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THE ROLE OF CENTRAL ACE2 AND Nrf2 IN SYMPATHO-EXCITATION: 
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Advisor: Irving H. Zucker, Ph.D. 

Sympatho-excitation is a key characteristic in cardiovascular diseases such as chronic 

heart failure (CHF) and primary Hypertension (HTN). Evidence suggests that increased 

sympathetic tone is closely related to activation of the Renin-Angiotensin-Aldosterone 

system (RAAS) in the central nervous system. An underlying mechanism for sympatho-

excitation is thought to be oxidative stress resulting from Angiotensin II (AngII) type 1 

receptor (AT1R) activation. Over the past several decades, pharmacological targeting of 

components of the RAAS have been used as standard therapy in CHF and HTN. However, 

additional therapeutic strategies are necessary to control these diseases. Oxidative stress 

is regulated, in part, by the balance between components of the RAAS and the ability of 

the system to scavenge oxygen radicals. Over the past decade, Nuclear factor E2-related 

factor 2 (Nrf2) has emerged as an important transcriptional regulator that maintains redox 

homeostasis by governing a broad array of antioxidant genes in response to oxidant stress. 

Central Nrf2 dysregulation has been found in animals with CHF and HTN. To determine if 

Nrf2 contributes to decreased antioxidant defense and increased sympathetic nerve 

activity (SNA) in CHF, we upregulated Nrf2 in the rostral ventrolateral medulla (RVLM) in 

C57BL/6 mice and evaluated their hemodynamic and sympathetic function in the CHF 

state. We found that (1) Nrf2 and two target proteins, NAD(P)H dehydrogenase [quinone] 
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1 (NQO1) and Heme oxygenase (HO-1) in the RVLM were significantly lower in CHF 

compared to Sham mice; (2) Urinary norepinephrine (NE) excretion in CHF mice was 

markedly reduced following Nrf2 upregulation; (3) CHF mice overexpressing Nrf2 

exhibited an enhancement in spontaneous baroreflex gain and a decrease in basal renal 

SNA. In an attempt to understand the antioxidant function of the RAAS we examined the 

role of Angiotensin converting enzyme 2 (ACE2) in a model of central AngII-induced HTN. 

Despite its direct enzymatic effect on AngII, ACE2 has been shown to reduce oxidative 

stress and to be sympatho-inhibitory. It has been demonstrated that animals with CHF 

exhibit increased Angiotensin converting enzyme (ACE) and decreased ACE2 in the 

RVLM. We hypothesized that overexpression of ACE2 in the brain reduces the 

sympathetic and blood pressure (BP) responses to central AngII by activation of Nrf2 and 

enhancing antioxidant enzyme expression. To illuminate the role of Nrf2 in the central 

regulation of SNA in response to central AngII, we assessed Nrf2 changes in the RVLM 

in SynhACE2 mice treated with ICV AngII infusion. Mice with central overexpression of 

ACE2 inhibited the pressor and sympathetic responses to central AngII. We found that 

Nrf2 was upregulated in the RVLM in SynhACE2 mice, and that pharmacological 

upregulation of central Nrf2 had a significant impact on BP in response to central AngII. 

Overall, the experiments described in this dissertation showed that selectively 

upregulating Nrf2 in the RVLM attenuates sympatho-excitation in CHF mice. We also 

describe a novel role of interplay between central AngII, ACE2 and Nrf2 in the regulation 

of sympatho-excitation in central HTN. While not definitive, these studies suggest a role 

for ACE2 and Nrf2 as targets for therapy in CHF and HTN. 
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Neural control of the cardiovascular system 

It was not until the 1940s that the central “vasomotor” center was discovered[2]. The 

central cardiovascular pathways are regulated by two general mechanisms: feed forward 

central command and reflex effects[3]. Mechanisms involved in feed forward control 

include neurons residing in the forebrain and midbrain, such as dorsomedial 

hypothalamus (DMH), the paraventricular nuclei (PVN), medial prefrontal cortex (mPFC), 

insular cortex, and midbrain periaqueductal gray (PAG) [4]. Neurons from these areas 

project to lower level nuclei in the baroreflex circuitry. These pathways modulate the 

baroreceptor reflex and sympathetic function thus impacting the short term control of 

arterial pressure (AP) [4].  

Nuclei that are within the baroreflex circuitry on the other hand, include the nucleus tractus 

solitarius (NTS) in the dorsomedial medulla, cardiac vagal motoneurons in the nucleus 

ambiguous(NA), caudal ventrolateral medulla (CVLM), and the RVLM [4]. The RVLM 

contains epinephrine synthesizing C1 neurons and glutamatergic neurons which receive 

and integrate a variety of inputs from the brainstem and forebrain in regulating BP and 

mediating multiple reflexes. The A1 noradrenergic neurons, located in the general 

ventrolateral medulla, are thought to be involved in natriuretic responses through 

activating vasopressin-secreting neurons in the PVN [5, 6]. RVLM may also contain pH-

sensitive neurons that receive excitatory synaptic inputs from the retrotrapezoid nucleus 

(RTN) chemoreceptors. These chemoreceptors activate the respiratory pattern generator 

(RPG) which eventually excites the sympathoexcitatory neurons of the RVLM [7, 8]. 

In addition to these classical neurons involved in the circuitry mediating baroreflex 

regulation, neurons from other important areas are indirectly related to BP control via 

changes in osmolality and involvement of the central RAAS [4, 9, 10]. These nuclei 
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originate from the organum vasculosum lamina terminalis (OVLT) in the anterior wall of 

the third ventricle, PVN, subfornical organ (SFO), median preoptic nucleus (MnPO), and 

supraoptic nucleus (SON) of the hypothalamus.  These regions are involved in multiple 

autonomic and behavioral control including the regulation of vasopressin release and 

drinking behavior, and the maintenance of  salt and water balance[11, 12]. The most 

thoroughly studied central cardiopulmonary regions and a simplified schematic of the 

baroreflex loop are depicted in Fig 1.1. 
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Figure 1.1 Schematic diagram of important central nuclei involved in 
cardiovascular control and baroreflex loop. 

Upper: Blue areas are brainstem autonomic control centers: NTS, nucleus tractus 
solitarius; DMV, dorsal motor nucleus of the vagus; NA, nucleus ambiguous; RVLM, 
rostral ventrolateral medulla; CVLM, caudal ventrolateral medulla; IML, 
intermediolateral nucleus; RTN, retrotrapezoid nucleus. Areas in grey shows 
circumventricular organs that involve various neuroendocrine functions: SFO, 
subfornical organ; PVN, paraventricular nuclei; OVLT, organum vasculosum lamina 
terminalis; MnPO, median preoptic nucleus; SON, supraoptic nucleus. 

Lower: Pathways in the baroreceptor reflex control of the sympathetic outflow. The 
continuous arrow and the dashed arrows indicate a stimulatory synapse and bar-
headed lines an inhibitory synapse, respectively. The solid lines indicate the major 
connections which are well established by studies. 

 

Figure 2.1 Shematic diagram of important central nuclei involved in 
cardiovascular control and baroreflex loop. 

Upper: Blue areas are brainstem autonomic control centers: NTS, nucleus tractus 

solitarius; DMV, dorsal motor nucleus of the vagus; NA, nucleus ambiguous; RVLM, 

Figure 1.  1 Schematic 

diagram of important 

central nuclei involved 

in cardiovascular 

control and baroreflex 

loop. 
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Peripheral reflex mechanisms play a critical role in mediating and interacting between the 

SNA and the extracellular environment. Several pathways not only form their own 

feedback loop but also communicate with each other to control BP, fluid volume, oxygen 

tension and body temperature.  

The arterial baroreflex relies on BP sensing elements (mechanoreceptors) in the carotid 

sinus and aortic arch, that transduce arterial BP fluctuations into neural signals (sensory 

action potentials).  Afferent signals travel in the glossopharyngeal and vagal nerves to the 

NTS. Neural signals from the NTS project to the CVLM which inhibits the RVLM[4, 13], 

provoking changes in the sympathetic outflow and vasopressin release. Signals from the 

NTS also project to the parasympathetic neurons in the dorsal motor nucleus of the vagus 

(DMV) and the NA, thus completing a negative feedback loop to maintain BP by regulating 

cardiac output and vascular resistance.  

The cardiopulmonary baroreflex is initiated from primary neurons whose cell bodies reside 

in the nodose ganglia, with the nerve endings distributed in the heart, vena cava and 

pulmonary vasculature. They sense changes in central blood volume, send afferent 

signals to central nuclei in a similar pattern as the arterial baroreflex. The efferent effects 

are similar except that the cardiopulmonary baroreflex mainly adjusts orthostatic BP in 

response to blood volume changes, due to the high compliance of the areas where the 

sensory endings are embedded. This reflex has little effect on heart rate (HR), especially 

in humans [13]. 

Sympatho-excitation is primarily transduced at the tissue level by adrenergic receptors 

that are widely expressed in most organs, while parasympathetic innervation is mainly 

distributed to the heart, bronchi and gastrointestinal tract. Both sympathetic and 
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parasympathetic outflow can affect the sinoatrial (SA), atrioventricular (AV) nodes, and 

cardiomyocyte contraction, reciprocally determining HR and contractility. 

The arterial chemoreflex is initiated by chemoreceptors located in the carotid sinus (carotid 

body) and aortic arch. These sensors detect changes in arterial pH, partial pressure of 

oxygen (PaO2) and carbon dioxide (PaCO2). In addition to their primary role in regulating 

ventilation, chemoreflex afferent activity also mediates an increase in sympathetic tone 

during hypoxia[13].  

Chronic heart failure  

According to the American Heart Association (AHA) 2017 Heart Disease and Stroke 

Statistics, approximately 41.5 percent, or 102.7 million people in the US suffered from at 

least one form of cardiovascular disease (CVD) in 2015 [14]. Globally, CVD has long been 

the number one cause of death, accounting for an estimated 31.5% of all global deaths 

[14, 15]. CVD not only exerts a heavy toll on people’s health, but also accounts for a 

tremendous economic burden to society.  

The termCHF and congestive heart failure may be used interchangeably although they 

are not necessarily the same concept. Congestive heart failure is a syndrome 

characterized by fluid accumulation in the lungs or peripheral circulation, often the result 

of systolic heart failure where there is a reduced ejection fraction (EF), also known as 

HFrEF. Opposed to HFrEF, there is heart failure with preserved EF, so called HFpEF, 

which results from diastolic dysfunction. Both conditions can progress to a chronic stage, 

thus the term CHF[16].   
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CHF is usually the end result of CVD and afflicts around 5.8 million Americans and over 

23 million people worldwide as of 2015 [17, 18].  Although the incidence of CHF may have 

been decreased over time due to improved medical care, the absolute number of more 

than 550,000 newly diagnosed cases each year still reflects persisting difficulties in 

managing CHF [17].  

Symptoms and signs of CHF include dyspnea on exertion, orthopnea, exercise intolerance, 

refractory volume overload and fatigue [19]. Etiologies of CHF include ischemic heart 

disease, valvular disease, cardiomyopathy, HTN, diabetes mellitus and other idiopathic 

conditions. Current management for CHF depends on both causes and stage of the 

problem. Over the past decades, numerous medications have been used in the 

management of CHF, including diuretics, β1-adrenergic receptor blockers, calcium 

channel blockers, digoxin, ACE inhibitors (ACEIs) / AT1R blockers (ARBs). Yet, the only 

ones that have been shown to be unequivocally beneficial in improving survival rate are 

ACEIs and ARBs [20, 21]. Although these approaches have made significant progress in 

symptom control, the incident of CHF is still unacceptably high. Therefore, the quest for 

exploring new therapeutic targets in CHF is of paramount importance.  

Primary (Essential) HTN 

HTN is by far the most common primary diagnosis in office visits in the United States, and 

one of the top causes of morbidity worldwide [22]. According to the World Health 

Organization, there were an estimated 1.13 billion people worldwide with HTN in 2015. In 

the US, approximately 75 million American adults have HTN, yet only about half are under 

control [23].  
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The ACC/AHA 2017 updated guidelines redefined HTN as office systolic BP (SBP) values 

≥130 mmHg and/or diastolic BP (DBP) values ≥80 mmHg, further extending the 

prevalence of HTN in US adult population to approximately 46 percent [15,19]. Not only 

does HTN itself exert a huge economic burden, the overall negative consequences of HTN 

being a contributing factor to a variety of CVD such as stroke and heart failure puts an 

even larger burden on public health worldwide [24].  

95 percent of all HTN cases are primary, or essential HTN, which is high BP without a 

known cause [25]. Therefore, current management of HTN mainly focuses on symptom 

control. Pharmacologic therapy for HTN include the use of thiazide diuretics, calcium 

channel blockers, ACEIs and ARBs [26]. However, despite multiple management, around 

30 percent of all uncontrolled patients fall into the category of apparent treatment-resistant 

HTN in the United States [27]. Thus identifying new insights and targets for HTN treatment 

is still a high priority.    

Sympathetic overactivity 

In chronic HFrEF,  impaired left ventricular systolic function results in an inadequate 

cardiac output, which initially unloads peripheral baroreceptors thus increasing 

sympathetic flow in a negative-feedback manner in an attempt to restore cardiac output 

[28]. Although being compensatory at first, these responses eventually enter a vicious 

cycle that lead to further disease progression. In chronic HFpEF, in spite of the fact that 

some current reviews confirm a correlation between sympathoexciation and HFpEF, 

evidence on potential neurohormonal mechanisms in this syndrome are scarce[29, 30].     

Hypotheses for the central mechanisms relating to deteriorating cardiac function in CHF 

include both neural and humoral disturbances[31]. First is the altered set point theory, 
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stating that alterations in  baroreflex gain increases the set point for sympathetic outflow 

(i.e. less sympatho-inhibition). This has been demonstrated in the paced-canine model in 

our lab, which showed increased baroreceptor stimulation elicits a drop in plasma NE 

concentration in normal dogs whereas baroreceptor denervation had no effects on NE 

concentration in CHF [32]. Another important mechanism is an enhanced central AngII / 

AT1R system acting as a positive feedback cycle and exciting SNA, in part, through 

increased oxidative stress[33]. It has been shown that AT1R protein and mRNA were 

upregulated in the RVLM and the NTS in rabbits and rats with heart failure [34, 35].  

Given the fact that most heart failure develops from coronary artery disease that is 

exacerbated by chronic HTN and obesity, it is plausible to speculate that generalized 

sympathoexcitation in primary HTN may also play a causative role in disease progression. 

It has been widely agreed that in both human and animal models HTN altered autonomic 

balance leads to hemodynamic dysregulation [36]. Evidence to support this include 

findings of enhanced NE spillover from sympathetic nerve terminals in HTN patients and 

in normotensive individuals with a family history of HTN [37, 38]. In normotensive offspring 

of HTN subjects, people with a family history of HTN have lower parasympathetic 

modulation than those with a negative history [39]. Therefore, it is reasonable to believe 

that central sympathetic overdrive may act as the initial pathogenesis of primary HTN 

under the background of genetic predisposition and environmental stimuli. 

Central RAAS Activation  

Systemic vs Local RAAS 

In addition to the autonomic reflex control of the circulation, BP and fluid homeostasis are 

closely regulated by the RAAS. Decreases in renal perfusion pressure are “sensed” by  

the juxtaglomerular (JG) cells in the kidney and renin is secreted and released into 
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circulation. Under the catalysis of plasma renin, angiotensinogen produced by the liver is 

converted into Angiotensin I (AngI), which is subsequently converted to AngII by ACE. 

ACE is predominantly produced in the lungs [40]. AngII has multiple functions in restoring 

BP and fluid volume: 1) it is a potent vasoconstrictor activating the AT1R on the blood 

vessels; 2) AngII acts in the adrenal cortex and stimulates secretion of aldosterone, which 

in turn increases sodium and water reabsorption in the distal nephron; 3) AngII is capable 

of directly enhancing activity of the epithelial Na+ channel (ENaC) in the distal nephron 

thus stimulating sodium and water reabsorption. 4)  AngII also causes the release of 

vasopressin, or anti-diuretic hormone (ADH), from the pituitary gland and evokes thirst, 

and increased drinking behavior [40].  

In addition to the conventional concept of a circulating RAAS, there is a wealth of evidence 

indicating the existence of local RAAS in various organs including the heart, vasculature, 

kidney and brain [41]. In CHF patients, local cardiac AngII concentration is increased as 

well as its gradient across the heart [42]. Using angiotensinogen overexpression 

transgenic mice, Mazzolal et al. demonstrated that increased AngII synthesis in the 

myocardium triggered cardiac hypertrophy[43]. Local cardiac intracellular renin 

expression was found to be enhanced after myocardial infarction and was related to 

impairment of cell communication through enhancing gap junction permeability [44, 45]. 

In hypertensive animals, increased cardiac AngII is associated with enhanced 

inflammation, oxidative stress and cell death [41]. In vascular muscle cells, synthesis of 

all major components including angiotensinogen, ACE, AngII and renin have been shown 

[46]. Furthermore, De Mello et al. found that intracellular AngII in resistance vessels 

counteracts the vasoconstrictive effects of extracellular AngII, thus playing an important 

role in regulating vascular tone[47]. In the kidney, the intrarenal RAAS was assessed and 

was found that stimulation of local AT1Rs enhanced sodium reabsorption [48]. So far it 
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has been widely acknowledged that along with systemic RAAS, local RAAS plays a 

fundamental role in the pathogenesis of CVD. This has opened a window for target-

specific therapeutics aiming locally at individual components of the RAAS system.  

Central RAAS and HTN  

In 1961, Bickerton and Buckley demonstrated specific central RAAS actions in the dog[49]. 

In 1971, Jacques Genest’s laboratory discovered renin synthesis in dog brain[50]. 

Numerous studies in animal models have now identified all components of the RAAS in 

the CNS. The role of the RAAS in the brain has been examined extensively in transgenic 

animals and by using pharmacological approaches. The central RAAS is related to a 

variety of mechanisms that mediate multiple actions including cognition, 

neurodegeneration and most importantly, BP regulation[51]. Intracerebroventricular (ICV) 

infusion of AngII into rat lateral ventricle has been shown to significantly increase BP, 

vasopressin release, drinking response (polydipsia) and sympathetic outflow[52]. Injection 

of AngII into the rat NTS suppressed the baroreflex, which was reversed by the AT1R 

antagonist losartan[53]. Double transgenic mice expressing both human renin and 

angiotensinogen generated by Sigmund’s laboratory exhibited increased salt intake and 

arterial BP, which was blunted by ICV, but not intravenous (IV) losartan treatment[54]. 

These studies indicate that the RAAS in the brain affects BP control and electrolyte 

balance possibly through different neural pathways.  

An integrative review of the central mechanisms underlying HTN included a possible 

course in the pathogenesis of HTN[55]. In order to maintain a relatively stable BP, there 

needs to be both a control center that determines a set point and a center that helps 

stabilize BP around this set point[56]. The former is thought to be in the hypothalamus, 

especially the PVN and SON; the latter occurs in the medulla oblongata[56]. Systemically 
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administered ACE inhibitors normalize the set point and baroreceptor sensitivity (BRS).  

The BRS remains in the normal range even when BP is increased by phenylephrine 

infusion[57]. Although when ACE inhibitors are given peripherally, it is possible to act in 

the CNS as well through sites without an intact brain-blood barrier. These findings indicate 

that AngII may play an essential role in determining the BP set point. What activates the 

central RAAS is proposed to be increased salt intake which is prevalent in the modern diet. 

Increased vasopressin stimulated sympathetic outflow and oxidative stress triggered by 

central AngII, all lead to primary HTN [55].  

ACE/AngII/AT1R and ACE2/Angiotensin 1-7 (Ang1-7)/MasR  

Within the RAAS system there exist two major counteracting arms – the “ACE/AngII/AT1R” 

arm and the “ACE2/Ang1-7/Mas receptor (MasR)” arm. ACE, or kininase II, was first 

isolated in 1956 and found to be the enzyme converting AngI to AngII, and degrading the 

vasodilator bradykinin[58]. ACE exists in two forms – membrane-bound form as 

ectoenzymes conventionally found in pulmonary vascular endothelium and testicular 

epithelial cells, and shed soluble form that is derived from the membrane-bound form 

present in serum and other body fluids[59, 60]. The current consensus now indicate that 

ACE is expressed in virtually all endothelial cell types as well as in neurons, smooth 

muscle cells, adipocytes and immunocytes[61]. For decades, ACE inhibitors have been 

the first line therapy for many major cardiovascular diseases including HTN, myocardial 

infarction, and heart failure and have been shown to improve survival in these patients 

[62].  

ACE2 on the other hand, is a more recently discovered carboxypeptidase and is a 

homolog of ACE[63]. ACE2 was first reported to cleave AngI to Ang 1-9, but later studies 

found that ACE2 has a much higher efficiency in the hydrolysis of AngII to Ang 1-7[64], 
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which turned out to play a fundamental role in counteracting AngII effects in many 

cardiovascular diseases. Thus this so-called “good arm of the RAAS”, ACE2/Ang1-7/ 

MasR axis, has since been extensively studied[65]. Quantitative PCR analysis has shown 

that the ACE2 gene is widely expressed in most human organs including the heart, kidney, 

intestines and brain[66]. Xia et al. reported that ACE2 is widespread throughout the mouse 

brain cardiovascular control centers such as PVN, NTS, and RVLM[67].  

In both CHF and HTN, these two axes of the RAAS have been shown to play pivotal roles 

in modulating sympathoexcitatory and sympathoinhibitory reflexes. In previous work from 

our laboratory we have shown that rabbits with CHF exhibit increased ACE, AT1 receptor 

and decreased ACE2  expression in several central nuclei including the RVLM, the PVN 

and the NTS [61]. We also demonstrated that SNA was significantly reduced in CHF mice 

that overexpress ACE2 in the brain[68]. However, the mechanisms by which central ACE2 

reduces sympathetic outflow are not clear.  

Although it is plausible to presume the anti-sympathetic effects of ACE2 is the result of 

either AngII consumption or Ang 1-7 production, the exact action of the latter on SNA 

remains controversial. Potts et al. reported that microinjection of Ang 1-7 into the RVLM 

exhibited sympatho-excitatory effects in anesthetized rabbits [69]. This was later 

supported by Frontes et al. by bilateral microinjection of the MasR antagonist A-779 into 

the RVLM, which produced a significant fall in mean arterial pressure (MAP) and HR [70]. 

In another study, Silva et al. demonstrated that bilateral microinjections of A-779 into the 

PVN resulted in a significant decrease in RSNA [71]. However, the sympatho-inhibitory 

effect of Ang 1-7 has also been shown in several other studies. Gironacci et al. found that 

minced hypothalami from spontaneous hypertensive rat (SHR) incubated with Ang 1-7 

showed significantly attenuated NE release[72]. Similar results were obtained by Mirnela 
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et al. in vitro where Ang 1-7 inhibited the nerve stimulation-induced release of 

norepinephrine and neuropeptide Y from the mesenteric arterial bed [73].  

