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ABSTRACT  

INSIGHTS INTO THE CHLAMYDIAL NICHE: THE DYNAMIC ROLES  

OF INCLUSION MEMBRANE (INC) PROTEINS IN  

CHLAMYDIA TRACHOMATIS DEVELOPMENT 

Macy G. (Olson) Wood, Ph.D. 

University of Nebraska, 2020 

Supervisors: Elizabeth A. Rucks, Ph.D. and Scot P. Ouellette, Ph.D. 

Chlamydia trachomatis (Ctr) is the leading cause of bacterial sexually transmitted 

infections. Ctr, an obligate intracellular bacterium, develops within a membrane-bound 

vacuole called an inclusion. The inclusion membrane is modified by chlamydial inclusion 

membrane (Inc) proteins, the functions of which are poorly characterized. Bacterial two-

hybrid analyses found some Incs (e.g., IncF) interacted with numerous Incs while others 

(e.g., IncA) did not. We hypothesize that some Incs organize the inclusion through Inc-Inc 

interactions whereas other Incs promote chlamydial-host interactions by binding 

eukaryotic proteins. To test our hypothesis, we implemented the ascorbate peroxidase 

proximity labeling system (APEX2), which labels proximal proteins with biotin in vivo.  We 

transformed Ctr with inducible expression constructs containing incF-APEX2, 

incATM(transmembrane domain)-APEX2, incA-APEX2, and APEX2 alone. Affinity purification-mass 

spectrometry (AP-MS) of biotinylated proteins from chlamydial infected monolayers, 

followed by Significance Analysis of INTeractome (SAINT), was used to identify significant 

proteins that are proximal to the Inc-APEX2 constructs from five biological replicates. 

Consistent with our hypothesis, IncF-APEX2 biotinylated more chlamydial Inc proteins, 

whereas IncA-APEX2 biotinylated more unique eukaryotic proteins. We validated a SAINT 

significant eukaryotic protein, LRRF1, at the inclusion membrane by immunofluorescence 
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and determined that the Inc CT226 interacts with LRRF1. Next, we compared our datasets 

with other AP-MS inclusion studies, finding only seven proteins that were similarly 

identified, likely a reflection of the different experimental approaches. Importantly, for the 

first time, we were able to directly compare two Inc-APEX2 studies, which also revealed 

fewer similarly identified proteins than expected. This led us to hypothesize that the 

overexpression of certain Incs may alter the organization of the inclusion membrane. 

Previously, we described defects in inclusion expansion and the production of progeny 

when IncF-APEX2 was expressed at high levels from transformed Ctr. To further 

investigate the role of Incs in chlamydial development, we transformed Ctr with inducible 

expression plasmids containing FLAG-tagged incF, ct813, and ct226. The expression of 

IncF and CT813, but not CT226, altered inclusion development, as observed by smaller 

inclusions and decreased IncE intensity in the inclusion membrane. These data suggest 

that coordinated Inc expression and insertion into the inclusion membrane is essential for 

optimal inclusion development.  
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Chapter 1 - Introduction to Chlamydia 

Chlamydia trachomatis is the leading cause of preventable infectious blindness 

and bacterial sexually transmitted infections (STI) in the world (1-3). There are an 

estimated 100-150 million new cases annually worldwide (2, 3). In 2017, 1.7 million cases 

were reported in the United States, with the highest rate of infection in people ages 15 to 

29 (3, 4). The number of reported C. trachomatis infections have been steadily increasing 

since extensive STI surveillance began, with a 22% increase in reported cases since 2013 

(3). At this time, there is no effective human vaccine to prevent C. trachomatis infections 

(2, 4). Chlamydial infections in men can cause urethritis, epididymitis, and prostatitis (5). 

In women, undiagnosed infections can lead to pelvic inflammatory disease, ectopic 

pregnancy, and infertility (5, 6). In men, about 50% of infections are asymptomatic, and 

infections in women are estimated to be 70-75%, making the actual number of infected 

individuals, and the disease burden, much higher than currently reported (1, 3, 5, 7).  

Chlamydiaceae 

The family Chlamydiaceae (order Chlamydiales, class Chlamydiae, phylum 

Chlamydiae) are Gram-negative, developmentally regulated, obligate intracellular bacteria 

that reside within a membrane-bound vacuole throughout infection of a host cell (8, 9). 

Chlamydiaceae cause disease in most mammals in a species-dependent manner (10, 11). 

Chlamydia caviae infection results in conjunctivitis and genital tract infections in guinea 

pigs, and C. muridarum causes genital tract infections in mice. Infection of C. psittaci can 

cause respiratory infections in birds, C. abortus infects the placenta of sheep and goats, 

leading to abortions, and C. pecorum causes conjunctivitis in cattle, swine, goats, sheep, 

and koalas (10, 11).  
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The species of Chlamydia that primarily cause disease in humans include 

Chlamydia psittaci, C. pneumoniae, and C. trachomatis. C. psittaci is a zoonotic disease 

spread by parrots and other exotic birds, and the human disease is referred to as 

psittacosis or parrot fever, (12, 13). Humans infected with C. psittaci have atypical 

pneumonia (12). C. pneumoniae causes community-acquired pneumonia, which is likely 

underdiagnosed as 50-87% of the population, depending on the region, are seropositive 

for a past C. pneumoniae infection (14-17). Three human C. trachomatis biovars that 

comprise 15-19 serovars have been classified based on tissue tropism (4). The trachoma 

biovar includes serovars A, B, Ba, and C, which primarily cause ocular infections (18). The 

C. trachomatis serovars D, E, F, G, Ia, J, and K are classified within the STI biovar, with a 

propensity to infect urogenital tissue (19). Finally, the lymphogranuloma venereum (LGV) 

biovar includes serovars L1, L2, L2b, and L3, which spread to the lymph nodes after sexual 

transmission resulting in disseminated infection (4, 19). Retrospective studies have not 

found an association between reported symptomatic and asymptomatic infections with 

specific C. trachomatis serovars (20). Asymptomatic infections likely occur due to the 

obligate intracellular nature of this pathogen and the manipulation of host cell responses 

by chlamydial secreted effectors (1, 20). 

An Overview of the Developmental Cycle 

The C. trachomatis genome consists of a 1.04 Mbp chromosome that encodes 894 

open reading frames in addition to a 7.5 kbp chlamydial plasmid that encodes eight open 

reading frames (21). Chlamydiae undergo a biphasic developmental cycle that consists of 

two morphologically distinct developmental forms. The elementary body, or EB, is the 

smaller (0.3 µm), with a highly cross-linked outer membrane, and is the infectious 

developmental form with limited metabolic activity (22, 23). The reticulate body, or RB, is 

the larger (1 µm), replicative developmental form with a decondensed chromosome and 
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increased metabolic activity (22). Infection of a host cell begins with attachment of the EB 

to the host cell in a two-part process: a reversible, electrostatic binding step to heparin-

sulfate residues, followed by an irreversible binding step to a currently unknown host cell 

receptor (24, 25). Evidence that chlamydial proteins initiate entry of the EB into the host 

cell comes from early studies demonstrating that UV inactivated EBs failed to enter 

eukaryotic cells (26). Chlamydial effector proteins, including translocated actin recruitment 

protein (Tarp), are injected into the host cell to initiate rearrangement of the host 

cytoskeleton to facilitate uptake (27-29).  

After host cell entry, the EB resides within a membrane-bound vacuole, and the 

chlamydiae remain within this vacuole throughout the entirety of the developmental cycle. 

Early after infection, the inclusion is diverted from the endosomal-lysosomal pathway (30-

34) and trafficked to the microtubule organizing center (MTOC), positioning the inclusion 

near the eukaryotic nucleus and the Golgi apparatus (35). The EB differentiates to an RB 

approximately 3 hours post-infection (hpi). Following this primary differentiation event at 

around 8 hpi (depending on the species and strain), the RB begins to divide by a polarized 

cell division mechanism similar to yeast-like budding (36, 37), giving rise to a large 

population of RBs. At approximately 18-24 hpi, the RBs begin asynchronous secondary 

differentiation, in which RBs condense into EBs. At about 48 hpi for C. trachomatis serovar 

L2, the inclusion either lyses to release EBs into the extracellular milieu, or the entire intact 

inclusion is released from the cell by a process termed extrusion (38, 39).  

The C. trachomatis Inclusion  

The inclusion, derived from eukaryotic membranes, acts as the host-pathogen 

interface, physically “walling” chlamydiae off from the host cell. Inclusions harboring 

Chlamydia were observed in early electron microscopy studies of inclusions that were 

purified from host cells (40). Only molecules less than 530 Daltons are freely permeable 
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to the inclusion (41), meaning most molecules require active transport to cross the 

membrane. The chlamydial inclusion remains at a near-neutral pH (42), never acquiring 

the endosomal-lysosomal markers, lysosome-associated membrane protein-1 (LAMP-1), 

LAMP-2, or Cathepsin D (31, 32) (30, 31). Chlamydial effector proteins that are either 

inserted into the inclusion, called inclusion (Inc) membrane proteins, or effectors that are 

secreted into the host cell contribute to the establishment and maintenance of the inclusion 

(43-45). Active chlamydial protein synthesis is required to evade fusion of the inclusion 

with the lysosome and for the acquisition of eukaryotic lipids that are important for 

chlamydial growth and development (30-32).  

Lipid acquisition by C. trachomatis L2 

During the developmental cycle, eukaryotic lipids (e.g., sphingomyelin and 

cholesterol) acquired from the host cell are trafficked to the inclusion and incorporated 

both into the inclusion and into the bacteria (30, 46-48). Sphingomyelin acquisition was 

observed using fluorescent probes such as N-[7-(4-Nitrobenzo-2-oxa-1,3-diazole)] I 

aminocaproylsphingosine (C6-NBD-Cer) labeling (30). NBD-C6-ceramide is metabolized 

into sphingomyelin and glucosylceramide, and, in the presence of labeled ceramide, 

fluorescent NBD-C6-sphingomyelin is observed in the inclusion membrane and 

chlamydiae (46, 48). The addition of brefeldin A, a fungal metabolite that inhibits Golgi 

formation, inhibited fluorescent sphingomyelin incorporation into chlamydiae or the 

inclusion membrane (49). Cholesterol is also incorporated into the inclusion membrane 

and chlamydiae during infection of a host cell, which can be observed using fluorescent 

probes and thin-layer chromatography (50-52).  

The trafficking or recruitment of these lipids is dependent on chlamydial protein 

synthesis because the treatment of C. trachomatis-infected cell monolayers with 

chloramphenicol prevents the acquisition of sphingomyelin and cholesterol (50). One 
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chlamydial inclusion (Inc) membrane protein is directly involved in the recruitment of 

eukaryotic lipids to the inclusion via recruitment of ceramide transfer protein, CERT (53, 

54). Lipids are also trafficked to the inclusion, at least in part, via the recruitment of 

multivesicular bodies (MVBs) (55, 56). Studies that inhibited MVBs resulted in decreased 

sphingolipid and cholesterol incorporation and reduced infectious progeny (55, 56). Given 

the normal trafficking of sphingomyelin to the inclusion during development, 

sphingomyelin acquisition is often used as a metric for normal development in studies that 

manipulate chlamydial proteins (57).  

Chlamydial Secretion Systems and Substrates 

Modification of the inclusion with chlamydial proteins is important for chlamydial 

development, whereby chloramphenicol treatment early after infection of a host cell halts 

chlamydial development (58). The halt is due, in part, to the inhibition of a large subset of 

secreted chlamydial proteins that modify the inclusion and the host cellular environment 

(58, 59). Chlamydiae encode genes for type II secretion (Sec-dependent) systems, type 

III secretion systems (T3SS), and type V secretion systems (T5SS) (27, 60-66). The T2SS 

is a Sec-dependent secretion system, and the T3SS is the non-flagellar, needle-like 

apparatus. The T5SS is an auto-transporter of polymorphic membrane proteins that are 

secreted via the Sec-dependent mechanism to the bacterial membrane (66). The 

chlamydial T3SS and T3SS substrates have been studied more extensively than the T2SS 

and T5SS in Chlamydia.  

One well-characterized T2SS substrate is the Chlamydia protease/proteasome-

like activity factor (CPAF) (60, 67, 68). Secreted into the host cytosol via the T2SS, CPAF 

has been implicated in the degradation of chlamydial proteins (69), host proteins to evade 

apoptosis (70), and actin filaments to allow for inclusion expansion during infection (71). 

CPAF is not inhibited by typical protease inhibitors (72); as such, some CPAF activities 
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are unclear because the experimental results were confounded by residual CPAF activity 

after cell lysis, resulting in increased proteolysis of both host and chlamydial proteins (73). 

Other known Sec-dependent proteases include tail-specific protease (Tsp), chlamydial 

high-temperature requirement protein A (cHtrA substrate), and CT311, but the precise 

functions of these proteases are unknown (74, 75).  

The C. trachomatis Type III Secretion System 

In contrast to the small number of characterized T2SS effector proteins, there are 

60-80 predicted type III Secretion System (T3SS) effector proteins (76). Highlighting the 

importance of the T3SS in chlamydial development and survival, the C. trachomatis T3SS 

is required for infection of a host cell (27, 28, 77, 78), inclusion development, immune 

evasion, and intracellular survival (63). Early electron microscopy studies described small 

projections that resembled a syringe on EBs and RBs harvested from infected cells (40, 

79, 80). The first evidence of a type III secretion system (T3SS) was by Hsia et al. using 

sequence analysis of a genomic DNA fragment isolated from C. caviae (formerly GPIC, 

C. psittaci) (81). The presence of T3SS genes was confirmed upon the sequencing of the 

C. trachomatis serovar D genome (21, 64). T3SS genes are typically clustered on a 

pathogenicity island with a lower GC content compared to the rest of the genome; 

however, the chlamydial genome has a low GC content (~40%), which makes it 

challenging to identify pathogenicity islands (21, 82). Further, chlamydial genes 

homologous to other bacterial T3SS genes are located dispersed throughout the 

chlamydial genome in small clusters, rather than on a single pathogenicity island (64, 83, 

84). Chlamydiae encode genes for the injectisome (i.e., the needle complex and basal 

body), the translocon (i.e., the distal membrane proteins that form the pore in the opposing 

membrane), and the chaperones that are required to maintain an unfolded protein form 

for the secretion of bacterial effector proteins (83, 85). A preformed functional type III 
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secretion apparatus on EBs was predicted because Inc proteins that modify the inclusion 

membrane were transcribed as early as three hours post-infection (hpi), but transcription 

of T3SS genes was not detected until 12 hpi (58). Additional experiments identified the 

core T3S apparatus protein, CdsJ, in lysates from both purified EBs and RBs supporting 

a model where EBs are preloaded with the T3SS for the secretion of early effectors, and 

RBs produce new T3SS to secrete additional effector proteins (58).  

Fields et al. also provided evidence that the chlamydial T3SS secretes Inc proteins, 

but little was known about the specific secretion mechanism (58, 86-88). The secretion via 

a chlamydial T3SS had been previously proposed due to the location of Incs in the 

inclusion membrane (89). To test the possibility of Incs to be type III secreted, the well-

characterized Shigella and Yersinia T3SS were used as surrogate secretion systems. 

Indeed, IncA and IncC were secreted by the T3SS of Shigella  (89, 90) and Yersinia, 

respectively (58). Also, C. trachomatis-infected cells treated with chloramphenicol resulted 

in no detectable IncC, which supports the de novo synthesis of Incs (58). Incs are only 

one class of chlamydial T3SS effectors that have been described (76, 91-93). Other non-

Inc T3SS effectors have also been observed at the inclusion membrane (94), in the host 

cell cytosol (e.g., Tarp (28)), plasma membrane (95, 96), nucleus (97), or the Golgi (98). 

The numerous subcellular locations in which chlamydial effectors have been found 

suggest that chlamydiae orchestrate the manipulation of multiple host processes to create 

this specialized niche, the pathogen-specified organelle (59). Moreover, the chlamydial 

T3SS is essential for growth and development because a T3SS inhibitor significantly 

reduced the formation of EBs from RBs and also prevented the secretion of Incs (99).  

Inclusion Membrane (Inc) Proteins 

Chlamydial inclusion membrane proteins (Incs) are a large class of T3SS effectors 

that stud the inclusion membrane (59, 89, 100). Incs are characterized by the presence of 
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two or more bi-lobed hydrophobic transmembrane domains that are approximately 40-50 

amino acids in length (44, 87, 93). Hydrophobicity plot analyses of the C. trachomatis L2 

ORFs revealed at least 45 candidate inc genes, which make up approximately 7% of the 

highly reduced chlamydial genome, indicating that these genes are important for 

chlamydial development (21, 88). To date, there are over 50 putative Incs, which are 

expressed at different times during the developmental cycle and have been characterized 

as immediate-early, early, and mid-developmental cycle effectors (101-106). The temporal 

expression pattern of inc genes throughout the developmental cycle likely a reflection of 

the dynamic needs of Chlamydia. Interestingly, not only is there limited conservation of 

inc genes within various Chlamydia species, but there is also little homology with other 

bacterial or eukaryotic genes (83, 104), which makes it difficult to speculate on their role 

in chlamydial development.  

Incs were first described in a series of experiments using serum from guinea pigs 

that had recovered from guinea pig inclusion conjunctivitis, GPIC (i.e., C. caviae). By 

western blot, proteins were identified from GPIC infected HeLa cell lysates that were not 

observed in the lysates from purified EBs. To further examine the unknown proteins from 

the western blot, the guinea pig serum was adsorbed using EBs and then used for 

immunofluorescence assays. This led to the identification of chlamydial proteins that 

localize to the inclusion membrane during infection (107). Subsequent studies using a 

bacteriophage library harboring GPIC cDNA identified clones that were reactive with the 

guinea pig serum but not with inactivated EBs (i.e., formalin-fixed) (43). Expression of 

those putative ORFs from E. coli also reacted with convalescent sera but not EBs (43). 

Anti-sera generated against the ORF, termed incA (inclusion membrane protein A), 

confirmed the localization of IncA in the inclusion membrane (43, 108). IncA was predicted 

to encode two large hydrophobic regions, a unique characteristic that led to the detection 
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of 50 putative C. trachomatis inc genes that encode these domains (101, 104). Additional 

experiments evaluating GPIC infected HeLa cell lysates identified changes in IncA 

expression over time (43) and that the host cell could phosphorylate IncA during infection 

(108). IncA also contains a eukaryotic SNARE-like domain, which is important for the 

fusion of two or more inclusions within the same host cell (92, 109-113). These early 

experiments set the stage for the identification of additional Incs that modified the inclusion 

membrane and began speculation that Incs are involved in mediating various interactions 

with the host cell.  

Further characterization of Incs identified an T3S signal in the N-terminus, although 

the exact signal peptide sequence remains unknown (91). In support, truncating the first 

30 amino acids of IncD prevented the secretion and localization of IncD to the inclusion 

membrane (91). Both the N- and C-termini of Incs are presumed to be exposed to the host 

cytosolic face of the inclusion (43, 59, 92, 108), which is supported by experiments that 

used genetic tags, adenylate cyclase (CyaA) and glycogen synthase kinase (GSK), as 

well as microinjection of anti-Inc antibodies (91). Incs have been observed to localize in 

either microdomains (i.e., puncta) or a uniform, ring-like pattern around the inclusion 

membrane (44, 114). For example, IncF, IncA, CT226, and CT813, have been shown to 

uniformly surround the inclusion while CT101, IncB, CT222, CT223, and CT850 are 

observed in microdomains in the inclusion membrane (44, 87, 114). The Incs found in 

microdomains are associated with localized increased cholesterol concentration and have 

been shown to co-localize with Src-kinases, which are hypothesized to play a role in the 

modification of host cell signaling during infection (114). Furthermore, Incs vary in length 

of the cytosolic C-terminus, which is predicted to contribute to the function of Incs in the 

inclusion membrane (57, 59, 115). For example, some Incs have short C-terminal cytosolic 

termini (i.e.,14 amino acids) such as IncF, while other Incs have large cytosolic C-termini, 
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such as IncA (i.e., 191 amino acids) (87). Both the localization of Incs in the inclusion 

membrane as well as the length of the C-termini are likely important to the function of Incs, 

but the functions of only a few Incs are well characterized to date.  

Genetic tools to examine C. trachomatis serovar L2 Inc protein-protein 

interactions  

Although Incs are presumed to be vital for chlamydial development due to the large 

percent of inc genes and the localization of Incs at the host-pathogen interface, the specific 

roles for most Incs in the inclusion membrane remain unknown. Progress has been 

impeded partially due to the inability to genetically modify Chlamydia (116). Recent 

advances in the C. trachomatis L2 genetic toolbox have now expanded studies of Incs via 

the use of overexpression models (91, 93) and knockouts via TargeTron (i.e., targeted 

intron insertion) mutants (109, 117). More recently, allelic exchange has been described 

for C. trachomatis serovar L2 which enables a clean deletion of chlamydial genes (118-

120), and conditional CRISPRi mediated knockdown allows the study of essential genes 

(121). These tools add flexibility and control in experimental design to examine the role of 

Incs on a molecular level.  

Another major hurdle is related to the inherent hydrophobic makeup of Inc proteins, 

which makes them difficult to purify from the inclusion membrane using traditional 

purification methods. Affinity purification experiments to identify protein binding partners 

are often used as an initial strategy to understand the role of unknown proteins since they 

may fit into known cellular pathways. However, the large hydrophobic transmembrane 

domain regions of Incs makes them refractory to purification using these methods because 

the harsh lysis conditions required to solubilize Incs do not preserve protein-protein 

interactions. A strategy that has been employed to circumvent purifying full-length Incs 
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has been to use only the cytosolic C-terminal regions as bait to identify eukaryotic binding 

partners of Inc proteins. This is done either by ectopically expressing truncated Incs in 

eukaryotic cells followed by affinity purification methods (122), or screening for interactions 

using a yeast-two hybrid (Y2H) assay (123). These methods have identified a few Inc-

eukaryotic protein interactions yielding information about chlamydial manipulation of host 

pathways. Still, these methods may not be sufficient to identify transient or weak 

interactions that are occurring at the inclusion membrane.  

C. trachomatis serovar L2 manipulation of host cell pathways  

C. trachomatis appears to be a master manipulator of major cellular pathways, 

siphoning amino acids from the lysosome (124), recruiting vesicles (i.e., MVBs) (56) and 

specific proteins to acquire essential lipids (54, 125, 126), and dampening the host 

response to infection (127). Inc proteins, anchored in the inclusion membrane and have 

N- and C-termini in the host cytosol, are hypothesized to mediate interactions with the host 

that are necessary for survival. To date, a few eukaryotic proteins are known to be 

recruited to the inclusion membrane via their interaction with Incs. However, the difficulties 

in purifying inclusion membrane proteins and the lack of genetic tools have hindered the 

identification of specific Inc-protein interactions. To this end, there are numerous reports 

of eukaryotic proteins that are recruited to, or co-localize with the inclusion, but do not 

have an identified Inc protein-binding partner (Table 1-1). Previously published Inc-

eukaryotic protein-protein interactions are broadly involved in the re-organization of the 

host cytoskeleton and the manipulation of host signaling and vesicular trafficking (Table 

1-2). The Inc-eukaryotic protein interactions that have been defined and their contribution 

to chlamydial development is described in the following sections.  
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Table 1-1. Eukaryotic proteins associated with the inclusion membrane  

Eukaryotic 
Protein 

Reference 

Ci-MPR Aeberhard et al. 2015 

Fis1 Aeberhard et al. 2015 

HSPB1 Aeberhard et al. 2015 

ILK Aeberhard et al. 2015 

ORCL1 Moorehead et al 2010 

OSBP Moorehead et al 2010 

PI4PkII α Moorehead et al 2010 

PKM2 Aeberhard et al. 2015 

Rab1 Rzomp et al. 2003 

Rab6 Lipinski et al. 2009 

Rab8 Faris et al. 2019 

Rab10 Faris et al. 2019 

Rab11 
Rzomp et al. 2003; Lipinski et al. 2009; Leiva 2013; 
Ouellette et al. 2010 

Rab14 Capmany et al. 2011 

Rab32 Faris et al. 2019 

Rab34 Faris et al. 2019 

Rab35 Faris et al. 2019 

Rab39 Garbarte-Tuleda et al. 2015 

Rac1 Aeberhard et al. 2015 

Sec22b Aeberhard et al. 2015 

SNX1 Aeberhard et al. 2015 

SNX2 Aeberhard et al. 2015 

Src/Fyn family Mital et al. 2010 

STIM1 
Agaisse et al. 2015; Nguyen, Lutter et al 2018; 
Aeberhard et al. 

STIM2 Aeberhard et al. 2015 

STX4 Aeberhard et al. 2015 

STX6 Moore et al 2011; Kabeisman 2013 

STX10 Lucas et al. 2015 

SYNGR2 Aeberhard et al. 2015 

TFR Aeberhard et al. 2015 
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UBXN6 Aeberhard et al. 2015 

VAMP3 Delevoye et al. 2008 

VAMP4 Kabeisman et al. 2013; Delevoye et al. 2008 

VAMP7 Delevoye et al. 2008 

VAMP8 Delevoye et al. 2008 

VCP Aeberhard et al. 2015 

VPS35 Aeberhard et al. 2015 
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Table 1-2. Eukaryotic proteins recruited to the inclusion by C. trachomatis Inc  
proteins  

Inca Inc 
effector 
class 

Eukaryotic 
binding 
partner(s) 

Experimental 
method  

Role of Inc-Eukaryotic 
process/pathway 

CT005  mid VAPA, 
VAPB 

ectopic 
expression 

tether inclusion via MCS 
to ER  

CT101  mid ITPR3 Y2H regulate Ca2+ levels and 
inclusion extrusion 

IncD 
(CT115) 

early CERT RNAi transport ceramide to 
inclusion 

IncE 
(CT116) 

early SNX5, 
SNX6 

ectopic 
expression 

interfere with retromer 
trafficking 

IncG 
(CT118) 

early 14-3-3 β Y2H prevent apoptosis 

CT223  mid CEP170 AP-MS  
cytoskeleton 
rearrangement 

CT228 early MYPT1 Y2H inclusion extrusion from 
host 

CT229 early Rab4 Y2H intercept receptor 
recycling of EE; inhibit 
STING response 

CT288 early  CCDC146 Y2H cytoskeleton 
rearrangement 

CT813  mid Arf1, Arf4 EMS/ectopic 
expression 

PTM microtubules; 
reposition Golgi around 
inclusion 

CT850 early  DYNLT1 Y2H/ectopic 
expression 

traffic inclusion to the 
MTOC 

a serovar D naming convention used 
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C. trachomatis manipulation of the host cytoskeleton 

The eukaryotic cytoskeleton is manipulated throughout the developmental cycle, 

which has implications on vesicular trafficking and nutrient acquisition for chlamydiae (128, 

129). The chlamydial inclusion is surrounded by a “cage” consisting of actin filaments and 

microtubules (35, 71, 130-132). The rearrangement of the cytoskeleton is initiated by a 

multitude of T3SS effectors, including Tarp and TepP which re-organize actin to induce 

uptake of the EB into the host cell (27, 28, 61, 77, 78). Inc proteins interact with dynein 

light chain 1, to control inclusion trafficking along the cytoskeleton (123), bind centrosomal 

proteins to direct inclusion localization (133, 134), and bind Arf1 and Arf4 GTPases to 

control microtubule stability to facilitate nutrient acquisition (128).  

CT850 and dynein light chain 1 (DYNLT1) 

The chlamydial inclusion is trafficked to the microtubule organizing center (MTOC) 

early after infection of a host cell (35) in a dynein-dependent manner (131). The 

overexpression of p50 dynamitin (dynein motor complex) interfered with vesicular 

trafficking toward the MTOC in uninfected cells but did not impact the trafficking of the C. 

trachomatis L2 inclusion, suggesting that a chlamydial protein might replace p50 dynamitin 

(35). Y2H assays using the C-terminus of CT850 determined that migration is mediated 

by the interaction of CT850 with dynein light chain 1 (DYNLT1) (123). CT850 is found in 

microdomains in the inclusion and co-localizes with the centrosome during infection (114). 

Overexpression studies determined that CT850 hijacks the dynein motor complex by 

replacing the function of p50 dynamitin, a protein that links cargo to the dynein motor 

complex. Further analyses of CT850 identified a KKARR motif within the C-terminus, 

which is known to bind DYNLT1 and direct cargo to the MTOC. This interaction was also 

shown by co-immunoprecipitation (Co-IP) from the lysates of uninfected HeLa cells 

transfected with mCherry-CT850 and GFP-DYNLT1 (123). Although this interaction was 
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required for the inclusion reach the MTOC, knockdown of DYNLT1 did not affect the 

production of infectious progeny (123).  

CT288 and Coiled-Coil Domain Containing protein 146 (CCDC146) 

Another Inc protein, CT288 has been shown to bind a centrosomal protein, 

CCDC146, located near the MTOC. A Y2H assay using a HeLa cDNA library and 

truncated CT288 that lacked both the N-terminus and hydrophobic domains yielded a 

positive interaction with CCDC146 (133). The function of CCDC146 isn’t known, but one 

study reported that CCDC146 co-sedimented with the microtubule fraction and observed 

CCDC146 co-localization with γ-tubulin (i.e., centrosome marker) (135) suggesting it may 

play a role in microtubule organization. CT288 and CCDC146 co-immunoprecipitated 

using lysates from cells that had been transfected with the C-terminus of CCDC146-EGFP 

and infected with C. trachomatis L2 transformed with a plasmid expressing CT288-2HA. 

In uninfected HeLa cells, transfected EGFP-CCDC146 co-localized with the centrosome. 

When HeLa cells were infected with wild-type C. trachomatis L2 or the C. trachomatis L2 

CT288-HA strain, transfected EGFP-CCDC146 was re-directed as a ring around the 

inclusion. CCDC146 was still observed around the inclusion after infecting HeLa cells with 

C. trachomatis L2 CT288::aadA (TargeTron mutant of CT288)(133). As the function of 

CCDC146 is not well defined in eukaryotic cells, this interaction with an Inc during C. 

trachomatis L2 infection remains unclear.  

CT813 (InaC) and ADP-ribosylation factors (Arf) Arf1 and Arf4 

In addition to hijacking dynein machinery to traffic along microtubules to the MTOC, 

chlamydial Incs also mediate post-translational modifications of microtubules to increase 

microtubule stability and to re-position the Golgi around the inclusion (128, 129). A 

chemical mutagenesis screen identified an interaction between CT813 (also referred to as 

InaC) and ADP-ribosylation factor 1 (Arf1) (130). These data were expanded to include 
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both Arf1 and Arf4, which co-immunoprecipitated with CT813-FLAG in co-transfected cells 

and eukaryotic cells infected with C. trachomatis L2 transformed with a plasmid expressing 

CT813-FLAG (128). Transfected Arf1-HA and Arf4-HA co-localize with wild-type C. 

trachomatis L2 inclusions in HeLa cells, and recruitment is inhibited in C. trachomatis L2 

CT813::bla mutants that lack CT813 (128). The interaction between CT813 and GTP-Arf1 

and Arf4 increases de-tyrosinated and acetylated tubulin to stabilize microtubules around 

the inclusion, which re-positions the Golgi around the inclusion (128, 129). Fragmentation 

of the Golgi during C. trachomatis infection is important for nutrient acquisition (136).  

CT223 (IPAM) and Centrosomal Protein 170 (CEP170) 

Another chlamydial Inc, CT223 (also referred to as Inclusion Protein Acting on 

MTs, IPAM), plays a role in the re-arrangement of the cytoskeleton. Similar to CT850 and 

CT288, CT223 is also observed in microdomains around the inclusion membrane and is 

often observed near the centrosome (134). CT223 was examined for its role in chlamydial 

development based on a BLAST search that indicated sequence similarity with 

centrosome-associated proteins (134). Using recombinant CT223 incubated with 

eukaryotic cell lysates followed by affinity purification-mass spectrometry, centrosomal 

protein 170 (CEP170) was identified as a putative binding partner. CEP170 had been 

previously shown to bind microtubules. siRNA experiments were performed to investigate 

the role of CEP170 during C. trachomatis infection, and, interestingly, in uninfected cells, 

there was no detectable effect on microtubules, but in C. trachomatis L2 infected cells a 

host cell rounding phenotype was observed (134). These data suggest that the interaction 

between CT223 and CEP170 may re-organize the microtubule cage around the inclusion 

to maintain host cell shape during infection (134).   

While the role of some Inc-eukaryotic protein-protein interactions with the host 

cytoskeleton are more defined than others, the positioning of the inclusion near the MTOC 
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is hypothesized to benefit Chlamydia because of the localization proximal to the 

endoplasmic reticulum and Golgi apparatus which may aid in the acquisition of nutrients. 

In addition, other Inc proteins have been shown to interact with proteins that reside in the 

ER or Golgi that aid in lipid acquisition (53, 54, 137). Furthermore, stabilization of the 

cytoskeleton is important for manipulating vesicular trafficking events (138).  

C. trachomatis manipulation of eukaryotic signaling pathways 

To promote intracellular survival, bacteria manipulate major host cell signaling 

pathways (139). C. trachomatis does this through interactions with protein kinases (114), 

phosphatases (38, 117), calcium channel regulators (140), and via sequestration of 

proteins to prevent apoptosis. More specifically, signaling events are associated with non-

receptor tyrosine kinases (i.e., Src kinases, Src and Fyn) that have been observed at the 

inclusion membrane (114). Of note, non-phosphorylated Src-kinases are uniformly 

distributed around the inclusion, whereby phosphorylated Src and Fyn (Tyr419) are 

associated with at least four Inc proteins (IncB, CT101, CT222, and CT850) found in 

microdomains (114). It is not known if Src kinases are recruited by Inc proteins, but their 

localization at the inclusion likely plays an important role during chlamydial infection since 

eukaryotic proteins that are known to be recruited by Incs are phosphorylated in regions 

that co-localize with these Src-kinases (38).  

CT228 and Myosin Phosphatase Subunit Target 1 (MYPT1) 

Myosin phosphatase subunit target 1 (MYPT1) is recruited to the inclusion by 

CT228, an Inc that localizes uniformly around the inclusion. The inactive form of MYPT1 

(phosphorylated at threonine 853 and 696;) is found in microdomains associated with Src-

kinases. The cytosolic C-terminus of CT228 was found to interact with (MYPT1) by Y2H 

assay (38). This was validated by Co-IP of endogenous MYPT1 with anti-CT228 



19 

 

   

 

antibodies from C. trachomatis L2 infected HeLa cell lysates (38). MYPT1, among other 

myosin kinase pathway proteins, myosin IIA, myosin IIB, myosin light-chain kinase 

(MLCK) and myosin regulatory light polypeptide 9 (MLC2), were also found co-localize 

with the inclusion throughout the developmental cycle. The current model proposed for 

CT228 and MYPT1 interaction is to maintain a balance between extrusion from the host 

cells and host cell lysis. In this model phospho-MYPT1 prevents MYPT1 phosphatase 

activity on its substrates, myosin II and MLCK, which allow for their activation to signal 

inclusion extrusion from the host cell late in the developmental cycle (~ 42 hpi)(38). siRNA 

knockdown of myosin kinase pathway genes moderately reduced the number of 

extrusions detected (38). Importantly, knockdown of the myosin kinase pathway genes did 

not impact the number of infectious progeny produced (38), suggesting that the role of 

CT228 and MYPT1 interaction does not impact chlamydial development or nutrient 

acquisition.  

After the initial studies of CT228 and MYPT1, a targeted intron insertional 

inactivation system (TargeTron) was developed in C. trachomatis L2 (109). Using this 

system, the group II intron was re-targeted to the C-terminus of CT228 (117). The L2 

CT228::aadA (Spectinomycinr) mutant had no defects in the production of infectious 

progeny but there was a significant increase in the number of extrusions (117). By 

immunofluorescence assay, MYPT1 was no longer recruited to the inclusions of C. 

trachomatis L2 CT228::aadA mutants. However, other myosin kinase pathway machinery, 

including myosin IIa/b, MLCK, and MCL2 remained associated with the inclusion (117), 

which may suggest that other Incs recruit the other myosin kinase pathway proteins. 

CT228 appears to function to suppress extrusion events early after infection to stabilize 

the intracellular niche until late in the developmental cycle.  
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CT101 (MrcA) and type 3 inositol-1,4,5-trisphosphate receptor (ITPR3) 

CT101 (also referred to as myosin regulatory complex subunit A, MrcA), (114), 

interacts with the type 3 inositol-1,4,5-trisphosphate receptor (ITPR3) calcium channel 

releases calcium when cellular inositol triphosphate levels decrease (140). A Y2H assay 

to investigate the role of CT101 found that the C-terminus of CT101 (amino acids 53-101) 

interacted with the C-terminus of ITPR3 (140). By immunofluorescence assay, ITPR3 co-

localized with active Src-kinases in inclusion microdomains, consistent with the 

localization described for CT101. CT101-FLAG also immunoprecipitated with ITPR3 in 

lysates from cells infected with C. trachomatis L2 transformed with a plasmid that 

expresses CT101-FLAG (140). TargeTron disruption of CT101 (C. trachomatis L2 

CT101::bla) resulted in the loss of ITPR3 recruitment to the inclusion, which could be 

rescued by complementation with pBOMB4-CT101-FLAG (140).  

Additional studies revealed fewer extrusions upon infection with C. trachomatis L2 

CT101::bla mutants (140), indicating a potential link with MYPT1 directed inclusion 

extrusion events (38, 117), so the effect of CT101::bla and siRNA knockdown of ITPR3 

on recruitment of myosin kinase pathway proteins (e.g., MLCK, MCL2, Src, and MYPT1) 

was evaluated (140). C. trachomatis L2 CT101::bla infected cells and siRNA knockdown 

of ITPR3 in wild-type C. trachomatis L2 infected cells resulted in a loss of phosphorylated 

MYPT1 (pT853; inactive) and MLC2 (pS19; active) at the inclusion but did not impact Src-

kinase activity or MLCK (140). Because ITPR3 is a calcium channel and STIM1 is a 

calcium sensor that has been previously shown to localize with the inclusion (141), the 

role of calcium levels on inclusion extrusion was also investigated. The addition of the 

calcium chelator, 1,2-bis (2-aminophenoxy) ethane-N,N,N’,N’ tetraacetate-acetoxymethyl 

ester (BAPTA-AM), to C. trachomatis L2 infected cells blocked extrusion events but did 

not impact infectious progeny production. These studies implicate calcium levels and 
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MYPT1 phosphorylation states in the final stages of the C. trachomatis L2 developmental 

cycle, whereby the presence of calcium tips the balance toward extrusion and the absence 

of calcium toward inclusion lysis from the host cell (140).  

IncG and 14-3-3 β 

Incs also function to sequester eukaryotic proteins to prevent the initiation of 

apoptosis in C. trachomatis infected host cells (142). Y2H experiments using the 

recombinant C-terminus of IncG against a HeLa cDNA library identified an interaction with 

14-3-3 β (142). IncG is phosphorylated (at the RxSxSpP motif within IncG) by the 

eukaryotic cell during infection, and phosphorylation of IncG was required for the 

interaction with 14-3-3 β (142). The interaction between IncG and 14-3-3 β was later 

shown to sequester BAD, a binding partner of 14-3-3 β, to block apoptosis by preventing 

translocation of BAD to the mitochondria (143).  

C. trachomatis manipulation of eukaryotic vesicular and non-vesicular trafficking 

pathways 

Chlamydiae manipulate both vesicular and non-vesicular trafficking events to 

obtain essential lipids and other nutrients from the host cell by the recruitment of proteins 

responsible for vesicle fusion events (e.g., SNARE proteins) and direct vesicle trafficking 

(e.g., Rab proteins). Chlamydiae manipulate vesicular trafficking via molecular mimicry of 

eukaryotic soluble N-ethylmaleimide-sensitive factor attachment protein receptor 

(SNARE) domains that mediate vesicle fusion events to target membranes (144, 145). 

Several eukaryotic SNARE proteins are targeted to the inclusion and some chlamydial 

Incs, such as IncA, contain eukaryotic SNARE-like domains, which might be one avenue 

by which chlamydiae direct vesicle fusion events with the inclusion membrane (113, 144-

148). One eukaryotic protein syntaxin 6 (STX6), a trans-Golgi network SNARE protein, is 
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recruited via its YGRL signal sequence to the inclusion (149). VAMP4 was found to be 

required for STX6 recruitment to the inclusion and knockdown of VAMP4, but not STX6, 

results in decreased sphingomyelin acquisition (148). Another SNARE protein, syntaxin 

10 (STX10), localizes to the early inclusion membrane, and siRNA knockdown of STX10 

decreased infectious progeny production and increased sphingomyelin acquisition (146). 

Importantly, chloramphenicol treatment did not abolish STX10 localization to the inclusion 

membrane, which may indicate that an immediately-early chlamydial effector is 

responsible for recruitment (146). To determine if other eukaryotic SNARE proteins 

localized to the inclusion, Delevoye et al. screened VAMP proteins by 

immunofluorescence and determined that VAMP3, VAMP4, VAMP7, and VAMP8 

localized to the inclusion of C. trachomatis serovar D infected eukaryotic cells (145). 

Ectopically expressed GFP-tagged VAMP proteins were able to interact with 6xHis-tagged 

IncA, a chlamydial Inc containing a eukaryotic SNARE-like domain, by co-IP (145). The 

recruitment of VAMP proteins is hypothesized to be involved in the inclusion fusion with 

lipid-containing vesicles. siRNA knockdown of VAMP3, 4, 7, or 8 did not impact the 

development of C. trachomatis serovar D, but VAMP proteins have been shown to 

compensate for one another. This can make it difficult to define the contribution of 

individual VAMP proteins during chlamydial development.  

