained a good fit when we constrained the fit to the calculated mean events per second of 

λ = 1 (dashed black line, calculated, R2 =0.88) and obtained an event better fit with a similar 

value for λ when it was unconstrained (dashed red  line, fit λ = 1.16, R2 = 0.95). D. Because 

bursts are asynchronous, if we consider the quanta released in a burst to be separate release 

events, there are either 0 or ~35 events happening per second. This is also not well modeled 

by Poisson statistics, both when the software was constrained the λ was constrained to match 

the mean rate of 2.5 (dashed red line, R2 = 0.46) calculated from long observations, or when 

λ was unconstrained (dashed black line, best fit λ = 10.98, R 2 = −0.39). 

 

 Bursting is Sensitive to Small Voltage Changes 

As shown in Chapter 3, the bursting behavior was not observed in cones, occurred only 

near the typical membrane potential in darkness, and was not distributed in time in a Poisson 



111 

 

 

manner. Therefore, we hypothesized a role for this form of coordinated release in the synaptic 

transmission of small single photon events. Cangiano et al. measured the photovoltage in mouse to 

average 3.44 mV; we applied a hyperpolarizing step of 3.5 mV to investigate its effects on burst 

frequency(Cangiano et al., 2012) (Cangiano et al., 2012).   After significant (30 s) periods of time 

clamped at –40 mV, a 3.5 mV hyperpolarizing step to −43.5 mV caused a pause in bursting. 

Comparing the average interburst intervals measured for 30 s at −40 mV with those measured for 

30 s at −43.5 mV, we saw significantly longer intervals (1846 ± 1055 ms vs 3106 ± 1808, p < 

0.0001, paired t-test, n = 4).  When we looked at the period immediately after applying the step to 

−43.5 mV, bursts were delayed substantially so that bursts were absent for seconds afterwards (red 

triangles in Fig. 34B). The shortest interburst interval (3 s) seen after stepping to −43.5 mV (red 

triangles) exceeded the standard deviation of interburst intervals measured at −40 mV. Smaller 

hyperpolarizing steps of −1 (n = 3; filled circles, Fig. 34B) and −2 mV (n = 3; stars, Fig. 34B) also 

caused an appreciable pause in bursting immediately after the step.  
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Figure 34 Bursts were sensitive to small hyperpolarizing steps.  A. Example trace showing 

that bursts of IA(glu) release events paused for several seconds immediately after 

hyperpolarizing the rod from −40 to −43.5 mV and the rate of bursting remained slower for 

the duration of the step. Red triangle denotes the time interval we were measuring to plot as 

red triangles in panel B. B. Frequency distribution of intervals between bursts measured at  

−40 and −43.5 mV (n = 4), each fit with a single Gaussian. Hyperpolarization slightly 

extended the mean interburst from 1846 ± 1055 ms to 3106 ± 1808 ms interval during the 

entire 30 s step to −43.5 mV (p < 0.0001, paired t-test). Filled circle, star and triangles show 

the longer interval measured directly after hyperpolarizing steps of 1, 2, or 3.5 mV,  

respectively. All of these intervals were >1 standard deviation of the mean interburst interval 

at −40 mV (red dashed lines). 

 

 To further investigate the capability of a single photon absorption event to reduce bursting, 

we clamped rods at –40 mV and applied a voltage stimulus waveform mimicking a single photon 

voltage response (Fig. 35A). The simulated single photon response was constructed from a two 

exponential function that rose with a time constant of 1 s and declined with a time constant of 2.5 

s, attaining a peak amplitude of 3.4 mV with a time to peak of 245 ms  (Fig. 35A)(Cangiano et al., 

2012).   For each cell held at −40 mV, the simulated single photon voltage stimulus was repeated 

for 30 trials (Fig. 35B). When a rod received 30 consecutive simulated photons, a burst event was 
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almost never observed during the hyperpolarizing stimulus, suggesting that rods are able to adjust 

release probability for even these small voltage changes. The probability of observing the onset of 

a burst event during the 300 ms period of the simulated single photon was 0.016, significantly lower 

(p = 0.008, n = 6 rods, repeated measures ANOVA) than the probability of observing a burst in 300 

ms time bins randomly chosen at any time prior to the simulated flash (0.15) and even lower than 

the probability (0.27) of observing a burst event during the 300 ms period immediately following 

the simulated single photon response (p = 0.002, n = 6, repeated measures ANOVA; Fig. 4C).  The 

voltage stimulus prevented further bursting during the hyperpolarization but did not truncate bursts 

that had started just prior to the stimulus because bursts that were operating during the stimulus had 

the same number of quanta, measured by charge transfer, to those prior (p = 0.53, t-test , n = 5 

rods).  



114 

 

 

Figure 35  Rods voltage clamped at −40 were presented a simulated single photon voltage stimulus. 

