Henry Ford Health System Henry Ford Health System Scholarly Commons

Detroit Stroke Conference 2019

Detroit Stroke Conference

11-1-2019

Treating Low NIHSS Strokes

Ahmad R. Ramadan Henry Ford Health System, aramada1@hfhs.org

Follow this and additional works at: https://scholarlycommons.henryford.com/detstrokeconf2019

Recommended Citation

Ramadan, Ahmad R., "Treating Low NIHSS Strokes" (2019). *Detroit Stroke Conference 2019*. 4. https://scholarlycommons.henryford.com/detstrokeconf2019/4

This Poster is brought to you for free and open access by the Detroit Stroke Conference at Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Detroit Stroke Conference 2019 by an authorized administrator of Henry Ford Health System Scholarly Commons.

Treating Low NIHSS Strokes

Ahmad-Riad Ramadan, MD

Division of Vascular Neurology Division of Neurocritical Care Department of Neurology Henry Ford Hospital

Before we Begin

This presentation will focus on the treatment of nondisabling or "minor" strokes, which frequently poses a clinical dilemma

on the menu

- Definition, prevalence and prognosis of low NIHSS strokes (LNS)
- How can we predict deterioration of minor strokes?
- Intravenous thrombolysis in LNS
- Mechanical thrombectomy in LNS
 - Proximal occlusions
 - Distal occlusions

DISABLING STROKES

minor strokes

WHY are LNS WORTH TALKING ABOUT?

- Any stroke type can present with minor symptoms initially
- Minor LVO strokes can quickly become severe and disabling
 - Expansion of clot
 - Complete vessel occlusion
 - Failure of collaterals
 - Hemodynamic compromise, reduction in oxygen carrying capacity of blood
- Many times, acute intervention is foregone because the thought is that risks outweigh benefits
- We need better patient selection and prediction tools to understand which patients will deteriorate and therefore needs emergent therapy

A UNIQUE AND CHALLENGING POPULATION

Difficult identification

- What is considered a LNS? <10? <6? <4?
- NIHSS is imperfect
- Difficult researchability
 - Low prevalence and incidence
 - Slow enrollment
 - Heterogeneity in identification of LNS
 - **Difficult predictability**
 - Unpredictable course, potential for worsening/deterioration
 - Particularly true for LVO

EPIDEMIOLOGY OF LNS

- Get With The Guidelines (GWTG)–Stroke registry¹
 - o 33,995 patients
 - o 22.4% had an NIHSS score < 6
- Safe Implementation of Treatment in Stroke (SITS) registry ²
 - 24.9% of patients with NIHSS scores < 6 had a LVO
 - In one study ³, of 29 patients who had LVO and a favorable penumbra but were not deemed eligible for MT, 5 (16%) were not considered because of mild symptoms

¹ Romano, *et al. JAMA Neurol.* 2015;72:423-431 ² Mazya, *et al. Eur Stroke J.* 2018;3:29-38 ³ Hosseini, *et al. J Neuroimaging.* 2018 Nov;28(6):676-682

CHALLENGING POPULATION TO RESEARCH

- We don't have the numbers!
 - For mechanical thrombectomy
 - No available RCT on LNS with LVO
 - Of the 5 landmark MT trials, only MR CLEAN included patients with NIHSS <6</p>
 - For IV thrombolysis
 - The main RCT available, PRISMS, was underpowered and stopped enrolling prematurely
 - Wide variability in definition of low NIHSS across studies
 - NIHSS threshold anywhere between 3 and 10
 - Variable distribution of occlusion sites in LVO cases across studies

