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Abstract

We present solutions to several problems originating from geometry and discrete mathe-

matics: existence of equipartitions, maps without Tverberg multiple points, and inscribing

quadrilaterals.

Equivariant obstruction theory is the natural topological approach to these type of

questions. However, for the specific problems we consider it had yielded only partial or

no results.

We get our results by complementing equivariant obstruction theory with other tech-

niques from topology and geometry.



vi

List of Publications

The thesis is based on the following papers:

1. Avvakumov, S. and Kudrya, S., 2019. Vanishing of all equivariant obstructions and

the mapping degree. Preprint, arXiv:1910.12628.

2. Avvakumov, S., Mabillard, I., Skopenkov, A. and Wagner, U., 2015. Eliminating

higher-multiplicity intersections, III. Codimension 2. Preprint, arXiv:1511.03501.

3. Avvakumov, S., Karasev, R. and Skopenkov, A., 2019. Stronger counterexamples

to the topological Tverberg conjecture. Preprint, arXiv:1908.08731.

4. Avvakumov, S. and Karasev, R., 2019. Envy-free division using mapping degree.

Preprint, arXiv:1907.11183.

5. Akopyan, A., Avvakumov, S. and Karasev, R., 2018. Convex fair partitions into an

arbitrary number of pieces. Preprint, arXiv:1804.03057.

6. Akopyan, A. and Avvakumov, S., 2018. Any cyclic quadrilateral can be inscribed

in any closed convex smooth curve. In Forum of Mathematics, Sigma (Vol. 6).

Cambridge University Press.



vii

Table of Contents

Abstract v

List of Publications vi

1 Introduction 1

1.1 The Equivariant Obstruction method . . . . . . . . . . . . . . . . . . . . . 1

1.2 Overview of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Vanishing of all equivariant obstructions and the mapping degree 5

2.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Proof of Theorem 2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Proof of Theorem 2.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Eliminating higher-multiplicity intersections 20

3.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Discussion and open problems . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Eliminating higher-multiplicity intersections of positive dimension 50

5 Envy-free division using mapping degree 55

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Classical KKM-type results and partition problems . . . . . . . . . . . . . 57



viii

5.3 When some players may choose nothing . . . . . . . . . . . . . . . . . . . . 59

5.4 A segment partition problem with choosing nothing . . . . . . . . . . . . . 62

6 Convex fair partitions into an arbitrary number of pieces 74

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 How the proof for m = pk works . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3 Proof for m = 2pk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.4 Proof for arbitrary m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.5 Appendix: A weaker higher-dimensional result . . . . . . . . . . . . . . . . 86

6.6 Appendix: Difficulty of equalizing two arbitrary functions . . . . . . . . . . 88

7 Inscribed quadrilaterals 91

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2 The case of strictly convex C∞-curves. . . . . . . . . . . . . . . . . . . . . 93

7.3 Proofs of Theorem 7.1 and Theorem 7.2. . . . . . . . . . . . . . . . . . . . 95

7.4 Proof of Lemma 7.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Bibliography 101



1

1 Introduction

In this text we present solutions to several questions originating from geometry and dis-

crete mathematics. Most of the tools we use come from topology.

A common topological approach to such questions is the equivariant obstruction method.

It has been used with great success to solve a variety of problems, including Kneser’s con-

jecture [57], the Square Peg conjecture for smooth curves [109], the Splitting Necklace

problem [3], and the Topological Tverberg conjecture for primes and, more generally,

prime powers [14; 75; 107], etc. It had also been applied to the questions we deal with

here, but only partial or no results had been achieved.

In this chapter we briefly introduce the equivariant obstruction method and explain

when it can fail. Then we give an overview of the results presented in this text. Each of

the subsequent chapters is on its own problem. They can be read independently, however,

some of the results from earlier chapters are used later.

1.1 The Equivariant Obstruction method

Let us briefly describe the method. One starts by defining a suitable configuration

space of potential solutions to the problem. Then a test map from the configuration

space to the test space is defined. Informally, the test map measures how far the given

potential solution is from the target, a certain subspace of the test space. A point in the

configuration space is a valid solution to the problem if and only if its image under the

test map intersects (“hits”) the target. Typically, a certain symmetry group defined by

the problem acts both on configuration and test spaces, and the test map is equivariant
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with respect to this action. So, one can now restate the problem in topological terms:

Is it there an equivariant map from the configuration space to the test space missing the

target? If the answer is “no”, then the original problem always has a solution. The reader

can find more details and examples in [64].

As a very simple example to illustrate this, consider the well-known ham sandwich the-

orem, which asserts that any d sufficiently nice probability measures µ1, . . . , µd in Rd can

be simultaneously equipartitioned by an affine hyperplane. In our example, the configura-

tion space is the sphere Sd, which naturally parametrizes (oriented, affine) hyperplanes in

Rd. The test map F : Sd → Rd sends an oriented hyperplane parametrized by u ∈ Sd to

the point F (u) ∈ Rd whose i-th coordinate is the difference µi(H
+
u )−µi(H

−
u ) of the values

of the i-th measure on the two corresponding halfspaces. This map is equivariant with

respect to the natural Z2-action on both spaces, i.e., F (−u) = −F (u), and the classical

Borsuk–Ulam Theorem guarantees that any such map must have a zero, which yields the

desired simultaneous equipartition.

So, the method allows one to reduce a suitable question from geometry or discrete

mathematics to a topological problem of existence of a certain equivariant map missing

the target. If no such map exists, the original problem always has a solution. However,

if such a map does exist, the method fails. A priori, the existence of a map missing the

target does not imply the existence of a counterexample to the original geometric problem.

Thus, one needs to go beyond the equivariant obstruction method and get more insight

into the geometric nature of the problem. Either to develop more refined obstructions that

capture more geometric information, for example see Chapters 6 and 7. Or, on the other

hand, to show that the original obstruction is, in fact, complete, i.e., that its vanishing

does in fact imply the existence of counterexamples, see Chapters 3 and 4.

1.2 Overview of the results

We briefly describe the content of the remaining chapters. See the corresponding chapters

for the citations which we don’t give in this section.

Chapter 2 is based on [7]. The standard method of deciding whether an equivariant

map between the configuration and test spaces exists requires computing a series of so

called “equivariant cohomology obstructions”, the length of the series depending on the
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specific problem, see [25, Chapter II]. Typically, computing even the second obstruction in

the series can be challenging or sometimes impossible. In this chapter we present results

which allow to completely avoid these difficulties for some “popular” combinations of test

spaces and symmetry groups. The chapter also contains results originally proved in [5]

and [6].

Chapter 3 is based on [8]. The Topological Tverberg conjecture was originally proved

for prime power multiplicities using the equivariant obstruction method. The method

failed for non-prime powers, but as mentioned above, that didn’t imply that the conjecture

was wrong. The first counterexamples were constructed using a modification of Whitney

trick for high multiplicity intersections. As the original, this modification only worked in

codimension ≥ 3. We show how to make it work in codimension ≥ 2, which gives new

counterexamples to the conjecture.

Chapter 4 is based on [6]. Together with the Topological Tverberg conjecture we con-

sider a more general question, when a map without r-tuple points exists from a simplicial

complex K to Rd? Compared to Chapter 3, we now allow the set of r-tuple points to

have positive dimension. We combine the results on vanishing of equivariant obstructions

from Chapter 2 with previous geometrical results, to get new answers.

Chapter 5 is based on [5]. We consider a problem with economic & game theoretical

flavor. Given a finite resource and a several players with different preferences, can the

players divide the resource among themselves so that everyone is satisfied, i.e., doesn’t

want anyone else’s share? We apply the results of Chapter 2 and other topological tech-

niques. Surprisingly, the answer depends on the number theoretical properties of the

number of players.

Chapter 6 is based on [2]. We consider the following problem: given a convex body

K in the plane can we cut K into m parts of equal area and perimeter? The problem

had previously been solved for prime powers m = pk using the equivariant obstruction

method. For all other m there exists an equivariant map from the relevant configuration

space missing the target space, and so the method fails. We prove the existence of the

desired equipartition of K for all m using more refined topological methods. We also

consider generalizations to higher dimensions and functions different from “area” and

“perimeter”.

Chapter 7 is based on [1]. We consider the following geometrical question: Can a given
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cyclic (i.e., inscribed in a circle) quadrilateral can be inscribed into any Jordan curve in

the plane? This question was first asked for squares more than a hundred years ago.

Equivariant obstruction theory gives a positive solution for squares (and “nice” curves),

but fails for other quadrilaterals. Approaching the problem geometrically, we solve it

positively for convex curves.



5

2 Vanishing of all equivariant

obstructions and the mapping

degree

2.1 Main results

Applying the equivariant obstruction method to problems from geometry, one often finds

that the natural symmetry group of the problem is the symmetric group Sn. At the same

time, the corresponding test space often is (Rm)n with the diagonal δn := {(x, x . . . , x) ∈
Rn|x ∈ Rm} as the target; the symmetric group Sn acts on these space by permutations

of coordinates. For example, this is the case in the Splitting Necklace problem and the

Topological Tverberg conjecture mentioned above, and fair [51; 22] or envy-free [34; 86;

71] division problems. This is also the case for many problems considered in the later

chapters of this thesis.

For this popular combination of the symmetry group and the test space, the main

results of this chapter allow us to bypass the difficult calculations of the equivariant

obstruction (see [25, Chapter II]) entirely:

Theorem 2.1. Suppose that n ̸= pk and n ̸= 2pk for all k and all primes p. Then for

any Hausdorff compactum1 X with a free action of Sn there exists an equivariant map

X → Rn \ δn.

Remark 2.2. From the conclusion of the theorem it easily follows that there exists an

equivariant map X → (Rm)n \ δn for any m > 1 (note, that δn depends on m).

1Hausdorff compactum is a topological space which is both Hausdorff and compact.
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Theorem 2.3. Suppose that n ̸= pk for all k and all primes p. Then for any Hausdorff

compactum X with a free action of Sn there exists an equivariant map X → (R2)n \ δn.

Remark 2.4. With an additional assumption dimX = d(n − 1) Özaydin proved that

there exists an equivariant map X → (Rd)n \ δn for d ≥ 1, see [75] and the survey

[98, Theorem 3.5]. In light of Remark 2.2, Theorem 2.3 is a generalization of Özaydin’s

Theorem. The assumption dimX = d(n−1) is crucial in Özaydin’s proof, since it reduces

the problem to the vanishing of the primary equivariant cohomology obstruction, see [25,

Chapter II].

Remark 2.5. Some weaker results are proved with a harder technique in [17].

Remark 2.6. Theorem 2.1 and 2.3 are similar to, but are not particular cases of [16,

Theorem 3.6]. Indeed, [16, Theorem 3.6] takes a group G from a certain class and proves

that there exists some representation W of G, for which there exists a G-equivariant

map X → S(W ) from any fixed point free G-space X. In Theorem 2.1, by contrast,

we prove that for a specific group G = Sn and a specific representation sphere of G,

S(Wn), where Wn is the orthogonal complement to δn ⊂ Rn, there exists a G-equivariant

map X → S(Wn) from any free G-space X. The group G = Sn does not satisfy the

hypothesis of [16, Theorem 3.6] because it contains a subgroup (the alternating group) of

prime index. The discussion in [16, the paragraph after Theorem 3.6] also hints that our

specific representationWn cannot be the one constructed in the proof of [16, Theorem 3.6],

since Wn has the property WH
n = 0 whenever a subgroup H ⊂ Sn acts transitively on

the indices 1, . . . , n.

The space X in the statements is a substitute for the configuration space. The restric-

tions on X are not significant, in practice a configuration space can usually be equivari-

antly contracted to a compact polyhedron.

The proofs of the theorems above rely on the following lemma. The lemma (together

with its proof) was communicated to us by Alexey Volovikov. It is a particular case of

[16][Lemma 3.9], but we present a short proof of the case we need here for completeness.

Lemma 2.7. Let G be a finite group and S be a sphere with an action of G. If there

exists a G-equivariant map f : S → S of zero degree then any Hausdorff compactum X

with a free action of G has a G-equivariant map X → S.
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Proof. A zero degree map of spheres S → S is null-homotopic and can be continuously

extended to a cone over the sphere S. Consider the join G∗S as a union of |G| such cones

glued together along their bases and extend the map from one cone to all other cones by

equivariance with respect to the diagonal action of G on the join, obtaining an equivariant

map g : G ∗ S → S. Then take joins of g with identity maps of G and compose them to

extend the chain of equivariant maps

· · · → G ∗G ∗G ∗ S → G ∗G ∗ S → G ∗ S → S.

Since every component of the join embeds into the join, we may drop S in the domain

and eventually have an equivariant map as a composition:

G ∗G ∗ · · · ∗G⏞ ⏟⏟ ⏞
N

→ G ∗G ∗ · · · ∗G⏞ ⏟⏟ ⏞
N

∗S → S

for any N .

The join in the domain of the last map is the (N − 2)-connected (N − 1)-dimensional

approximation ENG to the classifying space EG of the group G. By standard properties

of the classifying spaces it follows that, given a Hausdorff compactum X with a free action

of G, there exists2 an equivariant map X → ENG for sufficiently large N , hence there

exists an equivariant map X → S as a composition of X → ENG→ S.

Now, Theorem 2.1 follows as a combination of Lemma 2.7 and the following:

Theorem 2.8. For n > 1, let S be the unit sphere of the orthogonal complement to

δn ⊂ Rn. The symmetric group Sn acts on S by permuting the coordinates of Rn.

Let d be the degree of a Sn-equivariant map S → S. Then:

(a) if n = pk for some prime p ̸= 2 then d can attain any value d ≡ 1 (mod p) and only

such values,

(b) if n = 2pk for some prime p then d can only attain values d ≡ ±1 (mod p),

2Let us sketch a proof of this fact. Since X is Hausdorff, it follows that each point x ∈ X has a

G-equivariant neighborhood U disjoint with gU for all g ̸= 1. Denote Ux := GU . From the compactness

of X it follows, that X can be covered by a finite number of such orbits, X = Ux1 ∪ . . . ∪ UxN
. For

each Uxi
pick a G-equivariant map fi : Uxi

→ G. As a Hausdorff compactum, X is normal. So, there

exists a subordinate to the cover G-equivariant partition of unity ρ1 + · · · + ρN = 1. Now, the map

x ↦→ ρ1(x)f1(x)⊕ · · · ⊕ ρN (x)fN (x) maps X to EN−1G and is G-equivariant.
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(c) if n is odd and n ̸= pk for all primes p then d can attain any value,

(d) if n is even and n ̸= 2pk for all primes p then d can attain 0.

Indeed, by parts (c) and (d) of Theorem 2.8 and by Lemma 2.7, there is a Sn-

equivariant map X → S ⊂ Rn \ δn, so Theorem 2.1 follows.

Note, that only parts (c) and (d) of Theorem 2.8 are required to prove Theorem 2.1.

The “only” part of Theorem 2.8(a) was probably known before, and Theorem 2.8(c) was

first proved in [5].

Likewise, Theorem 2.3 follows as a combination of Lemma 2.7 and the following:

Theorem 2.9. Suppose that n ̸= pk for all primes p. Let S be the unit sphere of the

orthogonal complement to δn ⊂ (R2)n. The symmetric group Sn acts on S by permuting

the coordinates of (R2)n.

Then there exists a Sn-equivariant from S → S of degree 0.

Interestingly, the (almost) converse of Theorem 2.1 holds for n = pk:

Theorem 2.10. Suppose that n = pk for a prime p. Then for any (n − 2)-connected

topological space X with a free action of Sn there is no Sn-equivariant map X → Rn \ δn.

For a proof of Theorem 2.10 see [107, §2, the Lemma] (to get the theorem from the

lemma notice thatSn contains (Zp)
k as a subgroup acting on Rn\δn without fixed points),

although the theorem was probably known earlier.

In the rest of this chapter we prove Theorems 2.8 and 2.9.

2.2 Lemmas

In this section we prove lemmas required for the proofs of Theorems 2.8 and 2.9.

Until the end of this section, let S be a unit sphere of a euclidean space W and let G

be a finite subgroup of the orthogonal group of W . The group G naturally acts on S.

Lemma 2.11. There exists a G-equivariant map S → S of degree d if and only if

d = 1−
k∑︂

i=1

di
|G|
|Gi|

,

where for each i = 1, . . . , k



9

(1) a subgroup Gi ⊆ G is the stabilizer of some point xi ∈ S,

(2) the G-orbits of all xi are pairwise disjoint,

(3) there is a Gi-equivariant map S → S of degree di which is an identity in a neigh-

borhood of xi.

Proof of the “if” part of Lemma 2.11. Let f0 : S → S be the identity map.

Let g1 : S → S be a G1-equivariant map which is the identity in a small neighborhood

U of x1.

Choose a smaller circular neighborhood x1 ∈ V ⊂ U , i.e., V is the intersection of U

with a round ball of a small radius centered at x1. Clearly, G1(V ) = V and g1 is the

identity in V .

Let φ : V → S \ V be a G1-equivariant homeomorphism which is the identity on ∂V .

One can construct V and φ as follows. Denote by C the point outside S and lying on

the line connecting 0 with x1 and such that any line connecting C to any point in ∂V is

tangent to S. Define φ : V → S \ V to be the radial projection with center C.

Define a map f ′
1 : S → S as follows:

• f ′
1 equals to f0 on S \ V ,

• f ′
1 equals to g1 ◦ φ on V .

Clearly, degf ′
1 = degf0 − degg1 = 1− d1.

Now, there is a unique G-equivariant way to redefine f ′
1 on G(V ) \ V to get a G-

equivariant map f1. The degree of f1 is 1− d1
|G|
|G1| .

Repeating this process for x2, x3, . . . , xk we get a G-equivariant map of degree 1 −∑︁k
i=1 di

|G|
|Gi| .

To prove the “only if” part of Lemma 2.11 we need the following technical statement:

Lemma 2.12. Assume G is a finite group acting on a polyhedron P and acting linearly

on a finite vector space V . Assume that for any subgroup H ⊆ G the inequality dimPH ≤
dimV H holds for the subspaces of H-fixed points. Then for any G-invariant triangulation

of P its barycentric subdivision has the following property: The set of G-equivariant PL
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maps f : P → V , linear on faces of the barycentric subdivision, has an open C1-dense

subset consisting of maps with finite fibers f−1(y) for any y ∈ V .

Proof. Assume that P is triangulated G-invariantly and consider G-equivariant maps,

linear on faces of the barycentric subdivision P ′. We show that a dense open subset of

such maps (that is a generic map of this kind) has the required property. Such a map

f : P → V is defined whenever we define it equivariantly on vertices of the subdivision

P ′, and we argue by induction on the poset of the vertices of P ′, which is the same as the

poset of faces of P .

Assume we have a vertex φ ∈ P ′ and consider possible values f(φ). Let H be the

stabilizer of φ, then f(φ) must be chosen in V H and f(φ) ∈ V H is the only constraint

needed to extend f to the orbit Gφ equivariantly. For any face of P ′, given by a chain of

vertices of P ′

φ1 < φ2 < · · · < φk < φ

of faces of P , we assume by induction that generically f(φ1), . . . , f(φk) are affinely in-

dependent and form a (k − 1)-dimensional simplex in V . The dimension assumption of

the lemma means that k ≤ dimφ ≤ dimV H (speaking of dimension, we consider φ as a

face of P ), hence for a generic choice of f(φ) ∈ V H the points f(φ1), . . . , f(φk), f(φ) are

affinely independent. This applies to all chains that end in τ and completes the induction

step and the proof is complete.

Proof of the “only if” part of Lemma 2.11. Consider any G-equivariant map S → S and

compose it with the inclusion S ⊂ W to obtain a G-equivariant map

f1 : S → W.

Let f0 : S → W be the standard inclusion. Connect f0 and f1 by a G-equivariant

homotopy

h : S × [0, 1] → W,

which can be chosen as h(x, t) = (1− t)f0(x) + tf1(x).

Note that the difference in the degrees of f0 and f1 as maps of S to itself equals the

degree of h over 0 ∈ W . This follows from the fact that the degree of a map between

closed connected oriented manifolds with boundary h :M → N satisfying h(∂M) ⊂ ∂N is
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well defined and equals the degree of the restriction h|∂M : ∂M → ∂N if ∂N is connected.

Here M = S × [0, 1] and N ⊂ W is the unit ball.

Now we would like to make h generic by applying Lemma 2.12. We can think of S as

a polyhedron, by identifying it with the boundary of the convex hull of several orbits in

S. Lemma 2.12 applies because for any subgroup H ⊆ G we have

(S × [0, 1])H = (S)H × [0, 1].

So, we after a small perturbation of h, we may assume that h−1(0) is finite and is still

linear in t. The degree of h over 0 ∈ W can now be counted geometrically as the sum of

local degrees at the points in h−1(0).

Split h−1(0) into disjoint orbits and let (xi, t) be a point in the ith orbit. Let −di be
the degree of h at (xi, t). The degree at any other point (gxi, t) for g ∈ G is also −di,
because g acts on the orientation of the domain and the range of h in the same way (i.e.,

g either changes the orientation both in the domain and the range of h, or preserves the

orientation both in the domain and the range of h). So, the total degree corresponding

to the ith orbit is −di |G|
|Gi| where

|G|
|Gi| is the size of the orbit. It remains to prove that di

satisfies (3).

Let U ⊂ S be a neighborhood of xi such that Gi(U) = U . We take U sufficiently small

so that U × [0, 1] contains no points of h−1(0) except for (xi, t); this is possible because h

is linear in t ∈ [0, 1] and so |h−1(0)∩ (xi × [0, 1])| = 1. Clearly, di equals the degree of the

map

φ : ∂(U × [0, 1]))
h−→ W \ 0 pr−→ S,

where pr : W \ 0 → S is the standard radial projection. The map φ is Gi-equivariant as

a composition of two Gi-equivariant maps. The restriction of φ to U × 0 is the identity.

There exists a Gi-equivariant homeomorphism ψ : ∂(U × [0, 1])) → S which is the

identity on U×0. For example, one can construct ψ as follows. Let ψ′ : ∂(U×[0, 1])) → W

be the map which is the identity on U × 0, maps every y× 1 ∈ U × 1 to y− 2xi (here we

consider y and xi as vectors in W ), and is linear in t ∈ [0, 1] on ∂U × [0, 1]. Let ψ be the

composition of ψ′ with the projection pr : W \ 0 → S.

So, φ◦ψ−1 : S → S is a Gi-equivariant map of degree di and the identity on U×0 ∋ xi,

hence di satisfies (3).
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Lemma 2.13. Let x ∈ S be a point stabilized by a subgroup H ⊂ G. Let the sphere Sx

be the boundary of a small H-invariant neighborhood of x. Let f1, . . . , fℓ : Sx → Sx be

H-equivariant maps with degrees d1, . . . , dℓ, respectively.

Then for any choice of the numbers εi ∈ {0, 1} there exists a H-equivariant map

S → S which is the identity in a neighborhood of x and whose degree is

1 + ε1(d1 − 1) + ε2(d2 − d1) + · · ·+ εℓ(dℓ − dℓ−1)− εℓ+1dℓ

Corollary 2.14. Using the notation from the statement of Lemma 2.13, suppose there

exists a H-equivariant map Sx → Sx of degree −1. Then for any d there exists a H-

equivariant map S → S which is the identity in a neighborhood of x and whose degree is

d.

Proof. The identity map Sx → Sx has degree 1 and is H-equivariant. So, we can use both

+1 and −1 for di applying Lemma 2.13.

Suppose we were able to achieve some degree applying Lemma 2.13 using some values

for d1, . . . , dℓ and ε1, . . . , εℓ. It’s sufficient to prove that we can change the achieved degree

by 1 and by −1 by incrementing ℓ and making a correct choice of dℓ+1 and εℓ+2.

When we increase ℓ by 1 the degree changes by w := εℓ+1dℓ+1 − εℓ+2dℓ+1 = (εℓ+1 −
εℓ+2)dℓ+1. For any value of εℓ+1 ∈ {0, 1}, we can choose εℓ+2 so that |εℓ+1 − εℓ+2| = 1.

Then choosing dℓ+1 to be either 1 or −1, we can get w = 1 and w = −1.

Corollary 2.15. Using the notation from the statement of Lemma 2.13, suppose there

exists a H-equivariant map Sx → Sx of degree d. Then there exists a H-equivariant map

Σn → Σn which is the identity in a neighborhood of x and whose degree is also d.

