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ABSTRACT

Heavy metal (HM) toxicity is vital environmental constraint that limits crop productivity worldwide.
Several physiological processes necessary for plant survival have been found to be affected by HM
toxicity. In recent farming, advanced mechanisms are being developed to overcome from the stresses
to enhance the yield. The seed priming is an affordable method for plants to survive under abiotic and
biotic stresses. Priming is useful for commercial seed lots by seed technologists to increase the vigor of
the seeds in terms of germination potential and enhance the tolerance against various stresses. It also
removes the pollution threats by minimizing the uses of chemical fertilizers. The seeds having deprived
of  quality  in  terms  of  seed  germination  and  seedling  characters  ultimately  affect  the  growth,
photosynthetic performance and yield of the plants under HM stress. On the other hand seed primed
with  various  seed  priming  methods  such  as  hydropriming,  hormonal  priming,  chemical  priming,
biopriming, magnetopriming and nanopriming perform well under HM toxicity. Seed priming methods
have been considered as a unique approach to get rid of HM stress by enhancing the seed germination,
seedling vigor, rate of photosynthesis, biomass accumulation and thus increase the crop productivity.
The  present  review  provides  an  overview  of  different  seed-priming  methods  and  their  role  in
alleviation of adverse effects of HM stress in plants.

Introduction

Plants  live  in  a  dynamic  environment  where  many
adverse conditions in the form of abiotic stresses such
as  cold,  drought,  salinity,  heavy  metal  (HM) toxicity
and  UV-B  stress  are  generated  which  affect  their
growth  and  development  (1).  Among  various  stress
factors, heavy metal toxicity is considered a potential
environmental  enemy  in  natural  and  agriculture
ecosystems.  The  increase  in  industrialization  has
escalated  heavy  metal  pollution  resulting  in
environmental,  agricultural  and  human  health
problems (2, 3). Though HMs are naturally present in
the soil; anthropogenic and geologic activities further
increase their concentration, thus they cause harmful
effects on organisms (3, 4). Toxic metal contaminated
soil and water poses a severe risks to public and food
safety (3,  4).  Among these heavy metals,  nickel (Ni),
manganese  (Mn)  and  zinc  (Zn)  are  considered  as
essential metals which are required in small amount
and play a significant role in numerous physiological

processes of plants (5, 6). Nonessential metals such as
cadmium (Cd), mercury (Hg) and lead (Pb) do not have
important biological role. Instead, these metals when
accumulate  in  higher  concentrations  disturb  the
physiological, structural and biological functions (2, 6).
The general detrimental effects of HMs are chlorosis,
distorted  nutrient  assimilation,  reduction  in  growth
and photosynthesis; lower biomass accumulation and
senescence, which eventually can cause the death of
the plants (7–9). In the current scenario, it is quite a
challenge to overcome/repair the damage brought by
HMs stress in plants. 

Heavy metals are now considered as the second
most pollutants,  including pesticides,  CO2 and SO2, as
they  are  most  hazardous  pollutant  which  probably
may beat solid and atomic waste (8). Natural activities
like  volcano  eruption  and  rocks  erosion  have
contributes in rising the release of toxic elements to
the  atmosphere;  though,  increased  human  activities
such as mining, refining and painting have enhanced
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their concentration in the biosphere (10, 11). Around
70% of the heavy metals and their compounds reach
to our body and food is considered as the main route
(10,  11). The  interruption  of  nature’s  geochemical
cycle of metals by human results in addition to one or
more of heavy metals in the soil and water which is
dangerous to human health, plants and animals (12–
14).  At  the  cellular  level,  toxic  effect  of  HMs  is
mediated by producing reactive oxygen species (ROS)
and  causing  oxidative  stress.  Activation  of  various
antioxidative defence mechanisms and reduction in
the  uptake  of  heavy  metal  are  the  defense
mechanisms  used  by  the  plants  to  sustain  their
growth  and  productivity  under  HM  toxicity (11).
General  effects  of  heavy metal  stress  on the  plants
are illustrated in Fig. 1.

During  past  few  years  various  seed  priming
methods have been developed to overcome the toxic

and  adverse  effects  of  HM  on  crop  plants  and
agricultural systems, to fulfil the global food demand.
In  this  review  seed  priming  is  discussed  in  the
context  of  their  potential  for  alleviation  of  metal
stress. 

Seed priming methods

Seed priming  is  a  pre-sowing treatment  that  offers
the possibility  to improve post-harvest  seed quality
and  allows  the  break  of  dormancy  leading  to  the
increase germination rate, speed and uniformity. The
seed priming  involves  the  initiation of  germination
metabolism by controlling the hydration of seeds and
activating various metabolic processes before radical
protrusion  (15,  16).  Some  natural  and  synthetic
compounds which are used to prime the seeds before
germination, induce biological alteration in plants (8,
17).  Further,  seed priming methods have become a
promising approach in protecting plants from biotic
and abiotic  stresses  (8,  17)  by  quicker  germination

and  consistent  appearance  of  the  seedlings  which
results in high vigor and better yield (8, 16, 18). 