A. Voltage stimulus had an amplitude of −3.4 mV and time to peak of 245 ms, matching the single 

photon responses measured in mouse rods by Cangiano et al. (2012)(Cangiano et al., 2012). B. When 

a rod was presented with the stimulus 30 consecutive times (black arrow), there was an appreciable 

pause in release during hyperpolarization. C. Summary data showing the number of burst events, out 

of a maximum possible 30, initiated in 300 ms intervals at a random time before the stimulus, 

beginning 50 ms into the stimulus and immediately following the stimulus. Burst events were almost 

never observed during the single photon waveform. The probability of observing a burst before, 

during, or after the stimulus was different p = 0.0005, 2-way ANOVA, Tukey’s multiple comparisons, 

n = 6) 
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Fig. 36A illustrates the effect of 1 rod absorbing a photon among a population of 20 rods 

assuming linear convergence onto a single rod bipolar cell (Rao-Mirotznik et al., 1998;Calkins and 

Sterling, 1999). In this example, we overlaid a single trace recorded from a rod stimulated by 

application of a single photon voltage waveform on top of 19 traces from 3 rods that did not receive 

a simulated photon. It is difficult to distinguish the stimulus from a random pause in release 

(asterisk).  When we repeated this by overlaying 5 responses from 1 rods onto 15 non-responding 

traces from 5 rods, the change in bursting induced by the simulated photon was more easily 

distinguished from random pauses (Fig. 36B).  Occurrence of the flash was even more easily 

distinguished when we overlaid 10 responding rods and 10 non-responders (Fig. 36C).   

 

Figure 36 Examples overlaying 20 rod 

traces in which 1, 5, or 10 rods received 

simulated single photon voltage stimuli 

while the remaining rods were held 

continuously at −40 mV. Black asterisks 

denote possible false positives.  Traces 

where voltage stimulus was applied came 

from the same rod, while the remaining 

traces came from random 6 s samples of 3 

rods held at −40 mV.  The red trace shows 

the single photon voltage stimulus. 
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Release Simulations 

The initial increase in rod IA(glu) integrates the rise in cleft glutamate levels.  IA(glu) events 

associated with individual vesicles declined with a time constant close to 50 ms, consistent with 

the slow cycle time for glutamate transport (Arriza et al., 1997;Gameiro et al., 2011). In salamander 

rods, the glutamate transporters were estimated to be at least 3 microns from release sites (Hays et 

al., 2020).  The mGluR6 glutamate receptors of rod bipolar cells are located 400-800 nm from 

ribbons (Rao-Mirotznik et al., 1998).  mGluR6 receptors act through Go proteins to close TRPM1 

channels in the rod bipolar cell membrane (Morgans et al., 2009;Morgans et al., 2010). This cascade 

has slow kinetics of activation during glutamate onset with and then slowly de-activates, with 

latencies of tens of milliseconds similar to IA(glu) kinetics (Snellman et al., 2008;Morgans et al., 

2010). As a first approximation, IA(glu) provides a reasonable estimate for the kinetics of rod bipolar 

cell currents evoked by glutamate release from rods.  

To examine the ability of a post-synaptic neuron to detect changes in release produced by 

absorption of a photon, we compared Gaussian distributions of IA(glu) release rates in rods held at 

−40 mV to simulate rates in darkness and rates observed while applying the voltage waveform for 

a single photon response. In the trials described above, the rate of bursting measured at −40 mV 

averaged 0.46 ± 0.15 bursts/s (S.D., n = 7).  This rate declined to 0.06 ± 0.06 bursts/s during the 

300 ms interval of the single photon voltage waveform and then rebounded to 0.752 + 0.188 bursts/s 

during the 300 ms immediately afterwards.  Fig. 37A compares these distributions.  There is very 

little overlap between the burst frequencies seen in darkness and following absorption of a photon 

and even less overlap between the single photon response and the rates measured immediately 

afterward. This indicates that absorption of a single photon could be readily detected at that 

synapse, but only if the sampling window was long enough.  

When we plotted interburst intervals against time after patch rupture, we saw a small but 

significant rundown in the rate of bursting during the recording (m = 0.002, p < 0.01, n = 4). As 
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described in Chapter 3, physiological temperatures permitted faster bursting by a factor of 2.2. 

These data suggest that our calculations of burst rates made during sustained periods of 

depolarization may underestimate rates of bursting and variance. The fastest rate of bursting at 

room temperature was 0.7 bursts/s, suggesting that at physiological temperatures, a rod may be able 

to achieve a rate of 1.5 bursts/s in situ. As we consider in the general discussion, this faster rate 

improves the likelihood that a bipolar cell may sense the change in absorption of a photon by a 

presynaptic rod. 

Previous studies suggested a non-linearity in the transmission of small responses from rods 

to rod bipolar cells and that this non-linearity occurs in the bipolar cell dendrite prior to summation 

of responses in the soma (Field and Rieke, 2002;Taylor and Smith, 2004;Okawa and Sampath, 

2007).  We multiplied the mean rate and variance in darkness by 20 to simulate linear summation 

of responses from 20 rods into a rod bipolar cell. We then simulated photon absorption in 1, 5 or 