Proof. In the statement of Lemma 2.13, put ℓ = 1, d1 = d, ε1 = 1, ε2 = 0. The corollary

follows.

Proof of Lemma 2.13. Draw the diameter containing x. Draw ℓ+1 different hyperplanes

orthogonal to the diameter and intersecting its interior. The hyperplanes cut S into two

spherical caps U1 and U2 which are H-equivariantly homeomorphic to a cone over Sx,

where U1 contains x and U2 contains the point opposite to x; and ℓ cylinders Ci, each

H-equivariantly homeomorphic to Sx× [0, 1]. For each i, let the end Sx× 1 of Ci be those

end which is further away from x.
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Let us construct a required map f : S → S. Define the restriction of f to U1 to be

the identity. Define the restriction of f to the end Sx × 1 of the cylinder Ci to be fi.

Extend f to every cylinder Ci from its boundary by some map going to either U1 or

its complement S \U1 according to the value εi = 1 or εi = 0, respectively. The spherical

caps U1 and S \ U1 are H-equivariantly contractible, hence such an extension is always

possible and can be made H-equivariantly.

Likewise, extend f to U2 from its boundary by some map going to either U1 or its

complement S \ U1 according to the value εℓ+1 = 1 or εℓ+1 = 0, respectively.

Clearly, f is H-equivariant and is the identity on U1 ∋ x.

Let us compute the degree of f over x. The degree of f |U1 is 1. The degree of f |Ci
is

the difference di − di−1 (where d0 = 1) of degrees with which the boundary components

of the cylinder are mapped to ∂U1 in case of εi = 1 and 0 in case of εi = 0. Likewise, the

degree of f |U2 is 0− dℓ = −dℓ in case of εℓ+1 = 1 and 0 in case of εℓ+1 = 0. So, the total

degree of f over x is as required.

The last lemma we need is used only in the proof of part (d) of Theorem 2.8.

Lemma 2.16. Let n be a positive integer which is not a prime power and not a twice

prime power. Then there exist integers d1, d2, . . . , dn−1 such that

• 1−
n−1∑︁
k=1

dk
(︁
n
k

)︁
= 0,

• dqα = 0 or dqα ≡ 1 (mod q) for any prime q and α > 0,

• d1 ≡ 1 (mod p) if n = pt + 1 for some prime p.

Proof. Consider all distinct representations of n as a sum of two powers of the same prime,

n = ps11 + pt11 = ps22 + pt22 = . . . = psℓℓ + ptℓℓ , 0 ≤ si < ti for each i = 1, . . . , ℓ. Note, that it

is possible that si = 0 for some i. Clearly, pi ̸= pj for all 1 ≤ i < j ≤ ℓ.

Put

• dk = 0 if k = ptii for some i,

• dk = 1 + pibk if k = psii for some i,

• dk = 1 + qbk if k ̸= psii and k ̸= ptii for all i and k = qα, α > 0 for some prime q,
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• dk = bk otherwise,

where integers bk will be chosen later. It is easy to see that the last two conditions on dk

in the statement of the lemma are satisfied by this assignment.

Define the number

N = 1−
∑︂
k=p

si
i

(︃
n

k

)︃
−

∑︂
k ̸=p

si
i , k ̸=p

ti
i , k=qα, α>0

(︃
n

k

)︃
.

Here the summation is over k satisfying the second or the third case above. Define

numbers ck as follows:

• ck = 0 if k = ptii for some i,

• ck = pi
(︁
n
k

)︁
if k = psii for some i,

• ck = q
(︁
n
k

)︁
if k ̸= psii and k ̸= ptii for all i and k = qα, α > 0 for some prime q,

• ck =
(︁
n
k

)︁
otherwise.

Plugging in these definitions we get

1−
n−1∑︂
k=1

dk

(︃
n

k

)︃
= N −

n−1∑︂
k=1

bkck.

It remains to prove that we can choose bk so that the right-hand expression becomes 0.

This will follow if we prove that GCD(c1, . . . , cℓ) divides N . To do that we first prove

that N is divisible by p1p2 . . . pℓ and then prove that GCD(c1, . . . , cℓ) divides p1p2 . . . pℓ.

By Lucas’s theorem, for every pi and every 1 ≤ k ≤ n− 1 the binomial coefficient
(︁
n
k

)︁
is divisible by p, unless k = psii or k = ptii , in which case

(︁
n
k

)︁
is equal 1 modulo pi. In the

definition of N above, for each i there is a single summand
(︁

n
p
si
i

)︁
and no summands

(︁
n
p
ti
i

)︁
.

Hence, N is divisible by pi for every i.

Let us prove that GCD(c1, . . . , cℓ) divides p1p2 . . . pl. Fix i. If k = psi , then ck = pi
(︁

n
psi

)︁
is not divisible by p2i because

(︁
n
psi

)︁
is not divisible by pi. Hence, GCD(c1, . . . , cℓ) is not

divisible by p2i for every i.

It remains to prove that GCD(c1, . . . , cℓ) is not divisible by any prime q which is not

equal to any of pi. To do so we find ck which is not divisible by q.



15

Suppose that q > n. Then
(︁
n
k

)︁
is not divisible by q for all k and hence all the non-zero

ck are also not divisible by q.

Suppose now that q < n. Write the base q expansion of n and decrease the leftmost

digit by 1, denoting the obtained number by k. Since n > q, the expansion had more than

1 digit and so n− k is divisible by q. On the other hand, n− ptii = psii is not divisible by

q, meaning that k ̸= ptii for all i.

Also, k is not a positive power of q, though it’s possible that k = 1. Indeed, assume

the contrary. Then, by the definition of k, either n = 2k, which is impossible because n

is not a twice prime power; or n is the sum of k and a larger positive power of q, which

is impossible because q is different from all pi.

So, k ̸= ptii for all i and k is not a positive power of q. Hence, either ck =
(︁
n
k

)︁
or ck = q′

(︁
n
k

)︁
for some prime q′ ̸= q. Both numbers are not divisible by q by Lucas’s

theorem. We have established that GCD(c1, . . . , cℓ) divides p1p2 . . . pl.

2.3 Proof of Theorem 2.8

In this section W is the orthogonal complement to δn ⊂ Rn, and S is the unit sphere

in W . The symmetric group Sn acts on Rn by permuting the coordinates. This action

induces an action on W and S. This way Sn can be considered as a subgroup of the

orthogonal group of W .

There is a Sn-equivariant homeomorphism between S and the boundary ∂∆n−1 of the

standard simplex, where Sn acts on ∂∆n−1 by permuting the barycentric coordinates. We

use this homeomorphism to identify S with ∂∆n−1. This way we can talk of barycentric

coordinates of points in S and of vertices and simplices of S.

Proof of the “only” part of Theorem 2.8(a) and of Theorem 2.8(b). Suppose that n = pk

for some prime p. Consider any point of S and split its barycentric coordinates into blocks

of equal coordinates. Suppose the sizes of the blocks are α1, . . . , αℓ. Then the orbit of the

point under Sn has size

n!

α1! · . . . · αℓ!
=

(︃
n

α1, . . . , αℓ

)︃
.
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The multinomial coefficient above is a product of binomial coefficients(︃
n

α1, . . . , αℓ

)︃
=

(︃
n

α1

)︃
·
(︃
n− α1

α2

)︃
·, . . . , ·

(︃
n− α1 − · · · − αℓ−1

αℓ

)︃
.

Hence, it is divisible by p, as the first factor is divisible by p by Lucas’s theorem, [58]. So,

the size of every orbit is divisible by p. Hence, by the “only if” part of Lemma 2.11, the

degree of any Sn-equivariant map S → S is 1 modulo p. This finishes the proof of the

“only” part of Theorem 2.8(a).

Suppose now that n = 2pk for some prime p ̸= 2. Then there is only oneSn orbit whose

size is not divisible by p. More precisely, it is the orbit of the center x of the subsimplex of

S on the first pk vertices. Indeed, considering the product of binomial coefficients above

and applying Lucas’s theorem we see that the first factor is not divisible by p only if

α1 = pk (note, that α1 = 2pk is impossible). Then the second factor is not divisible by

p only if α2 = α1 = pk. The stabilizer of x is Spk × Spk =: G. The orbit of x has size

|Sn|
|G| =

(︁
2pk

pk

)︁
which by Lucas’s theorem equals 2 modulo p.

So, by the “only if” part of Lemma 2.11, the degree of any Sn-equivariant map S → S

is equal modulo p to 1 − deg(f) |Sn|
|G| ≡ 1 − 2 · deg(f) (mod p), where f : S → S is some

G-equivariant map which is the identity in a neighborhood of x. It remains to prove that

deg(f) is either 0 or 1 modulo p.

Let x′ be the center of the subsimplex of S on the last pk vertices. Points x and x′ are

opposite to each other and are the only points of S fixed by G. The size of the G-orbit

of any other point of S is divisible by p. Indeed, consider any point of S different from x

and x′. As was said above, the size of its Sn orbit is divisible by p. Its G orbit is smaller

by a factor which divides |Sn|
|G| . And

|Sn|
|G| is not divisible by p.

Consider the G-equivariant homotopy h : S × [0, 1] → W such that

• h|S×0 = f ,

• h(S × 1) = f(x′),

• h is linear in t ∈ [0, 1], i.e., h(x, t) = (1− t)h(x, 0) + th(x, 1).

The degree of the constant map h|S×1, considered as a map to S, is zero. So, the

degree of f is equal to the degree of h over 0 ∈ W . Since f is the identity in small

neighborhood of U of x, then (h|U×[0,1])
−1(0) is finite. By the same argument as in the
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proof of the “only if” part of Lemma 2.11, we may assume, after a small G-equivariant

perturbation of h outside of U × [0, 1], that h−1(0) is finite and the degree can be counted

geometrically as the sum of local degrees at the points in h−1(0).

By the definition, h(x′, t) = f(x′) ̸= 0 for every t ∈ [0, 1]. So, the point (x′, t) is not in

h−1(0) for any t.

Since h is linear in t on U × [0, 1] (recall, that we didn’t perturb h on U × [0, 1]), there

is at most one t such that (x, t) ∈ h−1(0). For such t, the local degree of h at (x, t) over

0 ∈ Wn is 1 since f is the identity on U ∋ x.

For any other y ∈ S, y ̸= x, x′ the size of the G-orbit of (y, t), t ∈ [0, 1] is divisible by

p. So, the degree of h over 0 ∈ Wn, and hence the degree of f , is either 1 or 0 modulo p,

depending on whether (x, t) is in h−1(0) for some t ∈ [0, 1] or not. This finishes the proof

of Theorem 2.8(b).

Proof of Theorem 2.8(a,c,d). For every k = 1, . . . , n−1 pick the center ck of some (k−1)-

dimensional face of S. The Sn-orbit of ck contains
(︁
n
k

)︁
points and the stabilizer of ck in

the permutation group is the subgroup Gk := Sk × Sn−k ⊂ Sn. A small Gk invariant

neighborhood of ck is bounded by the sphere Sk := Σk ∗ Σn−k, where Σk is the boundary

of the standard simplex with k vertices.

Parts (a) and (c). In (a) and (c) we have that n is odd. Since n is odd, one of the

numbers k and n−k is even. The join of the antipodal map of the even dimensional factor

and the identity map of the odd dimensional factor gives a Gk-equivariant map Sk → Sk

of degree −1. By Corollary 2.14, for any integer dk there exists a Gk-equivariant map

S → S which is the identity in a neighborhood of ck and whose degree is dk. By Lemma

2.11, there exists a Sn-equivariant map S → S of degree

d = 1−
n∑︂

k=1

dk
|Sn|

|Sk ×Sn−k|
= 1−

n∑︂
k=1

dk

(︃
n

k

)︃
.

If n is not a prime power, by Lucas’s theorem the GCD of the binomial coefficients in

question is 1. So, after an appropriate choice of dk, the resulting degree d can attain any

integer value. This proves part (c) of the theorem.

Likewise, if n is a prime power with the base p, by Lucas’s theorem the GCD of the

binomial coefficients in question is p. So, after an appropriate choice of dk, the resulting
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degree d can attain any integer value which is 1 modulo p. This finishes the proof of part

(a) of the theorem, the “only” part of (a) was proved earlier.

Part (d). Let dk be some numbers whose existence is guaranteed by Lemma 2.16.

By Lemma 2.11, it is sufficient to prove that for each k such that dk ̸= 0 there is a Gk-

equivariant map fk : S → S of degree dk which is the identity in a neighborhood of ck.

By Corollaries 2.14 and 2.15, this means that it is sufficient to find a Gk-equivariant map

Sk → Sk of degree −1 or dk.

Finally, it is sufficient to find a Sk-equivariant map Σk → Σk or a Sn−k-equivariant

map Σn−k → Σn−k of degree −1 or dk. Indeed, using the join operation with the identity

map Σn−k → Σn−k or Σk → Σk, respectively, we can get a required map Sk → Sk of

degree −1 or dk.

Consider now all the possibilities for k.

k is even: As noted above, then there is a Sk-equivariant map Σk → Σk of degree −1.

k > 1 is odd and not a prime power: Then there is a Sk-equivariant map Σk → Σk of

any degree, including −1, by part (c) of the theorem.

k > 1 is odd and is a prime power with the base p: Then by the definition either

dk = 0 and there is nothing to prove; or dk ≡ 1 (mod p). In the latter case, by part (a)

of the theorem, there is a Sk-equivariant map Σk → Σk of degree dk.

k = 1 and n = pt + 1 for some prime p: Then dk ≡ 1 (mod p) by the definition. So,

by part (a) of the theorem, there is a Sn−k-equivariant map Σn−k → Σn−k of degree dk.

k = 1 and n ̸= pt + 1 for any prime p: Then n− k is odd and not a prime power. So,

by part (c) of the theorem, there is a Sn−k-equivariant map Σn−k → Σn−k of any degree

including −1.

2.4 Proof of Theorem 2.9

In this section W is the orthogonal complement to δn ⊂ (R2)n, and S is the unit sphere

in W . The symmetric group Sn acts on (R2)n by permuting the coordinates. This action

induces an action on W and S. This way Sn can be considered as a subgroup of the

orthogonal group of W .
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For any k, let Σk be the boundary of the standard simplex with k vertices. There is

a Sn-equivariant homeomorphism between S and the join Σn ∗ Σn; the group Sn acts

on Σn by permuting the barycentric coordinates and acts on Σn ∗ Σn diagonally. We use

this homeomorphism to identify S with Σn ∗ Σn. This way we can talk of barycentric

coordinates of points in S and of vertices and simplices of S.

Proof of Theorem 2.9. For every k = 1, . . . , n − 1 pick the center c′k of some (k − 1)-

dimensional face of Σn. Denote ck := (
c′k
2
,
c′k
2
) ∈ Σn ∗ Σn. The Sn-orbit of ck contains

(︁
n
k

)︁
points and the stabilizer of ck in the permutation group is the subgroupGk := Sk×Sn−k ⊂
Sn. Let sphere Sk be the boundary of a small Gk invariant neighborhood of ck.

The case of n odd of the theorem is already covered by Theorem 2.8(c). So, we may

assume that n is even.

Let us prove that there is a Gk-equivariant map Sk → Sk of degree −1. Without the

loss of generality we may assume that the last barycentric coordinate of c′k is 0. Consider

the map σ : Σn ∗ Σn → Σn ∗ Σn which swaps the last coordinate in the first factor with

the last coordinate in the second factor. This map is Gk-equivariant. Since n is even, the

map σ reverses the orientation of Σn ∗Σn. On the other hand, σ(ck) = ck. So, σ restricted

to Sk is the requiredGk-equivariant map of degree −1.

By Corollary 2.14, for any integer dk there exists a Gk-equivariant map S → S which

is the identity in a neighborhood of ck and whose degree is dk. By Lemma 2.11, there

exists a Sn-equivariant map S → S of degree

d = 1−
n∑︂

k=1

dk
|Sn|

|Sk ×Sn−k|
= 1−

n∑︂
k=1

dk

(︃
n

k

)︃
.

Since n is not a prime power, by Lucas’s theorem the GCD of the binomial coefficients

in question is 1. So, after an appropriate choice of dk, the resulting degree d can attain

any integer value, including zero.
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3 Eliminating higher-multiplicity

intersections

3.1 Main results

3.1.1 The topological Tverberg conjecture and almost r-embeddings

Throughout this chapter, let r and d be positive integers, and let K be a finite simplicial

complex; later we omit ‘finite simplicial’. A map f : K → Rd is an almost r-embedding

if fσ1 ∩ . . . ∩ fσr = ∅ whenever σ1, . . . , σr are pairwise disjoint simplices of K. (We

stress that this definition depends on the complex, i.e., a specified triangulation of the

underlying polyhedron.)

The well-known topological Tverberg conjecture, raised by Bajmoczy and Bárány [9]

and Tverberg [40, Problem 84] asserts that the (d + 1)(r − 1)-dimensional simplex does

not admit an almost r-embedding in Rd. This was proved in the case where r is a prime

[9; 14] or a prime power [75; 107], but the case of arbitrary r remained open and was

considered a central unsolved problem of topological combinatorics.

Recently and somewhat unexpectedly, it turned out that for r not a prime power

and d ≥ 3r there are counterexamples to the topological Tverberg conjecture. The

construction of these counterexamples follows an approach proposed in [59], which is

based on

• a general algebraic criterion for the existence of almost r-embeddings in codimension

at least 3 [59; 60] (the deleted product criterion, cf. Theorem 3.5 and Proposition

3.7 below), and
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• a result of Özaydin [75] that guarantees that the hypothesis of this criterion is satis-

fied whenever r is not a prime power (see [98, §3.3 Proof of the Özaydin Theorem 3.5:

localization modulo a prime] for a suitable reformulation and simplified exposition

of Özaydin’s theorem).

There seemed to be a serious obstacle to completing this approach: maps from the

(d + 1)(r − 1)-dimensional simplex to Rd do not satisfy the codimension 3 restriction.

(In a sense, the problem is rather a codimension zero problem.) Frick [32] was the first to

realize that this obstacle can be overcome by a beautiful combinatorial trick (Constraint

Lemma 3.4) discovered by Gromov [38] and independently by Blagojević–Frick–Ziegler

[20], and that thus the results of [75], [38; 20] and [60] combined yield counterexamples to

the topological Tverberg conjecture for d ≥ 3r+1 whenever r is not a prime power, cf. [32;

21]. Using a more involved method (‘prismatic maps ’) to overcome the obstacle, the di-

mension for the counterexamples was lowered to d ≥ 3r in [60]. The topological Tverberg

conjecture is still open for low dimensions d < 12, in particular, for d = 2.

For more detailed accounts of the history of the counterexamples, see the surveys [13],

[23, §1 and beginning of §5], [98], [114, §21.4.5], [15] and the references therein.

Here, we improve this and show that counterexamples exist for d ≥ 2r + 1 (see also

Remark 3.21.a):

Theorem 3.1. There is an almost 6-embedding of the 70-dimensional simplex in R13.

More generally, if r is not a prime power and d ≥ 2r + 1, then there is an almost

r-embedding of the (d+ 1)(r − 1)-dimensional simplex in Rd.

Any sufficiently small perturbation of an almost r-embedding is again an almost r-

embedding. So the existence of a continuous almost r-embedding is equivalent to the

existence of a piecewise linear (PL) almost r-embedding.

A result closely related to the topological Tverberg conjecture is the following theorem,

which generalizes a classical theorem (the case r = 2) of Van Kampen and Flores [105],

see also Lemma 3.19 below.

Theorem 3.2 (r-fold van Kampen–Flores Theorem; [82], [108, Corollary in §1]). If r is

a prime power and k ≥ 1, then there is no almost r-embedding of the k(r− 1)-skeleton of

the (kr + 2)(r − 1)-dimensional simplex in Rkr.
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The first ingredient for the proof of Theorem 3.1 is Part (a) of the following result,

which shows that Theorem 3.2 fails in a strong sense whenever r is not a prime power.

Theorem 3.3. (a) If k ≥ 2 and r is not a prime power, then every k(r−1)-dimensional

complex admits an almost r-embedding in Rkr.

(b) For every fixed k, r ≥ 2, k + r ≥ 5, almost r-embeddability of k(r − 1)-dimensional

complexes in Rkr is decidable in polynomial time.

For k ≥ 3, Theorem 3.3 is a consequence of [75] and [60]; for k = 2, it is a result of

this chapter. Theorem 3.3 is deduced from Theorem 3.5 below in §3.1.2.

The second ingredient for the proof of Theorem 3.1 is the following lemma, which was

proved in [38, 2.9.c], [20, Lemma 4.1.iii and 4.2] (see also [32, proof of Theorem 4], [21,

proof of Theorem 3.2] and the surveys [98, Constraint Lemma 3.2], [23, §4, §5]).

Lemma 3.4 (Constraint). If k, r are integers and there is an almost r-embedding of the

k(r−1)-skeleton of the (kr+2)(r−1)-dimensional simplex in Rkr, then there is an almost

r-embedding of the (kr + 2)(r − 1)-dimensional simplex in Rkr+1.

Before we proceed, we first show how to derive counterexamples to the topological

Tverberg conjecture from these results:

Proof of Theorem 3.1. It is well-known that the general case d ≥ 2r + 1 follows from the

‘boundary’ case d = 2r+1 [27, Proposition 2.5], [98, Lemma 3.1]. To prove the boundary

case, suppose r is not a prime power and let k = 2. By Theorem 3.3 (a), there is an almost

r-embedding of the 2(r − 1)-skeleton of the (2r + 2)(r − 1)-dimensional simplex in Rkr.

Thus, by Lemma 3.4, there exists an almost r-embedding of the (2r + 2)(r − 1)-simplex

in Rkr+1.

The proof of Theorem 3.3 is based on Theorem 3.5 below, which is an extension of a

general algebraic criterion for the existence of almost r-embeddings in codimension ≥ 3

[59; 60] to codimension 2.

Assume that dimK = k(r − 1) for some k ≥ 1, r ≥ 2, and that f : K → Rkr is a PL

map in general position. Then preimages y1, . . . , yr ∈ K of any r-fold point y ∈ Rkr (i.e.,

of a point having r preimages) lie in the interiors of k(r− 1)-dimensional simplices of K.

Choose arbitrarily an orientation for each of the k(r−1)-simplices. By general position, f
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is affine on a neighborhood Uj of yj for each j = 1, . . . , r. Take a positive basis of k vectors

in the oriented normal space to oriented fUj. The r-fold intersection sign of y is the

sign ±1 of the basis in Rkr formed by r such k-bases.1 The algebraic r-fold intersection

number f(σ1)· . . . · f(σr) ∈ Z is defined as the sum of the r-fold intersection signs of all

r-fold points y ∈ fσ1 ∩ . . . ∩ fσr. We call a PL map f in general position a Z-almost

r-embedding if fσ1· . . . · fσr = 0 whenever σ1, . . . , σr are pairwise disjoint simplices of

K. The sign of the algebraic r-fold intersection number depends on an arbitrary choice

of orientations for each σi, but the condition fσ1· . . . · fσr = 0 does not.

Theorem 3.5. If k ≥ 2, k + r ≥ 5 and a k(r − 1)-dimensional complex is Z-almost

r-embeddable in Rkr, then it is almost r-embeddable in Rkr.

The case r = 2 is a classical result of van Kampen, Shapiro and Wu [97, Lemma 4.2].

For k ≥ 3 Theorem 3.5 is the main result of [60]. In the present chapter, we generalize

this to k ≥ 2.

The proof of Theorem 3.5 for k ≥ 3 in [60] is based on a higher multiplicity gener-

alization [60, Theorem 17] of the classical Whitney trick [111] (see, e.g., [81, Whitney

Lemma 5.12] for a proof of the Whitney trick in the piecewise-linear setting). Our proof

of Theorem 3.5 for k ≥ 2 is based on a further generalization of the higher-multiplicity

Whitney trick that works for k ≥ 2, namely, the Local and Global Disjunction Theorems

3.9 and 3.11 that we will formulate in the next subsection (§3.1.2). Some readers may

consider the resulting proof for k ≥ 2 simpler than the proof for k ≥ 3 in [60]. See also

Remarks 3.12 and 3.17 below for further discussion of the proof ideas and related work.

The analogue of Theorem 3.5 for r = 2 and k = 1 is a classical result of graph theory

(the Hanani-Tutte Theorem [26; 104]). This analogue holds in a stronger form: a mod2-

analogue of Z-almost 2-embeddability in R2 implies planarity. For r = 2 and k ≥ 3 see

Remark 3.21.b.

