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Abstract 

Small-field dosimetry is central to the planning and delivery of radiotherapy to patients with cancer. 

Small-field dosimetry is beset by complex issues, such as loss of charged-particle equilibrium (CPE), 

source occlusion and electron scattering effects in low-density tissues. The purpose of the present 

research was to elucidate the fundamental physics of small fields through the computation of absorbed 

dose, kerma and fluence distributions in heterogeneous media using the Monte-Carlo method. 

Absorbed dose and kerma were computed using the DOSRZnrc Monte-Carlo (MC) user-code for 

beams with square field sizes ranging from 0.25 × 0.25 to 7× 7 cm2 (for 6 MV ‘full linac’ geometry) 

and 0.25 × 0.25 to 16 × 16 cm2 (for 15 MV ‘full linac’ geometry). In the bone inhomogeneity the dose 

increases (vs. homogeneous water) for field sizes < 1 × 1 cm2 at 6 MV and ≤ 3 × 3 cm2 at 15 MV and 

decreases (vs. homogeneous water) for field sizes ≥ 3 × 3 cm2 at 6 MV and ≥ 5 × 5 cm2 at 15 MV. In 

the lung inhomogeneity there is  negligible decrease in dose compared to in uniform water for field 

sizes > 5 × 5 cm2 at 6 MV and ≥ 16 × 16 cm2 at 15 MV, consistent with the Fano theorem. The near-

unity value of the absorbed-dose to collision-kerma ratio, D/Kcol, at the centre of the bone and lung 

slabs in the heterogeneous phantom demonstrated that CPE is achieved in bone for field sizes > 1 × 1 

cm2 at 6 MV and > 5 × 5 cm2 at 15 MV; CPE is achieved in lung at field sizes > 5 × 5 cm2 at 6 MV 

and ≥ 16 × 16 cm2 at 15 MV. Electron-fluence perturbation factors for the 0.25 × 0.25 cm2  field were 

1.231 and 1.403 for bone-to-water and 0.454 and 0.333 for lung-to-water were at 6 and 15 MV 

respectively. For field sizes large enough for quasi-CPE, the MC-derived dose-perturbation factors, 
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lung-to-water,  
lung

w
DPF  were close to unity; electron-fluence perturbation factors, lung-to-water, 

 
lungprim

wΦp  were ~1.0, consistent with the ‘Fano’ theorem. At 15 MV in the lung inhomogeneity the 

magnitude and also the ‘shape’ of the primary electron-fluence spectrum differed significantly from 

that in water. Beam penumbrae relative to water were narrower in the bone inhomogeneity and 

broader in the lung inhomogeneity for all field sizes.  

 

 
Keywords: absorbed dose, kerma, electron-fluence perturbation, non-equilibrium photon fields, 

Monte Carlo, Fano theorem. 

 

1. Introduction 

 
Small-field dosimetry is an essential component in the planning and delivery of external-beam 

radiotherapy. The near-exponential increase in the utilization of hypofractionation, and stereotactic 

body radiotherapy (SBRT) in particular (e.g. Pan et al 2011), where small fields predominate, has 

cemented small-field dosimetry as an essential foundation of treatment plans designed to meet the 

goals of high-dose target coverage and sharp gradients to protect surrounding healthy tissues.  The 

accuracy of small-field dosimetry is confounded by several factors, such as loss of charged-particle 

equilibrium (CPE), source occlusion, the size and type of the detector, and tissue heterogeneity, 

particularly low-density structures, like lung tissue, where increased electron range and scattering 

present a formidable challenge.  Over the past 10 years there have been many papers and also 

measurement protocols devoted to addressing the issues associated with small-field dosimetry 

(Sánchez-Doblado et al 2007, Das et al 2008, Alfonso et al 2008, Scott et al 2008, 2009, Bouchard et 

al 2009, IPEM 2010, Francescon et al 2011, Scott et al 2012, Disher et al 2012, Kumar et al 2015, 

Bouchard et al 2015, ICRU 2017, IAEA 2017, Benmakhlouf and Andreo 2017).  

With regard to dose-perturbation effects in heterogeneous media, the literature is also 

extensive.  The following literature review is far from exhaustive. Interested readers are encouraged to 

consult, for example, Chetty et al 2007 and Raynaert et al 2007. Jones et al (2003) employed the 

EGS4 Monte-Carlo (MC) system to study the effect of lung (variable densities) on IMRT beamlets 

using point-source geometry linac spectra of 6, 15 and 24 MV photon beams for circular field sizes of 

diameter ranging from 0.5 – 10 cm. These authors showed that for small fields, the dose decreased 

drastically in the presence of lung inhomogeneity due to lack of (lateral) electronic equilibrium. 

Rustgi et al (1997) and Rustgi et al (1998) performed measurements for cones, 12.5 - 40 mm in 

diameter, for stereotactic radiosurgery (X-knife, 6 MV photon beam) in low (air) and high 
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(aluminium) density inhomogeneities respectively and showed that the dose perturbation factor 

(relative to water) was highly dependent on field diameter and approached unity as the field diameters 

increased from 12.5 to > 25 mm.  Small field calculations (< 3 × 3cm2) were performed for lung-

equivalent media using the DPM MC code along with validation measurements. Dose perturbation 

factors (relative to water) on the central axis within the lung slabs were found to increase at smaller 

field sizes and higher energies (for 2 × 2 cm2 values were 0.85 and 0.70 for 6 and 15 MV photon 

beams, respectively) (Chetty et al 2003). Extensive small field calculations and measurements in 

lung-equivalent and bone-equivalent slab phantoms were also performed to validate calculations from 

pencil-beam and convolution/superposition algorithms, as well as the PENELOPE MC code for 6 and 

18 MV photon beams (Carrasco et al 2004, 2007). Significant dose reduction and penumbral 

broadening was observed, which worsened as the field size was reduced to 1×1 cm2 in the lung-

equivalent phantom.  Calculations, and measurements performed to validate the XVMC code in lung 

and bone slab phantoms showed reductions of ~15% in lung slabs (relative to water) at for 6 MV, 3 × 

3 cm2 photon beams, as well as significant penumbral broadening at the small field sizes (Fragoso et 

al 2010). 

Proper management of small fields in treatment planning requires dose algorithms that 

accurately account for the physics involved.  Failure to account for issues such as increased lateral 

electron scattering in lung tissue by, for example, pencil-beam algorithms employing radiological 

pathlength scaling, can lead to a severe reduction in the dose delivered to the target, potentially 

reducing the probability of achieving local tumour control (Latifi et al 2014, Ohri et al 2018). In light 

of these considerations, we set out to perform detailed Monte-Carlo calculations of dose, kerma and 

photon/electron fluence distributions in phantoms containing heterogeneous (lung and cortical bone-

equivalent) tissues under small (and ultra-small) field conditions. Our in-depth investigation of the 

perturbation of the fluence distributions by heterogeneous tissues ought to yield a more fundamental 

understanding of the depth-dose and dose-profile distributions of small-field patient irradiation.  The 

inclusion of photon and electron fluence calculations at ‘ultra-small’ fields - from 1 × 1 down to 0.25 

× 0.25 cm2 - differentiates our work from that of others, providing knowledge of the physics 

associated with dose perturbations in heterogeneous tissues; this is of central concern for clinical, 

small-field treatment planning in regions such as the lung.   

 

2. Materials and methods 

 
2.1. Monte Carlo modelling of linear accelerator geometry and setting up the simulations 

The EGSnrc Monte-Carlo user-code DOSRZnrc (version: v20019a) was employed to compute dose 

and kerma.  FLURZnrc (version: v20019a) was used to generate photon and electron fluence spectra 
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(Rogers et al 2019).  Previously validated Monte-Carlo source models of a Varian 2100C and 2100 iX 

linear accelerators (Varian Medical Systems, Palo Alto, CA) for 15 and 6 MV photon beams 

respectively have been employed (Scott et al 2008, Underwood et al 2013). Phase-space (PS) files 

from previous studies, e.g. Scott et al (2009) and Underwood et al (2013), were scored at a distance of 

58 cm and 100 cm from the source for 15 and 6 MV MC beam models respectively; these PS files 

were used as input to the EGSnrc user-codes DOSRZnrc and FLURZnrc using the ‘source 21’ option 

(i.e. full beam phase space data, incident on front face) (Rogers et al 2019). The transport parameters 

employed in the EGSnrc simulations are summarized in table 1. The number of histories (up to 6 × 

109) in each simulation was such that the average statistical uncertainty was ≤ 0.4%. The standard 

uncertainty propagation method was used to derive the Type A uncertainties (IAEA 2008). 

 

2.2. Computation of absorbed dose and kerma as a function of depth and field size 

 

A schematic diagram of the heterogeneous cylindrical slab phantoms for calculation of dose and 

kerma is displayed in figure 1. The outer radius and height of the cylindrical phantom were 15 and 30 

cm, respectively. The lung-equivalent slab phantom was composed of 3 cm water/7 cm lung-

equivalent material/20 cm water in consecutive arrangement.  For the bone-equivalent slab phantom 

the consecutive arrangement was 3 cm water/2 cm bone-equivalent material/25 cm water. Atomic 

compositions, mass densities (ρ) and mean excitation energies of the materials used to model the 

heterogeneous cylindrical slab phantoms are listed in table 2. Additionally, a homogeneous phantom 

(composed entirely of water) having the same physical dimensions as the heterogeneous phantoms 

was also modelled. The source to phantom surface distance (SSD) was 100 cm.  