10 rods, matching the conditions illustrated by the overlaid waveforms in Fig. 36.  To do so, we 

replaced the “dark” mean rate and variance from 1, 5 or 10 rods with the lower mean and variance 

measured during a simulated flash.  As illustrated in Fig. 37B, because the rate change produced 

by a response in one rod was only a small fraction of the total rate, linear summation of inputs 

obscured the ability of the post-synaptic neuron to detect absorption of a photon by one rod in the 

total population of 20.   If we assumed that 10 photons were absorbed simultaneously in the 

population of 20 rods, the post-synaptic bipolar cell could reliably detect the light flash if the rate 

by setting a detection threshold of 5.9 bursts/s.  However, this comes with a cost that 12.9% of 

random changes in rate during darkness would also be falsely detected as light responses.  Doubling 

the overall rates to simulate the rates at 35 °C did not noticeably improve detection thresholds (not 

shown).  These data are consistent with other evidence for the presence of a nonlinear thresholding 

mechanism placed prior to summation of responses in the bipolar cell soma (Field and Rieke, 

2002;Sampath and Rieke, 2004).  
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We next compared the benefits of semi-regular bursting behavior to a simple Poisson 

distribution.  In this case, we assumed that the rate of release in darkness followed Poisson statistics, 

showing variance equal to the mean rate.  From the results of Chapter 3, we used the mean overall 

vesicle release rate of 9 v/s measured at −40 mV and reduced that this rate to 7 v/s during the light 

flash. As illustrated in Fig. 37C, the difference in release rates produced in a single rod is not 

sufficient for detection of a single photon (assuming a neurometric threshold of 75% correct).  

Linearly summing inputs from 20 cells and assuming that the rate dropped to zero during the flash 

(Fig. 37D), the overall distributions were not much different from the distributions seen when 

summing inputs from 20 cells but using the properties of bursting (Fig. 37B).  These data suggest 

that without some coordination among rods, the semi-regular bursting behavior is not, by itself, 

enough to greatly improve detection thresholds.  Instead, the most important property of bursting 

behavior is the tremendous fall in the likelihood of a burst occurring during the single photon flash.  

This suggests that in addition to non-linearities involving the rod bipolar cell mGluR6 glutamate 

receptor, there is also a significant presynaptic non-linearity that shapes the time course and size of 

glutamate pulses detected by these receptors. 
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Figure 37 Assessing the capability for photon detection. A) Gaussian distributions of burst 

rates measured in rods held at −40 mV (data from Fig. 4, 0.459 ± 0.145 bursts/s, S.D., n = 7, 

black trace), rates observed while applying the voltage waveform for a single photon response 

(0.056 ± 0.059 bursts/s, dashed trace), and rate measured during a 300 ms period after the 

end of the stimulus (0.752 ± 0.188 bursts/s, gray trace). B.  Mean rate and variance from 20 

rods assuming linear summation. Absorption of a photon by  1 (dashed trace), 5 (blue trace) 

or 10 (red trace) rods, was simulated by replacing the “dark” mean rate and variance with the 

lower mean and variance measured during a simulated flash for 1, 5 or 10 rods. C) 

Distribution of rates assuming Poisson statistics for single vesicle release rates of 9 ± 3 v/s 

in darkness (black trace) and 7 ± 2.2 v/s (dashed trace) during the light flash. D) Photon 

absorption by 1 (dashed trace), 5 (blue trace) or 10 (red trace) rods was simulated with 

Poisson statistics in a population of 20 rods by assuming that the rate and variance dropped 

to zero if a rod absorbed a photon.  For all panels, probabilities were normalized relative to 

a rate of 1 event/s.  Neurometric threshold of 75% correct is shown as a vertical dashed line.    

 

White Noise Analysis 

  To identify the voltage changes that preferentially evoke bursting in rods, we held rods at 

−40 mV and applied a white noise voltage stimulus with a standard deviation of 3.5 mV and high 

frequency cutoff of 5 Hz, consistent with the rod power spectrum (Chichilnisky and Rieke, 2005).  

The average stimulus waveform that preceded each burst, i.e., the event triggered average (ETA) 
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waveform, consisted of a small hyperpolarizing excursion followed by a larger depolarizing 

excursion with a total time course roughly similar to that of a single photon response. (n = 4; Fig. 

38A). Using a white noise voltage stimulus with a smaller standard deviation (0.8 mV), the ETA 

showed a waveform with a similar shape and time course (Fig. 38B).  When we tested a similarly 

small stimulus but with 20 Hz cutoff, the ETA appeared as noise (Fig. 38C), suggesting the rod 

terminal preferentially responds to slow voltage changes with the frequency response 

characteristics of rods in light and dark, filtering out faster frequency membrane voltage noise. 

These data reinforce the idea that rods are very sensitive to small voltage changes similar to those 

experienced during a single photon response, consistent with a role of these bursts in helping to 

encode small light responses at the rod ribbon synapse.  

 

Figure 38 Event triggered averages (ETAs) were compiled from 600 ms segments of the white noise 

voltage stimulus. A. 2.5 s segments of white noise voltage stimulus with 5 Hz cut-off and 3.5 mV 

SD. B. ETA evoked by the same white noise stimulus. C. ETA evoked by a smaller stimulus with 

5 Hz cutoff but only 0.8 mV SD. D. ETA evoked by a white noise stimulus with 20 Hz cut-off and 

0.8 mV SD appeared as noise. 
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Discussion 

In this study, we examined the mechanisms by which tonic release from rods can be 

regulated by small changes in membrane potential. Using IA(glu) to measure release presynaptically, 

we found that at a membrane potential similar to that experienced in darkness, rods released 

glutamate-filled vesicles in coordinated bursts at rates that were not modeled by Poisson statistics. 