In the case of HTN, Sriramula et al.[74] showed attenuation of the pressor response to 

peripheral infusion of AngII in mice that overexpress ACE2 in the brain. The same group 

also showed that peripheral AngII infusion increased oxidative stress in the PVN and 

RVLM significantly more in ACE2 knockout mice compared to their non-transgenic 

littermates[75]. Using transgenic mice overexpressing ACE2 in the SFO, Feng et al. 

demonstrated that ACE2 prevents the AngII-mediated pressor and drinking responses 

through AT1 receptor downregulation [76].  

Oxidative Stress 

Oxidative Stress and its role in Cardiovascular Disease 

In 1954, Dr. Denham Harman from University of Nebraska Medical Center first proposed 

the ‘free radical theory of ageing’, hypothesizing “free radicals” as the cause of 

macromolecular degenerative process of aging[77]. Then the concept of “oxidative stress” 

was introduced into research and clinical field by Helmut Sies in 1985[78]. Oxidative stress 

was later defined as “an imbalance between oxidants and antioxidants in favor of the 

oxidants, leading to a disruption of redox signaling and control and/or molecular 

damage”[79]. Over the past three decades, multiple studies on oxidative stress in a variety 

of diseases have been carried out. The most widely studied abnormalities include 

neurocognitive impairment, CVD, kidney dysfunction, and endocrine abnormalities[80].  

Reactive oxygen species (ROS) contribute in a major way to cellular and tissue oxidative 

stress. Major exogenous sources of ROS include environemental chemical exposures, UV 

light, ionizing radiation, organic solvents, etc. The main source of endogenous ROS have 
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been identified as mitochondria, peroxisomes, plasma membrane, and intra/extracellular 

spaces[81]. Important ROS such as superoxide anion radical (O2
•−) and hydroxyl radical 

(HO•) exert their destructive effects through DNA and RNA damage, lipid peroxidation, 

protein damage/modification, and carbohydrate degradation[82]. To combat oxidative 

stress, living organisms have evolved defense systems which utilize antioxidant enzymes 

such as superoxide dismutase (SOD), catalase (CAT), HO-1, NQO1, glutathione (GSH), 

vitamin C and vitamin E. In addition, several metal compounds such as Zn and Se 

compounds behave as antioxidants [83].  

Long lasting oxidative stress has been shown to be closely related to the development 

and progression of many cardiovascular diseases including HTN, congestive heart failure, 

atherosclerosis, and cardiomyopathies[79,80]. Common mechanisms of oxidative stress 

as a causative or promoting factors of these diseases involve the activation in NF-κB 

pathways and increased inflammation[81,82], modulation of redox sensitive proteins thus 

altering certain transcriptional activities[84], direct structural damage, and reduction of 

antioxidant systems efficiency[27].  

In CHF, both clinical and experimental studies have discovered evidence of enhanced 

oxidative stress[85]. In the periphery, increased ROS promotes CHF progression by 

mechanisms involving cardiac electrophysiological changes, myocardial remodeling and 

reducing myofilament calcium sensitivity[86]. These processes eventually lead to left 

ventricular (LV) dilatation and contractile dysfunction. In the CNS, excessive production of 

local ROS in the brain has been increasingly investigated and is being presumed by many 

to be a primary culprit in the progression of CHF. Lindley et al. in 2004 demonstrated that 

ICV injection of an adenoviral vector encoding superoxide dismutase (Ad-Cu/ZnSOD) 

significantly decreased the number of chronically activated neurons in PVN and SON in 
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MI-induced HF mice[87]. Previous studies from our lab showed that NADPH-dependent 

O2
•− production in the RVLM was significantly increased in the CHF state compared with 

a sham group[88].  

In HTN, ROS exert detrimental effects also through both systemic and central 

mechanisms. Nitric oxide (NO) is generated mainly in the endothelium. Increased local 

ROS such as O2
•− rapidly degrade NO thereby promoting vasoconstriction[89]. ROS 

generated by activated nicotinamide adenine dinucleotide phosphate(NADPH) oxidase, 

(NOX) have been shown to be key factors that mediate AngII-induced HTN, possibly 

through upregulating intracelluar pro-inflammatory mediators and vascular smooth muscle 

cell (VSMC) growth[90].  All of these mechanisms may explain why many patients with 

HTN exhibit an increase in oxidative stress and a decrease in NO bioavailability in many 

tissues[91]. Experimental mouse models with genetic deficiencies in NOX1 have also 

shown to have lower BP compared to their wild type counterparts[92]. 

There is little question that the CNS contributes to CVD. Elevated oxidative stress within 

certain brain nuclei has been consistently shown in different animal models. For example, 

Campos et al. showed that the expression of NOX subunits (p47 phox and gp 91 phox) is 

elevated in the PVN and RVLM in rats with HTN [93]. Hirooka et al. observed that ROS 

production is markedly increased in the RVLM of HTN rats [94].  

Relation between Oxidative Stress, Sympathoactivation, and RAAS 

As mentioned above, the pathogenesis and progression of CHF and HTN are closely 

related to altered SNA, central RAS and oxidative stress. However, the underlying 

molecular mechanisms and the exact cause-and-effect relationships between these 

factors are still under investigation. Current evidence largely point towards the hypothesis 
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that in both situations, an activated RAAS signaling in the brain trigger sympathoexcitation, 

most likely through ROS mobilization [95-97].  

Following a myocardial infarction (MI), there is an increase in plasma AngII and 

aldosterone[98]. On the one hand, plasma AngII can cause increased BP though 

promoting renal sodium absorption and its direct vesoconstrictor effect; on the other hand, 

circulating AngII can enter the CNS via brain areas lacking an intact blood-brain-barrier, 

such as the SFO, to activate SNA which, in turn, enhances the effects of the circulating 

RAAS. Although this process may be most prominent during the acute phase post MI, 

chronically enhanced SNA is thought to result from a aldosterone-triggered 

neuromodulatory system that involves “endogenous ouabain” release[99]. The direct 

effect of “ouabain” is inhibition of Na+/K+-adenosine triphosphatase (Na+/K+-ATPase) in 

neuronal membranes, which lowers membrane potential thereby enhancing SNA. 

Elevated circulating aldosterone can also readily cross the blood-brain-barrier to 

accomplish the above process. 

Tan et al. found the binding density of ACE is significantly elevated in the PVN in MI-

induced heart failure[100]. Studies from our laboratory have shown elevated ACE protein 

in several brain regions including RVLM, PVN and NTS in CHF rabbits [101]. Our previous 

experiments also showed that the cardiac sympathetic afferent reflex (CSAR) sensitivity 

is enhanced in dogs with pacing-induced CHF and is normalized by ICV administered the 

AT1R antagonist, losartan[102, 103]. The CSAR is one of the contributing factors for 

sympathoexcitation in CHF. Therefore, the overall increased in SNA may at least in part, 

be attributed to increased CSAR sensitivity due to upregulated AT1R expression. This 

was later by a study where microinjection of AT1R mRNA antisense into the PVN 
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normalized the CSAR in rats with CHF [104]. Similar increase of AT1R expression was 

also found in the RVLM in  CHF in studies from our laboratory [105].   

Oxidative stress as a contributing factor that activates sympathoexcitation has been well 

accepted based on large amount of evidence. Zanzinger et al. observed that removal of 

extracellular O2
•− by microinjection of SOD into the RVLM reduced SNA outflow [106]. 

Furthermore, many studies have indicated that the sympathoexcitation of the RAAS is 

through its promotion of ROS generation.  Gao et al. showed that NADPH-dependent O2
•− 

production is significantly increased in the RLVM of CHF rabbits compared with that of 

sham rabbits; and the effect of AngII on RSNA in the two groups is blocked by 

pretreatment with tempol or apocynin (APO) [88]. Zimmerman et al. showed that the 

pressor effects of ICV-AngII were abolished by administration of AdMnSOD in the mouse 

brain[107]. Campese et al. later showed that both SOD mimetics tempol and PEG-SOD 

effectively abolished the effects of AngII on central and peripheral SNA[108]. It was further 

demonstrated that the specific mechanism of this AngII-AT1R-ROS signaling on SNA 

involves inhibition of the delayed rectifier potassium current (IKv)[109] and influx of 

extracellular Ca2+ in neural cells[110], thus altering neuronal excitability.    

The pathogenesis and progression of primary HTN involve similar mechanisms to those 

of CHF except for some differences in the triggering events. Although the origin of primary 

HTN is multifactorial including high salt intake, chronic hypoxia, vascular inflammation and 

so forth, a common pathogenic initiator most always involves sympathetic overdrive[111]. 

As one of the several most important mechanisms, increased central RAAS activity in 

primary HTN has been consistently supported by the literature. An innovative study from 

Reudelhuber’s lab demonstrated that restoration of AngII exclusively in the brain of 

angiotensinogen-deficient mice increases their BP[112]. Morimoto et al. illustrated that 
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glia- and neuron-specific overexpression of AngII increases BP, polydipsia, and salt 

preference in mice[113]. These studies combined suggest that centrally derived AngII is 

a critical determinant in the development of HTN. In humans, an increase in vascular O2•−, 

H2O2 and a decrease in NO synthesis have also been observed in hypertensive individuals 

[114, 115]. There is increasing evidence supporting that increased ROS in HTN are 

contributed by both mitochondria nonenzymatic reactions and the increased intracellular 

NOX stimulated by RAAS activation[116, 117].  

Nrf2 

Since increased oxidative stress is thought to be a key molecular mechanism that links 

the RAAS and SNA, living organisms have developed a variety of antioxidant systems to 

prevent their harmful effects on cells. One of the most important and widely investigated 

regulators that help maintain redox balance is the Nrf2/ Kelch-like ECH-associated protein 

1 (Keap1) system[118]. Keap1 is a natural inhibitor of Nrf2 and normally keeps Nrf2 in the 

cytosol in the form of the Keap1-Nrf2 complex[119]. When activated by specific ROS or 

electrophiles, Nrf2 is dissociated from Keap1 and translocates into the nucleus, binding to 

antioxidant response elements and transactivating the expression of genes of a series of 

antioxidant enzymes. A previous study from our lab showed that selective Nrf2 gene 

deletion in the RVLM increases BP and sympathetic outflow in normal mice due to 

impaired antioxidant mechanisms [120].  

While an activated AngII/AT1R pathway is attributed to the upregulation of NOX in the 

RVLM in CHF[121], the mechanisms underlying downregulation of antioxidant enzymes 

remain to be elucidated. A key question is whether decreased Nrf2 in the RVLM in CVD 

characterized by sympatho-excitation is a result of increased RAAS activity. Feng et al 

reported that selective overexpression of ACE2 in the SFO prevents the pressor and 
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drinking reponses to ICV-AngII and downregulates AT1R[76]. In our preliminary studies, 

we measured Nrf2 expression in the RVLM and found Nrf2 to be elevated in transgenic 

mice overexpressing ACE2 in the brain, compared to their wild type littermates. This 

observation provided a suggestion for a potential Nrf2-RAAS interaction and serves as 

part of the rationale for our hypothesis. As shown in Fig 1.2, we propose that Nrf2 is 

important in maintaining the autonomic balance through its antioxidative property, Nrf2 

might also mediate the sympathoinhibitory effect of ACE2 in response to central RAAS 

activation. 

Overall hypotheses  

1. The role of RVLM Nrf2 modulation on sympathetic outflow in diseases such as CHF and 

HTN has not been well characterized. Therefore, we hypothesize that reduced Nrf2 

signaling in the RVLM contributes to impaired antioxidant defenses in CHF, leading to 

enhanced oxidative stress and sympathetic excitation. We further propose that 

upregulating Nrf2 will restore redox homeostasis in the RVLM in CHF, thus reducing the 

augmented sympathetic outflow. 

 

2. Given the fact that ROS is closely related to both the maladaptive effects of AngII/AT1R 

signaling and to the protective properties of ACE2 and Nrf2 in CVD, we explored the 

potential roles of RAAS-Nrf2 interaction in mediating central sympathetic activity. 

Therefore we hypothesize that overexpression of ACE2 in the brain reduces sympathetic 

outflow in response to chronic ICV-AngII infusion by reducing oxidative stress, in part, 

through Nrf2 activation.  
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Figure 1. 2  Shematic diagram of ACE2 and Nrf2 signaling in RVLM neurons.  

It has been well established that the ACE/AngII/AT1R axis promotes sympathoexcitation in both 

CHF and HTN, and this axis is also pro-oxidative through activating NOX2. While both ACE2 and 

Nrf2 have anti-oxidative properties and exibit protective effects in various diseases, it is yet to 

be identified if this  arm of ACE2/Ang 1-7/MasR counteract the sympatho-excitatory effect of 

central AngII by upregulating Nrf2 and its downstream anti-oxidative defenses. 
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Figure 1. 1 Shematic diagram of ACE2 and Nrf2 signaling in RVLM neurons. 
Figure 1.  2 Shematic diagram of ACE2 and 

Nrf2 signaling in RVLM neurons. 
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Chapter II.  Experimental Objectives 
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General Goals 

The overall goal of these experiments is to determine the mechanisms by which SNA is 

increased and antioxidant defenses are impaired in the RVLM in mice with CHF, and to 

determine the roles of ACE2 and Nrf2 in regulating SNA in HTN. Specifically, the goals of 

these experiments are defined by 3 objectives: 

Objective 1 (Chapter IV) 

To determine the effects of Nrf2 overexpression in the RVLM on sympathoexcitation in 

mice with CHF.  

 

Objective 2 (Chapter V) 

To determine the effects of ACE2 overexpression in the brain on pressor and metabolic 

responses to central AngII infusion.  

 

Objective 3 (Chapter VI) 

To determine potential interaction between central RAAS activation and Nrf2 activity. 
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Chapter III.  Materials and Methods 
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Animals 

Experiments were performed on 10- to 12-week-old mice. All the genotypes were on the 

C57BL/6 background. As described below, some early experiments were carried out in 

both male and female animals, but the majority were males. Some C57BL/6 mice were 

purchased from Charles River, Inc. (Wilmington, MA). In Objective 1, the Keap1 floxed 

(Keap1f/f) mice were originally obtained from Johns Hopkins University (laboratory of Dr. 

Shyam Biswal) and bred at The University of Nebraska Medical Center, Department of 

Comparative Medicine. Keap1f/f  mice contain LoxP sites flanking exons 2 and 3 of the 

Keap1 gene [12].  

In Objective 2, male transgenic mice with ACE2 overexpression in the brain (SynhACE2+/+ ) 

and their non-transgenic littermates were used. The SynhACE2+/+  mice were obtained 

from laboratory of Dr. Eric Lazartigues. Briefly, SynhACE2 fusion transgene was 

constructed and was microinjected into fertilized C57BL/6JxSJL/J(B6SJLF2) mouse 

embryos [122]. PCR genotyping was performed using the three-primer protocol[123]. Mice 

of genotype SynhACE2+/+ were crossed with wild type C57BL/6 mice to get the 

heterozygous SynhACE2+/-, which were further intercrossed to obtain SynhACE2-/- as 

control group. In Objective 3, the Nrf2 floxed mice (Nrf2f/f) were originally obtained from 

Dr. Shyam Biswal at the Johns Hopkins University [1] and bred in our facility. Selective 

Nrf2 knockdown was created by microinjection of Lenti-Cre-GFP virus into the RVLM 

bilaterally.  

All the mice were housed in standard polypropylene cages in a facility with a 12:12 hour 

light-dark cycle (6am – 6pm lights on) and fed with standard mouse chow (Harlan 

Laboratories, Indianapolis, IN) and allowed water ad libitum. All procedures were 

approved by the Institutional Animal Care and Use Committee at the University of 
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Nebraska Medical Center. Experiments were carried out consistent with the National 

Institutes of Health Guide for the Care and Use of Laboratory Animals and conformed with 

the ARRIVE Guidelines to the extent possible[124].  

Radiotelemetry implantation  

The mice were implanted with radiotelemetry units (PA-C10, Data Science International, 

Inc.; St Paul, MN) for BP and HR measurements in the conscious state. Briefly, under 2% 

isoflurane anesthesia, mice were placed in the supine position. After making a 10-mm 

incision in the ventral cervical area, the left carotid artery was identified, dissected, and 

separated from the left vagus nerve at the proximal location near the artery, followed by 

placing a cotton patch saturated with 2% lidocaine underneath the artery which was fully 

dilated during the process. The tip of the telemetry catheter (Fig 3.1) was then inserted 

into the carotid artery and advanced to the level of aortic arch. The transmitter was placed 

subcutaneously in the right lower abdominal area. Finally, the wound in the neck was 

closed with absorbable sutures (PERMA-HAND 6-0, Ethicon, Norderstedt, Germany). 

Animals were left to recover for 1-2 weeks before hemodynamic recordings.  
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Figure 3. 1 Radio telemetry (left) and schematic of telemetry catheterization 
into mouse right common carotid artery. 

Figure 3. 1Radio telemetry (left) and schematic of 

telemetry catheterization into mouse right common 

carotid artery. 



 43 

Hemodynamic recordings 

BP recording was performed at a sampling rate of 1 KHz using a PowerLab® data 

acquisition system (model 8S; ADInstruments, Inc.; Colorado Springs, CO). HR was 

derived from the arterial BP pulse. HR variability (HRV) and power spectral density (PSD) 

was assessed from the BP and HR using ADI software (Chart 8.0). High and low frequency 

cutoffs for power spectral analysis were 0.15 Hz to 1.5 Hz for low frequency (LF) and 1.5 

Hz to 5 Hz for high frequency (HF) as previously described[125]. 

Chronic heart failure model 

The CHF model was produced by permanent coronary artery ligation, as previously 

described[126]. Briefly, under anesthesia (∼2% isoflurane and 98% O2), mice were 

intubated and ventilated with a mouse ventilator (Mouse Ventilator MiniVent model 845, 

Hugo Sachs Elektronik; tidal volume: 150–250 μL; frequency: 200 breaths/min). The heart 

was exposed through a left thoracotomy at the fourth intercostal space. The anterior 

descending branch of the left coronary artery was permanently ligated with a 6-0 suture. 

Sham mice underwent thoracotomy and manipulation of the heart, but coronary artery 

ligation was not performed. To reduce acute mortality in the coronary ligated group, in 

postoperative care the mice were allowed to stay in the housing cage with supplemental 

100% oxygen and a heating pad set at 30–32 °C for 3 days or longer as needed. 

Representative pictures of the model are shown in Fig 3.2.  
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A) The suture was placed through the myocardium into the anterolateral left 

ventricle wall underneath the left anterior descending coronary artery, 1-3 mm from 

tip of the normally positioned left auricle. B) The left ventricle was cut open and 

spread on a flat plate. A well defined transmural scar was observed in the ischemic 

area as marked by the dashed line. 

A. B. 

Figure 3. 2 Diagrams showing ligation of the left anterior descending 
coronary artery. 
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Echocardiography 

At the fourth week post coronary ligation or sham surgery, mice were 

echocardiographically imaged on a Visual Sonics Vevo 3100 ultrasound using a 40 MHz 

probe under light isoflourane anesthesia (0.5–1%). 2D B-mode images were acquired in 

the long and short parasternal axis. M-Mode images were acquired at the level of the left 

ventricular papillary muscles. Left ventricular volumes and diameters were measured. 

Ejection fraction (EF) was calculated by a standard formula EF = [(LVEDV-

LVESV)/LVEDV] x 100. Fractional shortening (FS) was calculated as FS = [(LVEDD-

LVESD)/LVEDD] x 100. The echocardiographer was blinded as to the origin of the animal 

groups. 

Microinjection of lentiviral vector into the RVLM 

CamKIIa promoter (HIV-CamKIIa-GFP-Nrf2) driven Lentivirus encoding the Nrf2 gene 

was purchased from the Viral Vector Core, University of Iowa, IA. The Cytomegalovirus 

(CMV) promoter driven Lenti-GFP-Cre virus was purchased from Kerafast, Inc, Boston, 

MA. Lenti-GFP-Cre contains both 5′ and 3’ lentiviral long terminal repeats (LTRs) and all 

necessary elements for effective transduction and expression of GFP and Cre genes.  

The delivery of viruses into the bilateral RVLM  was performed on a mouse stereotaxic 

apparatus (SR-5M, NARISHIGE, Japan) with the mouse in prone position. The mouse 

was anesthetized with isoflurane (∼2%). Two small holes were made overlying the 

cerebellum with a sterile 18-gauge needle to locate RVLM  according to the following 

coordinates: 1.2 mm lateral to the midline, 5.3 mm ventral to the dorsal surface of the brain, 

1.9 mm caudal to lambda [127]. Viruses were injected bilaterally into the RVLM using a 

34-gauge needle attached to a microsyringe (Model 62 RN SYR, Hamilton Company, 

Reno, NV). Mice were left to recover for 2 weeks before recordings or physiological 
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experiments. RVLM targeting was confirmed by confocal immunofluorescence of GFP 

after euthanasia. The brain stem was removed and stored at −80°C for subsequent 

biochemical measurements. 

ICV infusion and implantation of osmotic minipump 

The mouse was placed on the stereotaxic apparatus with the skull exposed through a 

midline scalp incision. Under anesthesia, a small hole was drilled over the right cerebral 

ventricle using the following coordinates: 1.1 mm lateral from midline, 0.55 mm posterior 

to the bregma, and approximately 2.5 mm deep from the dorsal surface of the brain (Fig 

3.3). Then a small incision was made in the mouse back between the scapulae. Using a 

hemostat, a small pocket was made by spreading the subcutaneous connective tissues 

apart. For different experimental purposes, a 14-day or 7-day Alzet osmotic minipump  

(MODEL 1002, Durect Corporation, Cupertino, CA) was inserted into the pocket. The 

minipump was attached to a cannula (ALZET Brain Infusion Kit3) for the ICV infusion of 

artificial CSF (aCSF), AngII (A9525, Sigma-Aldrich), Ang1-7 (A9202, Sigma-Aldrich), or 

A-779 (SML1370, Sigma-Aldrich) at a rate of 0.25uL/hr (14-day pump) or 0.5uL/hr (7-day 

pump). The skin incision was eventually closed with a 6-0 suture. 
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A. Atlas of mouse brain showing location of the RVLM (orange) in sagittal view. B. 

Osmotic pump and a cannula set inplanted in a mouse for ICV infusion. C. Methylene 

blue confirms injection is in lateral ventricle.  

  

Osmotic 
minipump

Cannula

A. B. 

C. 

Figure 3. 3 Osmotic minipump implantation. 
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Renal Sympathetic Nerve Activity (RSNA) recordings 

Mice were anesthetized with isoflurane (2%) and were ventilated with room air after 

tracheal cannulation (tidal volume: 150 μL, frequency: 200 breaths/min)[128]. The right 

femoral artery and vein were dissected and separated from the femoral nerve for venous 

and arterial cannulation (Millar transducer). A bundle of the left renal sympathetic nerves 

was isolated in the retroperitoneal space through a left flank incision and placed on a pair 

of platinum-iridium recording electrodes. The nerve-electrode complex was covered with 

silicone gel (Kwik-Sil, WPI, Sarasota FL). The RSNA signal was amplified ( × 1000) and 

filtered (bandwidth: 30–3000 Hz) using a Grass P55C preamplifier, and input into a 

PowerLab® data-acquisition system, from which the signal was monitored, recorded, and 

saved using the LabChart® 7 software (AD Instruments, Inc. Colorado Sprngs, CO). 

