
Leveraging 2D Data to Learn Textured 3D Mesh Generation

Paul Henderson
IST Austria

paul@pmh47.net

Vagia Tsiminaki
IBM Research Zürich
tsi@zurich.ibm.com

Christoph H. Lampert
IST Austria

chl@ist.ac.at

Abstract

Numerous methods have been proposed for probabilistic
generative modelling of 3D objects. However, none of these
is able to produce textured objects, which renders them of
limited use for practical tasks. In this work, we present the
first generative model of textured 3D meshes. Training such
a model would traditionally require a large dataset of tex-
tured meshes, but unfortunately, existing datasets of meshes
lack detailed textures. We instead propose a new training
methodology that allows learning from collections of 2D
images without any 3D information. To do so, we train our
model to explain a distribution of images by modelling each
image as a 3D foreground object placed in front of a 2D
background. Thus, it learns to generate meshes that when
rendered, produce images similar to those in its training set.

A well-known problem when generating meshes with
deep networks is the emergence of self-intersections, which
are problematic for many use-cases. As a second contribu-
tion we therefore introduce a new generation process for 3D
meshes that guarantees no self-intersections arise, based on
the physical intuition that faces should push one another out
of the way as they move.

We conduct extensive experiments on our approach, re-
porting quantitative and qualitative results on both syn-
thetic data and natural images. These show our method
successfully learns to generate plausible and diverse tex-
tured 3D samples for five challenging object classes.

1. Introduction
Learning the structure of a 3D object class is a funda-

mental task in computer vision. It is typically cast as learn-
ing a probabilistic generative model, from which instances
of the class may be sampled. The last five years have seen
dramatic progress on this task [53, 52, 36, 32, 27, 41, 8,
45, 54, 9, 2, 15, 28], enabled by new, large-scale train-
ing sets [6, 53]. However, existing methods generate only
shapes, without any associated textures to capture the sur-
face appearance. This is a major shortcoming since the sur-
face appearance of an object strongly influences how we

Figure 1. We propose a method to learn a generative model of
textured 3D shapes (right), from collections of images (left)

perceive and interact with it—consider for example the dif-
ference between a red and a green tomato, a police car and a
taxi, a book and a brick, or a zebra and a horse. As such, tex-
tures are vital for many practical uses of generated shapes,
such as visual effects and games.

We hypothesise that the lack of research on methods that
learn to generate textured shapes is in part due to a lack of
textured 3D data for training them. Of the two large-scale
datasets of 3D shapes, ShapeNet [6] lacks detailed textures
for most instances, while ModelNet [53] lacks color infor-
mation entirely.

We propose an alternative paradigm: rather than learn-
ing such a model from 3D data, we learn it from a large
collection of 2D images (Figure 1). This lets us leverage
existing weakly-annotated image datasets, at the price of
solving a very challenging learning problem. It is challeng-
ing for three reasons: (i) infinitely many 3D shapes may
project to give the same 2D image; (ii) we cannot rely on
having multiple views of each object instance; (iii) objects
appear in front of cluttered backgrounds, and segmentation
masks may not be available. We must therefore learn to iso-
late foreground objects from background clutter, at the same
time as learning their space of valid shapes and textures.

Our first contribution is a new generative model over
textured 3D shapes (Section 3). Our second and most sig-
nificant contribution is a method to train this model to
match a distribution of images (Section 5), overcoming
the difficulties mentioned. Specifically, our model learns
to reconstruct its training images in terms of the physical
process by which they were formed. This is achieved by
augmenting the generative model with an image-formation
model—we place the generated 3D object in front of a cam-

1



era, and render it over some background to give an image.
An encoder network then predicts the latent parameters that
give rise to any given image. Thus, the model must explain
the distribution of training images in terms of a distribution
of 3D foreground objects over 2D backgrounds (Figure 2).
By modelling the variability among object instances using
a limited-capacity latent space, we ensure that our method
generates complete, coherent objects, rather than unrealistic
shapes that could explain each training image in isolation.
Informally, this works because it takes more bits to encode
a distribution over many partial, viewpoint-dependent ob-
ject appearances than over the variability of the true global
appearance model.

We choose meshes as our representation of textured
shapes, similar to some recent works on single-image 3D
reconstruction [22, 30, 24, 49]. Meshes are the dominant
shape representation in computer graphics, and have several
benefits over alternatives such as voxels and point-clouds:
(i) their computational cost scales (at worst) with surface
area not volume; (ii) they can represent arbitrarily-oriented
surfaces; (iii) they can directly represent solid surfaces with
a well-defined normal and interior/exterior.

Training a model to output meshes that correctly re-
construct its training images suffers one potential failure
mode—correct-looking images may be obtained by render-
ing even highly-irregular, self-intersecting meshes, due to
the ambiguity of the projection operation. This is problem-
atic as many downstream use-cases, such as physical simu-
lations, geometry-processing algorithms, and 3D printing,
require meshes that are non-intersecting—that is, no tri-
angular faces intersect with any others. For smooth, reg-
ular object classes such as cars, non-intersection can be en-
couraged by careful regularization of the local surface ge-
ometry [24, 22]. However, for angular, non-convex object
classes with elongated parts, such as chairs and airplanes,
a sufficiently strong regularizer results in overly-smoothed
surfaces lacking in detail.

As a further contribution, we therefore propose a
novel mesh parametrization, that necessarily yields non-
intersecting surfaces even without regularization (Sec-
tion 4). It nonetheless has great representational flexibility,
and can faithfully capture complex shapes such as chairs
and airplanes. Our parametrization has a simple physical
intuition—as faces move, they push others out of the way
rather than intersecting them; we show how to formalise this
idea and efficiently incorporate it in gradient-based training.

We conduct extensive experiments illustrating the per-
formance of our method (Section 6). We first validate
its performance on synthetic data from four diverse object
classes, then show that it also performs well on two chal-
lenging classes of natural images. In all cases, we show
both quantitatively and qualitatively that our method suc-
cessfully learns to generate samples that are diverse and

realistic, even when ground-truth segmentation masks are
not available. Moreover, we show that our novel mesh
parametrization eliminates problematic self-intersections,
yet allows representing angular and concave classes such
as chairs, airplanes, and sofas.

2. Related work

The vast majority of methods for automatically gen-
erating 3D shapes are based on variational autoen-
coders (VAEs) [25] or generative adversarial networks
(GANs) [11]. However, almost all such models (e.g.
[53, 54, 45, 59, 3, 9, 2]) must learn from large datasets
of 3D shapes [6, 53]; this stands in contrast to our own,
which instead learns from collections of images. We now
discuss existing works that do learn (untextured) 3D gener-
ative models from 2D datasets, and also methods for single-
image reconstruction that are trained with only 2D data.