PEGS4 datafiles were generated for lung (inflated), density 0.21 g cm-3, and cortical bone, 

density 1.8 g cm-3, using the ESTAR1 program to obtain the density-effect correction to the electronic 

stopping power. The absorbed dose, D and kerma, K were computed using the DOSRZnrc user-code 

with ECUT  (electron/positron total energy cut-off) and PCUT  (photon energy cut-off) values of 512 

keV and 1 keV respectively for photon beams for square field sizes ranging from 0.25 × 0.25 to 7 × 7 

cm2 (for 6 MV) and 0.25 × 0.25 cm2 to 16 × 16 cm2 (for 15 MV) in the heterogeneous cylindrical slab 

phantoms along the beam central axis (CAX) from the surface to the far end of the cylindrical 

phantoms using full linac geometry PS files generated for these field sizes. Furthermore, the D and K 

were also computed for the same field sizes and beam qualities in a homogeneous (water) phantom 

along the CAX at the same depth as computed in the heterogeneous phantoms. 

                                                           
1
http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html 
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 A ‘point like’ cylinder with a circular cross-section of 0.5 mm diameter and (a) 0.5 mm height 

in the build-up region, interface regions and lung- and bone-like media, (b) 2 mm height elsewhere, 

centred on the beam central axis, comprised the scoring volume.  

 

2.2.1. Quantifying the loss of charged particle equilibrium in heterogeneous media: Computation of 
D/Kcol as function of field size 

 
The absorbed-dose to collision-kerma ratio, D/Kcol is a measure of the degree of CPE or quasi-CPE2 

(IAEA 2017). To quantify this effect, D/Kcol was computed in the phantoms described in figure 1, for 

6 and 15 MV photon beams. The DOSRZnrc (Rogers et al 2019) user-code does not score collision 

kerma Kcol; we obtained the ratio (Kcol/K) by computing the 'photon cavity integrals' given below 

(equations (1) and (2)). Total photon fluence, per MeV per incident particle, down to 1 keV (with 

above ECUT, PCUT) was scored on the CAX at depths of 3.975 cm (bone-equivalent medium) and 

6.475 cm (lung-equivalent medium) using the FLURZnrc user-code. Parameter option ‘SLOTE = -

999’ where the lowest 90% of the energy range is divided into ‘bins’ of equal logarithmic widthwith 

the highest 10% divided into linearly-spaced bins. Kermas K and Kcol
3 were then calculated over 

(energy) fluence spectrum using the following cavity integrals (e.g. Nahum 2007):  

 

   
max

phot tr

med med
med

( )
( ) z d

k

k

PCUT

k
K z k Φ k





 
    

 
   (1)

   

and  

   
max

phot en
col med med

med

( )
( ) z d

k

k

PCUT

k
K z k Φ k





 
    

 
    (2) 

 
where k is the photon energy, µtr(k)/ρ and µen(k)/ρ are the mass energy-transfer coefficient and the 

mass energy-absorption coefficient respectively, and  phot

med
zkΦ   is the photon fluence, differential 

in energy, as a function of depth z in the medium.  The quantities µtr(k)/ρ and µen(k)/ρ have been 

derived by using the ‘g’ user-code of EGSnrc system (Kawrakow et al 2019) with the same PEGS4 

datafiles as used with DOSRZnrc for computing K. Note that the lower limit of the integral has been 

                                                           
2
In real photon beams CPE is never ‘perfect’ due to finite photon attenuation over the distance of the maximum 

secondary-electron/positron range; we refer to this as quasi-CPE; this corresponds to what Attix (1986) termed 

‘Transient CPE’. 

3
The present text employs the term ‘collision kerma’ introduced by Attix (1979a, 1979b), although a recent 

textbook (Andreo et al 2017) prefers electronic kerma.  ICRU Report 90 (ICRU, 2016) states: ‘In the present 

Report we retain the term collision kerma, although noting that it was presumably named in analogy to the 

collision stopping power, which was changed to electronic stopping power in ICRU Report 60’ (ICRU, 1998). 

Page 5 of 51 AUTHOR SUBMITTED MANUSCRIPT - PMB-109996.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Dose, kerma and fluence distributions in heterogeneous slab geometries under non-equilibrium conditions 

6 

 

set equal to PCUT since the fluence spectrum only extends down to PCUT. From equations (1) and 

(2),  

 col 1K K g      (3) 

was calculated at depths specified above in the heterogeneous cylindrical phantoms (figure 1) and 

then multiplied by K computed from DOSRZnrc (same depth and medium) to yield Kcol as a function 

of field size. D/Kcol was derived using the values of D computed at the same depth and medium. D/Kcol 

ratios were also derived for thehomogeneous (water) medium at depths of 3.975and 6.475 cm as 

described in sub-section 2.2. The value of K derived from equation (1) employing the fluence 

obtained via FLURZnrc agrees within 0.5% with that obtained directly from the results of with user-

code DOSRZnrc, for identical normalizations. 

Recently Rogers and Townson (2019) created a new user-code, DOSRZnrcKcol, which 

computes Kcol directly as a function of position in the phantom. However, DOSRZnrcKcol was not 

available at the time when this study was carried out. There is no option in DOSRZnrcKcol to model a 

heterogeneous cylindrical phantom (Rogers and Townson 2019). Here user-code DOSRZnrc has been 

employed (v2019a) for computing Kcol in heterogeneous as well as homogeneous phantoms for 

consistency. Therefore, the same approach was used as adopted previously by Kumar et al (2015a).  

 
2.2.1.1. Determination of  g  as function of field size 

In equation (3), the quantity g  is the average value of the fraction of the initial kinetic energy of the 

secondary electrons that is re-irradiated as bremsstrahlung. It depends on energy of electrons, E and 

atomic number, Z of the material. In order to evaluate the variation of g  within the different materials 

and at different energies, g was computed from equation (3) for the same geometries specified in sub-

section 2.2. 

 

2.2.2. Computation of MC-derivedinhomogeneity dose perturbation factoras a function of depth and 
field size 

 

The inhomogeneity dose perturbation factor, DPF is defined as the Monte-Carlo derived ratio of the 

dose in the heterogeneous phantom, hetero( )D z  at a depth, z, to the dose in the homogeneous (water) 

phantom, w( )D z  at the same physical depth, z and for the same set-up conditions (e.g. Li et al 2000, 

Jones et al 2003): 
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hetero hetero

w
w

( )
( )

( )

D z
DPF z

D z
                                 (4) 

 
where ‘hetero’ and ‘w’ indicate the heterogeneous (water-bone/lung-water) and homogeneous water 

phantoms, respectively. From equation (4),  
hetero

w
( )DPF z , will be referred to as the ‘MC-derived 

dose-perturbation factor hetero-to-water’.  
bone

w
( )DPF z

 
and  

lung

w
( )DPF z

 
were computed at 

depths of 3.975 and 6.475 cm depth in the bone-equivalent and lung-equivalent slab phantoms 

respectively, for the 6, 15 MV photon beams and the range of field sizes described earlier. 

 
2.3. Primary electron (+positron) fluence spectra in heterogeneous media and water and the 

computation of  
heteroprim

wΦp  

 

The primary electron (+positron) fluence spectra down to 1 keV (kinetic energy), per MeV per unit 

incident particle, have been computed using FLURZnrc. By primary  is meant all charged particles 

(electrons, positrons) that are not ‘delta rays’ (aka ‘knock-on electrons’); this also applies to charged 

particles liberated by secondary bremsstrahlung. The scoring geometry for the fluence spectra is 

shown in figure 1. 

 

We define the primary electron fluence perturbation factor,  
heteroprim

wΦp as 

 
 

 

max

max

prim
prim

heteroheteroprim hetero 0

primw
primw

w
0

d
( )

( )
d

E

E

Φ E

E

Φ z E
Φ z

p
Φ z

Φ z E

     
     





  (5) 

where prim

hetero
( )EΦ z   and  prim

E w
Φ z   are the primary electron (+ positron) fluences, differential in 

energy, (i.e. excluding delta-rays), at depth ‘z’ in the heterogeneous media (bone, lung) and 

homogeneous medium (water), respectively. Note that  
heteroprim

wΦp depends on the field size FS, beam 

quality Q and depth ‘z’ as well as on the medium. The primary electron fluence perturbation factors 

bone-to-water,
 
 

boneprim

wΦp
 
, and lung-to-water,

 
 

lungprim

wΦp , were computed from equation (5) at 

depths of 3.975 and 6.475 cm depth in the bone-equivalent and lung-equivalent slab phantoms 

respectively for 6, 15 MV photons and the range of field sizes described earlier.  
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2.4. Comparison of the MC-derived dose perturbation factor, hetero-to-water, to  
heteroprim

wΦp ratio 

with the Bragg-Gray stopping-power ratio
BG
med,ws

 
 

The absorbed dose to medium, med( )D z , at a specified depth, z, is related to the absorbed dose to 

water, w( )D z , by  

     
medBG prim

med wmed w wΦD z D z s p  ,    (6) 

where 
BG
med,ws  is the Bragg-Gray, or unrestricted (electronic) stopping-power ratio4, medium-to-water, 

involving the primary electron (+ positron) fluence (Nahum 1978, Nahum 2007, Andreo et al 2017). 