BRS Analysis 

Spontaneous BRS (sBRS) in conscious mice was determined from the pulsatile BP 

signals based on the sequence technique[129], using HemoLab Software (Version 20.2, 

courtesy of Dr. Harald M. Stauss, University of Iowa). Individual sequences of increases 

or decreases in BP in mmHg (x-axis) and pulse interval in msec (y-axis) values were 

plotted and subjected to linear regression. The average of the slopes of all individual 

regression lines were then used as an index of baroreceptor-HR reflex sensitivity 

(ms/mmHg). 

Induced Baroreflex Sensitivity in the conscious state (IBRS-C) was evaluated by 

calculating the percent of the decline in HR from the maximal value within 30 min after 

intraperitoneal injection of phenylephrine (PE) (10 μg in 50 μl). 
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Induced Baroreflex Sensitivity under Anesthesia (IABS-A) was analyzed by logistic 

regression over the entire pressure range after PE administration. The values for BP and 

RSNA were acquired every 2 s from the threshold to the saturation points. A sigmoid 

logistic regression curve was fit to the data points using the following equation: 

RSNA =  !
"#$%&	[)(+!,-.)]

+ 𝐷,	 where A is the RSNA range, B is the slope coefficient, C is 

the pressure at the midpoint of the range (BP50), and D is the minimum RSNA. The peak 

slope (or maximum gain) was determined by taking the first derivative of the baroreflex 

curve and was calculated with the equation: Gain max = A(1) × A(2) × [1/4], where A(1) is 

the range and A(2) is the average slope. The mean values for each curve parameter were 

used to derive composite curves for each experimental group. 

Metabolic cage study 

In experiments where drinking and urine responses were measured, mice were housed 

individually in metabolic cages (Harvard Apparatus, Holliston, MA). Food and water were 

accessible ad libitum and all the mice were allowed to adapt to the metabolic cages for 4 

days before data collection. 24-hour daily water intake and urine output were recorded 

and urine samples were collected under a layer of mineral oil for NE analysis.  

Norepinephrine measurement 

Urinary NE was measured using a Norepinephrine Enzyme-Linked Immunosorbant Assay 

(ELISA) kit (Labor Diagnostika Nord KG, Nordhorn, Germany). A 50-μl urine sample was 

diluted with 950 μl double-distilled H2O to obtain a 20:1 diluted sample, from which 10 μl 

was used for NE measurements based on the instructions provided by the company. 

Duplicate measurements were made for each sample. 24-hour NE excretion was 

calculated from 24-hour urine volume multiplied by NE concentration.  
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Plasma NE was measured after the blood was collected by cardiac puncture following an 

acute terminal experiment. Under 2% isoflurane anesthesia, the heart was exposed via a 

thoracotomy by removing the ventral segment of the 3rd to 6th ribs together with the 

sternum. A 21G needle connected to 1 mL syringe was inserted into the left ventricle. 

Blood was withdrawn slowly and transferred into a 1.5 mL Eppendorf tube containing 10% 

K+ EDTA (10 μl). Blood was centrifuged at 1000×g for 10 min at 4 °C. We were able to 

reliably obtain ∼1 mL blood which resulted in ∼500 μL of plasma, from which 300 μL was 

used to measure the NE concentration using the same ELISA kit as mentioned above. 

Cell culture 

A mouse neural crest-derived cell line Neuro-2A (N2A) cells (CCL-131, American Type 

Culture Collection) were cultured in DMEM media supplemented with 10% fetal bovine 

serum (FBS) and 1% penicillin/streptomycin. Cells were seeded onto 6-well culture plates 

at a density of 1×105 cells/well for western blot studies. N2A cells were kept in a humidified 

incubator maintained with 5% CO2 at 37°C. 24 hours after cell seeding, differentiation was 

induced by starvation with the FBS reduced to 2% in the DMEM. Each set of cell 

experiments was performed in triplicate.  

Western blot analysis 

Primary antibodies used were Nrf2 (ab62352, R-IgG, 1/1000), Keap1 (sc-33569, R-IgG, 

1/1000), NQO1 (sc-376023, M-IgG, 1/500), HO-1 (sc-10789, R-IgG, 1/200). GAPDH (sc-

32233, M-IgG) or β1-actin (ab-8227, M-IgG) was served as internal loading control.  

For brain tissue analysis the RVLM was punched under a microscope according to 

coordinates taken from Paxinos and Franklin's, the Mouse Brain in Stereotaxic 

Coordinates[130]. For N2A neurons, cells were detached with a cell scraper in 1 mL chilled 
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PBS for each well and were transferred to an Eppendoff tube. After centrifugation at 3000 

rpm for 5 min at 4oC, the supernatant was discarded and the cell pellet was used. Total 

protein was extracted with Radioimmunoprecipitation Assay (RIPA) buffer (PI89901, 

Thermo Fisher Scientific) containing 1% protease inhibitor cocktail (ab201119, Abcam). 

Sample concentrations were measured using a protein assay kit and were adjusted by 4x 

sodium dodecyl sulfate sample buffer to obtain equal concentrations among samples. 

Equal amount of protein samples were loaded into a 8% SDS-PAGE gel (20 μg protein 

per well). The fractionized protein was then subjected to electrophoresis and electrically 

transferred to a polyvinyl difluoride membrane. The membrane was blocked in Phosphate-

buffered saline (PBS) solution containing 5% non-fat milk powder, then was probed with 

primary antibodies to the target protein at 4oC overnight. After incubation with primary 

antibodies, the blot was probed with secondary antibodies at room temperature for 1 hour. 

After thorough washes with PBS containing 1% Tween 20 (PBST), blot bands were 

visualized using an enhanced chemiluminescent system (UVP BioChemi). Bands 

densities were quantified with ImageJ software (NIH). The final data was expressed as 

band densities of the target protein divided by the loading control protein. 

Immunofluorescence and laser confocal microscopy 

Lenti-GFP-Cre viral-induced Nrf2 overexpression or knockout in the RVLM was confirmed 

using immunofluorescence staining. Mice were deeply anesthetized with sodium 

pentobarbital and perfused transcardially with PBS, followed by 4% paraformaldehyde in 

PBS. The entire brainstem was removed, mounted on a specimen stage, and sectioned 

into 40-μm slices in a cryostat. The slices were then washed with PBS three times and 

permeabilized for 30 min at room temperature with a solution containing 0.3% Triton X-

100 dissolved in PBS, followed by blocking with a solution containing 10% normal goat 
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serum and 0.3% Triton X-100 in PBS at room temperature for 2 hours. The slices were 

then incubated with Nrf2 antibody (ab31163 R-IgG), in 10% normal goat serum and 0.3% 

Triton X-100 in PBS at 4 °C overnight. After three washes with PBS, the slices were 

incubated for 2 hours with secondary fluorescent antibody (Goat anti-Rabbit IgG 

secondary antibody, Alexa Fluor 546; Invitrogen, A-11010).  

For oxidative stress immunofluorescence staining assessment, 20-μm brainstem sections 

containing the RVLM were cut on a cryostat. The slices were then permeabilized with 2% 

Triton X-100 at room temperature for 15 minutes. Following blocking with 5% bovine 

serum albumin (BSA), the slices were incubated with 8 hydroxy D guanosine (8-OHdG) 

Antibody (sc-393871, Mouse-IgM, Santa Cruz) overnight at 4°C. Slices were then 

incubated with secondary antibody (ab175472, Donkey-IgG, Alexa Fluor 568; Invitrogen) 

at room temperature for 2 hours.  

Stained sections were mounted with an Aqua-Mount Mounting Medium and visualized 

under a laser confocal microscope (Leica TSC STED). Staining intensities were quantified 

with ImageJ software. 

Statistics  

For cell experiments with one affecting factor, data were analyzed by a one-way ANOVA 

followed by Tukey’s multiple comparisons test. For other data with two affecting factors, a 

two-way ANOVA followed by Tukey’s multiple comparisons test was used to analyze the 

differences among multiple groups. All data were analyzed using Prism 8 (GraphPad 

Software, San Diego, CA) and were expressed as mean ± SE. Differences were 

considered statistically significant at a p value of <0.05. 
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Introduction 

As a hallmark of CHF, sympatho-excitation not only exacerbates the failing heart,  but also 

undermines peripheral organ function. Although mainstream therapeutic strategies for this 

syndrome including  β1 adrenergic-blockers, ACEI and ARBs have all been demonstrated 

to ameliorate symptoms and improve disease prognosis, sympathetic outflow is still 

increased. Moreover, side effects such as increased risk of withdrawal syndrome with 

long-term use of β1-blockers or kidney failure with the use of ACEIs are concerned in 

these medications [131]. Therefore, exploring the central mechanisms of sympatho-

excitation appears to be critical to uncover novel therapeutic targets for CHF. 

The RVLM functions as a prime SNA outflow center where pre-sympathetic neurons 

project to the spinal cord. Pathological changes in this area are associated with sympatho-

excitation in CHF. Pre-sympathetic neurons arise from the RVLM and send a 

monosynaptic projection to the IML of the spinal cord [132]. Studies from our laboratory 

showed that reducing oxidative stress in the RVLM either by oral administration of the 3-

Hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, simvastatin [133], or by chronic 

exercise training[134], could ameliorate sympatho-excitation in CHF in rabbits.    

Increased oxidative stress in the RVLM contributes to sympatho-excitation[88]. At the 

cellular level, oxygen radicals are primarily produced by mitochondria[135] and NOX [136]. 

These ROS are then scavenged by both enzymatic and non-enzymatic mechanisms[137]. 

In the RVLM of CHF rabbits, we found that the expression and activity of NOX2 subunits 

were upregulated[88] whereas SODs, were downregulated[134], suggesting that the 

increased ROS in the setting of CHF may be a result of enhanced pro-oxidant processes 

and reduced anti-oxidant defenses. We previously demonstrated the upregulation of NOX 

in the RVLM of CHF is attributed to enhanced AngII signaling[88]. However, the 
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mechanisms underlying downregulation of SODs as well as other antioxidant enzymes 

remain to be elucidated.   

As mentioned in the Introduction in Chapter I, the Nrf2/Keap1 complex plays a critical role 

in the redox-sensitive transcriptional regulatory system. Keap1 functions as a sensor of 

ROS and electrophiles, whereas Nrf2 serves as an effector for the coordinated activation 

of cytoprotective genes including a battery of antioxidant enzymes[138]. In the RVLM, this 

system is an important factor in maintaining normal sympathetic tone and BP in conscious 

mice[120]. However, the role of RVLM Nrf2 modulation on SNA in CHF has not been 

elucidated. Therefore, in this Chapter, we tested the hypothesis that overexpression of 

Nrf2 in the RVLM contributes to reduced oxidative stress, upregulation of anti-oxidant 

defenses, resulting in a reduction in SNA in the CHF state.  

Experimental Protocol 

In this experiment, male and female C57BL/6 mice aged between 10 and 12 weeks were 

used. In the initial (first six animals) experiments, we were not able to observe differences 

in infarct size or responses to overexpression of Nrf in males and famales, therefore the 

remainder of the animals were males. In one set of experiments, wild type mice received 

viral vectors encoding for Nrf2 protein or GFP as a viral control; in another set of 

experiments, an alterative strategy of upregulating Nrf2 was employed through Keap1 

deletion via administering Cre lentivirus in Keap1f/f mice. In these Keap1f/f mice, we 

assessed their baseline RSNA as well as plasma NE to further address our hypothesis. 

The general animal study design is shown in Fig 4.1. 

Heart failure model was created by permanent left coronary artery ligation, as described 

above. The sham group underwent a similar procedure without coronary artery ligation. At 
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the fourth week post surgery, cardiac function was evaluated by echocardiography (Vevo 

3100, FUJIFILM VisualSonics). Infarct size was calculated as percentage of LV size using 

ImageJ softwear. One week after echocardiography, mice underwent procedures where 

viral-vectors containing either the Nrf2 gene (20 nl HIV-CamKIIa-eGFP-Nrf2 at 1.3 × 108 

TU/mL)  or Cre recombinase gene (20 nl lentiviral-Cre-GFP at 1 × 108 TU/mL) were 

delivered into RVLM of wild type or Keap1f/f mice, respectively to upregulate Nrf2. Fig 4.2 

illustrates the generation of Keap1 knockout mice. Two weeks after viral injection, the mice 

were implanted with radiotelemetry units and left to recover for three weeks 

postoperatively. BP and HR were then recorded for 48 hours continuously. During 

conscious BP recording, mice were placed in a metabolic cage and a timed urine sample 

was collected. Spontaneous as well as induced baroreflex sensitivity were evaluated as 

per the methods above.  

Under anesthesia, baseline BP, HR, and renal SNA were recorded and arterial baroreflex 

sensitivity was analyzed. Mice were then euthanized by 13% KCl and the maximum RSNA 

was obtained within 1–2 min. Background noise was recorded approximately 15–20 min 

after death. Baseline RSNA was determined as the percent of maximum RSNA activity 

after the background noise was subtracted (Fig 4.3)[139].  

Blood from Keap1f/f  mice was collected following the terminal acute experiment. The urine 

and plasma were used for NE analysis. For each mouse the brain stem was removed and 

the RVLM punched for western blot analysis or immunofluorescence staining.  

All data are expressed as mean ± SE. A two-way repeated measures ANOVA and the 

Student-Newman-Keuls test was used for analyzing the differences among the four 

groups, with the aid of SigmaPlot software. A p value of <0.05 was taken as indicative of 

statistical significance. 
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Figure 4. 1  Schematic of animal study design 
Figure 4.  1 Schematic of animal study design 
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Figure 4. 2 Generation of Keap1 knockout mice.  
Schematic representation of Keap1 gene targeting vector for tissue-specific 

deletion of Exons 2 and 3 by the insertion of two loxP sites flanking Exons 2 and 

3, respectively. LA, long arm; SA, short arm. 

Kong, Thimmulappa, Craciun, et al.: Enhancing Nrf2 Pathway Inhibits Sepsisfrom [1] 

Figure 4.  2 Generation of Keap1 knockout mice. 
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Tracings of AP (red), HR (green), raw RSNA (blue), and integrated RSNA (black). 

As the final step of the experiment, 13% KCl was given at the break line (black 

arrow), and the maximal RSNA discharge was recorded about one to two minutes 

after KCl was given. Nerve activity was expressed as a percent of maximum after 

subtraction of noise. Top: Sham animal; Bottom: CHF mouse animals.   

 

 

Figure 4. 3 Representative tracing of RSNA recording. 

Figure 4.  3 Representative tracing of RSNA recording. 
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Results 

Evaluation of CHF model 

Four weeks after surgery, the CHF mice exhibited severe heart failure with EF 

approximately 35% as shown in Table 4.1. The weight of infarcted hearts were doubled 

compared to the sham hearts (CHF-GFP 0.25 ± 0.07 vs. Sham-GFP 0.14 ± 0.01, p<0.01). 

The septal and right ventricular free wall were profoundly thickened, whereas the left 

ventricular free wall became paper thin and dilated. Fig 4.4B  shows the M-mode and long 

axis 2D echocardiograms, which confirmed the severity of impaired cardiac functions of 

the infarcted hearts with significantly decreased EF and dp/dtmax. In Table 4.1, grouped 

data of cardiac function in four groups are shown. No significant differences were found 

between CHF-Nrf2 and CHF-GFP mice in these parameters.  
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A. Appearance of the whole heart and infarcts showing enlarged left ventricle (LV) in CHF-

GFP, which seems to be attenuated by Nrf2 overexpression. B. Echocardiograms and 

hemodynamic measurements in Sham and MI hearts treated with RVLM lenti-GFP or 

Nrf2. MI: myocardial infarction. HW: heart weight. EF: ejection fraction.  

  

Figure 4. 4 Assessment of CHF model. 

Figure 4.  4 Assessment of CHF model. 
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Table 4.1 Anatomic, hemodynamic, and echocardiographic measurements associated with 
failing hearts. 

 
Sham-GFP Sham-Nrf2 CHF-GFP CHF-Nrf2 

Animal No. 13 13 14 14 
Heart Weight, g 0.14 ± 0.01 0.16 ± 0.02 0.25 ± 0.07∗∗ 0.23 ± 0.06@@ 
Infarct Size, % of LV 0 0 59.9 ± 12.4∗∗ 55.3 ± 15.8@@ 
Ejection Fraction, % 63.6 ± 7.4 65.1 ± 6.9 34.3 ± 5.1∗∗ 37.1 ± 4.3@@ 
Fractional 

Shortening, % 
30.7 ± 6.2 33.5 ± 5.7 13.5 ± 3.1∗∗ 15.3 ± 2.2@@ 

LVEDP, mmHg 2.2 ± 2.4 1.9 ± 2.5 18.8 ± 9.1∗∗ 17.3 ± 8.2@@ 
dp/dt max, mmHg/s 12463 ± 1020 13724 ± 1052 3154 ± 655∗∗ 3298 ± 703@@ 
dp/dt min, - mmHg/s 13101 ± 1112 14166 ± 1281 3540 ± 721∗∗ 3719 ± 772@@ 

Table 4. 1 Anatomic, hemodynamic, and echocardiographic measurements associated with failing hearts. 

**P < 0.01 vs Sham-GFP,  @@P < 0.01 vs Sham-Nrf2. 

 

@@P < 0.01 vs Sham-Nrf2. 
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RVLM Nrf2 over-expression in CHF 

Nrf2 over-expression was obtained through two alternative strategies – Nrf2 gene knock-

in and Keap1 gene knock-out. For the former, Fig 4.5 shows that there is a significantly 

lower level of Nrf2 protein in RVLM in CHF group as compared to the Sham. A similar 

finding was apparent for protein of two Nrf2 target genes, NQO1 and HO-1. Nrf2 gene 

transfer significantly upregulated Nrf2, NQO1, and HO-1 in the RVLM of CHF mice. While 

there was an increase in Nrf2 expression in CHF mice, it did not rise to the level of the 

Sham animals. Nevertheless, it was sufficient to upregulate NQO1 and HO-1 to the Sham 

counterparts. In the RVLM of sham mice, although Nrf2 protein was significantly 

upregulated after Nrf2 gene transfer compared to GFP control, the changes in NQO1 and 

HO-1 did not reach statistical significance. 
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Figure 4. 5 Expression of Nrf2 and two target proteins in the RVLM of Sham and CHF 
mice transfected with GFP or Nrf2 viruses. 

Figure 4.  5 Expression of Nrf2 and two target proteins in the RVLM of Sham and CHF mice transfected with GFP or Nrf2 

viruses. 

Nrf2 gene transfer significantly upregulated Nrf2 (left), NQO1, and HO-1 (right) in the RVLM of 

sham and CHF mice.  GFP: CamKIIa-GFP-virus; Nrf2: CamKIIa-GFP-Nrf2-virus. (*P < 0.05; 

n = 7 in Sham-GFP and Sham-Nrf2 groups; n = 8 in CHF-GFP and CHF-Nrf2 groups). There 

were no differences between protein data comparing sham-Nrf2 with CHF-Nrf2. 

 

n.s 
n.s n.s 
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In order to document overexpression of Nrf2 in Keap1f/f mice, we used 

immunofluorescense and western blotting to show protein abundence. Fig 4.6A 

demonstrates upregulation of Nrf2 confirmed by immunofluorescence, which shows that 

neurons that are positive for GFP (green) also express strong Nrf2 immunoreactivity (red 

and in merged image). Western blot for Keap1, Nrf2, NQO1 and HO1 proteins exhibits 

similar results (Fig 4.6B). In both sham and CHF group, delivery of Lenti-GFP-Cre virus to 

Keap1f/f-Cre mouse led to a significantly lower Keap1 and increased Nrf2. NQO1 and HO-

1 were increased following Keap1 knock-out in both sham and CHF groups.  
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(A) Immunofluorescence images of GFP expression three weeks  after virus administration. 

(B) Western blot data for Keap1, Nrf2, NQO1 and HO1 proteins. These data confirmed 

effective Nrf2 upregulation by Keap1 knock-out. (*P < 0.05 vs GFP groups; # P< 0.05 vs 

Sham-GFP group. n= 6/group.)  

Figure 4. 6 Nrf2, Keap1, NQO1, and HO-1 expression in the RVLM of Keap1f/f mice 
following Lenti-GFP-Cre virus transfection. 

Figure 4.  6 Nrf2, Keap1, NQO1, and HO-1 

expression in the RVLM of Keap1f/f mice 
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Effects of RVLM Nrf2 knock-in on BP, HR, and SNA 

Urinary NE excretion was assessed as an index of sympatho-excitation in order to 

determine if over-expression of Nrf2 in the RVLM reduces sympathetic outflow in heart 

failure. As shown in Fig 4.7A, both NE concentration and excretion were significantly 

elevated in the CHF-GFP group compared to the Sham-GFP group. Nrf2 over-expression 

in the CHF group significantly reduced total urinary NE excretion, suggesting that 

upregulating RVLM Nrf2 suppresses sympathetic outflow in CHF.  

For arterial sBRS, data in Fig 4.7B demonstrates that in CHF, both up-sequence gain 

(1.23 ± 0.20 versus 3.71 ± 0.32 ms/mm Hg, *P < 0.05, n = 8 and 7) and down-sequence 

gain (0.90 ± 0.21 versus 2.87 ± 0.19 ms/mm Hg, *P < 0.05; n = 8 and 7) were significantly 

decreased, whereas Nrf2 over-expression restored the BRS (up-sequence gain: 

2.45 ± 0.31 ms/mm Hg, down-sequence gain: 2.30 ± 0.32 ms/mm Hg; †P < 0.05 vs CHF-

GFP, n = 8 for each group).  

We also evaluated the induced BRS by measuring hemodynamic responses to i.p. 

injection of phenylephrine. Fig 4.7C shows that there were no differences in BP changes 

among these four groups (upper panel), however, the decline in HR (lower panel) was 

significantly reduced in the CHF state, reflecting a diminished BRS. Again, an improved 

BRS was seen in the RVLM Nrf2 over-expression group of CHF mice. Together, these 

data indicate that RVLM Nrf2 over-expression improves both spontaneous- and induced- 

BRS in conscious CHF mice. 
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Figure 4. 7 Sympathetic outflow and cardiovascular regulation in conscious mice. 

n.s 

(A) Urinary NE; (B) Spontaneous Baroreflex Sensitivity; (C) Induced Baroreflex 

Sensitivity. Left panel in (C) is a representative tracing of MAP and HR of one mouse after 

ip PE; Right panel in (C) is mean data showing the percent decline of HR following PE 

induced increase in BP. (*P < 0.05 and **P < 0.01 vs Sham-GFP; †P < 0.05 vs CHF-GFP. 

n = 7, 7, 8, and 8 in Sham-GFP, Sham-Nrf2, CHF-GFP, and CHF-Nrf2 groups.) 

 

n.s 

n.s 

n.s 

n.s 

Figure 4.  7 Sympathetic outflow and 

cardiovascular regulation in conscious mice. 