The following Theorem 3.6 shows that the analogue of Theorem 3.5 fails for k = r = 2.

Freedman, Krushkal, and Teichner [31] proved that there is a 2-dimensional complex that

admits a Z-almost 2-embedding in R4, but not an embedding in R4. (This implies that the

Van Kampen obstruction to embeddability, whose definition we recall before Proposition

3.7 below, is incomplete for 2-dimensional complexes in R4.) Here, we strengthen their

1This is classical for r = 2 [24] and is analogous for r ≥ 3, cf. [60, § 2.2].
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result and show that their 2-dimensional complex does not even admit an almost 2-

embedding in R4.

Theorem 3.6. There exists a 2-dimensional complex that admits a Z-almost 2-embedding

in R4 but does not admit an almost 2-embedding in R4.

Theorem 3.6 is deduced from the Singular Borromean Rings Lemma 3.18 below in

§3.2.2. This deduction is essentially known [31], [97, §7].

To conclude this subsection, we state a reformulation of Z-almost r-embeddability in

Rkr, which allows one to deduce Theorem 3.3 from Theorem 3.5.

Let the simplicial r-fold deleted product K×r
∆ of K be

K×r
∆ :=

⋃︂
{σ1 × · · · × σr | σi a simplex of K, σi ∩ σj = ∅ for all i ̸= j},

on which the symmetric group Sr acts by permuting the factors.

Recall that d and r denote positive integers (see the first line of §1.1). The group Sr

acts on the set of real d× r-matrices by permuting the columns. Denote by S
d(r−1)−1
Sr

the

subset of such matrices for which every row sums up to zero and the sum of squares of

the matrix elements is equal to 1. This set is homeomorphic to the sphere of dimension

d(r − 1)− 1, and it is invariant under the action of Sr. In what follows, we will use this

in the special case d = kr.

For any general position PL map f : K → Rkr, the generalized van Kampen obstruction

is represented by the intersection cocycle that assigns to each kr(r− 1)-cell σ1 × . . .× σr

of K×r
∆ the algebraic intersection number fσ1· . . . · fσr. The obstruction is an element of

the equivariant cohomology group H
kr(r−1)
Sr

(K×r
∆ ;Z), where Z denotes the integers with a

suitable action ofSr (equivalently, this cohomology group is isomorphic to the cohomology

of the quotient space K×r
∆ /Sr with twisted integer coefficients); see [60, §4] for details.

The obstruction is zero if and only if the intersection cocycle is null-cohomologous.

Proposition 3.7. [60] Let K be a k(r−1)-dimensional complex. The following conditions

are equivalent:

(1) K is Z-almost r-embeddable in Rkr.

(2) The generalized van Kampen obstruction to Z-almost r-embeddability of K in Rkr

is zero.
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(3) There exists a Sr-equivariant map K×r
∆ → S

kr(r−1)−1
Sr

.

Proof. The implication (1) ⇒ (2) is trivial. The implication (2) ⇒ (1) is [60, Corol-

lary 44]. The equivalence (2) ⇔ (3) is proved using equivariant obstruction theory, see

[60, Theorem 40], [98, Proposition 3.6].

Proposition 3.8. [75; 60] If r is not a prime power, then every k(r − 1)-dimensional

complex admits a Z-almost r-embedding in Rkr.

Proof. Denote the complex by K. Since dimK = k(r− 1) we have dimK×r
∆ ≤ kr(r− 1).

We recall the following theorem of Özaydin [75] [98, the Özaydin’ Theorem 3.5] (also

following from Theorem 2.3): If r is not a prime power and X is a d(r − 1)-dimensional

complex with a free PL action of Sr, then there is a Sr-equivariant map X → S
d(r−1)−1
Sr

.

Now the proposition follows from Özaydin’s theorem (applied for d = kr and X = K×r
∆ )

and the implication (3) ⇒ (1) of Proposition 3.7.

Proof of Theorem 3.3. Part (a) follows from Theorem 3.5 together with Proposition 3.8.

Part (b) follows because by Theorem 3.5 (together with its trivial converse) for each

k ≥ 2, k + r ≥ 5, almost r-embeddability of a k(r − 1)-dimensional complex K in Rkr

is equivalent to each property of Proposition 3.7. Of these, Property (2) is decidable in

polynomial time, see [60, p. 32, Proof of Corollary 9] (this is based on algorithms for

solving system of linear equations over the integers [101]).

3.1.2 Ideas of the proof of Theorem 3.5: Disjunction Theorems

We first formulate the simpler Local Disjunction Theorem, which we consider interesting

in itself and which illuminates in simple terms ‘the core’ of the proof of Theorem 3.5.

Let Bd := [0, 1]d denote the standard PL ball and Sd−1 = ∂Bd the standard PL sphere.

We need to speak about PL balls of different dimensions and we will use the word ‘disk’

for lower-dimensional objects and ‘ball’ for higher-dimensional ones in order to clarify the

distinction (even though, formally, the disk Dd is the same as the ball Bd). We denote

by ∂M , respectively M̊ , the boundary, respectively the interior, of a manifold M . A map

f : M → Bd from a manifold with boundary to a ball is called proper, if f−1Sd−1 = ∂M .

In this chapter we work in the PL category, in particular, all disks, balls and maps are

PL.
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Denote by

D = D1 ⊔ . . . ⊔Dr

the disjoint union of r disks of dimension k(r − 1).

Theorem 3.9 (Local Disjunction). If k ≥ 2 and f : D → Bkr is a proper general position

PL map such that fD1· . . . · fDr = 0 ∈ Z, then there is a proper general position PL

map f ′ : D → Bkr such that f ′ = f on ∂D and f ′D1 ∩ . . . ∩ f ′Dr = ∅.

The condition fD1· . . . · fDr = 0 can be called algebraic triviality, and the condition

fD1 ∩ . . . ∩ fDr = ∅ can be called geometric triviality.

The case r = 2 of Theorem 3.9 is known, see Remark 3.21.c. The case k ≥ 3 is

essentially proved in [60, Theorem 17] (in fact, the case k ≥ 3 of Theorem 3.9 is the only

part of quite technical [60, Theorem 17] required to prove Theorem 3.5 for k ≥ 3). The

case r ≥ 3, k = 2 is a result of this chapter.

Theorem 3.9 for r ≥ 3 follows from the Global Disjunction Theorem 3.11.(a)-(b) below.

The analogue of Theorem 3.9 for k = 1 clearly holds when r = 2 and fails for each

r ≥ 3:

Theorem 3.10. For each r ≥ 3 take k = 1 in the definition of D. Then there is a proper

general position PL map f : D → Br such that fD1· . . . · fDr = 0 but there is no proper

general position PL map f ′ : D → Br such that f ′ = f on ∂D and f ′D1 ∩ . . .∩ f ′Dr = ∅.

n1 p1 p2 n2

S1

S1

S1

Figure 3.1: The boundary of an example corresponding to Theorem 3.10 for r = 3.

As an example corresponding to Theorem 3.10 one can take an extension of the map

f |∂D constructed in the proof of Lemma 3.20 below. For r = 3 see Figure 3.1; this

construction might be known. For r = 3 Theorem 3.10 could be reproved using Figure 3.1

and [70].

The Local Disjunction Theorem 3.9 can be globalized, i.e. generalized to other con-

nected orientable manifolds instead of disks and balls, including closed manifolds in Rd
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rather than proper manifolds in Bd. For k ≥ 3 see [60, Theorem 17], for k = r = 2 see [84]

and references therein. Let us state a polyhedral global version required to prove Theorem

3.5. (For ornamental global versions see §3.1.3.)

We call a point y ∈ Rd a global r-fold point of a map f : K → Rd if y has r preimages

lying in pairwise disjoint simplices of K, i.e., y ∈ fσ1∩ . . .∩ fσr and σi∩σj = ∅ for i ̸= j.

(Thus, f is an almost r-embedding if and only if it has no global r-fold points.)

Assertion (Dk,r). Let

• K be a k(r − 1)-dimensional complex,

• f : K → Bkr a general position PL map,

• σ1, . . . , σr pairwise disjoint simplices of K,

• x, y ∈ fσ1 ∩ . . . ∩ fσr ⊂ B̊kr two global r-fold points of opposite r-fold intersections

signs.

Then there is a general position PL map f ′ : K → Bkr such that f = f ′ on K − (̊σ1 ⊔
· · · ⊔ σ̊r), and the set of global r-fold points of f ′ (with signs) is equal to the set of global

r-fold points of f (with signs) minus {x, y}.

This can be informally described as ‘cancelation of a pair of global r-fold points of

opposite sign’. The Local Disjunction Theorem 3.9 is such a cancelation in a restricted

local situation. So these are partial analogues of the Whitney trick, but we prefer a

self-descriptive name.

Assertion (D1,2) is a version of ‘redrawing of a graph in the plane’ [83, §4]. It would

be interesting to know if it is true.

Theorem 3.5 (Z-almost r-embeddability implies almost r-embeddability), as well as

Theorem 3.13 below (classification of ornaments) follow from the following Global Dis-

junction Theorems 3.11.(a)-(b).

Theorem 3.11 (Global Disjunction). (a) [60] Assertion (Dk,r) is true for each k ≥ 3

and r ≥ 2.

(b) Assertion (D2,r) is true for each r ≥ 3.
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(c) Assertion (D2,2) is false.

(d) Assertion (D1,r) is false for each r ≥ 3.

Proof of Theorem 3.5 assuming the Global Disjunction Theorems 3.11.(a)-(b). Let f : K →
Rkr be a Z-almost r-embedding. Take pairwise disjoint simplices σ1, . . . , σr of K with

fσ1 ∩ . . . ∩ fσr ̸= ∅. Since f is a Z-almost r-embedding, fσ1 ∩ . . . ∩ fσr consists of pairs
of global r-fold points of opposite sign. By assertion (Dk,r), we eliminate these pairs one

by one, without introducing any new global r-fold points in the process. By repeating

this for every r-tuple of pairwise disjoint simplices, we obtain an almost r-embedding

K → Rkr.

The Global Disjunction Theorems 3.11.(a)-(b) are proved in §3.2.1. The Global Dis-

junction Theorem 3.11.c follows because assertion (D2,2) implies the negation of Theorem

3.6 analogously to the above proof. The Global Disjunction Theorem 3.11.d follows be-

cause assertion (D1,r) implies the negation of Theorem 3.10 analogously to the above

proof.

Remark 3.12. It is well-known that the Whitney trick works in codimension ≥ 3 and

fails in codimension 2 [52] without an assumption of simple connectivity [81, Whit-

ney Lemma 5.12.2 and p. 72, the first condition (2)], which is not satisfied in our ap-

plications.

Usually it is non-trivial to make ‘Whitney-trick-arguments’ work for codimension 2;

a famous example is Freedman’s proof of the Poincaré conjecture in dimension 4 [53,

Chapter 13]. The non-triviality of Theorem 3.5 for k = 2 is also seen from Theorem 3.6

(which shows that the analogous result for r = 2 is false) and from Theorems 3.9 and

3.13.a (which show that the analogous result for ornaments is true even for r = 2). In

other words, the codimension 2 situation is sufficiently delicate to provide different results

for different r and for different conditions on r-fold intersections.

A crucial insight for making a version of the Whitney trick work in our context is

that, unlike in the classical case of embeddings, we can permit singularities (as long as

they are of multiplicity less than r). This allows us to make modifications by homotopy

as opposed to isotopy, which gives us more flexibility. Together with a restructuring of

the arguments, this also leads to a simpler proof of the codimension 3 result, which is



30

presented here and in [98, §3.5], and which some readers may wish to read before studying

the proof for codimension k ≥ 2 in §3.2.1. For further comments on the proof ideas and

related work, see also Remark 3.17 below.

3.1.3 Classification of ornaments and doodles

In this subsection we describe another application of our methods in the topological

context of higher multiplicity linking.

Throughout this subsection S = S1 ⊔ . . . ⊔ Sr will denote a disjoint union of r copies

of Sn and D = D1 ⊔ . . . ⊔Dr a disjoint union of r copies of Dn+1; the dimensions of S,D

will be clear from the context.

An r-component n-ornament in Sd is a general position PL map f : S → Sd such

that fS1 ∩ . . . ∩ fSr = ∅.

Let r ≥ 2 and f be an r-component (k(r − 1) − 1)-ornament in Skr−1. Extend f to

a general position PL map g : D → Bkr (the extension is constructed e.g., by ‘coning’

each f |Si
to interior point of Bkr, a distinct cone point for each component). Define the

r-linking number of f by

lk f := gD1· . . . · gDr ∈ Z.

This definition is a natural generalization of the classical linking number (obtained for

r = 2), and µ-invariant of [30] (obtained for r = 3 and k = 1).2 Analogously to the case

r = 2 one can check that lk f is well-defined, i.e., is independent of the choices of the

extension g.3

Clearly, if an r-component (k(r−1)−1)-ornament in Skr−1 bounds a map g : D → Bkr

such that gD1∩ . . .∩gDr = ∅, then the ornament has zero r-linking number. The converse

2It is also similar in spirit, but different from, the Massey-Milnor triple linking number [77], [89,

§4.5 ‘Massey-Milnor number modulo 2’], which distinguishes Borromean rings from the standard link.

The 3-linking number of Borromean rings is not defined, because they do not form an r-component

(k(r − 1)− 1)-dimensional ornament in Skr−1 for any k, r. For the relation see [30, Theorem 3].
3By induction, it suffices to prove this for two extensions g and g′ that agree on all but one disk,

say g|Di = g′|Di for every i < r. Then gDr ∪ (−g′Dr) carries an integer cycle in Bkr. This cycle is

the boundary of some integral (k(r − 1) + 1)-dimensional chain C in Bkr with C ∩ Skr−1 = fSr. Since

fSr−1 = −∂gDr−1 ⊂ Skr−1, gDi ∩ Skr−1 = fSi, and f is an ornament, by [60, Definition 29 and

Lemma 28] it follows that gD1· . . . · gDr − g′D1· . . . · g′Dr = gD1· gDr−2· fSr−1·C = 0.
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is true for every k ≥ 2, which is a generalization of the Local Disjunction Theorem 3.9

and a particular case of Theorem 3.13.a below. For k = 1, the converse clearly holds when

r = 2 and fails for each r ≥ 3 by Theorem 3.10.

Denote I := [0, 1]. An ornament concordance is a map F : S × I → Sd × I such

that

F (·, t) ⊂ Sd×{t} for each t = 0, 1, and F (S1×I)∩F (S2×I)∩ . . .∩F (Sr×I) = ∅.

We remark that in the special case r = 2, ornaments and ornament concordance are

commonly referred to as link maps and link concordance, respectively. Analogously to

the case r = 2 [87, §77], lk f is invariant under ornament concordance.

An ornament is called a doodle if its restriction to each connected component is an

embedding. Likewise, a doodle concordance is an ornament concordance such that its

restriction to each connected component is an embedding.

An ornament [doodle] is called trivial if it is concordant to an ornament [doodle] whose

components lie in pairwise disjoint balls. For (r−1)d > rn+1 (⇔ (r−1)(d+1) > r(n+1))

any r-component n-ornament in Sd is trivial by general position.

Theorem 3.13. The r-linking number defines a 1-1 correspondence between Z and the

set of

(a) ornament concordance classes of r-component (k(r−1)−1)-ornaments (or doodles)

in Skr−1 for each r, k ≥ 2.

(b) doodle concordance classes of r-component (k(r − 1)− 1)-doodles in Skr−1 for each

r ≥ 2, k ≥ 3.

Theorem 3.13 for r = 2 is well-known. The case k ≥ 3 = r of Theorem 3.13.a is due

to Melikhov [68, p. 7]. For k ≥ 3 and each r, Theorem 3.13 can be derived from [60,

Theorem 17], for Part (b) using Remark 3.17.b. Theorem 3.13.a for r ≥ 3, k = 2 is a

result of this chapter. Our proof (§3.2.3) works for any r, k ≥ 2.

The analogue of Theorem 3.13.a for k = 1 and r = 2 is clearly true, for k = 1 and

each r ≥ 3 it is false by Theorem 3.10. See Remark 3.22 below for further comments on

ornaments.
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The Local Disjunction Theorem 3.9 is a particular case of the following ‘ornamental’

analogue of Theorem 3.5. The existence of an ornament is trivial, so we state a non-trivial

relative version.

Theorem 3.14. Assume that k, r ≥ 2,

• K = K1 ⊔ . . . ⊔Kr is a (k − 1)r-dimensional complex,

• f : K → Bkr is a general position map,

• L := f−1Skr−1 ⊂ K is a subcomplex and f |L is an r-component ornament in Skr−1,

• fσ1· . . . · fσr = 0 ∈ Z whenever σ1 ⊂ K1, . . . , σr ⊂ Kr are (k− 1)r-simplices of K.

Then there is an r-component ornament f ′ : K → Bkr such that f ′ = f on L.

For r = 2 this is known [90]. For r ≥ 3 this follows from the Global Disjunction

Theorems 3.11.(a)-(b) analogously to the above proof of the injectivity in Theorem 3.13.a.

A proof which works for any k, r ≥ 2 could perhaps be given by stating and proving the

ornamental version of the Global Disjunction Theorems 3.11.(a)-(b) (which works even

for k = r = 2). It is interesting to compare the case k = r = 2 of Theorem 3.14 to the

Global Disjunction Theorems 3.11.(c).

3.2 Proofs

3.2.1 Proof of the Global Disjunction Theorems 3.11.(a)-(b)

Informally speaking, the first step in the proof of the Global Disjunction Theorems

3.11.(a)-(b) is to make the (r − 1)-fold intersection fσ1 ∩ . . . ∩ fσr−1 connected. See

the following Lemmas 3.15 and 3.16.

Throughout this section, let us fix orientations on balls Bd and disks Dm.

Lemma 3.15 (Surgery of Intersection). Assume that d− 2 ≥ p, q and that f : Dp → Bd,

g : Dq → Bd are proper embeddings in general position such that fDp ∩ gDq is a proper

submanifold (possibly disconnected) of Bd containing points x, y.

(a) If p + q > d then there is a proper general position map f ′ : Dp → Bd with the

following properties:
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• f ′ = f on ∂Dp and on a neighborhood of {f−1x, f−1y};

• x, y lie in the interior of an embedded (p+ q−d)-disk contained in f ′Dp∩gDq.

(b) If p+ q = d ≥ q+3, {x, y} = fDp∩ gDq and x, y have opposite double intersection

signs, then there is a general position map f ′ : Dp → Bd such that f ′ = f on ∂Dp

and f ′Dp ∩ gDq = ∅.

This lemma is known for d − 3 ≥ p, q (then Part (b) is the classical Whitney trick,

and for Part (a) see Remark 3.17.a), and Part (b) is known also for q = 2 [100, Lemma

2.4]. Passage to d− 2 ≥ p, q in (a), or to d− 2 = p in (b), requires losing the injectivity

properties of f, g. Part (b) d− 2 = p ≥ 3 is proved by seeing that f |∂Dp is null-homotopic

in Bd − gDq (an analogue for d− 2 = p = 2 is discussed in Remark 3.21.c).

In what follows, we first use the Surgery of Intersection Lemma 3.15 to prove the

following Lemma 3.16 and the Global Disjunction Theorem 3.11.(a)-(b). The proof of the

Surgery of Intersection Lemma 3.15 is then given at the end of this subsection.

In the rest of this section, we abbreviate Bkr to B.

Lemma 3.16. Assume that k, r ≥ 2,

• K is a k(r − 1)-dimensional complex,

• f : K → B a general position PL map,

• σ1, . . . , σr are pairwise disjoint top-dimensional simplices of K,

• x, y ∈ fσ1∩ . . .∩fσr ⊂ B̊ are two global r-fold points of opposite r-fold intersections

signs.

Then for each n = 1, . . . , r − 1 there is a general position PL map f ′ : K → B such that

• f = f ′ on K − (̊σ1 ⊔ · · · ⊔ σ̊r),

• x, y lie in the interior of an embedded k(r − n)-disk contained in f ′σ1 ∩ . . . ∩ f ′σn,

and

• f ′ has the same global r-fold points with the same signs as f .
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Proof. The proof is by induction on n. The base n = 1 follows by setting f ′ = f . The

required disk is then a small regular neighborhood in fσ1 of a path in fσ1 joining x to y

and avoiding the self-intersection set {x ∈ K : |f−1fx| ≥ 2} of f .

In order to prove the inductive step assume that n ≥ 2 and the points x, y lie in the

interior of an embedded k(r − n+ 1)-disk σ− ⊂ fσ1 ∩ . . . ∩ fσn−1. By general position

dim(σ− ∩ fσn) ≤ k(r − n+ 1) + k(r − 1)− kr = k(r − n).

Since f -preimages of x lie in the interiors of σ1, . . . , σr, the intersections of fσi and small

regular neighborhoods of x, y in B equal to the intersections of affine spaces and the

neighborhoods. Hence the regular neighborhoods of x, y in σ− ∩ fσn are k(r − n)-balls.

Take points x′, y′ in such balls. Take general position paths λ+ ⊂ fσ̊n and λ− ⊂ σ−

joining x′ to y′. By general position dimension of the self-intersection set of f does not

exceed 2k(r − 1)− kr < k(r − 1)− 1. So the union λ+ ∪ λ− is an embedded circle in B̊.

Since k, r ≥ 2, we have kr ≥ 4. Hence by general position this circle bounds an embedded

2-disk δ ⊂ B̊. Since k ≥ 2, we have k(r − 1) + 2 ≤ kr. Hence by general position

δ ∩ fK = λ+ ∪ λ− ⊔ {fp1, . . . , fps}

for some points p1, . . . , ps ∈ K outside the self-intersection set of f and the (k(r−1)−1)-

skeleton of K, and s = 0 for k ≥ 3.

Let Oδ be a small regular neighborhood of δ in B̊. Then Oδ is a kr-ball and f−1Oδ is

the union of

• a regular neighborhood Dn
∼= Dk(r−1) of the arc f |−1

σn
λ+ in σn;

• regular neighborhoods Di
∼= Dk(r−1) of the arcs f |−1

σi
λ− in σi for each i = 1, . . . , n−1;

• pairwise disjoint k(r− 1)-disks that are regular neighborhoods of pj in the k(r− 1)-

simplices of K containing them, for each j = 1, . . . , s; these disks are disjoint from

the self-intersection set of f , and their f -images are disjoint from fD1 ∪ . . . ∪ fDn.

Then f |Di
: Di → Oδ is proper for each i = 1, . . . , n, and σ− ∩ Oδ is a proper

k(r− n+1)-ball in Oδ. Since the regular neighborhoods of x, y in σ− ∩ fσn are k(r− n)-

balls, the set σ− ∩Oδ ∩ fDn is a proper k(r−n)-submanifold of Oδ. Hence we can apply

the Surgery of Intersection Lemma 3.15.a to fDn and σ− ∩ Oδ in Oδ. For the obtained
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map f ′ : Dn → Oδ the points x, y ∈ f ′σ1 ∩ . . . ∩ f ′σr ⊂ B̊ are two global r-fold points

of opposite r-fold intersections signs, lying in the interior of an embedded k(r − n)-disk

contained in σ− ∩ f ′Dn. Extend f
′ by f outside Dn.

Clearly, the first two bullet points in the conclusion of Lemma 3.16 are fulfilled. All

the global r-fold points of f lie outside Oδ, and f = f ′ outside Oδ. Therefore all the

global r-fold points of f are also global r-fold points of f ′, and they have the same sign.

It remains to check that f ′ does not have new global r-fold points inside Oδ. In Oδ the

map f ′ can have global points of multiplicity at most n in f ′Dn ∩ fD1 ∩ . . . ∩ fDn−1, or

of multiplicity 2 in the intersection of f ′Dn with the f -image of a small neighborhood of

some pj. Since r > n ≥ 2, none of these global points are r-fold.

Thus the map f ′ is as required.

Proof of the Global Disjunction Theorems 3.11.(a)-(b). By Lemma 3.16 for n = r− 1 we

may assume that the points x, y lie in the interior of an embedded k-disk σ− ⊂ fσ1∩ . . .∩
fσr−1. Choose orientations of σ1, . . . , σr−1. These orientations define an orientation on σ−

(this is analogous to the definition of the r-fold intersection sign given before Theorem 3.5,

cf. [60, §2.2] for a longer formal exposition). Since x, y ∈ fσ1 ∩ . . . ∩ fσr have opposite

r-fold intersections signs, x, y ∈ σ− ∩ fσr have opposite double intersections signs [60,

Lemma 27.cd].