These bursts of release were exquisitely sensitive to small voltage changes. In the discussion below 

we consider their possible role in transmitting small single photon responses of rods.   

The ability of the vertebrate visual system to detect single photons signals arises from the 

high photon capture rates and high gain of the phototransduction cascade in rods. Next, the small 

changes in membrane voltage produced by absorption of a single photon must produce an 

appreciable change in the rate of release at the rod synapse. At the synapse from rods to rod bipolar 

cell dendrites, there is a non-linear thresholding mechanism in which only responses that exceed a 

certain size are transmitted, removing baseline noise along with smaller responses that fall below 

that threshold (Field and Rieke, 2002;Berntson et al., 2004b;Sampath and Rieke, 2004).  In mouse 

retina, where ~20 rods converge onto each rod bipolar cell (Rao-Mirotznik et al., 1998;Calkins and 

Sterling, 1999), comparisons of recordings from rods and rod bipolar cells found thresholds that 

excluded 40-85% of the single photon events in rods (Field and Rieke, 2002;Berntson et al., 

2004b;Schein and Ahmad, 2006). In rabbit retina, where 100 rods converge onto each rod bipolar 

cell, as many as 90% of the single photon responses are removed by the thresholding mechanism 

(Trexler et al., 2011).  Finally, as many as 75,000 rods eventually converge onto a single ganglion 

cell, allowing the capture of scarce single photons to produce detectable changes in retinal output 

(Taylor and Smith, 2004;Okawa and Sampath, 2007).  

Computer simulations suggested that, assuming a purely Poisson release process, post-

synaptic detection by rod bipolar cells requires rod release rates of 80-100 Q·s-1 (Rao et al., 

1994;van Rossum and Smith, 1998).  However, as shown in Chapter 3, the overall rate of release 
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from rods only attained 9 or 10 v/s at −40 mV and 35 deg C, with rates half as slow at room 

temperature (Chapter 3).  Similarly low rates have been found in experiments from non-mammalian 

rods using activity-dependent dyes, with gecko rods show a release rate in darkness of 2.5 

v/s/ribbon and salamander rods a rate of 18 v/s/ribbon suggesting these low rates are conserved 

feature among rods (Sheng et al., 2007).   

A second strategy suggested to overcome noise in release rates is to make release more 

regular.  At hyperpolarized membrane potentials, we found that glutamate release from rods 

followed a Poisson distribution similar to that seen at many other neurons (Malagon et al., 

2016;Miki, 2019). This nearly ubiquitous feature of neurons was established in the 1950s by 

Bernard Katz who modeled spontaneous release events to develop the quantal hypothesis of 

neurotransmission (Kavalali, 2015;2018).  However, as the membrane potential approached −40 

mV, release from rods was coordinated in bursts at fairly regular intervals. Amplitude distributions 

of release events and rates of release could not be explained by Poisson statistics. Intervals between 

bursts were instead more consistent with an Erlang process, having a coefficient of variance (CV) 

half as wide as what expected from a strictly Poisson process. Erlang processes wait a certain 

number of Poisson intervals between each event.  The accumulation of Poisson intervals thus 

effectively averages and regularizes release.  It was suggested that an Erlang process might play a 

role in transmitting single photon responses from rods (Schein and Ahmad, 2005;2006). However, 

to achieve reliable single photon detection, even with a rate of 100 v/s/ribbon, Schein and Ahmad 

found that they needed an Erlang process with an Erlang factor of 66 (i.e., an accumulation of 66 

Poisson intervals) (Schein and Ahmad, 2006). Our experimental data showed a narrower 

distribution than expected for a Poisson process by an order of 2-3, suggesting an aggregate of 4-9 

Poisson processes comprise the burst event, many fewer than that required in the modeling by 

Schein and Ahmad (2005, 2006). The modest increase in regularity that accompanies bursting thus 

seems less important than the sensitivity of bursting behavior to small voltage changes.  
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The non-linear thresholding mechanisms used at rod bipolar synapses is thought to occur 

before summation of rod responses in the rod bipolar cell soma (Field and Rieke, 2002;Sampath 

and Rieke, 2004).  Consistent with this, when we summed responses linearly among 20 rods, the 

ability of a bipolar cell to detect absorption of a photon was poor, regardless of whether one 

assumed Poisson release statistics or bursting behavior.  One mechanism that has been shown to 

contribute to this non-linear thresholding is that glutamate levels in the cleft are thought to keep the 

rod bipolar cell in saturation and that a small voltage change in one rod reduces glutamate 

sufficiently at one dendrite to re-open numerous TRPM1 channels in the rod bipolar cell, producing 

a relatively large voltage response (Sampath and Rieke, 2004).  We hypothesize that one 

mechanism that may keep glutamate levels high enough at individual synaptic clefts to saturate 

receptors during darkness are the regular bursts of release.    

