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The self-determined cognitive development of high-
complexity autonomous robots is a challenging task for both
the creation of robot-human ecosystems and the creation of
artificial life systems with real, human-like robots. Anthro-
pomimetic robots are a prominent example of this challenge.
Different from classical robots, anthropomimetic robots are
built following the morphology of the human body. Such
robots are more soft than classical systems making them
safer to interact with and thus favorable for service robots
in human environments. Moreover, because of their human
like morphology, they can be used for better understanding
human behavior generation and development.

World wide, several of such muscle-tendon driven (MTD)
systems have already been built. While mechatronically at
an advanced level, the control of both MTD and soft robotic
systems in general is still in its infancy. A generic example
is given by pertinent EU projects ranging from CRONOS, to
ECCEROBOT to MYOROBOTICS. While excellent work
has been done in building these robots their control faces
many problems. Learning of control policies becomes es-
sential and is investigated mainly in the reinforcement learn-
ing setting.

Without a very compact parametrization learning a new
behavior takes a very long time in high-dimensional sys-
tems. This situation clearly calls for new controller
paradigms which optimally exploit the physical properties of
such soft systems as indicated by embodied AI. This paper
presents an approach that includes the world—i. e. body plus
environment—more actively and more systematically in the
control process than other embodied control approaches.
By inverting the roles of the controller and the controlled,
the world becomes not only “its own best model” (Rod-
ney Brook’s idea) but is leveraged to “its own best con-
troller” (Der and Martius, 2016). This idea can be imple-
mented by a neural network with a novel synaptic plasticity
rule (Der and Martius, 2015, 2016), as shown in Fig. 1.

The novelty of the controller can be demonstrated best by
applying it to MTD systems, for instance the Myo-robotics
arm, reported here, with its ball and socket shoulder joint
and 9 muscles in total. Different from classical robots with
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Figure 1: Neural controller network connected to the
Myo-robotic arm. The inset on the right illustrates the
synaptic plasticity, called differential extrinsic plasticity,
which is driven by a modified differential Hebbian law, mul-
tiplying the time derivatives of the incoming sensor values ẋ
with the virtual motor values ˜̇y, which are generated by the
inverse model (M , one-to-one mapping in the case of the
arm) from next input’s derivative ẋ′.

revolute joints, the motor positions do not directly trans-
late into joint angles and into poses. Due to the elastic-
ity of the muscles, there are infinitely many combinations
of motor positions for a single arm pose. Apart from that,
the most challenging task is to avoid the dislocation of the
shoulder which cannot happen with revolute joints. Aston-
ishingly, although structurally extremely simple, the new
control paradigm does not have problems with these par-
ticularities. For instance the tendons are kept tight auto-
matically, such that no dislocation appears. When embed-
ding our controller, see Fig. 1, into the sensorimotor loop, a
meta-system—consisting of the mechanical system, the con-
troller with its sensor driven synaptic dynamics, and the en-
ergy supply (battery)—is created displaying a rich behav-
ioral spectrum like limit cycle attractors, long lived tran-
sients, and fixed point flows generating pseudo-random se-
quences of poses. The concrete behavior is not given ex-
plicitly, but specific behaviors develop by themselves in a
dynamical interplay between controller dynamics and world
dynamics. This open physical system is like a reservoir of
meta-stable behavior patterns waiting to be excited. Ex-
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citation can be achieved either by manual interaction (see
below) or by the self-amplification of latent modes spon-
taneously arising in physical subsystems, see Video 1 (see
playfulmachines.com/MyoArm-2). By way of example,
consider Video 3 where a weight (a bottle) was suspended
from the tip of the arm with a string, forming as a physi-
cal subsystem. In the beginning, minimal motor activities
are seen to spontaneously excite minor pendulum motions.
These oscillations directly exert physical forces on the arm
which propagate via the springs into the sensor values and
eventually into the synaptic dynamics which governs the be-
havior. This may lead to the amplification of latent pendu-
lum modes until a stable circular movement of the pendulum
is achieved. These findings elucidate how a physical subsys-
tem (the pendulum) may pilot—by its internal dynamics—
the meta-system into a resonant state, i. e. a whole-system
mode with defined frequency.