Analogously to the proof of Lemma 3.16 (except that we start from x, y not from

x′, y′) we construct a kr-ball Oδ ⊂ B̊ and k(r − 1)-disks Di ⊂ σ̊i for i = 1, . . . , r, such

that x, y ∈ Oδ are the only global r-fold points in Oδ and f |Di
: Di → Oδ is proper.

Since either r ≥ 3 or k ≥ 3, we have kr ≥ dimσ− +3. So we can apply the Surgery of

Intersection Lemma 3.15.b to fDr and σ−∩Oδ in Oδ. For the obtained map f ′ : Dr → Oδ

we have σ− ∩ f ′Dr = ∅. Extend f ′ by f outside Dr.

Clearly, f = f ′ on K − (̊σ1 ⊔ . . .⊔ σ̊r). Since f = f ′ outside of Dr, all the global r-fold

points of f except x, y are also global r-fold points of f ′, and they have the same sign. It

remains to check that f ′Dr contains no global r-fold points of f ′. Recall the description

of f−1Oδ from the bullet points in the proof of Lemma 3.16.

If r = 2, then k ≥ 3, so s = 0. Also Oδ ∩ σ− = f(D1) = f ′(D1). So f ′(K) ∩ Oδ =

f ′(D1) ⊔ f ′(D2) = (Oδ ∩ σ−) ⊔ f ′(D2), where the union is disjoint by the construction of

f ′. Therefore f ′D2 = f ′Dr contains no global 2-fold points of f ′.



36

If r > 2, then f ′|K\Dr has no (r−1)-fold point inOδ except for σ−∩Oδ. By construction
σ− ∩ f ′Dr = ∅, so again f ′Dr contains no global r-fold points of f ′.

Proof of the Surgery of Intersection Lemma 3.15.a. To simplify notation, let us write

Q := gDq and M := fDp ∩Q

throughout this proof. Furthermore, let m := dimM = p + q − d. Note that the

assumptions on the dimensions p, q, d imply that m+ 2 ≤ p, q and d ≥ 5.

The chosen orientations ofBd, Dp, andDq define an orientation onM (this is analogous

to the definition of the r-fold intersection sign given before Theorem 3.5, cf. [60, §2.2] for
a longer formal exposition).

Let us first assume that x and y lie in different connected components of M . We

proceed in two steps to reduce this case to the case where x and y lie in the same connected

component of the intersection; it will then be easy to deal with the latter situation.

Step 1. Ambient 1-surgery. (“piping”.) Pick two generic points a, b ∈ M such that

a lies in the same connected component of M as x, and b lies in the same connected

component of M as y. Pick a general position path ℓ ⊂ Q connecting a and b.

Figure 3.2: Piping

By general position, ℓ is disjoint (and hence at a positive distance from) the set of

points at which Q is not locally flat in Bd (see [81, p. 50] for the definition of local flatness);

this follows because the set of non-locally flat points of the codimension ≥ 2 submanifold

Q ⊂ Bd has codimension ≥ 2 in Q.4

4Let us prove the latter statement. Take a triangulation of Bd such that Q is a subcomplex of this

triangulation. For each point c ∈ Q the pair (lkBd c, lkQ c) is a codimension ≥ 2 pair of spheres. If

c is outside the codimension 2 skeleton of this subcomplex, then dim lkQ c ∈ {−1, 0}. Hence the pair

(lkBd c, lkQ c) is unknotted. Thus, Q is locally flat in Bd at c.
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We now perform ambient 1-surgery on M in Q as described in [81, pp. 67-68] (where

this procedure is called “piping”) to obtain connected manifold M+; more precisely, take

an embedding L : I × Dm → Q that satisfies the following properties (where we use

m ≤ q − 2 for the second property):

• L(I × 0) = ℓ,

• M ∩ L(I ×Dm) = L({0, 1} ×Dm) is a regular neighborhood of {a, b} in M ,

• the orientation of M on this neighborhood is compatible with the ‘boundary’ orien-

tation of L({0, 1} ×Dp), and

• L(I ×Dm) is disjoint from x, y and from any non-locally flat points of Q in Bd.

We define

M+ :=
(︁
M \ L({0, 1} × D̊m)

)︁
∪ L(I × ∂Dm).

By construction, x and y lie in the same component of M+, and M+ is orientable. We

give M+ the orientation induced by that of M .

By general position fDp and Q are transverse at {a, b}. Since ℓ does not contain non-

locally flat points of Q in Bd, the submanifold Q is locally flat in Bd in a neighborhood

of ℓ. Hence, we can extend L to an embedding L : I ×Dp → Bd such that

• Q ∩ L(I ×Dp) = L(I ×Dm),

• fDp ∩ L(I ×Dp) = L({0, 1} ×Dp) is a regular neighborhood of {a, b} in fDp, and

• the orientation of fDp on this neighborhood is compatible with the ‘boundary’

orientation of f |−1
Dp(L({0, 1} ×Dp)).

Denote by (S1 × Sp−1)0 the manifold S1 × Sp−1 with an open p-disk removed. Let

h : (S1 × Sp−1)0 → B

be the proper embedding obtained by adding the embedded 1-handle L(I×∂Dp) to fDp;

thus,

imh =
(︁
fDp \ L({0, 1} × D̊p)

)︁
∪ L(I × ∂Dp).

By construction, the intersection imh∩Q =M+ is connected. (Note that h is an embed-

ding of (S1 × Sp−1)0, not of D
p; this will be repaired in the next step.)
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Step 2. Ambient 2-surgery. (“unpiping”). We now perform ambient 2-surgery on imh

in Q to obtain a proper embedding f ′ : Dp → B such that imh∩Q =M+ ⊆ f ′Dp∩Q (this

is analogous to [60, Lemma 38], where the corresponding operation is called “unpiping”).

Figure 3.3: Unpiping

Pick a point ∗ ∈ Sp−1 in general position with respect to h, and a general position

embedded 2-disk δ ⊂ Bd such that ∂δ = h(S1 × ∗). By general position, ∂δ is disjoint

from Q, and δ intersects Q in a finite set (empty if q ≤ d−3) of points disjoint from imh.

Denote by Oδ a small regular neighborhood of δ in B. Take a small regular neighbor-

hood U ∼= Dp−1 of ∗ in Sp−1. We may assume that h(S1 × U) ⊂ Oδ. Since Oδ ∼= Bd, the

restriction S1 × ∂U → Oδ of h extends to a map j : D2 × ∂U → Oδ.

Let

∆ :=
(︁
(S1 × Sp−1)0 \ (S1 × Ů)

)︁
∪ (D2 × ∂U) ∼= Dp.

Define

f ′ : ∆ → Bd by f ′(x) :=

⎧⎪⎨⎪⎩h(x) if x ∈ N \ (S1 × Ů),

j(x) if x ∈ D2 × ∂U.

.

By construction of f ′, f = f ′ on ∂Dp and in a neighborhood of x, y (identifying ∆ with

Dp). Moreover, f ′∆ ∩Q consists of the manifold imh ∩Q plus possibly some additional

further components. In particular, x and y lie in the same connected component f ′∆∩Q,
and this component is a manifold of dimension m = p+ q − d.

To complete the proof, take a general position path ℓ ⊂ f ′∆ ∩Q connecting x and y.

Then a regular neighborhood of ℓ in f ′∆∩Q is then an m-disk that contains x and y.
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Proof of the Surgery of Intersection Lemma 3.15.b. Denote X := Bd−gDq. Consider the

composition

πp−1(X)
h→ Hp−1(X)

∼=→ H0(D
q) ∼= Z

of the Hurewicz homomorphism and the (homological) Alexander duality isomorphism.

This composition carries [f |Sp−1 ] to fDp· gDq. 5 The assumptions of part (b) imply that

fDp· gDq = 0. By general position X is (p−2)-connected. Since p ≥ 3, we have p−2 ≥ 1,

so by the Hurewicz theorem h is an isomorphism. Hence the restriction f : Sp−1 → X is

null-homotopic. Thus there is an extension f ′ : Dp → X of the restriction. This is the

required map.

Remark 3.17. (a) Lemmas and Lemma 3.16 are generalizations, to (r − 1)-multiplicity

and to codimension 2, of the ‘high-connectivity’ version of the Whitney trick [45],

[42, Lemma 4.2], [43, Theorem 4.5 and appendix A], [80, Theorem 4.7 and ap-

pendix].The lemmas are proved by ambient surgery, i.e. by first adding to fσr−1

‘an embedded 1-handle’ along a path joining x to y in fσ1 ∩ . . . ∩ fσr−1 (which is

assumed by induction to be already connected), and then cancelling ‘an embedded

2-handle’ along the ‘Whitney disk’, which for codimension ≥ 3 was done in [44, §3]
(r = 2), [68, proof of Theorem 1.1 in p. 7] (r = 3).

For a generalization to the ‘metastable’ version see [61; 94].

(b) Applying the Disjunction Theorems in the form presented here may introduce new

r-fold points (albeit no global ones). On the other hand, for k ≥ 3, the higher-

multiplicity Whitney trick in [60, Theorem 17] does not create any new r-fold points

at all. This difference is immaterial for the study of almost r-embeddings or orna-

ments (see §3.1.3), but it is important in for the study of doodles (see §3.1.3).

For k ≥ 3, our proof can perhaps be modified to show that in the Local Disjunction

Theorem 3.9, under the additional assumption that f embeds each disk, we may ob-

tain additionally that the resulting map f ′ embeds each disk, as in [60, Theorem 17].

5This is one of the equivalent definitions of Alexander duality isomorphism, see Alexander Duality

Lemmas of [91; 92]. Another equivalent definition is as follows. Take a small oriented disk Dp
g ⊂ Bd

whose intersection with gDq consists of exactly one point of sign +1 and such that ∂Dp
g ⊂ X. Then

the Alexander duality carries the generator ∂Dp
f of Hp−1(X) to the generator of H0(D

q) defined by the

orientation of Dq.
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Such an improvement might be obtained by an application of the corresponding

(known) ‘injective’ version of the Surgery of Intersection Lemma 3.15.

If k = r = 2, we cannot obtain this (as e.g. disks extending the Whitehead link

show). It would be interesting to know if we can obtain this for k = 2, r ≥ 3.

3.2.2 The Singular Borromean Rings and proof of Theorem 3.6

We consider the following lemma (required for Theorem 3.6) interesting in itself.

Lemma 3.18 (Singular Borromean Rings). For each n = 2l let T := Sl × Sl be the

2l-dimensional torus with meridian m := Sl × · and parallel p := · × Sl, and let Sn
p and

Sn
m be copies of Sn. Then there is no PL map f : T ⊔ Sn

p ⊔ Sn
m → Rn+l+1 satisfying the

following three properties:

(i) the f -images of the components are pairwise disjoint;

(ii) fSn
p is linked modulo 2 with fp and is not linked modulo 2 with fm, 6 and

(iii) fSn
m is linked modulo 2 with fm and is not linked modulo 2 with fp.

Proof. The proof uses a ‘triple intersection’ homology argument analogous to the classical

proof showing that Borromean rings are linked [77], [89, §4.5 ‘Massey-Milnor number

modulo 2’]. The reader might want to read this proof first for n = 2 and l = 1.

Assume to the contrary that the map f exists. Without loss of generality, we may

assume that f is in general position.

Throughout the proof all the chains and cycles are assumed to have Z2 coefficients, and

all the equalities are congruences modulo 2. Since all the chains below are represented by

general position polyhedra, chains could be identified with their supporting bodies. We

denote by ∂ the boundary of a chain.

We can view f(T ), f(Sn
p ), and f(S

n
m) as 2l-, n- and n-dimensional PL cycles in general

position in Rn+l+1. Denote by CT , Cp, and Cm singular cones in general position over

6See the well-known definition of ‘linked modulo 2’ e.g. in [87, §77] or in [89, §4.2 ‘Linking modulo 2

of curves in space’].
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f(T ), f(Sn
p ), and f(Sn

m), respectively. We view these cones as (2l + 1)-, (n + 1)- and

(n+ 1)-dimensional PL chains. The contradiction is

0 =
(1)

|∂(CT∩Cp∩Cm)| =
(2)

| ∂CT⏞⏟⏟⏞
=f(T )

∩Cp∩Cm|+ |CT∩ ∂Cp⏞⏟⏟⏞
=f(Sn

p )

∩Cm|+ |CT∩Cp∩ ∂Cm⏞⏟⏟⏞
=f(Sn

m)

| =
(3)

1+0+0 = 1.

Here (1) follows because CT ∩Cp ∩Cm is a 1-dimensional PL chain, so its boundary is 0.

Equation (2) is Leibniz formula. So it remains to prove (3).

Proof of (3). For X ∈ {T, Sn
m, S

n
p } denote fX := f |X .

For the second term we have

|CT ∩ f(Sn
p ) ∩ Cm|

(∗)
= |(f−1

Sn
p
CT ) ∩ (f−1

Sn
p
Cm)|

(∗∗)
= 0, where

(*) holds because (n+1)+ (2l+1)+ 2n < 3(n+ l+1), so by general position CT ∩Cm

avoids self-intersection points of f(Sn
p ),

(**) holds by the well-known higher-dimensional analogue of [93, Parity Lemma 3.2.c]

(which is proved analogously) because the intersecting objects are general position

cycles in Sn
p ; they are cycles because ∂(CT ∩ f(Sn

p )) = 0 = ∂(Cm ∩ f(Sn
p )) and

n ≤ 2l ⇔ (n+1)+ 2n < 2(n+ l+1), so by general position both CT and Cm avoid

self-intersection points of f(Sn
p ).

Analogously |CT ∩ Cp ∩ f(Sn
m)| = 0.

For the first term we have

|f(T ) ∩ Cp ∩ Cm|
(∗∗∗)
= |(f−1

T Cp) ∩ (f−1
T Cm)|

(∗∗∗∗)
= m ∩ p = 1, where

(***) holds because n ≥ l ⇔ 2(n+ 1) + 4l < 3(n+ l+ 1), so by general position Cp ∩Cm

avoids self-intersection points of f(T ),

(****) is proved as follows:

The l-chain f−1
T Cp is a cycle in T because ∂(Cp∩f(T )) = 0 and n ≥ 2l ⇔ n+1+4l <

2(n + l + 1), so by general position Cp avoids self-intersection points of f(T ). By

conditions (b) and (c) of Lemma 3.18 we have

|p ∩ f−1
T Cp| = |f(p) ∩ Cp| = 1 and |m ∩ f−1

T Cp| = |f(m) ∩ Cp| = 0.
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I.e. the cycle f−1
T Cp intersects the parallel p and the meridian m at 1 and 0 points

modulo 2, respectively. Therefore f−1
T Cp is homologous to the meridianm. Likewise,

f−1
T Cm is homologous to the parallel p. This implies (****).

Construction of the 2-complex in Theorem 3.6. We begin by recalling the construction of

the 2-complex K from [31]. Let P be the 2-skeleton of the 6-simplex whose vertices are

{p1, . . . , p7}. Let p := ∂[p1, p2, p3] denote the boundary of the 2-simplex [p1, p2, p3]. Denote

by P− the complement in P to (the interior of) the 2-simplex [p1, p2, p3]. The remaining

four vertices p4, p5, p6, p7 span a ‘complementary’ 2-sphere S2
p := ∂[p4, p5, p6, p7] ⊂ P that

is the boundary of the 3-simplex [p4, p5, p6, p7] (this 3-simplex itself is not contained in

P ).

Let M− denote a copy of P− on a disjoint set of vertices {m1,m2 . . . ,m7}, and let

m := ∂[m1,m2,m3] and S
2
m := ∂[m4,m5,m6,m7].

The 2-complex K then is defined by the formula

K := (P− ∪
p1=m1

M−) ∪
p=S1×·, m=·×S1

T,

where T is the torus S1 × S1 with any triangulation for which S1 × ·, m = · × S1 are

subcomplexes.

Lemma 3.19. [105, Satz 5] Let g : P → R4 be a PL map in general position of the

2-skeleton of the 7-simplex. Then the number v(g) of intersection points of f -images of

disjoint triangles (i.e., the total number of global 2-fold points of g) is odd. 7

Proof of Theorem 3.6. Analogously to [31, §3.3], K admits a Z-almost 2-embedding in

R4. Suppose to the contrary that there is a PL almost 2-embedding f : K → R4. We

may assume it is in general position. Let us show that f |S2
p⊔S2

m⊔T satisfies the conditions

(a), (b) and (c) of the Singular Borromean Rings Lemma 3.18 (this is essentially proved

in [31, Lemma 6]). This would give a contradiction by Lemma 3.18.

7The lemma implies that the Van Kampen obstruction of P is nonzero even modulo 2, or equivalently,

P does not admit a ‘Z2-almost 2-embedding’ in R4. For an elementary exposition and an alternative

proof see [93].
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Condition (a) is satisfied because f is an almost 2-embedding and because any simplex

in the triangulation of T is vertex-disjoint from any simplex in S2
p and from any simplex

in S2
m.

The complex K contains the cone p4 ∗ p, which is a disk disjoint from S2
m. Since f is

an almost 2-embedding, f(p4 ∗p)∩f(S2
m) = ∅. Then f(p) and f(S2

m) are unlinked modulo

2. Analogously, f(m) and f(S2
p) are unlinked modulo 2.

Extend f |P− to a general position PL map g : P → R4. Then the sphere f(S2
p) = g(S2

p)

and the circle f(p) = g(p) are linked modulo 2 because

|g(S2
p)∩g[p1, p2, p3]| =

∑︂
{i,j,k}⊂{4,5,6,7}

|g[pi, pj, pk]∩g[p1, p2, p3]|
(1)≡ v(g)

(2)
= 1 ∈ Z2, where

(1) holds because f |P− is an almost 2-embedding, so f(σ)∩f(τ) = ∅ for all ‘other’ pairs

σ, τ ;

(2) holds by Lemma 3.19.

Analogously the sphere f(S2
p) = g(S2

p) and the circle f(p) = g(p) are linked modulo 2.

3.2.3 Proof of Theorems 3.10 and 3.13.a

Proof of Theorem 3.13.a. The case r = k = 2 is known, cf. Remark 3.21.c. We present

the proof for r = 3, the generalization to arbitrary r ≥ 3 or to r = 2 ≤ k − 1 is

obvious (because by the Global Disjunction Theorem 3.11.(a)-(b) assertion (Dk,r) is true

for arbitrary k ≥ 2 and k + r ≥ 5).

We first prove surjectivity, i.e., that for any integer l there is an ornament (actually a

doodle) f such that lk f = l.

The case l = 0 is trivial, we can take any doodle such that the images of its connected

components lie in 3 pairwise disjoint balls.

Consider now the case l = ±1. Identify B3k with Bk×Bk×Bk. Define the Borromean

ornament (doodle) f :
⨆︁3

i=1 S
2k−1
i → S3k−1 = ∂B3k by

fS2k−1
1 = ∂(Bk ×Bk × ·), fS2k−1

2 = ∂(Bk × · ×Bk), and fS2k−1
3 = ∂(· ×Bk ×Bk).

Clearly, | lk f | = 1. By composing f with the reflection of one of the spheres S2k−1
i we get

a new ornament f ′ such that lk f ′ = − lk f . So {lk f, lk f ′} = {−1, 1}.
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Let f0, f1 be two ornaments, their images lying in disjoint balls. Connect each of the

connected components of f0 with the respective connected component of f1 by a thin tube

and denote the obtained doodle by f2. Clearly, lk f2 = lk f0+lk f1. So the case of general

l follows from the cases l = 0 and l = ±1.

We now prove injectivity. We have to prove that if f0, f1 :
⨆︁3

i=1 S
2k−1
i → S3k−1 are

two ornaments such that lk f0 = lk f1, then f0 and f1 are ornament concordant.

Take a general position PL map F : (⊔3
i=1S

2k−1
i )× I → S3k−1 × I such that F (·, 0) =

f0(·)× 0 and F (·, 1) = f1(·)× 1. Since lk f0 = lk f1, the set F (S
2k−1
1 × I)∩F (S2k−1

2 × I)∩
F (S2k−1

3 × I) consists of pairs of 3-fold points of opposite signs. Each such pair can be

eliminated by the Global Disjunction Theorem 3.11.(a)-(b) applied to K =
⨆︁3

i=1 S
2k−1
i ×

I.

p1

n1

p2
n2

M ⊂ Br

f1(∂D1) ⊂ ∂Br
Br

λx

λy
Sr−4

Dr−3

Rr−3

R2

Sr−2
1 Sr−2

2

Figure 3.4: (a) To Lemma 3.20. (b) To the proof of Lemma 3.20.

Lemma 3.20. For each r ≥ 3 there is a proper general position PL map f : ∂D1 ⊔D2 ⊔
. . . ⊔Dr → Br, where Dj is a copy of (r − 1)-disk, such that

1. M := fD2∩. . .∩fDr is a proper oriented submanifold of Br and ∂M = {p1, p2, n1, n2} ⊂
∂Br, where the points p1, p2 have positive sign and the points n1, n2 have negative

sign (the signs are defined as the signs of intersection points of r−1 oriented (r−2)-

dimensional spheres in Sr−1),

2. for any generic oriented path λ in Br from pj to ni and any proper extension g :

D1 ⊔D2 ⊔ . . . ⊔Dr → Br of f we have gD1·λ = (−1)j.
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Proof. It is easy to define the map f on D2⊔ . . .⊔Dr so that the property (1) is satisfied.

Let us now define f on ∂D1.

Identify Sr−1 = ∂Br with S2 ∗ Sr−4, and Sr−2 = ∂D1 with S1 ∗ Sr−4. (This works for

r = 3, when Sr−4 = ∅.) Without loss of generality we may assume that {p1, p2, n1, n2} ⊂
S2 ∗ ∅ ⊂ Sr−1. Let 8 : S1 → S2 be a map whose image is figure “8” winding 1 time

around p1, −1 time around p2, and 0 times around n1 and n2, i.e. lk(8, ni) = 0 and

lk(8, pj) = (−1)j+1. Now define f |∂D1 : ∂D1 → Sr−1 by f := 8∗ idSr−4 (see Figure 3.4.b).

Let us prove that f satisfies (2). Let π be a generic oriented path in S2 = S2∗∅ ⊂ Sr−1

from pj to ni. Then

gD1·λ = gD1· (λ∪−π)+gD1· π = 0+f∂D1· π = 8·π = lk(8, ni−pj) = 0−(−1)j+1 = (−1)j.

Proof of Theorem 3.10. Let us prove that for each map f given by Lemma 3.20 the or-

nament f |∂D is as required. Extend f to D1 properly and generically in an arbitrary way

(e.g., by coning over a generic point).

Proof that fD1· . . . · fDr = 0. By the property (1) of Lemma 3.20 (and possibly

by exchanging n1, n2) we may assume without the loss of generality that M consists of

generic oriented paths λj from pj to nj, j = 1, 2, and a union ω of disjoint embedded circles

(see Figure 3.4.a). Then by the property (2) of Lemma 3.20 we have fD1· . . . · fDr =

fD1· (λ1 ⊔ λ2 ⊔ ω) = −1 + 1 + 0 = 0.

Proof that gD1∩ . . .∩ gDr ̸= ∅ for any other proper generic map g : D → Br such that

f = g on ∂D. Since f = g is generic on the boundary, we have thatM ′ := gD2∩. . .∩gDr is

a relative 1-dimensional integer homology cycle in Br and ∂M ′ = {p1, p2, n1, n2}. Without

the loss of generality (and possibly by exchanging n1, n2), we may assume thatM ′ contains

an oriented path λ1 from p1 to n1. By the property (2) of Lemma 3.20, p1 and n1 are in

the different connected components of Br \ gD1. So

∅ ≠ gD1 ∩ λ1 ⊂ gD1 ∩M ′ = gD1 ∩ . . . ∩ gDr.
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3.3 Discussion and open problems

Remark 3.21. (a) Analogously to [60, §5], it can perhaps be shown that the analogue

of Theorem 3.1 holds for d ≥ 2r, by using the results in the present chapter (the

Global Disjunction Theorem 3.11 below) to rewrite the proofs of [60, Thm. 11]

with k ≥ 2 instead of k ≥ 3. Since the necessary facts about prismatic maps are

not gathered in one easily citable statement in the current version of [60, §5] but
dispersed throughout the text, for simplicity of presentation we focus here on the

shorter argument for d ≥ 2r + 1.