When we simulated the changes sensed at a single rod synapse, if we assumed Poisson 

statistics using our measured rates, it was virtually impossible to distinguish a single photon 

response from noise. On the other hand, the abrupt cessation of bursting produced by a single 

photon response could be readily detected.  However, this would only be possible for the bipolar 

cell if the sampling interval was long enough, and the integration time for the bipolar cell is 

estimated to be ~200 ms (Taylor and Smith, 2004;Schein and Ahmad, 2005).  So what can we say 

about burst rates and their potential impact on rod bipolar cell membrane potential? 

Rates of mGluR6 activation and deactivation operate on a similar time scale as IA(glu) 

suggesting that changes in IA(glu) provide a reasonable estimate of glutamate levels sensed by a post-

synaptic rod bipolar cell (Nawy, 2000;Snellman et al., 2008;Gameiro et al., 2011).  At room 

temperature, interburst intervals averaged 2.6 s with each burst lasting ~0.2 s, suggesting a burst of 

glutamate would be present in the synaptic cleft for < 10% of the time.  However, release ran down 

during whole cell recording and rates were higher at 35 °C, suggesting that the true interburst 

interval in vivo may be as short as 0.7 s followed by bursts of 0.2 s (1.5 burst/s).   This would 
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suggest that 4-5 out of 20 presynaptic rods would be actively releasing glutamate onto a rod bipolar 

cell at any moment, while the others would be between bursts.  Flashes applied during a burst did 

not appear to terminate bursts early, but flashes nevertheless delayed the next burst considerably. 

Given a sampling interval of 200 ms by the rod, delaying a burst that was “scheduled” to appear 

during that 200 ms interval will have a much bigger impact on detection that delaying a burst that 

would have occurred later. In other words, photons that are absorbed by a rod during or immediately 

after a burst would likely produce voltage changes in the rod bipolar cell that are to be too small 

and slow to be detected. This in turn suggests that, at any moment, only about one rod in three is 

actually providing a useful signal concerning capture of a photon to post-synaptic bipolar cells. 

This is consistent with the idea that the non-linear thresholding mechanism employed by rod bipolar 

cells discards 2/3 single photon responses.  If maintaining the rod bipolar cell membrane potential 

only requires overlapping inputs from 4-5 rods, then eliminating only one of these inputs by 

preventing a burst of glutamate with absorption of a single photon could produce as much as 25% 

change in the rod bipolar cell response. Multivesicular bursts of glutamate release at individual 

dendrites provide a mechanism to achieve the saturation of mGluR6 receptors that has been shown 

to be important in the thresholding non-linearity at the rod bipolar cell synapse.(Sampath and Rieke, 

2004) 

In this study, we report the first direct measurements of release properties at single rod 

photoreceptor synaptic ribbons.  These results constrain models of rod signaling by showing that 

rods release vesicles at a rate of only 9-10 v/s/ribbon in darkness with release coordinated in bursts 

of vesicles occurring about once per second.  Data in the previous chapter suggest that bursts 

involve a ribbon-associated releasable pool of vesicles and that the intervals between bursts may 

be shaped by replenishment of this pool.  The cumulative wait times for replenishment of multiple 

vesicles to the releasable pool provides a mechanism for achieving an Erlang process to enhance 

regularity in release rates.  However, the modest increase in regularity that accompanies bursting 
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appears less important to signaling at rod synapses than the sensitivity of bursting to small voltage 

changes.  Even voltage changes as small as 1 mV produced detectable changes in bursting and 

white noise voltage stimuli showed that very small depolarizing excursions could trigger bursts.   

Our results suggest that this bursting behavior may contribute to the presynaptic non-

linearity in rod signaling.  Reliance on bursts filters out high frequency noise, noise introduced by 

spontaneous individual vesicle release events, and other sources.  Because photon absorption events 

have less immediate effects on bursting in some rods than others, our results suggest that, during 

each 200 ms sampling window, signals from many of the presynaptic rods would have only a small 

impact on the post-synaptic bipolar cell membrane potential.  Thus, in addition to non-linearities 

introduced by maintaining glutamate receptors in a state of saturation, our results suggest that the 

rod bipolar cell membrane potential is controlled by glutamate released from only a subset of rods 

at any moment.  The cost of this arrangement is discarding inputs from many presynaptic rods 

(Field and Rieke, 2002;Berntson et al., 2004b;Schein and Ahmad, 2006;Trexler et al., 2011), but 

the benefit is that the fractional change in glutamate receptor activity produced by the loss of input 

from a single rod upon photon absorption is enhanced.  Thus, the bursts of vesicle release in rods 

and their sensitivity to small voltage changes in darkness may be critical for generating detectable 

responses to single photons in rod bipolar cells that receive inputs from 20 or more rods.  

  



126 

 

 

Chapter 5: DISCUSSION 
 

Our ability to perceive light at the absolute limit of sensitivity imposed by the quantal 

nature of light has fascinated retinal physiologists since this possibility was first established in 

pioneering psychophysical studies by Hecht and colleagues (Hecht et al., 1942).  This process 

begins with absorption of single photons by rod photoreceptors but also requires reliable 

transmission of these small single photon responses to second-order retinal bipolar cells. Most of 

the presynaptic characteristics of release involved in signal transmission at rod synapses in 

mammals have been derived largely from models.  The studies in this dissertation employed 

methods for directly measuring glutamate release from rods in salamander and mouse retina to 

provide a deeper understanding of the mechanisms that shape transmission at rod synapses.  