 69 

Effects of Nrf2 overexpression in RVLM on RSNA and baroreflex in the anesthetized state 

Direct measurement of RSNA is difficult to directly record in conscious mice. Therefore, 

we adopted methods of SNA recording in the anesthesia state. Figure 4.8A shows original 

tracings of basal RSNA as well as RSNA responses to PE-induced HTN (baroreflex). 

These recordings demonstrate an increased baseline neural discharge and a blunted 

sympatho-inhibitory response during HTN in CHF-GFP treated as compared to Sham-

GFP treated mice. Mice treated with Nrf2 virus exhibited a restored sympatho-inhibitory 

response in CHF. Figure 4.8B displays the mean data for basal RSNA frequency, 

integrated nerve activity, and normalized nerve activity. All three parameters were found 

to be higher in the CHF-GFP treated group compared to the Sham-GFP group. In CHF 

mice, these parameters were reduced in the Nrf2 overexpression group. The composite 

baroreflex curves/gains (Figure 4.8C, top) and four parameters of reflex sensitivity (bottom) 

are shown. The maximal gain, average slope and range of RSNA response were 

significantly decreased, whereas the BP50 and minimum RSNA were significantly higher 

in the CHF-GFP group compared with the Sham-GFP group. Nrf2 over-expression in CHF 

mice significantly reduced these parameters. 
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(A) Original recording; (B) Analysis of basal sympathetic nerve activity; (C) Baroreflex curves 

and curve parameters. PE: Phenylephrine. *P < 0.05 and **P < 0.01 vs Sham-GFP; †P < 0.05 

vs CHF-GFP. n = 6. 

 

Figure 4. 8 Renal sympathetic nerve activity and baroreflex sensitivity under 

anesthesia. 

n.s n.s 

n.s n.s 

n.s 

n.s 

n.s 

Figure 4.  8 Renal sympathetic nerve activity and 

baroreflex sensitivity under 
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Effects of Keap1 knock-out in RVLM on RSNA 

Since the RVLM Keap1 knock-out showed a significant increase in Nrf2, NQO-1, and HO-

1 in CHF mice, we determined their basal RSNA and plasma NE to evaluate these 

physiological effects. As shown in Fig 4.9A, RSNA in CHF-Keap1f/f-GFP mice was 

markedly higher as compared to Sham-Keap1f/f-GFP group. Similar to the results seen for 

direct Nrf2 virus knock-in animals, indirect upregulation of Nrf2 in the CHF-Keap1f/f-Cre 

mice, the basal RSNA in CHF was attenuated compared to CHF-Keap1f/f-GFP group. 

Similar to direct Nrf2 knock-in, Keap1 knock-out did not alter baseline RSNA in sham 

animals. Similar patterns were observed for plasma NE concentration between each group 

(Fig 4.9B). Together with the Nrf2 knock-in data above, these results strongly indicate that 

manipulating Nrf2 has a direct impact on sympatho-excitation in the CHF state.  
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(A). RSNA recording (upper) and mean data (lower) show a higher basal RSNA in CHF-

Keap1f/f-GFP mice as compared with Sham-Keap1f/f-GFP; the increased basal RSNA was 

ameliorated in CHF-Keap1f/f-Cre mice. (B). The increased plasma NE concentration in CHF-

Keap1f/f-GFP mice was restored after Keap1f/f-Cre treatment.  *P<0.05 vs GFP groups; 

†P<0.05 vs CHF-GFP. n = 6. 

(A) 

(C) 

 

(C) 

(B) 

 

(B) 

Figure 4. 9 Basal RSNA and plasma NE concentration in CHF-Keap1f/f-GFP mice. 

n.s 

n.s 

Figure 4.  9 Basal RSNA and plasma NE 

concentration in CHF-Keap1f/f-GFP mice. 
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Discussion 

CHF are characterized by increased SNA. In early stage CHF, sympatho-excitation is an 

important compensatory mechanism in maintaining hemodynamic stability in response to 

impaired cardiac function. However, long-lasting sympatho-excitation eventually leads to 

a vicious cycle and contributes to the progression of HF. Current therapeutic strategies for 

CHF including ACEIs and β-adrenergic antagonists mainly focus on the peripheral 

sympathetic regulation, and their potential adverse effects may contribute to the worsening 

of this condition. For example, β adrergic-blockade protects myocytes but leaves the α-

receptor vulnerable to sympathetic stimulation and may result in vasoconstriction and 

reduced tissue perfusion. Since the augmented sympathetic tone in the CHF state 

originates centrally, this study aimed to elucidate one potential mechanism of sympatho-

excitation in the CNS in CHF to provide further evidence for a potential novel central 

therapy, perhaps by targeting central delivery via nanoparticles or exosomes. 

In this study, we adopted the widely used method of left anterior descending (LAD) 

coronary artery ligation to establish CHF model. While there are other methods for small 

animal HF models such as transverse aortic constriction (TAC), LAD ligation mimics the 

most severe cause of HF in humans (coronary thrombosis) resulting in MI. This model has 

been reliably shown to result in neurohumoral activation similar to that is seen in humans 

with CHF. In addition, the established correlation between infarct size and LV function 

made LAD ligation model more feasible in quality control [140, 141]. The TAC model on 

the other hand, results in pressure overload, cardiac hypertrophy and remodeling, but 

does not result in CHF until very late in the disease (many months)[142]. 

In the LAD ligation induced CHF model, we found that Nrf2 protein and two of its targets, 

NQO1 and HO-1, in the RVLM of CHF mice were significantly downregulated compared 
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to the Sham group. Upregulating Nrf2 by introducing an HIV-CamKIIa-eGFP-Nrf2 virus 

into the RVLM of C57BL/6, or by introducing lentiviral-Cre-GFP in Keap1f/f mice 

significantly restored the decreased Nrf2, NQO1, and HO-1 in CHF mice. Upregulation of 

Nrf2 also improved arterial baroreflex function, lowered plasma and urinary excretion of 

NE, and reduced RSNA. These data strongly suggest that an impaired antioxidant defense 

at least partially contributes to sympatho-excitation in CHF, and upregulation of Nrf2 can 

ameliorate the increased SNA. Therefore, enhancement of antioxidant mechanisms in the 

RVLM may be a potential strategy in treating or preventing diseases like CHF and HTN. 

The relative lack of statistically significant restoration of cardiac function (EF, FS) in the 

CHF mice after Nrf2 overexpression was not surprising due to the severe and large MI 

created in this model. In general, mouse MI models result in infarct sizes too large to 

reverse cardiac dysfunction following most interventions. This is an intrinsic limilation of 

the mouse MI model. A reduction in RSNA in this model may benefit the peripheral 

vasculature more than the myocardium. To minimize this limitation, one needs to evaluate 

modulation of Nrf2 in other models of CHF.  

The lack of complete normalization of Nrf2 protein following Keap1 knockdown in CHF 

animals is not clear. However, this is not surprising given the lower level of Nrf2 

expression seen in the CHF group and the likelihood that there are other factors that 

regulate NQO1 and HO-1 in addition to Nrf2 (e.g. proteosomal degradation).  

In a previous study we showed that selective deletion of Nrf2 and the consequent 

enhancement of oxidative stress in the RVLM lead to sympatho-excitation and HTN [120]. 

This suggests that redox homeostasis is essential for normal function of sympathetic 

networks. It has been shown that enhanced oxidative stress and reduced antioxidant 
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defense in the RVLM are responsible for sympatho-excitation in both CHF [143] and HTN 

[144]. While we did not exam all antioxidant proteins, NQO1 and HO-1 were markedly 

downregulated in the RVLM in CHF. The underlying mechanisms for this downregulation 

are not clear. In this study, we found that Nrf2 expression in the RVLM of CHF mice was 

significantly lower than that in Sham mice, suggesting that the dysfunctional transcription 

of antioxidant enzyme genes may be responsible for the impaired antioxidant defense. 

Using two methods we showed that upregulating RVLM Nrf2 through gene transfer 

restores impaired baroreflex sensitivity which is characterized by sympatho-excitation. 

These findings are also consistent with studies from other groups where a downregulation 

of Nrf2 protein in the PVN in the SHR was observed [145]. In these studies, investigators 

administered a selective Nrf2 activator, tert-butylhydroquinone (tBHQ), and found that 

both BP and SNA were significantly reduced.  

The cellular mechanisms by which over-expression of Nrf2 alters RVLM neuronal activity 

in mice with CHF is still unknown. The pre-sympathetic neurons in the RVLM are 

categorized as C1 or non-C1 groups based on the expression of phenylethanolamine N-

methyltransferase (PNMT), and both groups utilize glutamate as the primary excitatory 

neurotransmitter [146] and can be targeted by a CAMKIIa vector. In a recent study it was 

reported that in mice, optogenetic activation of C1 cells alone results in a decrease in BP, 

but when C1 and non-C1 cells were stimulated simultaneously, BP was markedly 

increased [147], suggesting different functions of C1 and non-C1 cells in the RVLM. In this 

study because of the use of HIV-CamKIIa-GFP-Nrf2 vector, we were not able to 

distinguish between these two cell types. We assume that upregulation of Nrf2 in all 

glutamatergic neurons in the RVLM contributes to the amelioration of sympathetic 

dysfunction. The findings from the Keap1f/f mouse model indicate that overexpressing Nrf2 

in a more widespread manner in the RVLM, including neurons and non-neuronal cells, 
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also contributes to the suppression of SNA in CHF, suggesting a global oxidative stress 

in the RVLM. Increased ROS can remarkably impact neurons and glial cells by direct 

oxidation of lipids, proteins, and DNA as well as the induction of mitochondrial injury [148]. 

By oxidative modification of potassium channels [149], the excitability of neuronal cells is 

increased while pro-inflammatory cytokines are released from activated glial cells [150]. 

In addition, Nrf2 also plays a critical anti-inflammatory role in the cross-talk between Nrf2 

and NF-κB, through competing for binding to CBP (CREB-binding protein) thus depriving 

its interaction with NF-κB thereby decreasing pro-inflammatory activity[118]. All these 

mechanisms may underly the dysfunction in the RVLM in the CHF state. 

It is possible there may have been sex differences in the responses to overexpression of 

Nrf2 and sympathoinhibition as human studies have shown these gender differences[151]. 

However, our initial studies did not show major differences in the effect of RVLM Nrf2 on 

SNA. In addition, our Keap1f/f mouse line produced slightly more males than females, 

therefore there were more males in this study. For a more thourough exploration of sex 

differences, future studies need to be done with more female animals included and a 

separate analysis done. 

In summary, data from this study suggest that enhanced oxidative stress in the RVLM in 

CHF may be attributed to reduced transcriptional regulation of antioxidant genes, thus 

resulting in sympathetic overactivity. Furthermore, upregulating antioxidant enzyme 

expression through the Nrf2-Keap1 pathway in the RVLM may be a potential new 

therapeutic strategy to improve autonomic regulation in CHF. While we investigated the 

RVLM, our data does not rule out important contributions from other autonomic areas in 

the medulla and hypothalamus. 
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Chapter V. Effects of ACE2 over-expression in the Brain on 
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Introduction  

HTN is one of the most common causes of morbidity and mortality, worldwide. Essential 

HTN is characterized, in part, by activation of the RAAS and SNA [152]. There is a 

consensus that much of what is called “essential” HTN has a neurogenic component [153]. 

The circulating and central RAAS alter autonomic function and it is well accepted that 

central AngII increases AP by activating SNA and vasopressin secretion indicating the 

primacy of central alterations in the response to AngII [154]. The areas of the CNS that 

regulate cardiovascular function and sympathetic function are, to a large degree, centered 

around the RVLM and integrative areas of the brain stem such as the hypothalamus, the 

organum vasculosum of the lamina terminalis and the NTS, among others. Alterations in 

the function of these centers have been shown to play a critical role in CVD [155]. Through 

activation of AT1R, AngII activates several downstream signals to elicit enhanced 

sympathetic activation and pressor effects [156].  

The ACE homolog ACE2 is a carboxy peptidase that cleaves the terminal phenylalanine 

from AngII to form Ang1-7. This metabolite is an important component of the RAS system, 

the so-called “good arm of the RAAS” [65, 157]. In previous work from this laboratory we 

have shown that rabbits with CHF exhibit increased ACE and decreased ACE2 in several 

central nuclei including the RVLM, the PVN and the NTS [101]. We also demonstrated 

that SNA was significantly reduced in CHF mice that overexpress ACE2 in the brain[68]. 

Similarly, in HTN, Sriramula et al. showed attenuation of the pressor response to 

peripheral infusion of AngII in mice that overexpress ACE2 in the brain. The same group 

also showed that peripheral AngII infusion increased oxidative stress in the PVN and 

RVLM significantly more in ACE2 knockout mice compared to their non-transgenic 

littermates [75]. By over-expression of ACE2 in the RVLM, Yamazato et al. showed a 
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significant decrease in BP in the SHR rats [158]. However, the exact mechanisms by which 

central ACE2 reduces sympathetic outflow in HTN are not quite clear. 

Sympatho-excitation is increased by central AngII activity, especially in the autonomic 

regulating areas mentioned above. Thus, it is rational to speculate that the sympatho-

inhibitory effects of ACE2 is the result of decreased AngII due to the conversion to Ang 1-

7. However, some studies [159] showed that in global ACE2 knockout (KO) mice, while 

their systolic BP was comparable to wild type mice, vasodilator function was significantly 

impaired. ACE2 deficiency - induced vascular dysfunction was improved by Tempol, a 

superoxide dismutase-mimetic. More importantly, AngII levels were not significantly 

different between adult ACE2 KO and WT mice. These studies suggest that ACE2 plays 

an important role in regulation of oxidative stress through an AngII independent pathway. 

Ang1-7 is the product of AngII being converted by ACE2 and has been show to possess 

vasodilator activity as an opposing effect to that of AngII [160]. By binding to the MasR, 

Ang1-7 negatively modulates AngII/AT1R–activated c-Src and its downstream targets 

ERK1/2 and NOX in endothelial cells[161]. Diz et al. [162] and others have provided 

evidence that Ang 1-7 enhances baroreflex sensitivity and exerts sympatho-inhibitory 

effects. Gironacci et al. showed that Ang 1-7 decreased NE release from the 

hypothalamus of SHR[72]. Therefore, it is plausible to presume that the anti-sympathetic 

effect of ACE2 may be through increased Ang1-7 converted from AngII. However, the 

central effect of Ang1-7 still remains controversial in terms of SNA control. Potts et al. 

showed that Ang 1-7 exhibits a sympatho-excitatory effect when given into the RVLM in 

anesthetized rabbits [69]. Silva et al. also demonstrated that injection of the MasR 

antagonist, A-779 in the PVN decreases RSNA in anesthetized rats, indicating a possible 

sympatho-excitatory quality of Ang1-7 [71]. Based on these studies, there may be another 
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mechanism that is not directly related to either AngII or Ang1-7 that mediates the anti-

sympathetic effects of ACE2.    

In order to assess the role and potential mechanism of central ACE2 in regulating BP and 

sympathetic overactivity, we evaluated responses of ACE2 over-expression in the mouse 

brain to central AngII- induced HTN.  

Experimental Protocol 

This experiment was performed on 3-month-old male SynhACE2+/+ transgenic mice and 

their non-transgenic littermates on the C57BL6 background. The experimental design is 

shown in Fig 5.1 below.  

All mice were instrumented with a radio telemetry unit (PA-C10; Data Sciences 

International Inc., Minneapolis, MN) with the catheter inserted into the left common carotid 

artery as described in Chapter III. Animals were allowed to recover for 1 week before 

hemodynamic recording. MAP and HR were measured 2 hours daily from noon to 2:00 

PM. A 24-hour recording was attained each week usually on a Saturday or Sunday. 

Following 3 days of baseline recording, a cannula connected to a 14-day osmotic 

minipump (Model 1002, Alzet, Inc. Cupertino, CA) was implanted into the right lateral 

ventricle at a pumping rate of 0.25 ul/hour, to create a hypertensive model by chronic ICV 

infusion of AngII. The control group received aCSF. In order to avoid acute postoperative 

stress induced high BP, mice of all groups were equipped with minipumps filled with only 

aCSF for 1 week before switching to minipumps filled with different drugs. The protocol 

timeline is demonstrated below. After each group received the assigned treatment with 

AngII (100 ng/kg/min)[163], Ang1-7 (200 ng/kg/min) or A779 (400 ng/kg/min)[164]. These 
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doses are based upon previous studies and on the fact that AngII at this dose does not 

evoke an increase in BP when given peripherally[163]. 

During hemodynamic recording, mice were placed in a metabolic cage. After a 3-day 

adaptation, 24-hour urine samples were collected daily and saved for NE analysis. Mice 

were sacrificed 14 days after ICV infusion of different treatments. Brains were removed 

after euthanasia, some brainstem RVLM punches were used for western blot analysis, 

some tissue was used for immunofluorescence staining.  

Results were analyzed by 2- way ANOVA for repeated measures followed by Bonferroni 

correction or Tukey’s test for multiple comparisons. All data are expressed as mean ± SE. 

Statistical analysis were performed using Prism8 (GraphPad Software, Inc. San Diego, 

CA). Differences were considered statistically significant at a p value of <0.05. 
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Day -10 Day -3 Day 0 Day 14

Telemetry implant

Baseline data 
collection

Osmotic minipump implant
ICV infusion

Post-Ang II or Ang II ± Ang1-7/A779 
data collection

Water and urine recording

Animal euthanized and 
Brain tissue collected

Recovery

Metabolic cage

Figure 5. 1 Experimental design 
Figure 5.  1 Experimental design 
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Results  

Central SynhACE2 attenuates ICV AngII - induced HTN  

To evaluate the effect of SynhACE2 over-expression on hemodynamic changes induced 

by central AngII, we assessed MAP and HR over 2 weeks of ICV AngII administration in 

both SynhACE2+/+ mice and their control littermates as described above. As shown in Fig 

5.2A, in non-transgenic (SynhACE2-/-) animals, chronic ICV infusion of AngII significantly 

increased MAP (AngII [average of post-ICV day 1-9] 126.4±2.0 mmHg vs baseline 

[average of 3-day recordings] 92.7±1.5 mmHg n=7, P<0.05) as well as compared to aCSF 

infusion controls (AngII [average of post-ICV day 1-9] 126.4±2.0 mmHg n=7, vs. aCSF 

[average of post-ICV day 1-9]  96.1±0.9 mmHg, n=5 P<0.05). The aCSF treated group did 

not show altered MAP from baseline level after treatment. ACE2 over-expression 

attenuated AngII-induced HTN to a level that was comparable to the vehicle treated 

SynhACE2-/- group (MAP [average of post-ICV day 1-9] of AngII/synACE2+/+: 101.1±2.1 

mmHg, n=5).  There were no effects on HR in any of the treatment (Fig 5.2B).  

To determine if the inhibition of the hypertensive effect of AngII in SynhACE2+/+ animals is 

mediated through an enhancement of the Ang1-7/MasR pathway, we co-administered 

MasR blocker, A779 with AngII to SynhACE2+/+ mice. As is shown in Fig 5.2A, the 

attenuated high BP due to AngII was not prevented by co-infusion of A779 in SynhACE2+/+ 

animals (SynhACE2+/+/AngII/A779 vs SynhACE2+/+/AngII: 97.9±10.6 vs 98.7±14.2mmHg, 

p>0.05). If the conversion of AngII to Ang1-7 by overexpression ACE2 was the mediator 

of the inhibition of the AngII pressor response, we would assume that Ang1-7 itself would 

show a similar benefit. Therefore, we co-administered Ang1-7 with AngII to SynhACE2-/- 

mice failed to blunt the pressor response induced by AngII. These data suggest that MasR 

activation may not be the primary mechanism of ACE2 attenuating central AngII induced 
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HTN. We interpret the findings as indicating that the primary mechanism by which ACE2 

overexpression reduces the pressor response to central AngII is through degradation of 

AngII, rather than increased Ang1-7. However, we do not have peptide measurements to 

confirm this.  

The 24-hour hemodynamic data prior to and after AngII treatment are summarized in 

Table 5.1 and are separated by day and night averages. A circadian variability was clearly 

visible in both aCSF and AngII infusion groups. Fig 5.3  summarizes the day and night 

data of MAP and HR before and after ICV infusion. Chronic ICV AngII evoked a pressor 

response in both the day and night compared to aCSF in SynhACE2-/- mice. However, this 

change was markedly inhibited in SynhACE2+/+ mice. HR also tended to rise with ICV 

AngII in SynhACE2-/- mice but not in SynhACE2+/+ mice. 
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A. Chronic ICV AngII infusion induced a progressively increased mean arterial BP in the 

SynhACE2-/- mice, which was completely blunted in the SynhACE2+/+ mice. Chronic ICV 

co-administration of AngII and Ang 1–7 in SynhACE2-/- mice did not attenuate the pressor 

response, nor did co-administration of AngII and Mas receptor blocker A779 in 

SynhACE2+/+ mice reverse the anti-hypertensive effect. Baseline BP was not altered by 

ACE2 over-expression. B. HR was not affected by ICV-AngII in any of the genotypes. (n=5-

7; #p < 0.01 vs. SynhACE2-/- /aCSF post-ICV; #p < 0.05 vs. SynhACE2-/- /AngII post-ICV). 

 

A B. 

Figure 5. 2 Central SynhACE2 overexpression attenuates ICV-AngII induced BP 
increase. 

Figure 5.  2 Central SynhACE2 overexpression attenuates ICV-AngII induced BP 

increase 
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Table 5.1 Baseline and post-infusion day-night hemodynamics 

  synhACE2-/- SynhACE2+/+ 

  aCSF AngII aCSF AngII 

  Day Night Day Night Day Night Day Night 

Baseline 

MAP(mmHg) 95.1±4.2 106.6±11.8* 102.1±3.8 112.8±6.9* 91.7±4.2 103.5±2.7* 97.8±3.5 112.0± 7.1* 

HR(BPM) 525.2±99.7 510.1±156.1 474.2±140.4 479.3±159.5 559.1±170.9 578.1±164.2 533.6±101.2 583.9±124.1 

Post-icv 

MAP(mmHg) 93.4±6.8 108.2±11.8* 120.7±9.6** 127.7±12.1** 98.5±6.9 111.1±8.6 100.9±21.7# 115.3±28.1*# 

HR(BPM) 430.3±142.3 490.6±154.7 546.7±37.8 595.4±70.8 464.2±123.3 532.5±188.6 500.3±79.7 573.9±131.6 

Each value is the 12 hour average of grouped data based on 24-hour BP and HR recordings. (n=5-

7, *p<0.05 night time vs day time-MAP; **p<0.01 vs SynhACE2- Baseline MAP; #p<0.05 vs 

SynhACE2- Post AngII-infusion MAP)  

 

Each number is the averaged value of grouped data based on 24-hour BP recordings. (n=5-7, 

*p<0.05 night time vs day time-MAP; **p<0.01 vs SynhACE2- Baseline MAP; #p<0.05 vs 

SynhACE2- PostAngII-infusion MAP) 
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24 hour MAP in four groups before (A) and after (B) ICV infusion of AngII or aCSF. No 

difference were shown between groups in the baseline blood pressure. AngII infusion 

significantly increased MAP compared to aCSF group. ACE2 overexpression completely 

blocked the increase of MAP in response to ICV-AngII(n=5, *p<0.05). SynhACE2+/+ /aCSF 

group did not show significant change in MAP compared to SynhACE2-/-/ aCSF control.  