Vesicular trafficking is also manipulated by C. trachomatis via the recruitment of 

numerous Rab proteins, which are GTPases (i.e., molecular switches) that are involved in 

vesicle formation and vesicle trafficking in the host cell, (150-154). For example, the 

recruitment of Rab6 and Rab11 to the inclusion membrane results in fragmentation of the 

Golgi, which is important for sphingomyelin acquisition (136). Also, Rab14, normally found 

in the Golgi (154), and Rab39a, on multi-vesicular bodies that are tightly associated with 

the inclusion, are also involved in sphingomyelin acquisition (155). Although many Rab 
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proteins are associated with the inclusion, the recruitment of a Rab protein by an Inc 

protein has only been defined for CT229 and Rab4 (151, 156, 157). 

CT229 and Rab4 

One of the first interactions between an Inc and a Rab protein was identified based 

on previous immunofluorescence assays, which showed that Rab4A localized to the 

inclusion membrane in C. trachomatis L2 infected cells. A Y2H assay was used to screen 

for Rab4A interactions with the C-terminal regions of 27 different Incs and identified a 

positive interaction between Rab4A and the C-terminus of CT229 (151). Only GTP-bound 

Rab4A was recruited to the inclusion (151). Additional studies confirmed the interaction of 

GFP-CT229 with GST-Rab4A from lysates of co-transfected HeLa cells. More recent 

studies expand on speculation by Rzomp et al., suggesting that the interaction between 

CT229 and Rab4, among other Rab proteins, supports the utilization of the clathrin-coated 

vesicle (CCV) pathway during infection (157). The CCV pathway is involved in trafficking 

transferrin, or EGFR, etc., from the plasma membrane to endosomes (157).  

CT229 and Stimulator of Interferon Genes Protein (STING) 

In a separate study, CT229 (also referred to as Chlamydia promoter of Survival 

(CpoS)) was linked to preventing host cell death via interactions with the STING pathway 

(127). Increased host cell death was detected in cells infected with a chemically 

mutagenized C. trachomatis L2 strain harboring a mutation in CT229 (130). Both HeLa 

(human cervical epithelial) and THP1 (monocyte cell line) cells infected with the C. 

trachomatis L2 CT229 mutant demonstrated increased propidium iodide staining (i.e.,  

indicative of apoptosis), which could be rescued by trans-complementation (127). Affinity 

purification-mass spectrometry from cells infected with C. trachomatis L2 transformed with 

a plasmid that expresses CT229-FLAG identified Rab 1A, Rab 1B, and Rab35 as potential 

binding partners of CT229 (127). C. trachomatis L2 CT229::bla mutants did not recruit 
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Rab1A-EGFP in transfected cells. Rab1A-EGFP recruitment was rescued after the trans-

complementation of C. trachomatis L2 CT229::bla mutants with pBOMB CT229-FLAG 

(127).  

To determine if CT229 was involved in preventing the host immune response, 

RNA-sequencing was performed using C. trachomatis L2 wild-type and L2 CT229::bla 

infected cells. Over 50 percent of the transcripts with greater than a 2-fold increase were 

associated with the Type I and III interferon pathway (127). siRNA knockdown of stimulator 

of interferon genes protein (STING), a cytosolic DNA sensor of bacterial cyclic di-GMP or 

cyclic di-AMP, but not cyclic GMP-AMP synthase (cGAS; double-stranded DNA sensor) 

or IRF3 (double-stranded RNA sensor) moderately rescued cell death in eukaryotic cells 

infected with the C. trachomatis L2 CT229 mutant. This suggests that CT229 prevents the 

activation of the Type I interferon pathway. These data support a role for CT229 blocking 

the ability of eukaryotic cells to respond to infection, thereby allowing C. trachomatis L2 

growth. The exact mechanism by which C. trachomatis CT229 prevents activation of 

STING has not been defined. A Shigella T3SS effector, IpaJ, prevents activation of 

STING, an ER-associated transmembrane protein, by blocking ER exit (158). The 

interaction between CT229 and various Rab proteins may modify the trafficking or stability 

of STING (158, 159).  

IncD and Ceramide Transfer Protein (CERT) 

Perhaps the best-understood interaction between a chlamydial Inc and its 

eukaryotic binding partner is the interaction between IncD and Ceramide Transfer Protein 

(CERT) (54, 126). CERT was identified in an RNAi screen for host factors that were 

important for chlamydial development (54). CERT is involved in the transport of ceramide 

and for maintaining contact sites between the endoplasmic reticulum and the Golgi (54). 

CERT localization at the inclusion membrane was confirmed by immunofluorescence 
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assays using ectopically expressed epitope-tagged CERT and with endogenous anti-

CERT antibodies. IncD was identified by affinity purification-mass spectrometry 

experiments using HEK293T cells transfected with FLAG-tagged CERT and infected with 

C. trachomatis L2. In affinity-purified eluates, a 15 kDa band corresponding to IncD, an 

Inc expressed early after infection of a host cell (44) was identified (54). This interaction 

was validated by co-transfecting HEK293T cells with epitope-tagged CERT and IncD, 

whereby IncD bound the Pleckstrin homology domain (PH domain) of CERT. This 

interaction maintains inclusion proximity via contact sites with the ER and with CERT 

binding partners, vesicle-associated membrane protein-associated protein A and B (VAPA 

and VAPB) (54). The depletion of either CERT, VAPA, or VAPB moderately decreased 

infectious progeny (about 4-fold). The interaction of IncD with CERT and maintaining 

contact sites with the ER plays a role, at least in part, in the recruitment of ceramide to the 

inclusion (54), which is a precursor for sphingomyelin, a lipid required for chlamydial 

development (30).  

CT005 (IncV) and Vesicle-associated membrane protein-associated protein (VAP) A  

Maintaining multiple contact sites with the ER is likely important for C. trachomatis 

development as another Inc, CT005, binds VAPA and VAPB. Mirrashidi et al. detected an 

interaction between CT005 (also referred to as IncV) and VAPA/B by transfecting 

uninfected eukaryotic cells with Strep-tagged Incs followed by AP-MS identification of 

interacting partners (122). Co-IP validated the interaction between CT005 and VAPA and 

VAPB using lysates from uninfected HEK293T cells that had been co-transfected with 

CT005-FLAG and GFP-VAPA or GFP-VAPB (137). CT005 contains two FFAT motifs (i.e., 

two phenylalanine’s in an acid tract), which creates multiple contact sites with the ER via 

the interaction with ER-resident proteins, VAPA and VAPB. VAPA and VAPB are also 

known to interact with two lipid transfer proteins that had been previously shown to localize 
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with the inclusion, CERT (54) and oxysterol binding protein (OSBP) (160). Mutating the 

FFAT motifs of CT005 moderately decreased the association of the inclusion with VAPA 

and VAPB, but neither siRNA depletion of VAPA or targeted disruption of CT005 

negatively impacted C. trachomatis growth (45, 137). This may support the concept of 

redundant roles for Incs in the inclusion membrane.  

IncE and Sorting Nexins (SNX) 5 and 6 

The ectopic expression and purification of strep-tagged C-terminus of IncE 

revealed novel interactions between IncE and Sorting Nexin (SNX) 5 and SNX6 (122). 

SNX proteins contain a Phox-homology (PX) domain, which is involved in the endosomal 

trafficking of BAR proteins. Histidine tagged-SNX5 and SNX6 co-immunoprecipitated with 

Strep-tagged IncE from the lysates of transfected HEK293Tcells. Using truncated IncE, 

SNX5 and SNX6 were shown to affinity purify with IncE when the C-terminus containing 

the PX domain was present (122). SNX5 and SNX6 also co-localize with IncE positive 

fibers (122, 161). The interaction of IncE with SNX5 and SNX6 is believed to be important 

for C. trachomatis to interfere with retromer trafficking because transient transfection of 

HEK293T cells with the C-terminus of IncE (AA 101-132) resulted in co-localization of a 

retromer cargo protein, cation-independent mannose-6-phosphate receptor (CI-MPR), 

with IncE. In contrast, in non-transfected cells, CI-MPR (162) remained associated with 

the Golgi (122). siRNA knockdown of SNX5 and SNX6 decreased tubule production, but 

increased the number of infectious progeny produced by 10-fold (122), which makes the 

function of IncE binding SNX5/6 unclear. Based on the known Inc-eukaryotic protein-

protein interactions, Incs are clearly involved in the manipulation of numerous host cellular 

pathways, but these data are also confounded as the knockdown of a single eukaryotic 

protein often does not substantially impact chlamydial development.   
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Inc-Inc interactions and the role of Incs in inclusion stability 

Although Incs are involved in host-pathogen interactions that are important for the 

growth and development of Chlamydia, the organization of Incs and the Inc-Inc 

interactions that occur in the inclusion membrane are not well understood. Incs are known 

to exhibit different localization patterns within the inclusion (i.e., microdomain or uniform, 

ring-like formation), which likely reflects their different roles in the inclusion. There are only 

a handful of studies of Inc-Inc interactions and the contribution of Incs to inclusion stability 

(45, 57, 105). The Bacterial Adenylate Cyclase Two-Hybrid (BACTH) assay is one tool 

that has been used to assess Inc protein-protein interactions in E. coli (105, 115, 163-

165). The premise of the BACTH system and a detailed protocol are in Chapter 2. By 

BACTH assay, some Incs, such as IncF, were found to interact with multiple Inc proteins. 

In contrast, other Incs had very few or no heterotypic interactions, such as IncA and 

CT813, respectively (105). These data led to the hypothesis that Incs broadly function to 

organize the inclusion membrane and to bind eukaryotic proteins to acquire nutrients (59). 

More specifically, IncF interacted with several Incs and has a short C-terminus, which may 

indicate that IncF is involved in Inc-Inc interactions, supporting the hypothesis that IncF 

may play an organizational role in the inclusion membrane (105). IncA, which did not 

interact with many other Incs (105), contains a eukaryotic SNARE-like domain that is 

involved in inclusion fusion (92, 112, 144, 166) and by which IncA may interact with 

eukaryotic proteins.  

To test this hypothesis, Rucks et al. compared the impact of the overexpression of 

IncF and IncA on chlamydial development using C. trachomatis L2 transformed with either 

IncF, or the transmembrane(TM) domain of IncA (i.e., IncATM) fused to a proximity labeling 

enzyme (APEX2) (57). The exogenous overexpression of IncF-APEX2 from C. 

trachomatis L2 resulted in smaller inclusions and IncF-APEX2 puncta outside of the 
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inclusion membrane, which may suggest that the organization of the inclusion is disrupted 

by IncF overexpression (57). The deleterious effects on inclusion diameter were abrogated 

by reducing IncF expression levels (57). Moreover, the plasmid encoding IncF was not 

retained during secondary infection (progeny assays), indicating that high levels of 

overexpression of IncF was not well tolerated by chlamydiae (57). Finally, using 

sphingomyelin acquisition as a metric for normal inclusion development, the 

overexpression of IncF, but not IncATM, from C. trachomatis L2 resulted in decreased 

sphingomyelin acquisition (57). These data support a role for IncF in the organization of 

the inclusion membrane.  

Another study evaluated the loss of Incs on chlamydial development (45) by 

creating inc mutants using a targeted group II intron insertion (i.e., TargeTron) system 

(109). C. trachomatis L2 TargeTron mutants were created with disrupted CT005, CT179, 

CT224, CT229, IncC (e.g., CT233), CT288, CT383, CT449, CT813, CT850, or IncA genes 

and evaluated for growth defects (45). Five of the 11 mutants, C. trachomatis L2 

CT229::bla, IncC::bla, CT288::bla, CT383::bla, and CT449::bla resulted in premature 

inclusion lysis and reduced infectivity in mice (45). Further analysis of these mutant strains 

indicated initiation of intrinsic apoptosis as observed by increased bromodeoxyuridine 

(BrdU), propidium iodide, and Annexin V staining. By western blot, lysates from eukaryotic 

cells infected with either C. trachomatis L2 CT229, CT383, or IncC mutants resulted in 

cytochrome C release and cleavage of caspase-7 and 9, all indicators of intrinsic 

apoptosis (45). The ruptured inclusions of C. trachomatis L2 CT229, CT383, and IncC 

knockout strains were positive for LAMP1 and STING, indicating that these inclusions had 

fused with the lysosome. Interestingly, the premature lysis of inclusions from the C. 

trachomatis L2 CT229 mutant, but not CT383 or IncC, infected cells could be blocked by 

inhibiting eukaryotic protein synthesis with cycloheximide or by disrupting the ER-Golgi 
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trafficking (e.g., with Brefeldin A). This suggests that the role of CT229 in inclusion stability 

is likely more related to the recruitment of certain eukaryotic proteins that are necessary 

for chlamydial development. On the other hand, CT383 and IncC are likely directly 

contributing to inclusion stability (45).  

Summary of Inc protein-protein interactions 

The ability to genetically modify C. trachomatis L2 has contributed to the increase 

in Inc protein-protein interactions described in recent years (Table 2; Fig. 1-1). However, 

there are still relatively few known binding partners for Inc proteins (i.e., 11 out of 50+ 

predicted Incs). More importantly, the function of many of the known Inc-eukaryotic protein 

interactions remains unclear as the targeted disruption of some Incs (i.e., CT005 (137), 

CT101 (140), CT288 (133), or their eukaryotic binding partners, did not impact chlamydial 

development. The few Incs for which a eukaryotic protein binding partner has been 

identified, bind eukaryotic proteins via molecular mimicry (i.e., IncG (142), IncE (122, 161), 

CT005 (137), CT228 (38).  

While the cytosolic C-terminal regions of Incs used in yeast two-hybrid assays, 

affinity purification, or ectopic expression of Incs in uninfected host cells did successfully 

identify Inc protein binding partners for a few Incs (54, 122), experimental limitations likely 

impede the ability to identify binding partners for all Incs using only these methods. The 

most prominent limitations include the inability of the truncated protein to fold 

appropriately, which may be required to facilitate protein-protein interactions. Also, under 

transient transfection conditions, Incs are not anchored in a membrane but instead 

aggregate together, resulting in an incorrect subcellular localization within the host cell, 

which may facilitate false protein interactions. It is also possible that experiments using a 

single Inc prevents an understanding of the complex role of Incs in the inclusion 

membrane. 
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Figure 1-1. Summary of defined Inc-eukaryotic protein-protein interactions.  

Chlamydial Inc proteins manipulate numerous host cell pathways via interactions with 
eukaryotic proteins. These interactions are important for the chlamydial inclusion to be 
trafficked to the microtubule organizing center, to obtain lipids from the ER and Golgi, and 
to prevent apoptosis and type I interferon pathway activation.   



31 

 

   

 

To better address these issues, a comprehensive system to identify interacting 

partners for Incs in vivo, in the context of C. trachomatis infection is needed. An in vivo 

system will help to understand the cooperative role of Incs in a manner not limited by 

transfection with a single Inc, or partial (C-terminus) Inc, or by the limitations of purifying 

hydrophobic proteins and maintaining protein-protein interactions. Recently described 

proximity labeling tools yield a significant advantage, particularly for Incs, to detect protein-

protein interactions in vivo. 

Proximity labeling systems as a molecular tool to identify protein-protein 

interactions at the C. trachomatis L2 inclusion membrane in vivo 

Proximity labeling systems are based on the principles of a promiscuous enzyme 

that covalently modifies proximal proteins, which is genetically fused to a gene that 

encodes a protein of interest (167-169). In contrast to Y2H and ectopic expression 

experimental systems, proximity labeling systems allow for the identification of proximal 

interactions between two or more Incs as well as eukaryotic proteins because they are 

labeled in vivo, in the context of infection. In addition, the expression of Inc-APEX2 fusion 

proteins from C. trachomatis L2 promotes the appropriate protein folding and localization 

of the fusion proteins in the inclusion membrane (57, 115, 170). This is expected to 

facilitate accurate protein-protein interactions that are occurring proximal to the inclusion 

membrane. Furthermore, proximity labeling systems circumvent the issues related to the 

solubility of Incs because of the covalent modification (e.g., with a biotin molecule) in vivo, 

so there is no need to maintain protein-protein interactions. In this fashion, the biotin 

modified proteins are affinity-purified, then identified by mass spectrometry.  

We hypothesize that some Incs organize the inclusion through Inc-Inc interactions, 

whereas other Incs promote chlamydial-host interactions by binding eukaryotic proteins. 

To test our hypothesis, we adapted the APEX2 ascorbate peroxidase proximity labeling 
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system for use in C. trachomatis serovar L2 to label proximal interactions in vivo (Detailed 

protocol in Chapter 2)(57) (115, 169). We used IncF, which interacted with numerous other 

Incs by BACTH, thus may support an organizational role, compared to IncA, which 

demonstrated fewer interactions (105) and contains a eukaryotic SNARE-like domain (87, 

108, 110, 111, 144)(Chapter 3). Because proximity labeling systems label proximal 

proteins, to distinguish significant proteins from false positives, it is crucial to include the 

appropriate controls and data analysis tools.  

It is also important to understand how our in vivo proximity labeling AP-MS 

datasets studies fit with previous studies of protein-protein interactions at the inclusion 

membrane (Chapter 4). Before the development of APEX2 for use in C. trachomatis L2, 

two large-scale AP-MS studies that aimed to understand the inclusion “interactome” via 

ectopic expression and inclusion purification (122, 171). In addition, a second APEX2 

proximity labeling study was recently published (170), which allowed a direct comparison 

between two APEX2 studies that evaluated Inc protein-protein interactions at the inclusion 

membrane. These studies provide insight into the in vivo interactions at the inclusion 

membrane, highlight differences in experimental design and analysis on the outcome of 

the statistically significant proteins identified. These studies also highlight the impact Inc 

overexpression models on chlamydial development and host cell interactions.  
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Chapter 2 – Methods: Proximity Labeling of the Chlamydia 

trachomatis Inclusion Membrane 

 

*Chapter 2 is reused with the permission of the following published book chapter of which 

I am a first author:  

Macy G. Olson1, Lisa M. Jorgenson1, Ray E. Widner, and Elizabeth A. Rucks. 2019. 

Proximity Labeling of the Chlamydia trachomatis Inclusion Membrane. 2042 p 245-278. 

Methods in Molecular Biology. 

1Equally contributing first authors 
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Abstract 

Within the field of intracellular bacteria that reside within a membrane-bound 

vacuole, there are many questions related to how prokaryotic or eukaryotic 

transmembrane or membrane-associated proteins are organized and protein function 

within the membranes of these pathogen-containing vacuoles. Yet, this host-pathogen 

interaction interface has proven difficult to experimentally resolve. For example, one 

method to begin to understand protein function is to determine the protein-binding 

partners; however, examining protein-protein interactions of hydrophobic transmembrane 

proteins is not widely successful using standard immunoprecipitation or co-

immunoprecipitation techniques. In these scenarios, the lysis conditions that maintain 

protein-protein interactions are not compatible with solubilizing hydrophobic membrane 

proteins. In this chapter, we outline two proximity labeling systems to circumvent these 

issues to study (1) eukaryotic proteins that localize to the membrane-bound inclusion 

formed by Chlamydia trachomatis using BioID, and (2) chlamydial proteins that are 

inserted into the inclusion membrane using APEX2. BioID is a promiscuous biotin ligase 

to tag proximal proteins with biotin. APEX2 is an ascorbate peroxidase that creates biotin-

phenoxyl radicals to label proximal proteins with biotin, or 3,3’-diaminobenzidine 

intermediates for examination of APEX2 labeling using electron microscopy. We present 

how these methods were originally conceptualized and developed, so that the user can 

understand the strengths and limitations of each proximity labeling system. We discuss 

important considerations regarding experimental design, which include careful 

consideration of background conditions and statistical analysis of mass spectrometry 

results. When applied in the appropriate context with adequate controls, these methods 

can be powerful tools towards understanding membrane interfaces between intracellular 

pathogens and their hosts. 
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1. Introduction 

1.1 Overview 

Members of Chlamydiae are obligate intracellular pathogens and the entirety of 

their characteristic and unique biphasic developmental cycle is completed within a 

vacuole, called the chlamydial inclusion. Chlamydia manipulate the host cell in order to 

create and maintain the inclusion as a stable specialized niche to promote chlamydial 

growth and development. Although Chlamydia has undergone significant genomic 

reduction, they have maintained a significant portion of their coding capacity towards a 

type III secretion system and associated effector proteins (21). The chlamydial type III 

secretion system is essential (172), which highlights the importance of this system in 

modulating chlamydial-host interactions. A significant portion of chlamydial type III 

effectors have large hydrophobic transmembrane domains and belong to the Inc family of 

proteins; these effectors reside within the inclusion membrane. Incs are characterized by 

having two or more hydrophobic transmembrane domains, with the amino-terminal and 

carboxy-terminal ends of the proteins exposed to the eukaryotic cytosol (91, 92, 108); 

although, it is conceivable that the N- and C- termini of some Incs may be exposed to the 

lumen of the chlamydial inclusion. While these proteins are important to the intracellular 

development of Chlamydia, their high hydrophobicity make them difficult proteins to purify 

and study. This chapter describes methods that allow for the study of protein-protein 

interactions of chlamydial membrane and host membrane proteins. Ostensibly, these 

methods will be applicable to any investigator trying to examine the molecular interactions 

of pathogen and host proteins, particularly within the context of membrane-associated 

interactions. 
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1.2 Introduction to Inc studies 

Despite the fundamental importance of the inclusion membrane to chlamydial 

fitness, specific molecular events, including Inc protein function, that are responsible for 

inclusion membrane composition and integrity are unknown. The lack of mechanistic data 

concerning Incs and the inclusion membrane is due to two main reasons. Firstly, the 

inclusion membrane is difficult to biochemically purify (171, 173). A recent study reports 

the identification of a chlamydial inclusion interactome, this study relied on an extensive 

purification scheme that only captured 50% of the inclusions from 6x107 infected cells and 

failed to identify host-chlamydial or Inc-Inc interactions (171). Labor-intensive schemes 

complicate attempts to characterize the inclusion membrane interactome over the course 

of the developmental cycle—key requirements in understanding the inclusion and its 

function. Secondly, Inc proteins are membrane proteins, which are notoriously difficult to 

study due to their hydrophobicity. Identification of interacting partners for Incs have 

typically relied on expressing the cytosolic domains of a given large Inc in yeast two-hybrid 

systems or purifying a recombinant version of this domain for pulldowns (38, 54, 123, 126, 

142, 145, 174). A last and final consideration is that addition of molecular tags may prevent 

Inc-fusion constructs from being properly type III secreted. To address two out of three of 

these obstacles, we have adapted several proximity labeling systems to understand 

protein-protein interactions at the chlamydial inclusion membrane. In this chapter, we will 

outline the origins of these systems, discuss how these methods have already been 

applied by the field to understand chlamydial-host interactions, and present our methods 

in adapting these systems to help understand chlamydial-host interactions. 

1.3 Origins of BioID 

The origins of the BioID proximity dependent labeling began with the examination 

of the impact of point mutations on the enzymatic activity of BirA, a bacterial biotin ligase. 
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Biotinylation reactions by BirA occur in two steps: the first being the binding of BirA to 

biotinyl-5’-ATP (175), and the second is the recognition of the biotin acceptor tag, or BAT, 

where the biotin intermediate is transferred to a specific lysine (176).  Mutation of the 

arginine at position 118 to a glycine resulted in an alteration in BirA substrate specificity 

(177). Further characterization of the mutant BirA, recognized that the BirA R118G (BirA*) 

mutant maintained the ability to transfer biotin moieties to lysine residues of proteins in 

close proximity to the enzyme, but any specificity towards specific target proteins with 

known BATs was eliminated (178). Most of these studies had been performed in 

Escherichia coli, but the fact that BirA* promiscuously biotinylated proteins in a proximity-

dependent manner made it an attractive tool to adapt for cell biology studies. In the first 

cell biology-based study, Kyle Roux and colleagues created a molecular fusion between 

BirA* and a nuclear lamin protein (167). Nuclear lamins are transmembrane proteins and 

important for the function of the nuclear envelope. Their hydrophobicity made them difficult 

proteins to study. Given that biotin has a strong affinity for streptavidin (KD 10-13 to 10-15 

M; (179)), they designed a BirA* construct to biotinylate potential lamin-interacting 

proteins, and then relied on the high affinity of biotin for streptavidin to purify these binding 

partners for identification by mass spectrometry (167).  

Since its inception, the BioID system has been used in cell biology studies to 

identify regulators of centriole duplication and structure (180, 181) and understanding 

proteins involved in the insulin-like growth factor I receptor pathway (182). In the field of 

cellular microbiology, the BioID system has been useful in determining protein targets of 

the Legionella pneumophila effector protein, PieE, (183), identifying components of the 

Toxoplasma inner membrane complex (184), components of the Trypanosoma brucei 

biolobe (185), and novel proteins on the Plasmodium parasitophorous vacuolar 

membrane (186). Further, several laboratories, are adapting BioID in novel ways to 
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advance understanding of protein-protein complexes. These include the development of 

a ‘split BioID’ system, that places the N-terminus or C-terminus of BirA* onto separate 

proteins. If the proteins interact, then the biotin ligase activity is restored, and biotinylation 

of surrounding proteins occurs (187). A similar 2C-BioID system has been developed, 

which also recapitulates a two component or two-hybrid system within a native cellular 

environment (188). In all cases, utilization of BirA*-protein fusion constructs have helped 

elucidate difficult to study protein-protein interaction networks. 

1.4 Origins of APEX2 

Another proximity-dependent biotinylation system to determine difficult to study 

protein-protein interactions networks is APEX2 (189). APEX is a soybean ascorbate 

peroxidase, whose activity is similar to horseradish peroxidase (HRP). HRP has been 

useful in electron microscopy studies because, in the presence of H2O2, it can polymerize 

3,3’-diaminobenzidine (DAB), which gives a localized contrast in activity when the samples 

are processed with osmium tetroxide (OsO4) (190, 191). Attempts to create fusion 

constructs with various mammalian proteins and HRP failed to create a system to tag 

neighboring protein networks. HRP has 4 structurally essential disulfide bonds and 2 Ca2+ 

binding sites for activity. The mammalian cytosol is a reducing environment that is also 

Ca2+ poor, which renders HRP inactive (192). APX, the endogenous soybean ascorbate 

peroxidase and a class I cytosolic plant peroxidase, is 40% smaller in size than HRP, and 

lacks disulfide bonds and the necessity for Ca2+ cofactors for activity. The protein known 

as APEX, which stands for “enhanced APX”, was molecularly engineered with point 

mutations within APX to increase enzymatic activity, and this original construct was used 

to label the mitochondria and endoplasmic reticulum with DAB to render greater structural 

resolution (168). This same group substituted biotinyl-tyramide for DAB as a substrate and 

demonstrated that they could use APEX-mitochondrial protein constructs to selectively 
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label, with biotin, other mitochondrial proteins within the inner and outer membranes of the 

mitochondrial matrix in a proximity dependent manner (193). In these reactions, biotinyl-

tyramide or, more commonly used, biotin-phenol is incubated with eukaryotic cells that are 

expressing APEX-fusion constructs. In the presence of H2O2, APEX reacts with the biotin-

phenol, producing a biotin phenoxyl radical, that can then covalently attach (or react with) 

tyrosine, tryptophan, histidine, or cysteine amino acids within adjacent proteins (193). As 

discussed below, these adjacent proteins include binding partners as well as proximal 

proteins.  

The original APEX molecule was monomeric, and using directed evolution to select 

for improved activity, APEX2 was created. This new protein contained a point mutation at 

position 134 that resulted in a proline replacing an alanine, creating APEX2 (APEX,A134P) 

(189). APEX2 is able to form dimeric complexes (189), which has been shown to increase 

the stability and activity of ascorbate peroxidases (194). It also requires heme for activity 

(189), and heme is a molecule that is ubiquitous in eukaryotic cells, as it is required for 

oxidation-reduction reactions, amongst other metabolic processes (195).  

Many APEX2 constructs have been generated and have contributed to studies that 

have created ‘organelle barcodes’, which reveal the subcellular localization of difficult to 

study proteins (196), and spatiotemporally resolved protein interaction networks of G-

protein coupled receptors (197). The latter study also discussed the resolution of proteins 

that are directly involved in protein networks or those that are considered ‘bystander’ 

proteins, which are proteins that are in the area of the interactions but are not directly 

involved in their function or signaling networks. These studies have exploited the power 

and the limitations of the proximity-dependent labeling systems to further our 

understanding of protein-protein interaction dynamics and have increased our 

understanding of the spatial organization of many proteins within eukaryotic cells. 



40 

 

   

 

As it relates to understanding protein-protein interactions within bacteria or host-

pathogen interactions, Eric Cascales’s group used the APEX2 system to identify novel 

binding partners for a type VI secretion system protein (T6SS), TssA, which helped 

illuminate dynamics of T6SS apparatus assembly (198).  

Relative to the field of Chlamydia, both the BioID and APEX2 systems have been 

employed. For example, the BioID system has been used to determine if specific 

eukaryotic proteins are recruited to the chlamydial inclusion. For example, to clarify if a 

eukaryotic protein, syntaxin 6, and a mutant of syntaxin 6 lacking a signal sequence 

trafficked to the chlamydial inclusion, a BirA*-syntaxin 6 and its mutant was exogenously 

expressed in chlamydial infected HeLa cells (199). Syntaxin 6 is a eukaryotic SNARE 

protein that localizes to the Golgi and traffics between the Golgi and the plasma membrane 

(200). As the chlamydial inclusion develops within the proximity of the Golgi, localization 

of Golgi-resident or Golgi-associated proteins can be murky. Wild type BirA*-syntaxin 6, 

but not the mutant, was recruited and, in the presence of exogenously added biotin, 

biotinylated the chlamydial inclusion membrane (199). BioID has also been used to identify 

eukaryotic interacting proteins for a Chlamydia psittaci type III effector protein, SINC. In 

this study, BirA*-SINC exogenously expressed in eukaryotic cells was determined to 

localize similarly as SINC that is expressed and secreted by C. psittaci and used to identify 

several candidates that might bind SINC during a chlamydial infection (201). In another 

study, BioID was used to demonstrate that a chlamydial type III effector, TmeA, and a 

specific eukaryotic protein interacted within the host cytosol (118). In this study, the 

eukaryotic protein, AHNAK, was fused to BirA* and exogenously expressed in HeLa cells. 

As a control, a eukaryotic protein, BirA*-Perforin-2, which was known to interact with early 

inclusions (202), but not TmeA, was also expressed. Five hours post-infection, the 

chlamydial protein was analyzed for biotinylation, and was found to be biotinylated by 



41 

 

   

 

BirA*-AHNAK only, thereby confirming the proteins’ interaction (118). To date, BirA*, has 

not been fused to a chlamydial protein and successfully expressed by Chlamydia. It is 

unknown if BirA* can be type III secreted by the chlamydial type III secretion apparatus. 

In contrast, it has been demonstrated that chlamydial Inc proteins with C-terminal APEX2 

fusions are expressed and type III secreted by C. trachomatis (57, 59). As this seminal 

study demonstrated, it is important to optimize Inc-APEX2 expression levels from 

Chlamydia to replicate, as close as possible, expression levels of endogenously 

expressed chlamydial proteins, and to limit possible negative effects of Inc overexpression 

on inclusion development (57). Methods provided in this chapter outline our progress in 

these areas. 

1.5 General Procedure  

General considerations.  

When embarking on one of these proximity labeling systems that use biotin to tag 

binding partners or adjacent proteins, there are several considerations that must be 

factored into experimental design. For each system, one must consider where the greatest 

source of background will come from, so it can be controlled for accordingly. Second, if 

expressing these constructs from C. trachomatis, how will expression be controlled (i.e. 

via an inducible promoter, endogenous promoter, from a chlamydial transformation 

plasmid, or by inserting the construct into the chlamydial chromosome). Further, does 

addition of APEX2 or BirA* tags prevent normal localization (or secretion) of the protein, 

which will impact not only the proteins that are targeted by the fusion constructs, but how 

the resulting data are interpreted.  

Biotinylation is a natural post-translational modification in eukaryotes and is also 

used in prokaryotes to modify protein function. As such, there are several cellular sources 
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of natural background proteins that will be purified by any streptavidin pulldown of whole 

eukaryotic cell lysates. Some of these naturally biotinylated eukaryotic proteins include 5 

mitochondrial and cytosolic carboxylases (203), mitochondrial proteins (204), mRNA 

processing proteins (205), and ribosomal proteins (206). Also, given the high homology 

between conserved bacterial proteins and mitochondrial proteins, careful consideration of 

how to account for the presence of naturally biotinylated mitochondrial proteins so that 

false positive and false negative hits are not arbitrarily included or excluded, respectively. 

Table 2-1 includes a direct comparison of the BioID and APEX2 proximity labeling 

systems. Part of the appeal of using BioID, is that you can get a ‘roadmap’ of where your 

protein has been over an extended period of time. If using a eukaryotic protein-BirA* 

fusion, one can also understand how chlamydial infection impacts protein interactions 

within a specific network/pathway. With the APEX2 system, you will receive a snapshot of 

protein interactions at specific time intervals. Specifically, after expression of a BirA*-

protein construct, one will add biotin to the tissue culture medium for 5-24 hours before 

using the samples for downstream applications (118, 167). In contrast, the labeling 

requirements of APEX2-protein constructs happen quickly. Biotin-phenol is added to the 

medium for 30 minutes, and the labeling reaction is catalyzed by the addition of H2O2 for 

30 seconds to a minute (193, 197), followed by a quenching reaction that relies on a 

temperature change, peroxidase inhibitors, and a competitive substrate to reduce APEX2 

activity (193).  

1.6 Anticipated results and statistical evaluation of mass spectrometry results 

In an APEX2 or BioID experiment, a single mass spectrometry data set can yield hundreds 

to thousands of protein identifications. These data sets are typically a list of peptides or 

proteins represented with mass-to-charge (m/z) ratios and their corresponding signal 

intensities, analyzed against a known and annotated protein database, like 
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Table 2-1. Comparison of BioID and APEX2 proximity-dependent labeling systems 

1 Roux et al. 2012. J Cell Biol. 

2 Rhee et al. 2013. Science 

3 Roux et al. 2012. J Cell Biol.; Moore and Ouellette. 2014. Front Cell Infect Microbiol. 

 

Table adapted from Olson et al. 2019. MiMB.  

 BioID (BirA*)1 APEX22 

Enzyme Promiscuous biotin ligase Ascorbate peroxidase 

Substrate Biotin Biotin-phenol 

Intermediate Biotinoyl-5’-AMP Biotin phenoxyl radical 

Target amino 
acids 

Lysine (Lys, K) Tyrosine (Tyr, Y); Tryptophan 
(Trp, W); Histidine (His, H); 
Cysteine (Cys, C) 

Half-life Several minutes ~1 millisecond 

Labeling time 5-24 hours3 30 minutes 

Labeling radius ~40 nanometers 20 nanometers 
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the Homo sapiens Swiss protein database. Very clearly, not all these proteins are true 

interacting partners, or even spatially related to the protein of interest. Conversely, the 

same results analyzed against a Chlamydia trachomatis Swiss protein database, will yield 

at maximum: 895 proteins; however, some of these protein identifications may be proteins 

that are highly homologous to mitochondrial proteins. Great care must be taken to ensure 

that proteins are not over- or under- represented in the final results. Statistical evaluation 

of these data is critical towards obtaining an unbiased and rigorously examined list of 

significant protein targets. Integral towards having a statistically significant dataset is 

having a minimum of 5 biological replicate experiments, which include all experimental 

and control conditions, and are processed identically for mass spectrometry.  

Further, the type of statistical analysis used to properly evaluate these data is 

important. The current trend in the field is to use a statistical analysis program that uses 

Bayesian statistics (207, 208). For our studies, we have used one such program, known 

as SAINT for ‘significance analysis of interactome’ (207). With this program, the spectral 

counts for a given peptide or protein are normalized to the length of the protein and the 

total number of spectra that were received in the experiment/purification. Further, the 

statistical output is used to estimate the Bayesian False Discovery Rate (BDFR), which 

gives the probability of whether a specific protein is likely to be a significant finding or part 

of background (207). This method is an improvement upon standard t-tests of spectral 

counts between replicates and allows for the inclusion of proteins/peptides that appear 

weakly in controls (background) and more strongly and definitively in the experimental 

conditions (208). 
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2. Materials 

2.1 Construction of BioID gene fusions for transfection and expression in eukaryotic cells 

1. Tabletop centrifuge with rotors or adaptors for 15 mL and 50 mL conical tubes  

2. Microcentrifuge to accommodate 1.5 ml microfuge tubes 

3. Standard cloning materials and vectors 

4. 37 °C and 42 °C water bath 

5. Plasmid Miniprep kit  

6. Plasmid Midiprep kit 

7. 30 °C or 37 °C incubator for agar plates  

8. 30 °C or 37 °C shaking incubator for liquid cultures 

9. Standard E. coli strain for cloning (10-β or DH5 α)  

10. PCR reagents, including a proofreading polymerase 

11. Ligation kit e.g. NEBuilder HiFi Assembly Cloning Kit, NEB Cat# E5520S 

12. -80 °C freezer 

13. -20 °C 

14. 4 °C 

2.2 Construction of APEX2 gene fusions for transformation and expression from C. 

trachomatis 

1. Tabletop centrifuge with rotors or adaptors for 15 mL and 50 mL conical tubes  

2. Microcentrifuge to accommodate 1.5 ml microfuge tubes 

3. Standard cloning materials and vectors 

4. 37 °C and 42 °C water bath 

5. Plasmid Miniprep kit  

6. Plasmid Midiprep kit 
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7. 30 °C or 37 °C incubator for agar plates  

8. 30 °C or 37 °C shaking incubator for liquid cultures 

9. Standard E. coli strain for cloning (10-β or DH5 α)  

10. Dam-/dcm- E. coli for Chlamydia transformation  

11. -80 °C freezer 

12. -20 °C 

13. 4 °C 

2.3 Proximity Labeling Using BioID Constructs 

1. HeLa 229 cells (ATCC, CCL-2.1) (see Note 1) 

2. Mycoplasma test kit (e.g. ‘LookOut Mycoplasma Detection Kit’, SigmaAldrich, 

MP0035) (see Note 2) 

3. Standard tissue culture materials 

4. Biosafety cabinet 

5. 5% CO2  37 °C incubator for tissue culture  

6. 37 °C water bath  

7. Refrigerated microcentrifuge (capable of 10,000 x g; 4 C) 

8. 6-well tissue culture plates 

9. 24-well tissue culture plates 

10. Round 12 mm glass coverslips 

11. 1x DMEM without biotin (Hyclone # SH30243.01 or Gibco DMEM #11-965-092) 

12. Heat inactivated fetal bovine serum 

13. BioID-fusion construct (see Note 3) 

14. Biotin powder suitable for cell culture (stock 1 mM in serum free 1x DMEM, see 

Note 4)  

15. 1xDMEM supplemented with 1% heat inactivated FBS 



47 

 

   

 

16. Transfection reagent (see Note 5) 

17. Antibody against Myc 

18. Fluorescent streptavidin conjugate; e.g., Streptavidin-488 Jackson 

ImmunoResearch Laboratories Inc., 016-540-084 

19. Fixative (e.g, methanol or paraformaldehyde) and permeabilization reagent (e.g. 

0.1% Triton X-100 or 0.5% saponin) (see Note 6) 

2.4 Proximity labeling using APEX2 constructs 

1. HeLa 229 cells (ATCC, CCL-2.1) (see Note 1) 

2. Mycoplasma test kit (e.g. ‘LookOut Mycoplasma Detection Kit’, SigmaAldrich, 

MP0035) (see Note 2) 

3. Standard tissue culture materials 

4. Biosafety cabinet 

5. 5% CO2  37 °C incubator for tissue culture  

6. 37 °C water bath  

7. Refrigerated microcentrifuge (capable of 10,000 x g; 4 °C) 

8. 6-well tissue culture plates 

9. 24-well tissue culture plates 

10. Round 12 mm glass coverslips 

11. 1x DMEM without biotin (Hyclone, SH30243.01 or Gibco DMEM, 11-965-092) 

12. Heat inactivated fetal bovine serum 

13. 1x Phosphate buffered saline (PBS) 

14. Anhydrous DMSO  

15. Antibiotics: cycloheximide, gentamicin, penicillin, or another selective antibiotic  

16. A clonal population of C. trachomatis transformants  

17. Fixative (e.g, methanol or paraformaldehyde)  
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18. Permeabilization reagent (e.g. 0.1% Triton X-100 or 0.5% saponin)  

19. Anhydrotetracycline 

20. Biotin phenol (biotinyl-tyramide) (Adipogen; stock 50 mM in anhydrous DMSO (see 

Note 7).  