Early studies suggested that most synapses released at most one vesicle in response to an 

incoming action potential (Korn et al., 1981;Redman and Walmsley, 1983;Redman, 1990).  

However, it has since become evident that many neurons employ multivesicular release operations 

to create analog codes and increase reliability at certain synapses. Ribbon-bearing neurons are 

particularly adept at this form of release (Singer et al., 2004;Graydon et al., 2011;Rudolph et al., 

2015) and retinal bipolar cells of zebrafish appear to use multiquantal release as a means of 

encoding contrast (James et al., 2019). Mechanistically, multiquantal release can arise from 

sequential fusion, synchronous fusion of multiple vesicles with the plasma membrane, or 

homotypic fusion between neighboring vesicles prior to compound fusion with the plasma 

membrane.  Homotypic fusion is common in many secretory systems and results of chapter 2 show 

evidence for this mechanism in rod photoreceptor cells (Hansen et al., 1999;Klein et al., 

2017;Gutierrez et al., 2018).  Photoreceptors share a common SNARE protein isoform, syntaxin3, 

with mast cells and pancreatic beta cells where syntaxin 3b mediates homotypic fusion (Curtis et 

al., 2008;Zhu et al., 2013;Sanchez et al., 2018). Similarly, we found that inhibiting syntaxin3b 

prevented multiquantal glutamate release from salamander rods. Damaging the ribbon also reduced 
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multiquantal release. In ribbon-bearing neurons, compound fusion has been suggested as a 

mechanism for releasing many vesicles with a rapid elevation of intracellular Ca2+ (Heidelberger et 

al., 1994;Heidelberger, 1998). Morphological studies have shown large invaginations and 

endosome-like cisternae near ribbons (Hama and Saito, 1977;Hama, 1980;Lenzi et al., 2002) that 

may arise from pre-fused vesicles or bulk endocytosis. Parsons and Sterling proposed that one 

possible purpose of the ribbon is to facilitate compound fusion of neighboring vesicles, a hypothesis 

that agrees with our findings in Chapter 2 (Parsons and Sterling, 2003).  

The two pools of vesicles involved in evoked and spontaneous release appeared to be 

distinct as they did not cross-deplete. This suggests a functional difference likely conferred by 

different populations of vesicular SNARE proteins (Crawford and Kavalali, 2015a). We have 

shown that syntaxin 3b is involved in multiquantal release and it is possible that the ribbon could 

maintain an enriched population of syntaxin3b-expressing vesicles through local vesicle cycling.  

Controlling the likelihood of multiquantal release by Ca2+ as we observed in salamander 

provides a means of rapidly increasing glutamate in the cleft to very high levels. In darkness, 

intraterminal Ca2+ would be high, promoting sustained multiquantal release such that when a rod 

absorbs a single photon, the relative reduction in glutamate released will be more than if it were 

only releasing one quanta at a time. Releasing multiple quanta through a single fusion pore would 

also prevent catastrophic disruption of the terminal membrane that would occur (Wen et al., 2018) 

if the rod cannot endocytose vesicles quickly enough to match the rate of release.  

Our studies also provided further evidence of the presence of spatially segregated active 

zones in salamander retina; which further enhances the coding repertoire of the rod that only 

transmits signals in analog form. Photoreceptors may be able to enrich their output to higher centers 

by controlling release from different sites to preferentially activate distinct populations of post-

synaptic receptors. This type of synaptic heterogeneity is evident in cortical neurons (Atasoy et al., 
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2008;Scheefhals and MacGillavry, 2018), where the postsynaptic neuron expresses spatially 

segregated receptor types. Multiquantal release from rod ribbons may preferentially excite ON 

bipolar cells that appose the rod terminal at different distances and orientation.  Bipolar cell 

mGluR6 receptors are far enough (~800 nm) away from the rod terminal that the influence of single 

quanta would be diminished by diffusional filtering, helping to eliminate the noise that 

accompanies spontaneous release.   The AMPA receptors that mediate responses of horizontal cells 

have a relatively low affinity for glutamate (EC50 > 50 µM) so multiquantal release may also 

enhance signaling to horizontal cells.  

In mouse rods, we observed random Ca2+-independent release of vesicles at rods when they 

were voltage-clamped at -70 mV, below the activation range for voltage-dependent ICa. 

Spontaneous release, or exocytosis of neurotransmitter that occurs in the absence of an incoming 

action potential, occurs in almost all synapses with a variety of cell-type specific 

characteristics. Though never evoked, spontaneous release can be Ca2+-dependent or -independent. 

The Ca2+ dependence has been shown by several intracellular Ca2+ buffers with variable chelating 

abilities which demonstrated a decline in spontaneous release rate. Ca2+ dependent spontaneous 

release may depend on the occasional stochastic openings of Ca2+ channels even at very negative 

membrane potentials. This is more likely to be true in inhibitory neurons whereas in excitatory 

terminals, the source of intracellular Ca2+ that drives Ca2+-dependent spontaneous release is more 

likely to be release from internal stores (Williams and Smith, 2018). Our experiments with 

extracellular Cd2+ suggest that most spontaneous release in mouse rods is independent of influx 

through VGCCs. As in salamander, we did not observe a role for ryanodine receptor-mediated Ca2+ 

release in spontaneous activity. The absence of Ca2+ dependent forms of spontaneous release keeps 

spontaneous fusion at its lowest possible rate, limiting synaptic noise.   