(b) Theorem 3.5 for r = 2 was a step in the proof of a classical algebraic criterion of

van Kampen, Shapiro and Wu for embeddability of n-complexes into R2n [105; 88;

112], see survey [97, Theorem 4.1]. Both this criterion and Theorem 3.5 for r = 2

were generalized by Haefliger and Weber who showed that an n-complex K embeds

into Rd iff there is a Z2-equivariant map from the deleted product K×2
∆ to Sd−1,

provided d ≥ 3(n + 1)/2 [45; 110], see survey [97, Theorem 8.1 and Proposition

8.4]. One might conjecture that the dimension restriction d ≥ 3(n + 1)/2 can be

weakened if one uses the configuration space of r-tuples of distinct points, and that

methods of this chapter would allow to prove such a conjecture. Surprisingly, this

is not so, see [97, end of §5]. An explanation is that the notion of an embedding is

more subtle than the notion of almost r-embedding.

On the other hand, for a generalization of Theorem 3.5 to n-complexes in Rd keeping

r arbitrary see [61, Theorem 2], [94, Theorems 1.1-1.3].

(c) The case r = 2, k ≥ 3 of the Local Disjunction Theorem 3.9 is a version of the

Whitney trick; the subcase k = 2 is an exercise on elementary link theory. Here

is a well-known proof for r = k = 2 for the general position case when f |∂D is

an embedding. Given a 2-component 1-dimensional link in S3, one can unknot one

component in the complement of the second by crossing changes (or by finger moves,

guided along arcs) [78, Theorem 3.8]. By the assumption the linking number is zero.

The linking number is preserved under crossing changes. So after crossing changes

we obtain a link formed by the unknot and the component which shrinks in the

complement of the unknot. For such link the assertion is trivial.
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(d) In [85] it is shown that for each (n, d) such that n+2 ≤ d ≤ 3n
2
+1 there exists a finite

n-complex K that admits an almost 2-embedding in Rd but that does not embed into

Rd. (This example was used to show, for such n, d, the incompleteness of deleted

product obstruction, which is defined before Proposition 3.7.) For d = 2n = 4

this improves [31] in a different direction than Theorem 3.6: there exists a finite

2-complex K that admits an almost 2-embedding in R4 but that does not embed into

R4.

Remark 3.22. (a) Assume that (d, n, r) = (2, 1, 3) (hence 2d = 3n + 1). In this case, a

triviality criterion for ornaments is given in [70]; it would be interesting to know if

it is algorithmic and if it extends to a classification. The r-linking number is not a

complete invariant for doodles, e.g., there is a non-trivial (2, 1, 3)-doodle with zero

3-linking number.8 Thus the analogue of Theorem 3.13.b for k = 1 and r = 3 is

false. (We conjecture that such an analogue is also false for k = 1 and each r ≥ 4,

cf. Theorem 3.10.) See [11] for a study of ornaments which are PL immersions, up

to regular ornament homotopy (they were called doodles, which is different from

terminology of this chapter).

(b) There is a concordance version of Theorem 3.14 for p-ornaments in Skr−1, where

p := k(r − 1)− 1. It involves a complete invariant in Hp(K1;Z)× . . .×Hp(Kr;Z).

(c) An s-component r-multiplicity ornament in Sd is a PL general position map f :

K1 ⊔ . . . ⊔ Ks → Sd of disjoint union of s complexes such that the intersection of

any r objects among fK1, . . . , fKs is empty. Although here we only consider the

case s = r, our results have straightforward generalizations to s > r. 2-multiplicity

ornaments were widely studied under the name of link maps, mostly for the case

when each Kj is a sphere, see [90] and references therein.

Remark 3.23. (a) Our proof of the Singular Borromean Rings Lemma 3.18 for n = 2

and l = 1 gives a shorter, elementary proof of the result from [31] mentioned before

Theorem 3.6.

8This is written in [30, bottom of p. 39 and fig.4] with a reference to a later chapter. It would be

interesting to have a published proof. It might be easier to obtain the proof using the ‘intersection’

language, see §3.2.2, rather than ‘commutators’ language [30].
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(b) In [96], the Singular Borromean Rings Lemma 3.18 is used to study algorithmic

aspects of almost 2-embeddability of complexes in Rd.

(c) The analogue of the Singular Borromean Rings Lemma 3.18 for n = l+1 = 1 is true,

although our proof does not work for this case. The analogue of Lemma 3.18 for

n = l is false, but would conjecturally become true if we add an additional condition

that f(Sn
p ) and f(S

n
m) are unlinked modulo 2. For the corresponding construction

of Borromean rings in R3 see [89, §4.4 ‘Borromean rings and commutators’].

(d) Lemma 3.18 for n = 2, l = 1 and embedded torus f(T ) was proved in [56, Theorem

1 and the middle paragraph on page 53] (in a much more general form). We are

grateful to S. Krushkal and P. Teichner for explanation of how the proof of [56] works

for the case of non-embedded torus, as well as for sketching a short direct proof of

Lemma 3.18 for n = 2, l = 1 involving the Milnor group of the complement. It would

be interesting to know if these arguments can be generalized to higher dimensions.

Remark 3.24 (Open problems). (a) Does the analogue of Theorem 3.5 holds for k = 1

and large enough r? Cf. Theorems 3.10 and 3.11.d.

(b) Is there an example for Theorem 3.10 for which f |∂D is an embedding?

(c) Does the analogue of Theorem 3.13.b hold for k = 2?

By a result of Melikhov [69, Theorem 1.3], in Theorem 3.13, ornament concordance

can be replaced by ornament homotopy; it would be interesting to know whether

analogously, doodle concordance can be replaced by doodle homotopy.9 Here, an

ornament [doodle] concordance F is an ornament [doodle] homotopy if it is ‘level

preserving’, i.e., if F (·, t) ⊂ Sm × {t} for each t ∈ I.

(d) Gromov’s problem [38, 2.9.c]. Is it correct that if r is not a prime power, then

for each compact subset K of Rm for some m, having Lebesgue dimension dimK =

(r−1)k, there is a continuous map X → Rkr each of whose point preimages contains

less than r points?

9Our terminology for ornaments and doodles follows the one of Fenn–Taylor–Vassiliev [30; 70; 68].

By contrast [69] uses a different terminology and does not require each component of a doodle to be

embedded; in other words, the word “doodle” in [69] corresponds to “ornament” in our terminology.
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The analogue of this problem for polyhedra K and almost r-embeddings instead of

maps without r-fold points is true by Theorem 3.3.a.

(e) LetX be a compact subset of Rm for somem. Is it correct that dim(X×X×X) < 6n

if and only if any continuous map X → R3n can be arbitrary close approximated

by a continuous map without triple points? This is interesting for ‘fractal’ 2n-

dimensional compacta X, for which dim(X ×X ×X) < 3 dimX.
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4 Eliminating higher-multiplicity

intersections of positive

dimension

Denote by ∆N the N -dimensional simplex. We omit ‘continuous’ for maps. A map

f : K → Rd of a union K of closed faces of ∆N is an almost r-embedding if fσ1 ∩ . . .∩
fσr = ∅ whenever σ1, . . . , σr are pairwise disjoint faces of K.

Theorem 4.1. If r is not a prime power and N := (d + 1)r − r
⌈︂d+ 2

r + 1

⌉︂
− 2, then there

is an almost r-embedding ∆N → Rd.

Remark 4.2 (tightness). In a recent preprint [33] it was shown that the converse of The-

orem 4.1 holds for N ≥ (d + 1)r − 1. In that sense the result of Theorem 4.1 is rather

tight.

Remark 4.3 (motivation). (a) A counterexample to the topological Tverberg conjecture

asserts that if r is not a prime power and d ≥ 2r+1, then there is an almost r-embedding

∆(d+1)(r−1) → Rd. See the surveys [23; 98] and the references therein. There naturally

appears more general problem: For which a, d there is an almost r-embedding ∆a → Rd?

This problem was considered in [21, §5]. Lemma 5.2 of [21] provides a simple procedure

of constructing higher-dimensional counterexamples by ‘taking k-fold join power’ of lower-

dimensional ones. According to a private communication by F. Frick the bound of [21,

Theorem 5.4] together with the counterexample in [8, Theorem 1.1] gives an almost r-

embedding ∆F → Rd for r not a prime power, d sufficiently large, and F some integer

close to (d+ 1)r − r + 1
2

r + 1
(d+ 1). Presumably F − (d+ 1)(r − 1) can be arbitrarily large.

Theorem 4.1 provides even stronger counterexamples to the topological Tverberg con-

jecture: for d large compared to r we have N > (d+1)(r− 1) and even N > F . Theorem



52

4.1 is a step towards the part of [21, Conjecture 5.5] saying that For r < d not a prime

power there is an almost r-embedding ∆(d+1)r−2 → Rd. Observe that for r < d we have

N ≤ dr − 2.

(b) We think counterexamples of Theorem 4.1 are mostly interesting because their

proof requires non-trivial ideas, see below. Thus we do not spell out even stronger coun-

terexamples which presumably could be obtained by combining the procedure of [21, §5]
with Theorem 4.1.

(c) Let us illustrate Theorem 4.1 by numerical examples. Earlier results gave almost

6-embeddings ∆280 → R55 and ∆275 → R54, as well as almost r-embeddings ∆(d+1)(r−1) →
Rd for d ≥ 2r + 1, ∆d(r−1) → Rd−1 for d ≥ 2r + 2 and ∆(d+1−s)(r−1) → Rd−s for

d ≥ 2r+ s+1. Corollary 4.4 below gives an almost 6-embedding ∆280 → R54 and almost

r-embeddings ∆(d+1)(r−1) → Rd−s for certain r, d, s.

Corollary 4.4. Assume that r is not a prime power.

(a) For q ≥ r + 2 and d = (r + 1)q − 1 there is an almost r-embedding ∆(d+1)(r−1) →
Rd−1.

(b) If d ≥ (s+2)r2 for some integer s, then there is an almost r-embedding ∆(d+1)(r−1) →
Rd−s.

Proof. Part (a) follows by Theorem 4.1 because q ≥ r + 2, so ((r + 1)q − 1)r − rq − 2 ≥
(r+1)q(r−1). Part (b) follows by Theorem 4.1 because d ≥ (s+2)r2 ≥ (s+1)r2+ r−1,

hence

(d+ 1)(r − 1) ≤ (d− s+ 1)r − r
d− s+ 2 + r

r + 1
− 2 ≤ (d− s+ 1)r − r

⌈︂d− s+ 2

r + 1

⌉︂
− 2.

Remark 4.5 (motivation). A complex is a collection of closed faces (=simplices) of some

simplex. The body (or geometric realization) |K| of a complex K is the union of simplices

of K. Thus continuous or piecewise-linear (PL) maps |K| → Rd and continuous maps

|K| → Sm are defined. Below we abbreviate |K| to K; no confusion should arise.

By general position, any k-complex admits an almost r-embedding in Rk+
⌈︁
k+1
r−1

⌉︁
. A

counterexample to the r-fold van Kampen–Flores conjecture asserts that if r is not a

prime power and k is divisible by r−1, then any k-complex admits an almost r-embedding
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in Rk+
k

r−1 . This is a combination of results of Özaydin [75] and Mabillard–Wagner [60],

see [59, §1, Motivation & Future Work, 2nd paragraph] and the survey [98]. The following

result produces stronger counterexamples to the conjecture.

Theorem 4.6. If r is not a prime power, then any k-complex admits an almost r-

embedding in Rk+
⌈︁
k+3
r

⌉︁
.

Theorem 4.6 follows from Theorems 4.7 and 4.8 below.

The main new ingredient in the proof of Theorem 4.1 is the following Theorem 4.7.

Denote by Sr the permutation group of r elements. Let Rd×r := (Rd)r be the set of

real d× r-matrices. The group Sr acts on Rd×r by permuting the columns. Denote

δr = δr,d := {(x, x, . . . , x) ∈ Rd×r | x ∈ Rd}.

The following theorem follows immediately from Theorem 2.3:

Theorem 4.7. If r is not a prime power and X is a complex with a free action of Sr,

then there is a Sr-equivariant map X → R2×r − δr.

For a complex K let

K×r
∆ :=

⋃︂
{σ1 × · · · × σr : σi a simplex of K, σi ∩ σj = ∅ for every i ̸= j}.

The group Sr has a natural action on the set K×r
∆ , permuting the points in an r-tuple

(p1, . . . , pr). This action is evidently free.

Theorem 4.8 ([61; 94; 95]). Assume that K is a k-complex and rd ≥ (r+1)k+3. There

exists an almost r-embedding f : K → Rd if and only if there exists a Sr-equivariant map

K×r
∆ → Rd×r − δr.

Theorem 4.8 is a generalization of the Mabillard–Wagner theorem (see [60], [8] and

the survey [98, Theorem 3.3]).

Lemma 4.9 (Constraint Lemma). For every integers r, d, k > 0 and N = (k + 2)r − 2

if there is an almost r-embedding of the union of k-faces of ∆N in Rd−1, then there is an

almost r-embedding ∆N → Rd.
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Lemma 4.9 is a straightforward generalization of the Gromov–Blagojević–Frick–Ziegler

Constraint Lemma (see [38, 2.9.c], [20, Lemma 4.1.iii and 4.2], [32, proof of Theorem 4]

and the survey [98, Lemma 3.2]).

Proof of Theorem 4.1. We may assume that d ≥ 3. Denote k := d− 1−
⌈︂d+ 2

r + 1

⌉︂
. Since r

is not a prime power, by Theorem 4.7 there is a Sr-equivariant map (∆
(k)
N )×r

∆ → R2×r−δr.
The composition of this map with the r-th power of the inclusion R2 → Rd−1 gives a Sr-

equivariant map (∆
(k)
N )×r

∆ → R(d−1)×r − δr. We have r(d − 1) ≥ (r + 1)k + 3. Hence by

Theorem 4.8 there is an almost r-embedding ∆
(k)
N → Rd−1. Since N = (k + 2)r − 2, by

the Constraint Lemma 4.9 there is an almost r-embedding ∆N → Rd.
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5 Envy-free division using mapping

degree

5.1 Introduction

Consider a situation when n players want to divide a resource X, which is “continuous”

in certain sense, among themselves. We assume that, for each partition of X into n pieces

(some possibly empty), each player would be satisfied to take one of the partition pieces,

where the choice for each player need not be unique. When no player prefers an empty

piece of the resource, the existence of an equilibrium, where every player receives one

piece of the partition and is satisfied, is guaranteed by Gale’s theorem (see Theorem 5.3

below for the precise statement). For such situations, when every player receives what

she/he prefers from a given partition, the term envy-free partition is usually used.

Making one step from the classical situations, we may try to make a generalization,

following [86; 71]. The resource might come with some cost, so it might naturally happen

that for certain partitions the cost of all the non-empty pieces is too high for a player. Then

some of the players might prefer to take an empty piece. As in Gale’s theorem and other

classical results, we make a natural assumption on player’s preferences, mathematically

speaking, a player prefers a part if in another, but arbitrarily close to given partition

configuration she/he also prefers this part.

We will mostly have in mind the segment partition problem, for a unit interval [0, 1],

we consider its partitions into n closed (possibly empty) segments with pairwise disjoint

interiors, see the details in Section 5.4. As a simple example, every player may rate the

parts with her/his own integrable “value” function fi on [0, 1], and prefers any of those

segments which maximize the value of the integral of fi over them.



56

Following the classical works, we consider a more general setting than the “value”

function; we allow any player to rate the pieces of a given partition with more compli-

cated logic. The very term “envy-free partition” is motivated by the fact that a player’s

preference of a certain piece may depend on how the rest of the resource is partitioned,

and in the solution for the problem no player has envy to take a different piece than

she/he is given.

In the special case of the segment partitioning problem, in [86] it was proved that

envy-free segment partitions exist for n = 3 (the case n = 2 is an easy exercise). In

[71] the result was extended to n = 4, or any prime n. In this work we give a complete

solution to the problem in the setting of [86; 71]: We prove that if n is a prime power then

an envy-free segment partitioning always exists (Theorem 5.7). Conversely, for every n

which is not a prime power, there exists an instance of the segment envy-free partition

problem with no solution (Theorem 5.9).

Remark 5.1. The assumption that X is the unit segment is in fact not very restrictive,

once we speak about positive solutions. For example, if our resource to partition is a

compact set in a Euclidean space, then we may just project it to a line segment and then

partition. Therefore, our result implies that for a prime power number of players n any

compact set in a Euclidean space can be envy-free partitioned into strips with parallel

hyperplanes.

Section 5.2 of the chapter contains an outline of the classical results and techniques,

then we prove the existence of solutions or existence of counterexamples. We start from

the mapping version of the Knaster–Kuratowski–Mazurkiewicz theorem, Theorem 5.2 and

then proceed to Gale’s theorem, Theorem 5.3, to some easy results in Section 5.3 that

we provide for reader’s convenience, and then to substantially new results in subsequent

sections.

For classical results in Section 5.2 and for new results in Section 5.4 we emphasize

that the natural way to handle the envy-free partition problem is to analyze necessary

and sufficient conditions that a continuous map of a simplex to itself hits its center; which

amounts to determining possible mapping degrees of maps between spheres under some

additional assumptions, analogous to equivariance with respect to a group action.
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5.2 Classical KKM-type results and partition prob-

lems

Let us recall some classical results around the Knaster–Kuratowski–Mazurkiewicz theo-

rem [55] with modifications from [34; 10]. Let us introduce some notation, let ∆n−1 be

the (n− 1)-dimensional simplex, which we usually parametrize as

∆n−1 = {(t1, . . . , tn) | t1, . . . , tn ≥ 0, t1 + · · ·+ tn = 1} .

We also denote ∆n−1
i the facet of ∆n−1 given by the additional constraint ti = 0. Some-

times, when we know the dimension n, we will denote these objects simply as the simplex

∆ and its facets ∆i.

In the above notation the KKM theorem reads: If A1, . . . , An are closed subsets of

∆n−1, covering the simplex, such that for every i = 1, . . . , n the intersection ∆n−1
i ∩Ai is

empty then the intersection A1 ∩ A2 ∩ · · · ∩ An is not empty. We will also use the KKM

theorem in the mapping form:

Theorem 5.2 (The mapping KKM theorem). Assume f : ∆n−1 → ∆n−1 is a continuous

map such that for all i we have f(∆n−1
i ) ⊂ ∆n−1

i . Then f is surjective.

Proof. Let us approximate f with a PL map having the same property that any facet

(and hence any face of arbitrary dimension) is mapped to itself. Considering ∆ as a PL

manifold with boundary we notice that f takes the boundary to the boundary. Therefore

the mapping degree of f is well defined and is equal to the mapping degree of its restriction

f |∂∆.

Then we prove by induction on the dimension that the mapping degree of f equals 1.

The case of dimension n = 1 is clear. For the induction step we note f |∆i
satisfies the

same assumptions and hence we assume its degree equals 1. But this is the same as the

degree of f |∂∆, which in turn equals the degree of f .

Reduction of the classical KKM to its mapping version. Replace Ai by a continuous func-

tion gi : ∆ → R, such that gi(Ai) = 1 and gi(x) = 0 for x outside an ε-neighborhood

of Ai. When ε > 0 is sufficiently small, we will have gi(∆i) = 0 from the assumption

∆i ∩ Ai = ∅.
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Since the Ai cover the simplex, we conclude that g1(x) + · · · + gn(x) > 0 for every

x ∈ ∆. Dividing every gi by this sum, we obtain non-negative continuous functions

f1, . . . , fn with unit sum everywhere in the simplex. Such fi are coordinates of a map

f : ∆ → ∆,

and the property fi(∆i) = 0 means that any facet goes to itself. Hence by the mapping

KKM theorem f is surjective and therefore there exists x ∈ ∆ such that fi(x) = 1/n for

any i. Such a point x is in the ε-neighborhood of each Ai. Passing to the limit ε→ 0 and

using compactness of ∆ and closedness of the Ai yields the result.

Now we proceed to a generalization of the KKM theorem, useful in proving existence

of equilibria in economic questions.

Theorem 5.3 (Gale’s theorem). Let Aij be closed subsets of ∆n−1, indexed by i = 1, . . . , n

and j = 1, . . . , n. Assume that for every fixed j the sets {Aij}ni=1 cover the simplex, and

Aij ∩∆n−1
i is empty for every i and j.

Then there exists a permutation σ of size n such that the intersection
⋂︁

iAiσ(i) is not

empty.

Proof. We essentially reproduce the (sketch of the) proof in [34], giving more details.

Replace each set Aij by a function gij. Using the covering assumption, we may normalize

gij to obtain fij such that

f1j + · · ·+ fnj = 1

at any point of the simplex and any j, and also fij(∆i) = 0. Now introduce non-negative

functions

hi =
fi1 + · · ·+ fin

n
,

which still satisfy h1+· · ·+hn = 1 everywhere in the simplex, and hi(∆i) = 0. Hence there

appears a continuous map h : ∆ → ∆ sending each facet to itself and by the mapping

KKM theorem we conclude that there exists x ∈ ∆ such that hi(x) = 1/n for every i.

Evaluating our original matrix of functions fij at the point x, we conclude that

∑︂
i

fij(x) = 1,
∑︂
j

fij(x) = 1.
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This matrix is doubly stochastic and the Birkhoff–von Neumann theorem [19] asserts that

this matrix is a convex combination of permutation matrices. In particular, there exists a

permutation σ such that fiσ(i)(x) > 0 for every i; alternatively, this can also be deduced

with a little effort from Hall’s marriage theorem [46]. Going to the limits and using the

compactness, we again obtain
⋂︁

iAiσ(i) ̸= ∅.

For far-reaching generalizations of these theorems, see [72]. Theorem 3.1 there provides

a Gale-type theorem corresponding to homotopy classes of maps from topological spaces to

spheres, of which the degree of a map between spheres of equal dimensions is a particular

case.

The economic meaning of Gale’s theorem is as follows. The simplex ∆n−1 (sometimes)

parametrizes partitions of a certain resource into n parts, the set Aij corresponds to the

partitions where the player j would be satisfied to take the ith part of the resource and

leave the rest to the other players. The other assumptions of the theorem mean that

in every partition every player would be satisfied with some part, and nobody will be

satisfied to take the empty part with ti = 0. The conclusion of the theorem then means

that there exists a partition and an assignment σ of the parts to the players such that

every player will be satisfied.

5.3 When some players may choose nothing

5.3.1 Assume that some parts may be dropped

What happens when Aij ∩∆i is non-empty in Gale’s theorem, or, in economic terms, if

some players sometimes prefer to take nothing from the resource partition? This question

was left as an exercise to the reader in [71, middle of page 3], let us perform this exercise

here.

We may obtain a result about this by adjusting the situation to the assumption of

Gale’s theorem. Let us remove from Aij the part where ti < ε. This will satisfy the

assumption Aij ∩∆i = ∅ of Gale’s theorem, but will break the assumption that {Aij}ni=1

cover the simplex for every j.

In order to fix the covering assumption, given j, let us add t ∈ ∆, which did not belong

to any Aij, to Aimaxj where timax is a maximal coordinate of the point t, there may be
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several maximal coordinates. Such a modification of Aij keeps the assumption that the

coordinate ti is no smaller than ε on Aij.

Now apply Gale’s theorem to the modified sets to obtain a permutation σ and a point

xε ∈ ⋂︁
Aiσ(i). If all the coordinates of xε are greater than ε then we are in the range

where we did not modify anything and the problem is solved.

Otherwise there exist coordinates of xε that are at most ε. In this case we are going to

the limit ε→ +0, from the compactness we may assume that xε → x and the permutation

is all the time the same. In the coordinates x1, . . . , xn of the limit configuration some

coordinates xi will then be zero, otherwise we are in the first case.

In this limit configuration, speaking in economic terms, some player j = σ(i) may be

dissatisfied with the assignment of the part i to her/him. But this may only happen in

the situation when this player preferred parts with some ti′ < ε in the neighborhood of

x, we may assume i′ fixed here. By the closedness of the preference set Ai′j we obtain

that xi′ = 0 for the limit point x and that the player j does prefer the emptyset in the

partition x.

Now we conclude:

Corollary 5.4. Under the assumptions of Gale’s theorem, modified so that some players

may sometimes prefer nothing, it is possible to find a partition, assign some parts to the

players, drop some unwanted parts, and assign nothing to some of the players, so that all

players will be satisfied.

5.3.2 General observations when no part may be dropped

In our argument it is crucial that whenever the player is satisfied with the part i such

that ti = 0, he/she will also be satisfied with any other part i′ such that ti′ = 0. In other

words, there is only one sort of “nothing”.