The perturbation factor defined in terms of the primary electron fluence (equation (5)), is consistent 

with this. For bone and lung media this becomes: 

 

 
 

 
boneBG primbone

bone w w
w

Φ

D z
s p

D z
 ,     (7) 

and  

 

 
 

lunglung BG prim
lung w w

w

Φ

D z
s p

D z
 ,     (8) 

Using equation (4), equations (7) and (8) can be written: 

 

 

 

bone

BGw
bone,wboneprim

w

( )

Φ

DPF z
s

p


      (9) 

and  

 

 

lung

BGw
lung,wlung

prim

w

( )

Φ

DPF z
s

p


      (10) 

 

Implicit in the above expressions is the assumption that though the electron fluences in bone and lung 

and in water may differ in magnitude, the energy spectra have similar shapes.  This assumption is 

investigated explicitly in this work. 

                                                           
4
The Bragg-Gray stopping-power ratio is employed as, to a good approximation; there will be delta-ray 

equilibrium in all three extended media (Andreo et al 2017). 

Page 8 of 51AUTHOR SUBMITTED MANUSCRIPT - PMB-109996.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Dose, kerma and fluence distributions in heterogeneous slab geometries under non-equilibrium conditions 

9 

 

In order to evaluate this approximation to the unrestricted (electronic) stopping-power ratio, 

bone-to-water, 
BG
bone ws , , and lung-to-water, 

BG
lung ws ,  

as computed from equations (9) and (10), were 

compared with the same quantities obtained from the ESTAR database5. Note that fluence-weighted 

mean energy, E , was determined from the ‘primary’ electron (+ positron) fluence spectra generated 

by FLURZnrc; the unrestricted mass electronic stopping powers  el ( ) /S E  corresponding to E  for 

each of the materials, bone, lung and water were then determined from ESTAR, and used to compute 

the appropriate ratios. We will denote the ratios 
BG
bone ws , and 

BG
lung ws , derived from ESTAR (conventional 

method) as  BG
bone w cav th

s ,  and  BG
lung w cav th

s ,
 
respectively to distinguish them from the pseudo - 

BG
bone,ws

 

and 
BG
lung,ws

 
computed using equations (9) and (10). 

 

2.5. Mean electron energy 

 
Mean electron (+ positron) energies were obtained from: 

 
 

 

max

max

tot
E

0

tot
E

0

d

d

E

E

E z E

E z

z E








     

(11)  

where ( )z tot
E is the total electron (+ positron) fluence, differential in energy (i.e. including all 

generations of ‘knock-on’ electrons, or delta-rays) at different depths z. The total electron (+positron) 

fluence spectra per MeV per unit incident particle down to 1 keV were generated using the FLURZnrc 

user-code, with the same ECUT and PCUT and geometries as above (sub-sections 2.2, 2.2.1). 

 
2.6. Computation of total photon fluence, differential in energy 

The total photon fluence per MeV per incident particle down to 1 keV was generated using the 

FLURZnrc user-code, with the same parameter settings and geometries as above (sub-sections 2.2, 

2.2.1). From the photon fluence, differential in energy,  phot

med
zkΦ   , the photon-fluence-weighted 

mean energy, kE , was derived as a function of field size, using equation (11).  

 
2.7. Generation of transverse (cross-plane) and determination of penumbra 
                                                           
5http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html 
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Absorbed dose (in the left-right direction) was computed using the DOSRZnrc user-code with ECUT 

and PCUT described above (sub-section 2.2) for a 6 MV photon beam at the depth of 4 cm (3-5 cm 

depth, bone slab) and 7 cm depth (3-10 cm depth, lung slab) with square field sides ranging from 0.25 

to 5 cm defined at 100 cm SSD (figure 1). Dose was also computed in the water phantom. For all 

comparisons, dose per incident fluence was normalized to that at depth of maximum dose (dmax) along 

the CAX for a 10 × 10 cm2 field in the water phantom. This point represents the absolute dose 

calibration point of the linear accelerator where the condition 1 cGy/MU applies. The transverse 

profiles were plotted for heterogeneous media (bone, lung) and compared with the profiles in water 

generated in the same plane. To compute the beam penumbra, doses were normalized to their 

respective maximum dose values along the beam CAX. Penumbra was defined as the distance 

between the 80%-20% relative doses at the defined depth and field size in the given medium (IPEM 

2010).  

 

3. Results and Discussion 

 
3.1. Computation of absorbed dose and kerma as a function of depth and field size 

Figures 2(a)-(d) show the absorbed dose computed in the heterogeneous cylindrical phantoms (bone-

equivalent and lung-equivalent slab phantoms) along the beam CAX for the 6 and 15 MV photon 

beams. In figures 2(a)-(b), dose ‘build-up’ and ‘build-down’ are observed at the proximal and distal 

ends of the bone inhomogeneity, respectively. Dose ‘build-up’ (≤ 0.75 × 0.75 cm2 at 6 MV and ≤ 1 × 

1 at 15 MV) at the proximal end of the bone inhomogeneity is due partly to increased backscattering 

of the secondary electrons from bone which has a higher atomic number (Zeff = 13.8) and high density 

(ρ = 1.8 g cm-3) than water (Zeff = 7.42, ρ = 0.998 g cm-3) (Das and Khan (1989)).  Dose enhancement 

at proximal end of the bone inhomogeneity (figures 2(a)-(b)) is also demonstrated by figure 3 where 

the total electron (+positron) fluences, differential in energy, in the bone-equivalent slab phantom is 

significantly higher than that in the homogeneous (water) phantom at same depth (dashed curve).  

This effect is accentuated in the low energy region, demonstrating that low energy electron 

(+positron) fluence is increased near the water-bone interface (proximal end) due to the presence of 

bone. Dose ‘build-down’ at distal end of the bone inhomogeneity is partly attributable to decreased 

backscattering of the secondary electron from the water and can be described similarly. The (lateral) 

electronic disequilibrium at the interfaces is more prominent at15 MV relative to 6 MV because of 

greater range of the lateral electrons. 

The absorbed dose is enhanced in the bone inhomogeneity region (vs. homogeneous water) 

for field sizes < 1 × 1 cm2 at 6 MV, and ≤ 3 × 3 cm2 at 15 MV (figures 2(a)-( b)). The magnitude of 

dose enhancement decreases as the field size increases. For instance, at 0.25 × 0.25 cm2 dose 

enhancements were 10.8% and 28.7% at 6, and 15 MV respectively. This is likely because the range 
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of electrons in bone is smaller than that in water resulting in slower loss of CPE in bone versus water 

as field size is reduced. Moreover, at these ultra-small field sizes (1 × 1 cm2) the contribution to dose 

on the CAX is primarily from electrons travelling in the forward direction implying that these 

electrons are more energetic.  As the field size increases, more electrons scattering at wider angles (or 

lower energy) contribute to the dose on the CAX, which reduces the mean energy.  Note from table 7, 

the mean electron energies in the 6 MV photon beam at 3.975 cm depth in bone on the central axis for 

field sizes of 0.25 × 0.25 and 3 × 3 cm2 are 1.047 and 0.963 MeV, respectively, which represents an 

increase of 8.7% in the mean electron energy at the 0.25 cm field size.When quasi-CPE is established, 

at field sizes > 1 × 1 cm2 (6 MV) and > 3 × 3 cm2 (15 MV) in the bone-equivalent slab phantom, 

density differences play a negligible role and the dose variationin the bone region (at both proximal 

and distal interfaces) relative to the water phantom, is significantly reduced. This is clearly visible for 

field sizes, 3 × 3 cm2 at 6 MV and 5 × 5 cm2 at 15 MV. Dose reduction in the bone region relative to 

water under quasi-CPE is understood by elaboration of the interaction cross sections. Compton 

interaction cross section per unit mass, σ/ρ, (or the mass attenuation coefficient) depends upon the 

number of electrons per gram of the material (Andreo et al (2017)). The number of electrons per gram 

(e/g) for bone is 3.0 × 1023 which is 10.2% lower than that for water (= 3.34 × 1023).   

In figures 2(c)-(d), dose ‘build-down’ occurs at the proximal, water/lung interface while dose 

‘build-up’ occurs at the distal, lung/water interface. Dose ‘build-down’ is partly attributed to 

decreased backscattering of the secondary electrons from the lung material, while the dose ‘build-up’ 

at the distal end interface is partly due to increased backscattering of the secondary electrons from 

water, which has higher mass density (ρ = 0.998 g cm-3) relative to lung (ρ = 0.21 g cm-3). When 

electrons enter the lung region, they undergo significant lateral scattering in the low-density lung 

region carrying energy away from the CAX, resulting in a large reduction in dose in the lung region. 

The dose reduction increases as the field sizes decrease to 0.25 × 0.25 cm2 since the loss of CPE 

becomes more significant. For instance, the mean electron (+positron) energy for the 0.25 × 0.25 cm2 

field is 1.155 MeV (6 MV photon beam), corresponding to Rcsda values of 2.483 cm (in lung) and 

0.521 cm (in water) demonstrating the significant increase in the range of electrons in the lung relative 

to water.  Media density can significantly perturb dose distributions when the field width is small and 

moreover dose to media depends critically on its densities (Alison et al 2012, Fenwick et al 2013, 

Underwood et al 2013b, Kumar et al 2015). Dose reduction in the lung region is greater at 15 MV 

where the lateral electronic disequilibrium is further amplified because of the greater electron range 

compared to 6 MV. 