Generative 3D models learnt from 2D data. The first
work to learn a generative model of 3D shapes from 2D
data was [8]. The authors train a GAN that produces vox-
els, with a discriminator that ensures these project to sil-
houettes matching a distribution of ground-truth segmen-
tation masks. MP-GAN [28] extends this to use multiple
discriminators, corresponding to different viewpoints, si-
multaneously training a classifier to predict the viewpoint.
Reliance on silhouettes is a severe limitation when ground-
truth masks are not available; our method avoids it by recon-
structing the image pixels themselves. The closest work in
spirit to ours is [15], which learns single-image reconstruc-
tion and mesh generation from untextured renderings under
known lighting. Unlike us, they do not to learn to generate
or reconstruct textures, so their method still cannot work on
natural images. Moreover, their method has no mechanism
to ensure that it produces meshes without self-intersections.
Finally, HoloGAN [33] is a GAN over images, that incor-
porates a 3D latent feature space. This allows manipulation
of 3D pose parameters somewhat-independently of object
identity and background. However, it cannot output an ex-
plicit 3D shape representation such as a voxel grid or mesh.

Single-image reconstruction learnt from silhouettes.
Several recent works learn single-image 3D reconstruction
from 2D silhouettes [36, 56, 51, 47, 24, 46, 22, 19, 57, 14,
15, 30, 23, 16]. These are trained discriminatively to map
images to 3D representations (voxels, meshes, or point-
clouds); they use losses that ensure the reprojected, recon-
structed silhouette matches one or more masks provided as
supervision. Four of these works also consider colors: [30]
has a post-processing stage that predicts the texture for a
reconstructed mesh; [47] shows an example of reconstruct-
ing colored voxels, assuming training with multiple views
per instance; [16] does the same even when only a single
view per instance is available; [22] learns single-image tex-

2



training
image

colored
3D mesh

differentiable
renderer

feature
extractor

background image

generated
image

decshape

deccolor

reconstruction loss

group pixels
by face

x

zbg

θ

zshape

zcolor

vertex
positions

mesh topology
face

colors

pose

Figure 2. We propose a probabilistic generative model of textured 3D meshes (blue; see Section 3). We show how to train it using only 2D
data (Section 5), by adding additional components (pink) that model the process of forming an image from a 3D foreground mesh rendered
over 2D background clutter. We train the model to maximise the likelihood of a dataset of images, by adding an encoder model (green)
that predicts the posterior distribution on latent variables for a given image. White circles represent random variables; colored boxes are
densely-connected networks; trapezoids are convolutional networks

tured mesh reconstruction, using mask and keypoint anno-
tations. Unlike ours, none of these methods allow sampling
new meshes a priori—they do not learn an explicit prior.

Texture generation and reconstruction. Other recent
works learn to generate or reconstruct textures given full su-
pervision, which limits them to classes for which extensive
textured 3D data is available. [35] defines textures implic-
itly, as a function of 3D position; they show that this rep-
resentation allows sampling textures given a 3D shape, or
reconstructing texture from a single image and shape. [59]
generates images of textured 3D shapes, by first sampling
textureless shapes and projecting them to a silhouette and
depth-map; the texture is then generated in image space.
[43] performs textured single-image reconstruction, using
colored voxels as the output representation. [29, 38] learn
priors on textures to improve multi-image reconstruction.

Non-intersecting mesh parametrization. One of our con-
tributions is a method to parametrize meshes such that the
resulting surface is highly flexible, yet guaranteed not to in-
tersect itself. Methods for single-image 3D reconstruction
use local smoothness regularizers such as Laplacian regu-
larization [42], TV-L1 regularization [58], and regulariz-
ing the angles between adjacent faces [24, 30]. However,
these only prevent local surface irregularity, and do not pe-
nalise two smooth surfaces passing through each other. The
related problem of detecting, characterising and removing
mesh self-intersections has received some attention in the
graphics literature [55, 5, 20]. Unfortunately, none of these
methods allow us to construct meshes that do not intersect
a priori, which is necessary when we predict their shape
directly from a neural network.

3. Modelling textured meshes

We begin by defining our probabilistic generative model
for textured 3D meshes (Figure 2, blue background). Each
mesh consists of NV vertices, and NF triangular faces to
which we assign colour values c. We assume fixed topology
for all meshes, i.e.NV ,NF , and the mapping between faces
and vertices, do not vary between instances. To generate a
mesh, the model must therefore sample the positions v of
all vertices, and the colors c of all faces.

We draw low-dimensional latent code variables from
standard Gaussian distributions, then pass these through de-
coder networks producing the required attributes:

zshape ∼ Normal(0, 1) (1)
zcolor ∼ Normal(0, 1) (2)

v = decshape (zshape) (3)
c = deccolor (zcolor, zshape) (4)

Here, zshape captures the object’s 3D shape; the shape de-
coder decshape can be as simple as a densely-connected
ELU network with 3NV outputs v, corresponding to the
3D position of each vertex (we discuss a more sophisticated
option later). Similarly, zcolor captures texture; deccolor
is a densely-connected ELU network with 3NF outputs
c, corresponding to the color of each face represented as
red/green/blue values.

Note that separating zshape from zcolor lets us recon-
struct the shape of an instance before its color is known,
which will be important for our training process (Section 5).
However, by passing the shape code into deccolor, we still
allow dependencies between color and shape, e.g. to capture
the fact that a bird with the shape of an eagle should never
have the colors of a robin. Detailed network architectures

3



û

Pû

f1

d1
min

d2
min

d3
min

d4
min

Q1
Q2

f2

d1

d2

d3

d4

q1
1

q1
2

q2
1

q2
2 ε

solve LP for d

!

Figure 3. A 2D example of pushing faces (left is before pushing,
right is after); û lies in the plane of the page, with Pû perpendic-
ular. Black lines are the initial faces f1, f2; blue lines are after
shifting by dmin (left) and d (right). f1, f2 do not initially inter-
sect, but overlap in Pû; the proposed distances dmin of motion
along û would create an intersection in the orange circle. dmin

is mapped to d such that the intersection is prevented, by solving
an LP; note that dv > dmin

v for v ∈ {3, 4}, but dv = dmin
v for

v ∈ {1, 2}.

are given in Appendix B.
Calculating vertex locations with a neural network typ-

ically results in highly irregular meshes with many self-
intersections (e.g. Figure 5). This is undesirable for many
use-cases, and in general, difficult to avoid with regulariza-
tion alone. The next section describes a more sophisticated
structure for decshape, that produces vertex locations which
are guaranteed not to create intersecting surfaces.