Now we return to the setting when it is not allowed to drop parts in a partition. Let

us explain why any economic problem of KKM–Gale type is roughly equivalent to the

study of continuous maps f : ∆n−1 → ∆n−1. We will always use the covering assumption,

in economic terms, in every partition any player is satisfied with some of the parts.

In one direction, we start from the preference sets Aij and pass to functions fij, as

in the proof of Theorem 5.3 above. If certain assumptions on Aij imply certain other
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assumptions on fij that, in turn, allow us to conclude that the map hits the center of the

simplex, then we are done by essentially the same argument.

In the other direction, having a continuous map f : ∆n−1 → ∆n−1, we put

Aij =
{︁
t ∈ ∆n−1 | ∀i′ fi(t) ≥ fi′(t)

}︁
.

This definition does not depend on j, that is the players have precisely the same preference,

hence we put Ai = Aij. The family of closed sets A1, . . . , An covers the simplex. Note

that in the case, when all the players have the same preference, the setting of Gale’s

theorem degenerates to the setting of the KKM theorem. Now we observe that the Ai

have a common point if and only if

f1(t) = · · · = fn(t) =
1

n

for some t.

Since it is easy to build a continuous map f : ∆n−1 → ∆n−1 missing the center of

the simplex, it is now clear that in order to have a Gale-type theorem, we need some

assumption like “no player is satisfied with an empty part”. Here we give a very explicit

example:

Example 5.5. One may ask if it is sufficient to have the assumption “if somebody prefers

nothing then he/she does not care on which position this nothing occurs” and prove a

KKM–Gale-type theorem, without using any equivariance assumptions or other similar

assumptions. This is not the case already for the KKM theorem. Take the triangle ∆2

and put

A1 = ∆2, A2 = {t1 = t2 = 0}, A3 = {t1 = t3 = 0}.

In economic terms, in all cases the player prefers part 1. When parts 1 and 2 are empty,

the player also prefers part 2. When parts 1 and 3 are empty, the player also prefers part

3. But there is no configuration where the player prefers all three parts; or in case of

Gale’s theorem, where the preferences of three identical players are met.

5.3.3 Using permutation equivariance

One possible way is to introduce an assumption of “equivariance on the boundary” with

respect to the action of the permutation group Sn on the simplex ∆n−1 by permuting the
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coordinates. For example, in Gale’s theorem we may require

σAij ∩ ∂∆n−1 = Aσ(i)j ∩ ∂∆n−1, ∀i, j.

In economic terms this means that when a partition has empty parts (the boundary

of the simplex) and the parts of a partition are permuted, then the players trace the parts

they prefer and continue preferring them. When a partition has n non-empty parts, then

the players may take the order into account. Perhaps, the economic formulation here is

not very natural, but it may serve to us as a mathematically natural example, which we

can handle. Here we give a positive result for this setting:

Theorem 5.6. The KKM theorem and Gale’s theorem are valid when it is allowed to

choose empty parts if we impose the “equivariance on the boundary” assumption and also

assume that n is a prime power.

Proof. Recall, that in the reduction of the classical KKM to its mapping version, we

used the mapping version to prove that the map f : ∆n−1 → ∆n−1 hits the center of the

simplex.

Assumptions of this theorem mean that f is Sn-equivariant on the boundary ∂∆n−1

and n is a prime power.

Assume that the center of the simplex is not in the image of f . Then the composition

of f with the central projection gives us a map g : ∆n−1 → ∂∆n−1 which is also Sn-

equivariant on the boundary ∂∆n−1. The restriction of g to the boundary has degree

zero, since it can be extended to the whole simplex. But this is impossible by Theorem

2.8(a)(b).

5.4 A segment partition problem with choosing noth-

ing

One particular setting, which we borrow from [86; 71], is when a point (t1, . . . , tn) ∈ ∆n−1

is interpreted as a partition of a unit segment, in this case different points of the simplex

in fact give the same partition. More precisely, in the vector (t1, . . . , tn) we may move zero

coordinates of this vector to any position, only keeping the order of positive coordinates,
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the actual partition of the segment will be the same. Hence the preferences of the players

have to follow these permutations, which gives us a modification of the equivariance

assumptions.

5.4.1 Pseudo-equivariance assumptions

Now it is natural to introduce the segment partition problem with the possibility of choosing

nothing so that preferences are in accordance with the above described identifications.

Those identifications can be described by identifying the proper faces of ∆n−1 by linear

maps. Those maps σFGZ : F → G may be viewed as permutations of the coordinates

σFGZ : ∆n−1 → ∆n−1 of the simplex, that move the nonzero coordinates of a face F

to the nonzero coordinates of another face G preserving their order, and move the zero

coordinates of a face F to zero coordinates of a faceG with an arbitrary bijection, which we

denote by Z. In particular, for given F andG of dimension k there are (n−k−1)! bijections

Z. The possibility to permute the zero coordinates arises because those permutations do

not change the actual partition of the segment.

We also assume that a player is not allowed to take nothing in the presence of n non-

empty parts, otherwise we would have to drop a part, as we did in the previous section.

This keeps the covering property

∆n−1 =
⋃︂
i

Aij, ∀j

and allows, as in the proof of Theorem 5.3, to pass to the continuous map f : ∆n−1 → ∆n−1

setting. In terms of the continuous map, we then have the restrictions

f ◦ σFGZ = σFGZ ◦ f valid on the face F. (5.1)

Let us clarify these relation. For given F,G, Z this relation is only applied to points

x ∈ F ⊂ ∆n−1. The image σFGZ(x) on the left hand side then belongs to G, and then

f applies to it. On the right hand side we first apply f to x to obtain a point in the

simplex that need not belong to any specific facet; after that we apply σFGZ defined as a

permutation, taking its Z part into account.

Note that this setting resembles a certain equivariance assumption on the map f , at

least on the boundary of ∆n−1. But this is not quite that, because the permutations
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σFGZ do not constitute a group and the commutation restrictions (5.1) are only applied

for points lying on the facet F . For briefness, let us call a continuous f : ∆n−1 → ∆n−1

satisfying the commutation restrictions (5.1) pseudo-equivariant.

Of course, we need to explain, how to pass from sets to continuous functions in the

pseudo-equivariant case. Relations (5.1) in terms of closed sets Aij read

σFGZ (Aij ∩ F ) = AσFGZ(i)j ∩G, (5.2)

which assumes the form (5.1), when we pass from the closed sets Aij to their upper

semicontinuous indicator functions χij = χAij
. If we approximate the indicator functions

by continuous functions without due caution, the assumptions (5.1) may fail at a point

x in a face F , because during the approximation of the χij by continuous functions fij

the values fij(σFGZ(x)) may be influenced by nearby points not belonging to F and not

subject to the relation (5.1).

In order to pass to continuous functions correctly, we put our ∆ into a slightly enlarged

concentric simplex ˜︁∆, and first extend the upper semicontinuous indicator functions χij

to ˜︁∆ by composing them with the metric projection π : ˜︁∆ → ∆, χ ˜︁Aij
= χij ◦π. This does

not affect the existence of solutions for the partition problem, but allows us to conclude

that (5.1) will now hold not only on a face ˜︁F ⊂ ˜︁∆, but also in some ε-neighborhood of ˜︁F ,
for some ε > 0, because the new ˜︁F projects to the corresponding original F along with its

neighborhood. After that we choose a single ε > 0 for all faces, take continuous functions

gij(x) = max

{︄
1− dist(x, ˜︁Aij)

ε
, 0

}︄
,

and then normalize

fij(x) =
gij(x)∑︁
i′ gi′j(x)

.

The relations (5.1) will hold for such functions on respective faces of ˜︁∆, since they only

depend on the behavior of ˜︁Aij in the ε-neighborhood of x.

5.4.2 A positive solution when n is a prime power

The arguments in the previous section reduce the segment partition problem with the

possibility of choosing nothing to proving that a pseudo-equivariant map f : ∆n−1 → ∆n−1

sends some point to the center of the simplex.
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Theorem 5.7. When n = pα, for a prime p, any pseudo-equivariant map f : ∆n−1 →
∆n−1 in the sense of (5.1) hits the center c ∈ ∆n−1.

Proof. We fix n = pα and omit it from the notation where appropriate. In order to prove

what we need, it is sufficient to show that f(∂∆) either has nonzero linking number with

the center of ∆, or touches the center. If it touches the center then the problem is solved;

hence assume that the center is not touched by f(∂∆) and study the linking number.

In order to have information about the linking number we start with the identity map

f0 : ∆ → ∆, which is pseudo-equivariant and has the linking number of f(∂∆) with

the center equal to 1. It then remains to show that once we deform this f0 to arbitrary

f1 pseudo-equivariantly, the linking number may only change by a multiple of p, thus

remaining always nonzero.

The linking number changes when a point in the boundary x ∈ ∂∆ passes through

the center c under a pseudo-equivariant homotopy ht with parameter t. If x lies in the

relative interior of a k-dimensional face F of ∆ then we may apply the relations (5.1) to x

with different G and Z. Those relations show that in total
(︁

n
k+1

)︁
images ht(σFG(x)) pass

through c together with x. Let us call the points σFGZ(x) for different G of dimension k

(they do not depend on Z) the pseudo-orbit of x.

The change in the linking number corresponds to the sum of mapping degrees of the

homotopy

h : ∂∆× [0, 1] → ∆

at the points of h−1(0). To make the argument correct, we may assume h piece-wise linear

and perturb it generically, keeping the pseudo-equivariance conditions. For any point x in

the relative interior of a face F , the relations (5.1) restrict the image h(x, t) to the linear

span of F (“linear” in the sense that we put the origin to the center of ∆), which has

dimension no less than F × [0, 1]. Hence, exactly as in the proof of Lemma 2.12, a generic

pseudo-equivariant PL map h has the property that the preimage of the center under h

is a discrete point set, consisting of several pseudo-orbits; and the local mapping degrees

are correctly defined.

If we had an equivariance for h under a group action making this pseudo-orbit a real

orbit, and permuting their neighborhoods in ∂∆ accordingly, then we would have that

the change in the linking number equals
(︁

n
k+1

)︁
times an integer, which would do the job
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since such a binomial coefficient is divisible by p when n = pα. But we only have pseudo-

equivariance in (5.1), whose equations with σFGZ are only applied on the respective face

F .

In order to use the pseudo-equivariance correctly, we notice that any point of the

considered pseudo-orbit belongs to n − k − 1 facets of ∆ and its disk neighborhood in

∂∆ splits into n − k − 1 parts. Some of those parts of neighborhoods of the points in

the pseudo-orbits are identified by the maps σ∆i∆j
, corresponding to pairs of facets (the

bijection Z in this case is always unique). Since we have n facets in total, we in fact split

the parts of neighborhoods of the pseudo-orbit to identified n-tuples.

We may calculate the sum of mapping degrees of h over the pseudo-orbit (or over

all points mapped to the center of ∆) by choosing a radially symmetric differential form

ν ∈ Ωn−1(∆) supported near the center of ∆ with unit integral and integrating its pull-

back over the neighborhoods of our pseudo-orbit points. The integration is possible, since

we consider a piece-wise linear h. We essentially use the mapping degree formula (see [41,

page 188], for example) ∫︂
∂∆×[0,1]

h∗ν = (deg h)

∫︂
∆

ν = deg h,

taking in account that the image of the boundary of ∂∆× [0, 1] does not hit the support

of ν, the neighborhood of the center of ∆. From the assumption that the piece-wise linear

map h is in general position, the integral on the left hand side is in fact the integral over

neighborhoods of points in the preimage of the center of ∆, if we choose the support of

ν sufficiently small. Hence we assume that we are now studying one pseudo-orbit of such

points and integrate over a union of their neighborhoods, split into parts, in order to

estimate the corresponding part of the mapping degree of h.

Once we split the neighborhoods into parts according to the facets of ∂∆, we may

integrate h∗ν over every part P of a neighborhood of a point in the pseudo-orbit to obtain

a partial mapping degree of P ,

degP h =

∫︂
P

h∗ν.

Here we assume that the parts of neighborhoods P are oriented according to the orienta-

tion of ∂∆. Then the sum over all parts of neighborhoods will be the degree of h in the

neighborhood of the pseudo-orbit in question. Note that a partial mapping degree is a

real number, not necessarily an integer. The identifications σ∆i∆j
show that among the
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numbers degP h obtained by such integration some are equal, the whole collection of these

partial mapping degrees in fact split into n-tuples of equal real numbers. Those equalities

appear with no sign, since ν is radially symmetric and only changes its sign according

to the sign of a permutation of coordinates, which occurs simultaneously in the domain,

where the orientation of ∂∆ also changes according to the sign of the permutation, and

in the image of h.

Another relation for the partial mapping degrees degP h is that the sum of partial

mapping degrees over the parts of the neighborhood of every point in the pseudo-orbit is

an integer, possibly depending on the point, the ordinary local mapping degree.

We want to use the two types of equalities described above and show that the sum

of all partial mapping degrees for the pseudo-orbit in question is an integer divisible by

p. After the summation over all pseudo-orbits going to the center of ∆ under h, this will

show that the full mapping degree of h is divisible by p and therefore the degree of f |∂∆
as a map from ∂∆ to ∆ \ {c} ∼ ∂∆ is always 1 modulo p, as it is for the identity map

f0. From this we can conclude that f , as a map ∆ → ∆, always touches the center of the

simplex.

Let us introduce some notation in order to work with partial mapping degrees and

their sum. Consider a point x in the pseudo-orbit, describe its kind by the sequence

[y1, . . . , yk+2], where yi is the number of zero coordinates between the (i − 1)th and ith

nonzero coordinates of x. More precisely, if xi1 , . . . , xik+1
are the nonzero coordinates of x

then the kind of x is [i1− 1, i2− i1− 1, . . . , ik+1− ik − 1, n− ik+1]. For example, the point

(0, x2, 0, 0, x5) will have the kind [1, 2, 0]. For any sequence y1, . . . , yk+2 of non-negative

integers summing up to n− k − 1 there corresponds a unique point of kind [y1, . . . , yk+2]

in the pseudo-orbit of a given point x from a relative interior of a k-dimensional face of

the simplex. Hence we may use the kinds to enumerate points in a pseudo-orbit.

Let P be a part of the neighborhood of a point of the kind [y1, . . . , yk+2] in the facet

given by ti = 0. The ith coordinate of the point is 0 and there is some yj to which it

corresponds. Hence P is uniquely described by [y1, . . . , yk+2] with sum n − k − 1 and

the choice of the index j of the position of zero. We may view the points of P as k + 1

big coordinates, n − k − 2 small coordinates (which were zero for original pseudo-orbit

points in k-faces), and one zero. The sequence [y1, . . . , yj−1, yj − 1, yj+1, . . . , yk+2] then

describes the positions of small coordinates among big coordinates and ignores zero. The
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identifications of n such parts of neighborhoods in a pseudo-orbit corresponds to inserting

zero into arbitrary position of a given sequence of big and small coordinates; therefore it

is natural to call [y1, . . . , yj−1, yj − 1, yj+1, . . . , yk+2] the kind of a pseudo-orbit of parts of

neighborhoods. Then to each sequence y1, . . . , yk+2 of non-negative integers summing up

to n− k − 2 there corresponds a unique part of neighborhood kind.

Moreover, we denote by deg[y1, . . . , yj−1, yj − 1, yj+1, . . . , yk+2] the partial mapping

degree of any part of a neighborhood of the given kind, this degree indeed only depends

on the kind. In order to prove the theorem, we need to show that the sum of all such

degrees, multiplied by n, is an integer divisible by p. We split this sum into several parts,

for any integer 0 ≤ r ≤ n− k − 2, put

Sr =
∑︂

r+y2+···+yk+2=n−k−2

deg[r, y2, . . . , yk+2],

and put S−1 = 0 for consistency. What we need to prove then translates to

n
n−k−2∑︂
r=0

Sr ≡ 0 mod p. (5.3)

Summing up the partial mapping degrees in the neighborhood of the point of the kind

[y1, . . . , yk+2] we get ∑︂
i

yi deg[y1, . . . , yi − 1, . . . , yk+2] ∈ Z. (5.4)

Summing up formulas of (5.4) for different kinds with y1 = r we get

rSr−1 + (n− r − 1)Sr ∈ Z. (5.5)

Indeed, each deg[r − 1, y2, . . . , yk+2] contributes with coefficient r in (5.4) for the neigh-

borhood of the point of the kind [r, y2, . . . , yk+2]. And each deg[r, y2, . . . , yk+2] con-

tributes with coefficient y2 + 1 in (5.4) for the neighborhood of the point of the kind

[r, y2 + 1, . . . , yk+2], with the coefficient y3 + 1 in (5.4) for the neighborhood of the point

of the kind [r, y2, y3 + 1, . . . , yk+2], and so on. Its total contribution then is

(y2 + 1) + · · ·+ (yk+2 + 1),

which is equal to n− k − 2− r + (k + 1) = n− r − 1.

Let us prove by induction that

(r + 1)

(︃
n− 1

r + 1

)︃
Sr ∈ Z. (5.6)
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The base r = 0 of induction follows from (5.5) with r = 0. Suppose we have proved (5.6)

for some r. Writing (5.5) for r + 1, we get

(r + 1)Sr + (n− r − 2)Sr+1 ∈ Z.

Multiply by
(︁
n−1
r+1

)︁
to get

(r + 1)

(︃
n− 1

r + 1

)︃
Sr + (n− r − 2)

(︃
n− 1

r + 1

)︃
Sr+1 ∈ Z.

By the induction assumption, we have

(n− r − 2)

(︃
n− 1

r + 1

)︃
Sr+1 ∈ Z.

Substituting
(︁
n−1
r+1

)︁
= r+2

n−r−2

(︁
n−1
r+2

)︁
, we get the desired result

(r + 2)

(︃
n− 1

r + 2

)︃
Sr+1 ∈ Z.

Since n = pα is a prime power, then all digits of n − 1 in p-adic notation are p − 1.

Hence, by the Lucas theorem [58] we get that
(︁
n−1
r+1

)︁
is not divisible by p. This means

that (r + 1)
(︁
n−1
r+1

)︁
is not divisible by pα for all 0 ≤ r ≤ n − k − 2, since r is not divisible

by pα. Therefore, the least common multiple m of the numbers (r + 1)
(︁
n−1
r+1

)︁
for all

0 ≤ r ≤ n− k − 2 is also not divisible by pα.

From (5.6) we conclude that

m
∑︂
r

Sr ∈ Z.

For each kind of a neighborhood there are exactly n partial neighborhoods of this kind,

so we also know that

n
∑︂
r

Sr = pα
∑︂
r

Sr ∈ Z.

Hence, n
∑︁

r Sr is divisible by n
gcd(n,m)

, which in turn is divisible by p, because m is not

divisible by n = pα. This establishes (5.3) and completes the proof.

5.4.3 Counterexamples when n is not a prime power

As it was shown above, in order to build a counterexample, where the segment partition

problem with possibility to choose nothing and no part can be dropped has no solution,
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it is sufficient to build a pseudo-equivariant map f : ∆n−1 → ∆n−1 missing the center

c ∈ ∆n−1 and put

Aij =
{︁
t ∈ ∆n−1 | ∀i′ fi(t) ≥ fi′(t)

}︁
independent on the player index j.

The first observation is that it is sufficient to have a pseudo-equivariant map f such

that the image of the boundary f(∂∆n−1) is not linked with the center c ∈ ∆n−1. Since

the homotopy group πn−2 (∆
n−1 \ {c}) is Z, the possibility to (re)extend f continuously

to the interior of the simplex ∆n−1 is fully governed by the linking number and any such

continuous extension does not violate the pseudo-equivariance relations (5.1), because the

relations are only applicable on the boundary of the simplex.

The second observation is that it is sufficient to find a continuous map f : ∂∆n−1 →
∆n−1 having zero linking number of the image with the center of the simplex and equiv-

ariant with respect to the action of the full permutation group Sn. The full equivariance

on the boundary implies the pseudo-equivariance we need, and a continuous extension of

f to the interior of the simplex is possible provided the linking number is zero.

In what follows we will switch between the two points of view: To find f : ∂∆n−1 →
∆n−1 with zero linking number with the center is the same as to find f : ∂∆n−1 → ∂∆n−1

with zero mapping degree. In order to see these are the same just compose f with

a central projection from the center of the simplex to have its image contained in the

boundary of the simplex; and note that such a projection preserves equivariance and

pseudo-equivariance.

The following is a reformulation of Theorem 2.8(c). Here we give an alternative proof,

since we use the same strategy later in the proof of Theorem 5.9.

Theorem 5.8. If n is odd and not a prime power then there exists an Sn-equivariant

continuous f : ∂∆n−1 → ∆n−1 of zero linking number with the center of ∆n−1.

Proof. We fix n and omit n from the notation where appropriate. We will start with the

identity f0 : ∂∆ → ∂∆, considered also as the inclusion ∂∆ → ∆. It definitely has degree

1 and we are going to modify it equivariantly so that its mapping degree will become 0.

A modification will consist in taking a dimension k, all the centers of the k-dimensional

simplices c1, . . . , cN , N =
(︁

n
k+1

)︁
, and pulling the images f(ci) to the center of ∆ (along



71

with pulling their neighborhoods continuously and equivariantly). When the images f(ci)

cross the origin, the linking number of f(∂∆) will change by either +1 or −1 at every

point, and by ±
(︁

n
k+1

)︁
in total.

Of course, in such a modification the sign + or −, at first glance, is fixed. But we

may not only pull a point c1 towards the origin, but also flip the mapping derivative

image of the tangent space Tc1F to the k-face F containing c1 on the way. Such a flip

commutes with the stabilizer of ci in the permutation group and can therefore be extended

equivariantly to the neighborhood of the orbit {ci}. Moreover, when k is odd, this flip

will change the sign of the crossing and therefore we will be able to choose the sign of the

modification by applying or not applying the flip before the crossing. See the details of

this pulling and flipping moves, for n = 3, in Figures 5.1 and 5.2.

When k is even, the flip does not change the sign of the crossing, hence we are only

able to make one crossing, and when we pull the point c1 (and equivariantly its orbit)

back through the center of ∆, we just make the opposite crossing and return to where

we started from in terms of the linking number. When k is odd, we have much more

freedom. We may pull the images f(ci) and their neighborhoods to the center c ∈ ∆ once

again and once again choose the sign of the crossing using or not using the equivariant

flip before the crossing. In total, for odd k, this allows us to change the linking number by

any multiple of
(︁

n
k+1

)︁
, positive or negative. Figure 5.3 shows how to make two successive

changes of the linking number in the same direction.

Figure 5.1: Pulling one point towards the center with/without a flip of signs.

Recall Ram’s theorem [79] (or the Lucas theorem [58] that we have already used) that

asserts that there exist integers x1, . . . , xn−1 such that

x1

(︃
n

1

)︃
+ x2

(︃
n

2

)︃
+ · · ·+ xn−1

(︃
n

n− 1

)︃
= −1,

provided n is not a prime power. Note that in our case n is not a prime power.
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Figure 5.2: Pulling an orbit of points towards the center.

Figure 5.3: Pulling a point towards the center and then pulling it back with a flip. The

other points in the orbit are not shown.

Moreover, n is odd and therefore, in view of the symmetry
(︁

n
k+1

)︁
=

(︁
n

n−k−1

)︁
, the set of

the binomial coefficients is the same as the set of binomial coefficients with even k + 1.

Hence, if we repeatedly use our moves for odd k with possible flips then by Ram’s theorem

we will be able to modify the linking number of f(∂∆) with c from 1 to zero.

It remains to handle the case of even n, but this is less easy - Theorem 5.9 fails for

n twice a prime power, as shown in Theorem 2.8(c). In the above argument we cannot

change the crossing sign for even k and n − k − 2, in particular, we can add or subtract(︁
n

k+1

)︁
from the linking number, but cannot repeat this operation, since when we move the

orbit back to the center of ∆, we just change the linking number back. A flip was really

needed in order to have a chance to repeat the change by ±
(︁

n
k+1

)︁
several times in the

same direction.

What we are able to do now, is to do this in the setting of pseudo-equivariance instead

of full equivariance. The following result shows that the segment partition problem with

the possibility of choosing nothing has no solution if n is not a prime power.
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Theorem 5.9. If n is not a prime power then there exists a pseudo-equivariant, in terms

of relations (5.1), continuous f : ∂∆n−1 → ∆n−1 of zero linking number with the center

of ∆n−1.

Proof. We do the same modifications as in the previous proof, but we need to handle

the case of even k. In view of the relations
(︁

n
k+1

)︁
=

(︁
n

n−k−1

)︁
we may also assume that

k ≥ n/2− 1 ≥ 2.