Beyond the distal end of the lung inhomogeneity, dose increases and is higher than the dose 

relative to that in the homogeneous (water) phantom. This is a consequence of the reduction in 

attenuation of photons in the lung relative to water. As the field size increases, the dose reduction in 

lung region becomes less pronounced. At field size broad enough (> 5 × 5 cm2 for 6 MV, ≥ 16 × 16 
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cm2 for quasi-CPE, the role of the mass density differences between lung and water media becomes 

negligible and the dose deficit in the lung virtually disappears. This is consistent with the ‘Fano’ 

theorem (Fano 1954, Andreo et al 2017): ‘In an infinite medium of given atomic composition exposed 

to a uniform fluence of uncharged particles, the fluence of secondary radiation is also uniform and 

independent of the density of the medium, as well as of density variations from point to point’. The 

atomic number differences between water (Zeff = 7.42) and lung (Zeff = 7.77) are negligible and hence 

any differences between their respective mass interaction coefficients (mass-energy absorption 

coefficient and electronic stopping power) will also be negligible. Therefore, the considerable density 

difference between lung (ρ = 0.21 g cm-3) and water (ρ = 0.998 g cm-3) becomes immaterial once the 

field size is broad enough to establish quasi-CPE; the Fano theorem ensures identical (secondary) 

electron fluences in the two materials. The results for the lung phantom are consistent with those of 

previous studies (Chetty et al 2003, Rice et al 1988). 

 

3.1.1. Quantifying the loss of charged particle equilibrium in heterogeneous media: D/Kcol as function 
of field size 

 
Figures 4(a)-(b) show the field-size dependence of D/Kcol along the central axis at a depth of 3.975 cm 

in the cylindrical bone-equivalent and homogenous (water) phantoms for 6 and 15 MV photons. 

Figures 4(c)-(d) shows D/Kcol ratios for lung-equivalent and water phantoms at 6.475 cm depth. In 

figures 4(a)-(b) it is seen that D/Kcol decreases rapidly as the field size decreases below 1×1 cm2 at 6 

MV in bone, and below 3 × 3 cm2 at 15 MV in bone. Field sizes > 1 × 1 cm2 (figure 4(a)) and ≥ 5 × 5 

cm2 (figure 4(b)) are adequate for achieving the lateral electronic equilibrium for 6 and 15 MV photon 

beams respectively in bone. Figure 4(a) also shows that lateral electronic equilibrium in the 

homogeneous (water) phantom is achieved for a field size of > 2 × 2 cm2 for 6 MV photons, consistent 

with the study by Bjärngard et al (1990). 

For the lung-equivalent phantom, figures 4(c)-(d) show that D/Kcol decreases rapidly as the 

field size is reduced below 5 × 5 cm2 and 16 × 16 cm2, for 6 and 15 MV photons, respectively. This is 

a consequence of the onset of (lateral) electronic disequilibrium when the field width becomes too 

small to encompass the increased lateral excursions of electrons in the lung medium (Chetty et al 

2003, Scott et al 2009, IPEM 2010, Kumar et al 2015a). Also noted from the D/Kcol plots is that lateral 

electronic disequilibrium within lung-equivalent media can be mitigated at field sizes > 5 × 5 cm2 (6 

MV), and ≥ 16 × 16 cm2 (15 MV).  Our results are also consistent with that of Mackie et al (1985) 

who suggested that field sizes < 5 × 5 cm2 were inadequate for achieving lateral electronic equilibrium 

in lung tissues irradiated by 15 MV photon beams. 

The geometric effect of source occlusion resulting from the finite source width of electrons 

striking the target in a photon beam linear accelerator is another contributing factor to dose reduction 

at small field sizes (Das at al 2008, IPEM 2010, Kumar et al 2015). Kumar et al (2015) demonstrated 
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that the source occlusion effect was significant below field sizes of approximately 0.75 × 0.75 cm2.  

This implies that at field sizes < 0.75 × 0.75 cm2 geometric source occlusion contributes to reduction 

of dose in addition to that resulting from loss of CPE due to the electron range, producing substantial 

reduction of dose at these ultra-small field sizes. Considering the ratio: D/Kcol, it should be noted that 

D, which incorporates effects of both loss of CPE and source occlusion falls faster than Kcol, which 

includes source occlusion only (Kumar et al 2015).  

 

3.1.1.1. Determination of  g as function of field size 
 

Tables 3 presents the g values for bone, lung and water media versus field size for the 6 and 15 MV 

photon beams. The g value decreases as the field size increases. This can be understood by reference 

to figure 56 which shows that the ratio of low-energy photon fluence (< ~0.5 MeV) to the primary 

fluence increases from the smallest (0.25 × 0.25 cm2) to largest field size (5 × 5 cm2) because of the 

increased fraction of scattered photons as the field sizes increases.  Consequently, the mean secondary 

electron energy decreases with increasing field size resulting in reduced bremsstrahlung production 

and smaller g  value as the field size increases, considering that the cross section for bremsstrahlung 

production varies as 2EZ . Note also that the g  values are significantly higher for bone relative to 

lung due to the much higher effective atomic number of bone at MV energy ranges. 

 

3.1.2. Computation of MC-derived inhomogeneity dose perturbation factor as a function of depth and 
field size 
 
Figures 6(a)-(d) show the MC-derived dose perturbation factors, DPFs, computed from equation (4) 

in the heterogeneous cylindrical phantoms for 6 and 15 MVphotons as a function of field size. 

The DPFs plotted in figures 6(a)-(b) follow the same trend as the depth-dose curves in the 

bone-equivalent phantom in figures 2(a)-(b). The DPF at a given distance from proximal end of the 

bone inhomogeneity decreases as the field size increases; it is greater than unity for the sub-

equilibrium field sizes, and less than unity for the field sizes where quasi-CPE is established. In the 

bone region, the DPF at a given distance from the proximal end of the bone inhomogeneity increases 

as the photon beam energy increases.  These effects are discussed at length in sub-section 3.1. In table 

7 it can be noted that the mean electron energies in the 15 MV photon beam at 3.975 cm depth in bone 

on the CAX for field sizes of 0.25 × 0.25 cm2 and 3 × 3 cm2 are 2.506 and 2.048 MeV respectively, 

represents an increase of 22.4% from the larger to the smaller field size; the corresponding increase in 

mean electron energy for 6 MV is only 8.7%.  

                                                           
6
As an explanation, we have shown the amount of low-energy photon fluence relative to the primary fluence for 

the bone medium for 15 MV photon beams. The pattern will be similar for other media and photon energies. 
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At 6 MV, the dose perturbation factor, water-to-bone,  
w

bone
( )DPF z i.e. the MC-derived ratio 

of dose-to-water to dose-to-bone at 3.975 cm depth in the bone-equivalent slab phantom (figure 1) for 

a field size (3 × 3 cm2) large enough for quasi-CPE, is equal to 1.058 ± 0.007 which is consistent with 

that predicted by ‘large photon cavity’ theory:  
w

en
bone

  = 1.066. This result is also consistent with 

Reynaert et al (2018) who found a water-to-bone dose ratio of the order of 1.06 for 6 MV photons 

from a CyberknifeTM beam. 

The behaviour of the DPF in the lung slab (figures 6(c)-(d)) is entirely consistent with that of 

the depth-dose curves in figures 2(c)-(d). The DPF at a given distance from proximal end of the lung 

inhomogeneity decreases as the field size decreases. At field sizes wide enough for quasi-CPE, the 

DPF is ≥ 1.0; the slight increase is due to lower photon attenuation in lung. These effects are 

reviewed in detail in sub-section 3.1.   

 

3.2. Primary electron (+positron) fluence spectra in heterogeneous media and water and the 

computation of  
heteroprim

wΦp  

 
Figures 7(a) (6 MV, bone inhomogeneity), 7(b), (c) (15 MV, bone inhomogeneity) and 7(d) (15 MV, 

lung inhomogeneity) demonstrate the ‘perturbation’ of the (primary) electron fluence spectrum in 

small, non-equilibrium photon fields.The dotted curves in figures 7(a)-(c) (corresponding to the water 

medium) lie well below the full curves (bone). Similarly, the dotted curve in figure 7(d) 

(corresponding to lung medium) lies significantly below the full curve (water). The dashed curves 

were obtained by multiplying these dotted curves by the bone-to-water (figures 7(a)–(c)) and water-

to-lung (figure 7(d)) perturbation factors, defined by equation (5). From figure 7(a) where 

 
boneprim

wΦp = 1.231, for 6 MV (0.25 × 0.25 cm2), the ‘corrected’ water fluence is almost identical to 

the ‘bone’ fluence at all energies implying that there is a negligible change in the spectral ‘shape’. At 

15 MV (0.25 × 0.25 cm2, figure 7(b)), where  
boneprim

wΦp = 1.403, a significant difference is observed 

between the ‘bone’ fluence and the corrected ‘water’ fluence, which is greatest at low energies, 

suggesting that the bone medium perturbs not only the magnitude but also the shape of the primary 

electron (+positron) fluence spectrum. As the field size increases the shape of the corrected primary 

electron (+positron) fluence spectrum is preserved (see figure7(c), 15 MV, 2 × 2 cm2).   