4. Non-intersecting mesh parametrization
Our goal is a decoder network that produces vertex loca-

tions such that no surface intersections can occur, but highly
concave, angular surfaces (e.g. chairs) can still be repre-
sented.

Physical motivation. When playing with a deflated bal-
loon, we can deform it quite drastically without introduc-
ing any intersections, simply because when attempting to
push one surface through another, the second will instead
be pushed out of the way. It is not computationally feasible
to simulate the physical dynamics of such a system during
training. Nonetheless, we can make use of this insight, by
combining a careful choice of parametrization with a sim-
ple, efficient model of surface collisions.

Parametrization. Instead of producing the final set of ver-
tex positions in a single shot, we perform a sequence of
Ns simpler deformation steps, starting from an initial, non-
learnt mesh with spherical topology (and thus no intersec-
tions). In each step, we will move all vertices in the same
direction û, but by differing (non-negative) distances d. A
densely-connected network outputs û, and lower bounds
dmin on the distances, but these are modified to give d such
that each face pushes others rather than intersecting them.

Pushing faces. We map the initial distances dmin to pushed
ones d that minimise

∑
v dv , where v indexes vertices. This

minimisation is subject to two sets of constraints: (i) dv ≥
dmin
v ∀v, i.e. each vertex moves at least as far as specified by

the decoder network, and (ii) no intersections should arise.

To impose (ii), we first find all pairs of faces that could
intersect, depending on the distances their vertices move.
As all vertices move in the same direction, this problem can
be considered in 2D: we project all vertices and faces into
a plane Pû perpendicular to the direction of motion û, and
find all pairs of faces for which the corresponding triangles
in Pû intersect with non-zero area. For each such pair of
faces (f1, f2), their intersection is a polygonal region of
Pû; we can re-project this region back onto each face in 3D
space, giving planar polygons (Q1, Q2) respectively (Fig-
ure 3).

As there are initially no intersections, we can order Q1

and Q2 according to their projection onto û: if qj
i is the

position of the jth corner of Qi, then either qj
1 · û < qj

2 ·
û ∀j, or qj

1 · û > qj
2 · û ∀j. We assume without loss of

generality that the former holds; to avoid intersections, this
must remain true even after moving each vertex by dvû.

Let βj
i be the barycentric coordinates of qj

i w.r.t. the tri-
angular face fi in which it lies. The distance by which qj

i

moves is then given by βj
i · d |fi , where d |fi contains the

elements of d corresponding to the vertices of face fi. The
constraint that f1 and f2 do not intersect, i.e. that none of
the points qj

i change ordering, then becomes

qj
1 · û+ βj

1 · d |f1 + ε ≤ qj
2 · û+ βj

2 · d |f2 ∀j (5)

where ε is a small buffer distance.

All the constraints we have defined are linear in d. Thus,
minimising our objective

∑
v dv under them defines a linear

programming problem (LP), which can be solved efficiently
using the simplex algorithm [34]. In practice, we use the
efficient off-the-shelf solver of [31].

Propagating derivatives. We have now defined d as the so-
lution to an optimisation problem that has dmin and the ver-
tex locations as inputs. In order to incorporate this in our de-
coder network, we need to propagate gradients back through
the optimisation process from d to these inputs. Note that
the solution to an LP always lies at a corner of the polytope
defined by its constraints. At this corner, equality holds for
some subset of active constraints. These constraints define a
system of linear equations, whose solution equals d. Thus,
back-propagating gradients from d is exactly equivalent to
back-propagating them through the process of solving this
linear system, e.g. by Cholesky decomposition, allowing di-
rect implementation in TensorFlow [1].

4



5. Training from images

Our goal is to train the generative model of Section 3
using only images, without any 3D data We assume access
to a training set of images, each containing exactly one in-
stance of the target object class, and consider two training
settings:

• (MASK) We have access to (i) the approximate cam-
era calibration; (ii) a segmentation mask for each tar-
get object instance; and (iii) the background image, i.e.
a view of the same environment but without the fore-
ground object present. For our experiments, we esti-
mate these automatically from weakly-annotated data,
e.g. by running a segmentation algorithm on unan-
notated data and inpainting the background, and es-
timating the camera calibration from keypoints. We
found the model is robust to even quite large errors
in the camera calibration. This setting is similar to
some weakly-supervised methods for single-image 3D
reconstruction [22, 23] and untextured 3D genera-
tion [8, 15].

• (NO-MASK) We have only the (approximate) cam-
era calibration available. This second setting is much
more challenging, and goes beyond all prior works on
weakly-supervised reconstruction and generation.

To allow training in these settings, we augment the gen-
erative model with additional components to model the en-
tire image formation process (Figure 2, pink background).
Specifically, after sampling the mesh itself, we position it
in 3D space in front of a perspective camera, and render
it over a background image. The final, observed image x
is an isotropic Gaussian random variable with mean equal
to the rendered pixels, and fixed variance. We then intro-
duce an encoder (or inference) network, that predicts the
latent variables corresponding to a given image. This lets
us train our model to match a distribution of images (rather
than meshes), by learning to reconstruct each in terms of a
foreground mesh in front of background clutter. We now
describe each aspect of this training methodology in detail.

Background image. In setting (MASK), the background
is provided as input to the model along with the train-
ing image. In setting (NO-MASK), we explicitly model
the background, i.e. our generative process samples both
the 3D foreground object, and the 2D pixels that are ‘be-
hind’ it. The background is generated by sampling a low-
dimensional latent code vector zbg, and passing it through
a convolutional decoder network. Whereas the decoder in
a VAE or GAN is typically designed to be as powerful as
possible, we need to avoid the background model being too
powerful, and thus able to model the foreground object as
well. We therefore set the dimensionality of zbg to be just

16, use only three transpose-convolutional layers, and up-
sample the resulting image 4× or 6× to the desired resolu-
tion. This ensures the model cannot capture high-frequency
details such as the edge of the foreground object.
Rendering. To render the generated mesh over the back-
ground image, we first place it in 3D space relative to a
camera at the origin, according to a pose θ. This captures
the fact that the object may not be centered nor at known,
constant depth in the original image, and we do not wish the
shape model to have to account for this variability. We then
project and rasterise the mesh, using the publicly-available
differentiable mesh renderer DIRT [13, 15]. We use direct
illumination and Lambertian reflectance [26], and do not at-
tempt to disentangle albedo from shading.
Variational training. Let z denote all the latent variables
(zshape, zcolor, zbg, θ). Our full model defines a joint dis-
tribution P (x, z) = P (z)P (x | z) over these and the re-
sulting image x. We would ideally train it to maximise the
likelihood of a training dataset of images; however, this is
intractable due to the latent variables. We therefore adopt a
variational approach [21], adding an encoder network that
predicts parameters of a variational posterior distribution
Q (z |x). The following is then a lower bound (the ELBO)
on the data log-likelihood [37, 25]:

L = E
Q(z|x)

logP (x|z)−DKL [Q(z|x) ||P (z)] ≤ logP (x).