Note that, for a k-face F , any composition of the pseudo-equivariance symmetries

σF ′G′Z with F ′ ⊇ F cannot take the face F to itself and induce a non-identity map on it,

because all such symmetries preserve the order of the nonzero coordinates. Hence we can

choose a direction v1 ∈ Tc1F (because we only consider faces of positive dimension) in any

point c1 in the relative interior of F and we will have the well-defined defined pseudo-orbit

{ci} of this point and this direction vi ∈ TciFi, so that the pseudo-equivariance symmetries

permute those points and those directions whenever they are defined on them.

Now we modify the original identity map f0, we pull the images of the pseudo-orbit

f(ci) towards the center c of ∆ and on the way to the center we flip the tangent space

f∗ (Tc1F1) along the chosen direction f∗v1, if we need to switch the sign of the crossing.

The corresponding flips around every point of the pseudo-orbit {f(ci)} will be made in the

pseudo-equivariant fashion, in total allowing us to modify the linking number by ±
(︁

n
k+1

)︁
with a sign we choose.

It is possible to iterate such steps, moreover, in the absence of the true equivariance we

are allowed to choose c1 ∈ F different from the center of F , making every step independent

of the other steps. Having the possibility to choose the sign and iterate, in view of Ram’s

theorem for non-prime power n, we can obtain zero linking number.
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6 Convex fair partitions into an

arbitrary number of pieces

6.1 Introduction

In [73] a very natural problem was posed: Given a positive integer m and a convex body

K in the plane, cut it into m convex pieces of equal areas and perimeters. Here we do not

discuss any algorithm to provide such a cut, we only concentrate on the existence result.

The casem = 2 of the problem is proved using a simple continuity argument. The case

m = 2k could be proved similarly using the Borsuk–Ulam-type lemma by Gromov [37]

(see also [54]), which was used to prove another result, the waist theorem for the Gaussian

measure (and the sphere). In [12] the case m = 3 was proved.

Further cases, m = pk for a prime p, were established in [51] and [22] independently

(and a similar but weaker fact was established in [18; 99]). In both papers higher-

dimensional analogues of the problem were stated and proved. Here we establish a new

series of results:

Theorem 6.1. Any convex body K ⊂ R2 can be partitioned into m parts of equal area

and perimeter, for any integer m ≥ 2.

As in the previous work [51] and [22], a “perimeter” here may mean any continuous

function of a convex body in the plane. More precisely, this real-valued function must

be defined on convex bodies (convex compacta with non-empty interior) continuously in

the Hausdorff metric; in particular, we never apply this function to degenerate convex

compacta with empty interior.
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An “area” may be measured with any finite absolutely continuous Borel measure with

non-negative density in K; for a positive density the proof goes through literally and the

non-negative density is obtained by a standard compactness argument.

In the rest of the chapter, we present the proof of the theorem. In Appendices 6.5

and 6.6 we present a higher-dimensional result that does not fully generalize the two-

dimensional case, and an explanation of the difficulties of applying our tools to the true

higher-dimensional generalization of the two-dimensional problem when m is not a prime

power.

Compared to the previous work on this and similar problems, here we have found

a way to go beyond the usual equivariant (co)homological argument that restricts the

possible result to the prime power case. Our proof builds a solution recursively. To prove

its validity we argue by induction and use a certain separation lemma that allows us to

use standard homological arguments modulo different primes at different stages of the

induction.

6.2 How the proof for m = pk works

We will essentially use the mechanism of the proof for the m = pk case; thus we re-

call the corresponding construction. Let Fm(R2) be the configuration space of m-tuples

(x1, . . . , xm) of pairwise distinct points in the plane. To every such m-tuple we uniquely

associate (following [4]) the weighted Voronoi partition of the plane,

R2 = V1 ∪ · · · ∪ Vm,

with centers at x1, . . . , xm such that the areas of the intersections Vi ∩ K are all equal.

This can be done continuously in the configuration Fm(R2). Then we produce the map

(f is for perimeter here)

σ : Fm(R2) → Rm, σ(x1, . . . , xm) ↦→ (f(V1 ∩K), . . . , f(Vm ∩K)) ,

and then compose it with the quotient by the diagonal

∆ = {(t, t, . . . , t) : t ∈ R} ⊂ Rm

to obtain

τ : Fm(R2) → Rm/∆ =: Wm.
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The space Wm here can be interpreted as the (m− 1)-dimensional irreducible representa-

tion of the permutation group Sm; with the natural action of Sm of Fm(R2) this map τ

becomes Sm-equivariant.

The proof of the case m = pk is done by applying a Borsuk–Ulam-type theorem

(essentially established in [106]) showing that any equivariant map Fm(R2) → Wm must

hit the origin, this corresponds to equal perimeters in our partition. This is already good,

but to move further we need more details.

For the case m = 2k (essentially in [37]) a subspace Tm−1 ⊂ Fm() was exhibited, this

is a product of m − 1 circles in one-to-one correspondence with all vertices of a binary

tree with m/2 leaves. By choosing a sufficiently small ε > 0, for any leaf of this tree we

consider the uniquely defined chain of its vertices (considered here as the corresponding

unit vectors in the plane) v1, . . . , vk from the root to this leaf, and add the two vectors

v1 + εv2 + · · ·+ εk−1vk, v1 + εv2 + · · · − εk−1vk (6.1)

to the list of points that totally makes m distinct points in the plane. This provides

an embedding Tm−1 ⊂ Fm(R2), which is equivariant with respect to the action of S
(2)
m ,

the 2-Sylow subgroup of the permutation group, whose action on Tm−1 is generated by

sending vi ↦→ −vi at one of the vertices and interchanging the two subtrees of this vertex.

The map τ then restricts to a S
(2)
m -equivariant map

τ1 : T
m−1 → Wm.

It is easy to produce a particular case τ0 of such an equivariant map by taking the first

coordinates of the vectors in (6.1) and see that τ0 is transverse to zero and τ−1
0 (0) consists

of a single S
(2)
m orbit (all vectors vi pointing either either up or down). Hence τ−1

0 is

nonzero in the 0-dimensional S
(2)
m -equivariant homology modulo 2 of Tm−1, and therefore

for another equivariant map τ1 transverse to zero the set τ−1
1 (0) is nonempty since it is

homologous to τ−1
0 through χ−1(0) for an appropriately perturbed equivariant homotopy

χ : Tm−1 × [0, 1] → Wm, χ(t, s) = (1− s)τ0 + sτ1.

A more detailed explanation of this can be found in [54, Theorem 2.1].

For the odd prime power case, in [22] it was shown that there exists a polyhedron

Pm ⊂ Fm(R2) of dimension m− 1, which is Sm-equivariantly homotopy equivalent to the
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whole Fm(R2). This is useful because when we restrict the map to Pm, the solution set

τ−1(0) becomes generically (for a slightly equivariantly permuted τ) a finite set of points,

so the proof can be interpreted as a statement about how many points are in τ−1(0) for

generic τ .

In [22, Section 4.1] it was shown that the top-dimensional and 1-codimensional cells

of Pm can be oriented so that the action of Sm changes the orientation according to the

sign of the permutation, and with this orientation the top-dimensional cells produce a

nontrivial cohomology class in the Sm-equivariant cohomology with coefficients in the

sheaf ±Z, on which Sm acts by its permutation sign.

In order to avoid orientation issues and twisted coefficients in a sheaf, we pass to

the subgroup G ⊂ Sm of even permutations. The above mentioned facts mean that the

quotient Pm/G is a modulo p pseudomanifold, that is its two top-dimensional cells can be

oriented so that the boundary of the corresponding chain is equal to zero modulo p. It is

also shown in [22, Section 4.1] that a specially chosen test map τ0 : Pm → Wm has τ−1
0 (0)

consisting of a single Sm-orbit, that corresponds to a pair of points in Pm/G with equal

signs. The G-invariant orientations of Pm and Wm allow one to consider the solution

points with signs.

Since Pm/G is a pseudomanifold modulo p, the quotient of the zero set τ−1(0)/G of an

equivariant map τ : Tm−1 → Wm, considered as a 0-dimensional modulo p chain in Pm/G,

changes homologously to itself (modulo p, since Pm/G is a modulo p pseudomanifold)

when we change the map τ in a generic (transverse to zero) homotopy of equivariant

maps. Since the test zero set τ−1
0 (0) has two points of Pm/G of the same sign, it is not

homologous to a zero cycle, hence τ−1(0) is generically a 0-cycle modulo p not homologous

to zero and hence it is never empty.

It will be important for us to extract the following observation from the above expo-

sition of the proof. If the problem (e.g. the set K) depends on a parameter t ∈ [a, b] then

we obtain a family of zero sets τ−1
t (0). This can be naturally viewed as a preimage of zero

under an Sm-equivariant map

χ : Pm × [a, b] → Wm.

For a generic (transverse to zero) homotopy χ this preimage of zero Z ⊂ Pm/G× [a, b] will

be a one-dimensional polyhedron. Since any continuous map can be approximated with
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a piece-wise linear map, the reader may assume all maps we consider piece-wise linear; in

this case the transversality to zero is simply defined by the transversality to zero of the

restriction of the map to any face of the triangulation of the polyhedron, for which the

map is linear on faces of the triangulation.

From the orientation ofWm and the pseudomanifold modulo p structure of Pm/G×[a, b]

it follows that Z is naturally a one-dimensional pseudomanifold modulo p with boundary.

This means Z is an oriented graph with some vertices on Pm/G × {a} or Pm/G × {b},
whose vertices lying in Pm/G × (a, b) have the number of incoming edges equal to the

number of outgoing edges modulo p, similar to the structure of the pseudomanifold, where

every condimension one face has zero modulo p attached top-dimensional faces counted

with orientation. In particular, Z represents a modulo p cycle in Pm/G × [a, b] relative

to Pm/G × {a, b}, whose intersection with a generic subset Pm/G × {t} is a nontrivial

0-dimensional cycle modulo p. This is what we need to move further.

6.3 Proof for m = 2pk

Let us start by considering the simplest particular case of our result, still exhibiting the

main technique that we utilize. We consider an odd prime p and m = 2pk. The full proof

will be somewhat technical and is postponed to the next section.

Now we essentially use the last observation of the previous exposition of the case

m = pk. Take a parameter t ∈ [0, π] and cutK by a straight line directed along (cos t, sin t)

into equal area halves, it is uniquely done given the direction t. K will be cut into Lt and

Mt. Note that (see Figure 6.1)

Lπ =M0, Mπ = L0. (6.2)

Consider the problem of partitioning Lt and Mt into equal parts. They produce two

families of problems with two solution sets ZL, ZM ⊂ Ppk/G× [0, π]. Perturbing the test

map τ generically we make it transverse to zero and assume ZL and ZM are 1-cycles

modulo p, as described above. Now for any solution, say, (z, t) ∈ ZL assign a point

(f(z), t) ∈ R× [0, π], where f(z) is the common perimeter in the corresponding partition

of Lt into m equal parts. This is a continuous map, hence we may view its image GL

as a 1-dimensional cycle modulo p in the strip S = R × [0, π] relative to its boundary.
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This means that generically GL is an oriented graph drawing all of whose vertices in the

interior of the strip have the number of incoming edges equal to the number of outgoing

edges modulo p; and a generic vertical line St = R× {t} intersects GL a nonzero number

of times modulo p, when counted with signs and multiplicities.

In a similar fashion we produce the 1-dimensional cycle GM , coming from perimeters

of the partitions of Mt. From (6.2) it follows that GL ∩ S0 equals GM ∩ Sπ up to a

horizontal shift and GM ∩ ℓ0 equals GL ∩ ℓπ up to a horizontal shift, as zero-dimensional

cycles. The crucial observation is:

Figure 6.1

`0 `π `2π

Figure 6.2

Lemma 6.2. The assumptions described above on the cycles GL and GM guarantee that

their supports intersect.

The theorem follows from this lemma since a common point of the supports of GL

and GM corresponds to a pair of partitions of Lt and Mt into m parts each such that the

all areas in both partitions are equal to areaK
2m

, and all the perimeters on both partitions

coincide because the corresponding points of GL and GM are the same.

Proof of the Lemma. Double the strip S to have C = R×[0, 2π], and consider it a cylinder

by identifying t = 0 and t = 2π. Let R be the translation by π to the right modulo 2π,

the half-rotation of the cylinder. The description of the boundary shows that the chains

G′
L = GL +R(GM), G′

M = GM +R(GL)

are cycles modulo p with disjoint supports, intersecting a generic vertical line nonzero

modulo p number of times, and such that R(G′
L) = G′

M (see Figure 6.2 for an example of

two such cycles, they are drawn with solid and dashed lines respectively). Those cycles

are just full versions of the original cycles defined for arbitrary rotation angle t.
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Since the modulo p cycle G′
L intersects a generic vertical line a nonzero modulo p

number of times, it must also intersect any curve going from the infinite bottom to the

infinite top of the cylinder by the homological invariance of the intersection (this curve

is considered as a modulo p chain in the homology of the cylinder relative to its top and

bottom). Hence G′
L splits the cylinder C into connected parts, one of which is infinite

at the top and bounded at the bottom, call it A. The half-rotated G′
M = R(G′

L) has

the corresponding component of the complement R(A). The strict inclusion A ⊂ R(A) is

impossible since it would follow that R(A) ⊂ R(R(A)) = A; the opposite strict inclusion

R(A) ⊂ A is also impossible. Since A and R(A) evidently intersect somewhere at the top,

this means that the boundaries of A and R(A) must intersect, hence G′
L intersects G′

M .

6.4 Proof for arbitrary m

In our proof of the general case of Theorem 6.1, we are going to use induction, which also

resembles the proof of a particular case of the Knaster problem by induction in [113].

First, for an odd prime p let Pp be the polyhedron used in the proof of [22]; it is a

subset of the configuration space of distinct p-tuples of points in R2 and it therefore has

a natural action of Sp, which we restrict to the group of even permutations Gp ⊂ Sp.

The group Gp acts freely on Pp and preserves a certain orientation of its top-dimensional

faces of dimension p − 1, splitting those faces into two Gp-orbits. For p = 2, let P2 be

a circle with the antipodal action of G2 := Z/2. What we need is that, as in the proof

of the prime power case, Pp will parameterize certain partitions of a planar convex body

into p parts of equal area.

It turns out helpful to use the language of multivalued functions on the space of convex

bodies K. In fact, in our argument we will only use finite-dimensional subspaces of K
build of the above-mentioned polyhedra Pp, hence we may always assume that K is a

polyhendron, thus avoiding topological difficulties.

Definition 6.3. A nice multivalued function K → (−1, 1) is determined by its closed

graph in K × [−1, 1], that is given by the equation

φ(C, y) = 0,
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where φ : K × [−1, 1] → R is a continuous single-valued function satisfying

φ(C,−1) < 0, φ(C, 1) > 0

for all C ∈ K.

Evidently, a nice multivalued function attains at least one value on every C ∈ K,

that is for every C ∈ K there exists y such that the pair (C, y) is on the graph of the

multivalued function. This follows from the intermediate value theorem for the continuous

function φ.

Here we restrict the values of a multivalued function to (−1, 1), which in practice may

be assumed after an appropriate scaling of its values, if the values were in a larger interval

(−L,L). Any continuous single-valued function f : K → (−1, 1) may be considered as a

nice multivalued function by putting

φ(C, y) = f(C)− y.

We will identify a nice multivalued function on K with the equation of its graph

φ(C, y), when we need to refer to this function by a name. Theorem 6.1 will follow from

iterations of the following claim:

Lemma 6.4. Assume φ is a nice multivalued function of K and p is a prime. Then there

exists another nice multivalued function ψ of K such that whenever C ∈ K satisfies

ψ(C, y) = 0

then there exists a partition C = C1 ∪ · · · ∪Cp into convex bodies of equal area, such that

φ(C1, y) = · · · = φ(Cp, y) = 0. (6.3)

Proof of Theorem 6.1 assuming the lemma. Let φ1 be the perimeter single-valued func-

tion. Apply the lemma to φ1 and p1 to obtain φ2. Then apply the lemma to φ2 and p2

and so on, where m = p1 · · · pn is the decomposition of our given m into primes. The final

function φn+1 will be a nice mutlivalued function of a convex body.

From the intermediate value theorem, there exists y ∈ (−1, 1) such that

φn+1(C, y) = 0
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for the convex body C we are interested in. In means that C may be partitioned into pn

convex bodies of equal area and the same value y of the multivalued function φn. Each

of these bodies may in turn be partitioned into pn−1 parts of equal area and the same

value y of the multivalued function φn−1, and so on. Eventually, we obtain a partition of

C into m = p1 · · · pn parts of equal area and the same value y of the multivalued function

φ1, which is in fact the single-valued perimeter function.

Proof of Lemma 6.4. Parametrize some of the partitions of C ∈ K into p convex parts

of equal area with the space Pp, as in [22]. Equations (6.3) then define a closed subset

S ⊂ K × Pp × [−1, 1].

The set S is Gp-invariant, where Gp acts on Pp as in [22] (Pp is a subset of the

configuration space of p-tuples of pairwise distinct points in R2 and Gp permutes those

points) and trivially acts on K and [−1, 1]. To be more precise, the set S is the preimage

of zero under the Gp-equivariant continuous map

Φ : K × Pp × [−1, 1] → Rp, Φ(C, x, y) = (φ(C1(x), y), φ(C2(x), y), . . . , φ(Cp(x), y)) ,

where Ci(x) denotes the ith part of the convex partition of C corresponding to the con-

figuration x ∈ Pp. This map is Gp-equivariant if Rp is acted on by Gp by permutation of

coordinates.

Fix a body C and study the structure of the fiber set

SC = S ∩ ({C} × Pp × [−1, 1]) .

When the Gp-equivariant map

ΦC = Φ|{C}×Pp×[−1,1]

is transverse to zero, the solution set SC is a finite number of points from the dimension

considerations.

If we make a homotopy of ΦC as a Gp-equivariant map with the boundary conditions

on its components φ(Ci, y) then the solution set SC changes, but it changes in a definite

way. If the homotopy H : Pp × [−1, 1] × [0, 1] → R is transverse to zero (this can be

achieved by a small perturbation) then H−1(0) represents a Gp-equivariant 1-dimensional

cycle modulo p relative to Pp×[−1, 1]×{0, 1}. Indeed, under the transversality assumption
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H−1(0) consists of smooth oriented segments in the top-dimensional faces of the domain

Pp × [−1, 1]× [0, 1] and isolated points of intersection with the 1-codimensional skeleton

of the domain. Since the domain is a pseudomanifold, the segments are attached to every

point 0 modulo p times, unless we are at the boundary pieces Pp × [−1, 1] × {0} and

Pp × [−1, 1] × {1} of the domain, where the chain H−1(0) has the boundary modulo

p coinciding with the zero sets of the initial ΦC(·, ·) = H(·, ·, 0) and the final ΦC(·, ·) =
H(·, ·, 1). Hence the zero set of a transverse to zero ΦC changes equivariantly homologously

to itself under Gp-equivariant homotopies of the map ΦC .

Let us present an instance of a transverse to zero map Φ0 : Pp × [−1, 1] → Rp (a test

map), which is Gp-equivariant and satisfies the boundary conditions that we impose on

ΦC , and for which the set Φ−1
0 (0) is homologically nontrivial. By the above homotopy

consideration (connecting Φ0 to ΦC by convexly combining their coordinates), the exis-

tence of such a test map implies the homological nontriviality of SC for any transverse to

zero map ΦC . In order to produce the needed test map, we may take the Sp-equivariant

test map

Ψ0 : Pp → Wp

considered in [22]. Here it is convenient to consider Wp ⊂ Rp as the linear subspace of

p-tuples with zero sum. The transverse preimage of zero Ψ−1
0 (0) consists of the unique

Sp-orbit of a point in the relative interior of a top-dimensional face of Pp. This solution

set Ψ−1
0 (0) is either a single Gp-orbit (for p = 2) or splits into two Gp-orbits (for odd p),

but both with the same sign. This verifies the homological nontriviality of Ψ−1
0 (0) as a

0-dimensional Gp-equivariant cycle.

We augment Ψ0 to the map (assuming the coordinates of Ψ0 are in the interval (−1, 1))

Φ0(x, y) = Ψ0(x) + (y, . . . , y) .

Then Φ−1
0 (0) = Ψ−1

0 (0)×{0} and this preimage is still a nontrivial Gp-equivariant 0-cycle

modulo p. Hence, we obtain:

Claim 6.5. For transverse to zero ΦC, the set SC is a nontrivial Gp-equivariant 0-cycle

modulo p. Its projection to the segment [−1, 1] is a nontrivial 0-cycle modulo p.

Note that the set SC is always non-empty, since were it empty, the map ΦC would be

transverse to zero by definition and SC would have to be non-empty by the claim. Assume
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now we change the convex body C in a continuous one-parameteric family {C(s) | s ∈
[a, b]} and obtain a Gp-equivariant map with one more parameter

˜︁Φ : Pp×[a, b]×[−1, 1] → Rp, ˜︁Φ(x, s, y) = (φ(C1(x, s), y), φ(C2(x, s), y), . . . , φ(C1(x, s), y)) ,

where Ci(x, s) is the ith part of the partition of C(s) corresponding to Pp.

The solution set ˜︁Φ−1(0) now generically (when ˜︁Φ is transverse to zero) represents a

Gp-equivariant 1-dimensional cycle modulo p relative to Pp × {a, b} × [−1, 1]. As in the

above argument, under the transversality assumption ˜︁Φ−1(0) consists of smooth oriented

segments in the top-dimensional faces of the domain Pp × [a, b] × [−1, 1] and isolated

points of intersection with the 1-codimensional skeleton of the domain; since the domain

is a pseudomanifold, the segments are attached to every point 0 modulo p times, unless

s = a or s = b.

Projecting ˜︁Φ−1(0) to the rectangle [a, b]×[−1, 1] (every Gp-orbit goes to a single point),

we get a 1-dimensional cycle modulo p relative to {a, b} × [−1, 1], intersecting a generic

line s = c nontrivially modulo p by the previous claim, since this is the solution set of a

generic problem without a parameter. It is crucial that any curve connecting the bottom

[a, b] × {−1} to the top [a, b] × {1} of the rectangle is homologous to such a line, and it

must intersect the cycle by the homological invariance of the intersection number. Hence

we obtain:

Claim 6.6. For a family of convex bodies C(s), the set

SC(s) = S ∩ ({C(s) | s ∈ [a, b]} × Pp × [−1, 1])

separates top from the bottom when projected to [a, b]× [−1, 1].

We have proved this for a transverse to zero ˜︁Φ, but the transversality assumption is

not necessary. Once we have a curve from [a, b] × {−1} to [a, b] × {1} not touching the

projection of the solution set for an arbitrary Gp-equivariant ˜︁Φ, satisfying the boundary

conditions, this curve will not touch the projection of the solution set for a small generic

(and therefore transverse to zero) perturbation of ˜︁Φ; but the latter is already shown to

be impossible.

Now we consider the “big cylinder” K × [−1, 1], where the graphs of multivalued

functions live. Assume we have a continuous curve

γ : [a, b] → K× [−1, 1]
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passing from the bottom K × {−1} to the top K × {1} in the cylinder and parametrized

by a segment [a, b]. Its first coordinate may be considered as a one-parametric family of

convex bodies C(s). Hence applying the previous claim, we obtain:

Claim 6.7. The projection Z of S to K × [−1, 1] separates the top K × {1} from the

bottom K × {−1}.

This is the crucial separation property of Z ⊂ K× [−1, 1], considered as a graph of a

multivalued function. We show that the separation property implies that this multivalued

function is nice.

Take the distance to the set Z function, dist(·, Z), under some metrization of K ×
[−1, 1], it is continuous and positive on the complement of Z. Since the top and the

bottom of K × [−1, 1] belong to different connected components of the complement, we

can flip the sign of this function on the bottom component to make it satisfy the signed

boundary conditions of nice multivalued functions. In effect, we obtain a function

ψ : K × [−1, 1] → R,

satisfying the boundary condition sufficient to call its corresponding multivalued function

with the graph {ψ(C, y) = 0} nice. Our construction ensures that whenever ψ(C, y) = 0,

the pair (C, y) is in Z and corresponds to (C, x, y) ∈ S. The latter triple, in turn, provides

a partition of C into p convex bodies C1, . . . , Cp satisfying

φ(C1, y) = · · · = φ(Cp, y).