21. Hydrogen peroxide 

22. Quenching wash solution (10 mM sodium ascorbate, 10 mM sodium azide, 5 mM 

Trolox in dPBS (see Note 8) 

23. RIPA buffer A (50 mM Tris-HCl, pH 7.4; 150 mM NaCl, 0.1% SDS, 0.5% sodium 

deoxycholate) buffer modified with: 

a. 150 µM Clastolactacystin β-lactone (see Note 9) 

b. 10 mM sodium azide  

c. 10 mM sodium ascorbate  

d. 5 mM Trolox (see Note 8) 

e. 5% Triton X-100  

f. 1% SDS  

g. 1X HALT + 1X EDTA protease inhibitor (ThermoFisher, 87786) 

h. 0.1 μL/mL Universal Nuclease (ThermoFisher, 88701)  

24. Sonicator 

25. Cell scrapers  

26. 15 mL conical tubes (sterile) 

27. 1.5 mL microcentrifuge tubes (sterile) 

28. Tabletop centrifuge with rotors or adaptors for 15 mL and 50 mL conical tubes  

2.5 Affinity Purification of Biotinylated Proteins 

1. EZQ Protein Quantification Kit (ThermoFisher, R33200) 
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2. RIPA buffer (50 mM Tris-HCl, pH 7.4; 150 mM NaCl, 0.1% SDS, 0.5% sodium 

deoxycholate) 

3. Streptavidin magnetic beads (e.g. Pierce streptavidin magnetic beads, 88816) 

(see Note 10) 

4. Wash buffer A: RIPA buffer (50 mM Tris-HCl, pH 7.4; 150 mM NaCl, 0.1% SDS, 

0.5% sodium deoxycholate) modified with: 

a. 500 mM NaCl 

b. 5% Triton X-100  

c. 1% SDS  

5. Wash buffer B: 2 M urea in 10 mM Tris-HCl (pH 7.4) 

6. 2X Laemmli sample buffer (Use premade/high grade Laemmli sample buffer (e.g., 

2X Sample Buffer, BioRad, 1610737) if intended for mass spectrometry.) (see 

Note 11) 

7. 1.5 mL microcentrifuge tubes (sterile) 

8. Magnetic rack and individual magnet (see Note 12) 

9. Tube rotator (1.5 mL tube compatible) 

2.6 Confirmation of Protein Biotinylation and Mass Spectrometry Identification 

1. Gel electrophoresis apparatus  

2. Standard denaturing gel (e.g., BioRad 4-20% gradient Criterion gels, 5671093 

3. Western blot transfer apparatus  

4. Western blotting reagents: Polyvinylidene membrane (PVDF), blocking reagents 

(e.g., Bovine serum albumin or Milk), antibodies (e.g., streptavidin conjugate, anti-

FLAG antibody), staining trays, wash solution (e.g PBS + 0.1% Tween-20).   

5. Streptavidin-680 in 5% Bovine serum albumin in PBS + 0.1% Tween20 (PBST) 

(see Note 13) 
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6. Gel imaging system  

7. 2x Sample buffer (both laboratory prepared and mass spectrometry grade) (see 

Note 11) 

8. β-mercaptoethanol 

9. Biotin (3 mM) 

10. Coomassie stain (Coomassie G-250, 10% methanol, 5% acetic acid in tissue 

culture grade water) (see Note 14) 

11. Destain solution (10% methanol, 5% acetic acid in tissue culture grade water) 

12. 30% methanol (see Note 15) 

13. Non-autoclaved tubes 

14. Scalpel blades or razor for cutting SDS-PAGE protein bands 

15. Mass spectrometry core facility (see Note 16) 

16. Significance Analysis of Interactome (SAINT) or similar appropriate statistical 

analysis program to accurately assess background biotinylated proteins from the 

proximal proteins identified and prevent bias (see Note 17) 

2.7 DAB Staining for Electron Microscopy  

1. Plastic coverslips suitable for electron microscopy. (e.g. Thermo Scientific™ 

Nunc™ Thermanox™ coverslips, cat. no. 174985). 

2. 6-well cell tissue culture plate 

3. HeLa 229 cells (see Note 1) 

4. Mycoplasma test kit (e.g. ‘LookOut Mycoplasma Detection Kit’, SigmaAldrich, 

MP0035) (see Note 2) 

5. DMEM + 10% FBS 

6. Cycloheximide (see Note 18) 
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7. Penicillin G (see Note 18) 

8. Enumerated Chlamydia strains  

9. Anhydrotetracycline 

10. Dulbecco’s phosphate-buffered saline 

11. Fixing solution (2% paraformaldehyde, 2% glutaraldehyde, 0.1 M sodium 

cacodylate fixative): Combine 8 ml of 25% glutaraldehyde, 12 mL of 16% 

paraformaldehyde, 50 ml of 0.2 M sodium cacodylate, and 30 mL of distilled H2O. 

12. Wash buffer (0.1 M sodium cacodylate): Combine 100 mL of 0.2 M sodium 

cacodylate, pH 7.4 with 100 mL of distilled H2O. 

13. Quenching/blocking buffer (20 mM glycine in 0.1 M sodium cacodylate, 2 mM 

CaCl2 blocking buffer). As described in (209), dissolve 75.1 mg glycine in 50 mL of 

0.1 M sodium cacodylate, 2 mM CaCl2. To make 0.1 M sodium cacodylate, 2 mM 

CaCl2, dissolve 32.103 g of sodium cacodylate trihydrate in 450 mL Milli-Q™ H2O. 

Decrease the pH to 7.4 by adding HCl drop by drop. Dissolve 0.441 g of calcium 

chloride, dihydrate. Bring the solution up to 500 mL with Milli-Q™ H2O. This is 0.3 

M sodium cacodylate, 6 mM CaCl2. Then, combine 167 mL of this solution and 333 

mL of Milli-Q™ H2O to give 0.1 M sodium cacodylate, 2 mM CaCl2. 

14. 3,3'-Diaminobenzidine (DAB) stock solution (5 mg/mL). As described in (168, 209), 

dissolve 50 mg of DAB in 10 mL of 0.1 M HCl. Make 1 mL aliquots, freeze these 

by placing in dry ice, and store at -80° C. 

15. Working DAB solution (0.5 mg/mL DAB, 0.1 M sodium cacodylate, 2 mM CaCl2 

solution): As described in Martell et al. 2017 (209), combine 1 mL of 5 mg/mL DAB 

stock solution, 3.33 mL of 0.3 M sodium cacodylate, 6 mM CaCl2 (see above), and 

5.67 mL of Milli-Q™ H2O. 
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16. 0.5 mg/mL DAB, 3 mM H2O2, 0.1 M sodium cacodylate, 2 mM CaCl2 solution: As 

described in Martell et al. 2017 (209), mix solutions together as for the previous 

solution. Add 3 μL 30% (weight/weight) H2O2. The concentration of H2O2 must be 

determined empirically. The DAB solutions with and without H2O2 should be made 

fresh just before adding them to the samples. Add H2O2 last to avoid beginning the 

polymerization reaction before the solution has been applied to the samples. 

17. Electron Microscopy Facility 

3. Methods 

Biotinylation is a natural post-translational modification in eukaryotes. As such, 

there are several cellular sources of natural background proteins that will be purified by 

any streptavidin pulldown of whole eukaryotic cell lysates. Some of these naturally 

biotinylated eukaryotic proteins include 5 mitochondrial and cytosolic carboxylases (203), 

mitochondrial proteins (204), mRNA processing proteins (205), and ribosomal proteins 

(206). Therefore, during the experimental design steps, several negative controls for 

background biotinylated should be considered. Table 2- 2 outlines the controls that we 

use in our experiments. 

The methodology for implementing a proximity labeling system in Chlamydia can 

be broken down into three major steps. First, clone the gene of interest in frame with either 

BioID or APEX2 into the desired vector (e.g., mammalian or C. trachomatis vector). 

Second, transfect or transform the vector encoding the BioID or APEX2 fusions (e.g., gene 

X-BioID, gene Y-APEX2) into the eukaryotic cells or Chlamydia, respectively and then 

optimize the expression of the fusion protein in your system. Step three, affinity purify the 

biotinylated proteins from the solubilized lysate and confirm biotinylation by western 

blotting.  
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Table 2-2. Negative controls for BioID, APEX2, and DAB labeling 

BioID (BirA*) Controls Biotin BirA* Reason 

Uninfected cells + + For comparison to infected cells to 
determine if infection with Ct causes 
any changes in protein-protein 
interactions 

WT L2 ─ + Negative control to determine 
endogenous biotinylation during 
transfection 

WT L2 + ─ Negative control to determine 
endogenous biotinylation during 
infection with WT Ct 

Uninfected cells + ─ Negative control to determine 
endogenous biotinylation 

APEX2 Controls aTca BPb Reason 

APEX2 fusion control 1 + ─ Negative control for background 
biotinylation 

WT L2 + + Negative control for background 
biotinylation 

Uninfected cells + + Negative control for background 
biotinylation 

DAB Controls DABc H2O2 Reason 

WT L2 + + Negative control to check for 
background DAB labeling 

APEX2 expressing 
strain 

─ ─ Negative control to make sure there 
is no DAB labeling in the absence of 
DAB and H2O2 

a anhydrotetracycline (aTc) 

b Biotin-phenol (BP) 

c 3,3'-Diaminobenzidine (DAB) 

Table adapted from Olson et al. 2019. MiMB.  
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3.1 Construction of BioID gene fusions for transfection and expression in eukaryotic cells 

This section will briefly describe the steps involved in constructing BioID gene fusions and 

assumes that the scientist is proficient in standard cloning techniques.   

1.  Design primers to amplify your gene of interest, and perform PCR using standard 

methodologies and a proofreading polymerase. 

2.  Purify PCR products using a commercial PCR purification or gel extraction kit.  

3.  Clone in frame into the BioID plasmid, pcDNA3.1 mycBioID, (Addgene plasmid 

#35700) (167) using standard cloning methods (see Note 3).  

4. Transform into a standard E. coli cloning strain, isolate the plasmid, and verify the 

DNA sequence. The isolated plasmid will be used to transfect HeLa cells to allow 

for biotin labeling of proteins proximal to your protein of interest with the addition 

of exogenous biotin.  

3.2 Construction of APEX2 gene fusions for transformation and expression from C. 

trachomatis 

This section will briefly describe the steps involved in constructing APEX2 gene fusions 

and assumes that the scientist is proficient in standard cloning techniques.   

1. Amplify the gene of interest from Chlamydia genomic DNA (or other template as 

needed), and APEX2 from pcDNA3 APEX2-NES (Addgene cat#49386) (189).  

2. Purify PCR products using a commercial PCR purification or gel extraction kit   

3.  Clone in frame into the desired chlamydial expression vector (e.g., pASK-mKate (210), 

or pBomb4 (91)) followed by APEX2 (see Note 19).  

4. Transform into standard E. coli cloning strains. 
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5. Isolate plasmids and confirm by DNA sequencing analysis.  

6. Transform sequence verified clones into dam-/dcm- E. coli (116, 211), purify plasmids.  

7. Transform demethylated plasmids into C. trachomatis following the chlamydial 

transformation protocol as previously published (116, 211). In brief: Approximately 24 

hours prior to transformation, seed McCoy cells in a 6-well tissue culture plate. Plate 

enough wells for one well per sample intended for transformation. The next day 

resuspend purified C. trachomatis elementary bodies that lack the endogenous 

plasmid (-pL2) in calcium chloride (CaCl2) and add 2 µg of demethylated plasmid 

DNA. Incubate the mixture at room temperature for 30 minutes. Rinse the 6-well plate 

of McCoy cells with Hanks Buffered Salt Saline (HBSS) and replace with 2 mL of 

HBSS. After incubation, add the EB/pDNA mixture dropwise to a single well of a 6-

well tissue culture plate per condition. Centrifuge the plates at 400 x g for 15 minutes 

at room temperature then incubate at 37 °C + 5% CO2 for 15 minutes. Replace the 

HBSS with DMEM + 10 % FBS and place the 6-well plate back at 37 °C + 5% CO2 

incubator. At 8 hpi, aspirate the media and replace with DMEM + 10 % FBS containing 

the appropriate antibiotic and cycloheximide. Passage samples every 48 hours by 

scraping and infecting onto a fresh monolayer of McCoy cells until mature inclusions 

are observed.  

8. Finally, test the C. trachomatis transformed with a plasmid that expresses the 

construct of interest for the appropriate localization of the constructs containing 

APEX2 by indirect immunofluorescence microscopy, and optimize the expression 

of each construct. For example, infect HeLa cell monolayers with C. trachomatis 

L2 transformed with a plasmid that expresses the construct of interest and induce 

with variable amounts of anhydrotetracycline. Fix and stain for indirect 

immunofluorescence to determine induction conditions that yield localization that 
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most closely matches endogenous protein localization according to the literature. 

In addition, it is best to perform subsequent biotinylation experiments with a clonal 

population of C. trachomatis. This can be done by plaque purification (see Chapter 

12, ‘Mutagenesis of Chlamydia trachomatis using TargeTron’, section 3.4) or by 

limiting dilution. 

3.3 Proximity Labeling Using BioID Constructs (see Note 5) 

1. Seed HeLa 229 cells (see Note 1 and Note 2) in a 6-well plate at the appropriate 

cell density determined from troubleshooting in 3 mL per well of 1x DMEM 

supplemented with 10% heat inactivated FBS. 

a. Place one round 12 mm glass coverslip in 2 separate wells of the 6-well 

plate to monitor transfection and biotin-labeling efficiency via 

immunofluorescence.  

2. Approximately 24 hours after seeding cells and before transfecting, wash the cells 

twice with 1 mL per well of prewarmed 1X DMEM supplemented with 1% FBS (we 

use 1% FBS to limit exogenous biotin contamination from the FBS) and replace 

media with 2 mL of 1X DMEM containing 1% heat inactivated FBS. 

3. Transfect with the BioID-fusion construct using preferred transfection method in 

500 µL and allow to incubate at 37°C and 5% CO2 for 4 hours. 

4. Aspirate transfection medium and replace with 2 mL of DMEM + 1% FBS + 50 μM 

Biotin (see Note 4) per well (or not as a control) to begin the labeling. See Table 

2- 2 for the appropriate negative controls.  

a. Make sure to use separate pipet tips and Pasteur pipettes between 

samples to prevent cross-contamination.  

5. Allow the cells to recover for 2 hours.  
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6. Infect the cells with wild-type Chlamydia 6 hours post transfection (4-hour 

transfection + 2-hour recovery) by centrifugation at 400 x g for 15 minutes at room 

temperature, then incubate 37 °C 5% CO2. 

7. At the timepoint post-infection you are interested in, remove glass coverslips from 

the two wells and place them into a new 24-well plate containing 500 μL of 

appropriate fixative and permeabilization with appropriate permeabilization 

reagent (e.g. 0.1% Triton X-100 or 0.5% saponin), see Note 6. Process the 

coverslips by indirect immunofluorescence assay (212) to monitor transfection 

efficiency (use an antibody against Myc) and biotin labeling (use a fluorescent 

streptavidin conjugate; e.g., Streptavidin-488 Jackson ImmunoResearch 

Laboratories Inc., 016-540-084).  

a. If the transfection efficiency is too low or biotinylation is not sufficient, 

discard the samples and repeat.  

b. It is also important to monitor localization of the BirA*-protein fusion in 

uninfected cells to ensure the addition of BirA* is not disrupting the protein’s 

normal localization.  

c. See Fig. 2-1A for an example of an indirect immunofluorescence assay of 

a BioID labeling experiment using a host protein normally found within the 

Golgi, syntaxin 10, which has been previously shown to localize to the 

chlamydial inclusion (146) with a C-terminal BirA* fusion. In infected cells, 

the exogenously expressed syntaxin 10–BirA* can be seen around the 

inclusion, while in mock infected cells the syntaxin 10-BirA* is found in the 

Golgi. Biotinylated proteins are co-localized with syntaxin 10-BirA* in both 

infected and uninfected cells.  

8. Continue with sample collection and affinity purification, see protocol 3.4.8. (The 

processing for BioID and APEX2 cell lysate converges at this step).  
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3.4 Proximity labeling using APEX2 constructs 

1. Seed HeLa 229 cells (see Note 1 and Note 2) in a 6-well plate (1 x 106 cells/well) 

in biotin-free media (DMEM) supplemented with 1% heat inactivated FBS. We 

decreased the FBS to deplete biotin levels in HeLa cells. Seed one 6-well plate 

per condition/control sample. Place one glass coverslip in two separate wells of 

the 6-well plate to determine the expression level of the APEX2 construct and 

biotin labeling efficiency by immunofluorescence. It is important to include the 

appropriate negative controls for endogenous biotinylated proteins in both the host 

cell and Chlamydia (See Table 2- 2).  

2. After the biotin limiting step (~24 hours), aspirate the media and infect the HeLa 

cells with the appropriate C. trachomatis L2 APEX2 strain or negative controls in 

DMEM +10% FBS (1 µg/mL cycloheximide, 10 µg/mL gentamicin, and the 

appropriate selective antibiotic). We have found more robust biotinylation using 10 

% FBS than with 1 % FBS with limited additional background biotinylation.  

3. Infect the HeLa cells by rocking, or by centrifugation at 400 x g for 15 min at room 

temperature, then transfer the plates to an incubator at 37 °C + 5% CO2.  

4. Induce expression of constructs at a pre-determined time post-infection (e.g., 7-10 

hpi), by adding an optimized concentration of anhydrotetracycline (aTc) directly to 

the tissue culture media. Ensure that induction conditions allow for the appropriate 

localization of the APEX2 fusion construct as over-expression can cause 

mislocalization.  

5. Add biotin-phenol (1.5 mM final concentration) to each well 30 minutes before the 

desired reaction time (e.g., 23.5 hpi for 24 hpi biotinylation time) and incubate for 

30 min at 37 °C + 5% CO2. Keep the biotin-phenol stock solution ≤ 50 mM in 

anhydrous DMSO for optimal solubility (see Note 7). 
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6. To catalyze the biotin labeling reaction, aspirate the media and add 2 mL/well of 3 

mM H2O2 in PBS. Incubate the samples at room temperature for 1 minute, with 

rocking. We have found that labeling two to four plates at a time is manageable. If 

there are greater than five 6-well plates in the experiment, stagger the infection 

times.  

7. After the labeling step, aspirate the H2O2 solution. Quench the labeling reaction 

with 3 x 1 mL/well washes using the quenching wash solution (10 mM sodium 

ascorbate, 10 mM sodium azide, 5 mM Trolox in dPBS (see Note 8)). Use gentle 

rocking during washes (approximately 15-30 seconds). After the washes, add 2 

mL/well of PBS and then remove the coverslips for fixation to confirm construct 

expression via indirect immunofluorescence microscopy. This can be done using 

a fluorescent streptavidin conjugate, anti-FLAG antibody (FLAG is in N-terminus 

of APEX2), and other appropriate cell markers using the methods described above 

(See section 3.3.7) (see Note 6). An example is provided in Fig. 2-1B of 

biotinylation at the inclusion membrane using an Inc fused to APEX2 compared to 

APEX2 only which lacks the type III secretion signal and thus biotinylation appears 

to localize with the individual Chlamydiae.  

8. Immediately after the coverslips are removed, scrape the remaining cells and pipet 

into a 15 mL conical tube on ice (12 mL total volume per 6-well plate). Pellet the 

cells by centrifugation at 900 x g for 10 minutes at 4 °C. Keep these steps at 4 °C 

and move quickly to limit protease activity. 

9. Aspirate the supernatant and re-suspend the pellet in 1 mL of modified RIPA buffer 

per sample (The modified RIPA contains a protease inhibitor cocktail and 

Clastolactacystin β-lactone, which specifically inhibits the chlamydial protease-like 

activity factor (CPAF) (68) (see Note 9). Transfer the lysate to a 1.5 mL tube for  
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Figure 2-1. Confirmation of BioID and APEX2 specific biotinylation using indirect 
immunofluorescence assays and western blotting. 

 

(continued on the next page) 
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Figure 2-1. Confirmation of BioID and APEX2 specific biotinylation using indirect 
immunofluorescence assays and western blotting. 

A) HeLa cells transfected with Syntaxin10-BirA* were mock-infected or infected with C. 
trachomatis L2 in media supplemented with 50 µM biotin to catalyze the labeling of 
proximal proteins with biotin. Cells were fixed at 23 hours post infection and processed for 
immunofluorescence to visualize the inclusion membrane in infected cells (anti-IncA, pink) 
or the Golgi in uninfected cells (anti-Giantin, pink), expression of Syntaxin10-BirA* (anti-
Myc, red), biotinylated proteins (streptavidin-488 conjugate, green) and DNA (DAPI, blue). 
Images were taken at 100x magnification using a Zeiss Apotome 2.1. Scale bar = 10 μm.  

B) HeLa cells infected with C. trachomatis L2 transformed with IncA-APEX2 or APEX2 
only and induced with anhydrotetracycline (aTc) at 7 hpi. Biotin-phenol was added 30 min 
prior to the biotin labeling step at 24 hpi. Biotinylation was catalyzed by the addition of 3 
mM H2O2 for 1 min and washed with a quenching solution. Coverslips were fixed and 
processed for immunofluorescence to visualize the inclusion membrane (anti-CT223, 
pink) expression of the construct (anti-Flag, red), biotinylated proteins (streptavidin-488 
conjugate, green), and DNA (DAPI, blue). Coverslips were imaged using a Zeiss with 
Apotome 2.1 63x Scale bar = 20 µm. 

C) Lysates were collected from C. trachomatis L2 IncA-APEX2 infected HeLa cells treated 
with biotin phenol and the biotinylation reaction was catalyzed to label proximal proteins. 
The total solubilized lysate (input; I), unbound fraction (U), and eluate fraction (E) from the 
streptavidin affinity purification were separated by SDS-PAGE and transferred to a PVDF 
membrane. To determine if biotinylated proteins were affinity purified, membranes were 
blotted with a streptavidin-680 conjugate. Images were taking using an Azure c600.  

D) Lysates were collected from HeLa cells transfected with Syntaxin10–BirA* and infected 
with wild-type C. trachomatis L2 (or not), in the presence (or not) of 50 μM Biotin to induce 
biotin-labeling of proteins proximal to syntaxin 10 with BirA* (as shown in part A). Lysates 
were affinity purified using streptavidin magnetic beads and eluates were resolved by 
SDS-PAGE, transferred to a PVDF membrane, and were blotted for biotinylated proteins 
using a streptavidin-680 conjugate. Images were taking using an Azure c600. 

Figure modified from Olson et al. 2019. MiMB.  
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sonication. These tubes work well for the sonication step to prevent excessive 

foaming of the sample. 

10. To solubilize the lysate, sonicate samples 3 times for 20 seconds at 20% 

amplitude. Keep the microtip near the bottom of the 1.5 mL tube to prevent 

foaming.  

11. After sonication, incubate the samples on ice for 90 minutes. Vortex the samples 

every 30 minutes.  

12. Clarify the lysate by centrifuging at 14,000 x g for 10 minutes at 4 °C. Transfer the 

supernatant (soluble protein fraction) into a fresh tube and re-suspend the pellet 

(insoluble protein fraction) in 400 µL modified RIPA. If a large pellet remains, 

sonicate the samples (step 11) again. Using the above described conditions, the 

pellet is almost non-existent. Save each fraction and make a small aliquot (e.g., 50 

µL). Store samples at - 80 °C until protein quantification, western blot confirmation 

of protein biotinylation, and affinity purification steps are performed.  

3.5 Affinity Purification of Biotinylated Proteins 

1. Using the small aliquot, quantify the protein from each sample condition collected. 

We use the EZQ Protein Quantification Kit (ThermoFisher) as it is compatible with 

high detergent levels in the modified RIPA lysis buffer and only requires on a few 

microliters of sample (< 5 µL).  

2. Normalize the solubilized lysate prior to SDS-PAGE and western blot analysis 

(e.g., 1 mg/mL). 

3. Analyze the solubilized lysate by standard denaturing gel and western blot 

techniques, See Chapter 5 Western Blotting: An Introduction (213); for gel 

electrophoresis and western blotting conditions, in brief:  Load the normalized 

lysate mixed with sample buffer into a 4-20% gradient polyacrylamide gel and 
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electrophorese at 200 volts for 30 minutes, or as desired. To transfer for western 

blotting, soak the polyvinylidene (PVDF) membrane in methanol, then place in 

transfer buffer. Assemble the gel sandwich by placing one blotting pad at the base 

of the transfer cassette. Then place the polyacrylamide gel on the blotting pad, 

followed by the membrane. Place a second blotting pad on top of the membrane 

and close the cassette and load it into the wet transfer system, with the membrane 

closest to the positive electrode and transfer as desired (e.g., 100 V for 48 min with 

cold pack). 

a. Confirm that biotinylated proteins are present in the soluble fraction and not 

in the insoluble fraction by blotting the membrane with using a streptavidin 

conjugate (e.g., streptavidin-680 conjugate; Li-Cor Biosciences) in blocking 

buffer (e.g., 5% BSA in PBST (PBS + 0.1% Tween-20)) (see Note 13). 

After incubating with the streptavidin conjugate, wash the membrane with 

PBST three times for five minutes at room temperature with rocking. Then 

perform a final wash step in PBS only (five minutes) and image using the 

preferred imaging system.   

4. Affinity purify the biotinylated proteins from solubilized lysate using streptavidin 

beads, (see Note 10). Vortex the beads to re-suspend them, then aliquot 100 µL 

of the streptavidin magnetic beads (10 mg/mL stock) per sample condition into a 

1.5 mL tube for affinity-purification. 

5. To equilibrate the streptavidin magnetic beads, add 1 mL of RIPA (modified with 

5% Triton X-100 and 1% SDS) to each tube.  

6. Rotate the beads for 5 minutes at room temperature using a tube rotator.  

7. Pellet the beads using a magnetic rack or handheld magnet and remove the 

supernatant.  
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8. Repeat once more for a total of two washes. Remove the liquid immediately before 

adding soluble lysate to prevent the beads from drying out, (see Note 12).  

9. After the beads are equilibrated, add the solubilized lysate (1 mg/mL; 1 mL total 

volume/tube) and rotate the samples for 1.5 to 2 hours at room temperature or 

overnight at 4 °C.  

10. After the affinity-purification incubation step, pellet the beads using the magnetic 

rack and SAVE the unbound fraction. By western blot, confirm that the biotinylated 

proteins were affinity purified from the solubilized lysate and do not remain in the 

unbound fraction (Fig. 2-1C).  

11. Perform the following washes to remove non-specific proteins from the streptavidin 

beads. Incubate in the indicated wash buffer for 5 minutes at room temperature on 

a rotator. Pellet the beads between each wash using the magnetic rack (see Note 

12): 

i. 2 washes x wash buffer A (1 mL RIPA buffer (plus 1% SDS, 5% Triton X-100, 

500 mM NaCl) 

ii. 1 wash x wash buffer B (1 mL 2 M urea in 10 mM Tris-HCl (pH 7.4)) 

iii. 2 washes x 1 mL RIPA buffer (unmodified) 

12. After the final wash, remove all residual liquid and elute the biotinylated proteins 

directly in 2X Laemmli sample buffer (containing 5 % β-mercaptoethanol, 3 mM 

biotin), (see Note 11). Elute the biotinylated proteins from the streptavidin 

magnetic beads with 40 µL of sample buffer per tube.  

13. Rotate the beads for 5 minutes with the elution buffer, then boil at 95 °C for 4 

minutes, (see Note 20).  

14. Pellet the beads using the magnet and transfer the eluate to a new tube. Save the 

leftover beads in case they are needed to test/troubleshoot elution conditions, (see 

Note 10).  
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3.6.1 Confirmation of Protein Biotinylation and Mass Spectrometry Identification. 

(see Note 21) 

1. Electrophorese until the desired separation is reached (e.g., 200 Volts ~50 min for 

a midi gel).  

2. Transfer to membrane for blotting following typical transfer methods, in brief: Soak 

the PVDF membrane in methanol, then place in transfer buffer. Assemble the gel 

sandwich by placing one blotting pad at the base of the transfer cassette. Then 

place the polyacrylamide gel on the blotting pad, followed by the membrane. Place 

a blotting pad on top of the membrane and close the cassette and load it into the 

wet transfer system. Place the side with the membrane closest to the positive 

electrode and transfer as desired (e.g., 100 V for 48 min with cold pack).  

3. Blot for biotinylated proteins using a streptavidin conjugate (Fig. 2-1C, D) (e.g., 

streptavidin-680 in 5% BSA in PBST for 2 hours at room temperature or overnight), 

(see Note 13). 

3.6.2 Gel electrophoresis for mass spectrometry identification of biotinylated proteins 

1. Use pre-cast gels to reduce keratin contamination (e.g., 4-20% gradient midi 

Criterion gels, BioRad, 5671093) for samples intended for mass spectrometry 

analysis.  

2. Electrophorese the samples for 10-15 min, or about ~5.0 cm into the gel. This 

reduces the area of gel sections which helps the efficiency of the digestion in 

downstream processing steps for mass spectrometry. 

a. While the gel is running, use 30% methanol (see Note 15) to remove keratin 

and other contaminants to clean the Coomassie gel staining container. 
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3. Remove gel from the cassette and add the Coomassie stain solution; incubate for 

one hour at room temperature, (see Note 14). 

4. Destain the Coomassie gel overnight at 4 °C with gentle rocking using the destain 

solution. Perform additional wash steps as needed to remove excess Coomassie, 

leaving as little stain remaining as possible.  

5. Cut the gel pieces in a biosafety cabinet (or area with dead space, away from vents 

which are a major source for keratin contamination) and place in tubes that have 

not been autoclaved, (see Note 15).  

6. Submit the gel samples to the mass spectrometry core facility for processing and 

mass spectrometry identification of affinity purified biotinylated proteins (see Note 

16).  

7. Use the appropriate statistical analysis program to accurately assess background 

biotinylated proteins from the proximal proteins identified and prevent bias. For 

example, Significance Analysis of Interactome (SAINT; (207)) uses Bayesian 

statistics to calculate the probability that a protein is real in test samples compared 

to designated control samples, (see Note 17).  

3.7 DAB Staining for Electron Microscopy  

Day 1: Seed Cells. Place 25 mm plastic coverslips in the wells of a 6-well cell tissue culture 

plate. Seed 1.0 x 106 HeLa 229 cells per well in DMEM + 10% FBS (see Note 1 and Note 

2). Incubate in a CO2 incubator set at 37° C and 5% CO2 for approximately one day. 

Day 2: Infect and Induce. The next day, verify that the number of cells doubled using a 

light microscope. Aspirate the old cell culture growth media from the wells. Immediately 

replace the old media with fresh DMEM + 10% FBS supplemented with 1 μg/mL 

cycloheximide and 1-2 U/mL penicillin G for wells to be infected with transformed 

Chlamydia strains and 1 μg/mL cycloheximide only for wells to be infected with wild type 
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Chlamydia (see Note 18). Replacing the media immediately after aspiration is important 

to ensure cells do not dry out and become stressed.  

1. Thaw Chlamydia strains to be used for infection on ice (see Note 22) using 

controls indicated in Table 2- 2. 

2. Infect with a multiplicity of infection of 0.75 Chlamydia cells per host cell for 

transformed strains and 0.4 for the wild type strain. The transformed Chlamydia 

strains are used at a higher multiplicity of infection than the wild type strain 

because they may not infect as efficiently. 

3. Tilt the plate back and forth and side to side to distribute the Chlamydia 

organisms throughout the cell layer. Centrifuge the plate at 400 x g for 15 

minutes. The plate is centrifuged to aid attachment to and infection of the host 

cells by the Chlamydia cells. Incubate the plate at 37° C and 5% CO2 for 7 

hours. 

4. At 7 hours post infection (hpi), pipette anhydrotetracycline into the wells to 

induce expression of APEX2 constructs. The optimal concentration must be 

determined empirically. In one example, APEX2 expression is induced at 7 hpi 

to maximize construct expression. The final concentration of 

anhydrotetracycline we used was 5.0 nM for some constructs and lower 

concentrations for one of the constructs (57). 

5. Tilt the plate back and forth and side to side to distribute the 

anhydrotetracycline throughout the wells.  

6. Incubate the plate at 37° C and 5% CO2 until 24 hpi. 

Day 3: Process for TEM (see Note 23 and Note 24) 

7. At 24 hpi, aspirate the media from the wells.  
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8. Wash the wells once with DPBS that has been prewarmed in a 37° C water 

bath.  

9. Aspirate the DPBS. 

10. Fix the samples by applying a solution of room temperature 2% 

paraformaldehyde, 2% glutaraldehyde, 0.1 M sodium cacodylate buffer to the 

wells.  

11. Place the plate on ice for 1 hour to fix the cells. 

12. Aspirate the fixative from the wells.  

13. Wash the wells five times for 2 minutes each time with cold 0.1 M sodium 

cacodylate. Keep the plate on ice during the washes. 

14. Block the samples by applying a solution of cold 20 mM glycine in 0.1 M sodium 

cacodylate, 2 mM CaCl2 for 5 minutes. Keep the plate on ice. 

15. Wash the wells five times for 2 minutes each time with cold 0.1 M sodium 

cacodylate. Keep the plate on ice during the washes. 

16. Pretreat the samples with a solution of DAB that does not contain H2O2 by 

applying a solution of cold 0.5 mg/mL DAB, 0.1 M sodium cacodylate, 2 mM 

CaCl2 for 30 minutes (see Note 25). Keep the plate on ice. As a negative 

control, do not apply this solution to one of the samples infected with a 

Chlamydia strain transformed with an APEX2 construct. Rather, apply a 

solution of cold 0.1 M sodium cacodylate instead. 

17. Aspirate the solutions from the wells.  

18. Treat the samples with a solution containing both DAB and H2O2 by applying a 

solution of cold 0.5 mg/mL DAB, 3 mM H2O2, 0.1 M sodium cacodylate, 2 mM 

CaCl2 for 30 minutes. Keep the plate on ice. For the negative control that is not 

supposed to receive DAB or H2O2, apply a solution of cold 0.1 M sodium 

cacodylate instead. 
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19. Aspirate the solutions from the wells. Wash the wells five times for 2 minutes 

each time with cold 0.1 M sodium cacodylate. Keep the plate on ice. 

20. The samples are then processed by an EM Facility. Briefly, the cells are post-

fixed with osmium tetroxide, stained with Toluidine Blue (to see the cells during 

processing), dehydrated with a series of increasing ethanol concentrations, 

embedded, sectioned, stained with uranyl acetate, stained with Reynold’s lead 

citrate, and visualized via TEM using an FEI Tecani G2 Spirit transmission 

electron microscope. See Fig. 2-2 for TEM images of DAB staining in HeLa 

cells infected with APEX2 fusion constructs. 
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Figure 2-2. DAB staining of the inclusion membrane by C. trachomatis serovar L2 IncA-
APEX2 

Wild type C. trachomatis serovar L2 (L2 WT)-infected HeLa 229 cells treated with DAB 
and H2O2 (A) and C. trachomatis serovar L2 IncA-APEX2 (L2 IncA-APEX2) -infected HeLa 
229 cells not treated with DAB or H2O2 (B) do not demonstrate DAB staining of the 
inclusion membrane. L2 IncA-APEX2 -infected HeLa 229 cells treated with DAB and H2O2 
(C) demonstrate DAB staining at the inclusion membrane as evidenced by the presence 
of the black polymer. Arrows point to examples of the DAB polymer. Scale bars (upper left 
corner) represent 2 µm in (A) and (B) and 0.5 µm in (C). 

Figure modified from Olson et al. 2019. MiMB   
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4. Notes 

1. HeLa cells at higher passage numbers tend to demonstrate decreased 

biotinylation compared to lower passage number HeLa cells. For best results, use 

HeLa cells between passage 3 and passage 16 after cells are cultured from frozen 

stocks. In addition, when transfecting HeLa cells with exogenous DNA (i.e. BioID 

constructs), all media should be antibiotic free as addition of antibiotics to tissue 

culture medium can negatively affect the transfection efficiency. If HeLa cells are 

routinely passaged in media containing antibiotics, passage the cells in medium 

without antibiotics at least twice before starting the BioID labeling experiments.  

2. Routinely test your cells for Mycoplasma contamination using a Mycoplasma test 

kit. We test our cells with each fresh vial and/or once a month. 

3. When creating BioID (BirA*) fusions, consideration must be made when choosing 

to position BirA* on either the N or C termini of your protein of interest. Thus, it is 

important to know the domains of your protein of interest and understand that the 

addition of BirA* could disrupt its function/localization. For example, we have 

created a construct containing BirA* fused to the N-terminus of syntaxin 6 (199), a 

host trans-Golgi network (TGN) protein, since it contains an C-terminal 

transmembrane domain. This positioning would help ensure the addition of BirA* 

would not disrupt its normal transmembrane localization within TGN-derived 

membranes.  

4. The stock of 1mM biotin in serum free 1X DMEM for BioID labeling experiments is 

stable for 8 weeks stored at 2-8°C. Dilutions to 50 μM in 1XDMEM + 1% FBS 

should be made the day of the biotin-labeling experiment for best results.  

5. Prior to affinity purification experiments using BioID constructs, it is critical to 

troubleshoot transfection conditions using your preferred transfection reagent 
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(amount of DNA, amount of transfection reagent, and cell density) in a 6-well tissue 

culture plate following the recommendations from the manufacturer. Different 

constructs will have different parameters for transfection, so it is important to 

troubleshoot each construct individually to maximize transfection efficiency. Each 

experimental condition uses a full 6-well plate to ensure proteins are at a high 

enough concentration for affinity purification and identification via mass 

spectrometry.   

6. Use consideration when determining what type of fixation solution and 

permeabilization reagent for immunofluorescence assays to use that will best 

capture the proteins you are interested. We use a 4% paraformaldehyde solution 

for 15 minutes at room temperature followed by permeabilization with 0.1% Triton 

X-100 in 1X PBS for 5 minutes at room temperature since the proteins we are 

interested in are normally localized within the Golgi and we want to preserve 

organelle/Golgi structure. Other techniques using methanol as a fixative can 

disrupt the structure of lipid membranes/organelles. Furthermore, cell components 

have been shown to be inside the inclusion after fixation when they are not present 

during live-cell imaging (214).  

7. Both the solubilization reagent used and the stock concentration of biotin-phenol 

is important to obtain efficient biotinylation during the labeling reaction step. We 

have observed the most efficient biotinylation using anhydrous DMSO (AnDMSO) 

to solubilize biotin-phenol immediately prior to the experiment (or ≤3 months at -

20 °C). We also observe the best results when our stock biotin-phenol kept at 50 

mM in AnDMSO rather than higher concentrations, which may affect the solubility 

of biotin-phenol. 

8. Trolox can be difficult to make as it requires several steps and has limited solubility 

(max solubility 100 mM). To make 100 mM Trolox: In a 15 mL conical tube mix  
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0.1 g Trolox with 0.43 mL of methanol and vortex vigorously until Trolox is in 

solution. After Trolox is in solution, add 3.2 mL of water and the sample will change 

color accompanied by an expansion in volume (it will have a cement like 

consistency). To get the Trolox back into solution, add 0.36 mL of 1 M sodium 

hydroxide and mix well by vortexing; adding more in small amounts as necessary. 

When the solution reaches pH 9.0-9.5, the Trolox will go into solution and should 

be slightly yellow. Store at -20 °C until use. Scale up as desired for larger volumes 

of 100 mM Trolox. We routinely make 45 mL of 100 mM Trolox at a time.  

9. Clastolactacystin β-lactone is soluble in methyl acetate and anhydrous DMSO 

(AnDMSO). Methyl acetate can be harmful to the cells. If purchased in methyl 

acetate, evaporate the methyl acetate with nitrogen gas and resuspend 

Clastolactacystin β-lactone in AnDMSO. Be aware that high DMSO concentrations 

can affect eukaryotic cell viability. To reduce this possibility, we resuspend 

Clastolactacystin β-lactone at 23 mM in AnDMSO. In an aqueous solution, 

Clastolactacystin β-lactone is only stable for one day, so dilute in RIPA buffer the 

day of sample collection, but it is stable in AnDMSO at -20°C.   

10. We prefer to use Pierce streptavidin magnetic beads (cat# 88816) as they have a 

high binding capacity. Other brands will likely work, but you will have to optimize 

the input concentration and elution conditions. In most cases boiled beads cannot 

be re-used for affinity purification experiments.   

11. Use premade/high grade Laemmli sample buffer (e.g., 2X Sample Buffer, BioRad, 

1610737) if intended for mass spectrometry. 

12. To minimize the loss of beads during the pipetting steps, hold a strong magnet 

directly next to the tube while removing supernatant (e.g., washes/unbound 

fraction).  
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13. We have found that 5 % milk in PBST greatly reduces background for visualization 

of most antibodies; however, streptavidin conjugates work best using 5% BSA in 

PBST. 

14. Do not exceed one hour for the Coomassie staining. Over-staining the gel can 

interfere with the downstream processing steps prior to the mass spectrometry 

analysis.   

15. Autoclaving is significant source for keratin contamination; rinse empty the tubes 

with 30% methanol as an extra wash step to remove contaminants.  

16. Work with your preferred core facility to design a digestion and mass spectrometry 

protocol. We have found a double digestion with Trypsin and AspN proteases 

improves the detection of membrane proteins. We also use a more sensitive mass 

spectrometer (Orbitrap Fusion ™ Lumos™; Thermo Scientific) the to increase the 

resolution of peptides detected.   

17. SAINT is freely available and uses output files from Scaffold (Scaffold, 

http://www.proteomesoftware.com/products/free-viewer) to construct the SAINT 

files for statistical analysis.   

18. Cycloheximide inhibits host cell protein synthesis; the media is supplemented with 

it to aid the growth of transformed Chlamydia strains. Penicillin G is added to select 

for the Chlamydia harboring the plasmid as the plasmid used for transformation 

contains the gene for beta-lactamase. Consequently, untransformed Chlamydia 

organisms will present as large, aberrant cells in the presence of penicillin G while 

transformed organisms will show normal morphology. For this reason, penicillin G 

is not added to the media of the wild type-infected sample. The concentration of 

penicillin G must be determined empirically. 

19. APEX2 can either be positioned at the N-terminus or the C-terminus of the gene 

of interest based on functions of the expressed proteins. For example, inclusion 
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membrane proteins (Incs) have an N-terminal type III secretion signal (58), so 

APEX2 was placed at the C-terminus to avoid interfering with secretion.  

20. Perform a quick centrifugation step before loading the eluate sample into a 

polyacrylamide gel. 

21. This section describes gel electrophoresis and western blotting methods to confirm 

sample biotinylation and preparation of samples for mass spectrometry analysis. 

After confirming biotinylation by western blot, to identify the biotinylated proteins, 

we recommend separating the sample briefly by electrophoresis and cutting the 

Coomassie stained gel into sections. This is preferred over digesting the 

biotinylated proteins directly off the beads or sending the entire eluate for mass 

spectrometry analysis; both can cause significant streptavidin background. 

Sectioning the gel enhances the resolution of peptide identification during mass 

spectrometry analysis. This is especially important when looking for chlamydial 

proteins in complex eukaryotic cell background.  