 

  

Baseline  24hour MAP Post-ICV  24hour MAP
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Figure 5. 3 Day-night circadian MAP before and after ICV infusion 

Figure 5.  3 Day-night circadian MAP 

before and after ICV infusion 
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SynhACE2 attenuates central AngII induced polydipsia  

AngII is well known for its ability to trigger thirst and fluid intake [165]. To assess the effect 

of ACE2 over-expression on central AngII - induced drinking response, we recorded daily 

water intake and urine output for each group of animals. Baseline daily water intake and 

urine generation showed no difference between animals of all genotypes. With central 

AngII treatment, the effect on drinking behavior is shown in Fig 5.4. In SynhACE2-/- animals, 

the peak values for daily water consumption markedly increased from a baseline of 

5.6±0.2ml to 25.9±0.6 ml (n=5, p<0.05), with a significant increase in 24-hour urine 

excretion concomitantly from 1.6±0.3 to 13.9±1.5 ml (n=5, p<0.05). This enhancement of 

fluid intake started gradually after AngII infusion and was sustained during the infusion. In 

SynhACE2+/+ mice however, the drinking and urine volumes in response to ICV AngII were 

attenuated (ΔH2O volume=10.5±2.1 ml, Δ Urine volume=6.9±1.7 ml n=5, p<0.05) 

compared to their non-transgenic littermates. There were no differences between 

SynhACE2+/+ and SynhACE2-/- mice infused with aCSF infusion (ΔVolume=0.1±2.2ml, 

n=5).  
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A. Chronic AngII infusion produced an overall increased water intake during the 2-week 

infusion period, the response was reversed in SynhACE2+/+ mice (n=4-5; *p < 0.05). B. The 

increased urine output due to central AngII was blunted in SynhACE2+/+ mice (*p < 0.05 vs. 

aCSF; #p < 0.05 vs. SynhACE2-/-; n=4-5). 

A. B. 

Figure 5. 4 ACE2 over-expression attenuates the enhancement of central AngII 

induced polydipsia and polyuria. 

Figure 5.  4 ACE2 over-expression attenuates the 

enhancement of central AngII 
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SynhACE2 attenuates central AngII-induced sympathetic overactivity 

To determine if the anti-hypertensive ability of SynhACE2+/+ mice in response to central 

AngII is due to a reduction in SNA, we measured 24-hour urinary NE excretion and 

evaluated HRV as indirect indicators of SNA. HRV was evaluated in the perspectives of 

both the time-domain, as reflected by the standard deviation of HR (SDRR), and the 

frequency-domain, as reflected by low-frequency (LF) to high-frequency (HF) power 

spectral ratio using pulsatile BP data.  

Fig 5.5A shows changes of 24-hour NE excretion in each group. While baseline 24-hour 

NE excretion were similar between all animals, ICV AngII infusion in the SynhACE2- group 

markedly increased NE excretion compared to their baseline level, as well as to 

SynhACE2+/+ or aCSF mice. This enhancement of NE excretion due to AngII was 

prevented in animals with ACE2 over-expression. However, NE excretion was not altered 

in SynhACE2+/+ mice after aCSF infusion compared to baseline. Fig 5.5B and 5.5C show 

a clear decrease in SDRR as well as an increase in LF/HF in the AngII treated SynhACE2-

/- group, indicating cardiac autonomic responses was skewed to an increased sympathetic 

activation. These changes were also normalized in mice overexpressing central ACE2. 

Taken together, these data suggest that selective over-expression of ACE2 in the brain 

can prevent the AngII induced disturbance in autonomic nervous activity reflected by 

increased NE excretion and decreased HRV. 
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Figure 5. 5  SynhACE2+/+ attenuates central AngII- induced sympathetic hyperactivity. 
A. 24h NE excretion was reduced in SynhACE2+/+ mice. (n=4; *p < 0.01 compared to synhACE2-

/- /aCSF post-ICV; #p < 0.05 compared to SynhACE2-/- /AngII post-ICV.)  SDRR (B) and LF/HF 

(C) during baseline and post-infusion period showed ACE2 overexpression improved AngII 

induced HR variability impairement. (n=3-4; *p < 0.05 compared to SynhACE2-/-  AngII-baseline; 

#p < 0.05 compared to SynhACE2-/-  /AngII-Post-ICV) 

Figure 5.  5 SynhACE2+/+ attenuates central AngII- induced sympathetic hyperactivity. 
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SynhACE2 attenuates central AngII-induced oxidative stress 

To determine if over-expression of ACE2 could prevent central AngII mediated ROS 

production, we measured oxidative stress using 8-hydroxydeoxyguanosine (8-OHdG) 

immunostaining of brainstem slices containing RVLM areas. ROS oxidize lipids, proteins 

and nucleic acids and cause cellular lesions. Since DNA is prevalent in both nuclei and 

mitochondria, evaluating DNA damage is widely used to assess cellular oxidative stress. 

8-OHdG, is an oxidized nucleoside of DNA frequently used for such assessment. As 

shown in Fig 5.6, central AngII infusion markedly increased RVLM DNA oxidation in 

SynhACE2- animals. The enhanced immunostaining intensity was reduced in 

SynhACE2+/+ mice treated with ICV AngII, to the extent comparable to that of the aCSF 

group. ACE2 over-expression itself did not seem to alter redox state in aCSF treated 

animals. Taken together, these data confirmed that central SynhACE2 over-expression 

effectively prevented oxidative stress in RVLM in response to ICV AngII.  
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A. B. 

Representative 8-OHdG immunofluorescence staining in the RVLM (A) and quantified data 

(B) showed that ICV AngII infusion significantly increased DNA oxidation in the RVLM area 

of SynhACE2-/- mice, but not in SynhACE2+/+ group. ACE2 over-expression did not change 

ROS production during aCSF treatment. (n=4, *p<0.05 vs. SynhACE2-/AngII; #p<0.05 vs. 

SynhACE2-/- /aCSF). 

 

Figure 5. 6  SynhACE2+/+ mice exhibit anti-oxidative stress property in response to 
central AngII. 

Figure 5.  6 SynhACE2+/+ mice exhibit anti-oxidative stress property in 

response to central AngII. 
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Discussion 

The current study provides evidence that ACE2 upregulation in the brain abolishes the 

central pressor effect of AngII in conscious mice. Because this effect has been shown to 

be mediated by a reduction in oxidant stress elicited by AngII [75] we hypothesized ACE2 

overexpression in the brain would decrease the sympathetic and ROS responses to 

central AngII. 

It has been shown that increased levels of circulating AngII are present in patients with 

severe primary HTN [166]. In addition to the vasoconstrictor effects of circulating AngII, 

HTN can be evoked by the direct effects of AngII on brainstem neurons either through 

regions lacking a brain blood barrier (BBB), or through impaired BBB due to chronic HTN 

[167, 168]. Although studies have shown evidence that peripheral AngII can access 

neurons in the brainstem [169], increased AngII originating  from the CNS also contributes 

to central RAAS over-activation [170]. Therefore, chronic ICV administration of AngII is a 

plausible approach to create a model for primary HTN.  

As indicated above, it is believed that the mechanism of central AngII induced HTN is 

through generation of ROS which consequently excites sympathetic neurons resulting in 

increased BP. This concept was confirmed by our data (Fig 5.5 and Fig 5.6). It is 

reasonable to speculate that targeting either AngII or ROS centrally would attenuate 

primary HTN. In this study using SynhACE2+/+ mice, we were able to target central AngII 

and ROS to confirm the mechanism for the anti-hypertensive property of central ACE2 

over-expression. 

Although it has been well accepted that the Ang1-7/MasR axis possesses a variety of 

protective effects on cardiovascular function, it is still not clear if Ang1-7 is the key mediator 
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for the anti-pressor effects of ACE2 in response to AngII administration. Due to the 

complexity of central nuclei and inter-nuclear communication, there may exist many 

variables that make the same effector exert opposite influences. Fontes et al. showed that 

microinjection of Ang 1-7 directly into rat RVLM increased MAP at a dose of 25 pmol [70]. 

Feng et al. showed that chronical subcutaneous (s.c.) infusion of A779 (600 ng/kg/min) 

reversed the anti-pressor effect of central ACE2 in response to peripherally administered 

AngII (600 ng/kg/min, s.c.) [122]. Based on these findings it is hard to reach to a firm 

conclusion in terms of the effect of Ang 1-7 since the results seem to involve several 

factors including dose, administration route, target location, etc. Feng et al. showed that 

SFO selective over-expression of ACE2 attenuates the pressor effect of AngII (ICV bolus), 

which was not reversed by the MasR antagonist, A779 [76]. Wysocki et al. [171] showed 

that subcutaneous infusion of human recombinant ACE2 prevented the hypertensive 

effect of AngII (1000 ng/kg per minute, s.c.) and this effect was not blocked by A779 (100 

ng/kg/min, s.c.) infusion. In Wistar rats, Campagnole-Santos et al. observed that ICV Ang 

1-7 failed to attenuate central AngII induced BP increase, but improved baroreflex 

sensitivity impairment [172]. Our data are largely consistent with these findings, which 

seem to indicate there exists discrepancies between central and peripheral, or between 

different nuclei with regard to responses to RAAS component interactions.  

In the current study, inhibition of the pressor response to central AngII in SynhACE2+/+ 

mice was not altered by infusion of MasR antagonist A779. We speculate that AngII 

degradation may constitute the major mechanism by which central ACE2 over-expression 

inhibits this response. However, given some evidence that ACE2 can act as an antioxidant 

[159], other factors such as anti-oxidant defense systems may play an intermediate role.   
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In this study we used only male mice instead of both genders. Numerous studies have 

demonstrated the differences in BP between age-matched male and female human 

beings[173]. In many animal studies, sex differences in local RAAS activities have been 

indentified in several peripheral organs and in different compenents of RAAS[174]. 

Although direct evidence of the existence of sexual dimorphism in central ACE2 

expression is relatively lacking, and there does exist BP differences to peripheral AngII 

infusion between genders [174, 175], our initial studies with both genders did not show 

major difference in the responses to centrally administered AngII. However, in order to 

apply the conclusions of this study to both genders, further studies need to be done.  

In summary, the current study shows that brain selective over-expression of ACE2 

profoundly abolished the pressor response to central administration of AngII. The MasR 

agonist Ang 1-7 and blocker A779 had no effects on BP or drinking responses following 

central AngII infusion, skewing the underlying mechanism towards an effect of ACE2 on 

AngII-AT1R signaling. The data suggest that a reduction in central oxidative stress  may 

participate in this response.  
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Introduction 

 Nrf2 plays an important role in the development of primary HTN, based on both direct and 

indirect evidence [176-178]. In a previous study we demonstrated that selective deletion 

of Nrf2 in the RVLM in normal mice led to a downregulation of antioxidant enzymes and 

elevated ROS, resulting in increased SNA and BP [120]. This suggests that central  Nrf2 

contributes to BP BP regulation via modulation of oxidative stress and SNA. Senanayake 

et al. found that administration of a dietary phase 2 protein inducer, sulforaphane (SFN), 

lowered BP in spontaneously hypertensive stroke-prone (SHRSP) rats to a level 

comparable to normal Sprague Dawley rats [179]. Noyan-Ashraf et al.[180] demonstrated 

that female SHRSP on a diet high in glucoraphanin exhibited in lower BP due to its 

metabolite, SFN. Although Nrf2 was not directly messured in their study, the observed 

effects were potentially due to the upregulation of Nrf2 expression and function induced 

by SFN. As a master regulator of a variety of antioxidant enzymes, Nrf2 may mediate an 

important mechanism in the pathogenesis of primary HTN. However, whether Nrf2 

deficiency is a cause of the development of HTN, or it is an adaptive mechanism as a 

result of HTN is not clear.  

The potential interaction between central Nrf2 and the RAAS, on the other hand, is an 

important question to be elucidated. A direct relation between Nrf2 and the RAAS has 

been indicated in several studies. Chang et al. [181] showed that overexpression of 

angiotensinogen in mouse renal proximal tubular cells downregulates Nrf2 signaling, thus 

increasing BP. Zhao et al. [182] found that Nrf2 deficiency upregulates intrarenal ACE2 

and Ang1-7 MasR expression and attenuates HTN. Kang et al. showed that AngII 

suppresses Nrf2 signaling in the renal epithelial cells in a model of renal fibrosis [183]. The 

studies above suggest that Nrf2 and the RAAS may interact in the regulation of SNA and 
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BP. However, most of these studies were limited in the kidney. In the CNS, especially in 

the background of cardiovascular disease like HTN, the interaction between Nrf2 and the 

RAAS is yet to be defined.  

Based on the evidence in the above chapters that both Nrf2 and ACE2 overexpression in 

the brain attenuates oxidative stress, inhibits sympathoexcitation and prevents BP 

increases, it is reasonable to speculate that in primary HTN, the central RAAS and Nrf2 

may interact in a way that increases SNA. To test the potential interaction and its role in 

regulating BP and autonomic function in HTN, we evaluated RVLM Nrf2 and oxidative 

stress in SynhACE2+/+ mice treated with chronic ICV-AngII infusion. We also assessed the 

effect of Nrf2 changes on AngII-induced HTN by either knocking-down Nrf2 in floxed mice 

or activating Nrf2 with SFN. 

Experimental Protocol 

Cell experiments were carried out using N2A neuron cells as described in Chapter III. One 

set of differentiated cells were treated with either the aCSF vehicle, AngII (30 or 100 nM), 

Ang1-7 (200 nM), the NOX inhibitor, APO, or SFN (10uM) for four hours or overnight. Cells 

then were subjected to nuclear fractionation to evaluate Nrf2 translocation. Another set of 

differentiated cells were transfected with hACE2-eGFP adenovirus to assess the effect of 

ACE2 overexpression on intracellular Nrf2 with or without AngII (100nM) stimulation. Cells 

were collected for western blot analysis. 

In vivo studies were performed on 3-month-old SynhACE2+/+, SynhACE2-/-, or wild type 

male mice on the C57BL background. For selective Nrf2 knockout in the RVLM, Nrf2f/f 

mice were subjected to bilateral microinjection of Lenti-Cre-GFP virus into the RVLM as 

described in Chapter III. The experimental design is shown in Fig 6.1 below.  
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All mice were instrumented with a radio telemetry unit (PA-C10; Data Sciences 

International Inc., Minneapolis, MN) with the catheter inserted into the left common carotid 

artery as described in Chapter III. Animals were allowed to recover for 1 week before 

hemodynamic recording. AP and HR were measured 2 hours daily from noon to 2:00 PM. 

A 24-hour recording was attained each week usually on a Saturday or Sunday. Following 

3 days of baseline recording, a cannula connected to a 7-day osmotic minipump (Model 

1002, Alzet, Inc. Cupertino, CA) with a pumping rate of 0.5ul/hour, was implanted into the 

right lateral ventricle to create a hypertensive model by chronic ICV infusion of AngII. The 

control group received aCSF. In order to avoid acute postoperative stress induced high 

BP, mice of all groups were equipped with minipumps filled with only aCSF for 1 week 

before switching to minipumps filled with different drugs. Each group received the 

assigned treatment with either AngII (100 ng/kg/min) or aCSF. In some experiments mice 

also received the Nrf2 activator, SFN (500ng/kg/min) to determine if this would abrogate 

the response to central AngII. SDRR and LF/HF were analyzed based on AP and HR 

recording data.  

During hemodynamic recording, mice were placed in a metabolic cage. After a 3-day 

adaptation period, 24-hour urine samples were collected daily. Mice were sacrificed 7 days 

after ICV infusion of different treatments. Brains were removed after euthanasia. 

Brainstem RVLM punches were used for western blot analysis. Some tissue was used for 

immunofluorescence staining. 

Results were analyzed by one-way or two-way ANOVA for repeated measures followed 

by Dunnett’s correction or Tukey’s test for multiple comparisons. All data are expressed 

as mean ± SE. Statistical analyses were performed using Prism8 (GraphPad Software, 
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Inc. San Diego, CA). Differences were considered statistically significant at a p value of 

<0.05. 
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Figure 6. 1 Animal experimental design. Figure 6.  1 Animal experimental design. 
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Results 

AngII induces Nrf2 nuclear translocation  

As a transcription factor, Nrf2 regulates phase 2 anti-oxidant enzyme expression by 

nuclear translocation when activated by intracellular ROS[184, 185].  However, many 

redox protective agents, such as β-lactoglobulin peptide (BRP2) or SFN were found to 

exert their anti-oxidant effects by also promoting Nrf2 nuclear translocation[186]. 

Therefore in our cell experiments the first question we wanted to clarify was the effect of 

AngII on Nrf2 behavior. Using N2A cells, we assessed Nrf2 translocation after AngII at 

different concentrations and different time periods, using SFN treatment as a positive 

control. Fig 6.2A demonstrates western blot data for Nrf2 in cytoplasmic and nuclear 

fractions after AngII stimulation. In the cytoplasmic fraction, although there were no 

statistical differences in Nrf2 between different conditions, in the nuclear fraction however, 

Nrf2 increased in a dose and time-dependent manner, with a peak level reached at 100nM 

AngII and 4 hour-treatment. GAPDH and Lamin-B were chosen for cytoplasmic and 

nuclear loading controls, respectively.  

To further investigate if this AngII-induced Nrf2 translocation was a result of oxidative 

stress, we treated with both Ang 1-7 and the NOX inhibitor, APO with AngII. As is shown 

in Fig 6.2B, both Ang 1-7 and APO significantly reduced nuclear Nrf2 translocation in 

response to AngII. Though specific ROS were not measured, these data indirectly 

suggested that AngII-induced Nrf2 translocation is very likely a cellular protective 

mechanism in response to oxidative stress due to AngII stimulation.   
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Figure 6. 2 Representative immunoblot for Nrf2 translocation in N2A 

cells.  
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A. Cytoplasmic (light orange) and nuclear (dark orange) fractions were 

prepared from N2A cells treated with either vehichle, AngII(30, 100nM), or 

SFN (10uM) for either 2 hours or overnight. B. Nrf2 in nuclear fraction after 

treatment with Ang 1-7, AngII or APO. (n=3, *p<0.05) 

Figure 6.  2 Representative 

immunoblot for Nrf2 translocation 

in N2A 
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Effect of ACE2 on intracellular Nrf2 in response to AngII 

As discussed in earlier chapters, ACE2 is the key enzyme that converts AngII into Ang 1-

7 and possesses strong antioxidant properties. In order to determine the effect of ACE2 

on Nrf2 under AngII stimulation, we transfected N2A cells with hACE2-eGFP adenovirus 

to overexpress intracellular ACE2 prior to AngII treatment. Firstly, we evaluated ACE2 

virus transfection efficiency at different MOI (multiplicity of infection) and different 

incubation times. Fig 6.3A-B demonstrates ACE2 adenoviral transfection efficiency is 

positively corelated to viral titer (1-50 MOI) and incubation time (24-96 hour). Furthermore, 

we found that ACE2 overexpression increases whole cell Nrf2 shown in the western 

immunoblot (Fig 6.3B). Although the presence of either ACE2 or AngII upregulated Nrf2 

in N2A cells, when combined together, Nrf2 increase was attenuated, as is shown in Fig 

6.3B. Taken together, these data showed that Nrf2 responds to both AngII and ACE2 in 

N2A cells separately; co-existence of AngII and ACE2 though does not trigger a 

synergistic increase of Nrf2.  
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A. Whole cell ACE2 expression after Ad-hACE2-eGFP viral transfection at different 

titers. B. Whole cell Nrf2 protein in ACE2 overexpressed-N2A cells treated with or 

without AngII. Both ACE2 and AngII by themselves increase intracellular Nrf2; 

when combined together, the overall effect is decreased Nrf2 response compared 

to either treatment alone. (*p<0.05) 
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Figure 6. 3 Representative immunoblot for whole cell Nrf2 in Ad-hACE2-
eGFP transfected N2A cells. Figure 6.  3 Representative immunoblot 

for whole cell Nrf2 in Ad-hACE2-eGFP 

transfected N2A cells. 
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Nrf2 and NQO-1 are upregulated in the RVLM of SynhACE2+/+ mice 

In previous studies we showed that in animals with heart failure, there was a decreased 

expression of both ACE2 and Nrf2 in the RVLM [101, 187]. To further determine if there 

is a correlation between ACE2 and Nrf2, we measured Nrf2 protein in the RVLM of 

SynhACE2+/+ mice and their littermates treated with or without central AngII. We found 

that ICV AngII evoked an upregulation of Nrf2 in the RVLM compared to ICV aCSF in 

SynhACE2-/- animals (Fig 6.4A). This upregulation was inhibited by ACE2 overexpression. 

In order to determine if these changes in Nrf2 are specific to the RVLM, we also assessed 

tissues from the cerebral cortex and the hypothalamus, where no differences in Nrf2 levels 

were found. The antioxidant enzyme NQO-1 (Fig 6.4B) exhibited a similar trend as Nrf2.  
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C. 

 

C. 

A. Nrf2 from RVLM punches showed an increase in response to ICV-AngII infusion, which was 

restored by ACE2 overexpression, RVLM NQO-1 was significantly increased by ACE2 

overexpression, which was attenuated in the ACE2+/+ /AngII group. C. Nrf2 was not different 

between groups in the visual cortex or hypothalamus (n=4-6, *p<0.05).  
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Figure 6. 4 Representative immunoblot of Nrf2 and NQO-1 in the brain of synhACE2+/+ 
with chronic central AngII infusion. 
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Figure 6.  4 Representative immunoblot of 

Nrf2 and NQO-1 in the brain of 

synhACE2+/+ with chronic central AngII 

infusion 



 108 

Selective knockdown of Nrf2 in the RVLM enhances the pressor effect induced by 

central infusion of AngII 

As discussed in Chapter I, Nrf2 is a critical transcription factor for antioxidant defenses in 

many diseases [188-190]. In chronic heart failure, activation of Nrf2 decreases AT1R 

expression in the RVLM and evokes sympatho-excitation[191]. In healthy mice, selective 

deletion of Nrf2 in the RVLM induced HTN [120]. However, the response to ICV AngII is 

unknown in the face of Nrf2 deletion. Therefore, using Nrf2f/f  mice, we evaluated the 

impact of central AngII infusion in animals with RVLM Nrf2 deficiency to address the 

potential role of Nrf2 in AngII-induced neurogenic HTN. We selectively deleted Nrf2 in the 

RVLM. Immunofluorescence staining confirmed reduced Nrf2 in the RVLM following Cre-

GFP injection (Fig 6.5A-B). Figure 6.5C demonstrates micro-punches of RVLM subjected 

to western blotting which shows a significant reduction in Nrf2 protein (n=3, p<0.05). In a 

functional study, we showed that depletion of Nrf2 in the RVLM increased baseline 24 

hour day-night BP (mean ∆MAP= 21.0±1.8mmHg, n=3, p<0.05) (Fig 6.5D),  which is 

consistent with our previous data [120]. In addition, we also found that compared to the 

Nrf2f/f-GFP control group treated with AngII (mean ∆MAP= 9.0±1.7mmHg increase 

compared to baseline, n=3, p<0.05), Nrf2 deletion in the RVLM increased the MAP as high 

as 30.0 mmHg in Nrf2f/f-Cre mice, indicating an enhancement of the pressor effect of 

central AngII infusion (Fig 6.5E).  
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D. 