(6)
In practice, rather than maximising L directly, we make two
modifications. First, following [18], we multiply the KL-
divergence term by a constant factor. Second, we replace
the Gaussian log-likelihood logP (x|z) by the multi-scale
structural similarity (MS-SSIM) metric [50], which (i) al-
lows gradients to propagate across longer distances in the
image, and (ii) tends to preserve fine details better. The
generative model and encoder network are trained jointly to
maximise this objective—thus they learn to reconstruct in-
put images, while ensuring the posterior distribution on the
latents is close to the prior.
Encoder. The encoder network (Figure 2, green back-
ground) takes an image as input, and predicts the mean
and variance of Gaussian posterior distributions on zshape,
zcolor, zbg, and θ. We use a small CNN (similar to
[51, 15]) to extract features from the image; the mean and
log-variance of zshape, zbg, and θ are then computed by
densely-connected layers. Detailed network architectures
are given in Appendix B.

We experimented with the same approach for zcolor.
However, this gives rise to a challenging learning task: the
network must map an image to the colors of all faces, with-
out explicitly knowing which faces would be visible in the
reconstruction, nor where in the image they project to. We
achieved better results using a novel architecture that ex-
plicitly incorporates this information. We group pixels of

5



Figure 4. Textured meshes sampled from our model, trained on
renderings from ShapeNet. Each row of five images shows the
same sampled mesh from different viewpoints. Cars and sofas
are trained in setting (NO-MASK) with (DENSE) parametrization;
chairs and airplanes are trained in setting (MASK) with (PUSHING)
parametrization, and thus are free of self-intersections in spite of
the finely detailed geometry. Note the samples are diverse and
realistic, both in terms of the mesh geometry and textures.

the input image (Figure 2, ‘group pixels by face’) accord-
ing to which (if any) face of the reconstructed mesh defined
by zshape they would lie in (this is possible as the shape
does not depend on zcolor, hence can be reconstructed first;
see Section 3). For each group (including one for back-
ground pixels), we calculate the mean RGB values of the
pixels that were assigned to it. This defines a matrix of
size (NF + 1) × 3, which we flatten and encode with a
small densely-connected network. The resulting code then
captures the input pixel colors in a way that accounts for

where they lie with respect to the surface of the recon-
structed mesh. Thus, the encoder network does not have
to learn this invariance itself from data. Finally, the mean
and variance for zcolor are estimated by another dense layer
taking this code and the image features as input.

Regularization. In setting (MASK), we additionally
maximise the intersection-over-union (IOU) between the
ground-truth mask and the reconstructed silhouette. This
ensures the foreground mesh does not overlap into back-
ground regions of the image. For easier optimisation, we
take the mean of the IOU at multiple scales, using smoothed
and downsampled masks/silhouettes. We also found it use-
ful to add local mesh smoothness regularizers, similar to
[22, 24, 30].

6. Experiments

We conduct experiments on five diverse object classes:
birds, cars, airplanes, chairs, and sofas, which have also
been the focus of related works on weakly-supervised re-
construction and generation [22, 28, 15, 46]. In Section 6.1,
we validate our method in a controlled setting on render-
ings of ShapeNet meshes [6], analysing its performance un-
der different settings and parametrizations. Then, in Sec-
tion 6.2, we show that it successfully learns models from
two challenging datasets of natural images. Finally, in Sec-
tion 6.3, we show that the trained model can also be used
for single-image 3D reconstruction on natural images.

All hyperparameters (e.g. regularizer strengths and mesh
resolution) were selected manually for perceived quality of
generation; we did not directly optimise them w.r.t. our
quantitative metrics. Our code, hyperparameters and pre-
processed datasets will be made available online very soon.

Metrics. We are not aware of any existing evaluation
metric for generative models of textured 3D shapes. We
therefore propose a new evaluation protocol using estab-
lished 2D metrics: inception score (IS) [39], Fréchet in-
ception distance (FID) [17] and kernel inception distance
(KID) [4]. All these metrics pass a large set of generated im-
ages through the CNN of [44], recording output logits and
feature activations. IS measures how similar the logits are to
a uniform distribution, in terms of KL divergence (larger is
better). FID and KID pass a test set of ground-truth images
through the same CNN, then measure how similar their fea-
ture activations are to those of the generated images (smaller
is better). To apply these metrics in our setting, we ren-
der 25600 meshes sampled from our model, each over a
ground-truth background, and report the IS/FID/KID values
for these images 1.

1use of ground-truth backgrounds avoids confounding the quality of
mesh generation with that of background generation in setting (NO-MASK)

6



(MASK) (NO-MASK)

IS FID KID IS FID KID

airplane 4.0 73.5 0.063 3.2 56.5 0.044
car 4.1 154.0 0.123 3.5 165.4 0.136
chair 5.8 111.1 0.088 5.2 82.6 0.061
sofa 4.3 58.3 0.037 4.3 63.8 0.041

Table 1. Quantitative measures of generation for four ShapeNet
classes, in settings (MASK) and (NO-MASK) (training with and
without ground-truth masks respectively) For IS, larger is better;
for FID/KID, smaller is better.

6.1. Validation on ShapeNet

For our experiments on synthetic data, we use four
ShapeNet [6] classes: car, chair, airplane, and sofa. These
have very different characteristics—cars have a smooth,
largely-convex shape and areas of high-frequency texture;
chairs and airplanes have much more angular shapes with
multiple elongated parts, but are often of more uniform tex-
ture; sofas are typically concave with large, flat surfaces.
We use 80% of the instances in each class for training, and
20% for evaluation.

Our model is trained using renderings rather than the
meshes themselves. For car and sofa, we use the render-
ings of [7]; for chair and airplane, we obtained better results
using those of [12], which have greater pose diversity. Al-
though these datasets contain several images per mesh, we
shuffle the images randomly, so there is only a very small
chance of the same object appearing twice in one minibatch.
As a form of data augmentation, we alpha-composite the
renderings over random solid color backgrounds.