22. Be sure to have one cell sample infected with wild type, untransformed Chlamydia 

as a negative control, one cell sample infected with a strain of Chlamydia 

transformed with an APEX2 construct that will not receive DAB or H2O2 treatment 

later as another negative control, and one or more strains of Chlamydia 

transformed with APEX2 constructs as the experimental samples. 

23. The TEM protocol is adapted from Martell et al. 2017 (71). 

24. Every time a solution is placed in the wells, lift the coverslips slightly using a sharp 

object, such as a needle, to allow that solution to flow underneath the coverslips. 

25. Pretreatment with a solution containing DAB but not H2O2 may not be necessary 

depending on the situation. In our experience, we have seen better DAB labeling 

when samples are pretreated in comparison to samples that are not. Pretreatment 

allows the DAB molecules to diffuse into the cells (209). 
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Abstract 

Many intracellular bacteria, including the obligate intracellular pathogen Chlamydia 

trachomatis, grow within a membrane-bound “bacteria containing vacuole” (BCV). 

Secreted cytosolic effectors modulate host activity, but an understanding of the host-

pathogen interactions that occur at the BCV membrane is limited by the difficulty in 

purifying membrane fractions from infected host cells. We used the ascorbate peroxidase 

proximity labeling system (APEX2), which labels proximal proteins with biotin in vivo, to 

study the protein-protein interactions that occur at the chlamydial vacuolar, or inclusion, 

membrane. An in vivo understanding of the secreted chlamydial inclusion membrane 

protein (Inc) interactions (e.g., Inc-Inc and Inc-eukaryotic protein) and how these 

contribute to overall host-chlamydial interactions at this unique membrane is lacking. We 

hypothesize some Incs organize the inclusion membrane whereas other Incs bind 

eukaryotic proteins to promote chlamydial-host interactions. To study this, Incs fused to 

APEX2 were expressed in C. trachomatis L2. Affinity purification-mass spectrometry (AP-

MS) identified biotinylated proteins, which were analyzed for statistical significance using 

Significance Analysis of INTeractome (SAINT). Broadly supporting both Inc-Inc and Inc-

host interactions, our Inc-APEX2 constructs labeled Incs as well as known and previously 

unreported eukaryotic proteins localizing to the inclusion. We demonstrate that 

endogenous LRRFIP1 (LRRF1) is recruited to the inclusion by the Inc, CT226, using 

bacterial two-hybrid and co-immunoprecipitation assays. We further demonstrate 

interactions between CT226 and the Incs used in our study to reveal a model for inclusion 

membrane organization. Combined, our data highlight the utility of APEX2 to capture the 

complex in vivo protein-protein interactions at the chlamydial inclusion.   



79 

 

   

 

Introduction 

To capture dyanamic in vivo protein-protein interactions, including Inc-Inc 

interactions at the chlamydial inclusion, we were the first to use and characterize the 

feasibility, including important caveats, of using the ascorbate peroxidase proximity 

labeling system (APEX2) to identify Inc binding partners in the context of C. trachomatis 

infection (57). APEX2 has also recently been utilized by others in the field (with noted 

differences described in Discussion, (170)). APEX2, a mutated soybean peroxidase (168, 

193), can be fused to a protein of interest and activated during a short (one minute) 

reaction to covalently modify proximal proteins with a biotin molecule (193). This system 

can be used to capture in vivo “snapshots” of the dynamic protein-protein interactions that 

occur at the chlamydial inclusion during development. Incs fused to APEX2 are secreted 

by C. trachomatis and inserted in the inclusion membrane (57). Proteins proximal to the 

expressed Inc-APEX2 fusion protein are covalently modified with biotin after the addition 

of biotin-phenol and hydrogen peroxide to catalyze the APEX2 biotinylation reaction (57). 

An additional advantage of using APEX2 to identify Inc protein binding partners is the 

ability to use high concentrations of detergent to solubilize hydrophobic membrane 

proteins, like Incs, because there is no need to maintain binding partners after the covalent 

addition of biotin to neighboring proteins (57). Subsequently, the cells are lysed, and the 

biotinylated proteins are affinity purified using streptavidin beads and identified using mass 

spectrometry (AP-MS).  

We applied APEX2 to test our hypothesis using two Incs, IncF and IncA. IncF may 

be primarily involved in organizing the inclusion because it has been shown to interact 

extensively with other Incs via BACTH studies (105) and is expressed early after infection 

(102). IncA may primarily interact with eukaryotic proteins as it contains a eukaryotic 

SNARE-like domain (145) and has been shown to bind fewer Incs by the same BACTH 



80 

 

   

 

studies (105). We also created a truncated IncA (IncATM) to interrogate if removal of the 

C-terminal domain of IncA would alter the specificity of proteins labeled by this construct 

(57). Using the APEX2 proximity labeling system, we tested these interactions in vivo by 

transforming C. trachomatis serovar L2 with Inc-APEX2 fusion constructs that localize to 

the inclusion membrane when expressed (57). These experiments have helped define 

novel Inc-protein binding partners and whether Incs collaborate to support chlamydial 

development within the inclusion.  

We carefully designed our experiments to (i) inducibly express Incs which localize 

in a pattern that resembles their endogenous form in an effort to detect protein-protein 

interactions in the most “natural” conditions, (ii) control for background contaminant 

proteins, and (iii) statistically analyze the mass spectrometry interaction data in an 

unbiased manner to determine the probability of a “true” protein interaction. In regards to 

the latter point, our AP-MS data were analyzed for statistical significance using a 

Bayesian-based statistical analysis tool, Significance Analysis of INTeractome (SAINT) 

(207). In each Inc-APEX2 dataset, we identified chlamydial Inc proteins that were 

statistically significant, and we also identified eukaryotic proteins that had been previously 

shown to localize with the chlamydial inclusion. Importantly, we identified previously 

undescribed eukaryotic proteins at the inclusion membrane. Leucine-Rich Repeat 

Flightless-Interacting Protein 1 (LRRF1) was identified in all of our Inc-APEX2 datasets 

and has been identified in other AP-MS studies (122, 170, 171). We also identified a 

LRRF1 binding partner, Protein Flightless 1 homolog (FLII), in our IncA-APEX2 dataset, 

indicating that we were also identifying partial signaling pathways.  

The presence of LRRF1 in our datasets gave us the opportunity to ask why this is 

a prominently identified protein in ours and others’ AP-MS studies. We were skeptical that 

one protein was a true interactor with every single one of our Inc-APEX2 constructs. 
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Therefore, we designed a series of experiments to help us understand how LRRF1 was 

identified, either through direct interaction with one of our Inc-APEX2 constructs or 

interaction with an adjacent Inc, but within the labeling radius of our Inc-APEX2 constructs. 

For the first time, we demonstrate that endogenous LRRF1 and FLII localize with the 

chlamydial inclusion. LRRF1 localization with the inclusion was conserved between 

closely related C. trachomatis serovars and strains. By bacterial two-hybrid assay, LRRF1 

was found to interact with the Inc, CT226, which is consistent with a previous study which 

identified LRRF1 and FLII by transfecting Strep-tagged CT226 into uninfected eukaryotic 

cells (122). We also performed a co-immunoprecipitation using CT226-FLAG expressed 

from C. trachomatis and identified LRRF1 in the eluate. Overall, our proximity labeling 

system has identified both known and previously unreported proteins at the inclusion 

membrane and highlights the utility of an in vivo proximity labeling system to identify 

protein-protein interactions and how they are recruited to the chlamydial inclusion 

membrane.  

Methods  

Antibodies and reagents 

Primary antibodies used: mouse anti-FLAG (Sigma), rabbit anti-FLAG (Sigma), 

mouse anti-Giantin (Enzo), mouse anti-GAPDH (EMD Millipore), goat anti-MOMP 

(Meridian), rabbit anti-LRRF1 (Bethyl), rabbit anti-FLII (Thermo Fisher), rabbit anti-IncA 

(Kind gift from Ted Hackstadt, NIAID, Rocky Mountain Laboratories, Hamilton, MT), 

mouse anti-CT223 (Kind gift from R. Suchland, University of Washington, WA;, D. Rockey, 

Oregon State University, OR), mouse anti-C. trachomatis Hsp60 (a kind gift from Rick 

Morrison, University of Arkansas for Medical Sciences, Little Rock, AR), rabbit anti-C. 

burnetii (Elizabeth A. Rucks), mouse anti-C. pneumoniae AR39 (a kind gift from H. 

Caldwell, NIAID, Bethesda, MD). Secondary antibodies used for immunofluorescence 
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were each donkey anti-647, 594, 488, and 405, or streptavidin-488 conjugate. DRAQ5 

and DAPI were used to visualize DNA as indicated. Western blots were visualized using 

the appropriate secondary antibodies conjugated to IRDye 680LT, or IRDye 800 CW 

(LiCor Biosciences, Lincoln, NE), and membranes were imaged using Azure c600 (Azure 

Biosystems, Dublin, CA) and processed using Adobe photoshop creative cloud (Adobe).  

Organisms and cell culture 

HeLa 229 cells [American Type Culture Collection (ATCC); Manassas, VA; CCL-

2.1] were cultured at 37°C with 5% CO2 in biotin-free DMEM (Gibco; Grand Island, NY) 

that was supplemented with 10% heat-inactivated fetal bovine serum (FBS; HyClone, 

Logan, UT), for routine tissue culture, or with 1% FBS, for experiments involving 

biotinylation as previously described (57) with 10 μg/mL gentamicin (Gibco-BRL/Life 

Technologies; Grand Island, NY). HeLa cells were used to propagate Chlamydia 

trachomatis serovar L2 (LGV 434) for purification using established protocols (215, 216). 

Chlamydial titers were determined using conventional protocols to establish multiplicities 

of infection (m.o.i.), based on inclusion forming units (i.f.u.) and determined in HeLa cells 

as previously described (216, 217). McCoy cells (ATCC; Manassas, VA; CRL-1696) were 

cultured at 37°C with 5% CO2 in biotin-free DMEM (Gibco; Grand Island, NY) that was 

supplemented with 10% fetal bovine serum (FBS; HyClone, Logan, UT) used for C. 

trachomatis L2 (LGV 434) transformation experiments. HeLa cells, McCoy cells, and 

density-gradient purified C. trachomatis strains are routinely tested for Mycoplasma spp 

(Lookout Mycoplasma PCR Detection Kit, Sigma; St. Louis, MO). For some experiments, 

C. trachomatis serovar D (UW3-CX), C. muridarum, C. caviae, C. pneumoniae AR39, and 

Coxiella burnetii avirulent Nine Mile Phase II (provided by Bob Heinzen, Rocky Mountain 

Laboratories, Hamilton, MT) were used (48).  

Creation of Inc fusion constructs for transformation into C. trachomatis L2 
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All primers used in this study are listed in Table S3-5. All plasmids and E. coli 

strains used in cloning projects are listed in Table S3-6. The Inc-APEX2 fusion constructs 

were made as previously described (57). pcDNA3 APEX2-NES was a gift from Alice Ting 

(Addgene plasmid # 49386) (189). APEX2 contains a single N-terminal FLAG tag. For the 

construction of IncF-FLAG, IncF with the C-terminal FLAG epitope was amplified from 

pTLR2 IncF-APEX2 (57) and cloned into pTLR2. CT226 was amplified from C. trachomatis 

L2 genomic DNA with primers containing a C-terminal FLAG tag and inserted into the 

mCherry site pBOMB4-Tet (EagI/KpnI) (a gift from Dr. T. Hackstadt, NIAID, Rocky 

Mountain Laboratories, Hamilton, MT) using NEBuilder HiFi Assembly Cloning Kit 

(NEBuilder). The final constructs were transformed into dam-/dcm- E. coli. All constructs 

were confirmed by sequencing (Eurofins MWG Operon; Huntsville, AL).  

Transformation of C. trachomatis L2 

C. trachomatis L2 transformations were performed as described previously (116, 

211). C. trachomatis L2 transformed with a plasmid that expresses the Inc-APEX2 

constructs (57) were plaque purified as described elsewhere (116, 218) and density 

gradient purified. Both pTLR2-IncF-FLAG and pBOMB4-Tet-CT226-FLAG were 

transformed as above in the presence of 1 U/mL penicillin and 1 μg/mL cycloheximide.  

Electron microscopy determination of APEX2 activity and localization 

HeLa cells were seeded at 1.0 x 106 cells/well in a 6-well plate containing 25 mm 

Thermanox cell culture treated coverslips for electron microscopy (Nunc; Rochester, NY). 

To confirm construct expression using indirect immunofluorescence, glass coverslips 

were included in duplicate wells of a 24-well plate. Wells were infected with C. trachomatis 

L2 wild-type, or L2 transformed with a plasmid that expresses IncF-APEX2, IncATM-

APEX2, IncA-APEX2, or APEX2 only. C. trachomatis L2 IncF-APEX2, IncATM-APEX2 

(m.o.i. 0.75) were infected by centrifugation in DMEM + 10% FBS containing 2 U/mL 
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penicillin and 1 μg/mL cycloheximide. C. trachomatis L2 IncA-APEX2 and APEX2 only 

(m.o.i. 0.75) infected wells received 1 U/mL penicillin and 1 μg/mL cycloheximide. C. 

trachomatis L2 wild-type was infected (m.o.i. of 0.4) in DMEM + 10% FBS containing 1 

μg/mL cycloheximide. At 7 hpi, the C. trachomatis L2 strains were induced with 0.3 nM 

aTc for the expression of IncF-APEX2, and 5 nM for all other strains and C. trachomatis 

L2 wild-type respectively. At 24 hpi, glass coverslips were fixed in 4% paraformaldehyde 

for 15 min at room temperature (RT) and methanol permeabilized for 5 min, then 

processed for immunofluorescence confirmation of construct expression as above.  

The wells intended for electron microscopy were prepared using a protocol 

adapted from Martell et al. 2017 (209). Briefly, cells were washed with dPBS and fixing 

solution (2% glutaraldehyde, 2% paraformaldehyde in 0.1 M sodium cacodylate) was 

added to the wells and incubated on ice for 1 hour. All subsequent steps were performed 

on ice. The expressed APEX2 remains functional after fixing (using conditions below 4% 

formaldehyde). After 1 hour, the wells were washed 5 x 2 min with cold buffer A solution 

(0.1 M sodium cacodylate). To quench unreacted aldehyde groups, cold 20 mM glycine 

containing 2 mM CaCl2 in wash buffer A was incubated with the cells for 5 min. The wells 

were washed 5 x 2 min with cold buffer A. To enhance diffusion of the large molecule, 

3,3′-Diaminobenzidine (DAB), the cells were pre-treated with 0.5 mg/mL DAB in buffer A 

containing 2 mM CaCl2 for 30 min prior to the polymerization step. The pre-treatment step 

allows the DAB to uniformly diffuse into the cells without being converted to the polymer 

(no H2O2 present). To catalyze the polymerization of DAB (regions proximal to APEX2) 

0.5 mg/mL DAB and 3 mM H2O2 in buffer A containing 2 mM CaCl2 was added to cells and 

incubated for 30 min. Negative controls to determine background activity included C. 

trachomatis L2 wild-type with DAB treatment and C. trachomatis L2 IncA-APEX2, induced, 

without DAB. Polymerized DAB is unable to diffuse from the subcellular compartment. 
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Finally, the wells were washed 5 x 2 min with cold buffer A and delivered to the University 

of Nebraska Medical Center electron microscopy core to be processed. In brief, the 

samples were post-fixed with 1% osmium tetroxide, stained with Toluidine Blue, 

dehydrated with a series of increasing ethanol concentrations, embedded and sectioned. 

Sections were placed on 200 mesh uncoated copper grids (Ted Pella Inc.), stained with 

uranyl acetate and Reynold’s lead citrate, and examined using a Tecnai G2 Spirit (FEI) 

transmission electron microscope (TEM) operated at 80 Kv. Representative electron 

micrographs are shown.  

FLAG affinity purification of APEX2 fusion constructs  

HeLa cells were seeded in a 6-well plate in DMEM + 10% FBS and allowed to grow 

overnight. The cells were infected with C. trachomatis L2 IncF-APEX2, IncATM-APEX2, 

IncA-APEX2, or APEX2 only (m.o.i. 0.75) with DMEM + 10% FBS containing 1 µg/mL 

cycloheximide, plus appropriate antibiotics (2 U/mL penicillin for C. trachomatis L2 IncF-

APEX2 and IncATM-APEX2, 1 U/mL penicillin for C. trachomatis L2 IncA-APEX2 and 

APEX2) and induced at 7 hpi with 0.3 nM aTc (IncF-APEX2 only; see (57) regarding lower 

induction levels), and 5 nM aTc (all other C. trachomatis L2 strains). The cell collection, 

lysis procedure, and FLAG affinity purification were performed essentially as previously 

described (219). Briefly, at 24 hpi, coverslips were removed from the respective wells, 

methanol fixed for 5 min at RT, and the remaining cells were scraped into dPBS and 

centrifuged at 900 × g for 10 min at 4°C. The pellets were resuspended in cell lysis buffer 

[50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.5% sodium deoxycholate, 0.1% sodium dodecyl 

sulfate (SDS), 1% Triton X-100 (Sigma; St. Louis, MO), 1X HALT protease inhibitor 

cocktail (Thermo; Waltham, MA), universal nuclease (Pierce; Rockford, IL), and 150 μM 

Clastolactacystin-β-lactone (Santa Cruz Biotechnology, Dallas, TX)]. Equal volumes (EZQ 

protein quantification; Life Technologies, Carlsbad, CA) of clarified lysates were prepared 
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for FLAG affinity purification with FLAG magnetic beads (Sigma; St. Louis, MO) and 

rotated for 2 hours at 4° C. The affinity purified proteins were eluted in 30 µL of lysis buffer 

(above) containing FLAG peptide (200 µg/mL). The eluates from each sample were 

combined with an equal volume of 4x Laemmli sample buffer containing 5% β-

mercaptoethanol and then loaded into a Criterion Midi 4-20% gradient SDS-PAGE 

(BioRad; Hercules, CA). The gel was transferred to PVDF (0.45 μm, Thermo Scientific; 

Waltham, MA) and blotted using anti-FLAG antibody to detect construct expression. 

Clarified lysate (used as the input for the FLAG affinity purification) was electrophoresed 

and transferred to PVDF to blot for chlamydial Hsp60 as a loading control.  

Labeling with biotin-phenol and affinity purification of biotinylated proteins 

To identify proteins that were biotinylated using C. trachomatis L2 IncF-APEX2, 

IncATM-APEX2, IncA-APEX2, and APEX2, HeLa cells were seeded into a 6-well plate in 

DMEM + 1% FBS for 1,  6-well plate per condition (e.g., one plate for L2 IncF-APEX2 for 

induced and one plate for uninduced etc.). To monitor construct expression and 

biotinylation, coverslips were placed in 2 of the wells of the 6-well plate. The biotinylation 

assays were performed essentially as previously described (57, 168, 193). The cells were 

infected with C. trachomatis L2 IncF-APEX2, IncATM-APEX2, IncA-APEX2, or APEX2 only 

(m.o.i. 0.75) with DMEM + 10% FBS containing 1 µg/mL cycloheximide, plus appropriate 

antibiotics (2 U/mL penicillin for C. trachomatis L2 IncF-APEX2 and IncATM-APEX2, 1 

U/mL penicillin for C. trachomatis L2 IncA-APEX2 and APEX2), and centrifuged 400 × g 

at RT for 15 min. Penicillin and cycloheximide were present for all biotinylation 

experiments to preserve the integrity of our C. trachomatis L2 strains that were 

transformed with a plasmid and to minimize host cell background, respectively. The 

samples were induced for construct expression at 7 hpi with 0.3 nM aTc (IncF-APEX2 

only; see (57) regarding lower induction levels) or 4 nM aTc (all other strains). At 23.5 hpi, 



87 

 

   

 

the cell monolayers were incubated with 1.5 mM biotinyl-tyramide (biotin-phenol) 

(AdipoGen, San Diego, CA) for 30 min at 37°C + 5% CO2. At 24 hpi, the labeling process 

was catalyzed, quenched, and the lysate was collected as previously described (57). 

Normalized lysates (1 mg/mL) were added to equilibrated streptavidin magnetic beads 

(Pierce; Rockford, IL) and rotated for 90 min at RT. Proteins were eluted from streptavidin 

magnetic beads by 4 min incubation at 95 °C in 2x Laemmli sample buffer containing 0.5 

mM biotin. The eluates were loaded into Criterion Midi 4-20% gradient denaturing gels 

(BioRad; Hercules, CA) in duplicate. The gel intended for Coomassie staining was 

resolved briefly (~2-3 cm), then stained (10% methanol, 5% acetic acid, Coomassie blue 

G). The duplicate gel, for western blot confirmation of affinity purification was resolved 

completely, transferred to PVDF (0.45 μm, Thermo Scientific; Waltham, MA) and blotted 

using the indicated primary antibodies, a streptavidin-488 conjugate 

(immunofluorescence) or streptavidin-680 conjugate (western blot), and appropriate 

secondary antibodies conjugated to IRDye 680LT, IRDye CW, or a streptavidin-IRDye 

680LT conjugate (LiCor Biosciences, Lincoln, NE). The PVDF membranes were imaged 

using an Azure c600 (Azure Biosystems, Dublin, CA) and processed using Adobe 

photoshop creative cloud (Adobe).  

Identification of biotinylated proteins using mass spectrometry 

Coomassie-stained gels were imaged, then each lane was cut into six gel fractions 

to enhance the resolution of lower abundance proteins. The UNMC proteomics core facility 

performed in-gel digestion, preparation, and analysis of gel fractions. Protein fractions 

excised from the SDS-PAGE were destained, reduced with tris-carboxyethyl phosphine, 

alkylated with iodoacetamide, and were digested overnight with sequencing-grade trypsin 

(Promega; Madison, WI) and Asp-N (Promega; Madison, WI). Trypsin (cleaves Lys and 

Arg) and Asp-N endoproteinase (cleaves Asp and Cys residues). Peptides were eluted 
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from the gel and concentrated to 20 μL by vacuum centrifugation and analyzed using a 

high-resolution mass spectrometry nano-LC-MS/MS Tribrid system, Orbitrap Fusion™ 

Lumos™ coupled with UltiMate 3000 HPLC system (Thermo Scientific; Waltham, MA). 

Approximately 500 ng of peptides were run by the pre-column (Acclaim PepMap™ 100, 

75μm × 2cm, nanoViper, Thermo Scientific; Waltham, MA) and the analytical column 

(Acclaim PepMap™ RSCL, 75 μm × 50 cm, nanoViper, Thermo Scientific; Waltham, MA). 

The samples were eluted using a 100-min linear gradient of Acetonitrile (2.5-45 %) in 0.1% 

Formic acid. 

All MS/MS samples were analyzed using Mascot (Matrix Sciences, London, UK, 

vs. 2.6.). Mascot was set up to search the SwissProt database (selected for Homo 

sapiens, 2017_02, 20286 entries and C. trachomatis 434/Bu entries) assuming the 

digestion enzymes trypsin and AspN. Parameters on MASCOT were set as follows: 

Enzyme: Trypsin and Asp-N for biological replicates n=5, Max missed cleavage: 2, Peptide 

charge: 1+, 2+ and 3+, Peptide tolerance: ± 0.8 Da, Fixed modifications: carbamidomethyl 

(C), Variable modifications: oxidation (M) and biotin-phenol (C, Y, W, H). MS/MS 

tolerance: ± 0.6 Da, Instrument: ESI-TRAP. Proteins identified by Mascot search were 

uploaded into Scaffold for visualization of the identified proteins (Scaffold, Proteome 

Software, Inc. Portland, Oregon).  

Statistical analysis of mass spectrometry samples using Significance Analysis of 

INTeractome (SAINT) 

Significance Analysis of INTeractome (SAINT) was performed to assign statistical 

significance (Bayesian false discovery rate; BFDR) to our mass spectrometry data (207). 

SAINT calculates the probability that a protein identified in the test sample is a true 

interacting protein based on average hits in the test samples compared to the control in 

an unbiased fashion. Scaffold files containing each replicate (n=5) were set to 95% protein 



89 

 

   

 

threshold, 1 peptide minimum, and 95% peptide threshold, and the sample report was 

exported to an excel file. The sample report file was used to make three files required for 

SAINT analysis: bait, prey, and interaction (Table S3-1 and S3-3). The bait file 

corresponds to the sample condition (e.g., IncF-APEX2, replicate 1, Test condition) and 

assigns samples as either a test or control. For our dataset, the Inc-APEX2 biotinylated 

proteins via IncF-APEX2, IncATM-APEX2, IncA-APEX2 are the test, “T”, and the controls 

“C” were assigned to APEX2, L2 wild-type, and mock-infected HeLa cells. The prey file is 

the list of all the proteins from the Scaffold sample reports file using their gene names and 

amino acid length (obtained from UniProt). The last file required for SAINT is the 

interaction file which assigns the biological replicate number and spectral counts for each 

protein identified in the test subjects and the control samples. These files are input to 

calculate the Bayesian False Discovery Rate (BFDR) and were used to prioritize which 

proteins were statistically significant (207). We then input high confidence data (BFDR 

≤0.05) into the pipeline to visualize interaction networks created using the STRING 

database (interaction confidence 0.7 STRING). The defined STRING networks were 

exported and analyzed using Cytoscape v 3.7.1 (220) with ClueGo to determine globally 

enriched biological processes and molecular functions within each dataset.  

Transfection of LRRF1-GFP and FLII-GFP 

LRRF1 detected by mass spectrometry corresponded to LRRF1 variant 3. To 

assess LRRF1 and FLII localization during C. trachomatis L2 infection, we obtained 

pCMV6-AC-LRRF1-GFP (LRRF1 variant 3; origene #RG226542; Rockville, MD) and 

pCMV6-AC-FLII-GFP (Origene # RG206863; Rockville, MD) respectively. For DNA 

transfections, 8 x 104 HeLa cells per well were seeded in a 24-well plate onto 12 mm glass 

coverslips. Approximately 24 hours later fresh DMEM + 10 % FBS (antibiotic free) was 

added to the cells. Transfection efficiency was first optimized using varying nanogram 
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amounts of pDNA and volumes of jetPRIME® transfection reagent (Polyplus; Illkirch, 

France). Optimal efficiency was determined at 100 ng of pCMV-LRRF1-GFP or 500 ng 

pCMV6-AC-FLII-GFP added to 50 µL of jetPRIME® buffer and 1.0 µL of transfection 

reagent (Polyplus; Illkirch, France). Samples were vortexed for 10 sec, centrifuged briefly, 

and incubated at RT for 10 min. The plasmid/transfection reagent mixture was added 

dropwise to individual wells. After four hours post-transfection, the media was changed 

and two hours later (6 hours post-transfection), HeLa cells were infected with C. 

trachomatis L2 wild-type (m.o.i. 0.8) by centrifugation at 400 x g for 15 min at RT. At 24 

hpi, cells were fixed in 4% paraformaldehyde, permeabilized with 0.5 % Triton X-100 for 

5 min at RT and stained for immunofluorescence to visualize the inclusion membrane 

(anti-CT223), LRRF1-GFP or FLII-GFP, and DNA (DAPI). The coverslips were imaged 

using Zeiss with Apotome.2 at 100x. Scale bar = 10 µm. Inclusion area measurements 

were also taken for LRRF1-GFP transfected HeLa cells infected with C. trachomatis L2 

wild-type and compared to the inclusion area for non-transfected cells. The inclusion area 

is reported LRRF1-GFP Total (the inclusions from both high and low LRRF1-GFP 

expressing cells) and individually for LRRF1-GFP high and low expression only (see 

inset). A minimum of 100 inclusions were measured for non-transfected samples, and a 

minimum of 100 inclusions were measured for each HeLa cells with high LRRF1-GFP 

expression and low LRRF1-GFP expression of (see inset). Two independent experiments 

were performed. Inclusion area was graphed in GraphPad Prism 7 and a one-way ANOVA 

with Tukey’s multiple comparisons post-hoc test was performed to determine statistical 

significance.  

siRNA knockdown of LRRF1 to determine the effect on infectious progeny production 

siRNA knockdown experiments were performed following the manufacturer's 

protocol (Polyplus; Illkirch, France). Non-targeting siRNA (Origene #: SR30004; Rockville, 
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MD), GAPDH siRNA (Ambion cat #4390849), and pooled LRRF1 siRNA (Ambion Life 

Technologies siRNA cat #43450, s229968, and s17599) were used in knockdown 

experiments. siRNA experiments were set up in quadruplicate to confirm LRRF1 

knockdown efficiency by western blot (one well), to detect LRRF1 (unpublished) or FLII 

localization by immunofluorescence (one well), and to quantify infectious progeny (two 

wells). Briefly, 20 nM of the non-targeting (NT), GAPDH, single LRRF1 siRNA, or pooled 

LRRF1 siRNA was added to serum free Opti-MEM (100 μL/well), and 2 μL of INTERFERin 

reagent (Polyplus; Illkirch, France) was added to each well. The wells were incubated for 

15 min at RT with gentle rocking. Then 2.5 x 104 HeLa cells were added to each well on 

top of the siRNA/transfection reagent mixture and incubated at 37 °C + 5% CO2. The 

media was replaced with fresh DMEM + 10% FBS after 24 hours. At 48 hours post-siRNA 

transfection, HeLa cells were infected with C. trachomatis L2 wild-type (m.o.i. 0.8) by 

centrifugation at 400 x g 15 min at RT.  

At 30 hpi, to confirm knockdown efficiency, C. trachomatis L2 infected HeLa cells 

were trypsinized, centrifuged and resuspended in 2x Laemmli sample buffer. The lysate 

was loaded, electrophoresed, and transferred to PVDF, then blotted to detect the 

presence of LRRF1 and GAPDH. To measure infectious progeny, experiments were 

performed essentially as previously described (146, 148). Briefly, duplicate wells for each 

sample were lysed at 30 hpi by scraping and then centrifuged at 17,000 × g for 30 min at 

4 °C. The pellet was resuspended in sucrose phosphate buffer (2SP), serially diluted, and 

infected in duplicate onto a fresh monolayer of HeLa cells by centrifugation at 400 × g for 

15 min at RT. Cells were incubated at 37°C + 5% CO2 for 15 min, then the 2SP buffer was 

replaced with DMEM + 10 % FBS containing 1 μg/mL cycloheximide. To quantify 

infectious progeny, at 24-30 hours post-secondary infection, the cells were fixed in 

methanol for 5 min at RT and processed for indirect immunofluorescence to visualize the 
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inclusion using anti-MOMP antibodies (Meridian Biosciences; Memphis, TN). The average 

inclusion forming units (IFU/mL) from three biological replicates is reported.  

Validation of LRRF1 at the chlamydial inclusion and time course experiments 

HeLa cells infected with C. trachomatis L2 (m.o.i 0.75) in DMEM + 10% FBS 

without antibiotics were fixed at 24 hpi in 4% paraformaldehyde, permeabilized with 0.5 % 

Triton X-100 for 5 min at RT and stained for immunofluorescence to visualize the inclusion 

membrane (anti-CT223), LRRF1, and DNA (DAPI). The coverslips were imaged using 

Zeiss with Apotome.2 at 100x. Scale bar = 10 µm. 

For the time course experiments, HeLa cells infected with C. trachomatis L2 (m.o.i 

0.75) or mock-infected in DMEM + 10% FBS without antibiotics were fixed at 8, 12, 16, 

24, and 36 hpi in methanol for 5 min at RT. One sample was treated with 34 µg/mL 

chloramphenicol at 8 hpi and then methanol fixed at 36 hpi. Fixed coverslips were stained 

for immunofluorescence to visualize the inclusion membrane (anti-CT223), LRRF1, 

Chlamydiae (MOMP), and DNA (DAPI) and imaged using Zeiss with Apotome.2 at 100x. 

Scale bar = 10 µm. 

Assessing LRRF1 localization during infection of C. trachomatis serovars, Chlamydia 

species and Coxiella burnetii 

HeLa cells infected with C. trachomatis L2 (m.o.i 0.75), C. trachomatis serovar D 

(m.o.i 1), C. muridarum (m.o.i 0.25), C. caviae (m.o.i 0.25), C. pneumoniae (m.o.i 1), and 

Coxiella burnetii avirulent Nine Mile Phase II were used. DMEM + 10% FBS media did not 

contain antibiotics (penicillin or cycloheximide) for these experiments. C. trachomatis 

serovar D was pre-treated with DEAE-Dextran prior to infection. All Chlamydia-infected 

HeLa cells were centrifuged at 400 x g 15 min at RT. C. burnetii Nine Mile Phase II infected 

HeLa cells were centrifuged for 1 hr at 2000 rpm at RT. At 24 hpi, C. trachomatis L2, C. 



93 

 

   

 

trachomatis serovar D, C. muridarum, and C. caviae infected HeLa cells were methanol 

fixed and stained for immunofluorescence. At 96 hpi, C. pneumoniae infected HeLa cells 

were fixed in 4% paraformaldehyde, permeabilized with 0.5% Triton X-100 and stained for 

immunofluorescence. At 3 days post infection, C. burnetii Nine Mile Phase II infected HeLa 

cells were methanol fixed for 5 min at RT and stained. Coverslips were stained using 

organism-specific and LRRF1 antibodies listed in to examine LRRF1 localization and 

DRAQ5 or DAPI to visualize DNA.  

Bacterial adenylate cyclase two-hybrid (BACTH) assays 

To screen for LRRF1 interacting partners, LRRF1 was amplified from the pCMV-

LRRF1-GFP vector (Origene; Rockville, MD), and Incs were amplified from C. trachomatis 

L2 genomic DNA using primers with overlapping sequences for each pST25 and pUT18C 

vectors (Table S3-5, Table S3-6). LRRF1, CT288, CT226, CT223, IncA, IncF, and IncE 

were amplified using the primers listed in Table S3-6 were cloned into each either pST25 

or pUT18C using the NEbuilder HiFi Assembly Cloning Kit (NEBuilder) and transformed 

into DH5α lacIq E. coli. Individual clones were cultured overnight, pDNA was isolated 

(Qiagen; Germantown, MD), verified by restriction digest, and the final clones were verified 

by DNA sequencing. pUT18C-IncF (Gateway®) (serovar D) was made as previously 

described (105). To screen for interactions, assays were performed as described 

previously (105, 165, 221-223). Briefly, plasmids were co-transformed into DHT1 (ΔcyaA) 

E. coli (Table S3-6) and prior to plating, E. coli cells were pelleted, washed and 

resuspended in 1x M63 minimal media. The resuspended DHT1 E. coli were then plated 

on 1x M63 minimal media plates containing, 0.2% Maltose, Isopropyl β-D-1-

thiogalactopyranoside (IPTG; 0.5 mM), 5-bromo-4-chloro-3-indolyl-β-D-

galactopyranoside (X-gal; 0.04 mg/mL), casamino acids (0.04%), spectinomycin (25 

µg/mL), and ampicillin (50 µg/mL) and incubated at 30 °C for 3-5 days. To quantify 



94 

 

   

 

interactions by β-galactosidase assay, eight colonies (or streaks from negative plates) 

were set up for overnight culture in minimal media (1x M63 containing 0.2% maltose, IPTG 

0.5 mM, 0.04 mg/mL X-gal, 0.01% casamino acids, spectinomycin (25 µg/mL), and 

ampicillin (50 µg/mL). After 20-24 hours, the cultures were diluted, and the OD600 was 

measured. A duplicate set of samples were permeabilized with SDS (0.05 %) and 

chloroform. After permeabilization, the supernatant was transferred to an optical plate 

containing 0.4% ONPG in PM2 buffer with 100 mM 2-mercaptoethanol. After 20 minutes, 

the enzymatic reaction was stopped with 1 M Na2CO3 stop solution and the absorbance 

at 405 nm was measured. The OD405 was normalized to bacterial growth (OD600) and 

reported as relative units (RU). A positive interaction is defined as greater than five times 

the negative control (164). Three independent experiments were analyzed for each 

interaction and graphed using GraphPad Prism 7 and reported as the mean with standard 

deviation.  

Super resolution microscopy to assess LRRF localization with Incs 

HeLa cells seeded on glass coverslips were infected with C. trachomatis L2 wild-

type, or C. trachomatis L2 strains containing plasmids that express IncF-APEX2, IncATM-

APEX2, IncA-APEX2, or CT226-FLAG and induced for expression at 20 hpi (5 nM aTc for 

all strains except IncF-APEX2 was induced with 1 nM aTc). At 24 hpi, coverslips were 

rinsed once with dPBS and then fixed with ice cold methanol and stained for 

immunofluorescence to visualize construct expression (FLAG) or CT223 (red), LRRF1 

(green), Chlamydiae and DNA (blue). Coverslips were imaged using Zeiss ELYRA PS.1 

Super Resolution Microscope Zeiss with Structured Illumination Microscopy (SIM). Scale 

bar = 5 µm. Using Zen Blue (Zeiss), 3D snapshots from C. trachomatis L2 CT226-FLAG 

infected HeLa cells and C. trachomatis L2 IncA-APEX2 infected HeLa cells with IncA fibers 

were generated and exported for visualization. 



95 

 

   

 

Overexpression of CT226-FLAG from C. trachomatis L2 CT226-FLAG results in increased 

LRRF1 and FLII at the inclusion membrane 

HeLa cells seeded on glass coverslips were infected with C. trachomatis L2 

transformed with a plasmid that expresses CT226-FLAG and either not induced or induced 

for expression at 7 hpi using 5 nM or 20 nM aTc. At 24 hpi, coverslips were fixed with 3% 

formaldehyde and 0.022% glutaraldehyde in dPBS, permeabilized with methanol, and 

stained for immunofluorescence to visualize construct expression (FLAG; red), 

Chlamydiae (MOMP; gray), DNA (DAPI; blue), and either LRRF1 (green) or FLII (green). 

Coverslips were imaged using a Zeiss confocal LSM 800 with 63x magnification and 2x 

zoom. Scale bar = 5 µm. Images were captured using the same exposure time (set for 20 

nM aTc images) for uninduced and 5 nM aTc samples.  

To examine LRRF1 recruitment using normal exposure time HeLa cells seeded on 

glass coverslips were infected with C. trachomatis L2 CT226-FLAG and either not induced 

or induced for expression at 7 hpi using 5 nM. At 24 hpi, coverslips were fixed with 4% 

paraformaldehyde, permeabilized with 0.5% triton X-100, and stained for 

immunofluorescence to visualize construct expression (FLAG; red), LRRF1 (green), GFP 

expressing Chlamydiae (pseudo-color blue), and DNA (DAPI; blue). Coverslips were 

imaged using a Zeiss with Apotome 2.1 with 100x magnification. Scale bar = 10 µm.  

Co-immunoprecipitation of CT226-FLAG with endogenous LRRF1 

HeLa cells were seeded in a 6-well plate in DMEM + 10% FBS and allowed to grow 

overnight. A coverslip was placed in two wells of each 6-well plate to monitor construct 

expression and localization by indirect immunofluorescence for each experiment. The 

cells were infected with C. trachomatis L2 CT226-FLAG and IncF-FLAG (m.o.i. 0.8) with 

DMEM + 10% FBS containing 1 U/mL penicillin (no cycloheximide) and not induced or 

induced with 5 nM (CT226-FLAG) or 1 nM aTc (IncF-FLAG) at 7 hpi. At 24 hpi, coverslips 
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were removed, fixed in 4% paraformaldehyde, triton-X permeabilized (0.5%) and stained 

for immunofluorescence to detect construct expression (FLAG), the inclusion membrane 

(IncA), DNA and Chlamydiae. The cells were lysed and affinity purified using FLAG 

magnetic beads as described above and previously (219). The eluates were mixed with 

an equal volume of 4x Laemmli sample buffer containing 5% β-mercaptoethanol and then 

loaded into a Criterion Midi 4-20% gradient SDS-PAGE (BioRad; Hercules, CA). The gel 

was transferred to PVDF (0.45 μm, Thermo Scientific; Waltham, MA) and blotted using 

anti-FLAG antibody to detect construct expression and anti-LRRF1 antibody. Three 

biological replicates were analyzed by co-immunoprecipitation.  

Results 

Biotinylation of proximal proteins at the inclusion membrane using C. trachomatis L2 

strains that express IncF-APEX2, IncATM-APEX2, or IncA-APEX2 

To examine our hypothesis that some Incs preferentially interact with other Inc 

proteins whereas other Incs primarily interact with eukaryotic proteins, we used the 

ascorbate peroxidase proximity labeling system (APEX2) to determine chlamydial Inc 

binding partners in vivo (57). To do this, we transformed C. trachomatis serovar L2 with a 

plasmid encoding IncF-APEX2, IncATransmembrane Domain-APEX2 (IncATM-APEX2), IncA-

APEX2, or APEX2 only controlled by an anhydrotetracycline (aTc) inducible promoter 

system. IncF has previously been shown to interact with several Incs (105) and contains 

a short cytosolic domain, which could limit its ability to interact with eukaryotic proteins. In 

the same study, IncA interacted with fewer Incs (105) and has a large cytosolic domain 

with a eukaryotic SNARE-like domain (110-112, 145), suggesting that IncA might 

preferentially interact with eukaryotic proteins. IncATM-APEX2 is truncated to have a short 

cytosolic domain like IncF-APEX2 and is to determine if the C-terminus of IncA confers 

specificity towards determining protein binding partners (57). APEX2 only is a negative 
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control included in each experiment and, when expressed in transformed C. trachomatis 

L2, remains in the bacterial cytosol because it lacks the type III secretion signal (Fig. 3-1) 

(57). All proximity labeling experiments were performed using a plaque-cloned population 

of C. trachomatis L2 strains. HeLa 229 cells were infected with C. trachomatis L2 IncF-

APEX2, IncATM-APEX2, IncA-APEX2, or APEX2 strains and induced with 

anhydrotetracycline (aTc). As previously determined, this resulted in the expression and 

localization of each construct that matches endogenous IncA and IncF (44, 57, 88). An 

epitope tag (FLAG) is located at the N-terminus of APEX2 and is used to visualize the 

localization of the various APEX2 constructs expressed from C. trachomatis L2.  