 

Nrf2 was selectively knocked down in the RVLM (A-B). RVLM Nrf2 protein quantification 

was validated by western immunoblot(C) (n=3, *p<0.05). 24 hour mean arterial BP at 

baseline (D) and 24 hour mean arterial BP 7 days post ICV-AngII infusion (E) showed 

that Nrf2 deletion in the RVLM enhanced central AngII-induced increase in BP (n=3, 

*p<0.05).  
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Figure 6. 5 Representative immunofluorescence staining of Nrf2 knockdown in 
the RVLM 

Figure 6.  5 Representative immunofluorescence 

staining of Nrf2 knockdown in the RVLM 
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A. Chronic AngII infusion produced a significant increase in water intake during the 2-

week infusion period. This response was not enhanced by Nrf2 knock down using Cre 

virus delivered to the RVLM in Nrf2f/f mice.  B. Chronic AngII infusion produced an 

increase in urine output during the 2-week infusion period, which was not enhanced 

by Nrf2 knock down in the RVLM (n=5-7; *p < 0.05, **p<0.01).   

  

B. A

Figure 6. 6 Effect of RVLM Nrf2 knock down on central AngII-induced 
polydipsia and polyuria in Nrf2-floxed mice. 

Figure 6.  6 Effect of RVLM Nrf2 knock down on central AngII-induced polydipsia and polyuria in Nrf2-floxed mice. 
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Effects of Nrf2 deletion in the RVLM on water intake and urine output in response to icv 

AngII 

In Nrf2f/f mice that had Nrf2 knocked down in the RVLM we evaluated drinking and urine 

responses. We measured daily 24-hour water intake and urine volume and averaged the 

values over 7 consecutive days. In contrast to our expectations, Nrf2 deficiency 

suppressed the polydipsic and polyuric effect induced by ICV AngII infusion (Fig 6.6, n=5-

7). Prior to AngII treatment there was no difference between GFP- and Cre- treated Nrf2f/f 

groups).  

ICV-infusion of sulforaphane attenuates the pressor effect induced by central infusion of 

AngII 

To confirm a role of Nrf2 in mediating BP control in AngII-induced HTN, we upregulated 

central Nrf2 using icv infusion of SFN, a sulfur-containing compound that has been shown 

to possess potent antioxidant and anti-inflammatory properties through activation of Nrf2 

[192]. In this experiment, we infused AngII ICV with and without SFN to elucidate the 

protective effect of Nrf2. Nrf2 upregulation was assessed in the terminal experiment with 

RVLM punches, showing that both AngII and SFN increased Nrf2 individually (although 

SFN was non-significantly here), co-administration of the two seemed to have a 

synergistic effect on Nrf2 upregulation (Fig 6.7A). NQO-1 protein followed a similar trend 

as Nrf2 under corresponding treatment, but did not show statistical significance (Fig 6.7B) 

 Fig 6.8A demonstrates the functional data. After 3 days of baseline MAP recording, ICV-

AngII markedly increased BP in (red line and first half of black line). On day 6 SFN was 

administered with AngII in some animals that were treated with AngII alone. A significant 

decrease in BP was observed (second half of black line) (p<0.05). The group that was 

treated with SFN and AngII throughout the process exhibited a reduced increase in MAP 
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compared to the group treated with AngII alone (red) (p<0.05). SFN by itself did not alter 

BP (green line). Fig 6.8B are the 24 hour BP recording before and after ICV infusion, 

respectively. Although SFN attenuated the increase in AngII–induced BP most 

significantly during the day (p<0.05, right panel), the attenuation was not consistent 

throughout the 24-hour day-night cycle.  

Fig 6.8 C and D show SDRR and LF/HF calculated based on the MAP and HR recordings. 

After the first ICV-infusion of AngII, SDRR decreased and LF/HF increased suggesting 

increased sympathetic tone (red and blue groups in the two panels). SFN plus AngII 

infusion trended towards a blunting in the decrease in SDRR, however this did not reach 

statistical significance (blue). For LF/HF however, SFN significantly restored the alteration 

caused by ICV-AngII (grey and blue). These data suggest that SFN, at least, in part, 

improves autonomic balance skewed by central AngII infusion.  
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A. Co-administration of AngII and SFN ICV increased Nrf2 protein in RVLM.  B. No difference 

was found in NQO1 after co-administration of AngII and SFN ICV infusion. (n=5, *p<0.05) 
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Figure 6. 7 Immunoblot of Nrf2 and NQO-1 in RVLM after chronic ICV infusion of 
AngII, SFN, or AngII+SFN. 

Figure 6.  7 Immunoblot of Nrf2 and NQO-1 in RVLM after chronic ICV 

infusion of AngII, SFN, or AngII+SFN. 
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Figure 6. 8  ICV-SFN attenuates the pressor responses and SNA to central AngII. 

Figu
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A. ICV-AngII infusion increases MAP which was attenuated with subsequent infusion 
of ICV-SFN. SFN alone did not alter BP. MAP was recorded 2 hours around noon 
every day(n=6, *p<0.05 compared to baseline; #p<0.05, &p<0.05 compared to AngII). 
B. 24 hour MAP in four groups before (left) and after (right) ICV infusion of the 
respective treatment (*p<0.05 compared to SFN, #p<0.05 compared to SFN+AngII, 
@p<0.05 compared to AngII then add ICV-SFN). C. SDRR (left) and LF/HF (right) 
during baseline and post-ICV infusion period. SFN showed some improvement in AngII 
induced reduction in HRV. (*p<0.05, #p<0.05, **p<0.01)  
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Effects of sulforaphane on AngII-induced polydipsia  

To determine the effect of ICV-SFN on AngII-induced polydipsia and to also further assess 

the potential role of Nrf2 in fluid control, we assessed daily water intake and urine output. 

Fig 6.9 illustrates that ICV AngII increased drinking behavior by approximately 15 mL 

compared to baseline. Interestingly, although SFN reduced the BP increase by central 

AngII, it failed to suppress the polydipsia/polyuria effects, regardless of when SFN was 

administered.  

Figure 6. 9 Effects of ICV-SFN on central AngII- induced polydipsia and polyuria. 

A.          B.  

A. Chronic AngII infusion produced an overall increased water intake during the 1-week 

infusion period, addition of ICV-SFN showed similar increase in water intake(n=7; *p < 

0.05). B. Central AngII significantly increased urine output (**p < 0.01, n=7). Addition of 

ICV-SFN also has a significantly higher level of urine output compared to baseline (*p < 

0.05, n=7). SFN alone-group showed significantly lower daily urine volume but it did not 

further reduce urination compared to baseline.  

 

Figure 6.  9 Effects of ICV-SFN 

on central AngII- induced 

polydipsia and polyuria. 
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Discussion 

The study in this chapter explored the interaction between the RAAS and Nrf2. Our data 

demonstrated nuclear Nrf2 in neuronal N2A cells was increased in response to AngII 

stimulation in a time- and dose- dependent manner and provided direct evidence that 

intracellular Nrf2 responds to AngII. 100nM of AngII for 2 hours triggered the maximal 

increase in nuclear translocation, indicating the response is an acute process in these 

neuronal cells. In order to further confirm that Nrf2 translocation was a result of increased 

intracellular oxidative stress, we treated cells with APO to dampen the oxidative stress 

response to AngII. We found that APO effectively suppressed the Nrf2 response to AngII 

stimulation. However, Ang 1-7 (also shown to possess antioxidant activity) did not show 

the same effect as APO. It is possible that O2
•− plays an important role in mediating the 

AngII-induced Nrf2 translocation process while Ang 1-7 may not work through O2
•− 

inhibition, or Ang 1-7 being degraded by local enzymes such as neprilysin[193]. Other 

possibilities include optimal dosage of Ang 1-7 for the expected effect or variations in the 

expression of endogenous MasR on N2A cells[194].  

As a critical connection between AngII and Ang 1-7, ACE2 is a key molecule that is 

involved in this relationship. Neuro 2A cells overexpressing ACE2 showed that ACE2 by 

itself upregulated intracellular Nrf2 almost as much as AngII, and when treating the ACE2 

overexpressing cells with AngII blocked the Nrf2-inducing effect by AngII. These data were 

consistent with western blot data from RVLM tissue, which also showed a similar trend of 

Nrf2 changes in four treatment groups. These data suggest that Nrf2 upregulation is 

another possible quality of ACE2 that contributes to its anti-AngII effects. However, the 

exact mechanism by which ACE2 upregulates Nrf2 is not completely clear. In ACE2 viral-

transfected cells, AngII failed to trigger an increase in Nrf2. This is difficult to explain since 
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the Nrf2-upregulating effect of ACE2 should have a “synergistic” effect on Nrf2. It is 

possible that the consumption of AngII by ACE2 is too rapid to allow the latter to exert its 

Nrf2-inducing effect; or the degradation of AngII by ACE2 somehow overrides the Nrf2-

inducing effects of AngII or ACE2 alone. Importantly, significant differences in Nrf2 protein 

between the four treatment groups only existed in the RVLM among all the tissues tested, 

which included the visual cortex and hypothalamus. Taken together, this experiment 

indicated that both AngII and ACE2 induced an increase in intracellular Nrf2 protein and 

that ACE2 can inhibit this effect on Nrf2 exerted by AngII.  

To further understand the role of the interaction between the central RAAS and Nrf2 in 

modulating SNA we selectively knocked down Nrf2 in the RVLM using Nrf2 floxed mice 

and viral Cre delivery to evaluate their BP response prior to and after chronic ICV-AngII 

infusion. In Nrf2f/f mice treated with Cre virus, the baseline BP was significantly increased 

compared to mice treated with GFP virus. With AngII treatment, this increase was further 

enhanced. These results provide at least partial evidence that Nrf2 may attenuate 

sympathetic outflow. An interesting finding was the unaltered polydipsic and polyuric 

response by Nrf2 deletion to central AngII. Although Nrf2 has been shown to be a potent 

antioxidant factor that reduces sympathoexcitation in several studies[120, 195], it failed to 

exaggerate the drinking and urinary response to AngII. Possible reasons may be that 

although suppressing SNA, RVLM Nrf2 may not exert a major influence on those neurons 

projecting to the thirst control centers which are mostly located in forebrain regions.   

To further assess the role of central Nrf2 in regulating BP and SNA, we used SFN, a 

proven potent Nrf2 activator, in the ICV infusion in an attempt to upregulate central Nrf2. 

SFN is an extensively studied compound in translational medicine and can be found in 

most cruciferous vegetables[196]. RVLM Nrf2 protein upregulation was tested in terminal 
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studies by western blot. In SFN treated groups, Nrf2 was, in general, increased. 

Hemodynamic studies confirmed our hypothesis that ICV-SFN infusion blocked the 

pressor effects of central AngII reflected through both BP maintenance and HRV 

parameters. For BP assessment, not only did co-administration of SFN and AngII 

suppress the hypertensive response but adding ICV-SFN infusion after one-week of ICV-

AngII also significantly reversed the BP increase. Again, in accordance with our data from 

Nrf2 knockout mice, SFN did not affect the polydipsia or polyuria responses by AngII. We 

conclude that Nrf2 deletion has a major effect on BP and SNA but little influence on 

drinking behavior and therefore urine flow.  

In summary, in this study we showed that selective deletion of Nrf2  in the RVLM of mice 

resulted in an enhanced BP increase in response to central AngII infusion, and 

upregulation of Nrf2 by ICV-SFN resulted in attenuation of the pressor response to central 

AngII. These results provide evidence that central Nrf2 may possess anti-hypertensive 

properties, and this property may be at least one signaling pathway mediating the 

protective effect of ACE2 overexpression in response to chronic central AngII infusion.  
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Chapter VII. Perspectives and Potential for Therapy  
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Therapy for cardiovascular disease, especially CHF and HTN has been relatively static 

for the past two decades. The use of agents that target the RAAS, β1-1 adrenergic 

blockers, diuretics and in some cases vasodilators are the primary pharmacological 

agents that are used to treat these disorders. While effectively lowering morbidity and 

mortality the degree of CHF and HTN are still unacceptably high. There is a desperate 

need to develop novel therapies that target unexplored mechanisms for CHF and HTN. 

While centrally acting drugs such as clonidine and moxonidine have been used they are 

associated with negative side effects and are difficult to regulate their dose – response 

relationships[197]. Because both disorders are associated with oxidative stress and 

increases in sympathetic outflow it is reasonable to evaluate therapies that have been 

shown to affect both mechanisms. 

The two agents studied in this dissertation have been shown to reduce oxidative stress in 

both CHF and HTN [74, 120, 185, 198]. ACE2 or ACE2 activation and Ang 1-7 have been 

used to treat HTN in animal models[171, 199-201]. The mechanism for the protective 

effects of these therapies has been assumed to be a reduction in AngII peptide and both 

a vasodilator and sympatho-inhibitory effect of Ang 1-7 mediated, in part, through a 

reduction in oxidative stress [202, 203] primarily in the peripheral circulation. According to 

ClinicalTrials.gov there are 13 clinical trials where modulation of ACE2 is or has recently 

been investigated for the treatment of HTN, stroke, and the metabolic syndrome. Similarly 

there are 56 trials where Nrf2 activation is being used to treat a variety of diseases 

including cardiovascular disease. None of these trials specifically target the central 

nervous system although areas of the CNS may be involved in the positive actions of 

ACE2 and Nrf2 activation. 
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The results presented here suggest that activation or overexpression of both ACE2 and 

Nrf2 reduce sympathetic outflow in HTN and CHF when the RVLM is targeted. What is 

less clear from this work is how this could be used in a translational way for human disease. 

Systemic administration of ACE2 or Nrf2 activators will, of course, target all tissues.  It is 

highly likely that small molecule activators such as diminazene aceturate (DIZE; [204]), 

sulforaphane[205] and dimethyl fumarate[206] are likely to gain entry through the blood 

brain barrier or via areas with no blood brain barrier such as the circumventricular 

organs[207]. Therefore, systemic administration may also target the CNS and potentially 

the sympatho-regulatory areas in the brain. In addition, new modalities of drug delivery 

have been developed using a variety of nanoparticles and extracellular vesicles for 

antioxidant therapy [208-212]. While animal studies have been positive, it is not clear how 

to specifically target these particles to the CNS in humans. 

While targeting each of these molecules individually may have beneficial effects the 

studies described in this dissertation do not allow us to define the role of ACE2 in Nrf2 – 

mediated reduction in ROS in CHF or HTN. Figure 7.1 provides an overview of the 

potential interactions between these pathways. We suggest that any intervention that 

augments ACE2 and Nrf2 will have a beneficial effect in the settings of CHF and HTN. 

This work provides supportive evidence for focusing on ACE2 and Nrf2 in modulating the 

sympathetic nervous system in disease. 
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The diagram is based on data demonstrated in part from this thesis. AngII is a known 

pro-oxidant and pro-inflammatory peptide that is rapidly converted to Ang 1-7 by the 

action of ACE2. Through the AT1R it activates Nox2 which results in increased levels 

of superoxide in the cytosol. AngII, through increased levels of ROS, activates both Nrf2 

and  NFkB (not studied in this thesis). Both transcription factors are released from their 

protein inhibitors in the cytosol and translocate to the nucleus where they compete for 

binding to the creb binding protein (CBP). Increased inflammation in response to high 

levels of AngII may result in reduced Nrf2 levels. In addition, increased ubiquitination of 

Nrf2 in heart failure and in inflammatory states contributes to the reduced Nrf2 in CHF 

and HTN. Overexpression of ACE2 reduces the levels of AngII, thus decreasing ROS 

generation and sympatho-excitation. Decreases in AngII mediated inflammation may 

also result in augmented Nrf2 levels and thus increases in antioxidant enzyme 

transcription. Other potential mechanisms not studied here are the role of nitric oxide 

(NO) in scavenging ROS due to increased Ang 1-7. It does not appear that 

overexpression of ACE2 in the brain reduces AngII induced HTN by augmenting levels 

of Ang 1-7 but more likely by reducing central AngII levels. There remains a question 

as to a direct effect of ACE2 overexpression on Nrf2 in these cardiovascular diseases. 

 

Figure 7.1  Overview of the mechanisms and potential involvement of ACE2 and 
Nrf2 in the regulation of sympathetic outflow in neurons from the RVLM in the 
setting of CHF and HTN in response to increased central AngII.  

Figure 7 1 Overview of the mechanisms and potential involvement of 

ACE2 and Nrf2 in the regulation of sympathetic outflow in neurons 

from the RVLM in the setting of CHF and HTN in response to 

increased central AngII. 

Figure 7.  1 Overview of the 

mechanisms and potential 

involvement of ACE2 and Nrf2 in the 

regulation of sympathetic outflow in 

neurons from the RVLM in the 

setting of CHF and HTN in response 

to increased central AngII. 
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The present thesis examined the putative sympatho-inhibitory properties of Nrf2 and 

ACE2 in the CNS and potential interplay between the RAAS and Nrf2 in regulating BP. 

The findings in this work suggest:  

1). Nrf2 expression in the RVLM of mice with coronary artery ligation-induced CHF 
was significantly lower compared to sham mice. Overexpression of Nrf2 in the 
RVLM significantly reduced SNA and improved arterial baroreflex function in CHF 
mice; 

2). Central ACE2 possesses anti-hypertensive, antioxidative, and sympatho-
inhibitory effects and modifies the response to chronic central AngII infusion. The 
data suggest that the anti-hypertensive effects of ACE2 overexpression are most 
likely through an Ang 1-7 independent mechanism; 

3). Nrf2 may at least partially mediate the sympatho-inhibitory effect of ACE2 in 
response to central AngII induced HTN.  

 

Although we have made every effort to take a comprehensive approach in these studies, 

we acknowledge that there are limitations. In our HTN model, despite the fact that chronic 

ICV-AngII infusion evoked a sustained increase in AP it is not clear where AngII is working 

since the AT1R is expressed throughout the brain. The non-specificity in targeting specific 

regions of autonomic control is a major limitation. Even though we focused on an important 

sympatho-regulatory nucleus (the RVLM), other nuclei in the brainstem and hypothalamus 

need to  be considered in future studies, given the complexity of projections between each 

area. 

In a previous study, CHF animals exhibited a downregulation of Nrf2 in the RVLM and 

increased sympathoexcitation [213, 214]. Therefore, it is natural to assume that chronic 

RAAS activation in the CNS, which is also correlated with sympathoexcitation, would be 
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associated with downregulation of Nrf2 as well. However, in our model of central AngII 

induced HTN, we found that after two weeks of HTN, Nrf2 in the RVLM was markedly 

increased compared to their control littermates. One possible reason for this finding could 

be differences in acute-versus-chronic phases in terms of Nrf2 activation. In the case of 

CHF, it usually takes 4 to 6 weeks to develop a chronic state of heart failure. In response 

to AngII infusion however, Nrf2 was mobilized as an acute defense mechanism in 

response to AngII-induced oxidative stress, which was what we observed after  2 weeks 

of ICV AngII infusion.  It may be possible that with longer central AngII infusion, Nrf2 

protein may be reduced as is seen in CHF. Therefore, further studies of the time course 

of Nrf2 changes in the RVLM during AngII infusion is important for a thorough 

understanding of these phenomena. 

Further questions worth discussion is whether the changes of Nrf2 under circumstances 

in the above chapters are the direct result of Nrf2 translocation, expression, or both. Nrf2 

exists in the cytoplasm in a sequestered form before it is activated and translocates to the 

nucleus. Despite Keap1 dependent regulation, there are multiple Keap1 independent 

modifications that affect Nrf2 protein and activation, including phosphorylation, acetylation, 

and epigenetic alteration in order to “fine tune” the Nrf2 signaling pathways [215]. In our 

N2A cell study, we demonstrated that nuclear Nrf2 increases in response to AngII 

stimulation in a dose-dependent manner. In our molecular studies using RVLM punches 

we only exmined the protein changes for Nrf2. However, to determine if there are changes 

in Nrf2 expression or degradation, further evaluation at the message level and 

ubiquitination should be carried out in the future.   

In terms of the drinking and urine flow findings, we did not see a significant impact of Nrf2 

on AngII induced polydipsia and polyuria. Fluid retention is found in a large proportion of 
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CHF and HTN patients[216, 217], and is thought to be commonly attributed to disease 

exacerbation and therapy resistance. The periventricular anteroventral third ventricle 

(AV3V) region, containing the MnPO, OVLT, and AV3V in the brain is critically involved in 

the maintenance of normal body fluid balance and distribution. Buggy et al. demonstrated 

that ablation of AV3V region in rats abolished the drinking responses elicited by ICV 

injections of AngII [218]. In the current study, we showed that chronic ICV infusion of AngII 

markedly increased drinking behavior as expected. Although manipulating Nrf2, either by 

viral injection in the RVLM or by SFN infusion, significantly affected BP changes caused 

by AngII, the drinking and urine responses were not altered. On one hand, the MnPO of 

the hypothalamus could respond to AngII infusion as a thirst-generating stimulus [219], 

and this response may be minimally affected by oxidative stress. Alternatively, deletion of 

Nrf2 in the RVLM may trigger some inhibitory signaling towards the AV3V region, thus 

failing to enhance the polydipsia induced by AngII infusion. This is conjecture and either 

way further studies need to be done to determine the differences in BP regulation and 

drinking behavior in our model.   

The mouse RVLM is an extremely small nucleus that requires a good deal of skill to be 

localized. We feel confident that we carried out precise targeting and delivered the 

microinjections into mouse RVLM. However, there is some variability in targeting and in 

punching out tissue for biochemical analysis. Surrounding tissue is undoubtedly obtained 

outside of the area of interest. In hindsight laser capture microscopy would have been 

useful to better define tissue borders. We did however examine GFP expression outside 

of the RVLM and saw no expression.  

To further examine effect of Nrf2 activation on BP, we used the widely used Nrf2 activator, 

SFN. Although this method compromised the RVLM specificity compared to viral 
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microinjection. In addition to activating Nrf2 nuclear translocation, SFN may possess some 

direct antioxidant properties via a Nrf2-independent mechanism [220, 221]. Nevertheless, 

the observation of effects in the RVLM and a consistent physiological outcome on BP in 

response to AngII made this method a good comparison to direct viral injection of cre in 

Nrf2f/f mice.    

In conclusion, chronic cardiovascular diseases such as CHF and primary HTN are 

cardiovascular problems characterized by sustained sympathoexcitation and blunted 

baroreflex sensitivity. The central RAAS, especially the two functionally opposing 

components of ACE/AngII/AT1R and ACE2/Ang 1-7/Mas R, play a critical role in 

influencing SNA through modulating oxidative stress. Nrf2, an important antioxidant 

transcription factor, has been shown to reduce sympathetic tone in these two conditions. 