When mouse rods were depolarized to -40 mV, the resting membrane potential in darkness, 

IA(glu) appeared as coordinated bursts of multiquantal release.  These bursts involved synchronous 
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fusion (like salamander rods) but also sequential fusion of vesicles.  The bursts depended on the 

exocytotic Ca2+ sensor Syt1. Elimination of Syt1 from rods almost completely eliminated ERG b-

waves in the scotopic range and greatly increased spontaneous release at all potentials. Loss of Syt1 

rendered rods insensitive to small voltage changes, contributing to loss of the b-wave in 

electroretinography (Grassmeyer et al., 2019). However, in addition to abolishing voltage-

dependent changes in glutamate release, the rampant spontaneous vesicle fusion that accompanies 

loss of Syt1 may also impair transmission to rod bipolar cells by saturating post-synaptic mGluR6 

receptors. A “clamping” function of Syt1 has also been shown in other neurons, where knocking 

out Syt1 increases spontaneous release (Chicka et al., 2008;Courtney et al., 2019). In rods, the 

clamping function allowed for seconds long intervals between bursts when Syt1 was present.  As 

shown by the rapid release of vesicles during bursts, rods are capable of releasing vesicles at high 

rates, at least for a short time.  Modeling studies had suggested that in order to detect the change in 

rate of release produced by small single photon responses, rods must sustain release rates of nearly 

100 vesicles/s for indefinite periods (Rao et al., 1994). However, our measurements in individual 

rods showed that sustained release rates had a shallow relationship with voltage, rising in parallel 

with ICa and achieving an overall rate of only ~10 vesicles/s/ribbon at the dark resting membrane 

potential.  

While the overall release rate was low, we found that vesicle release at the dark potential 

in mouse rods occurred in semiregular bursts triggered by rapid Ca2+ increases localized to 

intracellular nanodomains immediately beneath Ca2+ channels. Burst duration was not strongly 

influenced by global terminal Ca2+ levels but restricting the intracellular diffusion of Ca2+ closer to 

ribbons lengthened the intervals between bursts.  Rods use a CaV1.4 Ca2+ channel that is resistant 

to inactivation allowing for tonic steady influx during long periods of depolarization (Baumann et 

al., 2004;Pangrsic et al., 2018;Waldner et al., 2018) leading to slow changes in global Ca2+.  The 

global elevation of Ca2+ that accompanies this sustained influx makes it difficult to rapidly decrease 
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Ca2+ to reduce release upon absorption of a photon. Linking release frequency to Ca2+ channel 

openings rather than global Ca2+ helps to solve this problem. This mechanism is also suited to the 

low affinity Ca2+ sensor Syt1.  We found that Syt1 was essential for bursting as well as fast 

synchronous release but not spontaneous release or release evoked by long depolarizing steps that 

fully activate ICa. The heterogeneity of responses to Ca2+ in the rod suggests that a combination of 

Ca2+ sensors must mediate release, but sensors other than Syt1 in rods had not previously been 

investigated. Our results in Chapter 3 also suggest that if depolarization requires further release, 

global Ca2+ may then dictate release from non-ribbon sites by using high affinity exocytotic Ca2+ 

sensor Syt7. We began to see the influence of Syt7 on evoked release only with long (500 ms) and 

strong depolarizing steps that are not representative of physiological conditions. However, it also 

promoted sustained release at -40 and -30 mV.  

Lastly, in Chapter 4, we examine the role for bursting in transmitting single photon 

responses. While the overall rate of glutamate release tracked linearly with ICa over the normal 

physiological range of voltages attained by rods (-70 to –30 mV), the coordination of release in 

burst was extremely sensitive to small voltage changes (1-3.5 mV) near the dark resting potential -

40 mV.  These small voltage changes are similar to those experienced by rods upon absorption of 

a single photon.  

Given the convergence of 20 rods to 1 rod bipolar cell, our findings may emulate a coding 

scheme observed in cortical networks. Cortical neurons, especially of sensory and motor systems, 

apply an energy efficient, sparse (< 1 Hz) code of action potentials. It is hypothesized that these 

sparse codes are a result of energy demands; only 1 neuron in a population of 50 have the metabolic 

capacity to be active at a particular time. In the retina, this computation might instead be necessary 

due to sparse signals (scarce single photon absorptions), and the incredible energy demands of 

sustained transmitter release over long periods of darkness. As mentioned, modeling studies 

suggested that rates of 100 v/s/ribbon are need to produce a reliably detectable change in release at 
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a given rod ribbon synapse in response to the small voltage changes produced by absorption of a 

single photon. This places an enormous energy demand on the retina. This conclusion assumed that 

the voltage-dependence of release paralleled voltage-dependent changes in ICa.  While we found 

that the overall rate of release averaged over long periods did indeed mirror changes in ICa, release 

was not maintained continuously at the same rate but instead showed long pauses punctuated by 

rapid bursts of release as the rod approached the dark resting membrane potential.  The likelihood 

of bursting was exquisitely sensitive to small voltage changes near the dark resting membrane 

potential. Thus, rather than maintaining a continuously high rate of release from all rods 

simultaneously, our results suggest that only a handful of rods are active at any moment and that 

the glutamate released from a few rods is sufficient to strongly hyperpolarize a rod bipolar cell.  