For each biotinylation experiment, coverslips were placed in two wells of a six-well 

plate to confirm the presence of biotinylated proteins at the inclusion membrane by indirect 

immunofluorescence microscopy. This was performed for each of the test conditions and 

controls. HeLa cells were infected with C. trachomatis L2 IncF-APEX2, IncATM-APEX2, 

IncA-APEX2, or APEX2 and construct expression was induced at 7 hpi (0.3 nM aTc for 

IncF-APEX2 and 4 nM aTc for all other strains). Biotin-phenol was added to each well at 

23.5 hpi, and at 24 hpi hydrogen peroxide (H2O2) was added to the wells to catalyze the 

biotinylation reaction during a one-minute incubation. After biotinylation, the enzymatic 

APEX2 activity was quenched. Coverslips were removed from the wells, fixed, then 

stained for immunofluorescence to confirm appropriate biotinylation. Separately, the 

lysate was collected as indicated in the Methods and processed after confirming 

biotinylation by indirect immunofluorescence. Expression of each construct containing 

APEX2 and biotinylation at the inclusion membrane was observed using each of the C. 

trachomatis Inc-APEX2 strains (Fig. 3-1). For C. trachomatis L2 APEX2, which lacks a 

type III secretion signal, biotinylation was co-localized with the bacterial cytosol (Fig. 3-1). 

For C. trachomatis L2 wild-type (i.e., untransformed) infected and mock-infected HeLa 
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cells (i.e., no APEX2), faint biotinylation was observed in subcellular structures consistent 

with mitochondria, but no biotinylation was detected at the inclusion of C. trachomatis L2 

wild-type (Fig. 3-1). This confirmed that proteins proximal to the inclusion were biotinylated 

using the Inc-APEX2 constructs.  

Verification of Inc-APEX2 labeling activity on the cytosolic face of the inclusion membrane 

by electron microscopy 

C. trachomatis L2 transformed with IncF-APEX2, IncATM-APEX2, and IncA-APEX2 

target the constructs to the inclusion membrane with the C-terminus (that contains APEX2) 

exposed to the host cytosol (91). We used electron microscopy to further support that the 

C. trachomatis L2 Inc-APEX2 strains were labeling the cytosolic face of the chlamydial 

inclusion (209). For these studies, HeLa cells were infected with wild-type (i.e., non-

transformed) or C. trachomatis L2 Inc-APEX2 strains, and the monolayers were treated 

with aTc to induce APEX2 fusion protein expression. Then, cells were fixed with a 

glutaraldehyde and paraformaldehyde solution, which maintains APEX2 activity (209), 

and labeled with or without 3,3'-Diaminobenzidine (DAB). DAB and hydrogen peroxide 

(H2O2) diffuse into non-permeabilized cells, and, in the proximity of APEX2, DAB 

polymerizes (168, 189, 209). Upon polymerization, DAB becomes membrane 

impermeable and remains closely associated with the site of polymerization (209). DAB 

reacts with the heavy metal staining procedure (osmium tetroxide) to create a contrast 

that can be observed by electron microscopy (209).  

As seen in  Fig. 3-2A, no DAB polymerization is observed at the inclusion 

membrane in HeLa cells infected with wild-type C. trachomatis L2. To control for 

background activity, HeLa cells were infected with C. trachomatis L2 IncA-APEX2, 

induced for expression, but not treated with DAB (Fig. 3-2B). In these samples, no DAB 

staining was observed at the inclusion membrane (Fig. 3-2B). There was no detectable   
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Figure 3-1. Localization and biotinylation of proteins proximal to the inclusion membrane 
in HeLa cells infected with C. trachomatis L2 transformed strains expressing Inc-APEX2 
constructs. 

Coverslips were placed in two wells of a 6-well tissue culture plate to ensure appropriate 
biotinylation. HeLa cells infected with C. trachomatis serovar L2 transformed with the 
indicated APEX2 constructs, C. trachomatis L2 wild-type (WT), or mock-infected were 
induced for construct expression with the indicated concentrations of anhydrotetracycline 
(aTc) at 7 hpi. Biotin-phenol was added at 23.5 hpi, biotinylation was catalyzed at 24 hpi 
by the addition of 3 mM H2O2 for 1 min, after which the reaction was quenched. Coverslips 
were removed from the 6-well plate and processed for immunofluorescence to visualize 
biotinylated proteins (streptavidin-488 conjugate), expression of the construct  

(continued on the next page) 
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(anti-Flag, red), Chlamydiae (MOMP) and DNA (DAPI; blue), and the inclusion membrane 
(anti-CT223, pink). Coverslips were imaged using a Zeiss confocal LSM 800 with 63x 
magnification and 2x zoom. Scale bar = 5 µm.  

Figure modified from Olson et al. 2019. IAI. 
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(continued on the next page)  
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Figure 3-2. Ultrastructural localization of APEX2 activity to the cytosolic face of the 
inclusion membrane in HeLa cells infected with C. trachomatis L2 transformed strains 
expressing Inc-APEX2 constructs as determined by electron microscopy. 

HeLa cells seeded onto electron microscopy grade, cell culture treated coverslips were 
infected with C. trachomatis serovar L2 transformed with the indicated constructs, or C. 
trachomatis serovar L2 wild-type (WT) were induced with anhydrotetracycline (aTc) at 7 
hpi (IncF-APEX2 0.3 nM aTc, all others 5 nM aTc). At 24 hpi, a glutaraldehyde and 
paraformaldehyde fixing solution was added to each sample and incubated on ice. Next, 
samples were pre-treated with DAB (or not, as indicated) 30 min prior to labeling by the 
addition of H2O2 solution (also containing DAB) to catalyze DAB polymerization. The 
reaction was quenched with glycine and processed for electron microscopy as indicated 
in Methods. (A) C. trachomatis L2 wild-type (WT) treated with DAB; scale bar= 2 µm, (B) 
C. trachomatis L2 IncA-APEX2 without DAB; scale bar= 500 nm, (C) C. trachomatis L2 
Inc-APEX2 infected cells treated with DAB; DAB polymer staining around the inclusion is 
indicated by arrows; scale bar= 500 nm. 

Figure modified from Olson et al. 2019. IAI.  
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DAB labeling at the inclusion membrane in HeLa cells infected with C. trachomatis L2 

APEX2, but we did not observe strong DAB polymerization within individual organisms 

(Fig. 3-2C). In HeLa cells infected with C. trachomatis L2 IncF-APEX2, IncATM-APEX2, or 

IncA-APEX2 strains, DAB polymerization was observed at the inclusion membrane (Fig. 

3-2C, arrows). However, there appeared to be less DAB labeling with IncATM-APEX2 

compared to IncF-APEX2 and IncA-APEX2. Overall, by electron microscopy, we observed 

Inc-APEX2 directed DAB labeling at the inclusion membrane, and this labeling appeared 

on the cytosolic face of the inclusion membrane.   

Western blot detection of APEX2 containing constructs expressed from C. trachomatis L2 

Inc-APEX2 strains 

To confirm the correct expression of each construct containing APEX2, HeLa cells 

were infected with the C. trachomatis L2 APEX2, IncF-APEX2, IncATM-APEX2, or IncA-

APEX2 strains and either not induced or induced at 7 hpi (0.3 nM aTc for IncF-APEX2 and 

5 nM for all other strains). Cell lysates were collected at 24 hpi and prepared for affinity 

purification using FLAG magnetic beads essentially as previously described (219). The 

eluates were blotted for the presence of each APEX2 containing construct using anti-

FLAG antibody (the FLAG epitope tag is located at the N-terminus of APEX2). Lower 

levels of IncF-APEX2 (39.7 kDa) were detected compared to IncATM-APEX2 (40.7 kDa), 

IncA-APEX2 (59.3 kDa), and APEX2 (30.3 kDa) (Fig. S3-1). We detected some leaky 

expression of IncF-APEX2, IncATM-APEX2, and IncA-APEX2 in our uninduced samples 

(Fig. S3-1). As a loading control, the solubilized lysate was blotted for the presence of 

chlamydial Heat shock protein 60 (cHsp60) (Fig. S3-1; Input, lower panel; cHsp60 

antibody kind gift from Rick Morrison, University of Arkansas for Medical Sciences, Little 

Rock, AR). These data confirmed that each APEX2 containing construct was expressed 

from the C. trachomatis L2 strains at the expected molecular weight.   



104 

 

   

 

Affinity purification of biotinylated proteins 

After confirming the correct construct localization, labeling activity at the inclusion 

membrane, and molecular weight of the proteins expressed from C. trachomatis L2, the 

lysates from C. trachomatis L2 IncF-APEX2, IncATM-APEX2, IncA-APEX2 strains, and the 

negative control infected HeLa cells from the biotinylation experiments described above 

(Fig. 3-1) were affinity purified to isolate biotinylated proteins. The negative controls, mock-

infected, C. trachomatis L2 wild-type infected, and C. trachomatis L2 APEX2 infected 

HeLa cells treated with biotin-phenol and hydrogen peroxide (to catalyze labeling) served 

to control for background, endogenous biotinylated proteins. As described previously, the 

major background endogenous biotinylated proteins include eukaryotic mitochondrial 

carboxylases (75 and 125 kDa) (57, 224), and, in C. trachomatis L2 infected HeLa cells, 

the chlamydial biotin ligase (21 kDa), which uses biotin as a co-factor (57, 225). We did 

not include uninduced C. trachomatis L2 strains in our analysis because we observed 

some leaky construct expression and were concerned that using this as a negative control 

would subtract true interacting proteins during the analysis step (Fig. S3-1).  

Biotinylated proteins were affinity-purified using streptavidin beads and visualized 

by western blotting using a fluorescent streptavidin-conjugate (Fig. 3-3; streptavidin 

panel). Biotinylated proteins were detected from each of the C. trachomatis L2 IncF-

APEX2, IncA-APEX2, and IncATM-APEX2 infected cells that received both biotin-phenol 

and H2O2 (Fig. 3-3; streptavidin panel). Without the addition of biotin-phenol to the C. 

trachomatis L2 Inc-APEX2 strains, only endogenous biotinylated proteins were detected. 

Similarly, in each of the negative controls, C. trachomatis L2 APEX2, C. trachomatis L2 

wild-type (not transformed) and mock-infected HeLa cells, only background endogenous 

biotinylated proteins were detected (Fig. 3-3; streptavidin panel).  
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To determine if the expressed constructs containing APEX2 were biotinylated in 

vivo and affinity purified, we blotted the eluates using an anti-FLAG antibody (APEX2 

contains the FLAG epitope in the N-terminus). We detected biotinylated IncATM-APEX2 

(40.7 kDa), IncA-APEX2 (59.3 kDa), and APEX2 (30.3 kDa) (Fig. 3-3; FLAG panel). We 

did not observe biotinylated IncF-APEX2 (40.7 kDa) in the eluate fraction, which is likely 

a result of the lower expression necessary to preserve its correct localization ((57) and 

Fig. S3-1). In addition, to determine if we could detect solubilized endogenous chlamydial 

Incs, we used an anti-IncA antibody (a gift from Dr. T. Hackstadt, NIAID, Rocky Mountain 

Laboratories, Hamilton, MT) and an anti-CT223 antibody (a gift from R. Suchland, 

University of Washington, WA and Dr. D. Rockey, Oregon State University, OR) to blot 

the eluates from the streptavidin affinity purification. We detected endogenous IncA in the 

eluate from C. trachomatis L2 IncF-APEX2 and IncA-APEX2 (Fig. 3-3; IncA panel). The 

IncA antibody is specific for the C-terminus, so it detects IncA-APEX2 (59.3 kDa band) 

containing full-length IncA and not the truncated IncATM-APEX2 expressed construct, 

which lacks the epitope that is recognized by the antibody. We also detected CT223 (29.3 

kDa) in the streptavidin affinity purified eluate from each of the C. trachomatis L2 Inc-

APEX2 samples but not in the negative controls (Fig. 3-3C; CT223 panel). These western 

blot data provide an initial validation of our proximity labeling system because IncA 

homotypic interactions have been described (105, 110, 111, 145, 166) (e.g., IncA-APEX2 

interacts with endogenous IncA in the inclusion membrane). These data are also 

consistent with previously published in vivo protein-protein interaction data using the 

BACTH system that identified IncF and IncA interactions (105).  
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Figure 3-3. Western blot detection of affinity purified biotinylated proteins. 

HeLa cells infected with C. trachomatis L2 Inc-APEX2 transformed strains, wild-type (WT), 
or mock-infected were induced with anhydrotetracycline (aTc) at 7 hpi (0.3 nM for IncF-
APEX2, and 4 nM for all others). Biotin-phenol (BP) was added 30 min prior to the 
biotinylation reaction at 24 hpi. Biotinylation was catalyzed by the addition of 3 mM H2O2 
for 1 min and stopped with a quenching wash solution. Biotinylated proteins were affinity 
purified from solubilized lysates using streptavidin beads, eluted in sample buffer, 
separated by SDS-PAGE and transferred to PVDF for western blotting. The eluate fraction 
was probed for biotinylated proteins (streptavidin-680 conjugate), construct expression 
(anti-FLAG antibody), IncA (anti-IncA antibody), CT223 (anti-CT223 antibody), and 
imaged using Azure c600. Asterisks indicate detected proteins. See Supplementary 
Figure 1.  

Figure modified from Olson et al. 2019. IAI.  
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Mass spectrometry identification of streptavidin affinity purified biotinylated C. trachomatis 

L2 and eukaryotic proteins 

To identify the proteins proximal to or interacting with the inclusion membrane that 

were biotinylated in vivo using the APEX2 proximity labeling system, the eluates from 

streptavidin affinity purification were briefly electrophoresed, sectioned, and then 

processed for mass spectrometry identification. To enhance mass spectrometry peptide 

identification, individual gel sections were digested with two enzymes, trypsin and AspN 

(226), and then processed as indicated in the Methods. Five biological replicates for each 

condition were analyzed by tandem mass spectrometry (MS/MS) and individual peptides 

were identified by performing Mascot searches against the C. trachomatis L2 (434/Bu) 

database and the Homo sapiens database. Our analysis detected 810 C. trachomatis L2 

proteins (Table S3-1) and over 5,000 eukaryotic proteins (Table S3-2) in total from the 

combined datasets. To analyze our mass spectrometry data for statistical significance and 

to remove non-specific or background biotinylated proteins, we used Significance Analysis 

of INTeractome (SAINT) (207). SAINT uses quantitative data embedded in the raw mass 

spectrometry data from label-free quantification methods to filter out background peptides 

(207). The peptide spectra for a protein (i.e. prey) identified in the sample of interest (i.e. 

bait) is normalized to both the protein length and the total number of spectra compared to 

the negative controls. Bayesian statistics are used to calculate the probability of an 

interaction between each bait-prey interaction identified. The calculated probability is 

expressed as Bayesian False Discovery Rate (BFDR). We used a BFDR less than or 

equal to 0.05 as a cut-off for our analysis parameters, which indicates the probability that 

the interaction is "true" (i.e., at BFDR=0.05, we are 95% confident in the protein 

associations described).  
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When we analyzed the C. trachomatis L2 proteins for statistical significance, 

several Inc proteins were among the top SAINT identified significant hits using our Inc-

APEX2 constructs (Table 3-1; Table S3-1). Using our BFDR cut-off (BFDR≤0.05), we 

identified three statistically significant chlamydial proteins using C. trachomatis L2 IncF-

APEX2 and IncA-APEX2, and two significant proteins using C. trachomatis L2 IncATM-

APEX2. CT223 was the only chlamydial protein that was identified as statistically 

significant using each C. trachomatis L2 Inc-APEX2 strain. IncA was detected using C. 

trachomatis L2 IncA-APEX2 and IncATM-APEX2. The identification of CT223 and IncA by 

mass spectrometry using IncA-APEX2 is supported by the detection of proteins eluted 

from the streptavidin affinity purified lysate (Fig. 3-3). Statistically significant chlamydial 

proteins that were unique to the individual C. trachomatis L2 Inc-APEX2 strains included 

IncD and IncF which were identified using C. trachomatis L2 IncF-APEX2 and outer 

membrane complex B (OmcB) which was identified using C. trachomatis L2 IncA-APEX2 

(Table 3-1; Table S3-1). Additional chlamydial Inc proteins that were detected by mass 

spectrometry but did not make the BFDR (BFDR≤0.05) cut-off using C. trachomatis L2 

IncA-APEX2 include IncC (BFDR=0.09), CT813 (BFDR=0.1), IncD (BFDR=0.11), and 

IncE (BFDR=0.2) (Table S3-1). In contrast, there were no additional Incs identified using 

C. trachomatis L2 IncATM-APEX2 with a less stringent cut-off (BFDR ≤0.2). Using C. 

trachomatis L2 IncF-APEX2, IncA (BFDR= 0.12), CT228 (BFDR= 0.15), and IncE 

(BFDR=0.18) were detected (Table S3-1). Although IncA was not statistically significant 

using IncF-APEX2, IncA was detected in the affinity-purified eluate of IncF-APEX2 by 

western blot (Fig. 3-3; Table S3-1). These data are also supported by previously observed 

IncF-IncA interactions by BACTH (105) and IncA-IncA interactions that have been 

previously described (105, 110). Importantly, our AP-MS data analyzed against the C. 

trachomatis L2 (434/Bu) database were supported by our western blot data.  
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Table 3-1. Significant C. trachomatis L2 proteins  

Sample Protein (Uniprot ID) 
Gene 
name  

Protein 
name a 

BFDR b 

IncF-APEX2  A0A0H3MKT3_CHLT2 CTL0476 CT223 0 

 INCD_CHLT2 CTL0370 IncD 0.02 

 INCF_CHLT2 CTL0372 IncF 0.03 

     

IncATM-APEX2  A0A0H3MD02_CHLT2 CTL0374 IncA 0 

 A0A0H3MKT3_CHLT2 CTL0476 CT223 0.02 

          

IncA-APEX2 OMCB_CHLT2 CTL0702 OmcB 0 

 A0A0H3MKT3_CHLT2 CTL0476 CT223 0 

 A0A0H3MD02_CHLT2 CTL0374 IncA 0 

          

a Protein name indicated using C. trachomatis serovar D naming 
convention  
b SAINT Bayesian False Discovery Rate    

Table adapted from Olson et al. 2019. IAI.  
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When we applied SAINT to our Homo sapiens AP-MS data, 13 statistically 

significant eukaryotic proteins (BFDR ≤0.05) were identified using C. trachomatis L2 IncF-

APEX2, 18 statistically significant proteins using IncATM-APEX2, and 192 statistically 

significant proteins using IncA-APEX2 (Table S3-2 and S4-3). To visualize common 

pathways for eukaryotic protein biological processes and molecular functions, the 

significant eukaryotic proteins (BFDR ≤0.05) from each SAINT analyzed Inc-APEX2 

dataset were evaluated by ClueGO (Cytoscape (220)) (Fig. 3-4). For IncF-APEX2 (Fig. 3-

4A; Fig. 3-S2A) the 13 significant eukaryotic proteins identified were associated with 

transport and the negative regulation of biological processes. For IncATM-APEX2, the 18 

statistically significant proteins were associated with regulation of metabolic processes 

and biological processes (Fig. 3-4B; Fig. S3-2B). Finally, the pathway analysis of the 192 

significant eukaryotic proteins for IncA-APEX2 yielded globally enriched pathways 

including regulation of cellular protein metabolic processes, vesicle-mediated transport, 

actin cytoskeleton organization, regulation of cellular component organization, and 

translation (Fig. 3-4C; Fig. S3-2C). 

Individual datasets were also analyzed using STRING (Cytoscape (220)) to 

visualize the protein binding partner network for statistically significant (BFDR ≤0.05) 

eukaryotic proteins within each IncF-APEX2 (Fig. S3-3A), IncATM-APEX2 (Fig. S3-3B), 

and IncA-APEX2 (Fig. S3-3C) dataset. Four statistically significant eukaryotic proteins 

were common to all Inc-APEX2 datasets: Leucine-Rich Repeat Flightless-Interacting 

Protein 1 (LRRF1 or LRRFIP1), microtubule-associated protein 1B (MAP1B), Cystatin-B 

(CYTB), and brain acid soluble protein 1 (BASP1) (Table S3-2). Twelve proteins were 

shared between C. trachomatis L2 IncA-APEX2 and IncATM-APEX2 including myosin 

phosphatase target subunit 1 (MYPT1 or PPP1R12A), transitional endoplasmic reticulum 

ATPase (TERA, VCP), microtubule-associated protein 4 (MAP4), multifunctional protein  
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Figure 3-4. Visualization of global biological functions of AP-MS identified and 
statistically significant eukaryotic proteins from Inc-APEX2 pulldowns. 

ClueGO global network visualization of eukaryotic proteins identified by mass 
spectrometry (SAINT BFDR ≤ 0.05) from C. trachomatis L2 (A) IncF-APEX2, (B) IncATM-
APEX2, and (C) IncA-APEX2. See Supplementary Figure 2 and 3. 

Figure modified from Olson et al. 2019. IAI. 
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ADE2 (PUR6), sorting nexin-1 (SNX1), src substrate cortactin (SRC8, CTTN), 

methylosome protein 50 (MEP50), sorting nexin 6 (SNX6), perilipin-3 (PLIN3), eukaryotic 

translation initiation factor 4B (IF4B), nucleoside diphosphate kinase A (NDKA), and 

nucleoside diphosphate kinase B (NDKB) (Table S3-2). In both the IncF-APEX2 and IncA-

APEX2 datasets, four eukaryotic proteins were statistically significant: 14-3-3- (YWHAH), 

myristoylated alanine-rich C-kinase substrate (MARCKS), 14-3-3-β (YWHAB), and keratin 

type I cytoskeletal 20 (K1C20) (Table S3-2). These data included statistically significant 

eukaryotic proteins that have been previously shown to be recruited to the inclusion by Inc 

proteins. For example, in our IncA-APEX2 and IncF-APEX2 dataset, we identified 14-3-3-

β, which is known to bind IncG (142). In addition, the eukaryotic proteins, SNX5 and SNX6, 

which bind IncE (122), and MYPT1, which binds CT228 (38, 117), were identified in both 

the IncA-APEX2 and IncATM-APEX2 datasets (Table S3-2). Furthermore, the known 

chlamydial Inc binding partners for the eukaryotic proteins listed above (IncG, IncE, and 

CT228) were also identified in the AP-MS C. trachomatis L2 protein analyzed datasets 

(Table S3-1). We also identified eukaryotic proteins that are known to localize at the 

inclusion but for which an Inc binding partner has not been identified, including 

microtubule-associated protein 1B (MAP1B) (227) and Src-substrate cortactin (SRC8, 

CTTN) (114). A full summary of our data set compared to Aeberhard et al 2015 (171) can 

be found in Table S3-4. Importantly, besides identifying eukaryotic proteins that are known 

to localize at the inclusion membrane, our Inc-APEX2 data identified several eukaryotic 

proteins that have not been previously examined for localization to the chlamydial 

inclusion.   
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Co-localization of LRRF1 with the C. trachomatis L2 inclusion membrane 

One of the high confidence AP-MS identified eukaryotic proteins (significant in  

each Inc-APEX2 dataset (BFDR=0)), Leucine-Rich Repeat in Flightless Interacting Protein 

1 (LRRF1), has been reported to be involved in activating a type 1 interferon response 

(228-232), which plays a role in host cell clearance of intracellular bacteria during infection 

and the development of adaptive immunity (233). Also, a known LRRF1 binding partner 

called Protein Flightless-1 homolog (FLII) (BFDR=0.02) (230, 234) was identified as 

significant by SAINT analysis in the IncA-APEX2 dataset (Table S3-2). FLII has been 

reported to associate with -catenin to regulate its activity (235). In support, LRRF1 (122, 

170, 171) and FLII (122, 171) were also identified in previous AP-MS experiments and 

ectopically expressed FLII was shown to localize with the inclusion (171). Neither 

endogenous LRRF1 nor FLII has been examined for localization to the chlamydial 

inclusion.  

LRRF1 was first confirmed by western blot (dimer 160 kDa) in the eluate from 

streptavidin affinity purified lysate from each of the C. trachomatis L2 Inc-APEX2 infected 

HeLa cells but not in the C. trachomatis L2 Inc-APEX2 samples that did not receive biotin-

phenol, in the C. trachomatis L2 wild-type, or in mock-infected negative control samples 

(Fig. 3-5A). These data confirm the identification of LRRF1 by mass spectrometry. To 

assess if LRRF1 and FLII localized to the chlamydial inclusion, HeLa cells were infected 

with C. trachomatis L2 wild-type, fixed at 24 hpi, and stained for immunofluorescence. 

LRRF1 (Fig. 3-5B) and FLII (Fig. 3-5C) were observed to localize to the inclusion 

membrane at 24 hpi. Subsequently, we transfected HeLa cells with a vector encoding 

LRRF1-GFP or FLII-GFP and then infected or not with C. trachomatis L2 wild-type. At 24 

hpi, cells were fixed and processed for immunofluorescence. In C. trachomatis L2 infected  
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Figure 3-5. Confirmation of LRRF1 biotinylation by Inc-APEX2 proteins and localization of 
LRRF1 and FLII to the chlamydial inclusion. 

(A) Western blot confirmation of LRRF1 in the eluates from streptavidin affinity purified 
biotinylated lysate from C. trachomatis L2 IncF-APEX2, IncATM-APEX2, and IncA-APEX2 
strains at 24 hpi (BP= biotin-phenol). (B) Confirmation of LRRF1 co-localization with the 
inclusion of C. trachomatis L2 wild-type infected HeLa cells. Cells were fixed at 24 hpi in 
4% paraformaldehyde and permeabilized with 0.5% Triton X-100 then stained for indirect 
immunofluorescence to visualize the inclusion membrane (CT223; red), LRRF1 (green), 
DNA and Chlamydiae (DRAQ5 and MOMP; blue). (C) Confirmation of FLII co-localization 
with the inclusion of C. trachomatis L2 wild-type infected HeLa cells. Cells were fixed at 
24 hpi in 4% paraformaldehyde, permeabilized with 0.5% Triton X-100, then stained for 
indirect immunofluorescence to visualize the inclusion membrane (CT223; red), FLII 
(green), and DNA and Chlamydiae (DAPI and MOMP; blue). Coverslips were imaged 
using Zeiss Apotome.2 with 100x magnification. Scale bar= 10 µm. See Supplementary 
Figure 4.  

Figure modified from Olson et al. 2019. IAI.  
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HeLa cells, LRRF1-GFP (Fig. S3-4A) and FLII-GFP (Fig. S3-4B) were each observed at 

the inclusion membrane. In support, ectopically expressed HA epitope-tagged FLII was 

previously reported to localize to the C. trachomatis L2 inclusion (171). In mock-infected 

HeLa cells, LRRF1-GFP and FLII-GFP both appeared diffusely in the host cytosol (Fig. 

S3-4A and S4-4B, respectively). There was no significant difference in the inclusion area 

of C. trachomatis L2 wild-type infected HeLa cells when LRRF1 was overexpressed 

(LRRF1-GFP transfected) compared to non-transfected HeLa cells (Fig. S3-4C). When 

we knocked down LRRF1 expression in HeLa cells, we did not observe a biologically 

significant change in the production of infectious progeny (Fig. S3-4D; Non-targeting 

siRNA= 2.73 x 106 IFU/mL; GAPDH siRNA=4.46 x 106 IFU/mL; Single LRRF1 siRNA= 2.3 

x 106 IFU/mL; Pooled LRRF1 siRNA= 4.09 x 106 IFU/mL). 

LRRF1 co-localizes with the C. trachomatis inclusion from mid to late developmental cycle 

To determine if LRRF1 stably or transiently localized to the inclusion during the 

developmental cycle, we infected HeLa cells with C. trachomatis L2 wild-type, fixed cells 

at intervals between 8 hpi and 36 hpi, and then stained for immunofluorescence to observe 

LRRF1 localization. Using CT223 as an inclusion membrane marker, LRRF1 could be 

observed at the inclusion as early as 12 hpi (Fig. 3-6; arrows) and remained at the 

inclusion up to 36 hpi (Fig. 3-6). Chloramphenicol (Cm) was added at 8 hpi to inhibit 

bacterial translation, and this treatment abolished the localization of LRRF1 to the 

inclusion (Fig. 3-6; Cm treated panel), suggesting that LRRF1 recruitment is dependent 

on active chlamydial protein expression. These data indicate that LRRF1 is stably 

localized to the inclusion membrane from mid to late time points in the C. trachomatis L2 

developmental cycle and that a chlamydial protein may recruit LRRF1 to the inclusion.  
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Figure 3-6. Recruitment of LRRF1 to the inclusion of C. trachomatis L2 during the 
developmental cycle and after chloramphenicol treatment. 

HeLa cells seeded on glass coverslips were infected with C. trachomatis L2 wild-type or 
mock infected. Wells were methanol fixed at 8, 12, 16, 24, and 36 hpi. One sample was 
treated with 34 µg/mL chloramphenicol (Cm) at 8 hpi and fixed at 36 hpi. Fixed coverslips 
were stained for indirect immunofluorescence to visualize LRRF1 (green), the inclusion 
membrane (CT223; red), and DNA and Chlamydiae (DAPI and MOMP; blue). Coverslips 
were imaged using a Zeiss ApoTome.2 with 100x magnification. Scale bar = 10 µm. 
Arrows indicate early inclusions at 8 hpi and LRRF1 co-localization with the inclusion at 
12 hpi, respectively. 

Figure modified from Olson et al. 2019. IAI.  
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LRRF1 co-localization with the inclusion is conserved among several Chlamydia 

trachomatis serovars and Chlamydia species 

LRRF1 contains a coiled-coil domain as well as a cytosolic nucleic acid binding 

domain (229, 231), indicating two possible modes of LRRF1 recruitment to the inclusion 

membrane. To test if LRRF1 recruitment was mediated by a bacterial protein or as part of 

an innate response to infection by an intracellular bacterium, HeLa cells were infected, 

fixed, and processed as indicated in the Methods with various Chlamydia trachomatis 

serovars and Chlamydia species. The avirulent strain of Coxiella burnetii (Nine Mile Phase 

2) was also included, which interacts with different eukaryotic pathways than Chlamydia 

(31). Our analysis of LRRF1 localization during infection of different Chlamydia species 

and C. trachomatis serovars revealed that LRRF1 co-localized with the inclusion of C. 

trachomatis serovar L2 (as observed above (Fig. 3-6)), C. trachomatis serovar D, and the 

closely related Chlamydia muridarum (Fig. 3-7A). LRRF1 did not co-localize with the 

inclusion of Chlamydia pneumoniae, Chlamydia caviae, or to the Coxiella-containing 

vacuole of Coxiella burnetii (Fig. 3-7B). We conclude from these data that an Inc protein 

conserved between C. trachomatis serovar L2, serovar D, and C. muridarum recruits 

LRRF1 to the inclusion membrane.  

BACTH assay to screen for LRRF1-Inc interacting partners  

To determine if IncF and IncA used in the proximity labeling experiments can bind 

LRRF1, we used the bacterial adenylate cyclase two-hybrid (BACTH) system to screen 

for protein-protein interactions (105, 223, 236). Here, two plasmids encoding proteins of 

interest genetically fused to the catalytic fragments (i.e., T25 and T18) of the Bordetella 

pertussis adenylate cyclase are co-transformed into E. coli (ΔcyaA) (163-165, 236). An 

interaction between two proteins of interest brings the catalytic fragments in close 

proximity, restoring adenylate cyclase activity (165, 236, 237). Adenylate cyclase   
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Figure 3-7. Examination of recruitment of LRRF1 to the inclusions of different chlamydial 
species and to the parasitophorous vacuole of the Coxiella burnetii Nine Mile Phase II. 

(A) HeLa cells were infected with C. trachomatis serovar L2, C. trachomatis serovar D, or 
C. muridarum, fixed with methanol at 24 hpi and stained for immunofluorescence to 
visualize the inclusion membrane (CT223; pink), LRRF1 (red), Chlamydiae (MOMP; 
green), and DNA (DAPI; blue). (B) HeLa cells were infected with either C. pneumoniae 
and fixed in 4% paraformaldehyde at 96 hpi, with C. caviae and methanol fixed at 24 hpi, 
or with C. burnetii Nine Mile Phase II and fixed with methanol at 3 days post-infection. 
Coverslips were stained for immunofluorescence to visualize LRRF1 (green), bacteria 
(red), and DNA (DRAQ5; blue) and imaged using a Zeiss confocal LSM 800 with 63x 
magnification and 2x zoom. Scale bar = 5 µm. 

Figure modified from Olson et al. 2019. IAI.  
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activity results in the production of cAMP and activates the expression of β-galactosidase 

via regulation of the chromosomally encoded lac operon in E. coli (163-165, 236). Positive 

interactions, indicated by the presence of blue colonies, are detected on minimal media 

(supplemented with Isopropyl β-D-1-thiogalactopyranoside (IPTG) and 5-Bromo-4-chloro-

3-indolyl-β-D-galactopyranoside (X-gal), and interactions are quantified by β-

galactosidase assay (163-165, 236).  

A targeted screen was performed using IncF and IncA, CT223, CT813, CT288, 

and CT226. These Incs were either detected in our proximity labeling experiments or are 

Incs that are conserved between C. trachomatis serovar L2, serovar D, and C. muridarum 

(104). Of interest, LRRF1 contains a coiled-coil domain (231), which is a feature shared 

by several chlamydial Incs (103, 110, 111). Homotypic interactions have been previously 

described for IncA (105), which was used as a positive control. All interactions tested were 

quantified by β-galactosidase assay (105, 221). No interaction was observed between 

LRRF1 and IncF, IncA, CT288, CT223, or CT813 (Fig. 3-8A). A positive interaction was 

detected between CT226 and LRRF1 (Fig. 3-8A) and is consistent with previously 

reported data (122). CT226, like LRRF1, contains a coiled-coil domain (103). The 

interaction between LRRF1 and CT226 appeared specific because no other Incs tested, 

even Incs with coiled-coil domains, yielded a positive interaction (Fig. 3-8A). In addition, 

CT226 and LRRF1 interactions were positive in both BACTH plasmid conformations (e.g., 

T25-LRRF1 vs. T18-CT226; T25-CT226 vs. T18-LRRF1).  

We did not detect a positive interaction between LRRF1 and IncA or LRRF1 and 

IncF, our original Inc-APEX2 constructs. Instead, it is possible that LRRF1 may be 

proximal to, but not directly binding, IncA and IncF at the inclusion membrane. To address 

this, we tested by BACTH the interactions of IncF and IncA with CT226, and both were 

found to interact with CT226 (Fig. 3-8B). CT226 also demonstrated homotypic 
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Figure 3-8. Bacterial Adenylate Cyclase Two-Hybrid (BACTH) assay to screen for LRRF1-
Inc and Inc-Inc protein interactions. 

pST25 and pUT18 fused to chlamydial Incs or LRRF1 as indicated were co-transformed 
into DHT1 E. coli (Δ cyaA), plated on minimal media containing IPTG and X-gal and grown 
for 3-5 days at 30 °C. Colonies were picked for overnight culture, and the interaction was 
quantified by β-galactosidase assay and reported at relative units (RU). (A) Quantitative 
analysis of LRRF1-Inc interactions, (B) Quantitative analysis of Inc-Inc interactions. 
Greater than five times the negative control is considered a positive interaction (indicated 
by the dotted line). Data shown are the mean and standard deviation from three biological 
replicates, except for IncE interactions which are representative of two biological 
replicates.  

Figure modified from Olson et al. 2019. IAI.  
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interactions (Fig. 3-8B). Finally, we tested the ability of IncF and IncA to interact with 

CT223 (SAINT BFDR=0), the statistically significant Inc identified from each IncF-APEX2, 

IncATM-APEX2, and IncA-APEX2 dataset. IncF and IncA each interacted with CT223 by 

BACTH (Fig. 3-8B). CT223 also interacted with CT226 by BACTH (Fig. 3-8B). In contrast, 

neither IncF nor IncA positively interacted with IncE (SAINT BFDR=0.18 and 0.2, 

respectively), indicating specificity for the BACTH interactions between the Incs tested 

(Fig. 3-8B), and not due to the lack of sufficient IncE expression (Fig. S3-5). These data 

support the likelihood that CT223 and CT226 are proximal to IncF and IncA in the inclusion 

membrane. The identification of CT226-LRRF1 interaction by BACTH assay corresponds 

to both the immunofluorescence data (Fig. 3-7) and bioinformatic predictions because 

CT226 is conserved between C. trachomatis and C. muridarum but not C. pneumoniae or 

C. caviae (104). 

Assessment of LRRF1 co-localization with chlamydial Incs in C. trachomatis L2 infected 

HeLa cells by super-resolution microscopy 

To assess the spatial localization and proximity of LRRF1 with respect to IncA and 

IncF, we used structured illumination (SIM) super-resolution microscopy. We also 

examined the localization of CT226, which was identified by BACTH as a potential 

interacting partner with LRRF1. Our IncA and IncF antibodies are both rabbit antibodies, 

as are the LRRF1 and FLII antibodies, precluding our ability to test endogenous IncF and 

IncA co-localization in C. trachomatis L2 infected eukaryotic cells. There are also no 

antibodies currently available to test if endogenous CT226 co-localizes with LRRF1 during 

C. trachomatis L2 infection. To assess co-localization of LRRF1 with IncF and IncA, we 

used our C. trachomatis L2 IncF-APEX2, IncATM-APEX2, and IncA-APEX2 strains. In 

addition, we created C. trachomatis L2 transformed with a plasmid encoding CT226 fused 
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to a FLAG tag (CT226-FLAG) to test localization between CT226 and endogenous 

LRRF1.  

HeLa cells were infected with C. trachomatis L2 wild-type (i.e., non-transformed) 

or the C. trachomatis L2 Inc-APEX2 or CT226-FLAG strains and induced for construct 

expression at 20 hpi (1 nM aTc for IncF-APEX2 and 5 nM for all other strains). At 24 hpi, 

cells were fixed in ice cold methanol and processed for immunofluorescence as in 

Methods to detect the localization of IncF-APEX2, IncATM-APEX2, IncA-APEX2, and 

CT226-FLAG with endogenous LRRF1. We assessed LRRF1 localization with 

endogenous CT223, the statistically significant chlamydial protein identified in each Inc-

APEX2 dataset (Fig. 3-9). Endogenous CT223 appeared in puncta as previously observed 

(87, 238), and LRRF1 appeared to uniformly localize around the inclusion, consistent with 

our earlier localization data for LRRF1 (Fig. 3-5B). By SIM super-resolution microscopy, 

LRRF1 co-localized with each Inc-APEX2 construct, supporting the identification of 

LRRF1 using each construct (Fig. 3-9). The expressed CT226-FLAG also co-localized with 

endogenous LRRF1 (Fig. 3-9). Interestingly, the expression of CT226-FLAG resulted in 

fibers staining for CT226 extending from the inclusion, similar in appearance to IncA-fibers 

(239). LRRF1 was also observed to co-localize with CT226 fibers (Fig. 3-9B; arrows 

indicate fibers). In contrast, LRRF1 did not co-localize with fibers of IncA-APEX2 

constructs (Fig. 3-9C).  

Overexpression of CT226-FLAG from C. trachomatis L2 CT226-FLAG results in increased 

LRRF1 and FLII at the inclusion membrane 

Next, we determined the effect of variable expression levels of CT226-FLAG from 

C. trachomatis L2 CT226-FLAG on the recruitment of LRRF1 and FLII. HeLa cells were 

infected with C. trachomatis L2 CT226-FLAG and either not induced or induced for   
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Figure 3-9. Assessment of LRRF1 co-localization with Incs using C. trachomatis L2 
transformed strains in infected HeLa cells with super-resolution microscopy. 

(A) Hela cells seeded on glass coverslips were infected with the C. trachomatis L2 Inc-
APEX2 strains or the CT226-FLAG strain and induced for expression at 20 hpi (IncF-
APEX2 was induced with 1 nM aTc; 5 nM aTc for all other strains).  

(continued on the next page) 
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At 24 hpi, coverslips were fixed with ice cold methanol and stained for 
immunofluorescence to visualize construct expression (FLAG) or CT223 (red), LRRF1 
(green), Chlamydiae and DNA (DRAQ5 and MOMP; pink). Coverslips were imaged by 
Zeiss Elyra super-resolution microscopy 63x2x with structural illumination (SIM). Scale 
bar = 5 µm. (B) SIM 3D snapshot of C. trachomatis L2 CT226-FLAG infected HeLa cells 
with CT226-FLAG and LRRF1 positive fibers. (C) SIM 3D snapshot of C. trachomatis L2 
IncA-APEX2 infected HeLa cells with IncA fibers. Arrows indicate co-localization between 
the indicated expressed construct and LRRF1.  

Figure modified from Olson et al. 2019. IAI.  
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construct expression at 7 hpi using 5 nM aTc and 20 nM aTc. The coverslips were fixed 

at 24 hpi with a formaldehyde/glutaraldehyde solution as indicated in Methods and stained 

to visualize LRRF1, FLII, and CT226-FLAG. All images were obtained using the same 

exposure (set to the 20 nM aTc samples) on a confocal LSM 800 with 63x2x magnification. 

Increased LRRF1 and FLII is detected at the inclusion membrane upon increased 

expression of CT226-FLAG (Fig. S3-6). Note that LRRF1 is observed at the inclusion of 

C. trachomatis L2 CT226-FLAG infected cells not induced for expression of CT226 using 

normal exposure levels (Fig. S3-7). These data support the recruitment of LRRF1 to the 

inclusion membrane by CT226 during C. trachomatis infection of HeLa cells.   