These studies indicate the likely relationship between ACE2 and Nrf2 in regulating SNA 

in HTN and that upregulation or activation of Nrf2 in CHF may be a beneficial therapeutic 

strategy in both CHF and HTN.   

 

 

 

 

 

 



 128 

 

 

 

 

 

Chapter IX. References 

 

 

 

 

 

 

 

 

 



 129 

1. Kong, X., et al., Enhancing Nrf2 pathway by disruption of Keap1 in myeloid leukocytes 
protects against sepsis. Am J Respir Crit Care Med, 2011. 184(8): p. 928-38. 

2. Coote, J.H., Landmarks in understanding the central nervous control of the 
cardiovascular system. Experimental Physiology, 2007. 92(1): p. 3-18. 

3. Dampney, R.A.L., Central neural control of the cardiovascular system: current 
perspectives. Advances in Physiology Education, 2016. 40(3): p. 283-296. 

4. Dampney, R.A., Functional organization of central pathways regulating the 
cardiovascular system. Physiological Reviews, 1994. 74(2): p. 323-364. 

5. Tanaka, J., H. Kaba, and H. Saito, The A1 noradrenergic region enhances the responsivity 
of hypothalamic paraventricular neurohypophyseal neurons to inputs from the 
subfornical organ in the rat. Experimental Brain Research, 1987. 68(3): p. 586-592. 

6. da Silva, E.F., et al., A1 Noradrenergic Neurons Lesions Reduce Natriuresis and 
Hypertensive Responses to Hypernatremia in Rats. PLOS ONE, 2013. 8(9): p. e73187. 

7. Hanna, B.D., F. Lioy, and C. Polosa, Role of carotid and central chemoreceptors in the 
CO2 response of sympathetic preganglionic neurons. J Auton Nerv Syst, 1981. 3(2-4): p. 
421-35. 

8. Moreira, T.S., et al., Central chemoreceptors and sympathetic vasomotor outflow. J 
Physiol, 2006. 577(Pt 1): p. 369-86. 

9. Biaggioni, I. and D. Robertson, Primer on the autonomic nervous system. 2012. 

10. Mai, J.r.K. and G. Paxinos, The human nervous system. 2012. 

11. McKinley, M.J., et al., Vasopressin Secretion: Osmotic and Hormonal Regulation by the 
Lamina Terminalis. Journal of Neuroendocrinology, 2004. 16(4): p. 340-347. 

12. McKinley, M.J., et al., The median preoptic nucleus: front and centre for the regulation of 
body fluid, sodium, temperature, sleep and cardiovascular homeostasis. Acta 
Physiologica, 2015. 214(1): p. 8-32. 

13. Thomas, G.D., Neural control of the circulation. Advances in Physiology Education, 2011. 
35(1): p. 28-32. 

14. Benjamin, E.J., et al., Heart Disease and Stroke Statistics-2017 Update: A Report From 
the American Heart Association. Circulation, 2017. 135(10): p. e146-e603. 

15. Heron, M., Deaths: Leading Causes for 2015. Natl Vital Stat Rep, 2017. 66(5): p. 1-76. 

16. Mosterd, A. and A.W. Hoes, Clinical epidemiology of heart failure. Heart, 2007. 93(9): p. 
1137-46. 



 130 

17. Roger, V.L., Epidemiology of heart failure. Circ Res, 2013. 113(6): p. 646-59. 

18. McCullough, P.A., et al., Confirmation of a heart failure epidemic: findings from the 
Resource Utilization Among Congestive Heart Failure (REACH) study. J Am Coll Cardiol, 
2002. 39(1): p. 60-9. 

19. King, M., J. Kingery, and B. Casey, Diagnosis and evaluation of heart failure. Am Fam 
Physician, 2012. 85(12): p. 1161-8. 

20. Cody, R.J., Clinical trials of diuretic therapy in heart failure: Research directions and 
clinical considerations. Journal of the American College of Cardiology, 1993. 22(4 
Supplement 1): p. A165-A171. 

21. The Effect of Digoxin on Mortality and Morbidity in Patients with Heart Failure. New 
England Journal of Medicine, 1997. 336(8): p. 525-533. 

22. Muntner, P., et al., Potential US Population Impact of the 2017 ACC/AHA High Blood 
Pressure Guideline. Circulation, 2018. 137(2): p. 109-118. 

23. Nwankwo, T., et al., Hypertension among adults in the United States: National Health 
and Nutrition Examination Survey, 2011-2012. NCHS Data Brief, 2013(133): p. 1-8. 

24. Cohen, J.D., Hypertension epidemiology and economic burden: refining risk assessment 
to lower costs. Manag Care, 2009. 18(10): p. 51-8. 

25. Carretero, O.A. and S. Oparil, Essential Hypertension. Circulation, 2000. 101(3): p. 329-
335. 

26. Whelton, P.K., et al., 2017 
ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the 
Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A 
Report of the American College of Cardiology/American Heart Association Task Force on 
Clinical Practice Guidelines. Hypertension, 2018. 71(6): p. e13-e115. 

27. Egan, B.M., et al., Prevalence of optimal treatment regimens in patients with apparent 
treatment-resistant hypertension based on office blood pressure in a community-based 
practice network. Hypertension, 2013. 62(4): p. 691-7. 

28. Triposkiadis, F., et al., The sympathetic nervous system in heart failure physiology, 
pathophysiology, and clinical implications. J Am Coll Cardiol, 2009. 54(19): p. 1747-62. 

29. Verloop, W.L., et al., A systematic review concerning the relation between the 
sympathetic nervous system and heart failure with preserved left ventricular ejection 
fraction. PLoS One, 2015. 10(2): p. e0117332. 



 131 

30. Shah, A.M., et al., Influence of Ejection Fraction on the Prognostic Value of Sympathetic 
Innervation Imaging With Iodine-123 <em>M</em>IBG in Heart Failure. JACC: 
Cardiovascular Imaging, 2012. 5(11): p. 1139-1146. 

31. Floras, J.S., Sympathetic Nervous System Activation in Human Heart Failure: Clinical 
Implications of an Updated Model. Journal of the American College of Cardiology, 2009. 
54(5): p. 375-385. 

32. Zucker, I.H., et al., Chronic Baroreceptor Activation Enhances Survival in Dogs With 
Pacing-Induced Heart Failure. Hypertension, 2007. 50(5): p. 904-910. 

33. Zucker, I.H., Novel Mechanisms of Sympathetic Regulation in Chronic Heart Failure. 
Hypertension, 2006. 48(6): p. 1005-1011. 

34. Zucker, I.H., et al., Regulation of central angiotensin type 1 receptors and sympathetic 
outflow in heart failure. American Journal of Physiology-Heart and Circulatory 
Physiology, 2009. 297(5): p. H1557-H1566. 

35. Gao, L., et al., Sympathoexcitation by central ANG II: Roles for AT1 receptor upregulation 
and NAD(P)H oxidase in RVLM. American Journal of Physiology-Heart and Circulatory 
Physiology, 2005. 288(5): p. H2271-H2279. 

36. Mancia, G. and G. Grassi, The Autonomic Nervous System and Hypertension. Circulation 
Research, 2014. 114(11): p. 1804-1814. 

37. Ferrier, C., H. Cox, and M. Esler, Elevated total body noradrenaline spillover in 
normotensive members of hypertensive families. Clin Sci (Lond), 1993. 84(2): p. 225-30. 

38. Bianchetti, M.G., et al., Disturbed noradrenergic blood pressure control in normotensive 
members of hypertensive families. Br Heart J, 1984. 51(3): p. 306-11. 

39. Piccirillo, G., et al., Autonomic modulation of heart rate and blood pressure in 
normotensive offspring of hypertensive subjects. Journal of Laboratory and Clinical 
Medicine, 2000. 135(2): p. 145-152. 

40. Klatt, E.C., V. Kumar, and S.L. Robbins, Robbins and Cotran review of pathology. 2010, 
Philadelphia: Saunders/Elsevier. 

41. De Mello, W.C. and E.D. Frohlich, On the local cardiac renin angiotensin system. Basic 
and clinical implications. Peptides, 2011. 32(8): p. 1774-1779. 

42. Serneri, G.G.N., et al., Cardiac Angiotensin II Formation in the Clinical Course of Heart 
Failure and Its Relationship With Left Ventricular Function. Circulation Research, 2001. 
88(9): p. 961-968. 

43. Mazzolai, L., et al., Blood Pressure&#x2013;Independent Cardiac Hypertrophy Induced by 
Locally Activated Renin-Angiotensin System. Hypertension, 1998. 31(6): p. 1324-1330. 



 132 

44. Clausmeyer, S., et al., Tissue-specific expression of a rat renin transcript lacking the 
coding sequence for the prefragment and its stimulation by myocardial infarction. 
Endocrinology, 2000. 141(8): p. 2963-70. 

45. De Mello, W.C., Chemical Communication between Heart Cells is Disrupted by 
Intracellular Renin and Angiotensin II: Implications for Heart Development and Disease. 
Front Endocrinol (Lausanne), 2015. 6: p. 72. 

46. Dzau, V.J., Vascular renin-angiotensin: a possible autocrine or paracrine system in 
control of vascular function. Journal of cardiovascular pharmacology, 1984. 6 Suppl 2: p. 
S377-82. 

47. De Mello, W.C., Intracellular angiotensin II increases the total potassium current and the 
resting potential of arterial myocytes from vascular resistance vessels of the rat. 
Physiological and pathological implications. Journal of the American Society of 
Hypertension, 2013. 7(3): p. 192-197. 

48. Navar, L.G., The intrarenal renin-angiotensin system in hypertension. Kidney 
International, 2004. 65(4): p. 1522-1532. 

49. Bickerton, R.K. and J.P. Buckley, Evidence for a Central Mechanism in Angiotensin 
Induced Hypertension. Proceedings of the Society for Experimental Biology and 
Medicine, 1961. 106(4): p. 834-836. 

50. Ganten, D., et al., Renin in dog brain. American Journal of Physiology-Legacy Content, 
1971. 221(6): p. 1733-1737. 

51. Farag, E., et al., The renin angiotensin system and the brain: New developments. Journal 
of Clinical Neuroscience, 2017. 46: p. 1-8. 

52. Paul, M., A. Poyan Mehr, and R. Kreutz, Physiology of local renin-angiotensin systems. 
Physiol Rev, 2006. 86(3): p. 747-803. 

53. Luoh, H.F. and S.H. Chan, Participation of AT1 and AT2 receptor subtypes in the tonic 
inhibitory modulation of baroreceptor reflex response by endogenous angiotensins at 
the nucleus tractus solitarii in the rat. Brain Res, 1998. 782(1-2): p. 73-82. 

54. Morimoto, S., et al., Elevated blood pressure in transgenic mice with brain-specific 
expression of human angiotensinogen driven by the glial fibrillary acidic protein 
promoter. Circ Res, 2001. 89(4): p. 365-72. 

55. Takahashi, H., et al., The central mechanism underlying hypertension: a review of the 
roles of sodium ions, epithelial sodium channels, the renin-angiotensin-aldosterone 
system, oxidative stress and endogenous digitalis in the brain. Hypertens Res, 2011. 
34(11): p. 1147-60. 



 133 

56. Mancia, G., et al., Control of circulation by arterial baroreceptors and cardiopulmonary 
receptors in hypertension. J Cardiovasc Pharmacol, 1986. 8 Suppl 5: p. S82-8. 

57. Heesch, C.M., M.E. Crandall, and J.A. Turbek, Converting enzyme inhibitors cause 
pressure-independent resetting of baroreflex control of sympathetic outflow. Am J 
Physiol, 1996. 270(4 Pt 2): p. R728-37. 

58. Skeggs, L.T., Jr., J.R. Kahn, and N.P. Shumway, The preparation and function of the 
hypertensin-converting enzyme. J Exp Med, 1956. 103(3): p. 295-9. 

59. Fleming, I., Signaling by the Angiotensin-Converting Enzyme. Circulation Research, 2006. 
98(7): p. 887-896. 

60. Ramchandran, R., et al., Regulated cleavage-secretion of the membrane-bound 
angiotensin-converting enzyme. J Biol Chem, 1994. 269(3): p. 2125-30. 

61. Coates, D., The angiotensin converting enzyme (ACE). Int J Biochem Cell Biol, 2003. 
35(6): p. 769-73. 

62. Bicket, D.P., Using ACE inhibitors appropriately. Am Fam Physician, 2002. 66(3): p. 461-8. 

63. Tipnis, S.R., et al., A human homolog of angiotensin-converting enzyme. Cloning and 
functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem, 2000. 
275(43): p. 33238-43. 

64. Vickers, C., et al., Hydrolysis of biological peptides by human angiotensin-converting 
enzyme-related carboxypeptidase. J Biol Chem, 2002. 277(17): p. 14838-43. 

65. Xu, P., S. Sriramula, and E. Lazartigues, ACE2/ANG-(1-7)/Mas pathway in the brain: the 
axis of good. Am J Physiol Regul Integr Comp Physiol, 2011. 300(4): p. R804-17. 

66. Harmer, D., et al., Quantitative mRNA expression profiling of ACE 2, a novel homologue 
of angiotensin converting enzyme. FEBS Lett, 2002. 532(1-2): p. 107-10. 

67. Xia, H. and E. Lazartigues, Angiotensin-converting enzyme 2: central regulator for 
cardiovascular function. Curr Hypertens Rep, 2010. 12(3): p. 170-5. 

68. Xiao, L., et al., Brain-selective overexpression of angiotensin-converting enzyme 2 
attenuates sympathetic nerve activity and enhances baroreflex function in chronic heart 
failure. Hypertension, 2011. 58(6): p. 1057-65. 

69. Potts, P.D., et al., The cardiovascular effects of angiotensin-(1-7) in the rostral and 
caudal ventrolateral medulla of the rabbit. Brain Res, 2000. 877(1): p. 58-64. 

70. Fontes, M.A., et al., Evidence that angiotensin-(1-7) plays a role in the central control of 
blood pressure at the ventro-lateral medulla acting through specific receptors. Brain Res, 
1994. 665(1): p. 175-80. 



 134 

71. Silva, A.Q., R.A. Santos, and M.A. Fontes, Blockade of endogenous angiotensin-(1-7) in 
the hypothalamic paraventricular nucleus reduces renal sympathetic tone. Hypertension, 
2005. 46(2): p. 341-8. 

72. Gironacci, M.M., et al., Angiotensin-(1-7) inhibitory mechanism of norepinephrine 
release in hypertensive rats. Hypertension, 2004. 44(5): p. 783-7. 

73. Byku, M., H. Macarthur, and T.C. Westfall, Inhibitory effects of angiotensin-(1-7) on the 
nerve stimulation-induced release of norepinephrine and neuropeptide Y from the 
mesenteric arterial bed. American journal of physiology. Heart and circulatory 
physiology, 2010. 298(2): p. H457-H465. 

74. Sriramula, S., et al., ACE2 overexpression in the paraventricular nucleus attenuates 
angiotensin II-induced hypertension. Cardiovasc Res, 2011. 92(3): p. 401-8. 

75. Xia, H., et al., ACE2-mediated reduction of oxidative stress in the central nervous system 
is associated with improvement of autonomic function. PLoS One, 2011. 6(7): p. e22682. 

76. Feng, Y., et al., Angiotensin-converting enzyme 2 overexpression in the subfornical organ 
prevents the angiotensin II-mediated pressor and drinking responses and is associated 
with angiotensin II type 1 receptor downregulation. Circ Res, 2008. 102(6): p. 729-36. 

77. Harman, D., Aging: a theory based on free radical and radiation chemistry. Journal of 
gerontology, 1956. 11(3): p. 298-300. 

78. Sies, H., Oxidative stress. 1985. 

79. Fink, G. and Gale, Encyclopedia of stress. 2007. 

80. Liguori, I., et al., Oxidative stress, aging, and diseases. Clin Interv Aging, 2018. 13: p. 757-
772. 

81. Brown, G.C. and V. Borutaite, There is no evidence that mitochondria are the main 
source of reactive oxygen species in mammalian cells. Mitochondrion, 2012. 12(1): p. 1-
4. 

82. Lushchak, V.I., Free radicals, reactive oxygen species, oxidative stress and its 
classification. Chem Biol Interact, 2014. 224: p. 164-75. 

83. Valko, M., et al., Free radicals and antioxidants in normal physiological functions and 
human disease. Int J Biochem Cell Biol, 2007. 39(1): p. 44-84. 

84. Sun, W., et al., Monitoring structural modulation of redox-sensitive proteins in cells with 
MS-CETSA. Redox Biol, 2019. 24: p. 101168. 



 135 

85. Tsutsui, H., S. Kinugawa, and S. Matsushima, Oxidative stress and heart failure. 
American Journal of Physiology-Heart and Circulatory Physiology, 2011. 301(6): p. 
H2181-H2190. 

86. Takimoto, E. and D.A. Kass, Role of oxidative stress in cardiac hypertrophy and 
remodeling. Hypertension, 2007. 49(2): p. 241-8. 

87. Lindley, T.E., et al., Superoxide Is Involved in the Central Nervous System Activation and 
Sympathoexcitation of Myocardial Infarction&#x2013;Induced Heart Failure. Circulation 
Research, 2004. 94(3): p. 402-409. 

88. Gao, L., et al., Superoxide Mediates Sympathoexcitation in Heart Failure. Circulation 
Research, 2004. 95(9): p. 937-944. 

89. Vallance, P. and A. Hingorani, Endothelial nitric oxide in humans in health and disease. 
Int J Exp Pathol, 1999. 80(6): p. 291-303. 

90. Touyz, R.M., Reactive oxygen species and angiotensin II signaling in vascular cells -- 
implications in cardiovascular disease. Braz J Med Biol Res, 2004. 37(8): p. 1263-73. 

91. Touyz, R.M., Reactive oxygen species, vascular oxidative stress, and redox signaling in 
hypertension: what is the clinical significance? Hypertension, 2004. 44(3): p. 248-52. 

92. Gavazzi, G., et al., Decreased blood pressure in NOX1-deficient mice. FEBS Lett, 2006. 
580(2): p. 497-504. 

93. Campos, R.R., Oxidative stress in the brain and arterial hypertension. Hypertension 
Research, 2009. 32(12): p. 1047-1048. 

94. Hirooka, Y., Oxidative stress in the cardiovascular center has a pivotal role in the 
sympathetic activation in hypertension. Hypertension Research, 2011. 34(4): p. 407-412. 

95. Huber, M.J., et al., Activation of the (pro)renin receptor in the paraventricular nucleus 
increases sympathetic outflow in anesthetized rats. Am J Physiol Heart Circ Physiol, 
2015. 309(5): p. H880-7. 

96. Carmichael, C.Y. and R.D. Wainford, Hypothalamic signaling mechanisms in 
hypertension. Curr Hypertens Rep, 2015. 17(5): p. 39. 

97. Chan, S.H.H. and J. Chan, Angiotensin-Generated Reactive Oxygen Species in Brain and 
Pathogenesis of Cardiovascular Diseases. Antioxidants & redox signaling, 2012. 19. 

98. Wollert, K.C. and H. Drexler, The renin–angiotensin system and experimental heart 
failure. Cardiovascular Research, 1999. 43(4): p. 838-849. 

99. Leenen, F.H., et al., Brain 'ouabain' mediates sympathetic hyperactivity in congestive 
heart failure. Circ Res, 1995. 77(5): p. 993-1000. 



 136 

100. Tan, J., H. Wang, and F.H. Leenen, Increases in brain and cardiac AT1 receptor and ACE 
densities after myocardial infarct in rats. Am J Physiol Heart Circ Physiol, 2004. 286(5): p. 
H1665-71. 

101. Kar, S., L. Gao, and I.H. Zucker, Exercise training normalizes ACE and ACE2 in the brain of 
rabbits with pacing-induced heart failure. J Appl Physiol (1985), 2010. 108(4): p. 923-32. 

102. Ma, R., I.H. Zucker, and W. Wang, Central gain of the cardiac sympathetic afferent reflex 
in dogs with heart failure. American Journal of Physiology-Heart and Circulatory 
Physiology, 1997. 273(6): p. H2664-H2671. 

103. Wang, W. and R. Ma, Cardiac Sympathetic Afferent Reflexes in Heart Failure. Heart 
Failure Reviews, 2000. 5(1): p. 57-71. 

104. Zhu, G.-Q., et al., AT1 receptor mRNA antisense normalizes enhanced cardiac 
sympathetic afferent reflex in rats with chronic heart failure. American Journal of 
Physiology-Heart and Circulatory Physiology, 2004. 287(4): p. H1828-H1835. 

105. Liu, D., et al., Neuronal Angiotensin II Type 1 Receptor Upregulation in Heart Failure. 
Circulation Research, 2006. 99(9): p. 1004-1011. 

106. Zanzinger, J. and J. Czachurski, Chronic oxidative stress in the RVLM modulates 
sympathetic control of circulation in pigs. Pflugers Arch, 2000. 439(4): p. 489-94. 

107. Zimmerman, M.C., et al., Superoxide Mediates the Actions of Angiotensin II in the 
Central Nervous System. Circulation Research, 2002. 91(11): p. 1038-1045. 

108. Campese, V.M., Y. Shaohua, and Z. Huiquin, Oxidative Stress Mediates Angiotensin 
II&#x2013;Dependent Stimulation of Sympathetic Nerve Activity. Hypertension, 2005. 
46(3): p. 533-539. 

109. Sun, C., et al., NAD(P)H Oxidase Inhibition Attenuates Neuronal Chronotropic Actions of 
Angiotensin II. Circulation Research, 2005. 96(6): p. 659-666. 

110. Zimmerman, M.C., R.V. Sharma, and R.L. Davisson, Superoxide Mediates Angiotensin 
II&#x2013;Induced Influx of Extracellular Calcium in Neural Cells. Hypertension, 2005. 
45(4): p. 717-723. 

111. Grassi, G., G. Seravalle, and F. Quarti-Trevano, The ‘neuroadrenergic hypothesis’ in 
hypertension: current evidence. Experimental Physiology, 2010. 95(5): p. 581-586. 

112. Lochard, N., et al., Brain-specific restoration of angiotensin II corrects renal defects seen 
in angiotensinogen-deficient mice. J Biol Chem, 2003. 278(4): p. 2184-9. 

113. Morimoto, S., M.D. Cassell, and C.D. Sigmund, Glia- and neuron-specific expression of 
the renin-angiotensin system in brain alters blood pressure, water intake, and salt 
preference. J Biol Chem, 2002. 277(36): p. 33235-41. 



 137 

114. Jun, T., F. Ke-yan, and M. Catalano, Increased superoxide anion production in humans: a 
possible mechanism for the pathogenesis of hypertension. J Hum Hypertens, 1996. 10(5): 
p. 305-9. 

115. Sousa, T., et al., Role of H(2)O(2) in hypertension, renin-angiotensin system activation 
and renal medullary disfunction caused by angiotensin II. Br J Pharmacol, 2012. 166(8): 
p. 2386-401. 