Actually, this is the essence of the method which explains
the emergence of specific modes—specific for the actual
physical setting—of the system. For instance, when attach-
ing a bottle half-filled with water to the tip of the arm in ei-
ther horizontal or vertical orientation, stable shaking modes
are arising, as demonstrated by both Video 6 and Video 7
showing modes specific for each physical setting (horizon-
tal or vertical bottle). Again, we see how the meta-system
may become resonant with the internal dynamics of a sub-
system, if the latter provides perceivable correlations over
space and time. This is the case for instance when the wa-
ter is hitting either the walls or top and bottom of the bottle.
These impacts cause a reaction of the springs and hence of
the sensor values, which may increase correlations in the
synaptic dynamics resulting in enhances motions of the arm
in coherence with these signals.

By this compliance mechanism, the “brain” may also dis-
cover (dynamical) affordances of the physical world it is in-
teracting with. In further experiments, the robot is connected
to a revolvable bar or wheel with weights for giving it the
some moment of inertia. In Video 8 the robotic arm finds a
behavior rotating the wheel from an initial push by the user.
When positioning the wheel in parallel to the arm, the modes
were emerging even more readily as seen by Video 9. More-
over, the system can immediately be switched between the
forward and backward rotation mode. This is possible be-
cause the time-scale of the synaptic plasticity is so fast, in
the order of one second, that the new dynamics is quickly
propagating into the controller via the plasticity rule. By
changing a time-scale meta-parameter the frequency of ro-
tation can be adjusted, see Video 10. The spontaneous emer-
gence of the wheel rotation behavior can be argued to be a
cognitive act if we consider—in the sense of (radical) em-
bodied cognitive science—that cognition is to be described
in terms of agent-environment dynamics and not in terms of
computation and representation.

In another experimental situation, the robot is equipped

with a brush and forced by manual guidance to wipe a ta-
ble. Video 11 demonstrates how, by the combination of
the limiting table plane and the manual force, the robot is
driven into a two-dimensional wiping mode. This is seen to
slowly wander through different wiping modes by the dy-
namics of the meta-system. Again, the manual interaction
with the arm by little forces is always possible as seen later
in the video. This is due to the tight closed loop control
and the property of the synaptic dynamics to be compliant
to external perturbances, see Der and Martius (2015). Most
importantly, emerging motion patterns can be identified and
stored by the user simply by taking snapshots of the synaptic
weights. Video 12 shows the recall of previously acquired
wiping modes. The transition between different modes is
achieved by hard switching of the fixed controller weights,
nevertheless smooth transients are observed.

In summary, we have treated a soft, high-complexity
robotic system which a novel goal free exploratory con-
trol algorithm. It reverts the role of the controller and
the controlled and makes a set of non-trivial and highly
coordinated behaviors emerge solely from the interaction of
synaptic dynamics, neural transmission and the mechatronic
system. It provides a systematic approach for behavioral
self-organization avoiding the reality gap as demonstrated
by our applications to both simulated and real robots. In this
way it can help to lift Artificial Life ecologies to a new level
of complexity approaching physical reality of, say, human-
robot ecologies. The new controller may speed up evolution
enormously Der and Martius (2015) as the emergence of
a new trait needs only a mutation in morphology with
adequate behaviors coming for free. Also the controller is
fully deterministic revealing that behavioral proliferation
can be the result of spontaneous symmetry breaking. Seen
as a practical approach to generate complex, force-sensitive
interactions with the environment this controller could also
augment the repertoire of classical controllers. Additionally,
it may shed light on how biological musculoskeletal systems
generate the complex trajectories they use to interact with
the environment with an unrivalled flexibility—not as a
heavily controlled process but as an emergent phenomenon.

Supplementary material: playfulmachines.com/MyoArm-2
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