In figure 7(d), for 15 MV, 0.25 × 0.25 cm2, where  
lungprim

wΦp  = 0.333, a clear difference 

between the ‘water’ and corrected ‘lung' media spectra is observed, especially at intermediate 

energies, implying that the lung medium perturbs both the magnitude and the shape of the primary 
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electron (+positron) fluence spectrum; this is due to increased electron lateral scattering in lung and 

consequent loss of (lateral) electronic equilibrium. 

Table 4 presents the MC-derived primary electron fluence perturbation factors, 
boneprim

wΦp , 

and  
lungprim

wΦp , as a function of field size for the 6 and 15 MV beams. The bone-to-water perturbation 

factors are >1.0 for all field sizes due to the hardening effect of bone on the electron spectra.  These 

perturbation factors also increase at the smallest field sizes. The lung-to-water perturbation factors are 

<1.0 for small photon fields because CPE is lost and therefore the ‘Fano’ theorem cannot be invoked 

(Harder 1974). The perturbation factors approach unity as the field size increases. These effects have 

been described at length in sub-section 3.1.   

 

3.3. Comparison of the MC-derived dose perturbation factor, hetero-to-water, to  
heteroprim

wΦp  ratio 

with the Bragg-Gray stopping-power ratio  BG
med,w cav th

s
 

 
Table 5 compares the approximate stopping power ratios for the bone and lung heterogeneities to 

water computed using equations (9) and (10), with those determined from the ESTAR database.  For 6 

MV in bone, the agreement was much less than 1.0% across all field sizes; for 15 MV in bone, 

agreement on the order of 1.0% was noted with maximum discrepancy of ~1.5% for the 0.25 × 0.25 

cm2 field. In the lung phantom, at 6 MV, differences for field sizes > 0.5 × 0.5 cm2 were ≤ 1.0% but 

increased to ~2.5% for the 0.5 × 0.5 cm2 field. Differences for 15 MV in lung were generally larger 

ranging from 2-3% for field sizes ≥ 3 × 3 cm2 to 5.5% at 0.25 × 0.25 cm2.  These discrepancies are 

likely dueto the change/distortionof the spectral shape between lung and homogeneous water, and 

breakdown of the approximation at ultra-small field sizes as illustrated in figure 7(d).Table 6 gives a 

comparison of the BG
bone,ws and BG

lung,ws determined using equations (9) and (10) respectively with those 

derived by Siebers et al (2000), for 6 MV and 15 MV photons at 10 × 10 cm2. These authors 

employed a different Monte-Carlo code (MCNP), and linear accelerator energy spectra (Mohan et al 

1985). Our results are on average within 0.8% of their values. 

 
3.4. Spectra mean energy for electron and photon fluence 

 

Figures 8(a)-(b) show the variation of the mean electron (+ positron) energies in the heterogeneous 

bone-equivalent and lung-equivalent slab phantoms, respectively for 6 MV photons. The mean energy 

was evaluated from equation (11). It is seen from these figures that the mean electron energy for each 

field size increases gradually as depth increases. This can be understood by the reference to figure 9 

which shows for a 0.25 × 0.25 cm2 field size that the mean photon energy increases with depth in the 

bone phantom due to beam hardening. A further observation from figures 8(a)–(b) is that there is a 
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modest increase in electron (+positron) mean energies at all field sizes from the surface to the depth 

where (quasi) CPE is first established as Andreo and Nahum (1985) first pointed out. In bone and 

lung phantoms (figures 8(a)-(b)) the mean electron energy increases as the field size is reduced 

because of the increased fraction of forward scattered, and hence higher energy electrons, contributing 

to dose on the beam CAX, relative to larger field sizes, as explained previously.  For the lung 

phantom (figure 8(b)), the mean electron energy stays relatively constant in the lung slab due to the 

increased electron scattering in the lung, and hence beam ‘softening’ of the electron energy spectrum.  

 Tables 7and 8 present the spectra mean energy of photon and electron fluence, and Rcsda 

values at depths of 3.975 cm depth (bone inhomogeneity) and 6.475 cm depth (lung inhomogeneity) 

for the 6 and 15 MV photon beams. The photon mean energy, kE  was evaluated from photon fluence 

spectra, differential in energy from equation (11) by replacing ( )z tot
E by  phot zkΦ . There are 

several factors driving the observed trends: (a) attenuation differences resulting from different mass 

densities between bone, lung and water; (b) electron scattering differences between bone, lung and 

water and loss of CPE at small field sizes; (c) source occlusion effects at ultra-small field sizes; (d) 

increased phantom scattering.  The variation of the mean photon energy with field size in the bone 

phantom is much larger than that in the lung phantom.  This is because of the increased attenuation 

and beam hardening observed in the bone phantom relative to lung.  The bone acts as a better filter of 

low energy photons compared to lung (see figure 5).  On the other hand, the variation of the mean 

electron energy with field size in the bone phantom is much smaller than that in the lung phantom.  

This is because there is gradual hardening of the electron spectrum in the bone phantom at all depths 

(for all field sizes) implying a gradual change in the electron spectrum (see figure 8(a)).  However, in 

the lung phantom there is a ‘softening’ of the electron spectrum due to increased electron scattering 

and reduced attenuation in the lung slab (see figure 8(b)); these scattered electrons within the lung 

slab contribute to a greater degree to the mean electron energy variation with field size versus the 

bone phantom.  The source occlusion effect observed at field sizes < 0.75 × 0.75 cm2 causes reduced 

photon fluence but also leads to preferential selection of photons scattered in the forward direction, 

which have higher energy, analogous to a ‘pencil beam’.  This likely explains the increase in the mean 

photon and electron energies, and Rcsda ranges at the smallest field sizes. 

 

3.5. Generation of transverse (cross-plane) and determination ofpenumbra 

Figures 10(a)-(d) show the cross-plane dose profiles at depths of 4 and 7 cm depth in the bone and the 

lung-equivalent slab phantoms, respectively for 6 MV photons. Profiles in the homogenous (water) 

phantom at the same depths are shown in the plots for comparison. All profiles were normalized to 

absorbed dose per incident fluence computed at dmax along the CAX for a 10 × 10 cm2 field size in a 

homogeneous (water) phantom.  In figure 10(a) the 0.5 × 0.5 cm2 field profile in bone is slightly 
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sharper than that in water, likely due to the reduced electron range in bone relative to water. A similar 

effect is observed for the 3 × 3 cm2 profiles (figure 10(b)), where penumbral widths are 0.44 cm 

(bone) and 0.48 cm (water) at a depth of 4 cm.   

From figures 10(c)-(d) it is clear that the profile penumbral regions in the lung phantom are 

larger than those in the water phantom for both the 0.5 × 0.5 cm2 and 5 × 5 cm2 field sizes. This is 

because the increased lateral range of the electrons in the lung material, produces dose reduction and 

‘rounded’ profile shoulders, and increased dose in the profile tail (low dose region) relative to that in 

water.  The 5 ×5 cm2 penumbral widths for lung and water at the same depth are 1.12 cm and 0.76 cm 

respectively.  Figure 10(d) demonstrates that near the geometric edge, the dose is reduced inside the 

field and enhanced outside the beam edge. The energetic Compton electrons generated by the 

megavoltage photon beam inside the beam geometric edge has a longer range and more lateral 

scattering in lung resulting in a broader penumbral region. 

 

3.6. Other considerations 

The issue of dose-to-medium, Dm, vs. dose-to-water, Dw, is beyond the scope of this work, but a few 

remarks are in order. The MC method inherently reports Dm. Traditionally, the conversion between 

Dm and Dw for treatment-planning algorithms that model the patient as water with variable electron 

density are currently handled using (Bragg-Gray) stopping-power ratios (e.g. Siebers et al 2000,  Ma 

and Li 2011). However, Reynaert et al (2018) showed that the application of stopping-power ratios 

for converting from Dm to Dw in, for example, bone media may be invalid; in regions of electronic 

equilibrium the ratio of mass energy-absorption coefficients should be applied. Further investigation 

of this topic as well as the clinical implications of conversion between Dm and Dw is warranted. 

 
4. Summary and Conclusions 

 

Computation of absorbed dose, kerma, and photon and electron fluence distributions, using the 

EGSnrc Monte-Carlo system, have resulted in a more detailed understanding of dose perturbations 

caused by tissue inhomogeneities (cortical bone and lung-equivalent material) in small and ultra-small 

fields of 6 and 15 MV photon beams. The main findings  are as follows: (a) in bone-equivalent media, 

dose distributions are primarily impacted by changes in photon beam spectra resulting from beam 

hardening; (b) in lung-equivalent media dose distributions are primarily impacted by the increased 

range and lateral scattering of electrons in the lung; (c) from the computation of the absorbed-dose to 

collision-kerma ratio, D/Kcol, it has been shown that quasi-CPE is achieved in the water/bone/water 

phantom at field sizes > 1 × 1 cm2 and ≥ 5 × 5 cm2 for 6 MV and 15 MV photons, respectively. In the 

water/lung/water phantom, field sizes > 5 × 5 cm2 (6 MV) and ≥ 16 × 16 cm2 (15 MV) are required to 

establish quasi-CPE; (d) at ‘ultra-small’ field sizes the impact of source occlusion coupled with that of 

Page 17 of 51 AUTHOR SUBMITTED MANUSCRIPT - PMB-109996.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Dose, kerma and fluence distributions in heterogeneous slab geometries under non-equilibrium conditions 

18 

 

loss of CPE results in significant dose enhancement in the bone phantom and dose reduction in the 

lung phantom along the central axis of the beam, being greater at 15 MV than at 6 MV; (e) photon and 

electron mean energies and Rcsda values increase as the field size is reduced, with appreciable 

increases at the smallest field sizes (< 0.75 × 0.75 cm2) where the effects of loss of CPE and source 

occlusion are greatest. 