Generation with and without mask annotations. We train
separate models on each of the four classes, in each of the
two supervision settings (MASK) and (NO-MASK). In Fig-
ure 4, we see that our method has learnt to generate plau-
sible samples for all four classes. The samples are reason-
ably diverse in terms of both texture and shape—note the
different colors of car, different styles of chair, etc. More
examples are shown in Appendix A. Even in setting (NO-
MASK), the model has learnt to sample meshes that repre-
sent a complete instance of the foreground object, without
including any sections of background—in spite of training
without segmentation annotations. This is particularly im-
pressive for chairs, which have narrow legs that could easily
be ignored. Quantitatively, Table 1 shows that (NO-MASK)
does give slightly poorer results than (MASK) in terms of IS,
which is expected as it is a significantly more challenging
setting. For FID and KID, performance is similar in the two
settings—car and sofa are better with (MASK), and airplane
and chair with (NO-MASK).

Non-intersecting mesh parametrization We now evalu-
ate our non-intersecting mesh parametrization (PUSHING),
comparing it to a simple dense decoder (DENSE) that di-

(DENSE) (PUSHING)

int. faces int. faces IS FID KID

airplane 56.1 % 0 % 3.7 76.3 0.067
chair 58.8 % 0 % 5.4 145.8 0.127
sofa 77.0 % 0 % 4.0 82.6 0.058

Table 2. Mean fraction of intersecting faces per generated mesh
(int. faces) in setting (MASK) using (DENSE) and (PUSHING)
parametrizations. We also give the generation metrics for
(PUSHING); see Table 1 for the same using (DENSE).

Figure 5. Examples of chair mesh structure and renderings using
densely-connected (DENSE) (left) and non-intersecting (PUSHING)
(right) mesh parametrizations. Faces that intersect others are high-
lighted in red. Note that the right-hand mesh is free of intersecting
faces, in contrast to the left. Consistency of the renderings with an
input image is not sufficient to enforce this, as both renders appear
reasonable. In both cases, we used the same strengths for the local
smoothness regularizers, so these do not influence the result.

rectly outputs vertex locations. Qualitative examples with
(PUSHING) are given in Figure 4 for classes chair and air-
plane; we see that this parametrization is powerful enough
to produce realistic shapes, in spite of it having consider-
ably fewer degrees of freedom than (DENSE). Figure 5
shows details of two chairs for illustration, one sampled
with (DENSE) and the other with (PUSHING). While both
render to give reasonable images, the sample with (DENSE)
has numerous intersecting faces visible, while that with
(PUSHING) does not.

For quantitative comparison, we use the classes chair,
airplane, and sofa, for which local surface regularizers
struggle to prevent self-intersections. As well as the three
generation metrics, we also measure the mean fraction of
faces that intersect another face. We see (Table 2) that
(DENSE) typically produces shapes with substantial num-
bers of self-intersections, while (PUSHING) avoids these.
Thus, meshes from (PUSHING) may be used in downstream
tasks which require a non-intersecting surface, in contrast to
those from (DENSE). Conversely, all three generation met-
rics indicate slightly worse performance with (PUSHING).
We believe this is because although (PUSHING) is highly ex-
pressive, the decoder network is less free to make arbitrary
movements to individual vertices in response to gradients,
as vertices are tied together through the shared directions û.
The space of shapes is therefore more difficult to traverse by
gradient descent. Thus, there is a trade-off to be made de-
pending on the desired application—when non-intersection
is important, (PUSHING) should be used, but when it is not

7



(MASK) (NO-MASK)

Figure 6. Cars and birds generated by our model. Each group of 11 images shows different views of one textured 3D mesh sampled from
our model. The left-hand image shows the sampled mesh rendered with a background and pose drawn randomly from the test dataset. The
lower five images in each group are normal maps, which reveal the 3D structure more clearly. Samples in the the left column use setting
(MASK); those in the right column use (NO-MASK).

a requirement, (DENSE) may be more appropriate.

6.2. Generation results on natural images

For our experiments on natural images, we use two
classes: bird and car. The images of birds are taken from
the CUB-200-2011 dataset [48]; we use the preprocessed
version from [22], including their approximate camera cal-
ibrations, and discard the class labels. Each image contains

one bird, which we crop out using the provided segmen-
tation masks, applying a random offset for data augmenta-
tion. For setting (MASK), we synthesise a background by
inpainting the region corresponding to the bird, replacing
each pixel inside the mask with the nearest non-foreground
pixel. The images of cars are taken from the BrnoComp-
Speed dataset [40], and we use their approximate camera
calibration. We segment and crop out individual cars us-

8



(MASK) (NO-MASK)

Figure 7. Textured 3D reconstructions of cars and birds. The left-hand image in each group is the input to our model; the next is our
reconstruction, rendered over the ground-truth background; the remaining five columns are different views of the reconstructed mesh, with
normal-maps below. Samples in the the left column use setting (MASK); those in the right column use (NO-MASK).

ing [10], and use the median frame as the background. Al-
though the original data is video, we sample frames sparsely
and shuffle them, treating them as independent images.

We see (Figure 6) that our approach yields realistic 3D
meshes for both classes (more samples are shown in Ap-
pendix A). In setting (MASK), the sampled cars have diverse
shapes and colors; in the more challenging setting (NO-
MASK), the shapes are a little less diverse, and the colours
a little more blurry, but all samples are still clearly identifi-
able as cars. For birds, the results are even stronger; there
is no perceptible decrease in performance when we do not
have mask annotations. This is perhaps because the highly
varied backgrounds of the bird images are difficult for the

foreground model to (incorrectly) incorporate.

A similar pattern is apparent in the quantitative results
(Table 3), where we see that (NO-MASK) birds in fact per-
form significantly better than any other combination. Mean-
while, for car, we see that (NO-MASK) performs slightly
worse than (MASK), in accordance with the qualitative re-
sults. We also give results for a conventional (2D) deep
convolutional VAE, with similar latent capacity, encoder ar-
chitecture, and training time as our models, to give a refer-
ence for the ranges of the different metrics. Our 3D models
give significantly better results than this baseline for birds,
and somewhat worse for cars; this possibly reflects the high
degree of background complexity in CUB.

9



(MASK) (NO-MASK)

IS FID KID IS FID KID

Our model
car 2.8 191.4 0.211 3.0 182.1 0.197
bird 4.5 104.3 0.090 3.8 75.4 0.060

2D VAE
car - - - 3.0 157.4 15.4
bird - - - 3.3 213.8 21.0

Table 3. Quantitative measures of generation, training on natural
images of cars and birds, in settings (MASK) and (NO-MASK). For
IS, larger is better; for FID/KID, smaller is better. For reference,
we also include results from a 2D deep convolutional VAE.