Co-immunoprecipitation of endogenous LRRF1 with C. trachomatis L2 CT226-FLAG 

To test if LRRF1 was directly binding to CT226, we performed co-

immunoprecipitation assays with CT226-FLAG expressed from C. trachomatis 

transformed with CT226-FLAG in infected HeLa cells. HeLa cells were plated in 6-well 

plates containing glass coverslips to confirm construct expression and localization. HeLa 

cells were infected with C. trachomatis L2 CT226-FLAG or with C. trachomatis L2 IncF-

FLAG as a negative control. At 7 hpi, the constructs were either not induced or induced 

for expression using 5 nM aTc for C. trachomatis L2 CT226-FLAG and 1 nM aTc for IncF-

FLAG (see (57) regarding IncF induction conditions). At 24 hpi, glass coverslips were 

removed, paraformaldehyde fixed, processed for immunofluorescence, and then cell 

lysates were collected and prepared for affinity purification using FLAG beads essentially 

as previously described (219). Both the clarified lysates (soluble fraction) and the eluates 

were blotted to detect each construct containing FLAG using an anti-FLAG antibody, and 

LRRF1 using an anti-LRRF1 antibody. Construct expression was observed for each C. 

trachomatis L2 CT226-FLAG or IncF-FLAG infected cells by immunofluorescence  
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Figure 3-10. Co-immunoprecipitation of endogenous LRRF1 with C. trachomatis L2 
transformed strain expressing CT226-FLAG. 

HeLa cells seeded in a 6-well plate with glass coverslips were infected with C. trachomatis 
L2 CT226-FLAG or IncF-FLAG and either not induced or induced for expression at 7 hpi 
with 5 nM aTc (CT226-FLAG) or 1 nM aTc (IncF-FLAG).  

(continued on the next page) 
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(A) At 24 hpi, coverslips were removed, fixed in 4% paraformaldehyde (L2 CT226-FLAG) 
or methanol (L2 IncF-FLAG), and stained to visualize FLAG (red), inclusion membrane 
marker (IncA; green), chlamydiae (MOMP; pink), and DNA (DAPI; blue) and imaged using 
a Zeiss confocal LSM 800 with 63x magnification and 2x zoom. Scale bar = 5 µm. (B) The 
remaining cells were collected, solubilized, normalized, and affinity purified using FLAG 
beads. The clarified lysates (soluble fraction) and eluate fractions were probed for 
construct expression (FLAG; CT226-FLAG 19.2 kDa and IncF-FLAG 11.3 kDa), and 
LRRF1 (dimer 160 kDa). Three independent experiments were performed (see 
supplementary figure 6 for additional replicates).  

Figure modified from Olson et al. 2019. IAI.  
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co-localized with the inclusion membrane marker, IncA (Fig. 3-10A). The FLAG affinity 

purified constructs were also detected by western blot (Fig. 3-10B, CT226-FLAG 19.2 kDa, 

IncF-FLAG 11.3 kDa (monomer) and 22.6 kDa (dimer); Fig. S3-8). However, LRRF1 

(dimer 160 kDa) was only detected in the eluate fraction from the C. trachomatis L2 strain 

induced for the expression of CT226-FLAG and not IncF-FLAG. These data further 

support our BACTH data, suggesting that LRRF1 can bind CT226-FLAG during C. 

trachomatis infection of eukaryotic cells. However, we cannot exclude that CT226-FLAG 

binds a third protein in vivo that recruits LRRF1, which results in the co-

immunoprecipitation with CT226-FLAG.  

Discussion 

We previously reported the feasibility of using the ascorbate peroxidase proximity 

labeling system (APEX2) in C. trachomatis L2 to detect protein-protein interactions at the 

inclusion in vivo (57). This tool improves upon past techniques to understand protein-

protein interactions by maintaining the spatial organization of Inc proteins in the inclusion 

membrane (57). Proteins proximal to and within the inclusion membrane can be 

biotinylated and identified by affinity purification-mass spectrometry (AP-MS). Here, we 

used C. trachomatis L2 transformed with APEX2 fused to IncF and IncA, two Incs that, 

based on preliminary data, may represent distinct functional groups: Inc-Inc interactions 

to promote inclusion membrane organization and integrity or Inc-host protein interactions 

to facilitate chlamydial-host interactions and nutrient acquisition. As a control, we also 

created a C. trachomatis L2 IncATM-APEX2 strain that lacks the C-terminal SNARE-like 

domain of IncA and more closely resembles IncF in size.  

As a field, we are at the early stages of understanding how the expression of 

various Inc constructs in the inclusion membrane can alter inclusion membrane 

organization and host-protein recruitment. We focused on expressing our Inc-APEX2 
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constructs under conditions similar to endogenous expression levels. This is an important 

consideration as overexpression of certain Incs can have deleterious effects on inclusion 

development and Inc localization (57) or can recruit a greater abundance of eukaryotic 

proteins (Fig. S3-6) that may or may not reflect in vivo conditions. This in contrast to a 

recent study where the authors over-expressed IncB-APEX2 (170), which did not result in 

localization of IncB-APEX2 to microdomains within the inclusion membrane, as 

endogenous IncB does (114, 240). The goal of this study may have been to identify all 

possible inclusion proximal proteins, regardless of specificity. Here, we have sought to 

understand the context for why a specific protein was prominent in ours and others’ 

datasets, which ultimately revealed important information for how the inclusion membrane 

may be organized (Fig. 3-11).   

To assign statistical significance and eliminate background contaminant proteins 

from the AP-MS data in an unbiased fashion, the identified proteins from H. sapiens and 

C. trachomatis L2 were analyzed by Significance Analysis of INTeractome (SAINT) (207) 

(Table 3-1; Table S3-1 to S3-3). This type of analysis is an improvement over the 

previously described statistical analyses used for similar datasets (170) because the t-test 

and G-test to determine whether to include a protein in the dataset is not sufficient to 

estimate the False Discovery Rate (FDR). Newer methods, such as PepC, use a matrix 

of t-test and G-test confidence intervals to detect differentially expressed proteins (241). 

The SAINT method constructs separate distributions for true and false interactions to 

derive the probability of the observed bait-prey interaction. The probability model for the 

bait-prey interaction pair is used to estimate measurement errors in a transparent manner. 

SAINT generates a Bayesian False Discovery Rate (BFDR) calculation for each potential 

interaction detected in the dataset. SAINT also normalizes spectral counts based on 

protein length, which affects the potential availability of peptides that can be analyzed by  
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Figure 3-11. Model of Inc-Inc organization in the inclusion membrane and Inc-APEX2 
proximity labeling. 

Proposed model of Inc organization based on mass spectrometry identified chlamydial Inc 
proteins using IncA-APEX2 and IncF-APEX2 proximity labeling constructs and bacterial 
two-hybrid assays (BACTH) to test protein-protein interactions. Based on these data we 
propose four possible scenarios for the spatial organization of Incs and how these Incs 
were detected using the APEX2 proximity labeling system: (1) IncF interacts with CT226 
which binds LRRF1. (2) IncA interacts with CT226 which binds LRRF1. (3) IncA binds IncF 
and CT226 which binds LRRF1. (4) IncA, CT223, IncF, and CT226 (which binds LRRF1) 
all interact with each other. CT223 was statistically significant by SAINT analysis from 
mass spectrometry data and was able to interact with IncF and IncA by BACTH. 

Figure modified from Olson et al. 2019. IAI.  
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MS/MS. These are more rigorous statistical tests than the independent t-test and 

G-test analyses (207, 242, 243).  

We applied STRING interaction and ClueGo pathway analysis tools to our SAINT 

significant (BFDR≤0.05) eukaryotic proteins identified using the Inc-APEX2 constructs to 

detect globally enriched pathways. Consistent with our original hypothesis that IncA may 

preferentially interact with eukaryotic proteins compared to IncF, we detected a larger 

number of statistically significant eukaryotic proteins with our IncA-APEX2 (192 total) 

construct than with IncF-APEX2 (13 total), albeit with the caveats related to labeling radius 

noted below. For IncATM-APEX2, there was more than a log reduction in the number of 

proteins identified when compared to full-length IncA-APEX2, suggesting specificity for 

interactions at the C-terminus of IncA. Given the presence of a SNARE-like domain in the 

C-terminus of IncA, it is possible that the large number of proteins identified with IncA-

APEX2 reflects its interactions with other SNARE proteins on vesicles carrying diverse 

cargo. For instance, vesicle-mediated transport (e.g., ANXA1, AP1M1, CAV1, GOLGA2, 

PDCD6, PDCD6IP, RAB34, RAB5B, SEC16A, SEC24C, SEC31A, SNX1, SNX2, SNX3, 

SNX5, SNX6, TFG, TSG101, USO1) has been described in the context of C. trachomatis 

L2 acquisition of specific lipids from Golgi apparatus-derived exocytic vesicles (30, 48, 

50). Statistically significant hits involved in SNX-retromer pathway disruption during 

chlamydial infection include SNX1, SNX2, SNX3, SNX5, SNX6, and SNX27 (122). 

Additional globally enriched biological processes and molecular functions involving 

cytoskeleton organization and translation align with previously published data. 

Cytoskeleton organization (e.g., ACTN1, ACTN4, CDC42, DPYSL3, DYNLL1, MARCKS, 

PLS3, RAC1, RHOA, SHTN1) corresponds with the literature as the inclusion is 

surrounded by an F-actin cage  (71, 244, 245). One of the four statistically significant 

eukaryotic proteins identified using each Inc-APEX2 construct, microtubule-associated 
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protein 1B (MAP1B) (Table S3-2) would be expected because microtubules are known to 

surround the inclusion (35, 123, 227) and thus would be proximal to both IncF and IncA, 

which uniformly label the inclusion (88).  This interpretation is consistent with the findings 

of another study using APEX2 (170). 

Our AP-MS data also identified multiple statistically significant Inc proteins. Again, 

IncF-APEX2 labeled three different Incs compared to only two for each of the IncA-APEX2 

constructs (one of which was IncA itself). Consistent with our hypothesis, these data, taken 

together with the few eukaryotic proteins identified, suggest IncF may preferentially 

interact with other Inc proteins. Importantly, IncATM-APEX2 did not label more Incs than 

full-length IncA, even if we lowered the BFDR threshold. These data indicate specificity to 

the IncF-APEX2 identified Incs. Although we identified chlamydial Incs with our Inc-APEX2 

proximity labeling system, the majority of Incs detected were not statistically significant by 

SAINT (Table 3-1; Table S3-1). Some of this may reflect the residues that APEX2 

covalently modifies during the biotinylation reaction (cysteine, histidine, tryptophan, and 

tyrosine residues) (168, 189, 193). The Incs that were significant (e.g., CT223 and IncA) 

have 11-20 cytosolically exposed target amino acids, whereas Incs that were not found to 

be statistically significant have fewer than 5-6 exposed target amino acids, in general. 

Therefore, proteins containing fewer APEX2-modifiable amino acids will not be efficiently 

tagged with biotin and subsequently not enriched as efficiently in the streptavidin affinity 

purification. Secondly, there are also inherent difficulties in identifying hydrophobic 

proteins by mass spectrometry. To counter this difficulty, we included two enzymes to 

digest purified proteins into peptides, but these efforts, in combination with limited 

modifiable amino acids, may not have allowed for enough enrichment of APEX2-targeted 

Inc proteins. To compensate for this limitation, a lower BFDR significance threshold could 

be considered when analyzing chlamydial Inc proteins. For example, when we lowered   



134 

 

   

 

the BFDR threshold to 0.2, we identified eight Incs from our AP-MS data, including IncA 

in the IncF-APEX2 dataset that was detected by western blot (Fig. 3-3). Further 

experimentation and analysis of Inc-Inc APEX2 data are required to identify an appropriate 

cut-off.  

Using chlamydial expressed Inc-APEX2 constructs, we identified several 

chlamydial Incs and their known interacting eukaryotic protein partners including IncG and 

14-3-3β (142), IncD and CERT (54, 126), CT228 and myosin phosphatase target protein 

subunit 1 (MYPT1) (38), and IncE and sorting nexin 5 (SNX5) and SNX6 (122) (Table 3-

1; Table S3-1 to S4-3). In addition, we identified eukaryotic proteins that were unique to 

each IncF-APEX2 and IncA-APEX2 datasets that have not been demonstrated to localize 

to the chlamydial inclusion, and, thus, require further validation (Table 3-2). In support of 

our hypothesis that IncA might preferentially interact with eukaryotic proteins compared to 

IncF, more eukaryotic proteins were identified using IncA-APEX2 than with IncF-APEX2 

as noted above (Table S3-2). We expanded on the current knowledge of proteins recruited 

to the inclusion membrane with the validation of two eukaryotic proteins not previously 

reported at the inclusion: LRRF1, which was statistically significant in each Inc-APEX2 

dataset, and its known binding partner FLII, which was statistically significant in the IncA-

APEX2 dataset (Table S3-2; Fig. 3-5 through Fig. 3-7). We also identified a potential 

chlamydial protein interacting partner for LRRF1 by BACTH: CT226 (Fig. 3-8A). These 

data are consistent with a previous report of LRRF1 and CT226 potential interactions 

identified by transfecting host cells with epitope-tagged CT226 followed by AP-MS (122).  

We detected LRRF1 at the inclusion membrane, but LRRF1 knockdown does not 

negatively impact chlamydial progeny production in HeLa cells (Fig. S3-4C). One 

explanation for this may be that C. trachomatis already prevents the normal function of 

LRRF1 by sequestering it at the inclusion membrane. In this context, knockdown would 
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not affect the production of infectious progeny. Alternatively, LRRF1 has been implicated 

in the production of a type 1 interferon response (229, 230) so a more relevant tissue 

culture model may be required, such as human macrophages (246), which produce a 

robust interferon-mediated immune response. As no phenotype for LRRF1 knockdown 

was apparent, we chose to examine the nature of how LRRF1 was biotinylated by our 

constructs and ultimately identified in our dataset, as it has also been found in previous 

AP-MS datasets (122, 170, 171). The BACTH assays (Fig. 3-8A) provide evidence for an 

interaction between LRRF1 and CT226. Further, the SIM super-resolution data indicated 

co-localization between LRRF1 and overexpressed CT226-FLAG (C. trachomatis L2 

CT226-FLAG strain) at the inclusion membrane as well as with CT226-FLAG positive 

fibers emanating from the inclusion (Fig. 3-9). Lastly, we identified LRRF1 in CT226-FLAG 

co-immunoprecipitations, indicating that these proteins are true binding partners during 

chlamydial infection. We conclude that LRRF1 was likely labeled by APEX2 because 

CT226 is adjacent to, and likely interacting with, IncA and IncF in the inclusion membrane, 

which would position it within the labeling radius of our APEX2 constructs (Fig. 3-11). We 

attempted to make a CT226 knockout by allelic exchange but have been unsuccessful 

thus far. This may suggest that CT226 is essential or that possible overexpression of 

CT225 and CT227 in the homology regions of the allelic exchange vector is deleterious. 

Alternatively, other genetic tools such as TargeTron (109), or a conditional knockdown by 

CRISPRi (121), may successfully disrupt CT226 expression. 

Our study has also revealed potential limitations of the APEX2 proximity labeling 

system to distinguish differences between Inc-protein binding partners and proteins that 

are in spatial proximity to the Incs at the inclusion membrane, as summarized in Fig. 3-

11. For instance, the labeling radius of APEX2, at least in our hands, may be larger than 

originally described (189). This would explain the identification of proteins proximal to IncF 
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and IncA and not only specific protein binding partners at the inclusion (Fig. 3-11). For 

example, although we identified strong LRRF1 recruitment to the inclusion (Fig. 3-5), IncF 

and IncA, our bait proteins, were not identified as interacting partners of LRRF1 by BACTH 

or using IncF-FLAG co-immunoprecipitations (Fig. 3-8A). In addition, the spatial 

organization of Incs in the inclusion membrane is not currently well understood, but IncA 

and IncF uniformly decorate the inclusion membrane as opposed to CT223, which 

localizes in discrete regions. In vivo two-hybrid experiments have shown that IncA and 

IncF interact (105), which might support the labeling of similar proximal proteins, and we 

identified IncA in IncF-APEX2 labeled eluates (Fig. 3-3). Another possible explanation for 

a larger labeling radius is related to the diffusion rate and half-life of biotin-phenol, which 

is approximately one millisecond (193). Diffusion of biotin-phenol would contribute to a 

greater labeling radius and a larger pool of proteins identified. In support of the diffusion 

of biotin-phenoxyl radicals with our Inc-APEX2 constructs, we identified Outer Membrane 

Complex B (OmcB) and Major Outer Membrane Protein (MOMP) in the AP-MS data 

(Table 3-1, Table S3-1). It is possible that during labeling with the Inc-APEX2 strains, 

biotin-phenoxyl diffuses across the inclusion membrane and labels the bacteria (intra-

inclusion) before the quenching step, and OmcB and MOMP are amongst the most 

abundant outer membrane chlamydial proteins. Shorter labeling times may decrease the 

labeling radius and increase labeling specificity (197). Also, BACTH assays are a useful 

tool to determine protein-protein interactions in vivo using E. coli. In this study, using the 

BACTH assay to test chlamydial Inc-Inc protein interactions, we observed CT223-IncF 

and CT223-IncA interactions (Fig. 3-8B), which supports the identification of CT223 as a 

statistically significant Inc using each Inc-APEX2 construct (Table 3-1). However, we might 

miss some interactions with the BACTH system if eukaryotic post-translational 

modifications are required for the protein interactions to occur (e.g., phosphorylation; 

(247)). Therefore, other validation methods such as super-resolution microscopy or 
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Duolink® PLA technology, provided antibodies are available, are required. Alternatively, 

overexpression models could be used to detect interactions with epitope-tagged Incs (with 

the caveats previously noted). Importantly, these data highlight the necessity of using 

adequate controls and statistical analyses to eliminate false positives and other proteins 

that may be transiently near the inclusion during the labeling period. 

Our data highlight the utility of the ascorbate peroxidase proximity labeling system 

to detect novel protein interactions at the C. trachomatis inclusion membrane in vivo. This 

tool improves upon past techniques by maintaining the spatial organization of Incs in the 

inclusion membrane and biotinylating proximal proteins in vivo. Our goal was to determine 

if there is a preference for certain Incs toward Inc-Inc interactions or Inc-eukaryotic 

interactions in the inclusion membrane using the AP-MS SAINT data as the foundation for 

further study. Determining the complex types of interactions that Incs orchestrate in the 

inclusion membrane will lead to a better understanding of how Chlamydiae survive in their 

intracellular niche. Importantly, this technique is broadly applicable, when properly 

controlled, to other intracellular bacteria or parasites residing within a membrane-bound 

vacuole. 
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Appendix A - Supplementary Figures 

 

 

Figure S3-1. Western blot detection of the expressed APEX2 constructs. 

HeLa cells infected with C. trachomatis L2 Inc-APEX2, APEX2 only, or wild-type (WT) 
strains were induced with anhydrotetracycline (aTc) at 7 hpi (0.3 nM for IncF-APEX2; all 
other samples 5 nM), or not induced as indicated. Lysates were collected at 24 hpi, 
solubilized, and affinity purified using FLAG beads. The eluates were separated by 
electrophoresis, transferred to PVDF membrane, and blotted for APEX2 containing 
constructs using anti-FLAG antibody. The total lysate (input) was probed with anti- C. 
trachomatis Hsp60 (cHsp60) antibody as a loading control.  

Figure modified from Olson et al. 2019. IAI.  
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Figure S3-2. Visualization of global biological processes and molecular function of AP-MS 
identified statistically significant eukaryotic proteins using C. trachomatis L2 Inc-APEX2 
strains.  

Affinity purified-mass spectrometry (AP-MS) identified spectra were compared to the 
Homo sapiens database using Mascot and then Significance Analysis of INTeractome 
(SAINT) was applied to identify statistically significant proteins (BFDR ≤ 0.05) from each 
dataset. Global networks identified using each C. trachomatis L2 transformed with (A) 
IncF-APEX2, (B) IncATM-APEX2, and (C) IncA-APEX2 are shown.  

Figure modified from Olson et al. 2019. IAI.  
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Figure S3-3. STRING network analysis of statistically significant eukaryotic proteins. 

Significance Analysis of INTeractome (SAINT) was applied to identify statistically 
significant AP-MS identified eukaryotic proteins using C. trachomatis L2 IncF-APEX2, 
IncATM-APEX2, and IncA-APEX2. STRING network (0.7 high confidence) visualization of 
eukaryotic proteins identified by mass spectrometry (SAINT BFDR ≤ 0.05) from each C. 
trachomatis L2 (A) IncF-APEX2, (B) IncATM-APEX2, and (C) IncA-APEX2. 

Figure modified from Olson et al. 2019. IAI.  
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Figure S3-4. The effect of LRRF1-GFP and FLII-GFP overexpression and LRRF1 
knockdown on C. trachomatis progeny production. 

HeLa cells seeded onto coverslips were transfected with (A) 100 ng pCMV6-AC-LRRF1- 
GFP or (B) 500 ng pCMV6-AC-FLII-GFP. Transfected cells were either mock-infected or 
infected with C. trachomatis L2 wild-type at 6 hours post-transfection. At 24 hpi, HeLa cells 
were paraformaldehyde fixed, 0.5 % Triton X-100 permeabilized, and stained for 
immunofluorescence to visualize the inclusion membrane (CT223; red), DNA (DRAQ5; 
blue) and (A) LRRF1-GFP or (B) FLII-GFP. Coverslips were imaged using a Zeiss with 
ApoTome.2 at 100x. Scale bar = 10 µm. (C) Inclusion area measurements from HeLa cells 
transfected with pCMV6-AC-LRRF1-GFP and infected with C. trachomatis L2 wildtype (as 
above) were compared to non-transfected HeLa cells infected with C. trachomatis L2 wild-
type. Inclusion area is reported for non-transfected, LRRF1-GFP Total (the inclusions from 
both high and low LRRF1-GFP expressing cells) and broken into LRRF1-GFP high and 
low expression only (see inset). Two independent experiments were performed. Inclusion 
area was graphed in GraphPad Prism 7 and a one-way ANOVA with Tukey’s multiple 
comparisons post-hoc test was performed to determine statistical significance. There was 
no significant difference in inclusion area. (D) siRNA knockdown of LRRF1 in HeLa cells. 
20 nM of non-targeting (NT), GAPDH, LRRF1 single siRNA or 3 pooled siRNAs were 
reverse transfected as indicated into HeLa cells that were then infected with C. 
trachomatis L2 wild-type at 48 hours post-transfection and collected 24 hours later. 
Lysates from siRNA treated, C. trachomatis L2 wild-type infected cells were collected in 
2x Laemmli sample buffer, electrophoresed, transferred to PVDF and blotted to confirm 
siRNA knockdown efficiency of LRRF1 and GAPDH. 

Figure modified from Olson et al. 2019. IAI.  
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Figure S3-5. T18-IncE is expressed in E. coli. 

DH5α lacIq E. coli were transformed with pUT18C-IncE and grown overnight. Expression 
of T18-IncE was induced or not using 0.5 mM IPTG and with or without the presence of 
0.4% glucose, then grown for 4 hours at 30°C. Bacterial lysates were collected, 
separated by SDS-PAGE and transferred to a PVDF membrane. The membrane was 
blotted for expression of T18-IncE using an antibody against T18 (T18-IncE 34 kDa). 

Figure modified from Olson et al. 2019. IAI.   
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Figure S3-6. Overexpression of CT226-FLAG from C. trachomatis L2 CT226-FLAG 
results in increased LRRF1 and FLII at the inclusion membrane.  

HeLa cells seeded on glass coverslips were infected with C. trachomatis L2 CT226-FLAG 
and either not induced or induced for expression at 7 hpi using 5 nM or 20nM aTc. At 24 
hpi, coverslips were fixed with 3% formaldehyde and 0.022% glutaraldehyde, 
permeabilized with methanol, and stained for immunofluorescence to visualize construct 
expression (FLAG; red), chlamydiae (MOMP; gray), DNA (DAPI; blue), and A) LRRF1 
(green) or B) FLII (green). Coverslips were imaged using a Zeiss confocal LSM 800 with 
63x magnification and 2x zoom. Scale bar = 5 μm. Images were captured using the same 
exposure time (set for 20 nM aTc images) for uninduced and 5 nM aTc samples. 

Figure modified from Olson et al. 2019. IAI.  
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Figure S3-7. Assessment of CT226-FLAG expression on LRRF1 localization using C. 
trachomatis L2 CT226-FLAG infected HeLa cells using normal exposure levels.  

HeLa cells seeded on glass coverslips were infected with C. trachomatis L2 CT226-FLAG 
and either not induced or induced for expression at 7 hpi using 5 nM. At 24 hpi, coverslips 
were fixed with 4% paraformaldehyde, permeabilized with 0.5% triton X100, and stained 
for immunofluorescence to visualize construct expression (FLAG; red), LRRF1 (green), 
GFP expressing chlamydiae (pseudo-color blue), and DNA (DAPI; blue). Coverslips were 
imaged using a Zeiss with Apotome 2.1 with 100x magnification. Scale bar = 10 μm. 

Figure modified from Olson et al. 2019. IAI.  
  



150 

 

   

 

 

Figure S3-8. Co-immunoprecipitation of endogenous LRRF1 with C. trachomatis L2 
CT226-FLAG. 

HeLa cells seeded in a 6-well plate with glass coverslips were infected with C. trachomatis 
L2 CT226-FLAG or IncF-FLAG and either not induced or induced for expression at 7 hpi 
with 5 nM aTc (CT226-FLAG) or 1 nM aTc (IncF-FLAG). At 24 hpi, cells were collected, 
solubilized, normalized, and affinity purified using FLAG beads. The clarified lysates 
(soluble), unbound fractions and eluates were probed for construct expression (FLAG; 
CT226-FLAG 19.2 kDa; IncF-FLAG 11.3 kDa monomer and 22.6 kDa dimer) and LRRF1 
(dimer 160 kDa). (A) and (B) are representative of two biological replicates. A total of three 
independent experiments were performed. 

Figure modified from Olson et al. 2019. IAI.  
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Appendix B- Supplementary Tables 

Table S3-1. Complete SAINT analysis of C. trachomatis L2 proteins identified by mass 
spectrometry. IAI.00537-19-sd002.xlsx  

Table S3-2. SAINT significant eukaryotic proteins identified by mass spectrometry. 
IAI.00537-19-sd003.xlsx 

Table S3-3. Complete SAINT analysis of eukaryotic proteins identified by mass 
spectrometry. IAI.00537-19-sd004.xlsx  

Table S3-4. Proteins that associate with the inclusion of C. trachomatis at 24 hpi. 
IAI.00537-19-sd005.xlsx  

Table S3-5. Primers used for construction of plasmids. IAI.00537-19-sd006.xlsx  

Table S3-6. E. coli strains and plasmids. IAI.00537-19-sd007.xlsx   

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6803327/bin/IAI.00537-19-sd002.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6803327/bin/IAI.00537-19-sd003.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6803327/bin/IAI.00537-19-sd004.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6803327/bin/IAI.00537-19-sd005.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6803327/bin/IAI.00537-19-sd006.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6803327/bin/IAI.00537-19-sd007.xlsx
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Chapter 4 - A Meta-Analysis of Affinity Purification-Mass 

Spectrometry Experimental Systems Used to Identify 

Eukaryotic and Chlamydial Proteins at the Chlamydia 

trachomatis Inclusion Membrane 

 

 

 

 

 

*Chapter 4 is reused and edited with permission from the Journal of Proteomics: 

 Macy G. Olson, Scot P. Ouellette, and Elizabeth A. Rucks. 2020. A Meta-Analysis of 

Affinity Purification-Mass Spectrometry Experimental Systems Used to Identify Eukaryotic 

and Chlamydial Proteins at the Chlamydia trachomatis Inclusion Membrane. Journal of 

Proteomics.  

  



153 

 

   

 

Abstract  

The obligate intracellular bacterial pathogen, Chlamydia trachomatis, develops 

within a membrane-bound vacuole termed the inclusion. Affinity purification-mass 

spectrometry (AP-MS) experiments to study the interactions that occur at the chlamydial 

inclusion membrane have been performed and, more recently, combined with advances 

in C. trachomatis genetics. However, each of the four AP-MS published reports used either 

different experimental approaches or statistical tools to identify proteins that localize at the 

inclusion. We critically analyzed each experimental approach and performed a meta-

analysis of the reported statistically significant proteins for each study, finding that only a 

few eukaryotic proteins were commonly identified between all four experimental 

approaches. The two similarly conducted in vivo labeling studies were compared using 

the same statistical analysis tool, Significance Analysis of INTeractome (SAINT), which 

revealed a disparity in the number of significant proteins identified by the original analysis. 

We further examined methods to identify potential background contaminant proteins that 

remain after statistical analysis. Overall, this meta-analysis highlights the importance of 

carefully controlling and analyzing the AP-MS data so that pertinent information can be 

obtained from these various AP-MS experimental approaches. This study provides 

important guidelines and considerations for using this methodology to study intracellular 

pathogens residing within a membrane-bound compartment.   
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Significance 

Chlamydia trachomatis, an obligate intracellular pathogen, grows within a 

membrane-bound vacuole termed the inclusion. The inclusion is studded with bacterial 

membrane proteins that likely orchestrate numerous interactions with the host cell. 

Although maintenance of the intracellular niche is vital, an understanding of the host-

pathogen interactions that occur at the inclusion membrane is limited by the difficulty in 

purifying membrane protein fractions from infected host cells. The experimental 

procedures necessary to solubilize hydrophobic proteins fail to maintain transient protein-

protein interactions. Advances in C. trachomatis genetics has allowed us and others to 

use various experimental approaches in combination with affinity purification mass 

spectrometry (AP-MS) to study the interactions that occur at the chlamydial vacuolar, or 

inclusion, membrane. For the first time, two groups have published AP-MS studies using 

the same tool, the ascorbate peroxidase proximity labeling system (APEX2), which 

overcomes past experimental limitations because membrane protein interactions are 

labeled in vivo in the context of infection. The utility of this system is highlighted by its 

ability to study chlamydial type III secreted inclusion membrane protein (Inc) interactions. 

Incs act as the mediators of host-pathogen interactions at the inclusion during C. 

trachomatis infection. When carefully controlled and analyzed, the data obtained can yield 

copious amounts of useful information. Here, we critically analyzed four previously 

published studies, including statistical analysis of AP-MS datasets related to Chlamydia-

host interactions, to contextualize the data and to identify the best practices in interpreting 

these types of complex outputs. 
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Graphical abstract: A Meta-Analysis of Affinity Purification-Mass Spectrometry 
Experimental Systems Used to Identify Eukaryotic and Chlamydial Proteins at the 
Chlamydia trachomatis Inclusion Membrane. 

Graphical abstract adapted from Olson et al. 2020. JProt.   
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1. Introduction 

Recently, four large-scale proteomics experiments to identify inclusion-associated 

proteins at the C. trachomatis inclusion membrane have been published, with two 2019 

studies leveraging advances in genetic manipulation of C. trachomatis (115, 116, 122, 

170, 171). This has allowed more direct experimental approaches to be implemented to 

identify chlamydial Inc-binding partners or inclusion-associated proteins. Each approach 

affinity-purified tagged proteins or whole inclusions and then the purified proteins were 

identified by mass spectrometry. However, each of these AP-MS studies featured different 

experimental approaches and/or utilized different statistical analysis tools to assign 

significance to the identified proteins (115, 122, 170, 171). We compare these 

experimental approaches, critically analyzing the limitations of each. 

We first compared the statistically significant proteins reported in the four AP-MS 

C. trachomatis inclusion membrane interaction studies to identify common proteins, while 

noting the differences in processing and identification. Next, we directly compared the two 

proteomics experiments that used the APEX2 proximity labeling system (115, 170). We 

processed the Mascot data reported by Dickinson et al. (170) using the SAINT statistical 

analysis tool (207) described in Olson et al. (115) to determine the effect of statistical 

analysis tools on the identification of significant proteins. We found that there were notable 

differences in the number of significant proteins found using SAINT compared to the G- 

and t-test as reported by Dickinson et al. (170).  Finally, we examined our Inc-APEX2 AP-

MS datasets (115) using a more rigorous minimum peptide threshold to determine how 

these parameters affected the SAINT statistically significant eukaryotic and chlamydial 

proteins. The results suggest that a rigorous statistical analysis is critical to eliminate likely 

false-positive hits from these datasets. 
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2. Materials and Methods  

2.1 Source of AP-MS data and how these data were used  

The statistically significant proteins reported by Mirrashidi et al. (122), Aeberhard 

et al. (171), Dickinson et al. (170), and Olson et al. (115) with data source are listed in 

Table 4-1. The statistically significant protein identifiers from each source (listed in Table 

4-1) were uploaded into UniProt (www.uniprot.org) using the “retrieve/mapping” tool to 

obtain the most current UniProt KB annotation. These UniProt KB protein annotations 

(listed in Table S4-1) were used for the Venny (248) comparison of these experimental 

datasets. The complete UniProt mapped input list of proteins from each of the 

experimental datasets are found in Table S4-1. Using the current version of UniProt, some 

entries mapped to more than one identifier (Table S4-1). Venny 2.0 (248), a Venn diagram 

tool (https://bioinfogp.cnb.csic.es/tools/venny/index.html), was used to compare the 

proteins identified in Mirrashidi et al. (122), Aeberhard et al. (171), Olson et al. (115), and 

Dickinson et al. (170).  

2.2 SAINT analysis of Dickinson et al. (170) 

To analyze the results of Dickinson et al. (170) using Significance Analysis of 

INTeractome (SAINT), the Mascot results files were downloaded from the PRIDE 

consortium (PRIDE via ProteomeXchange; PXD012494). These results files were input 

into Scaffold Viewer (http://www.proteomesoftware.com/products/free-viewer) to visualize 

spectral count data for each protein. In Scaffold, the parameters were set to 95% protein 

threshold, one-peptide minimum threshold, and 95% peptide threshold. The generated 

“samples report” file was exported as an excel file, which contains the protein identification 

and spectral counts for each biological replicate and bait protein (e.g., IncB-APEX2) at 8, 

16, and 24 hours post-infection, and used to create the SAINT input files (i.e., bait, prey, 

http://www.uniprot.org/
https://bioinfogp.cnb.csic.es/tools/venny/index.html
http://www.proteomesoftware.com/products/free-viewer
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interaction files) (Table S4-2). The SAINT input files were analyzed using the GUI 

Significance Analysis of INTeractome (SAINT) interface available via the APOSTL Galaxy 

Server (http://apostl.moffitt.org/) (Table S4-2). SAINT is a statistical tool which accounts 

for protein length and uses Bayesian statistics to calculate a Bayesian False Discovery 

Rate (BFDR) for each prey-bait interaction indicated (207, 242). A Venny comparison of 

the SAINT data with Dickinson et al. reported data is provided in Table S4-3 and Table 

S4-4.  

2.3 Analysis of Dickinson et al. statistically significant proteins using the CRAPome (249) 

The Contaminant Repository for Affinity Purification (CRAPome; 

www.crapome.org) (249), was used to further analyze the reported data from Dickinson 

et al. for potential contamination with background proteins. The list of statistically 

significant proteins reported by Dickinson et al. was input into the CRAPome and the 

results for each prey identified are reported in Table S4-5. Each sample was normalized 

by dividing the average spectral counts (out of the 411 experiments available in the 

CRAPome) by the amino acid length. The “percent of experiments identified” column was 

calculated by dividing the average spectral counts by the 411 total AP-MS experiments in 

the CRAPome that contain the spectral count information.  

2.4 Identification of mitochondrial proteins that have homology to C. trachomatis proteins  

AP-MS peptide samples from uninfected HeLa cells supplemented with biotin, 

which were prepared as previously described (115), were analyzed using the Mascot 

server, which searched the Swiss-Prot database selected for C. trachomatis strain 434/Bu. 

Proteins with spectral counts in three or more out of six total replicates were then BLAST 

searched against Homo sapiens using NCBI Protein BLAST. The resulting human proteins 

http://apostl.moffitt.org/
http://www.crapome.org/
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were then identified by UniProtKB. Subcellular localization, query cover, Expect value and 

percent identity from the BLAST search are provided (Table S4-6). 

2.5 Analysis of two-peptide minimum threshold on Olson et al. SAINT significant 

eukaryotic and C. trachomatis L2 proteins 

To determine the SAINT significant proteins using a two-peptide minimum 

threshold in Scaffold, the filtering parameters reported by Olson et al. (115) for the 

eukaryotic (PRIDE accession number: PXD015890) and C. trachomatis L2 proteins 

(PRIDE accession number: PXD015883) identified were changed to a two-peptide 

minimum, and the generated “samples report” file was exported as an excel file. The 

SAINT input files were created from this output (207) and analyzed using SAINT v3.6.1 

through the APOSTL Galaxy Server (http://apostl.moffitt.org/). The samples report and 

SAINT results for eukaryotic proteins are in Table S4-8 and C. trachomatis L2 proteins in 

Table S4-9.  

3. Results and Discussion  

3.1 A Meta-Analysis of C. trachomatis AP-MS and Inclusion-MS Experiments to Identify 

Protein-Protein Interactions at the Chlamydial Inclusion Membrane 

Given the complex nature of the protein-protein interactions (PPIs) that occur at 

the C. trachomatis L2 inclusion membrane, we sought to compare previously identified 

inclusion-associated proteins from four AP-MS datasets. Briefly, Mirrashidi et al. (122) 

transfected uninfected HEK293T cells with tagged Incs, which were purified by AP-MS; 

Aeberhard et al. (171) purified C. trachomatis L2 inclusions from eukaryotic cells; both 

Dickinson et al. (170) and Olson et al. (115) used the APEX2 proximity labeling system to 

tag interacting proteins in vivo, followed by AP-MS to identify interacting or proximal 

proteins. To compare the proteins that were identified using each of these experimental 

http://apostl.moffitt.org/


160 

 

   

 

approaches, we analyzed the statistically significant proteins that were reported from each 

experiment (summarized in Table 4-1). Aeberhard et al. identified 350 (p≤0.05) statistically 

significant proteins for purified inclusions (171), Mirrashidi et al. identified 331 (MiST score 

(1 = perfect score)) statistically significant proteins by transfecting uninfected cells with 

epitope-tagged Incs (122), Dickinson et al. (24 hpi time point only) identified 396 (p≤0.05) 

statistically significant proteins using C. trachomatis L2 IncB-APEX2 (170), and Olson et 

al. identified 199 (p≤0.05) statistically significant proteins combined from C. trachomatis 

L2 IncF-APEX2, IncA-APEX2, and IncATM-APEX2 strains(115). We used Venny (248), to 

compare these lists with Venn diagrams (http://bioinfogp.cnb.csic.es/tools/venny/) to 

detect the commonly identified, statistically significant proteins from each AP-MS and 

inclusion-MS experimental dataset (Fig. 4-1; Table S4-1) (115, 122, 170, 171).  

Highlighting the numerous differences in each of these experimental protocols, only 0.7% 

(7 proteins) of the total input for Venny were commonly identified as statistically significant 

in all four inclusion-MS or AP-MS experimental datasets (Table 4-Table 4-1, Table S4-1; 

Fig. 4-1). These proteins were: Leucine-Rich Repeat Flightless-Interacting Protein 1 

(LRRF1, LRRFIP1), Myosin Phosphatase-Targeting Subunit 1 (MYPT1, PPP1R12A), 

Reticulon-4 (RTN4), Sorting Nexin-1 (SNX1), Tropomodulin-3 (TMOD3), 14-3-3 protein 

beta (YWHAB), and 14-3-3 protein eta (YWHAH)(Table S4-1). In agreement with the 

current literature, several of the statistically significant eukaryotic proteins identified by all 

four studies have been reported to localize at the inclusion membrane (Table S4-1). These 

include 14-3-3 β (142), MYPT1 (38, 117), SNX1 (171), and LRRF1 (115). This highlights 

the potential for the three other commonly identified proteins, Reticulon-4, Tropomodulin-

3, and 14-3-3 η, to localize at the chlamydial inclusion during infection of a host cell.  
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Table 4-1 Comparison of large-scale AP-MS C. trachomatis L2 studies 

Experimental 
procedure 

Source of data 
used in this study 

Statistical test used 
for data analysis 

Statistical 
significance 
cut-off 
reported 

Statistically 
significant 
proteins# 

Strep-Tag® 
AP-MSa 

Table S1; 
"prey.entry.name" 
column 

CompPASS and 
MiST  

Top 1% 
ComPASS; 
MiST ≥ 0.7 

335 (N=3) 

Inclusion-MSb 
Table S1; “Protein 
ID” column 

SILAC/Two-sided 
Wilcoxon test with 
Benjamini-Hochberg 

p≤ 0.05 352 (N=3) 

IncB-APEX2 c 
S1 Table; 
Complete 
proteomic data 

G-test and t-test p≤ 0.05 399 (N=6) 

IncF-APEX2, 
IncA-APEX2, 
IncATM-
APEX2d 

Table 1, Table S1. 
Significant C. 
trachomatis L2 
proteins; Table S2. 
statistically 
significant 
eukaryotic proteins 

Significance Analysis 
of INTeractome 
(SAINT) 

BFDR ≤ 
0.05  

199 (N=5) 

# The statistically significant proteins at 24 hpi for all but the Strep-tag experiments by 
Mirrashidi et al. which transiently transfected (uninfected) HEK293T cells 

a Mirrashidi et al.; 331 protein entries reported by Mirrashidi et al. mapped to 335 proteins 
(Uniprot) 

b Aeberhard et al.; 350 protein entries reported by Aeberhard et al. mapped to 352 proteins 
(Uniprot) 

c Dickinson et al.; 396 protein entries reported by Dickinson et al. mapped to 399 proteins 
(Uniprot) 

d Olson et al.; 199 unique protein entries combined using each IncF-APEX2, IncA-APEX2, 
and IncATM-APEX2 
 

Table adapted from Olson et al. 2020. JProt.  
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Figure 4-1. Venny comparison of eukaryotic proteins at the C. trachomatis inclusion 
reported by Olson et al., Aeberhard et al., Mirrashidi et al., and Dickinson et al.  