 Understanding the physics of small fields is of paramount importance in the clinical setting 

where small fields are frequently employed in treatment planning and dosimetry.  The key findings of 

this study will be useful to clinical physicists dealing with small fields.   
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Figure Captions 

 
Figure 1. Schematic diagram illustrating the calculation geometries with bone-equivalent and lung-

equivalent material in bone-equivalent and lung-equivalent cylindrical slab phantoms respectively (A 

– bone; B – lung). The edges of the wide field and small field are indicated with bold and dashed lines 

respectively. 

 

Figures 2(a)-(d). Absorbed dose versus field size computed in a water-inhomogeneity-water phantom 

from the surface to the maximum depth (0 - 30 cm) along the central axis of the beam. with square 

field sizes ranging from 0.25 × 0.25 cm2 to 7 × 7 cm2 at 6 MV photon beam (a – bone; c – lung) and 

0.25 × 0.25 cm2 to 16 × 16 cm2 at 15 MV photon beam (b – bone; d – lung) defined at 100 cm SSD. 

 
Figure 3. Electron fluence, differential in energy (all generations), for 6 MV photon beam computed 

at 2.95 cm depth in the bone-equivalent slab phantom as well as in the homogeneous (water) phantom  

: 0.25 × 0.25 cm2, 100 cm SSD, homogeneous water                      ; bone slab from 3 to 5 cm depth                   

              . 

 
Figure 4(a). Monte-Carlo-derived ratios of absorbed dose to collision kerma (D/Kcol) at the centre of a 

bone slab (3 – 5 cm depth) in water  and in homogeneous water on the central axis at 3.975 cm depth 

in a cylindrical phantom  for a 6 MV photon beam at square field sizes (defined at 100 cm source-to-

phantom surface distance) of side lengths 0.25, 0.5, 0.75, 1, 2, and 3 cm; (b) same quantities and 

media for a 15 MV photon beam; extending to 10 cm side length.  The error bars are ± 2 standard 

deviations and correspond to Type A uncertainties. 

 
Figure 4(c). Monte-Carlo-derived ratios of absorbed dose to collision kerma (D/Kcol) at the centre of a 

lung slab (3 – 10 cm depth) in water  and in homogeneous water on the central axis at 6.475 cm depth 

in a cylindrical phantom  for a 6 MV photon beam at square field sizes (defined at 100 cm source-to-

phantom surface distance) of side lengths 0.25, 0.5, 0.75, 1, 2, 3, 5, 5.5, 6 and 7cm; (d) same 

quantities and media for a 15 MV photon beam; extending to 16 cm side length.  The error bars are ± 

2 standard deviations and correspond to Type A uncertainties. 

 
Figure 5. Total photon fluence, differential in energy, along the central axis, normalized to the 

fluence at the incident energy, for a 15 MV photon beams, at depth 3.975 cm in bone medium located 

in heterogeneous phantom (bone-equivalent slab phantom) versus field size defined at 100 SSD; side 

lengths of square fields are 0.25 cm, 0.45 cm, 1 cm, 2cm, 3 cm and 5cm. 
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Figures 6(a)–(d). The MC-derived dose perturbation factors, DPF’s computed from equation (4) in a 

water-inhomogeneity-water phantom from the surface to the maximum depth (0 - 30 cm) along the 

central axis of the beam. with square field sizes ranging from 0.25 × 0.25 cm2 to 7 × 7cm2 at 6 MV 

photon beam (a – bone; c – lung) and 0.25 × 0.25 cm2 to 16 × 16 cm2 at 15 MV photon beam (b – 

bone; d – lung) defined at 100 cm SSD. 

 
 

Figure 7(a). 6 MV photons, 0.25 × 0.25 cm2 field size defined at 100 cm SSD: primary electron 

fluence (per MeV per  incident particle) as a function of electron kinetic energy (MeV) scored in i) a 

‘point like’ bone voxel (0.5 mm diameter, 0.5 mm thickness), ii) a ‘point like’ water voxel, and iii) the  

fluence in ii) × 
bone

waterΦp (= 1.231); both scoring volumes positioned at 3.975 cm depth along the beam 

central axis in a heterogeneous phantom (bone-equivalent slab phantom) and homogeneous (water) 

phantom respectively . 

 
 

Figure 7(b). 15 MV photons, 0.25 × 0.25 cm2 field size defined at 100 cm SSD: primary electron 

fluence (per MeV per incident particle) as a function of electron kinetic energy (MeV) scored in i) a 

‘point like’ bone voxel (0.5 mm diameter, 0.5 mm thickness), ii) a ‘point like’ water voxel, and iii) the  

fluence in ii) ×  
boneprim

wΦp (= 1.403); both scoring volumes positioned at 3.975 cm depth along the 

beam central axis in a heterogeneous phantom (bone-equivalent slab phantom) and homogeneous 

(water) phantom respectively. 

 

 
Figure 7(c). 15 MV photons, 2 × 2 cm2 field size defined at 100 cm SSD: Primary electron fluence 

(per MeV per incident particle) as a function of electron kinetic energy (MeV) scored in i) a ‘point 

like’ bone voxel (0.5 mm diameter, 0.5 mm thickness), ii) a ‘point like’ water voxel, and iii) the  

fluence in ii) ×  
boneprim

wΦp (= 1.188); both scoring volumes positioned at 3.975 cm depth along the 

beam central axis in a heterogeneous phantom (bone-equivalent slab phantom) and homogeneous 

(water) phantom respectively. 

 
Figure 7(d). 15 MV photons, 0.25 × 0.25 cm2 field size defined at 100 cm SSD: primary electron 

fluence (per MeV per incident particle) as a function of electron kinetic energy (MeV) scored in i) a 

‘point like’ water voxel (0.5 mm diameter, 0.5 mm thickness), ii) a ‘point like’ lung voxel, and iii) the  

fluence in ii) ×  
wprim

lungΦp (= 3.003); both scoring volumes positioned at 6.475 cm depth along the 

beam central axis in a homogeneous (water) phantom and heterogeneous phantom (lung-equivalent 

slab phantom) respectively. 
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Figure 8(a). Mean (secondary) electron energy at the central axis in the bone-equivalent slab phantom 

as a function of depth and field size defined at 100 cm SSD for 6 MV photon beams; side length of 

square fields are 0.25, 0.5, 0.75, 1, 2and 3 cm. 

 
Figure 8(b).  Mean (secondary) electron energy at the central axis in the lung-equivalent slab 

phantom as a function of depth and field size defined at 100 cm SSD for 6 MV photon beams; side 

length of square fields are 0.25, 0.5, 0.75, 1, 2 and 3 cm. 

 
Figure 9. Total photon fluence, differential in energy, along the central axis, normalized to the 

fluence at the incident energy, for a 6 MV photon beams, at depths 1.975 cm, 6.975 cm, 9.975 cm and 

14.9 cm in water medium in heterogeneous phantom (bone-equivalent slab phantom) for a 0.25 × 0.25 

cm2 field size defined at 100 cm SSD.  

 
Figures 10(a)-(d). 6 MV photon beam: Comparison of transverse (cross-plane) beam profile 

generated at the depth of 4 cm (3-5 cm depth, bone slab) and 7 cm depth (3-10 cm depth, lung slab) in 

bone-equivalent and lung-equivalent slab phantoms respectively with the profile at same depths in 

homogeneous phantom with square field sizes ranging from 0.5 × 0.5 to 5 × 5 cm2 defined at 100 cm 

SSD. All profiles were normalized to absorbed dose per incident fluence computed at dmax for a 10 × 

10 cm2 field size in a homogeneous (water) phantom. 
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Table Captions 

 
Table 1. Summary of EGSnrc parameters used in the simulations. 
 

 
Table 2. Material details as modelled in the MC simulations: the percentage atomic composition of 

the mass density (ρ) and mean excitation energy of the materials involved in the present work. 

 

Table 3. 6 MV and 15 MV photon beams:   col1g K K  determined at depths of 3.975 cm 

(cortical bone) and 6.475 cm (lung and water), versus field size defined at 100 SSD; lengths of square 

fields were 0.25 cm, 0.5 cm, 0.75 cm, 1 cm, 2 cm, 3 cm, 5cm, 10 cm and 16 cm; the Type A 

uncertainties are ± 1 standard deviation.  