6.3. Single-image 3D reconstruction on natural im-
ages

While trained for generation, our model learns single-
image 3D reconstruction ‘for free’—we can obtain a tex-
tured mesh reconstruction by running the encoder and de-
coder networks (green and blue parts of Figure 2) on an im-
age. Specifically, the encoder network yields a variational
posterior distribution on the latent variables; we take the
mode of this distribution, and pass it through the decoders
decshape and deccolor to produce a textured 3D mesh. Thus,
we perform single-image 3D reconstruction, in spite of our
model never having received any 3D supervision, nor even
segmentation masks in (NO-MASK) setting. Note also that
we did not tune our models for reconstruction quality.

Figure 7 shows examples for each class in both train-
ing settings, on held-out validation images; more examples
are given in Appendix A. For the bird images, our setting
(MASK) matches that of [22], allowing qualitative compari-
son with their approach 2.

We see that in almost all cases, the network faithfully
reconstructs the visible part of the object, including details
of texture and shape. Notably, occluded regions are also re-
constructed plausibly, even though they do not influence the
photometric reconstruction loss. This is because the model
must learn to produce textured shapes that reproject well for
all training images, while representing their variability in a
low-dimensional latent space. Moreover, it must do so sub-
ject to the KL term in the loss (6) that explicitly limits the
latent capacity. This discourages solutions where the pre-
dicted shapes explain each image in isolation, but occluded
parts have appearances lying outside the space of variability
that is observed in images where that part is visible.

2the background we use to illustrate the reconstruction for birds is gen-
erated from the original image, with all points inside the (ground-truth)
bird mask replaced by the nearest non-masked pixel

7. Conclusion
We have presented a new generative model of textured

3D meshes, and shown how to train this from images alone,
by augmenting it to capture the entire image formation pro-
cess. We train the model to explain its training images, by
reconstructing each in terms of a foreground mesh rendered
over a background. We have shown that this approach al-
lows us to generate diverse and realistic textured meshes of
five object classes. Importantly, our method can use natural
images, not just renderings, as training data. Moreover, it
does not rely on multiple views of the same instance, nor on
ground-truth segmentation masks. The resulting meshes are
textured, and so may be used immediately in downstream
applications such as visual effects and games.

We have also presented a new mesh parametrization, that
avoids intersections a priori. This is useful whenever we
need to generate a mesh from a neural decoder with the
guarantee that it does not contain any self-intersections,
necessary for example if it is to be used for physical sim-
ulation or 3D printing. However, this comes at the expense
of producing samples that score slightly lower than a naı̈ve
parametrization in terms of IS/FID/KID metrics.

References
[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian
Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-
nanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous sys-
tems, 2015. 4

[2] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and
Leonidas Guibas. Learning representations and generative
models for 3D point clouds. In ICML, 2018. 1, 2

[3] Elena Balashova, Vivek Singh, Jiangping Wang, Brian Teix-
eira, Terrence Chen, and Thomas Funkhouser. Structure-
aware shape synthesis. In 3DV, 2018. 2

[4] Mikolaj Bińkowski, Dougal J. Sutherland, Michael N. Arbel,
and Arthur Gretton. Demystifying MMD GANs. In ICLR,
2018. 6

[5] Marcel Campen and Leif Kobbelt. Exact and robust (self-
)intersections for polygonal meshes. In Eurographics, 2010.
3

[6] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model
Repository. arXiv preprint, arXiv:1512:03012, 2015. 1, 2, 6,
7

10



[7] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin
Chen, and Silvio Savarese. 3D-R2N2: A unified approach
for single and multi-view 3D object reconstruction. In
ECCV, 2016. 7

[8] Matheus Gadelha, Subhransu Maji, and Rui Wang. 3D shape
induction from 2D views of multiple objects. In 3DV, 2017.
1, 2, 5

[9] Matheus Gadelha, Rui Wang, and Subhransu Maji. Mul-
tiresolution tree networks for 3D point cloud processing. In
ECCV, 2018. 1, 2

[10] Ross Girshick, Ilija Radosavovic, Georgia Gkioxari, Piotr
Dollár, and Kaiming He. Detectron. https://github.
com/facebookresearch/detectron, 2018. 9

[11] I. Goodfellow, J. Pouget-Abadle, M. Mirza, B. Xu, D.
Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gener-
ative adversarial nets. In NIPS, 2014. 2

[12] Christian Häne, Shubham Tulsiani, and Jitendra Malik. Hi-
erarchical surface prediction for 3D object reconstruction. In
3DV, 2017. 7

[13] Paul Henderson. DIRT: a fast differentiable renderer for Ten-
sorFlow. https://github.com/pmh47/dirt, 2018.
5

[14] Paul Henderson and Vittorio Ferrari. Learning to generate
and reconstruct 3D meshes with only 2D supervision. In
BMVC, 2018. 2

[15] Paul Henderson and Vittorio Ferrari. Learning single-image
3D reconstruction by generative modelling of shape, pose
and shading. IJCV, 2019. 1, 2, 5, 6

[16] Philipp Henzler, Niloy J. Mitra, and Tobias Ritschel. Es-
caping platos cave: 3D shape from adversarial rendering. In
ICCV, 2019. 2

[17] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. GANs trained by
a two time-scale update rule converge to a local nash equi-
librium. In NIPS, 2017. 6

[18] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess,
Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and
Alexander Lerchner. β-VAE: Learning basic visual concepts
with a constrained variational framework. In ICLR, 2017. 5

[19] Eldar Insafutdinov and Alexey Dosovitskiy. Unsupervised
learning of shape and pose with differentiable point clouds.
In NIPS, 2018. 2

[20] Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung.
Robust inside-outside segmentation using generalized wind-
ing numbers. Trans. on Graphics, 32(4):33:1–33:12, 2013.
3

[21] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An in-
troduction to variational methods for graphical models. Ma-
chine Learning, 37:183–233, 1999. 5

[22] Angjoo Kanazawa, Shubham Tulsiani, Alexei A. Efros, and
Jitendra Malik. Learning category-specific mesh reconstruc-
tion from image collections. In ECCV, 2018. 2, 5, 6, 8, 10

[23] Hiroharu Kato and Tatsuya Harada. Learning view priors for
single-view 3D reconstruction. In CVPR, 2019. 2, 5

[24] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neu-
ral 3D mesh renderer. In CVPR, 2018. 2, 3, 6

[25] Diederik P. Kingma and Max Welling. Auto-Encoding Vari-
ational Bayes. In ICLR, 2014. 2, 5