The significant proteins reported from each study were input into Venny to determine 
commonly identified proteins. The total number of proteins as well as the percentage of 
total is indicated within each overlapping section.  

Figure modified from Olson et al. 2020. JProt.  
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3.2 Comparison of Aeberhard et al. (171), Dickinson et al. (170), and Olson et al. (115) 

reported statistically significant eukaryotic proteins 

We next compared the reported significant proteins from each of the three studies 

that were performed using chlamydial infected cells and found that 18 proteins or 2.2% of 

the total proteins are common between these three experiments (Fig. 4-2, Table S4-1). In 

addition to the seven commonly identified proteins from all four AP-MS experiments 

indicated above, there were 11 additional commonly identified proteins from the 

Aeberhard et al., Dickinson et al., and Olson et al. studies. The 11 additional commonly 

identified proteins were: Alpha-actinin-4 (ACTN4_HUMAN), Brain acid soluble protein 1 

(BASP1_HUMAN), Caprin-1 (CAPR1_HUMAN), Elongation factor 1-delta, EF-1-delta 

(EF1D_HUMAN), Membrane-associated progesterone receptor component 1 

(PGRC1_HUMAN), Stress-induced-phosphoprotein 1, (STIP1_HUMAN), Tropomyosin 

alpha-3 chain (TPM3_HUMAN), Tropomyosin alpha-4 chain (TPM4_HUMAN), Vinculin 

(VINC_HUMAN), Nuclease-sensitive element-binding protein 1 (YBOX1_HUMAN), and  

14-3-3 protein theta (1433T_HUMAN). This may represent a small but biologically relevant 

increase due to these experiments being carried out in the context of C. trachomatis 

infection (115, 170, 171), rather than ectopically expressing Incs in uninfected host cells 

(122). Fewer of these proteins have been validated for their localization thus far, but the 

inclusion has been shown to be surrounded by actin and intermediate filaments (e.g., 

vinculin) cytoskeleton network (71). This would explain the identification of such factors as 

TPM3 and TPM4, for example (250, 251). 
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Figure 4-2. Venny comparison of eukaryotic proteins identified at 24 hours post-infection 
in Olson et al. compared to Dickinson et al. and Aeberhard et al. experimental 
approaches. 

The reported significant proteins from each study using C. trachomatis L2 infected 
eukaryotic cells were input into Venny to determine commonly identified proteins. The 
total number of proteins as well as the percentage of total is indicated within each 
overlapping section. 

Figure modified from Olson et al. 2020. JProt.   
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3.3. Comparison of Dickinson et al. and Olson et al. reported statistically significant 

eukaryotic proteins 

Finally, we directly compared the statistically significant proteins reported from the 

published C. trachomatis L2 APEX2 proximity labeling system experiments (115, 

170).This is the first time that two large-scale AP-MS experiments using the same APEX2 

proximity labeling system tool to identify interactions at the C. trachomatis inclusion 

membrane have been reported (115, 170). A comparison of the experimental parameters 

used in each APEX2 experiment is summarized in Table 4-Table 4-2. Both experiments 

fused APEX2 to the C-terminus of an Inc to detect protein-protein interactions at the 

inclusion membrane in vivo.  

The major differences between these studies include the specific Inc(s) used for 

each of the Inc-APEX2 constructs, the protein digestion enzymes used in mass 

spectrometry sample preparation, and statistical analysis of mass spectrometry data. The 

specifics of each study are listed in Table 4-2. Of note, Dickinson et al. used C. trachomatis 

L2 transformed with IncB-APEX2 that uniformly decorated the inclusion (170) (Table 4-2). 

The localization of IncB in this context is different than the reports of endogenous IncB, 

which has been shown to localize in microdomains within the inclusion membrane (114). 

Olson et al. used C. trachomatis L2 transformed with IncA-APEX2, IncF-APEX2, or 

IncATM-APEX2 (a truncated IncA construct), all of which uniformly decorated the inclusion 

similar to endogenous IncA or IncF, respectively (44, 87, 88).  

Venny (248) was used to compare the statistically significant proteins reported at 

24 hpi by both Dickinson et al. (170) and Olson et al. (115). At 24 hpi, 399 statistically 

significant proteins were reported by Dickinson et al. using the G and t-test (170), while 

199 statistically significant proteins were reported by Olson et al. using Significance 

Analysis of INTeractome (SAINT) (115) (Fig. 4-3, Table S4-1). Fifty-three proteins (9.7%  
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Table 4-2. Affinity purification-mass spectrometry experimental parameters reported in 
Dickinson et al. * and Olson et al. & 

   
Dickinson et al.* Olson et al.& 

Tissue type HeLa 229 cells HeLa 229 cells 

Inc-APEX2 construct 

 

IncB-APEX2 

 

IncF-APEX2, IncA-APEX2, 
IncATM-APEX2 

Affinity Purification Streptavidin-agarose resin Streptavidin Magnetic beads 

Elution On resin trypsin digestion SDS-PAGE and sectioned 

Digestion Enzyme(s) Trypsin Trypsin and AspN 

Mass Spectrometer Thermo Fisher Velos Orbitrap Thermo Fisher Orbitrap Lumos 

Software MS-GF+ Release (v2016.10.24) Mascot and Scaffold 

Protein 
modifications 

Carbamidomethyl and Oxidation 
Carbamidomethyl and 
Oxidation 

Fasta search Homo 
sapiens  

UniProt SPROT accessed 
20170412  

UniProt Human accessed 
20180927 

Fasta search C. 
trachomatis 

C. trachomatis L2 434/Bu pL2 
Plasmid accessed 20180105 

C. trachomatis L2 434/Bu 
accessed 20180330 

Peptide/protein 
Filtering 

 

 

 

 

  

False Discovery Rate ≤ 1%, 
Unique peptides, requiring a 
minimum of six amino acids in 
length, were filtered using an 
MS-GF threshold of ≤ 1 ×10−9, 
corresponding to an estimated 
false-discovery rate (FDR) <1% 
at a peptide level. 

Scaffold filtering: 95% protein 
threshold, 1-peptide minimum, 
95% peptide threshold 

 

 

  

Additional data 
processing 

 

 

  

Relative peptide abundances 
were log-transformed. 
Elimination of statistical outliers 
was confirmed using a standard 
Pearson correlation at a sample 
level 

 

Statistical Test G-test and t-test SAINT# 

*previously published in Dickinson et al., PLoS Pathog. 2019 15(4):e1007698, doi: 
10.1371/journal.ppat.1007698 

& previously published in Olson et al., Infection and Immunity. 2019  

# Significance Analysis of INTeractome (SAINT) 

Table adapted from Olson et al. 2020. JProt 1 
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Figure 4-3. Venny comparison of reported eukaryotic proteins at 24 hours post-infection 
by Olson et al. (SAINT analysis) and Dickinson et al. (G- and t-test analysis) using the in 
vivo ascorbate peroxidase proximity labeling system (APEX2) combined with AP-MS 

The reported significant proteins from each study were input into Venny to determine 
commonly identified proteins. The total number of proteins as well as the percentage of 
total is indicated within each overlapping section. 

Figure modified from Olson et al. 2020. JProt. 
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of the total protein input) were commonly identified in both studies; given that different Inc 

proteins were used for these proximity labeling experiments, some differences may be 

expected. However, each Inc-APEX2 construct, IncB-APEX2 used by Dickinson et al. 

(170) and IncF-APEX2, IncA-APEX2, and IncATM-APEX2 used by Olson et al. (115), 

uniformly labeled the inclusion when the expression of the constructs was induced. 

Therefore, it is surprising that at 24 hpi, only approximately 13% of the statistically 

significant proteins reported by Dickinson et al. (using the G and t-test) (170) were 

commonly identified by Olson et al. (using SAINT) (115) (Fig. 4-3, Table S4-1). In addition, 

greater than 88% of Dickinson et al. (170) and 72% of Olson et al. (115) datasets 

contained unique proteins (i.e., proteins not commonly identified by both studies) (Fig. 4-

3, Table S4-1).  

3.4 SAINT analysis of Dickinson et al. identified eukaryotic proteins from APEX2 proximity 

labeling AP-MS data 

One possible explanation for the differences in the reported significant proteins is 

the statistical analysis tools used for each experiment. For example, Olson et al. (115) 

used SAINT, which takes into account the protein length when calculating the probability 

that a protein is a true interacting protein and not a false-positive (207). The probability is 

reported as Bayesian False Discovery Rate (BFDR) (207). Dickinson et al. used an 

unspecified G- or t-test to assign significance to their mass spectrometry data. Because 

both Dickinson et al. and Olson et al. used the APEX2 proximity labeling system, it is 

possible for the first time to directly compare the proteins identified in these experiments. 

Although it is not possible to change the experimental conditions prior to mass 

spectrometry (Table 4-2), the raw mass spectrometry data can be re-analyzed. To directly 

compare the results from Dickinson et al. (170) with the SAINT statistically significant 

proteins reported by Olson et al. (115) and to minimize differences in the AP-MS data  
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processing between these two datasets, we analyzed the Dickinson et al. datasets (170) 

using SAINT as described in the Materials and Methods. By the SAINT analysis tool, at 

24 hpi, 76 eukaryotic proteins were found to be statistically significant (Table 4-3, Table 

S4-2 and S4-3). To determine if these SAINT analyzed data appeared more similar to the 

data reported by Olson et al., we compared the 24 hpi SAINT analyzed Dickinson et al. 

datasets with the 24 hpi SAINT analyzed Olson et al. datasets. When the same tool was 

used to calculate statistical significance, the number of commonly identified statistically 

significant proteins increased from 9.7% (Fig. 4-3) to 14.1% (Fig. 4-4). In addition, 45% 

(34 of 76 proteins) of the Dickinson et al. SAINT significant proteins were commonly 

identified by Olson et al. Furthermore, now only 55% (42 of 76 proteins) of the Dickinson 

et al. SAINT significant proteins were unique (Fig. 4-4), compared to 88% (354 of 399 

proteins) of proteins from the G-test and t-test results (Fig. 4-3). The different Inc-APEX2 

(IncB vs. IncA and IncF) constructs and overexpression of each construct used to identify 

proximal or interacting proteins likely contribute to the remaining proteins that are unique 

in each dataset.  

While the specific implications for the mislocalization of Incs and “flooding” the 

inclusion membrane with additional Incs is not well understood at this time (59), the 

phenotypic changes in IncF-APEX2 localization upon overexpression support the concept 

that overexpression may impact the organization of the inclusion membrane (57). It is also 

likely that overexpression of other Inc proteins will subsequently influence or change the 

recruitment of certain host proteins to the inclusion. In support, Rucks et al. showed that 

reducing the expression levels of IncF-APEX2 rescued normal inclusion development 

(57), indicating that carefully assessing induction time and amount of the inducing agent 

used (i.e., overexpression levels) will influence the interaction data. It is important to note, 

that while IncB-APEX2 did not localize in the inclusion in a manner that is consistent with  
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Table 4-3. Comparison of Dickinson et al. results relative to the indicated statistical tests 

  

Time (hours 
post-infection) 

Number of statistically significant& 
proteins 

Number of proteins 
identified by both statistical 
tests 

  G/t-test* SAINT#   

8 hpi 90 0 n/a 

16 hpi 180 17 13 

24 hpi 399 76 70 

*previously published in Dickinson et al., PLoS Pathog. 2019 

#Analyzed for this study (BFDR ≤0.05) 

&p ≤0.05 

Table adapted from Olson et al. 2020. JProt 
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Figure 4-4. Venny comparison of SAINT analyzed Dickinson et al. eukaryotic proteins at 
24 hpi. 

The raw data reported by Dickinson et al. at 24 hpi were analyzed by SAINT then 
compared to Olson et al. reported 24 hpi SAINT significant proteins. The total number of 
proteins as well as the percentage of total is indicated within each overlapping section. 

Figure modified from Olson et al. 2020. JProt.   
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reports of endogenous IncB (114), Dickinson et al. did not report any abnormalities in 

inclusion size or bacterial morphology upon IncB-APEX2 overexpression (170).  

3.5 Comparison of SAINT significant Dickinson et al. eukaryotic protein datasets with the 

previously reported G- and t-test significant proteins at 24 hpi  

Because the SAINT analyzed Dickinson et al. datasets drastically decreased the 

overall number of statistically significant proteins compared to those reported by Dickinson 

et al. using the G- and t-test at 24 hpi, we further examined which proteins were statistically 

significant using each analysis tool. The statistically significant proteins reported by 

Dickinson et al. using the G- and t-test (p ≤ 0.05) [25] were compared to the SAINT 

analyzed significant proteins (BFDR ≤ 0.05) (Table 4-3, Table S4-2 to S4-3). At 24 hpi, the 

399 statistically significant eukaryotic proteins were identified using the G-test and t-test 

compared to only 76 statistically significant eukaryotic proteins identified by SAINT (Table 

4-3; Table S4-5). We used Venny (248) to determine which proteins were commonly 

identified by each statistical analysis tool (i.e., SAINT and the G-and t-test). Most SAINT 

significant proteins (70 of 76 proteins) were also identified as significant using the G- and 

t-test (Table 4-3; Table S4-3). Six proteins were unique to the SAINT statistical analysis 

tool (i.e., not determined to be statistically significant by G- and t-test) at 24 hpi: Hsc70-

interacting protein, Hip (F10A1_HUMAN), Protein transport protein Sec16A 

(SC16A_HUMAN), Src substrate cortactin (SRC8_HUMAN), Tropomyosin beta chain 

(TPM2_HUMAN), HLA class I histocompatibility antigen (1A30_HUMAN), and Ataxin-2-

like protein (ATX2L_HUMAN) (Table 4-3, Table S4-3). In support of these SAINT data, 

cortactin has been previously shown to localize with the chlamydial inclusion (252).  

These results indicate that despite using permissive Scaffold parameters (95% 

protein, 1-peptide minimum, 95% peptide identification), SAINT provides a more rigorous 

analysis than the G-test and t-test alone (Table 4-3, Table S4-3). Most of the proteins 
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identified by SAINT were also identified by the G-test and t-test which indicates that SAINT 

has more stringent parameters to calculate statistical significance (Table 4-3) and that 

amino acid length of each prey protein is an important aspect in these statistical 

calculations.  

3.6 Comparison of SAINT statistically significant Dickinson et al. eukaryotic protein 

datasets with the reported G- and t-test significant proteins at 16 and 8 hpi  

A stated goal of the Dickinson et al. study was to use the APEX2 system to 

understand how the proteome around the chlamydial inclusion changes over the course 

of the developmental cycle, and AP-MS data were taken from 8 hpi (early developmental 

cycle), 16 hpi (mid-developmental cycle), and 24 hpi (mid-late developmental cycle). As 

we have already re-analyzed the 24 hpi dataset above, we performed a similar re-analysis  

of the 16 and 8 hpi datasets and again compared SAINT significant proteins with the G- 

and t-test reported statistically significant proteins.  

At 16 hpi, Dickinson et al. reported 180 statistically significant proteins using the 

G- and t-test method, while only 17 statistically significant proteins were identified by 

SAINT (Table 4-3, Table S4-3). Consistent with the re-analysis of the 24 hpi dataset, at 

16 hpi, most of the G- and t-test significant proteins were also detected using SAINT (13 

of 17 total proteins) (Table S4-3). The four unique proteins identified only by the SAINT 

analysis included: Caprin-1 (CAPR1_HUMAN), Microtubule-associated protein 4 

(MAP4_HUMAN), Src substrate cortactin (SRC8_HUMAN), and Vimentin 

(VIME_HUMAN) (Table 4-3, Table S4-3). Consistent with previous studies, cortactin has 

been shown to be associated with the inclusion (252), and both vimentin (71) and 

microtubules (35) have been extensively studied for their roles near the inclusion during 

infection.  
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Finally, the SAINT analysis was applied to the 8 hpi Dickinson et al. dataset (170). 

At 8 hpi, using the G-test and t-test, Dickinson et al. reported 90 statistically significant 

proteins (170). In contrast, the SAINT analyzed Dickinson et al. dataset did not identify 

any statistically significant proteins (Table 4-3). These SAINT data are further supported 

by the findings published by Dickinson et al. in which they used RNAi specific for the genes 

corresponding to 64 of the 90 statistically significant proteins at 8 hpi to validate eukaryotic 

proteins that were recruited to the inclusion (170). Of the 64 proteins that underwent further 

testing by RNAi, only silencing of two genes (Stress-induced-phosphoprotein 1 (STIP1) 

and Myosin light polypeptide 6 (MYL6) yielded a 2-fold decrease in the production of 

infectious progeny (170). By the G- and t-test, STIP1, and MYL6 were also statistically 

significant at 16 and 24 hpi, but only SAINT significant at 24 hpi (Table S4-3, Table S4-4). 

The proteins that were silenced by RNAi in Dickinson et al. (170) are also directly 

compared to the SAINT calculated BFDR in Table S4-4.  

3.7 Analysis of Dickinson et al. and Olson et al. reported statistically significant eukaryotic 

proteins using the CRAPome (249) 

The most striking difference between the original dataset reported by Dickinson et 

al. and the SAINT analyzed datasets was with the 8 hpi samples, where, by SAINT, no 

proteins were identified as statistically significant. We asked if there was another metric of 

eliminating background proteins from a list of statistically significant proteins. Hence, we 

analyzed the G- and t-test reported statistically significant Dickinson et al. datasets using 

the CRAPome (249) to determine if their original list of statistically significant proteins was 

contaminated with background proteins. The CRAPome is a repository for background, 

contaminant proteins identified from AP-MS experiments (249). A list of eukaryotic 

proteins is queried, and the CRAPome reports the number of experiments that identified 

the protein including the average spectral counts for each experiment that identified the 
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queried protein. The Dickinson et al. G- and t-test reported statistically significant proteins 

from each 8, 16, and 24 hpi were queried into the CRAPome. The CRAPome reported 

average spectral count data for each queried protein was normalized to the queried protein 

length. We then used a two-pronged approach to defining contaminant proteins as those 

with spectral counts in greater than 30% of the experiments (i.e., 411 total AP-MS 

experiments uploaded to the CRAPome) and being above an arbitrary cut-off of greater 

than 0.02 for the average spectral counts normalized to protein length (Table S4-5).  

Using these two criteria, at 8 hpi, 15 of the 90 (16.7%) reported statistically 

significant (by G- and t-test) proteins are potentially background contaminant proteins 

(Table 4-4; Table S4-5). At 16 hpi, 19 of 180 (10.6%) significant proteins (by G- and t-

test), and at 24 hpi 33 of 399 (8.3%) significant proteins (by the G- and t-test) are potential 

background proteins. We then queried the SAINT analyzed Dickinson et al. datasets at 

each timepoint into the CRAPome to determine if the SAINT analysis reduced the number 

of contaminant proteins. While SAINT decreased the number of statistically significant 

proteins detected (Table 4-3), a similar percentage of the SAINT significant proteins 

identified fit the criteria for probable contaminant proteins except for 8 hpi, where no 

proteins were identified as SAINT significant (Table 4-4). The proteins that were flagged 

as potential contaminants from the SAINT analysis were also common to the G- and t-test 

CRAPome analysis, indicating that regardless of the statistical tool used, some 

contaminant proteins will be identified as statistically significant (Table 4-4). 

We also ran our 24 hpi SAINT analyzed AP-MS data (115) through the CRAPome 

to identify potential contaminant proteins for our datasets. At 24 hpi, 13 of 199 (6.5%) 

proteins were identified as potential contaminants using a one-peptide minimum threshold 

as reported by Olson et al. (115). When the threshold was increased to the two-peptides 

minimum (see “Intra-experimental analysis of Olson et al. AP-MS” section below), then 7 

of 101 (6.9%) statistically significant proteins were identified as contaminants (Table 4-4  
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Table 4-4. CRAPome analysis of Dickinson et al. reported G- and t-test datasets, 
SAINT analyzed Dickinson et al. and Olson et al. SAINT datasets 

Dickinson 
et al. 
datasets 

Statistical 
analysis 
tool used  

Statistically 
significant 
proteins 
queried 

Identified 
contaminant 
proteins 

Commonly 
identified 
proteins  

Proteins 
identified as 
contaminants 
(%) 

8 hpi 
G- and t-
test 

90 15 
 

16.67 

8 hpi SAINT# 0 n/a n/a n/a 

16 hpi 
G- and t-
test 

180 19 
 

10.56 

16 hpi SAINT# 17 3 (2)* 17.65 

24 hpi 
G- and t-
test 

399 33 
 

8.27 

24 hpi SAINT# 76 11 (11)* 14.47 
      

Olson et 
al. 
datasets 

Statistical 
analysis 
tool  

Total 
proteins 
input 

Identified 
contaminant 
proteins 

Commonly 
identified 
proteins  

Proteins 
identified as 
contaminants 
(%) 

24 hpi 1-
peptide 

SAINT 199 13 
 

6.53 

24 hpi 2-
peptide SAINT 101 7 (7)& 

6.93 

# SAINT statistical significance calculated using 1-peptide minimum threshold in 
Scaffold 

* denotes the commonly identified proteins using G- and t-test and SAINT 

& denotes commonly identified proteins using SAINT 1-peptide and 2-peptide  

Table adapted from Olson et al. 2020. JProt 
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and Table S4-5). The same seven proteins identified as contaminants from the two-

peptide minimum dataset were also identified as contaminants in the one-peptide dataset 

(Table 4-4 and Table S4-5), indicating that some contaminant proteins will be identified 

regardless of the stringency of the minimum peptide threshold. Overall, to reduce the 

number of contaminant proteins in future AP-MS studies and to identify potential 

contaminant proteins, it is important to evaluate statistically significant proteins using the 

CRAPome. We have compiled a list of the eukaryotic proteins that were commonly 

identified as contaminants in these APEX2 studies (Table S4-5).  

To help further distinguish contaminant proteins from true positive interacting 

partners, we have also compiled a list of eukaryotic proteins that were identified in 

uninfected cells that share sequence homology with chlamydial proteins (Table S4-6). At 

8 hpi, C. trachomatis is in the early stages of the developmental cycle, the inclusions are 

very small, and chlamydial protein content will be orders of magnitude less than the 

eukaryotic host background. Further, the host cell produces naturally biotinylated host 

proteins, some of which have high homology to bacterial proteins, including C. trachomatis 

proteins. These facts can lead to false identification of chlamydial proteins by mass 

spectrometry at early time points post-infection. For these early time points a secondary 

method of labeling chlamydial proteins to differentiate from host proteins may be 

necessary. The use of both the CRAPome (249) and Table S4-6 containing chlamydial 

proteins with homology to eukaryotic cells may provide the best insight into background 

proteins. 

3.8 Analysis of temporal recruitment of eukaryotic proteins identified by Dickinson et al. at 

the inclusion membrane  

An enticing utility of the APEX2 proximity labeling system is the possibility of 

identifying “snapshots” of interactions or chlamydial inclusion proteomes throughout the 
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developmental cycle. As noted above, Dickinson et al. obtained AP-MS data at each 8, 

16, and 24 hpi to identify temporal changes in eukaryotic protein recruitment to the C. 

trachomatis L2 inclusion. We used Venny to examine which SAINT-identified statistically 

significant proteins remained associated with the inclusion from 16 to 24 hpi to distinguish 

the eukaryotic proteins that are potentially temporally recruited to the inclusion membrane 

from those proteins that remain associated with the inclusion throughout the 

developmental cycle.  

We first compared the commonly identified statistically significant proteins as originally 

reported by Dickinson et al. using the G- and t-test. From these analyses, 85.5% (154 of 

180) of Dickinson et al. 16hpi protein hits (i.e., G-test and t-test significant proteins) were 

commonly detected at 24 hpi (Table 4-3 and Table S4-3) (170). Consistent with the G- 

and t-test datasets results, the SAINT analyzed Dickinson et al. datasets have a high 

percent of commonly identified proteins at 16 and 24 hpi. 94.1% (16 of 17 proteins) of the 

statistically significant proteins at 16 hpi were also significant at 24 hpi (Table 4-3 and 

Table S4-3). The unique protein at 16 hpi (i.e., not significant at 24 hpi) was 

aspartyl/asparaginyl beta-hydroxylase (ASPH_HUMAN). These results are not 

unexpected because both 16 hpi and 24 hpi are mid-developmental cycle, and the 

requirements for C. trachomatis L2 development at these times are likely not very different. 

This analysis also suggests the chlamydial inclusion proteome may be quite stable during 

the mid-developmental cycle period.  

3.9 SAINT analysis of Dickinson et al. chlamydial proteins identified by APEX2 proximity 

labeling AP-MS 

In contrast to the experiments in Mirrashidi et al. (122) and Aeberhard et al. (171), 

the APEX2 in vivo proximity labeling system allows for the detection of proximal or 

interacting C. trachomatis L2 Inc proteins (115, 170). Again, to minimize differences   
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in the datasets, we analyzed the chlamydial protein datasets from Dickinson et al. using 

SAINT (see Materials and Methods) (Table S4-2). We then compared the statistically 

significant proteins detected in the Dickinson et al. and Olson et al. APEX2 proximity 

labeling experiments. Both APEX2 studies identified four statistically significant C. 

trachomatis L2 inclusion membrane proteins (Incs) with the Inc, CT223, being identified in 

both studies (Table 4-5) (115, 170).  

Unique to individual experimental datasets, the SAINT analyzed Dickinson et al. 

dataset identified IncG, CT228, and CT813 as statistically significant at 24 hpi (Table 4-5; 

Table S4-2). However, only IncG was SAINT significant at 16 hpi, and no Incs were 

significant at 8 hpi (Table 4-5; Table S4-2) (170). The lack of statistically significant Incs 

identified at the 8hpi is consistent with the smaller inclusions and few early Inc proteins 

being localized to the inclusion membrane at this time (102). In contrast, the Olson et al. 

study identified IncD, IncF, and IncA as SAINT statistically significant (Table 4-5). The 

differences in statistically significant Incs identified in each dataset may reflect the use of 

different Inc-APEX2 fusion proteins in each study, but the organization of Incs in the 

inclusion membrane is currently not well defined (59).  

3.10 Intra-experimental analysis of Olson et al. AP-MS identified eukaryotic and C. 

trachomatis L2 proteins 

After comparing the two APEX2 proximity labeling studies, we aimed to further 

examine how various parameters such as minimum peptide threshold would impact our 

own APEX2 AP-MS datasets. We have previously published the SAINT statistically 

significant proteins identified using a one-peptide minimum threshold (115). A two-peptide 

minimum (e.g., two unique peptides per parent protein) is generally accepted in the 

proteomics field as more rigorous than a one-peptide minimum threshold for mass 
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Table 4-5. Comparison of SAINT statistically significant C. trachomatis L2 
proteinsa identified in two APEX2 proximity labeling studies 

Dickinson et al. (SAINT) 
 

IncB-APEX2 24 hpi BFDR* 16 hpi BFDR* 
 

 
IncG 0 IncG 0 

 

 
CT223 0.01 

   

 
CT228 0.01 

   

  CT813 0.02     
 

Olson et al. (SAINT)       
 

 
24 hpi BFDR* 

   

IncF-APEX2 CT223 0 
   

 
IncD 0.02 

   

  IncF 0.03     
 

IncAtm-APEX2 IncA 0 
   

  CT223 0.02     
 

IncA-APEX2 OmcB 0 
   

 
CT223 0 

   

  IncA 0     
 

a Protein name indicated using C. trachomatis serovar D naming convention  
* SAINT calculated Bayesian False Discovery Rate (BFDR) 

Table adapted from Olson et al. 2020. JProt  
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spectrometry data. However, conflicting reports in the field suggest that the two-peptide 

minimum may not significantly change the overall number of proteins identified (253). We 

decided to examine how the proposed, more rigorous, peptide threshold cut-off would 

affect the SAINT identified statistically significant eukaryotic and C. trachomatis L2 

proteins within our own data set (115). As reported by Olson et al. (115), the one-peptide 

minimum threshold identified 199 SAINT statistically significant proteins. To re-analyze 

these data under the new parameters, we applied the two-peptide minimum threshold 

filtering parameters in Scaffold to each of the eukaryotic (Table S4-7) and C. trachomatis 

L2 (Table S4-8) protein datasets (see Materials and Methods). After applying the two-

peptide minimum (i.e., including hits from each IncF-APEX2, IncATM-APEX2, and IncA-

APEX2), 101 unique eukaryotic proteins were identified by SAINT as statistically 

significant (Table S4-7; Fig. 4-5). All but two of the proteins from the two-peptide minimum 

analysis were also identified in the one-peptide minimum dataset. For the eukaryotic 

protein datasets, the increased stringency of using a two-peptide minimum may be 

beneficial to decrease the overall false-discovery rate and reduce potential false-positive 

identifications. This is speculation as only the localization of some of these SAINT 

significant eukaryotic proteins have been validated thus far.  

Next, to determine if the minimum number of peptides would affect statistically 

significant chlamydial proteins identified, SAINT was applied to spectral count data 

obtained from the two-peptide minimum threshold (Table S4-8). We thought the two-

peptide minimum might negatively impact the identification of C. trachomatis L2 Inc 

proteins because proteomics studies have found that hydrophobic proteins are often 

underrepresented in mass spectrometry experiments (254). For example, proteins that 

contain large transmembrane regions (e.g., Incs) typically have fewer tryptic peptides, thus 

are less frequently detected by the mass spectrometer. Surprisingly, the two-peptide   
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Figure 4-5. The effect of minimum peptide threshold on identification of SAINT significant 
proteins from Olson et al. 

The SAINT significant eukaryotic proteins were calculated using a two-peptide minimum 
threshold and compared to a one-peptide minimum threshold as reported in Olson et al. 
The total number of proteins as well as the percentage of total is indicated within each 
overlapping section. 

Figure modified from Olson et al. 2020. JProt.   
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minimum did not affect the number of SAINT statistically significant chlamydial Inc proteins 

in our dataset (Table 4-6). In fact, the same proteins were found to be statistically 

significant, with minimal change in BFDR, regardless of a one-peptide or two-peptide 

minimum (Table 4-6). These data suggest that, for identifying chlamydial proteins, a one-

peptide threshold is sufficient.  

3.11 Determination of availability of APEX2 amino acid targets of chlamydial Inc proteins  

After determining the peptide threshold had a minimal effect on the identification 

of chlamydial Inc proteins, we aimed to better understand the ability of APEX2 to 

covalently tag different proteins. This is because the use of both AspN and trypsin for 

protein digestion to enhance peptide sequence coverage and identification (115, 226) 

resulted in the identification of only four Inc proteins as significant by SAINT analysis. 

These results were surprising as there are 50+ predicted Incs expressed on the 

inclusion membrane (93), and a previous study indicated that both IncF and IncA could 

potentially interact with at least 8 and 4 additional Inc proteins, respectively (105). The 

specific amino acid residues that APEX2 covalently modifies with a biotin molecule are 

cysteine, tyrosine, tryptophan, and histidine (57, 189, 209), but we have not mapped how 

prevalent these amino acids are outside of the large hydrophobic transmembrane regions 

(254). It is plausible that Incs that have fewer APEX2 modifiable residues will have 

decreased total biotinylation and may not be as efficiently enriched during the affinity 

purification steps as the proteins that have numerous biotin modifiable residues. Overall, 

this would result in these proteins being more difficult to detect by mass spectrometry. We 

analyzed our chlamydial datasets (115) to understand how these intrinsic differences in 

the amino acid composition of Inc proteins might influence our analysis (Table 4-7; Fig. 

S4-1). We found in general that chlamydial Inc proteins with 11 or more biotin modifiable 

residues are identified with statistical significance (BFDR ≤0.05) (115). 
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Table 4-6. Comparison of minimum peptide threshold on SAINT calculated 
statistically significant C. trachomatis L2 proteins 

Sample Protein (Uniprot ID) Proteina 
1 peptide 
minimum 

2 peptide 
minimum 

   
BFDR b BFDR b 

IncF-APEX2  A0A0H3MKT3_CHLT2 CT223 0 0 

 INCD_CHLT2 IncD 0.02 0.01 

 INCF_CHLT2 IncF 0.03 0.02 

IncATM-APEX2  A0A0H3MD02_CHLT2 IncA 0 0 

 A0A0H3MKT3_CHLT2 CT223 0.02 0 

IncA-APEX2 OMCB_CHLT2 OmcB 0 0 

 A0A0H3MKT3_CHLT2 CT223 0 0 

 A0A0H3MD02_CHLT2 IncA 0 0 

  MOMP_CHLT2 MOMP ns 0.05 

a Protein name indicated using C. trachomatis serovar D naming convention 

b Bayesian False Discovery Rate (SAINT) 

ns; not significant 

Table adapted from Olson et al. 2020. JProt.    
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Table 4-7. Analysis of APEX2 modifiable amino acid 
targets of various Inc proteins 

Inc protein Targets  Length  
Modifiable 
residuesc 

Serovar D 
naming 
convention 

(#a) (AAb) (%)  

CT101d 18 153 11.76 

CT249 9 116 7.76 

CT058 25 367 6.81 

CT222d 8 128 6.25 

IncE 7 132 5.3 

CT223d 14 268 5.22 

IncBd 6 115 5.22 

CT850d 21 405 5.19 

CT813 13 264 4.92 

CT005 16 363 4.41 

IncD 6 146 4.11 

IncA 11 273 4.03 

IncF 4 104 3.85 

IncG 6 167 3.59 

CT226 6 176 3.41 

CT228 6 196 3.06 

a number of amino acid targets for APEX2 

b amino acid (AA) 

c number of AA targets divided by Inc length  

d endogenous protein localizes in microdomains 

Table adapted from Olson et al. 2020. JProt. 
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In contrast, Inc proteins with fewer than five modifiable residues were less 

frequently detected by mass spectrometry and were not statistically significant. For 

example, IncA (serovar L2) has 11 modifiable residues (not in the transmembrane domain 

region), where CT226 has only six residues (not in the transmembrane domain region) 

with three of those biotin-modifiable residues in the N-terminal type three secretion signal  

region. In contrast, IncA contains only one residue in the N-terminal T3SS region of the 

11 biotin-modifiable residues. IncA was statistically significant for IncA-APEX2 and IncATM-

APEX2 and was detected by western blot in the eluates from the streptavidin affinity 

purification (115). Another statistically significant Inc detected in our dataset, CT223, has 

17 modifiable residues (115). One important note is that because the organization of Incs 

in the inclusion is not understood (59), we cannot exclude the impact of the proximity of 

Incs (Inc-APEX2 constructs) to other Incs in the inclusion membrane on the labeling 

efficiency. We also identified chlamydial outer membrane proteins, OmcB and MOMP, as 

significant for our Chlamydia dataset (115). Both proteins have numerous APEX2 targets 

with OmcB containing 49 APEX2 biotin-modifiable residues and MOMP containing 29 

APEX2 modifiable residues, respectively. It is possible that during the short biotinylation 

reaction step the small biotin-phenoxyl radicals diffuse across the inclusion membrane 

and label the outer membranes of chlamydial developmental forms (168, 189). 

4. Conclusion 

With the recent advances in genetic tools for the manipulation of C. trachomatis 

L2, there has also been an expansion in the acquisition of large-scale AP-MS data to 

determine protein-protein interactions at the inclusion membrane. Four large-scale AP-

MS experiments have been published in the last five years, each of which each aims to 

either identify eukaryotic proteins recruited to the chlamydial inclusion (171) or to 

understand the role of Incs in the inclusion, beginning with the identification of protein-
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protein interaction partners (115, 122, 170). Each experiment was approached in a 

different fashion (e.g., Inc fused to a Strep-tag, inclusion purification, or proximity labeling), 

yielding over approximately 200 statistically significant eukaryotic proteins at the inclusion 

membrane. Large-scale proteomics studies, regardless of the software used in the 

analysis, frequently generate lists of hundreds of proteins detected in the sample. It is 

necessary to validate the localization and interaction by independent means to discern 

true interactions from these protein lists. This is highlighted in this meta-analysis as only 

seven of over 1,000 proteins were commonly identified from the four large proteomics 

experiments (115, 122, 170, 171). We compared the statistically significant proteins from 

each study to highlight commonly identified proteins, which likely reflect high confidence 

interacting proteins at the inclusion (Fig. 4-1, Table 4-8, Table S4-1, Table S4-9). In 

support, three of the four high-confidence hits: LRRF1 (115), MYPT1 (38, 117), and 14-3-

3β (142) have been previously validated at the inclusion.  

We also used this opportunity to compare the limitations of each experimental 

system. The two APEX2 proximity labeling experiments were directly compared using the 

same statistical analysis tool, which revealed that different statistical analysis tools can 

greatly impact the outcome of an individual experimental dataset (Table 4-3, and 5-4 and 

Table S4-2 and S4-3). We did not apply the G- and t-test to our datasets as the exact 

methods implemented for these analyses were poorly described. However, we did analyze 

our datasets using increased peptide threshold minimums (Fig. 4-5, Table 4-6, Table S4-

7 and Table S4-8). These data indicated that a two-peptide minimum threshold might 

decrease the overall false positives for our eukaryotic protein dataset (Fig. 4-5, Table S4-

8) but did not impact the chlamydial protein dataset (Table 4-6, Table S4-8). Overall, as 

more molecular tools are developed and adapted to understand the complex interactions 

at the chlamydial inclusion membrane and to understand host-pathogen interactions at 
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the bacterial-containing vacuole of other intracellular bacteria, it is important to understand 

both the limitations and advantages of these different tools. Finally, as a field, it will be 

important to use statistical analysis tools that allow for efficient and meaningful 

interpretation of AP-MS data. 
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Table 4-8. High-confidence proteins commonly identified in all 
four AP-MS studies at the inclusion membrane 

Venny comparison using 
the reported significant 
proteins 

Venny comparison of significant 
proteins post-SAINT analysis of 
Dickinson et al. 24 hpi datasets 

LRRF1_HUMAN LRRF1_HUMAN 

MYPT1_HUMAN MYPT1_HUMAN 

TMOD3_HUMAN TMOD3_HUMAN 

1433B_HUMAN 1433B_HUMAN 

1433F_HUMAN 

 

RTN4_HUMAN 

 

SNX1_HUMAN   

a Complete data provided in Table S4-1 

b Complete data provided in Table S4-9  

The proteins that are highlighted were identified in both 
comparisons 

Table adapted from Olson et al. 2020. JProt 
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Appendix C-Supplementary figures and tables 

Figure S4-1. Analysis of APEX2 modifiable target residues of Inc proteins. 
https://www.sciencedirect.com/science/article/pii/S1874391919303677  

Table S4-1. Venny comparison of reported significant proteins from AP-MS studies at 
the C. trachomatis inclusion membrane 

Table S4-2. SAINT analysis of Dickinson et al. datasets 

Table S4-3. Venny comparison of Dickinson et al. SAINT analyzed datasets with 
Dickinson et al. reported G- and t-test analyzed datasets 

Table S4-4. Comparison of SAINT analyzed Dickinson et al. datasets with Dickinson et 
al. reported RNAi experiments 

Table S4-5. CRAPome analysis of Dickinson et al. and Olson et al. significant eukaryotic 
proteins 

Table S4-6. Contaminant proteins identified from streptavidin AP-MS of uninfected HeLa 
cell lysates 

Table S4-7. SAINT analysis of Olson et al. eukaryotic proteins with a two-peptide 
minimum threshold 

Table S4-8. SAINT analysis of Olson et al. C. trachomatis L2 proteins with a two-peptide 
minimum threshold 

 

 

  

https://www.sciencedirect.com/science/article/pii/S1874391919303677
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Chapter 5 - Discussion and Concluding Remarks 

We hypothesize that Incs perform two broad functions in the inclusion membrane: 

(i) to organize the inclusion membrane and (ii) to bind eukaryotic proteins for acquiring 

nutrients from host cell pathways or for blocking host immune responses. To test this 

hypothesis, we have adapted the APEX2 proximity labeling system for use in C. 

trachomatis serovar L2 to label the interactions that occur at the inclusion membrane in 

vivo to test the propensity of different Incs to bind eukaryotic and chlamydial proteins. We 

performed the proximity labeling studies using Incs that may fall within the proposed Inc 

functional categories: inclusion organization (i.e., IncF) and eukaryotic protein binding (i.e., 

IncA). BACTH assays supported these functions, as IncF interacted with several Incs, 

whereas IncA interacted with fewer Incs (105). Importantly, the APEX2 proximity labeling 

studies are performed in the context of C. trachomatis infected cells using Inc-APEX2 

fusion proteins that are secreted from C. trachomatis L2 transformed with a plasmid that 

expresses IncF-APEX2, IncA-APEX2, or IncATM-APEX2. Importantly, these fusion 

proteins localized appropriately to the inclusion membrane, as determined by 

immunofluorescence (Fig. 3-1) and electron microscopy (Fig. 3-2). 

Validation of significant eukaryotic proteins identified using Inc-APEX2 

constructs 

We demonstrated that a statistically significant eukaryotic protein, LRRF1, 

localized to the inclusion and interacted with CT226 (Fig. 3-5, Fig. 3-8) (115). Three other 

eukaryotic proteins, Microtubule-associated protein 1B (MAP1B), Brain acid soluble 

domain protein 1 (BASP1), and Cystatin B (CYTB), were also identified as statistically 

significant using each Inc-APEX2 construct (Table S3-2), suggesting the likely recruitment 

of these proteins to the inclusion. MAP1B has previously been observed to co-localize 
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with the inclusion membrane (227), so we aimed to determine if BASP1 and CYTB also 

co-localized with the inclusion. BASP1 belongs to the MARCKS family of proteins, which 

are known to regulate the actin cytoskeleton and plasma membrane signaling dynamics 

(255, 256). Given that the actin cytoskeleton is manipulated by numerous chlamydial 

proteins (128, 129, 131, 134, 252), BASP1 may play a role in actin modification during C. 

trachomatis infection. Cystatin B inhibits cathepsins and typically associates with 

lysosomes (257), which are known to be a nutrient source for C. trachomatis during 

infection (124). As such, CYTB may also play a role during chlamydial infection. 