 

Table 4. 6 MV and 15 MV photon beams: MC-derived primary electron fluence perturbation 

correction factors, bone-to-water,  
bone

wΦp  and lung-to-water,  
lung

wΦp , versus field size defined at 

100 cm SSD; side lengths of square fields were 0.25 cm, 0.5 cm, 0.75 cm, 1 cm, 2 cm, 3 cm, 5cm, 10 

cm and 16 cm; the Type A uncertainties are ± 2 standard deviations.  

 

Table 5. 6 MV and 15 MV photon beams: comparison of MC-derived dose perturbation factors med-

to-water to primary electron fluence perturbation correction factors med-to-water,  

   
medmed prim BG

med,ww w
( ) / ΦDPF z p s i.e. equations (9) and (10) at depth 3.975 (med = bone) and 

6.475 cm depth (med= lung) with  BG
med,w el elcav th med w

( ) / / ( ) /s S E S E         determined from 

the ESTAR code/program. E  is the fluence-weighted mean energy determined from the ‘primary’ 

electron (+ positron) fluence spectra generated by FLURZnrc at 3.975 cm depth and 6.475 cm depth 

in bone-equivalent and lung-equivalent slab phantoms respectively for the beam qualities of 6 MV 

and 15 MV. The Type A uncertainties are ± 2 standard deviations.  

 

Table 6. Comparison of  BG
bone w Eq.(9)

s , and  BG
lung w Eq.(10)

s ,  determined at 3.975 cm depth and 6.475 cm 

depth in bone-equivalent and lung-equivalent slab phantoms respectively using equations (9) and (10) 

respectively with the 
BG
bone ws , and 

BG
lung ws , derived by Siebers et al (2000), for 10  × 10 cm2 field defined 

at 100 cm SSD for 6 MV and 15 MV. The uncertainties in the present work are ± 2 standard 

deviations.  
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Table 7. Mean photon energy, kE  (evaluated from equation (11) by replacing ( )z tot
E  by ‘total’ 

photon fluence,  phot zkΦ  in the numerator as well as in the denominator). and (total) electron 

(+positron) energy, E  (evaluated from equation (11) using ‘total’  electron (+ positron) fluence 

spectra (i.e. including all generations of delta-rays)), at 3.975 cm in bone on central axis of bone-

equivalent slab phantom versus field size defined at 100 SSD for 6 MV and 15 MV photon beams; 

side lengths of square fields were 0.25 cm, 0.5 cm, 0.75 cm, 1 cm, 2 cm, and 3 cm for 6 MV and 0.25 

cm, 0.5 cm, 0.75 cm, 1 cm, 2 cm, and 3 cm, 5cm and 10 cm  for 15 MV; the Type A uncertainties are 

± 1 standard deviation.  Rcsda is quoted for bone medium corresponding to (total) electron (+positron) 

mean energies. 

 

Table 8. Mean photon energy, kE  (evaluated from equation (11) by replacing ( )z tot
E  by ‘total’ 

photon fluence,  phot zkΦ  in the numerator as well as in the denominator). and (total) electron 

(+positron) energy, E (evaluated from equation (11) using ‘total’  electron (+ positron) fluence 

spectra (i.e. including all generations of delta-rays)), at 6.475 cm in lung on central axis of lung-

equivalent slab phantom versus field size defined at 100 SSD for 6 MV and 15 MV photon beams; 

side lengths of square fields were 0.25 cm, 0.5 cm, 0.75 cm, 1 cm, 2 cm, 3 cm and 5 cm for 6 MV and 

0.25 cm, 0.5 cm, 0.75 cm, 1 cm, 2 cm, and 3 cm, 10 cm and 16 cm  for 15 MV; the Type A 

uncertainties are ± 1 standard deviation. Rcsda is quoted for lung medium corresponding to (total) 

electron (+positron) mean energies. 
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Figure 1. 
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Figure 2(a).  
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Figure 2(b).  
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Figure 2(c).  
 

0 2 4 6 8 10 12 14 16 18

1.0x10
-17

2.0x10
-17

4.0x10
-17

6.0x10
-17

8.0x10
-17

1.0x10
-16

'Lung inhomogeneity - 6 MV'

D
o

s
e

 p
e

r 
in

c
id

e
n

t 
fl

u
e

n
c

e
 (

G
y
 c

m
2
)

Depth in phantom (cm)

 0.25 × 0.25 cm
2

 0.5 × 0.5 cm
2

 0.75 × 0.75 cm
2

 1 × 1 cm
2

 2 × 2 cm
2

 3 × 3 cm
2

 5 × 5 cm
2

 7 × 7 cm
2

 
Figure 2(d).   

 

0 2 4 6 8 10 12 14 16 18
1.0x10

-16

2.0x10
-16

4.0x10
-16

6.0x10
-16

8.0x10
-16

1.0x10
-15

2.0x10
-15 'Lung inhomogeneity - 15 MV'

D
o

s
e

 p
e

r 
in

c
id

e
n

t 
fl

u
e

n
c

e
 (

G
y

 c
m

2
)

Depth in phantom (cm)

 0.25 × 0.25 cm
2

 0.5 × 0.5 cm
2

 0.75 × 0.75 cm
2

 1 × 1 cm
2

 2 × 2 cm
2

 3 x 3 cm
2

 10 × 10 cm
2

 16 × 16 cm
2

 

Page 31 of 51 AUTHOR SUBMITTED MANUSCRIPT - PMB-109996.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Dose, kerma and fluence distributions in heterogeneous slab geometries under non-equilibrium conditions 

32 

 

Figure 3. 
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Figure 4(a).   
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Figure 4(b).  
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Figure 4(c).  
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Figure 4(d). 
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Figure 5.  
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Figure 6(a). 
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Figure 6(b). 
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Figure 6(c). 
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Figure 6(d).  
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Figure 7(a). 
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Figure 7(b). 
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Figure 7(c). 
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Figure 7(d). 
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Figure 8(a). 
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Figure 8(b). 
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Figure 9. 
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Figure 10(a). 
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Figure 10(b). 
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Figure 10(c). 
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Figure 10(d). 

 

0 1 2 3 4 5 6 7
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

'5 × 5 cm
2
' - 6 MV

 

R
e

la
ti

v
e

 D
o

s
e

Distance from central axis (cm)

  Water, depth - 7 cm

  Lung, depth - 7 cm

 

Page 43 of 51 AUTHOR SUBMITTED MANUSCRIPT - PMB-109996.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Dose, kerma and fluence distributions in heterogeneous slab geometries under non-equilibrium conditions 

44 

 

Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
7
Hubbell and Seltzer 2004 

8
Berger et al 2010 

9
Koch and Motz 

 

 

 

 

 

Monte-Carlo transport parameters Setting 

Threshold total energy inelastic collisions 
( production threshold knock-on electrons) 

AE = 512 keV 

Threshold energy radiative collisions 
( production threshold for secondary  
bremsstrahlung photons) 

AP = 1 keV 

Electron/positron total energy cut-off ECUT = 512 keV 

Photon energy cut-off  PCUT = 1 keV 

Bound Compton scattering On 

Rayleigh scattering On 

Atomic relaxations On 

Spin effects On 

Bremsstrahlung cross sections NIST7 

Electron impact ionization On 

Photon cross sections XCOM8 

Bremsstrahlung angular sampling KM9 

Pair angular sampling KM 

Photoelectron angular sampling On 

Boundary crossing algorithm (BCA) EXACT 

Skin depth for BCA 3  

Electron-step algorithm PRESTA-II 

ESTEPE 0.25 (default) 
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Table 2. 

 

 

                                                           
10Number of electrons per gram = 3.34 × 1023 
11Number of electrons per gram = 3.31 × 1023 
12Number of electrons per gram = 3.00 × 1023 

Material 

simulated 

Mass 
density 
(g cm-3) 

Mean 

excitation 

energy (eV) 

                                                       Atomic composition (%) 

H C N O Other 

Water10 
(ICRU-90, 2016) 

0.998 78.0 11.19   88.81  

Lung (inflated)11 
(ICRU-44 1989) 

0.21 75.2 10.30 10.50 3.10 74.90  Na 0.2, P 0.2, S 0.3,  
 Cl 0.3, K 0.2 

Bone (cortical)12 
(ICRP-23 1975) 

1.80 106.4 4.72 14.43 4.20 44.61  Mg 0.22, P 10.5, S 0.315, 
 Ca 20.99, Zn 0.01 
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Table 3.  