6.5 Appendix: A weaker higher-dimensional result

Now we are going to consider the case when we work in Rd, have d−1 measures µ1, . . . , µd−1

in a convex body K and want to partition K into m convex parts of equal µj measure

(for every j) and equal surface area. As with the perimeter, the “surface area” may be

any continuous function of a convex body in Rd.

In Appendix 6.6 we explain why our approach is not suitable when we want to equalize

two arbitrary functions and d− 2 measures of parts, which is why we only dare to handle

one arbitrary function here. Let us state the result:
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Theorem 6.8. Assume d − 1 finite non-zero Borel measures µ1, . . . , µd−1 with non-

negative density are given in a convex body K ⊂ Rd and f is a continuous function

of a convex body. If m ≥ 2 is an integer then it is possible to partition K into m convex

parts V1, . . . , Vm so that for every i

µi(V1) = µi(V2) = · · · = µi(Vm)

and

f(V1) = f(V2) = · · · = f(Vm).

In [99] a similar result was proved, in the case of d measures and no arbitrary func-

tion. In terms of the previous section this is explained as follows: In the induction step

we equalize d measures in p1-tuples of parts of the bottom level of the hierarchical parti-

tion, but we do not need to work with “multivalued functions” because the measures are

additive and once we equalize the measures we know the common value.

As for the proof, our d-dimensional theorem follows from the following analogue of

Lemma 6.4. Let Kd be the space of d-dimensional convex bodies:

Lemma 6.9. Assume φ is a nice multivalued function of Kd and p is a prime. Then there

exists another nice multivalued function ψ of Kd such that whenever C ∈ Kd satisfies

ψ(C, y) = 0

then there exists a partition C = C1 ∪ · · · ∪Cp into convex bodies of equal measure µi, for

every i = 1, . . . , d− 1, and such that

φ(C1, y) = · · · = φ(Cp, y) = 0. (6.4)

The proof follows by considering the more general (d − 1)(p − 1)-dimensional pseu-

domanifolds modulo a prime p, Pp;d, introduced in [22], with the group of symmetry Gp

as in the previous section. The map ΦC : Pp;d × [−1, 1] → R(d−1)p is then build from

a configuration x ∈ Pp;d of p points in Rd, considered as Voronoi centers. The mea-

sure µd−1 is equalized by finding appropriate Voronoi weights and establishing a partition

C = C1 ∪ · · · ∪ Cp, the functions µi(Cj) (i = 1, . . . , d − 2) and φ(Ci, y) then constitute

the coordinates of ΦC . Whenever such ΦC is transverse to zero, the preimage of zero is a

nontrivial 0-cycle modulo p; this is a version of Claim 6.5 in this more general situation.
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The rest of the proof of Lemma 6.9 is essentially the same as the proof of Lemma 6.4.

Theorem 6.8 follows as in the two-dimensional case, the measures are equalized since on

every prime number stage the partition is a partition into parts of equal measures, the

function φ is equalized as guaranteed by the lemma.

Remark 6.10. Of course, we were trying to find a generalization of this argument in order,

for example, to equalize two arbitrary functions of the convex parts in R3 together with

their volumes. A crucial obstacle, in our opinion, is that when we make an induction step

and consider a “subfunction” of a multivalued function with a separation argument, then

the procedure of restoring the subpartition (of a part in the hierarchy) corresponding to

the chosen common value of this equalized function of the subpartition is not continuous.

In particular the other function we want to equalize may not depend continuously (or be

a nice multivalued function) on the first one after this choice.

6.6 Appendix: Difficulty of equalizing two arbitrary

functions

In this section we point out some essential difficulties in the attempt to generalize our

technique to the case when we need to equalize at least two arbitrary continuous functions

of convex parts. We thank Sergey Melikhov for sharing with us his ideas that developed

into the argument of this section.

Assume we have a convex body K ⊂ R3 and want to partition it into m = 2ps (p is an

odd prime) convex parts with equal volumes, and equal values of two other continuous in

Hausdorff metric functions F1, F2 of the parts. We would naturally start by partitioning

K into two parts of equal volume; such partitions are parametrized by the normal of the

oriented partitioning plane, that is by the sphere S2. Then in the part of K the normal

points to, we would apply the Blagojević–Ziegler result for m = ps to have a nonzero

modulo p number of solutions for this half of the problem. Looking at the possible pairs

of common values of F1, F2 we would obtain, as in the proof of the main result of this

chapter, a multivalued function S2 → R2, whose graph in S2×R2, under certain genericity

assumptions, could be viewed as a 2-dimensional cycle modulo p, which we denote by Z,

homologous modulo p to k[S2 × {(0, 0)}] for some k ̸= 0 mod p.
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The problem would be solved this way if we could prove that under the antipodal map

σ : S2 → S2, extended to S2 × R2 by the trivial action of σ on R2, some point of the

support of Z would go to some other point of the support of Z. But below we build an

example of a modulo p cycle Z that satisfies all the assumptions that we know it must

satisfy in the problem, but has disjoint Z and σ(Z).

Let us build Z inside S2 ×D, where D is the unit disk in the plane R2. Let us split

S2 by its equator S1 into closed hemispheres D+ and D−. Start by building the part of

Z that lies over S1: Let L be the graph of

z ↦→ zn,

where we identify D with the unit disk in the complex plane and S1 with the unit complex

numbers. For odd n the circles L and σL do not intersect and their linking number (if

we consider the solid torus S1 ×D lying standardly in R3) is lk(L, σL) = n, since for odd

n the circle σL is the graph of

z ↦→ −zn,

and the linking number of two circles, close to each other, equals the winding number of

their difference vector when we pass along the circles.

Letting this n be equal to the prime number p from the formula m = 2ps, we thus

have that L and σL are non-linked 1-dimensional modulo p cycles. Now we pass from the

torus S1 ×D to the topological 4-dimensional ball B4 = D+ ×D. The torus S1 ×D is a

part of its boundary S3 = ∂B4 and the cycles L and σL are non-linked modulo p cycles

in S3, since the torus embeds into S3 without a twist. It follows that we may choose two

2-dimensional modulo p cycles in B4 relative to S3,M and N , so that ∂M = L, ∂N = σL,

and the supports of M and N are disjoint.

Indeed, choose M as any topologycally embedded disk in B4, whose boundary maps

homeomorphically to the circle L. By Alexander duality for the pair (B4, S3), we have

H1(B
4 \M ;Z/pZ) = H2(M,L;Z/pZ) = Z/pZ.

Hence the homology class [σ(L)] ∈ H1(B
4 \M ;Z/pZ) is fully determined by an element

of Z/pZ, which is in fact the linking number lk(L, σL). Having this linking number 0

modulo p, we may conclude that σL is a modulo p boundary of a 2-dimensional modulo

p chain N in B4 \M . The chains N and M thus have disjoint supports.
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Now we pass to S2 × D from D+ × D and take the 2-dimensional modulo p cycle

Z =M − σ(N), this is indeed a cycle, since

∂Z = ∂M − σ(∂N) = L− σ(σ(L)) = 0.

From the construction of M and N we may conclude that Z and σZ are disjoint. At the

same time, Z is homologous modulo p to [S2 × {(0, 0)}], which is equivalent to saying

that it intersects {x} ×D, for generic x ∈ S2, 1 modulo p number of times, counted with

signs. The last claim is evidently true for x ∈ S1, where

({x} ×D) ∩ Z = ({x} ×D) ∩ L.

Our construction of M and N allows them to have collars near S3 ⊂ B4 that allows us

to keep the uniqueness of such an intersection for x in a neighborhood of S1 in S2. If we

want Z to be homologous to a multiple k[S2×{(0, 0)}] modulo p then we may just repeat

this construction in k smaller disks D1, . . . , Ds embedded in D and take the sum of the

obtained cycles.

Thus we have checked that Z has the properties that a graph of the multivalued

function from our attempted proof must have, but does not allow to make the final step

of the proof.

Remark 6.11. Using several circles Li, given by z ↦→ ci + εzni for different ci ∈ D, odd

integers ni, and sufficiently small ε > 0, it is possible to replace L in the above argument

with an algebraic combination L′ =
∑︁

i Li, such that

lk(L′, σL′) =
∑︂
i

ni = 0

as an integer. We may also make L′ modulo p (but not integrally!) homologous to

k[S1 × {(0, 0)}], by choosing the number of the Li to equal k modulo p. Then we choose

M as an oriented surface in B4 = D+ × D with boundary L′, N as a integral chain in

B4 \M with boundary σ(L′). The integral chain Z =M−σ(N) then becomes an integral

cycle, modulo p (but not integrally!) equivalent to k[S2 × {(0, 0)}]. And Z is disjoint

from σ(Z), that is the Borsuk–Ulam theorem cannot be generalized to the corresponding

multivalued map S2 → R2.
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7 Inscribed quadrilaterals

7.1 Introduction

To inscribe a quadrilateral Q in a Jordan curve is to find a non-degenerate scaling,

rotation, and translation which maps all of the vertices of Q to the curve.

Which quadrilaterals can be inscribed in any closed convex curve? Obviously, the

quadrilateral must be cyclic, that is inscribed in a circle. Such quadrilaterals are charac-

terized by a remarkable property that the sum of their opposite angles is π. It turns out

that for C1-curves this condition is also sufficient.1

Theorem 7.1. Any cyclic quadrilateral can be inscribed in any closed convex C1-curve.

The C1-smoothness requirement is necessary in Theorem 7.1. For example, the kite

with angles π/2 and 2π/3 cannot be inscribed in the thin triangle with angles π/10, π/10,

4π/5 (Figure 7.1). However, if Q is a rectangle the smoothness condition can be relaxed.

Theorem 7.2. Any rectangle can be inscribed in any closed convex curve.

1The results of this chapter were independently obtained by B. Matschke, whose preprint [67] appeared

just a few days later. In addition it contains a stronger version of Theorem 7.2, which is proved not only

for rectangles but also for any cyclic trapezoids.

Figure 7.1
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In [62] V. Makeev conjectured that any cyclic quadrilateral can be inscribed in any

Jordan curve. He proved the conjecture for the case of star-shaped C2-curves intersecting

any circle at no more than 4 points. Theorem 7.1 proves it for convex C1-curves. The

example above shows that the conjecture fails without the smoothness assumption. This

example can be generalized to any cyclic quadrilateral except for trapezoids. So, I. Pak

[76] conjectured that Makeev’s conjecture still holds for cyclic trapezoids even without

the smoothness assumption.

Makeev’s conjecture is a part of a substantial topic originating from the famous ques-

tion in geometry known as the Square Peg problem or Toeplitz’ conjecture: Does every

Jordan curve contain all the vertices of a square? In its general form the Square Peg

problem is still open. In the last hundred years it was positively solved, however, for a

wide variety of classes of curves. For instance, for convex curves and later for piecewise

analytic curves by A. Emch [28; 29], for C2-curves by L. Schnirelman [109], for locally

monotone curves by W. Stromquist [102], for curves without special trapezoids, for curves

inscribed in a certain annulus, and for centrally symmetric curves [74]. There were also

high-dimension extensions of these results [39; 47; 63; 49]. For more details we refer the

reader to the survey [66] by B. Matschke.

Similar to the Square Peg problem, there exists the Rectangular Peg conjecture stating

that every Jordan curve contains the vertices of a rectangle with the prescribed aspect

ratio. A proof was claimed by H. Griffiths [36], but an error was found later. For a

discussion see [66, Conjecture 8]. The specific case of aspect ratio
√
3 was first solved by

B. Matschke [65] only for “close to convex” curves, and later by C. Hugelmeyer [48] for all

smooth Jordan curves. Theorem 7.2 proves the Rectangular Peg conjecture for the case

of convex curves. In a recent preprint [35] the conjecture was finally proved (for smooth

curves).

It is noteworthy that all of the proofs mentioned above use topological obstruction

theory (except for [48] and [35]). Unfortunately, this approach fails in the more general

cases. The proof of Theorem 7.1 and 7.2 is based on a “non-topological” observation first

made by R. Karasev, [50]. It allowed him, in particular, to prove the infinitesimal version

of Theorem 7.1. R. Karasev noticed and proved that during the rotation of any three

out of four vertices of a quadrilateral Q along a curve γ the fourth vertex travels along a

path bounding the same signed area as the original curve γ. A similar idea was recently
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independently discovered by T. Tao who used it to prove the Toeplitz’ conjecture for new

types of curves [103].

7.2 The case of strictly convex C∞-curves.

In this section we prove the following theorem.

Theorem 7.3. Let Q be a cyclic quadrilateral and let γ be a closed strictly convex C∞-

curve. Then for any ε > 0 there is a cyclic quadrilateral Qε which is ε-close to Q and can

be inscribed in γ.

The proofs of Theorems 7.1 and 7.2 are obtained from Theorem 7.3 by “going to the

limit” type argument in the next section.

Until the end of the section let us fix a closed strictly convex C∞-curve γ.

For a quadrilateral Q its drawing is the image of Q under some non-degenerate

scaling, rotation, and translation. If the angle of the rotation is α we also call it an

α-drawing.

Lemma 7.4. Pick a vertex of a quadrilateral Q. For any angle α there is a unique

α-drawing of Q with all of the remaining 3 vertices being on γ.

Proof. The existence of a drawing follows by a simple continuity argument similar to the

argument in the proof of the following Lemma 7.6. The drawing is unique because the

vertices of two distinct homothetic triangles cannot lie on a strictly convex curve.

For a vertex d of a quadrilateral Q denote by d(α) the position of d in the α-drawing

of Q with the remaining 3 vertices being on γ.

Lemma 7.5. Let Q be a cyclic quadrilateral. Then for any ε > 0 there is a cyclic

quadrilateral Qε which is ε-close to Q and such that d(α) is a closed C∞-curve for any

vertex d of Qε.

Proof. Let U be the space of ordered triples of pairwise distinct points of γ. Consider the

map f : U → S1 × S1 which sends a triple (x, y, z) to the pair of angles (∠xyz,∠yzx).

Clearly, f is C∞.
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Let abcd be the vertices of Q in the counterclockwise order. Then the curve d(α)

corresponds to the f -preimage of the pair of angles (∠abc,∠bca). By Sard’s lemma the

set of the critical values of f has Lebesgue measure 0, i.e., the set of cyclic quadrilaterals

Q such that d(α) is not a C∞-curve also has Lebesgue measure 0. Applying this argument

to every vertex of Q we get the statement of the lemma.

Lemma 7.6. Let Q be a cyclic quadrilateral. Then there is a vertex d of Q such that the

angle at d is non-acute and d(α) contains a point either on γ or in the exterior of γ.

Proof. Let abcd be the vertices of Q in the counterclockwise order.

There are two adjacent vertices of Q with non-acute angles because Q is cyclic. With-

out the loss of generality let us assume that the angles at c and d are non-acute. We may

also assume that γ is tangent to the lines y = 0 and y = 1.

For t ∈ (0, 1) denote by at and bt the leftmost and the rightmost, respectively, of the

two intersections of γ with y = t. Denote by ct and dt the points such that atbtctdt is a

drawing of Q. Note that ct and dt are above the line y = t, see Figure 7.2.

Consider the case when t is very close to 1. Then ∠dtatbt is greater than the angle

between atbt and the tangent to γ at at. Which places dt is in the exterior of γ. Likewise,

ct is also in the exterior of γ.

Consider now the opposite case of t being very close to 0. Then ∠dtatbt is less than

the angle between atbt and the tangent to γ at at. Also, the segment atdt is “short”, i.e.,

much shorter than the intersection of the interior of γ with the line parallel to atdt and

going through the common point of γ and y = 0. Which means that dt is in the interior

of γ. Likewise, ct is also in the interior of γ.

Let us now continuously decrease t from 1 to 0. At some moment one of the vertices d

or c is going to intersect γ while another one is still in the exterior of γ, or on γ. Without

the loss of generality we may assume that the latter vertex is d. Then d(α) contains a

point either on γ or in the exterior of γ.

Proof of Theorem 7.3. Choose a cyclic quadrilateral Qε as in the statement of Lemma

7.5.

By Lemma 7.6, there is a vertex d of Qε with a non-acute angle and such that d(α)

contains a point either on γ or in the exterior of γ.
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ba

cd

ba

cd

Figure 7.2

a

b

c

d

d(α)

Figure 7.3

If d(α) intersects γ then we are done, so we may assume that d(α) and γ are disjoint.

By the Jordan curve theorem, d(α) lies in the exterior of γ. On the other hand, γ

lies in the interior of d(α). Indeed, as we revolve once along d(α), the diagonal bd of

the corresponding α-drawing of Qε must also complete a 2π rotation. This would be

impossible if the interiors of γ and d(α) were disjoint.

By the following lemma, the curve d(α) has no self-intersections in the exterior of γ,

i.e., no self-intersections at all.

Lemma 7.7. Let abcd and a′b′c′d be two distinct drawings of the same cyclic quadri-

lateral with a non-acute ∠d. Suppose that d is outside of the convex hull of the points

a,b,c,a′,b′,and c′. Then six points a, b, c and a′, b′, c′ cannot be in strictly convex position.

It is left to note that the area of d(α) must then be greater than the area of γ which

contradicts to the following lemma proven in [50].

Lemma 7.8. Let Q be a cyclic quadrilateral and let d(α) be a C∞-curve for some vertex

d of Q. Then the area of d(α) is equal to the area of γ.

7.3 Proofs of Theorem 7.1 and Theorem 7.2.

Proof of Theorem 7.1. Let γ be a closed convex C1-curve and let Q be a cyclic quadrilat-

eral. Choose a sequence γi of closed strictly convex C∞-curves converging to γ pointwise.

By Theorem 7.3, there is a sequence Qi of cyclic quadrilaterals converging to Q and such

that Qi can be inscribed in γi for each i.
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Di

Figure 7.4

Let ai, bi, ci, di ∈ γi be the vertices of Qi in the counterclockwise order. By passing to

the subsequences, we may assume that the sequences ai, bi, ci, and di have limits, a, b, c,

and d, respectively.

The quadrilateral abcd is inscribed in γ and is obtained from Q by a composition of

scaling, rotation, and translation. It remains to prove that the scaling is non-degenerate.

Assume to the contrary that a = b = c = d. Then both aibi and bici converge to the

tangent to γ at a = b = c = d. I.e., ∠aibici converges to either 0 or π. On the other hand,

∠aibici must converge to the corresponding angle of Q. Angles of Q are neither 0 nor π,

which leads to a contradiction.

Proof of Theorem 7.2. Let γ be a closed convex curve and let Q be a rectangle. Let γi,

Qi, ai, bi, ci, di, a, b, c, and d be as in the proof of Theorem 7.1.

Again, it remains to prove that the rectangle abcd is non-degenerate. Assume to the

contrary, that a = b = c = d.

The vertices of Qi divide γi into 4 arcs which we denote in the counterclockwise order

by Ai, Bi, Ci, and Di, see Figure 7.4. The lengths of 3 out of 4 arcs converge to 0.

Without the loss of generality we assume that the lengths l(Ai) and l(Ci) of Ai and Ci,

respectively, converge to 0.

Denote by LAi
and LCi

the tangents to Ai and Ci parallel to aibi, see Figure 7.4. The

distance between LAi
and LCi

is less than l(Ai) + l(Ci) + |bici|, i.e., it converges to 0.

Which contradicts to the fact that the curve γi lies between LAi
and LCi

for each i.
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7.4 Proof of Lemma 7.7

Assume to the contrary of the statement of the lemma that the points a, b, c, a′, b′, and

c′ lie in strictly convex position.

Draw the lines containing the sides of the triangle abc, and denote the angular regions

of the plane formed by them as shown in Figure 7.5. At first, let us note that the point

a′ cannot belong to the region Ca, because in that case a is covered by the triangle a′bc.

Analogously, the points b′ and c′ cannot belong to the regions Cb and Cc, respectively.

Denote by Ω the circumcircle of abcd and let ℓ be the tangent line to Ω at a. Together

with the lines ab and ac the line ℓ forms two additional angular regions denoted by C ′
b

and C ′
c, respectively, see Figure 7.5.

It is easy to see that the composition of a homothety and a rotation around d which

sends a to b and a′ to b′ also sends C ′
b to Cb. So, if a

′ lies in C ′
b then b

′ lies in Cb, which we

already showed to be impossible. Therefore a′ cannot lie in C ′
b. Analogously, a′ cannot

lie in C ′
c.

We proved that a′ cannot lie in the union of Ca, C
′
b, and C

′
c, which means that a′ and

d lie on the same side of the line ab. Similarly, a and d lie on the same side of the line

a′b′. From the latter fact we conclude that a′ lies in the exterior of the circle ω passing

through d and tangent to ab at a (Figure 7.6). To see this the reader might consider that

a′b′ passes through a iff a′ belongs to ω.

We know that d lies outside of the convex hull of a, b, c, a′, b′, and c′ and that

∠cda = ∠c′da′ ≥ π/2, so ∠ada′ < π/2. Thus, without the loss of generality we may

assume that the counterclockwise rotation sending da to da′ is at most π/2. Therefore,

a′ lies in the angular region formed by ∠cda.

This region is covered by the four grey zones in Figures 7.5, 7.6, 7.7, 7.8. Let us give

a verbal description of the zones and prove that a′ cannot lie in them. This will conclude

the proof of the lemma.

• The grey zone in Figure 7.5 is the halfplane bounded by ab and not containing d.

• The grey zone in Figure 7.6 is the interior of ω.

We have already proved that a′ cannot lie in the grey zones in Figures 7.5 and 7.6.



98

d a

b

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

ℓ

Ca

C ′
b

C ′
c

Cb

Cc

Ω

Figure 7.5

d a

b

c

a′

b′

c′

ω

Ω

Figure 7.6

• The grey zone in Figure 7.7 is the intersection of the halfplane bounded by ab and

containing d, the exterior of ω, and the interior of Ω. Suppose that a′ is in that grey

zone.

Denote by x the point of intersection of the line ab with the circle going through

a, a′, and d. Point x is inside of the segment ab. From the angular property of

an iscribed quadrilateral it follows that b′, a′, and x lie on the same line. So, the

intersection point x of ab and a′b′ lie inside of the segment ab and outside of the

segment a′b′ which contradicts to the convex position of a, b, a′, and b′.

• The grey zone in Figure 7.8 is the intersection of the halfplane bounded by ℓ and

containing c, the halfplane bounded by ac and not containing d, and the exterior of

Ω. Suppose that a′ is in that grey zone.

Denote by y the point of intersection of the line ac with the circle going through

a, a′, and d. Point y is outside of the segment ac. From the angular property of

an iscribed quadrilateral it follows that c′, a′, and y lie on the same line. So, the

intersection point y of ac and a′c′ lie outside of the segment ac and inside of the

segment a′c′ which contradicts to the convex position of a, c, a′, and c′.

Remark 7.9. Lemma 7.7 does not hold if the quadrilateral is not assumed to be cyclic

(Figure 7.9) or if the angle at d is allowed to be acute (Figure 7.10).



99

d a

b

a′
b′

x

Ω

ω

Figure 7.7

d a

c
a′c′ y

Ω

ℓ

Figure 7.8

Figure 7.9 Figure 7.10



100



101

Bibliography

[1] A. Akopyan and S. Avvakumov. Any cyclic quadrilateral can be inscribed in any

closed convex smooth curve. In Forum of Mathematics, Sigma, volume 6. Cambridge

University Press, 2018.

[2] A. Akopyan, S. Avvakumov, and R. Karasev. Convex fair partitions into an arbi-

trary number of pieces. Preprint, arXiv:1804.03057, 2018.

[3] N. Alon. Splitting necklaces. Advances in Mathematics, 63(3):247–253, 1987.

[4] F. Aurenhammer, F. Hoffmann, and B. Aronov. Minkowski-type theorems and

least-squares clustering. Algorithmica, 20(1):61–76, 1998.

[5] S. Avvakumov and R. Karasev. Envy-free division using mapping degree. Preprint,

arXiv:1907.11183, 2019.

[6] S. Avvakumov, R. Karasev, and A. Skopenkov. Stronger counterexamples to the

topological Tverberg conjecture. Preprint, arXiv:1908.08731, 2019.

[7] S. Avvakumov and S. Kudrya. Vanishing of all equivariant obstructions and the

mapping degree. Preprint, arXiv:1910.12628, 2019.

[8] S. Avvakumov, I. Mabillard, A. Skopenkov, and U. Wagner. Eliminating higher-

multiplicity intersections, III. Codimension 2. Preprint, arXiv:1511.03501, 2015.
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