[26] Johann Heinrich Lambert. Photometria. Eberhard Klett Ver-
lag, 1760. 5

[27] Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao
Zhang, and Leonidas Guibas. GRASS: Generative recursive
autoencoders for shape structures. Trans. on Graphics, 36(4),
2017. 1

[28] Xiao Li, Yue Dong, Pieter Peers, and Xin Tong. Synthesiz-
ing 3D shapes from silhouette image collections using multi-
projection generative adversarial networks. In CVPR, 2019.
1, 2, 6

[29] Yawei Li, Vagia Tsiminaki, Radu Timofte, Marc Pollefeys,
and Luc van Gool. 3D appearance super-resolution with deep
learning. In CVPR, 2019. 3

[30] Shichen Liu, Weikai Chen, Tianye Li, and Hao Li. Soft
rasterizer: Differentiable rendering for unsupervised single-
view mesh reconstruction. In ICCV, 2019. 2, 3, 6

[31] Gurobi Optimization LLC. Gurobi optimizer reference man-
ual, 2019. 4

[32] Charlie Nash and Christopher K. I. Williams. The shape
variational autoencoder: A deep generative model of part-
segmented 3D objects. Computer Graphics Forum, 36(5):1–
12, 2017. 1

[33] Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian
Richardt, and Yong-Liang Yang. HoloGAN: Unsupervised
learning of 3D representations from natural images. In ICCV,
2019. 2

[34] J. Nocedal and S.J. Wright. Numerical Optimization.
Springer-Verlag, 2006. 4

[35] Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo
Strauss, and Andreas Geiger. Texture fields: Learning tex-
ture representations in function space. In ICCV, 2019. 3

[36] Danilo J. Rezende, S. M. Ali Eslami, Shakir Mohamed, Peter
Battaglia, Max Jaderberg, and Nicolas Heess. Unsupervised
learning of 3D structure from images. In NIPS, 2016. 1, 2

[37] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wier-
stra. Stochastic backpropagation and approximate inference
in deep generative models. In ICML, 2014. 5

[38] Audrey Richard, Ian Cherabier, Martin R. Oswald, Vagia
Tsiminaki, Marc Pollefeys, and Konrad Schindler. Learned
multi-view texture super-resolution. In 3DV, 2019. 3

[39] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, Xi Chen, and Xi Chen. Improved
techniques for training GANs. In NIPS, 2016. 6

[40] Jakub Sochor, Roman Juránek, Jakub Špaňhel, Lukas
Maršı́k, Adam Široký, Adam Herout, and Pavel Zemčı́k.
Comprehensive data set for automatic single camera visual
speed measurement. IEEE Transactions on Intelligent Trans-
portation Systems, pages 1–11, 2018. 8

[41] Amir A. Soltani, Haibin Huang, Jiajun Wu, Tejas D. Kulka-
rni, and Joshua B. Tenenbaum. Synthesizing 3d shapes via
modeling multi-view depth maps and silhouettes with deep
generative networks. In CVPR, 2017. 1

[42] Olga Sorkine. Laplacian mesh processing. In Eurographics,
2005. 3

11

https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron
https://github.com/pmh47/dirt


[43] Yongbin Sun, Ziwei Liu, Yue Wang, and Sanjay E. Sarma.
Im2Avatar: Colorful 3D reconstruction from a single image.
arXiv preprint, arXiv:1804.06375, 2018. 3

[44] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, and Jon
Shlens. Rethinking the inception architecture for computer
vision. In CVPR, 2016. 6

[45] Qingyang Tan, Lin Gao, and Shihong Xia Yu-Kun Lai. Vari-
ational autoencoders for deforming 3d mesh models. In
CVPR, 2018. 1, 2

[46] Shubham Tulsiani, Alexei A. Efros, and Jitendra Malik.
Multi-view consistency as supervisory signal for learning
shape and pose prediction. In CVPR, 2018. 2, 6

[47] Shubham Tulsiani, Tinghui Zhou, Alexei A. Efros, and Ji-
tendra Malik. Multi-view supervision for single-view recon-
struction via differentiable ray consistency. In CVPR, 2017.
2

[48] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The Caltech-UCSD Birds-200-2011 Dataset. Technical Re-
port CNS-TR-2011-001, California Institute of Technology,
2011. 8

[49] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei
Liu, and Yu-Gang Jiang. Pixel2Mesh: Generating 3D mesh
models from single RGB images. In ECCV, 2018. 2

[50] Zhou Wang, Eero P. Simoncelli, and Alan C. Bovik. Mul-
tiscale structural similarity for image quality assessment. In
The Thirty-Seventh Asilomar Conference on Signals, Systems
& Computers, volume 2, pages 1398–1402, 2003. 5

[51] Olivia Wiles and Andrew Zisserman. SilNet: Single- and
multi-view reconstruction by learning from silhouettes. In
BMVC, 2017. 2, 5

[52] Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T Free-
man, and Joshua B Tenenbaum. Learning a probabilistic
latent space of object shapes via 3D generative-adversarial
modeling. In NIPS, 2016. 1

[53] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3D
ShapeNets: A deep representation for volumetric shape mod-
eling. In CVPR, 2015. 1, 2

[54] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang,
Song-Chun Zhu, and Ying Nian Wu. Learning descriptor
networks for 3d shape synthesis and analysis. In CVPR,
2018. 1, 2

[55] Soji Yamakawa and Kenji Shimada. Removing self intersec-
tions of a triangular mesh by edge swapping, edge hammer-
ing, and face lifting. In Brett W. Clark, editor, Proc. 18th
Intl Meshing Roundtable, pages 13–29, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg. 3

[56] Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and
Honglak Lee. Perspective transformer nets: Learning single-
view 3D object reconstruction without 3D supervision. In
NIPS, 2016. 2

[57] Guandao Yang, Yin Cui, Serge Belongie, and Bharath Hari-
haran. Learning single-view 3D reconstruction with limited
pose supervision. In ECCV, 2018. 2

[58] H. Zhang, C. Wu, J. Zhang, and J. Deng. Variational mesh
denoising using total variation and piecewise constant func-
tion space. 21(7):873–886, 2015. 3

[59] Jun-Yan Zhu, Zhoutong Zhang, Chengkai Zhang, Jiajun Wu,
Antonio Torralba, Josh Tenenbaum, and Bill Freeman. Vi-
sual object networks: Image generation with disentangled
3D representations. In NIPS, 2018. 2, 3

A. Additional qualitative results
In this section, we present additional qualitative results

from our models using different parametrizations and train-
ing settings, on each of the five object classes.