NATURAL COURSE OF LNS

- Presence of a symptomatic arterial occlusion is strongest independent predictor of early neurologic deterioration
 - In one study ¹, untreated LVO were 2x more likely to expand stroke (OR= 2.206; 95% CI, 1.219–3.994; P = .009)
 - In another study ², untreated **proximal** LVO (M1/ICA) were 7x more likely to have poor outcome (OR= 7.13; 95% CI, 1.1–45.5; *P* < .038)
 - Unfavorable prognosis of untreated LNS with LVO
 In one study ³, 22.7% of patients deteriorated within 24 hours, 33.3% during hospital stay, and 41.4% within 3 months. Mortality rate = 6.7%.
 - Stats echoed in other studies

¹ Kim, et al. PLoS One. 2013;8:e70996 ² Nedeltchev, et al. Stroke. 2007;38:2531-2535 ³ Heldner, et al. J Neurol Neurosurg Psychiatry. 2015;86:755-760

Predictors of Deterioration

- Large vessel occlusion, proximal > distal
- Collateral quality, cerebral reserve
- Hemodynamic status
- Nature of occlusion? atherosclerotic stenosis vs embolism?

Hosseini, et al. J Neuroimaging. 2018 Nov;28(6):676-682

INTRAVENOUS THROMBOLYSIS IN LNS

JAMA | Original Investigation

Effect of Alteplase vs Aspirin on Functional Outcome for Patients With Acute Ischemic Stroke and Minor Nondisabling Neurologic Deficits The PRISMS Randomized Clinical Trial

Pooja Khatri, MD, MSc; Dawn O. Kleindorfer, MD; Thomas Devlin, MD; Robert N. Sawyer Jr, MD; Matthew Starr, MD; Jennifer Mejilla, DO; Joseph Broderick, MD; Anjan Chatterjee, MD; Edward C. Jauch, MD, MS; Steven R. Levine, MD; Jose G. Romano, MD; Jeffrey L. Saver, MD; Achala Vagal, MD, MS; Barbara Purdon, PhD; Jenny Devenport, PhD; Andrey Pavlov, PhD; Sharon D. Yeatts, PhD; for the PRISMS Investigators

Khatri, et al. JAMA. 2018;320(2):156-166

Table 2. Presenting Event Characteristics

	N	No. (%)			
Characteristics		Intravenous Alteplase + Oral Placebo (n = 156)		Intravenous Placebo + Oral Aspirin (n = 157)	
Rapid improvement of symptoms prior to study treatment administration		8 (5.1)	7 (4.	5)	
Localization of presenting deficit ^a	1				
Right hemisphere		75 (48.1)	67 (42	2.7)	
Left hemisphere		59 (37.8)	62 (39	9.5)	
Unknown		19 (12.2)	21 (13	3.4)	
Brainstem/cerel	bellum	9 (5.8)	18 (11	1.5)	
Final diagnosis					
Acute cerebral i	schemia 13	36 (88.3)	131 (8	5.6)	
Neurovascular n	nimic ^b 1	18 (11.7)	22 (14	4.4)	
Ischemic cerebral etiology ^c	event n=	:138	n=135		
Small vessel dis	ease 4	48 (34.8)	52 (38	3.5)	
Undetermined e	tiology 4	40 (29.0)	46 (34	4.1)	
Cardioembolism	n 2	20 (14.5)	17 (12	2.6)	
Large artery atherosclerosis	2	20 (14.5)	10 (7.	4)	
Other determine etiology ^d	ed 1	10 (7.2)	10 (7.	4)	

Figure 2. Modified Rankin Scale Score Distributions at 90 Days by Treatment Group

Symptomatic intracranial hemorrhag 5 (3.2) 0 e within 36 h

Khatri, et al. JAMA. 2018;320(2):156-166

INTRAVENOUS THROMBOLYSIS IN LNS

Criticisms/limitations

- Trial terminated early due to slow enrollment by sponsor. Only 313 of the intended 1000 subjects were enrolled
- Unknown proportion of patients with LVO
 - Important info because IV tPA is not as efficient at recanalizing a LVO, especially the longer the thrombus is (recent *Stroke* study: cutoff 9 mm)
- Stroke mimics were included
- Conclusion from PRISMS
 - Severe limitations prevent from drawing definitive conclusions
 - Cannot reliably recommend IV tPA for non-disabling LNS at this point