Effectively, the rod bipolar cell thus samples from a subset of active rods at any time, allowing the 

others to rest.  It is known that rod bipolar cells do not respond to every photon absorbed 

presynaptically.  It has been suggested that this non-linearity arises entirely at the mGluR6 receptors 

themselves (Field and Rieke, 2002;Sampath and Rieke, 2004) but our results suggest that some 

single photon responses may also be discarded presynaptically because they occur early in a pause 

between bursts and thus have less of an impact on the likelihood of a subsequent burst of release.  

The nervous system continuously balances energy demands with the need for sensitivity.  The high 

rates of continuous release that would be needed to encode every photon at every rod synapse 

require enormous amounts of energy.  By allowing some rods to rest and discarding their inputs, 

this bursting strategy permits high sensitivity to small voltage changes in other rods while 

minimizing the overall energy demands across the population.      

Recall that rods contact rod bipolar cells at an invaginating synapse that isolates a rod’s 

signal to its paired dendritic tip. In mouse retina, approximately twenty rods converge onto each 

rod bipolar cell via mGluR6 (Tsukamoto et al., 2001;Berntson et al., 2004b). A slowing of 

glutamate release from rods, relieves the saturation of mGluR6 allowing for the opening of 
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downstream TRPM1 cation channels and depolarization. One of the issues with a strictly Poisson 

rate of univesicular release is the continually changing glutamate concentration in the cleft. This 

may be overcome if bursts of vesicles saturate mGluR6 such that every release event leads to the 

same magnitude of voltage change at the rod bipolar cell dendrite. Ca2+ dependent inhibition may 

then also shorten signals so each voltage change exhibits the same kinetics as well. In salamander, 

Ca2+ dependent inhibition may be too slow (Nawy, 2000;2004) but in mouse, Berntson and Taylor 

found it to be on the order of milliseconds.(Berntson et al., 2004a). Additionally, fast glutamate 

binding and removal by presynaptic EAAT can help to make the signal more transient (Hasegawa 

et al., 2006).  These mechanisms combined help to make synapse to detect single photons, 

effectively “binarizing” the synapse. Berntson and Taylor measured the half saturating intensity of 

the synapse to be 0.7 R*, suggesting the exclusive duty of the rod is to signal single photons 

(Berntson et al., 2004b). If this is true, grading release as an analog signal would be unnecessary 

and a binary system (photon or no photon) would be sufficient.   

We found that IA(glu) rates were approximated by an Erlang  distribution (k = 4-9) at –40 

mV where the probability of release decreases during the single photon response followed by a 

relative increase in release probability after depolarization back to the dark potential. It has been 

proposed that enhancing regularity of release by implementing an Erlang process could help in 

discriminating single photon responses from noise (Schein and Ahmad, 2005;2006). However, the 

modest increase in the regularity of release that we observed did not achieve a high enough Erlang 

factor to greatly improve predictability. One of the challenges in transmitting single photon 

responses is inherent voltage noise due to thermal isomerizations of rhodopsin (rare) and 

phosphodiesterase (more common) in the rod outer segment (Taylor and Smith, 2004;Okawa and 

Sampath, 2007). It has been suggested that a  mechanism for reducing the impact of dark noise in 

rods is a temporal filter where release rate is only modulated by frequencies of voltage changes that 

could contain a single photon response (< 5 Hz) (Chichilnisky and Rieke, 2005). Consistent with 
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this, we observed that slow depolarizing excursions of a white noise stimulus with a 5 Hz cutoff 

could trigger bursting while a 20 Hz white noise filter could not. Another mechanism for removing 

noise is implementation of a thresholding mechanism that does not transmit small signals and noise 

but only large signals.  

One hypothesis for enhancing the transmission of scotopic signals is rod-rod gap junctional 

coupling (Jin et al., 2015). If absorption of a photon by one rod can hyperpolarize neighboring rods, 

their probability of releasing a burst also would also decrease. Some voltage change may be lost by 

the resistance though a gap junction and voltage noise is shared, but if the photovoltage is 3.44 mV, 

our data suggest that 60% of that voltage change may be lost and still initiate a meaningful pause 

in release. We have not yet investigated the impact of coupling on this bursting behavior.  Gap-

junctional conductance is reduced in light-adapted retinas such as those we used for out studies.  

Furthermore, C57Bl6 mice show weaker coupling among rods than some other mouse strains.  In 

chapter 4, we discuss how bursting may contribute to such a thresholding non-linearity at the rod 

to rod bipolar cell synapse. In future studies, we plan to pursue further models of the contribution 

of bursting to the ability of rod bipolar cells to detect single photons, investigating the impact of 

variations in release rate, Erlang factor, coupling among rods and other factors.    
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