While we were unable to verify the localization of cystatin B during C. trachomatis 

L2 infection of HeLa cells (data not shown), we detected BASP1 in microdomains at the 

inclusion membrane at 24 hpi (Fig. 5-1A). A time-course study of BASP1 localization 

during C. trachomatis L2 infection revealed robust BASP1 localization early during 

infection (8 hpi), which decreased throughout the developmental cycle (Fig 5-1B). BASP1 

is detected in the plasma membrane in uninfected HeLa cells, which may suggest that 

BASP1 is part of the early endocytic vacuole (Fig. 5-1A). Furthermore, chloramphenicol 

treatment of early inclusions (10 hpi) prevented the loss of BASP1, suggesting loss of 

BASP1 is due to inclusion modification by chlamydial proteins or at least as a result of 

inclusion expansion (Fig 5-1B, Cm panel). BASP1 is known to interact with calmodulin 

and actin, and the phosphorylation of BASP1 by protein kinase C (PKC) causes BASP1 

to dissociate from the plasma membrane (258). Interestingly, PKC localizes to the 

inclusion membrane (259), which may support the loss of BASP1 after phosphorylation by 

PKC. MARCKS, a PKC substrate in the same family as BASP1 (256), was also identified 

as SAINT significant in our Inc-APEX2 datasets (BFDR 0.4 for IncF-APEX2 and IncA-

APEX2)(Table S3-2). This may support an additional mechanism of actin modification via 

BASP1, and potentially MARCKS, during the developmental cycle.  
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Figure 5-1. BASP1 co-localizes with wild-type C. trachomatis L2 inclusions from 8 to 36 
hpi during the developmental cycle.  

HeLa cells were infected with wild-type C. trachomatis L2 or mock-infected, fixed (3.2% 
formaldehyde and 0.022% glutaraldehyde in DPBS) at the indicated times post-infection 
(hpi), and stained to visualize A) CT223 (yellow), BASP1 (blue), chlamydiae (MOMP; 
pink), and DNA (DAPI), or B) CT223 (pink), BASP1 (red), chlamydiae (MOMP; green), 
and DNA. For chloramphenicol (Cm) treated wells, Cm (35 µg/mL) was added at 10 hpi 
and coverslips were fixed and stained for immunofluorescence at 24 hpi. Images were 
obtained using a Zeiss confocal LSM 800 63x with 2x zoom (scale bar =5 µm). Inclusions 
are denoted by arrows.    
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Statistically significant eukaryotic proteins unique to individual C. trachomatis L2 

IncF-APEX2, IncA-APEX2, or IncATM-APEX2 datasets 

Another goal of our APEX2 study was to determine if our Inc-APEX2 constructs 

biotinylated different proteins, which may suggest distinct protein binding specificity 

conferred by IncF and IncA based on their function within the inclusion membrane. 

Consistent with our hypothesis that IncF serves an organizational role in the inclusion 

membrane, IncF-APEX2 labeled more Inc proteins than IncA-APEX2 (Table 3-1, Table 

S3-1) and significantly fewer eukaryotic proteins compared to IncA-APEX2. In addition, 

aside from the four proteins identified using each Inc-APEX2 construct, there was no 

overlap between IncF-APEX2 and IncATM-APEX2 SAINT significant proteins, which may 

suggest specificity conferred by IncF-APEX2 compared to IncATM-APEX2 (Fig. 5-2, Table 

S3-3). However, it also is reasonable that Incs serve both organizational (via 

transmembrane domains) and eukaryotic protein-binding functions (via their cytosolic C-

terminus).  

The significant eukaryotic proteins that were unique to the IncF-APEX2 dataset 

include POTE ankyrin domain family member I (POTEI_HUMAN), 60S ribosomal protein 

L26 (RL26_HUMAN), 60S ribosomal protein L26-like 1 (RL26L_HUMAN), 14-3-3 ϴ, and 

14-3-3 γ (1433T_HUMAN and 1433G_HUMAN, respectively) (BFDR ≤0.05) (Fig. 5-2, 

Table S3-3). RL26 and POTEI have not been assessed for their localization during C. 

trachomatis infection. RL26 is a component of the large subunit of the eukaryotic 

ribosome. The function of POTEI is unknown; however, it contains an ankyrin domain with 

spectrin-like coiled-coil motifs, suggesting functions associated with actin regulation or 

signal transduction (260, 261). Two 14-3-3 protein isoforms were also unique to IncF-

APEX2. This is of interest because IncG is known to bind 14-3-3 β (142), and IncF is  
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Figure 5-2. Venny comparison of SAINT significant eukaryotic proteins identified using 
IncF-APEX2, IncATM-APEX2, and IncA-APEX2 at 24 hpi.  

SAINT significant proteins (199 proteins) identified by AP-MS using C. trachomatis L2 
IncF-APEX2, IncATM-APEX2, and IncA-APEX2 transformant. The significant proteins 
were analyzed using Venny to determine which proteins were similarly or uniquely 
identified proteins between each Inc-APEX2 construct. The total number of proteins as 
well as the percentage of total is indicated within each overlapping section. 
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presumed to be encoded within an operon with IncG (44), which may support similar 

protein functions. The 14-3-3 proteins are adaptor proteins involved in various host cell 

signaling pathways, including apoptosis, autophagy, and glucose metabolism (262). Each 

of these functions are important during C. trachomatis development; as such, these 

proteins would be interesting to examine further. 

For IncATM-APEX2, the unique SAINT significant proteins included CERT 

(C43BP_HUMAN) and Sorcin (SORCN_HUMAN) (Fig. 5-2, Table S3-2, and Table S3-3). 

CERT is recruited to the inclusion by IncD (54, 126), and SORCN is involved in calcium 

homeostasis and vesicle trafficking (263, 264). By BACTH, IncA interacts with IncD (105), 

supporting the identification of CERT possibly via interactions between these Incs in the 

inclusion membrane. The lack of SAINT significant proteins identified for IncATM-APEX2 

supports the notion that the C-terminus of IncA provides protein binding specificity. It is 

important to note that in addition to localizing around the inclusion membrane, full-length 

IncA has both a long C-terminus and is observed in “fiber-like” extensions in the host cell. 

Thus, IncA-APEX2 expressed from C. trachomatis L2 IncA-APEX2 could label more 

proteins as a result of the increased area and APEX2 flexibility as APEX2 is tethered to a 

longer cytosolic C-terminal IncA. We observed biotinylation of IncA-APEX2 positive fibers 

by super resolution microscopy (Fig. 5-3A), whereas no fibers are detected in C. 

trachomatis IncATM-APEX2 infected cells (Fig. 5-3B). SAINT significant proteins that are 

unique to IncA-APEX2, including SNX2, SNX3, and SNX5, have been observed on 

endogenous IncA fibers (171). However, we currently do not understand the major 

components of these fibers, making speculation about their function difficult.  To limit 

APEX2 labeling as a result of increased flexibility (i.e., large C-terminus), we created a C. 

trachomatis L2 strain transformed with a plasmid that expresses APEX2 “sandwiched” 

between IncATM and the IncA C-terminus. We transformed this construct into Chlamydia  
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Figure 5-3. Visualization of biotinylated IncA-APEX2 positive fibers in C. trachomatis L2 
IncA-APEX2 infected HeLa cells using super-resolution microscopy. 

HeLa cells were infected with C. trachomatis L2 IncA-APEX2 or IncATM-APEX2 
transformed strains and induced using 5nM aTc at 7hpi. Biotin-phenol was added at 23.5 
hpi, the labeling reaction was performed at 24hpi followed by a quenching/wash solution, 
and the cells were methanol fixed and stained for immunofluorescence. Biotinylated 
proteins (Streptavidin-488; green), IncA (pink), IncA-APEX2 (red), and chlamydiae (blue). 
Coverslips were imaged using Zeiss ELYRA PS.1 Super Resolution Microscope Zeiss 
with Structured Illumination Microscopy (SIM). Scale bar= 5 µm. Using Zen Blue (Zeiss) 
A) C. trachomatis L2 IncA-APEX2 and B) IncATM-APEX2 inclusions represented as 2D 
and 3D snapshots.  
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and confirmed expression, but we have not performed biotinylation studies. If limiting IncA-

APEX2 flexibility by sandwiching APEX2 between the hydrophobic and cytosolic domains 

of IncA does not work, an alternative approach may be to use new in vivo labeling methods 

that surpass the resolution of proximity labeling approaches (~10-20 nm) (189, 193, 209) 

by labeling direct protein-protein interactions (265, 266). 

Examination of Incs that are conserved between Chlamydia species 

One issue that commonly arises when assessing the function of Inc-eukaryotic 

protein-protein interactions is that loss of a single Inc or eukaryotic protein often does not 

substantially impact chlamydial development (e.g., SNX6 (122) and VAPA (54)). This is 

typically attributed to redundancy in the C. trachomatis effectors that are secreted into, or 

the host cell pathways that are recruited to, the inclusion membrane. Redundancy of 

function within Incs might suggest paralogous gene sets, but inc genes share little 

sequence homology (87, 104). Rather, these genes may encode proteins that perform 

tissue-specific functions that may be apparent using a more physiologically relevant 

system (i.e., primary cell lines, 3D organoid, or primate models). Alternatively, two different 

Incs may target different parts of the same pathway to maximize survival. Bioinformatic 

analyses identified 23 conserved (i.e., core) Incs in five chlamydial species based on the 

presence of predicted hydrophobic bilobed transmembrane domains: C. trachomatis 

(ocular and STIs), C. pneumoniae (community-acquired pneumonia), C. muridarum 

(mouse pathogen), C. caviae (guinea pig pathogen), and C. felis (feline chlamydiosis) 

(104). This study also identified divergent Incs potentially indicative of tissue tropism (104). 

Of the human pathogens, C. pneumoniae has the highest number of predicted Incs (92 

Incs), compared to C. trachomatis with 55 Incs. Regarding animal pathogens, C. 

muridarum (closely related to C. trachomatis) has 54 Incs, compared to C. felis with 69 

and C. caviae with 79 predicted Incs (104). Furthermore, the majority of Incs (i.e., 49 Inc 
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proteins) were similarly identified between C. muridarum and C. trachomatis. A group of 

23 core Incs were detected in all five Chlamydia species: CT005, CT006, CT058, CT134, 

CT179, CT195, CT232 (IncB), CT233 (IncC), CT288, CT324, CT365, CT383, CT440, 

CT449, CT483, CT484, CT565, CT616, CT618, CT642, CT728, CT788, and CT850. 

These 23 core Incs likely perform essential functions during chlamydial development, 

regardless of tissue differences. Unfortunately, the function of only two core Incs has been 

defined thus far.  

CT850 binds dynein light chain one to traffic the early inclusion to the MTOC (123), 

and CT288 has been suggested to bind the centrosomal protein, CCDC146 (133). A large 

screen using C. trachomatis L2 transformed strains that expressed a predicted Inc fused 

to a FLAG-tag confirmed that some Incs localized to the inclusion membrane (93). This 

study also demonstrated that a few predicted Incs localized instead to the bacterial cytosol 

or bacterial membrane (i.e., CT058, CT195, CT365, CT483, CT484, CT565, CT616, 

CT642, CT728, and CT788) (93). It’s important to note that overexpression systems may 

fail to secrete proteins or could result in the mislocalization of predicted Incs. However, we 

have tested variable induction conditions and consistently observed CT483, CT484, and 

CT788 expressed from C. trachomatis L2 transformed strains localized to the bacterial 

membrane (data not shown). This may suggest that the criteria used to identify candidate 

inc genes are too permissive and that there are fewer core Incs than predicted.  

In our evaluation of LRRF1 functions, neither siRNA knockdown of LRRF1 or 

overexpression significantly impacted C. trachomatis growth (Fig. S3-4). While this may 

support a role for CT226 to sequester LRRF1 to prevent its function, the downstream 

interactions remain unclear. Consistent with our studies of LRRF1 co-localization with the 

inclusion of various Chlamydia species (Fig. 3-7), CT226 was found to be conserved 

between C. trachomatis and C. muridarum, but not C. pneumoniae, C. caviae, or C. felis  
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(104). Perhaps the function of the interaction between CT226 and LRRF1 is important for 

survival in infected human macrophages since C. trachomatis serovar L2 can infect 

macrophages and spread to the lymph nodes.  

Future Directions  

Our meta-analysis revealed that the majority of statistically significant proteins 

were not shared between the two APEX2 studies (Fig. 4-3 and Fig. 4-4). Both APEX2 

studies statistically significant proteins that are known to be recruited to the inclusion 

membrane (i.e., 14-3-3-β (IncG binding partner), LRRF1 (CT226 binding partner), and 

MYPT1 (CT228 binding partner) (Table S3-3, Table S4-3). Only our APEX2 study 

identified CERT (IncD binding partner), DYNLT1 (CT850 binding partner), SNX5 and 

SNX6 (IncE binding partner). Only Dickinson et al. identified VAPA and VAPB (CT005 

binding partner), and neither study identified Arf1 (CT813 binding partner), CEP170 

(CT223), or CCDC146 (CT288)(Table S4-3). These data may be indicative of different 

protein binding specificities and/or different proximal partners conferred by IncB, IncA, and 

IncF. It is also possible that there are changes in the organization of the inclusion 

membrane when certain Incs are overexpressed, which may also alter the eukaryotic 

proteins that are normally recruited to the inclusion during C. trachomatis infection. The 

organization of the inclusion membrane is not well understood (105), and the impact of 

Inc overexpression on the expression and localization of endogenous Incs has not been 

studied.  

The overexpression of specific Incs from C. trachomatis L2 alters the 

organization of the inclusion membrane  

We hypothesize that some Incs organize the inclusion through Inc-Inc interactions, 

and the overexpression of these Incs alters the organization of the inclusion membrane. 
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In support, we previously demonstrated the negative impact of the overexpression IncF-

APEX2 on chlamydial development using the C. trachomatis L2 IncF-APEX2 transformed 

strain (57). The negative impact is not a result of the large APEX2 tag since these data 

were recapitulated using a C. trachomatis IncF-FLAG transformed strain (Fig 5-4A). The 

decreased inclusion size may be indicative of an altered inclusion membrane organization. 

To test our hypothesis, we created additional C. trachomatis L2 CT813-FLAG, CT226-

FLAG, or CT483-FLAG transformed strains. CT483 is a predicted Inc based on the 

presence of transmembrane domains, but CT483-FLAG localized to the membrane of 

chlamydiae (93), so this construct was used as a control for the metabolic burden of 

inducing Inc-FLAG expression from the transformed strains.  

To determine if the expression of additional Incs negatively impacted the inclusion 

area, C. trachomatis L2 transformed strains were induced using various concentrations of 

anhydrotetracycline (aTc), and the inclusion area was measured. HeLa cells were infected 

with C. trachomatis L2 transformed strains, CT813-FLAG, CT226-FLAG, CT483-FLAG, or 

wild-type C. trachomatis L2 and induced for expression at 7 hours post-infection (hpi) 

using 5 nM or 20 nM anhydrotetracycline (aTc). Samples were fixed at 36 hpi, stained for 

immunofluorescence, and the inclusion area was measured using ImageJ. The 

overexpression of both IncF-FLAG and CT813-FLAG from C. trachomatis L2 transformed 

strains resulted in a significantly decreased inclusion area (Fig. 5-4A). The smaller 

inclusion area after overexpression of CT813-FLAG and IncF-FLAG, but not CT226-

FLAG, may support altered inclusion membrane organization due to the dysregulation of 

Incs that perform organizational roles.  

The overexpression CT813-FLAG and IncF-FLAG also negatively impacted 

chlamydial development, as indicated by decreased infectious progeny production (Fig. 5-

4B). There was a 77-fold decrease in infectious progeny for CT813-FLAG (20 nM aTc) 

and an 81-fold decrease for IncF-FLAG (20 nM aTc), compared to C. trachomatis L2  



203 

 

   

 

  



204 

 

   

 

 
Figure 5-4. Overexpression of CT813-FLAG and IncF-FLAG from C. trachomatis L2 
transformed strains negatively impacts inclusion growth and progeny production. 

A) HeLa cells seeded on coverslips were infected with C. trachomatis L2 transformed 
strains or wild-type L2, and induced at 7 hpi with 1, 5 or 20 nM aTc or not induced. 
Coverslips were methanol fixed at 36 hpi and stained for immunofluorescence to 
determine inclusion area. A minimum of 100 inclusions per condition were measured using 
ImageJ, and inclusion area (µm2) and standard deviation were plotted using GraphPad 
Prism 8.4.0. N=3. The mean inclusion area is indicated in red. A one-way ANOVA was 
applied to test for statistical significance; *** p≤ 0.001, **** p≤ 0.0001, &(red) indicates a 
statistical comparison between C. trachomatis L2 strains.  

B) HeLa cells infected in duplicate with C. trachomatis L2 CT813-FLAG, IncF-FLAG, 
CT226-FLAG, CT483-FLAG transformed strains, or wild-type C. trachomatis L2, were 
induced for expression at 7 hpi using 1nM, 5 nM, or 20 nM aTc. At 36 hpi infected 
monolayers were lysed, serially diluted, and infected onto a fresh monolayer of HeLa cells 
(i.e., secondary infection) in media containing penicillin to enumerate infectious progeny 
(Inclusion Forming Units (IFU)/mL). Infectious progeny (IFU/mL) and standard deviation 
was plotted using GraphPad Prism 8.4.0. N=3. Only inclusions with wild-type phenotype 
were enumerated for this assay. 

C) Plasmid loss was indicated by inclusions containing aberrant bacteria in media 
containing penicillin (i.e., sensitivity due to the loss of the plasmid encoded blar). To 
enumerate the percent of inclusions containing aberrant bacteria, the number of inclusions 
with aberrant bacteria were divided by the total number of inclusions counted (part B) and 
standard deviation was plotted using GraphPad Prism 8.4.0. N=3. 
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CT813-FLAG and IncF-FLAG transformed strains not induced for expression. On the other 

hand, there was only a 4.6-fold in infectious progeny for CT226-FLAG (20 nM aTc) when 

overexpressed and a 5-fold decrease in infectious progeny for CT483-FLAG (20 nM aTc) 

compared to uninduced strains (Fig. 5-4B).  

The overexpression of CT813-FLAG and IncF-FLAG from C. trachomatis L2 

transformed strains is also associated with increased plasmid loss (Fig. 5-4C). During the 

secondary infection assay, C. trachomatis L2 transformed strains were grown in penicillin 

media to indicate plasmid retention. Samples were fixed and stained for 

immunofluorescence to enumerate inclusions that contained aberrant chlamydiae. The 

overexpression of CT813-FLAG and IncF-FLAG from C. trachomatis L2 transformed 

strains (induced in the primary infection using 20 nM aTc) resulted in 25% of CT813-FLAG 

inclusions and 50% of IncF-FLAG inclusions containing aberrant bacteria (Fig. 5-4C). 

Plasmid loss could be reduced for C. trachomatis L2 IncF-FLAG and CT813-FLAG when 

lower induction conditions were used in the primary infection (i.e. 1 and 5 nM aTc). In 

contrast, there was no significant plasmid loss even at the highest induction conditions for 

C. trachomatis L2 CT226-FLAG and CT483-FLAG transformed strains (Fig. 5-4C). These 

data indicate that the overexpression of CT813-FLAG and IncF-FLAG is not well tolerated 

by Chlamydia. These data also support the importance in the carefully controlled 

expression of certain Incs, whereby altered expression negatively impacts development.  

To determine if decreased inclusion size, infectious progeny, and plasmid loss 

were a consequence of the altered organization of Inc proteins in the inclusion membrane, 

we overexpressed the Inc-FLAG constructs from our C. trachomatis L2 transformed 

strains and assessed the localization of endogenous Incs. HeLa cells seeded on 

coverslips were infected with C. trachomatis CT813-FLAG, CT226-FLAG, CT483-FLAG 

transformed strains, or wild-type L2 and either not induced or induced using 5 or 20 nM 

aTc at 7 hpi. Coverslips were methanol fixed at 36 hpi and stained for immunofluorescence  
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Figure 5-5. The overexpression of CT813-FLAG, but not CT226-FLAG, or CT483-FLAG 
from C. trachomatis L2 transformed strains results in loss of endogenous IncE.  

A) HeLa cells infected with C. trachomatis L2 transformed strains or wild-type L2 were 
induced with 5 or 20 nM aTc, or not induced at 7 hpi. Coverslips were methanol fixed at 
36 hpi and stained for immunofluorescence to observe expression of the constructs 
(FLAG; red), IncE (green), IncA (pink), or DNA (DAPI; blue). Coverslips were imaged using 
the same exposure for each sample at 63x magnification. Scale bar= 10 µm.  

B) C. trachomatis L2 infected HeLa cells were fixed at 14 hpi and stained for 
immunofluorescence to observe IncE (green) and DNA (blue). Coverslips were imaged 
using the same exposure for each sample at 63x magnification. Scale bar= 10 µm.  

C) The intensity of IncE was measured with ImageJ from images in part A. The 
background integrated density was subtracted from individual images and the intensity 
(integrated density/µm) and standard deviation were plotted using GraphPad Prism 8.4.0. 
Samples were analyzed for statistical significance using a one-way ANOVA. A minimum 
of 80 inclusions were measured for each condition. N=3. The mean integrated density/µm 
is reported in red for each sample measured. **** p< 0.0001 between C. trachomatis L2 
transformed strains and #### indicates p< 0.0001 between C. trachomatis L2 transformed 
strains.  

C.  
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using anti-IncE and anti-IncA antibodies to determine the expression and localization of 

endogenous Incs. An anti-FLAG antibody was used to detect the expression of each 

construct. Images were captured using the same exposure for each IncE and IncA. The 

overexpression of CT813-FLAG and IncF-FLAG from C. trachomatis L2 transformed 

strains results in the loss of detectable IncE in the inclusion membrane (Fig. 5-5A). In 

contrast, the overexpression of CT226-FLAG did not substantially impact IncE intensity 

(Fig. 5-5A). Importantly, IncE was detected in the inclusion membrane of small, early (14 

hpi) wild-type C. trachomatis, which resemble the inclusion area for overexpressed 

CT813-FLAG and IncF-FLAG (Fig. 5-5B). This indicates that the loss of detectable IncE 

when CT813-FLAG and IncF-FLAG are overexpressed is not due to smaller inclusions or 

slower inclusion development.  

To quantify the intensity of IncE, the integrated density was measured in ImageJ 

and normalized to the inclusion perimeter (integrated density/µm). Compared to C. 

trachomatis L2 CT813-FLAG not induced for expression, there was a 7.2-fold and 14.1-

fold decrease in IncE intensity when induced using 5 nM and 20 nM aTc, respectively (Fig. 

5-5C). For C. trachomatis L2 CT226-FLAG induced using 5 nM and 20 nM aTc, the 

intensity of IncE was decreased 2.1-fold and 3.3-fold, respectively (Fig. 5-6C). These data 

support our hypothesis that the overexpression of certain Incs alters the localization of 

endogenous Incs in the inclusion membrane and that altered inclusion organization 

negatively impacts inclusion development.  

We further tested if the loss of IncE localization in the inclusion membrane also 

impacted the recruitment of a eukaryotic binding partner of IncE, SNX6. HeLa cells were 

infected with C. trachomatis L2 CT813-FLAG, CT226-FLAG, or CT483-FLAG transformed 

strains, induced for expression at 7 hpi using 5 nM or 20 nM aTc, or not induced, fixed at 

30 hpi and then stained to determine the localization of SNX6 (Fig. 5-6). Corresponding 

to the loss of IncE when CT813-FLAG is overexpressed, increased expression of CT813-  
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Figure 5-6. Overexpression of CT813-FLAG, but not CT226-FLAG, or CT483-FLAG from 
C. trachomatis L2 transformed strains results in the loss of SNX6 co-localization with the 
inclusion membrane. 

HeLa cells infected with C. trachomatis L2 transformed strains or wild-type L2 were 
induced at 7 hpi with 5 or 20 nM aTc, or not induced. Coverslips were methanol fixed at 
30 hpi and stained for immunofluorescence to observe expression of the Inc-FLAG 
constructs (FLAG; red), SNX6 (green), IncA (pink), or DNA (DAPI; blue). Coverslips were 
imaged at 63x magnification using the same exposure (scale bar= 10 µm). Arrows indicate 
C. trachomatis L2 CT813-FLAG inclusions that do not have SNX6 co-localized with the 
inclusion membrane (IncA marker).  
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FLAG resulted in decreased SNX6 localization at the inclusion (122, 161) (Fig. 5-6). In 

contrast, SNX6 localization with the inclusion was not impacted by the overexpression of 

CT226-FLAG or CT483-FLAG from C. trachomatis L2 transformed strains (Fig. 5-6). 

Combined, these data indicate that the overexpression of certain Incs alters the inclusion 

membrane organization. This may also support the overexpression of different Inc-APEX2 

fusion proteins resulting the identification of different proteins in the two APEX2 studies.  

We next sought to determine if changes in Inc expression were occurring on the 

level of transcription or translation. To test this, we analyzed the expression of incs during 

the developmental cycle using our C. trachomatis L2 transformed strains and wild-type C. 

trachomatis L2 as a control. HeLa cells were infected with C. trachomatis L2 CT813-FLAG, 

CT226-FLAG, CT483-FLAG transformed strains, or wild-type C. trachomatis L2, and 

either not induced or induced at 7 hpi using 5 nM or 20 nM aTc. At 7, 16, 24, and 36 hpi 

RNA and DNA were collected. Normalized RNA was reverse transcribed to cDNA, and inc 

expression was measured by quantitative PCR and normalized to genomic DNA (ng 

cDNA/gDNA). The C. trachomatis L2 CT813-FLAG strain induced with 20 nM aTc had 

reduced detectable genomic DNA (Fig. 5-7A) and plasmid DNA (Fig. 5-7B), which 

corresponds with the observed decrease in infectious progeny production and increased 

plasmid loss (Fig. 5-4).  

When we performed transcript analyses, the overexpression of CT813-FLAG (20 

nM aTc) resulted in reduced transcription of each chlamydial gene that was tested (orange 

line, 20 nM aTc; Fig. 5-8 to Fig. 5-10), except for the late gene omcB (Fig. 5-8B). First 

assessed early gene expression using euo, which is considered a prototypical early gene 

(102, 106). The overexpression of CT813-FLAG using 20 nM aTc resulted in decreased 

transcription of euo, compared to CT226-FLAG, or CT483-FLAG C. trachomatis L2 

transformed strains induced for expression, (Fig. 5-8A). Interestingly, increased 

transcription of a late gene, omcB was observed, (Fig. 5-8B; lower omcB panel), and  
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Figure 5-7. C. trachomatis L2 genomic DNA and plasmid DNA is reduced when CT813-
FLAG is overexpression, but not CT226-FLAG, CT483-FLAG from C. trachomatis L2 
transformed strains. 

HeLa cells were infected with C. trachomatis L2 CT813-FLAG, CT226-FLAG, CT483-
FLAG transformed strains, or wild-type C. trachomatis L2, and either not induced or 
induced at 7 hpi (5 nM or 20 nM aTc). RNA and DNA were collected from separate wells 
of a 6-well plate at 7, 16, 24, and 36 hpi. Prior to the collection of nucleic acids, coverslips 
in each well were fixed and stained for immunofluorescence to confirm expression of the 
construct. Normalized RNA was reverse transcribed to cDNA, and inc expression was 
measured by quantitative PCR. cDNA (ng) was normalized to genomic DNA (ng) and 
plotted using GraphPad Prism 8.4.0. N=3. A) genomic DNA, B) plasmid DNA. 
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Figure 5-8. C. trachomatis L2 euo is reduced and omcB transcription is increased when 
CT813-FLAG is overexpressed from C. trachomatis L2 CT813-FLAG.  

HeLa cells were infected with C. trachomatis L2 CT813-FLAG, CT226-FLAG, CT483-
FLAG transformed strains, or wild-type C. trachomatis L2, and either not induced or 
induced at 7 hpi (5 nM or 20 nM aTc). RNA and DNA were collected from separate wells 
of a 6-well plate at 7, 16, 24, and 36 hpi. Prior to collection of nucleic acids, coverslips in 
each well were fixed and stained for immunofluorescence to confirm construct 
expression. Normalized RNA was reverse transcribed to cDNA, and inc expression was 
measured by quantitative PCR. cDNA (ng) was normalized to genomic DNA (ng) and 
plotted using GraphPad Prism 8.4.0. N=3. Transcript profile of the early gene (non-inc), 
early upstream open reading frame (euo), and late gene (non-inc), outer membrane 
protein complex B (omcB). 
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increased transcripts were observed when both CT813-FLAG and CT226-FLAG were 

overexpressed. The reason for this is unknown, but we are currently investigating this 

phenomenon.   

We performed transcript analyses of both early incs (Fig. 5-9) and mid-cycle 

expressed incs (Fig. 5-10A). There was reduced transcription of early incs, incE, and incG 

when CT813-FLAG was overexpressed (orange line, 20 nM aTc), (Fig. 5-9). We also 

observed decreased transcription of mid-cycle incs, ct223 and incA (Fig. 5-10A). 

Transcription was not significantly impacted when CT226-FLAG, or CT483-FLAG were 

overexpressed from C. trachomatis L2 transformed strains (Fig. 5-9 and Fig. 5-10A). To 

determine if this decrease was also observed for genes encoding non-T3SS proteins, we 

analyzed clpP2 (Fig. 5-10B). Similar to the transcriptional profile of early and mid-cycle 

expressed incs, the overexpression of CT813-FLAG had decreased transcription of clpP2 

earlier in the developmental cycle (Fig. 5-10B). Reducing the induction conditions for 

CT813-FLAG moderately diminished the effect on transcription for each gene transcript 

analyzed (red line, 5 nM aTc). These data indicate that the overexpression of CT813-

FLAG from C. trachomatis L2 negatively impacts development and that normal expression 

of early and mid-cycle genes is altered under these conditions.  

Collectively, these data demonstrate that the overexpression of certain Incs (i.e., 

CT813 and IncF) alters the organization of Incs in the inclusion membrane. Furthermore, 

disrupted inclusion organization negatively impacts chlamydial development, as indicated 

by smaller inclusions and fewer infectious progeny. In support of our hypothesis that Incs 

may play different roles in the inclusion membrane, not all Incs negatively impact 

chlamydial development when overexpressed. We also demonstrated that altered Inc 

organization negatively impacts the recruitment of at least one eukaryotic protein, SNX6,  
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Figure 5-9. Transcription of early expressed incs is reduced when CT813-FLAG is 
overexpressed from C. trachomatis L2 CT813-FLAG.  

HeLa cells were infected with C. trachomatis L2 CT813-FLAG, CT226-FLAG, CT483-
FLAG transformed strains, or wild-type C. trachomatis L2, and either not induced or 
induced at 7 hpi (5 nM or 20 nM aTc). RNA and DNA were collected from separate wells 
of a 6-well plate at 7, 16, 24, and 36 hpi. Prior to collection of nucleic acids, coverslips in 
each well were fixed and stained for immunofluorescence to confirm construct 
expression. Normalized RNA was reverse transcribed to cDNA, and inc expression was 
measured by quantitative PCR. cDNA (ng) was normalized to genomic DNA (ng) and 
plotted using GraphPad Prism 8.4.0. N=3. Transcript profile of the early incs, A) incE and 
B) incG.  
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Figure 5-10. Transcription of mid-cycle genes is reduced when CT813-FLAG is 
overexpressed from C. trachomatis L2 CT813-FLAG.  

HeLa cells were infected with C. trachomatis L2 CT813-FLAG, CT226-FLAG, CT483-
FLAG transformed strains, or wild-type C. trachomatis L2, and either not induced or 
induced at 7 hpi (5 nM or 20 nM aTc). RNA and DNA were collected from separate wells 
of a 6-well plate at 7, 16, 24, and 36 hpi. Prior to collection of nucleic acids, coverslips in 
each well were fixed and stained for immunofluorescence to confirm construct 
expression. Normalized RNA was reverse transcribed to cDNA, and inc expression was 
measured by quantitative PCR. cDNA (ng) was normalized to genomic DNA (ng) and 
plotted using GraphPad Prism 8.4.0. Transcript profile of A) mid-cycle incs, ct223 (N=3) 
and incA (N=2) and B) clpP2 (N=2). 
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to the inclusion during C. trachomatis L2 infection, which highlights the significance of 

carefully coordinated expression of Incs during infection to promote survival. 

Survival strategies of other intracellular bacteria 

These APEX2 datasets, in addition to previous reports, indicate that C. trachomatis 

is heavily involved in the modification of host biological pathways during infection of a 

eukaryotic cell to promote development. Bacteria undergo genome reduction while 

adapting to intracellular dependence, which is associated with the loss of complete 

metabolic pathways (267, 268). Chlamydia, among other obligate intracellular bacteria, 

including Rickettsia, Coxiella, and the facultative intracellular bacterium Legionella, modify 

the host cell to gain entry, to avoid degradation or pre-mature host cell death, and to obtain 

the nutrients required for intracellular survival.  

Bacterial genome size and disease 

Chlamydia has the smallest genome (1.0 Mbp) compared to Rickettsia, Coxiella, 

and Legionella. Rickettsia is an obligate intracellular bacterium that is spread to humans 

by either the tick (Dermacentor sp.), causing Rocky Mountain spotted fever (R. rickettsii), 

or the louse vector (Pediculus sp.) causing epidemic typhus (R. prowazekii) (267, 269). 

Rickettsia prowazekii has a 1.1 Mbp genome encoding 830 ORFs, the smallest genome 

of the Rickettsia species (267). Rickettsia primarily infects endothelial cells. Another 

obligate intracellular bacterium, Coxiella, primarily infects macrophages (270). Coxiella 

burnetii, the causative agent of Q fever, has a 1.995 Mbp genome and encodes 

approximately 2,134 ORFs and a 37,393-bp plasmid (i.e., QpH1) (271). C. burnetii has 

two morphological forms, the environmentally stable small cell variant (SCV), and the large 

cell variant (LCV), which is the replicative form. C. burnetii has more complete biosynthetic 

pathways than Chlamydia, including enzymes for glycolysis, the electron transport chain, 
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the pentose phosphate pathway, and the tricarboxylic acid (TCA) cycle (271, 272). As a 

result, Chlamydia relies more on obtaining energy (e.g., ATP) and other nutrients from the 

host cell than Coxiella species (124, 272, 273). Finally, the facultative intracellular 

bacterium closely related to Coxiella, Legionella pneumophila (3.36 Mbp genome), is 

found in freshwater replicating within amoeba (274). Legionella has a complete glycolysis 

pathway, TCA cycle, and pentose phosphate pathway. When contaminated aerosols are 

inhaled (e.g., from large air conditioning units), Legionella infects human alveolar 

macrophages, causing atypical pneumonia called Legionnaires' disease.  

Host cell entry and the intracellular niche  

Rickettsia, unlike Chlamydia, breaks out from the vacuole into which it is initially 

internalized. This is elicited by a bacterial phospholipase A2, and Rickettsia subsequently 

replicate in the host cytosol (275). Cytosolic growth is hypothesized to provide Rickettsia 

with greater access to nutrients of the host cell (268). In support, Rickettsia is predicted to 

import over 20 metabolites from the host cell using multiple encoded translocases (268). 

Unlike Rickettsia, Chlamydia, Coxiella, and Legionella develop within a vacuole after 

infection of a host cell. Similar to C. trachomatis infection of a host cell, Coxiella infection 

requires the re-arrangement of F-actin and Rho GTPases such as RhoA. In addition, Src-

family kinases and cortactin also aid in the internalization of C. burnetii. Coxiella develops 

within a vacuole, termed the Coxiella containing vacuole (CCV) (270). In contrast to the 

neutral pH of the C. trachomatis inclusion, the CCV becomes acidified (pH ~4.5) and is 

marked by lysosomal markers like cathepsins and LAMP1 (31). Coxiella can remain in this 

acidified vacuole for up to 153 days in cell culture (276). The CCV also fuses with 

autophagic vesicles, which contribute to the available nutrient pool (277, 278). Legionella 

develops within the Legionella containing vacuole (LCV); like Chlamydia, the LCV does 

not fuse with the lysosome. The ER-derived LCV is the intracellular niche harboring the 
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replicative and infectious developmental forms (279). Intracellular bacteria acquire 

nutrients from the host cell via transporters, from interactions with proximal organelles 

(i.e., Chlamydia), or by directly fusing with organelles (i.e., Coxiella) such as MVBs, 

lysosomes, and autophagic vesicles (124, 268, 271). 

Secreted effectors and interactions with host proteins 

Interactions with the host cell vary based on the specific intracellular niche. For 

example, bacteria that reside within a vacuole during intracellular growth and development 

need to transport nutrients across the vacuolar membrane to obtain them (i.e., Chlamydia, 

Coxiella, Legionella), which requires additional effector proteins compared to directly 

acquiring proteins from the cytosol (i.e., Rickettsia). Furthermore, intracellular bacteria 

need to have effectors that adequately defend from different types of eukaryotic cells. For 

example, macrophages have an increased capacity to destroy invading bacteria 

compared to non-antigen presenting cells such as epithelial cells. Therefore, bacteria that 

infect macrophages, such as Coxiella and Legionella (and C. trachomatis L2), must be 

able to survive this harsh intracellular environment.  

Chlamydia utilizes a T3SS to translocate effectors into the inclusion membrane and 

host cytosol (58, 81, 89), whereby Rickettsia, Coxiella, and Legionella utilize a Type IV 

secretion system (T4SS; Dot/Icm dependent) secretion system to secrete effectors and 

promote survival within the host. The Rickettsia effector proteins, RickA and Sca2 

(functionally mimicking the eukaryotic protein, formin) nucleate actin polymerization (280-

282). Actin is utilized by several Rickettsia species for motility within the host cytosol and 

to disseminate into neighboring eukaryotic cells. Some Rickettsia species (e.g., R. parkeri) 

that do not have actin motility have been shown to secrete an effector, Sca4, that reduces 

vinculin associated tension at the plasma membrane to allow dissemination (283).  
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Coxiella also has a T4SS that is necessary for intracellular replication, CCV 

expansion, and for secreting effector proteins (279, 284), with over 133 predicted T4SS 

effectors identified to date (285). Similar to Chlamydia, Coxiella effectors have been 

shown to interact with the ER, Golgi, and intracellular trafficking components (e.g., via 

interactions with SNARE proteins), which is important for intracellular development (279). 

Many Coxiella effectors have coiled-coil regions and eukaryotic-like motifs that are 

involved in binding eukaryotic proteins. Both Chlamydia and Coxiella appear to use the 

clathrin-coated vesicle pathway for optimal development. The Coxiella effector, CpvA, 

interacts with AP2 on clathrin-coated vesicles, while Rab proteins are heavily involved in 

mediating these interactions during the chlamydial developmental cycle (157). Coxiella 

effectors modify protein kinase A (PKA), which phosphorylates BAD, inhibiting apoptosis. 

Similarly, C. trachomatis IncG binds 14-3-3β, which interacts with BAD and sequestering 

it from the mitochondria to prevent apoptosis (142, 143).  

Legionella encodes over 200 T4SS effectors, with a large number of redundant 

functions (286). Of significant interest, reticulon-4 (RTN4) is ubiquitinated by a Legionella 

effector, which results in the localization of RTN4 to the LCV early after infection (287). 

RTN4 is an ER-associated protein that, when localized to the LCV, modified ER tubule 

dynamics (287). RTN4 was a SAINT significant protein identified using the C. 

trachomatis L2 Inc-APEX2 transformed strains and was identified in all four AP-MS 

studies (115, 122, 170, 171, 288). 

Summary 

Although the intracellular niche for each of the bacteria described above differs, 

there are core requirements for intracellular survival. The differences in growth 

requirements are related to genome size and adaptation/evolution in different cell types 

(271). Fundamental requirements for intracellular bacteria include infection of a host cell 
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(e.g., actin modification), avoiding detection by host (e.g., develop in a vacuole disguised 

as a host organelle), and acquiring nutrients from the host cell during infection (e.g., 

molecular mimicry by bacterial proteins to bind eukaryotic proteins (137, 282)). Actin is 

manipulated to achieve a wide array of functions, from invasion, motility (i.e., Rickettsia), 

and ultimately exit from the host cell. These data are consistent with the large number of 

cytoskeleton-associated proteins identified in our Inc-APEX2 dataset. In addition, 

intracellular bacteria target the same eukaryotic biological pathways using uniquely 

evolved effector proteins that block different parts of a biological pathway. Identifying the 

various ways that bacteria manipulate or block normal eukaryotic biological pathways will 

contribute to a greater understanding of the underlying molecular mechanisms of 

eukaryotic cell biology.   

Concluding remarks 

This work, using the APEX2 proximity labeling system to identify proximal proteins 

in vivo, has added to the characterization of the C. trachomatis L2 inclusion interactome 

and described previously unreported Inc-eukaryotic protein-protein interactions. These 

data are consistent with eukaryotic proteins previously reported to be associated with the 

inclusion, and many of these proteins belong to pathways that are also important for the 

survival of other intracellular bacteria. These studies generated new experimental 

questions regarding how the overexpression of some Incs may alter the inclusion 

membrane organization. We showed that the altered organization of Incs in the inclusion 

membrane had consequences on the ability of C. trachomatis to bind host proteins during 

infection. These data highlight the importance of the balanced expression of Incs to 

support normal host cell interactions and overall chlamydial fitness. The information 

obtained from these studies paves the way for the identification of new proteins interacting 

with chlamydial effectors during C. trachomatis infection. Future studies of Inc-Inc 
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interactions will provide much needed insight into the organization of Incs in the inclusion 

membrane. This will help better contextualize our data regarding altered inclusion 

organization and recruitment of eukaryotic proteins.   
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