 

  col1g K K   

 Cortical bone (depth: 3.975 cm)   Inflated lung (depth: 6.475 cm)  Water (depth: 6.475 cm) 

Field Size 
(cm × cm) 

6 MV 15 MV  6 MV 15 MV 
 

6 MV 15 MV 

0.25 × 0.25 7.940 × 10-3 ± 0.18% 1.943 × 10-2 ± 0.12%  4.476 × 10-3 ± 0.23% 1.190 × 10-2 ± 0.14%  4.717 × 10-3 ± 0.22% 1.271 × 10-2 ± 0.14% 

0.5 × 0.5 7.696 × 10-3 ± 0.17% 1.905 × 10-2 ± 0.11%  4.372 × 10-3 ± 0.23% 1.166 × 10-2 ± 0.13%  4.567 × 10-3 ± 0.22% 1.239 × 10-2 ± 0.13% 

0.75 × 0.75 7.538 × 10-3 ± 0.18% 1.900 × 10-2 ± 0.12%  4.345 × 10-3 ± 0.22% 1.177 × 10-2 ± 0.14%  4.502 × 10-3 ± 0.22% 1.237 × 10-2 ± 0.14% 

1 × 1 7.396 × 10-3 ± 0.18% 1.850 × 10-2 ± 0.12%  4.316 × 10-3 ± 0.24% 1.158 × 10-2 ± 0.14%  4.434 × 10-3 ± 0.23% 1.214 × 10-2 ± 0.14% 

2 × 2 6.980 × 10-3 ± 0.17% 1.772 × 10-2 ± 0.11%  4.255 × 10-3 ± 0.23% 1.145 × 10-2 ± 0.13%  4.184 × 10-3 ± 0.22% 1.173 × 10-2 ± 0.13% 

3 × 3 6.663 × 10-3 ± 0.18% 1.697 × 10-2 ± 0.13%  4.208 × 10-3 ± 0.23% 1.124 × 10-2 ± 0.14%  3.968 × 10-3 ± 0.22% 1.126 × 10-2 ± 0.14% 

5 × 5 ------ 1.587 × 10-2 ± 0.11%  4.182 × 10-3 ± 0.24% --------  3.840 × 10-3 ± 0.22% 1.052 × 10-2 ± 0.14% 

10 × 10 ------- 1.404 × 10-2 ± 0.12%  -------- 9.964 × 10-3 ± 0.14%  -------- 8.983 × 10-3 ± 0.14% 

16 × 16 ------- -------  -------- 9.218 × 10-3 ± 0.13%  -------- 7.869 × 10-3 ± 0.14% 
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Table 4.  
 

 
                                                           
13

Everywhere in the tables for 15 MV the 0.5 × 0.5 cm2 field size was actually equal to 0.45 × 0.45 cm2. 

 

 

 
Field Size 
(cm × cm) 

Primary electron fluence perturbation correction factors, 

 

Bone-to-water,  
bone

wΦp   Lung-to-water,  
lung

wΦp  

6 MV 15 MV 
 

6 MV 15 MV 

0.25 × 0.25 1.231 ± 0.007 1.403 ± 0.018  0.454 ± 0.003 0.333 ± 0.003 

0.5 × 0.513 1.181 ± 0.007 1.355 ± 0.010  0.503 ± 0.004 0.363 ± 0.003 

0.75 × 0.75 1.125 ± 0.010 1.308 ± 0.009  0.577 ± 0.006 0.406 ± 0.002 

1 × 1 1.087 ± 0.009 1.272 ± 0.007  0.629 ± 0.007 0.434 ± 0.002 

2 × 2 1.047 ± 0.006 1.188 ± 0.003  0.811 ± 0.006 0.541 ± 0.002 

3 × 3 1.047 ± 0.008 1.138 ± 0.003  0.889 ± 0.005 0.630 ± 0.002 

5 × 5 -------- 1.093 ± 0.005  1.001 ± 0.007 ------- 

10 × 10 -------- 1.096 ± 0.003  ------- 0.945 ± 0.004 

16 × 16 -------- ----------  ------- 1.011 ± 0.003 

Page 47 of 51 AUTHOR SUBMITTED MANUSCRIPT - PMB-109996.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Dose, kerma and fluence distributions in heterogeneous slab geometries under non-equilibrium conditions 

48 

 

Table 5. 

 

 

                                                           
14http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html 

 6 MV  15 MV  6 MV  15 MV 

Field Size 
(cm × cm) 

 BG
bone,w Eq.(9)

s
  BG

bone,w cav th
s

(ESTAR)14 

  BG
bone,w Eq.(9)

s   BG
bone,w cav th

s

(ESTAR) 
  BG

lung,w Eq.(10)
s   BG

lung,w cav th
s  

(ESTAR) 

  BG
lung,w Eq.(10)

s   BG
lung,w cav th

s  

(ESTAR) 

0.25 × 0.25 0.900 ± 0.011 0.897  0.917 ± 0.030 0.904  1.036 ± 0.018 1.009  0.983 ± 0.022 1.037 

0.5 × 0.5 0.901 ± 0.013 0.897  0.913 ± 0.017 0.904  1.030 ± 0.019 1.008  0.990 ± 0.020 1.036 

0.75 × 0.75 0.908 ± 0.019 0.897  0.912 ± 0.017 0.903  1.017 ± 0.025 1.007  0.987 ± 0.016 1.035 

1 × 1 0.909 ± 0.019 0.897  0.912 ± 0.013 0.903  1.021 ± 0.027 1.007  0.995 ± 0.016 1.035 

2 × 2 0.902 ± 0.014 0.897  0.905 ± 0.007 0.902  1.011 ± 0.019 1.006  0.992 ± 0.013 1.034 

3 × 3 0.906 ± 0.018 0.898  0.907 ± 0.010 0.902  0.996 ± 0.016 1.005  1.005 ± 0.011 1.033 

5 × 5 ------- -------  0.909 ± 0.011 0.902  0.998 ± 0.020 1.005  ------- ------- 

10 × 10 ------- -------  0.905 ± 0.010 0.902     1.004 ± 0.013 1.030 

16 × 16 ------- -------  ------- -------     1.006 ± 0.008 1.029 
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Table 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Bragg-Gray (or unrestricted)  stopping-power ratio (10 cm × 10 cm), 

 
Beam quality 

 

Bone-to-water  Lung-to-water 

BG
bone,ws

 (Siebers et al (2000)) 

 BG
bone,w Eq.(9)

s
 

(Present work) 

 BG
lung,ws

 (Siebers et al (2000)) 

 BG
lung,w Eq.(10)

s

(Present work) 
 

6 MV 0.896 0.902 ± 0.014  1.001 0.998 ± 0.020 

15 MV 0.900 0.905 ± 0.010  1.012 1.004 ± 0.013 
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Table 7.  

 

 
 

 

 

 

 

 

 

 

 

 

 

                                                           
15

The Rcsda was computed from the NIST database (http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html) 

by using the mean electron (+positron) energy for each spectrum. 

 

 
 
 

Field Size 
(cm × cm) 

Spectral mean energies (MeV), bone-inhomogeneity: depth = 3.975 cm

 
6 MV  15 MV 

Mean Photon 
Energy 

Mean Electron 
(+positron) 

Energy 

Rcsda
15 

(cm)  
Mean Photon 

Energy 
Mean Electron 

(+positron) 
Energy 

Rcsda 
(cm) 

0.25 × 0.25 1.861 ± 0.2% 1.047 ± 0.1% 0.285  4.141 ± 0.5% 2.506 ± 0.3% 0.768 

0.5 × 0.5 1.806 ± 0.2% 1.019 ± 0.2% 0.276  4.062 ± 0.5% 2.345 ± 0.2% 0.715 

0.75 × 0.75 1.769 ± 0.1% 1.000 ± 0.2% 0.270  4.071 ± 0.6% 2.248 ± 0.2% 0.683 

1 × 1 1.736 ± 0.1% 0.992 ± 0.3% 0.267  3.970 ± 0.2% 2.189 ± 0.1% 0.664 

2 × 2 1.638 ± 0.1% 0.975 ± 0.2% 0.261  3.831 ± 0.1% 2.089 ± 0.1% 0.631 

3 × 3 1.562 ± 0.1% 0.963 ± 0.2% 0.257  3.693 ± 0.1% 2.048 ± 0.1% 0.618 

5 × 5 ------ ------- -----  3.481 ± 0.1% 2.028 ± 0.1% 0.611 

10 × 10     3.127 ± 0.1% 1.981 ± 0.1% 0.596 
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Table 8. 

 

 
 
 
 

 

 
 

 
 
 

Field Size 
(cm × cm) 

Spectral mean energies (MeV), lung-inhomogeneity: depth = 6.975 cm

 
6 MV  15 MV 

Mean Photon 
Energy 

Mean Electron 
(+positron) 

Energy 

Rcsda 
(cm) 

 Photon Electron 
(+ positron) 

Rcsda 
(cm) 

0.25 × 0.25 1.869 ± 0.2% 1.155 ± 0.2% 2.483  4.168 ± 0.5% 2.990 ± 0.3% 7.071 

0.5 × 0.5 1.829 ± 0.2% 1.116 ± 0.3% 2.383  4.090 ± 0.6% 2.831 ± 0.3% 6.681 

0.75 × 0.75 1.819 ± 0.1% 1.089 ± 0.3% 2.314  4.121 ± 0.3% 2.699 ± 0.2% 6.357 

1 × 1 1.808 ± 0.1% 1.068 ± 0.4% 2.261  4.067 ± 0.2% 2.626 ± 0.2% 6.179 

2 × 2 1.784 ± 0.1% 1.032 ± 0.2% 2.171  4.034 ± 0.1% 2.449 ± 0.1% 5.744 

3 × 3 1.765 ± 0.1% 1.018 ± 0.3% 2.135  3.979 ± 0.1% 2.355 ± 0.1% 5.509 

5 × 5 1.755 ± 0.2% 1.004 ± 0.2% 2.100  ------- ------- ------- 

10 × 10 ------- ------- -----  3.620 ± 0.1% 2.065 ± 0.1% 4.788 

16 × 16 ------- ------- -----  3.390 ± 0.1% 2.004 ± 0.1% 4.637 
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