Random (uncurated) samples generated by the models
trained on ShapeNet renderings of cars are given in Figure 8
and Figure 9; chairs in Figure 10, Figure 11 and Figure 12;
airplanes in Figure 13, Figure 14 and Figure 15; and sofas
in Figure 16, Figure 17 and Figure 18. See Section 6.1 for
discussion of these results.

Random (uncurated) samples from the models trained on
natural images of cars are given in Figure 19 and Figure 20,
and birds in Figure 21 and Figure 22. See Section 6.2 for
discussion of these results.

Additional reconstruction results on natural images of
cars are given in Figure 23, and birds in Figure 24. See
Section 6.3 for discussion of these results.

B. Network architectures
In this section, we describe the neural network architec-

tures for each component of our model.

Notation. We use the following notation for network lay-
ers:

• Convolutional layers are denoted by
Conv(channels, filter size); stride is one unless
otherwise specified
• Densely-connected layers are denoted by

Dense(channels)
• Bilinear upsampling layers are denoated by Upsam-

pling(factor)
• Reshape(shape) denotes reshaping the input tensor to

the given shape
• ⊕ denotes vector concatenation
• σ denotes the logistic sigmoid function

When the input to a layer is not just the output of the previ-
ous layer, we indicate this input in a second pair of paren-
theses.

Encoders. The encoders consist of a shared CNN that ex-
tracts features from the input image, followed by densely-
connected layers operating on the resulting features to give
predictions for each latent variable. The feature extractor is
as follows (all convolution/dense layers use relu activation
and group-normalization):

12



• input: RGB image
• Conv(32, 3× 3, stride = 2)
• Conv(64, 3× 3)
• MaxPool(2× 2)
• Conv(96, 3× 3)
• MaxPool(2× 2)
• Conv(128, 3× 3)
• MaxPool(2× 2)
• Conv(128, 4× 4)
• Dense(128)
• output: 128D feature vector f

The shape encoder is as follows:

• input: 128D feature vector f
• Dense(32× 2)
• output: mean and stddev of 32D shape embedding
zshape, latter with softplus activation

The texture encoder is as follows:

• input: 128D feature vector f and vector c of mean
pixel colors clipping each face
• Dense(96, activation = relu, group-

normalization)(c)⊕ f
• Dense(128× 2)
• output: mean and stddev of 128D texture embedding
zcolor, latter with softplus activation

The background encoder is as follows:

• input: 128D feature vector f
• Dense(64, activation = relu, group-normalization)
• Dense(16× 2)
• output: mean and stddev of 16D background embed-

ding zbg, latter with softplus activation

The pose encoder is as follows:

• input: 128D feature vector f
• Dense(5)
• output: 2D offset in xz-plane; 3D log-scale

Decoders. The decoders consist of densely-connected
networks, taking the latent variables as input. The shape
decoder decshape is as follows:

• input: 32D shape embedding zshape
• Dense(32, activation = elu)
• Dense(3NV )
• Reshape(NV , 3)
• output: 3D offset vectors to be added to each of the
NV vertices of the base mesh

The texture decoder deccolor is as follows:

• input: 128D texture embedding zcolor and 32D shape
embedding zshape

• Dense(128, activation = elu)(zcolor⊕ zshape)+ zcolor
• Dense(192, activation = elu)
• Dense(3NF )
• Reshape(NF , 3) / 10 +

1
2

• output: RGB colors for each of the NF faces of the
mesh

The background decoder, used only in setting (NO-MASK),
is as follows (all convolution layers use elu activation, ex-
cept the last):

• input: 16D background embedding
• Reshape(1× 1× 16)
• Upsample(4×)
• Conv(64, 3× 3)
• Upsample(2×)
• Conv(32, 3× 3)
• Upsample(2×)
• Conv(16, 3× 3)
• Upsample(2×)
• σ(Conv(3, 3× 3) / 2)
• Upsample(4× or 6×)
• output: RGB background image

Baseline VAE. The encoder for the baseline VAE uses the
same feature extractor as the main model. To convert the
features to the mean and variance of the latent variables, the
following architecture is used:

• input: 128D feature vector f
• Dense(160× 2)
• output: mean and stddev of 160D image embedding,

latter with softplus activation

The decoder is as follows (all layers use elu activation, ex-
cept the last):

• input: 160D image embedding
• Dense(256)
• Reshape(4× 4× 16)
• Conv(128, 3× 3)
• Upsample(2×)
• Conv(64, 3× 3)
• Upsample(2×)
• Conv(32, 3× 3)
• Upsample(2×)
• Conv(24, 3× 3)
• Upsample(2×)
• Conv(16, 3× 3)
• Upsample(2×)
• Conv(3, 3× 3) + 1

2
• output: RGB image

13



Figure 8. Examples of cars generated by our model, in setting (MASK) with parametrization (DENSE).

14



Figure 9. Examples of cars generated by our model, in setting (NO-MASK) with parametrization (DENSE).

15



Figure 10. Examples of chairs generated by our model, in setting (MASK) with parametrization (DENSE).

16



Figure 11. Examples of chairs generated by our model, in setting (MASK) with parametrization (PUSHING).

17



Figure 12. Examples of chairs generated by our model, in setting (NO-MASK) with parametrization (DENSE).

18



Figure 13. Examples of airplanes generated by our model, in setting (MASK) with parametrization (DENSE).

19



Figure 14. Examples of airplanes generated by our model, in setting (MASK) with parametrization (PUSHING).

20



Figure 15. Examples of airplanes generated by our model, in setting (NO-MASK) with parametrization (DENSE).

21



Figure 16. Examples of sofas generated by our model, in setting (MASK) with parametrization (DENSE).

22



Figure 17. Examples of sofas generated by our model, in setting (MASK) with parametrization (PUSHING).

23



Figure 18. Examples of sofas generated by our model, in setting (NO-MASK) with parametrization (DENSE).

24



Figure 19. Examples of cars generated by our model, in setting (MASK).

25



Figure 20. Examples of cars generated by our model, in setting (NO-MASK).

26



Figure 21. Examples of birds generated by our model, in setting (MASK).

27



Figure 22. Examples of birds generated by our model, in setting (NO-MASK).

28



Figure 23. Additional examples of car reconstructions, in setting (MASK) (top three) and (NO-MASK) (bottom three). The left-hand
image is the input to our model; the next is our reconstruction, rendered over the ground-truth background; the remaining five columns are
different views of the reconstructed instance, with normal-maps below

29



Figure 24. Additional examples of bird reconstructions, in setting (MASK) (top three) and (NO-MASK) (bottom three). The left-hand image
is the input to our model; the next is our reconstruction, rendered over a pseudo-background (see text); the remaining five columns are
different views of the reconstructed instance, with normal-maps below

30