116. Rodrigo, R., J. González, and F. Paoletto, The role of oxidative stress in the 
pathophysiology of hypertension. Hypertension Research, 2011. 34(4): p. 431-440. 

117. Dikalov, S.I. and Z. Ungvari, Role of mitochondrial oxidative stress in hypertension. Am J 
Physiol Heart Circ Physiol, 2013. 305(10): p. H1417-27. 

118. Wardyn, J.D., A.H. Ponsford, and C.M. Sanderson, Dissecting molecular cross-talk 
between Nrf2 and NF-kappaB response pathways. Biochem Soc Trans, 2015. 43(4): p. 
621-6. 

119. Sun, Z., et al., Keap1 controls postinduction repression of the Nrf2-mediated antioxidant 
response by escorting nuclear export of Nrf2. Mol Cell Biol, 2007. 27(18): p. 6334-49. 

120. Gao, L., et al., Selective Nrf2 Gene Deletion in the Rostral Ventrolateral Medulla Evokes 
Hypertension and Sympathoexcitation in Mice. Hypertension, 2017. 69(6): p. 1198-1206. 

121. Gao, L., et al., Superoxide mediates sympathoexcitation in heart failure: roles of 
angiotensin II and NAD(P)H oxidase. Circ Res, 2004. 95(9): p. 937-44. 

122. Feng, Y., et al., Brain-selective overexpression of human Angiotensin-converting enzyme 
type 2 attenuates neurogenic hypertension. Circ Res, 2010. 106(2): p. 373-82. 

123. Jacquot, S., et al., Optimizing PCR for Mouse Genotyping: Recommendations for Reliable, 
Rapid, Cost Effective, Robust and Adaptable to High-Throughput Genotyping Protocol for 
Any Type of Mutation. Current Protocols in Mouse Biology, 2019. 9(4): p. e65. 

124. ARRIVE Guidelines. ANIMAL TECHNOLOGY AND WELFARE, 2014. 13(1): p. 38-42. 

125. Thireau, J., et al., Heart rate variability in mice: a theoretical and practical guide. Exp 
Physiol, 2008. 93(1): p. 83-94. 

126. Chen, J., et al., Variability in coronary artery anatomy affects consistency of cardiac 
damage after myocardial infarction in mice. American Journal of Physiology-Heart and 
Circulatory Physiology, 2017. 313(2): p. H275-H282. 

127. Gao, L., et al., Selective <i>Nrf2</i> Gene Deletion in the Rostral Ventrolateral Medulla 
Evokes Hypertension and Sympathoexcitation in Mice. Hypertension, 2017. 69(6): p. 
1198-1206. 



 138 

128. Hamelmann, E., et al., Noninvasive measurement of airway responsiveness in allergic 
mice using barometric plethysmography. Am J Respir Crit Care Med, 1997. 156(3 Pt 1): 
p. 766-75. 

129. Baudrie, V., D. Laude, and J.-L. Elghozi, Optimal frequency ranges for extracting 
information on cardiovascular autonomic control from the blood pressure and pulse 
interval spectrograms in mice. American Journal of Physiology-Regulatory, Integrative 
and Comparative Physiology, 2007. 292(2): p. R904-R912. 

130. Paxinos, G. and K.B.J. Franklin, The mouse brain in stereotaxic coordinates. 2019. 

131. Berliner, D. and J. Bauersachs, Current Drug Therapy in Chronic Heart Failure: the New 
Guidelines of the European Society of Cardiology (ESC). Korean Circ J, 2017. 47(5): p. 
543-554. 

132. Dampney, R.A.L., A.K. Goodchild, and E. Tan, Identification of Cardiovascular Cell Groups 
in the Brain Stem. Clinical and Experimental Hypertension. Part A: Theory and Practice, 
1984. 6(1-2): p. 205-220. 

133. Gao, L., et al., Simvastatin therapy normalizes sympathetic neural control in 
experimental heart failure: roles of angiotensin II type 1 receptors and NAD(P)H oxidase. 
Circulation, 2005. 112(12): p. 1763-70. 

134. Gao, L., et al., Exercise training normalizes sympathetic outflow by central antioxidant 
mechanisms in rabbits with pacing-induced chronic heart failure. Circulation, 2007. 
115(24): p. 3095-102. 

135. Angelova, P.R. and A.Y. Abramov, Role of mitochondrial ROS in the brain: from 
physiology to neurodegeneration. FEBS Letters, 2018. 592(5): p. 692-702. 

136. Tarafdar, A. and G. Pula, The Role of NADPH Oxidases and Oxidative Stress in 
Neurodegenerative Disorders. International Journal of Molecular Sciences, 2018. 19(12): 
p. 3824. 

137. Patel, M., Targeting Oxidative Stress in Central Nervous System Disorders. Trends 
Pharmacol Sci, 2016. 37(9): p. 768-778. 

138. Transcriptional Regulation by Nrf2. Antioxidants & Redox Signaling, 2018. 29(17): p. 
1727-1745. 

139. Wang, H.-J., et al., Exercise training prevents the exaggerated exercise pressor reflex in 
rats with chronic heart failure. Journal of Applied Physiology, 2010. 108(5): p. 1365-
1375. 

140. Riehle, C. and J. Bauersachs, Small animal models of heart failure. Cardiovascular 
research, 2019. 115(13): p. 1838-1849. 



 139 

141. Houser, S.R., et al., Animal Models of Heart Failure. Circulation Research, 2012. 111(1): 
p. 131-150. 

142. Gomes, A.C., et al., Rodent models of heart failure: an updated review. Heart Fail Rev, 
2013. 18(2): p. 219-49. 

143. Zucker, I.H., Novel mechanisms of sympathetic regulation in chronic heart failure. 
Hypertension, 2006. 48(6): p. 1005-11. 

144. Guyenet, P.G., et al., Rostral Ventrolateral Medulla and Hypertension. 2018. 72(3): p. 
559-566. 

145. Bai, J., et al., Central administration of tert-butylhydroquinone attenuates hypertension 
via regulating Nrf2 signaling in the hypothalamic paraventricular nucleus of hypertensive 
rats. Toxicol Appl Pharmacol, 2017. 333: p. 100-109. 

146. Guyenet, P.G., et al., C1 neurons: the body's EMTs. Am J Physiol Regul Integr Comp 
Physiol, 2013. 305(3): p. R187-204. 

147. Dash, K.E., et al., Do Non-C1 Cells In The Rostral Ventrolateral Medulla Increase Blood 
Pressure? 2017. 31(1_supplement): p. 827.5-827.5. 

148. Lassmann, H. and J. van Horssen, Oxidative stress and its impact on neurons and glia in 
multiple sclerosis lesions. Biochim Biophys Acta, 2016. 1862(3): p. 506-10. 

149. Frazzini, V., et al., Altered Kv2.1 functioning promotes increased excitability in 
hippocampal neurons of an Alzheimer's disease mouse model. Cell Death Dis, 2016. 7: p. 
e2100. 

150. Oyarce, M.P. and R. Iturriaga, Contribution of Oxidative Stress and Inflammation to the 
Neurogenic Hypertension Induced by Intermittent Hypoxia. Front Physiol, 2018. 9: p. 
893. 

151. Kawasaki, Y., et al., Clinicopathological significance of nuclear factor (erythroid-2)-
related factor 2 (Nrf2) expression in gastric cancer. BMC Cancer, 2015. 15: p. 5. 

152. Saxena, T., A.O. Ali, and M. Saxena, Pathophysiology of essential hypertension: an 
update. Expert Rev Cardiovasc Ther, 2018. 16(12): p. 879-887. 

153. Guyenet, P.G., The sympathetic control of blood pressure. Nature Reviews Neuroscience, 
2006. 7: p. 335. 

154. Unger, T., et al., Central blood pressure effects of substance P and angiotensin II: role of 
the sympathetic nervous system and vasopressin. Eur J Pharmacol, 1981. 71(1): p. 33-42. 

155. Gao, L., et al., Sympathoexcitation by central ANG II: roles for AT1 receptor upregulation 
and NAD(P)H oxidase in RVLM. Am J Physiol Heart Circ Physiol, 2005. 288(5): p. H2271-9. 



 140 

156. Queiroz, T., M. Monteiro, and V. Braga, Angiotensin-II-derived reactive oxygen species 
on baroreflex sensitivity during hypertension: new perspectives. 2013. 4(105). 

157. Chappell, M.C., et al., Identification of angiotensin-(1-7) in rat brain. Evidence for 
differential processing of angiotensin peptides. J Biol Chem, 1989. 264(28): p. 16518-23. 

158. Yamazato, M., et al., Overexpression of angiotensin-converting enzyme 2 in the rostral 
ventrolateral medulla causes long-term decrease in blood pressure in the spontaneously 
hypertensive rats. Hypertension, 2007. 49(4): p. 926-31. 

159. Silva, R.A.P., et al., Impact of ACE2 Deficiency and Oxidative Stress on Cerebrovascular 
Function With Aging. Stroke, 2012. 43(12): p. 3358-3363. 

160. Santos Robson, A., Angiotensin-(1–7). Hypertension, 2014. 63(6): p. 1138-1147. 

161. Padda, R.S., et al., Angiotensin-(1-7): A Novel Peptide to Treat Hypertension and 
Nephropathy in Diabetes? J Diabetes Metab, 2015. 6(10). 

162. Diz, D.I., et al., Angiotensin-(1-7) and baroreflex function in nucleus tractus solitarii of 
(mRen2)27 transgenic rats. J Cardiovasc Pharmacol, 2008. 51(6): p. 542-8. 

163. Gomolak, J.R. and S.P. Didion, Angiotensin II-induced endothelial dysfunction is 
temporally linked with increases in interleukin-6 and vascular macrophage 
accumulation. Front Physiol, 2014. 5: p. 396. 

164. Dierschke, S.K., et al., Angiotensin-(1–7) Attenuates Protein O-GlcNAcylation in the 
Retina by EPAC/Rap1-Dependent Inhibition of O-GlcNAc Transferase. Investigative 
Ophthalmology & Visual Science, 2020. 61(2): p. 24-24. 

165. Fitzsimons, J.T., Angiotensin, thirst, and sodium appetite. Physiol Rev, 1998. 78(3): p. 
583-686. 

166. Catt, K.J., et al., Angiotensin II blood-levels in human hypertension. Lancet, 1971. 
1(7697): p. 459-64. 

167. Young, C.N. and R.L. Davisson, Angiotensin-II, the Brain, and Hypertension: An Update. 
Hypertension, 2015. 66(5): p. 920-6. 

168. Biancardi, V.C. and J.E. Stern, Compromised blood-brain barrier permeability: novel 
mechanism by which circulating angiotensin II signals to sympathoexcitatory centres 
during hypertension. J Physiol, 2016. 594(6): p. 1591-600. 

169. Biancardi, V.C., et al., Circulating angiotensin II gains access to the hypothalamus and 
brain stem during hypertension via breakdown of the blood-brain barrier. Hypertension, 
2014. 63(3): p. 572-9. 



 141 

170. Jackson, L., et al., Within the Brain: The Renin Angiotensin System. Int J Mol Sci, 2018. 
19(3). 

171. Wysocki, J., et al., Targeting the degradation of angiotensin II with recombinant 
angiotensin-converting enzyme 2: prevention of angiotensin II-dependent hypertension. 
Hypertension, 2010. 55(1): p. 90-8. 

172. Campagnole-Santos, M.J., et al., Differential baroreceptor reflex modulation by centrally 
infused angiotensin peptides. Am J Physiol, 1992. 263(1 Pt 2): p. R89-94. 

173. Maric-Bilkan, C. and M.B. Manigrasso, Sex Differences in Hypertension: Contribution of 
the Renin–Angiotensin System. Gender Medicine, 2012. 9(4): p. 287-291. 

174. White, M.C., R. Fleeman, and A.C. Arnold, Sex differences in the metabolic effects of the 
renin-angiotensin system. Biol Sex Differ, 2019. 10(1): p. 31. 

175. Liu, J., et al., Sex differences in renal angiotensin converting enzyme 2 (ACE2) activity are 
17beta-oestradiol-dependent and sex chromosome-independent. Biol Sex Differ, 2010. 
1(1): p. 6. 

176. Wang, C., et al., NRF2 PREVENTS HYPERTENSION, INCREASED ADMA, MICROVASCULAR 
OXIDATIVE STRESS AND DYSFUNCTION IN MICE WITH TWO WEEKS OF ANGIOTENSIN II 
INFUSION. American Journal of Physiology - Regulatory, Integrative and Comparative 
Physiology, 2017. 314: p. ajpregu.00122.2017. 

177. Grossman, E., Does increased oxidative stress cause hypertension? Diabetes Care, 2008. 
31 Suppl 2: p. S185-9. 

178. Lopes, R.A., et al., Downregulation of Nuclear Factor Erythroid 2&#x2013;Related Factor 
and Associated Antioxidant Genes Contributes to Redox-Sensitive Vascular Dysfunction 
in Hypertension. Hypertension, 2015. 66(6): p. 1240-1250. 

179. Senanayake, G.V., et al., The dietary phase 2 protein inducer sulforaphane can normalize 
the kidney epigenome and improve blood pressure in hypertensive rats. Am J Hypertens, 
2012. 25(2): p. 229-35. 

180. Noyan-Ashraf, M.H., et al., Dietary approaches to positively influence fetal determinants 
of adult health. Faseb j, 2006. 20(2): p. 371-3. 

181. Chang, S.Y., et al., Overexpression of angiotensinogen downregulates aquaporin 1 
expression via modulation of Nrf2-HO-1 pathway in renal proximal tubular cells of 
transgenic mice. J Renin Angiotensin Aldosterone Syst, 2016. 17(3). 

182. Zhao, S., et al., Nrf2 Deficiency Upregulates Intrarenal Angiotensin-Converting Enzyme-2 
and Angiotensin 1-7 Receptor Expression and Attenuates Hypertension and Nephropathy 
in Diabetic Mice. Endocrinology, 2017. 159(2): p. 836-852. 



 142 

183. Kang, K.W., Angiotensin II-mediated Nrf2 down-regulation: a potential causing factor for 
renal fibrosis? Arch Pharm Res, 2011. 34(5): p. 695-7. 

184. Afonso, V., et al., Reactive oxygen species and superoxide dismutases: role in joint 
diseases. Joint Bone Spine, 2007. 74(4): p. 324-9. 

185. Zhu, H., et al., Role of Nrf2 signaling in regulation of antioxidants and phase 2 enzymes 
in cardiac fibroblasts: protection against reactive oxygen and nitrogen species-induced 
cell injury. FEBS Lett, 2005. 579(14): p. 3029-36. 

186. Pepe, G., et al., beta-Lactoglobulin Heptapeptide Reduces Oxidative Stress in Intestinal 
Epithelial Cells and Angiotensin II-Induced Vasoconstriction on Mouse Mesenteric 
Arteries by Induction of Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Translocation. 
Oxid Med Cell Longev, 2019. 2019: p. 1616239. 

187. Tian, C., et al., Myocardial infarction-induced microRNA-enriched exosomes contribute to 
cardiac Nrf2 dysregulation in chronic heart failure. 2018. 314(5): p. H928-H939. 

188. Osburn, W.O. and T.W. Kensler, Nrf2 signaling: an adaptive response pathway for 
protection against environmental toxic insults. Mutat Res, 2008. 659(1-2): p. 31-9. 

189. Ruiz, S., et al., Targeting the transcription factor Nrf2 to ameliorate oxidative stress and 
inflammation in chronic kidney disease. Kidney Int, 2013. 83(6): p. 1029-41. 

190. Lim, J.L., et al., Antioxidative defense mechanisms controlled by Nrf2: state-of-the-art 
and clinical perspectives in neurodegenerative diseases. Arch Toxicol, 2014. 88(10): p. 
1773-86. 

191. Wafi, A.M., et al., Curcumin improves exercise performance of mice with coronary artery 
ligation-induced HFrEF: Nrf2 and antioxidant mechanisms in skeletal muscle. J Appl 
Physiol (1985), 2019. 126(2): p. 477-486. 

192. Bai, Y., et al., Sulforaphane Protects against Cardiovascular Disease via Nrf2 Activation. 
Oxid Med Cell Longev, 2015. 2015: p. 407580. 

193. Deng, Y., et al., [Expression of neprilysin gene is associated with methylation and histone 
modification on promoter in mouse neuroblastoma Neuro-2a cells]. Xi Bao Yu Fen Zi 
Mian Yi Xue Za Zhi, 2014. 30(8): p. 810-3. 

194. Deshotels, M.R., et al., Angiotensin II Mediates Angiotensin Converting Enzyme Type 2 
Internalization and Degradation Through an Angiotensin II Type I 
Receptor&#x2013;Dependent Mechanism. Hypertension, 2014. 64(6): p. 1368-1375. 

195. Balasubramanian, P., et al., Obesity-induced sympathoexcitation is associated with Nrf2 
dysfunction in the rostral ventrolateral medulla. American Journal of Physiology-
Regulatory, Integrative and Comparative Physiology, 2020. 318(2): p. R435-R444. 



 143 

196. Sita, G., et al., Sulforaphane from Cruciferous Vegetables: Recent Advances to Improve 
Glioblastoma Treatment. Nutrients, 2018. 10(11). 

197. O'Connell, T.D., et al., Cardiac alpha1-adrenergic receptors: novel aspects of expression, 
signaling mechanisms, physiologic function, and clinical importance. Pharmacol Rev, 
2014. 66(1): p. 308-33. 

198. Zhong, J., et al., Angiotensin-converting enzyme 2 suppresses pathological hypertrophy, 
myocardial fibrosis, and cardiac dysfunction. Circulation, 2010. 122(7): p. 717-28, 18 p 
following 728. 

199. Lo, J., et al., Angiotensin-converting enzyme 2 antagonizes angiotensin II-induced pressor 
response and NADPH oxidase activation in Wistar-Kyoto rats and spontaneously 
hypertensive rats. Exp Physiol, 2013. 98(1): p. 109-22. 

200. Hernandez Prada, J.A., et al., Structure-based identification of small-molecule 
angiotensin-converting enzyme 2 activators as novel antihypertensive agents. 
Hypertension, 2008. 51(5): p. 1312-7. 

201. van Twist, D.J.L., A.A. Kroon, and P.W. de Leeuw, Angiotensin-(1-7) as a strategy in the 
treatment of hypertension? Current Opinion in Nephrology and Hypertension, 2014. 
23(5): p. 480-486. 

202. Shi, Y., et al., Ang 1-7 Prevents Systemic Hypertension, Attenuates Oxidative Stress and 
Tubulointerstitial Fibrosis, and Normalizes Renal Angiotensin-Converting Enzyme 2 and 
Mas Receptor Expression in Diabetic Mice. Clinical science (London, England : 1979), 
2014. 128. 

203. Tsuda, K., Angiotensin 1–7 and the Sympathetic Nervous System in Hypertensive Kidney 
Disease. American Journal of Hypertension, 2019. 32(10): p. e3-e3. 

204. de Macedo, S.M., et al., Angiotensin converting enzyme 2 activator (DIZE) modulates 
metabolic profiles in mice, decreasing lipogenesis. Protein and peptide letters, 2015. 
22(4): p. 332-340. 

205. Sun, Y., et al., Sulforaphane Protects against Brain Diseases: Roles of Cytoprotective 
Enzymes. Austin J Cerebrovasc Dis Stroke, 2017. 4(1). 

206. Zhao, X., et al., Dimethyl Fumarate Protects Brain From Damage Produced by 
Intracerebral Hemorrhage by Mechanism Involving Nrf2. Stroke, 2015. 46(7): p. 1923-8. 

207. Jiang, T., et al., ACE2-Ang-(1-7)-Mas Axis in Brain: A Potential Target for Prevention and 
Treatment of Ischemic Stroke. Curr Neuropharmacol, 2013. 11(2): p. 209-17. 

208. Saraswathi, V., et al., Nanoformulated copper/zinc superoxide dismutase attenuates 
vascular cell activation and aortic inflammation in obesity. Biochem Biophys Res 
Commun, 2016. 469(3): p. 495-500. 



 144 

209. Savalia, K., et al., Neuronal uptake of nanoformulated superoxide dismutase and 
attenuation of angiotensin II-dependent hypertension after central administration. Free 
Radic Biol Med, 2014. 73: p. 299-307. 

210. Rosenbaugh, E.G., et al., The attenuation of central angiotensin II-dependent pressor 
response and intra-neuronal signaling by intracarotid injection of nanoformulated 
copper/zinc superoxide dismutase. Biomaterials, 2010. 31(19): p. 5218-26. 

211. Apostolova, N. and V.M. Victor, Molecular strategies for targeting antioxidants to 
mitochondria: therapeutic implications. Antioxid Redox Signal, 2015. 22(8): p. 686-729. 

212. Antimisiaris, S.G., S. Mourtas, and A. Marazioti, Exosomes and Exosome-Inspired Vesicles 
for Targeted Drug Delivery. Pharmaceutics, 2018. 10(4). 

213. Haack, K.K., et al., Abstract 175: Activation of Nrf2 by Exercise Training and Curcumin 
Contributes to Sympatho-Inhibition in Heart Failure. Hypertension, 2013. 62(suppl_1): p. 
A175-A175. 

214. Wafi, A.M., et al., Exercise training upregulates Nrf2 protein in the rostral ventrolateral 
medulla of mice with heart failure. Journal of Applied Physiology, 2019. 127(5): p. 1349-
1359. 

215. Bryan, H.K., et al., The Nrf2 cell defence pathway: Keap1-dependent and -independent 
mechanisms of regulation. Biochemical Pharmacology, 2013. 85(6): p. 705-717. 

216. White, L.H., T.D. Bradley, and A.G. Logan, Pathogenesis of obstructive sleep apnoea in 
hypertensive patients: role of fluid retention and nocturnal rostral fluid shift. Journal of 
Human Hypertension, 2015. 29(6): p. 342-350. 

217. Tang, W.H.W., et al., Fluid retention after initiation of thiazolidinedione therapy in 
diabetic patients with established chronic heart failure. Journal of the American College 
of Cardiology, 2003. 41(8): p. 1394-1398. 

218. Buggy, J. and A.K. Johnson, Angiotensin-induced thirst: effects of third ventricle 
obstruction and periventricular ablation. Brain Res, 1978. 149(1): p. 117-28. 

219. Bichet, D.G., Vasopressin and the Regulation of Thirst. Ann Nutr Metab, 2018. 72 Suppl 
2: p. 3-7. 

220. de Figueiredo, S.M., et al., The antioxidant properties of organosulfur compounds 
(sulforaphane). Recent Pat Endocr Metab Immune Drug Discov, 2015. 9(1): p. 24-39. 

221. O'Mealey, G.B., W.L. Berry, and S.M. Plafker, Sulforaphane is a Nrf2-independent 
inhibitor of mitochondrial fission. Redox Biol, 2017. 11: p. 103-110. 

 


	The Role of Central ACE2 and Nrf2 in Sympatho-Excitation: Responses to Central Angiotensin II
	Recommended Citation

	Microsoft Word - Thesis 4-26-2020-AM.docx