BRIDGING THERAPY IN LNS

- Tenecteplase (TNK) gaining momentum as thrombolytic therapy
 - Advantages of TNK: ↑ half-life, ↑ fibrin-specificity and ↑ resistance to PAI than alteplase
 - In EXTEND-IA TNK¹, TNK achieved higher recanalization at initial angiogram and better functional outcomes at 90 days compared with alteplase
 - TNK is being investigated as bridging therapy (thrombolysis followed by thrombectomy) in LNS with LVO in **TEMPO-2**
 - NIHSS <5 presenting within 12 hours of onset of symptoms with proven occlusion
 - TEMPO 1 demonstrated safety and feasibility

меснапісац тнготвестоту іп LNS

- No RCT available to guide management
- Only retrospective observational studies and case series with wide variability in methods, inclusion criteria and treatment times
- Many studies have shown benefit or signal towards benefit for MT

Figure 2 Functional outcome at 90 days according to the score on the modified Rankin Scale (matched populations).

Haussen Dc, et al. J NeuroIntervent Surg 2018;10:325-329

Griessenauer CJ, et al. World Neurosurg. 2018;110:263-269

MT in LNS by thrombus location (90d functional outcome)

Sarraj, et al. Stroke. 2018;49:2398-2405

MT in LNS by thrombus location (90d functional outcome)

Proximal (M1, ICA) ENDOVASCULI THROMBECTOMY B MEDICAL MANGEMENT (N CDistal (M2, M3, M4, ACA) ENDOVASCULI

Sarraj, et al. Stroke. 2018;49:2398-2405

MT in LNS by thrombus location (90d functional outcome)

Table 2. Excellent Outcome Rates (mRS, 0–1) and Unadjusted and aORs, Between EVT and Medical Management Only Stratified by Thrombus Location

	Excellent Outcome (mRS, 0-1), %		Excellent Outcome (mRS, 0-1)				
Thrombus Location	EVT	Medical Management	OR (95% Cl)	P Value	aOR (95% CI)	<i>P</i> Value	
All (n=214)	55.7	54.4	1.05 (0.57-1.93)	0.87	1.30 (0.64-2.64)	0.47	
M1 (n=89)	52.8	23.8	3.58 (1.07-11.97)	0.04	3.31 (0.92–11.94)	0.07 🔶	
ICA (n=33)	53.8	41.7	1.63 (0.33-8.05)	0.54	1.95 (0.35–10.77)	0.44	
Proximal* (n=122)	53.1	30.3	2.60 (1.02-6.64)	0.05	2.68 (0.98-7.32)	0.05 🔶	
M2 (n=77)	64.3	72.7	0.68 (0.24-1.88)	0.45	0.68 (0.23-2.01)	0.48	
M3/M4/ACA (n=15)	0	53.8					
Distal† (n=92)	60	68.4	0.69 (0.27–1.75)	0.43	0.70 (0.26–1.87)	0.47	

Sarraj, et al. Stroke. 2018;49:2398-2405

Proposed ALGORITHM

таке ноme messages (1)

- Strokes presenting initially with minor deficits may worsen and lead to long-term disability
- Be aware of factors that can lead to neurological deterioration of a minor stroke, e.g. LVO (proximal), poor collateral circulation
- Heterogeneity/variability in definition of minor strokes and slow enrollment have made it difficult to research this subpopulation
- We are in desperate need of large RCTs to guide adequate treatment in this group

TAKE HOME MESSAGES (2)

- IV thrombolysis alone may not be the best therapy for minor stroke
- MT+IV tPA may have a role for minor strokes with LVO
- MT may be beneficial in minor strokes with proximal but not distal LVO
- Use of perfusion imaging and collateral scoring may help select patients who will benefit from acute therapies

Thank you