Priming of seeds can be performed in different
ways such as 1. Hydropriming, 2. hormonal priming,
3.  chemical  priming,  4.  biopriming,  5.
magnetopriming  and  6.  nanopriming  (8,  16,  18-22).
Primed seeds  exhibit  changes in their  physiological
and biochemical mechanisms with beneficial effects
on  germination  and  early  seedling  characteristics
along with stimulation of the activity of antioxidant
enzymes that  scavenge  the  reactive  oxygen species
(ROS) relative to unprimed seeds under stress as well
as under non-stress conditions (23, 24).

Hydro-priming 

It  involves the  soaking  of  seeds  in  distilled  water
before sowing (25). It is quite a simple, cost-effective

and a harmless priming method which is preferred
for increased osmotic adjustment ability of the seeds,
seedling  establishment  and  crop  yield  under  non
stress as well as stress conditions (26). Karalija and
Selović (27) found an improvement in photosynthetic
activity  and  carbohydrate  metabolism  in
hydroprimed  maize  seeds  grown  under  Cd  stress.
Kumar  and  Boss  (28)  also  suggested  that
hydroprimed  seeds  may  conquer  the  phytotoxic
effects of the HM stress in the germinating seeds of
rice due to increase in α-amylase activity. It has also
been suggested that the inhibitory effect of mercuric
chloride  (HgCl2) on  seed  germination  and  seedling
growth of wheat can be alleviated by hydropriming
(21). 

Hormonal-priming 

In  this  kind  of  priming  seeds  are  pre-treated  with
different  hormones  such  as  auxins,  cytokinins,
gibberellins,  salicylate  etc.  which  stimulate  the
seedling’s  growth  and  development  (8,  28–30).  In
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Fig. 1. Direct and indirect toxic effects of Heavy metals on plants (8-11).



agronomical  crop  management  practices,
phytohormones  as  regulator  of  heavy  metal
absorption  have  been  used  to  alleviate  the  HM
toxicity (8, 30). It was found that seed germination in
Cd contaminated  areas  can be efficiently  improved
using  hormonal  priming  with  auxin,  cytokinin,
gibberellin, abscisic acid and ethylene in pigeon pea
(Cajanus  Cajan)  (31).  It  was  reported  that  Salicylic
acid (SA) and 24-epibrassinolide increase the relative
water  content  and HM tolerance  index in Brassica
juncea  (32). Further, pre-treatment of seeds with the
combination of 24-epibrassinolide and SA, lessen the
adverse  effects  of  Pb  stress  through  alteration  in
antioxidative  defense  response  and  enhanced
osmolyte contents in  B. juncea  (33). It was reported
that  SA  and  sodium  hydrosulfide  (NaHS)
pretreatments  decrease  the  adverse  effects  of  Pb
stress in Zea mays plants through increase in glycine
betaine  (GB)  and  nitric  oxide (NO)  contents  and by
regulation  of  genes  participating  in  methionine
metabolism (34). Under Cr stress, seed priming with
SA  improved  the  morphological,  physiological,
biochemical  and metabolic  parameters  of  rice  (35).
Osmopriming  with  polyethylene  glycol  (PEG)  and
hormo-priming with gibberellic  acid (GA) improved
germination  and  early  seedling  growth  of  white
clover in a heavy metal-contaminated soil (36).

Chemical priming 

In  this  kind of  priming,  seeds  are  pre-treated  with
various chemicals such as selenium (Se), Silicon (Si),
paclobutrazol,  calcium  chloride,  potassium
phosphate,  chitosan,  putrescine,  butenolide,  nitric
oxide,  hydrogen  peroxide,  hydrogen  sulfide,
melatonin,  defensins  and  polyamines  to  improve
germination  rate  and  enhance  abiotic  stress
tolerance (37-41). Defensins are specifically reported
to increase Zn tolerance at higher concentrations (50
and  100  mM)  in  wheat  germinated  grains  through
alleviating the oxidative stress by up regulation of the
antioxidant enzymes (42). This could be unexpected
role for defensins which opens up new horizons for
the  investigation  of  defensin  mechanisms  of  action
(42). Melatonin has been found to ameliorate copper
toxicity  through  improvement  in  copper
sequestration,  activating  the  ROS  scavenging,
changing the gene expressions, increasing the levels
of  glutathione  and  phytochelatin  and  further
improved the distribution of nutrient elements which
were  disturbed  by  Cu2+ (43).  Cadmium  induced
inhibition  of  growth,  chlorophyll  contents,  gas-
exchange attributes and photosynthetic efficiency in
Vicia  faba has  been  reported  to  be  alleviated  by
calcium  chloride  (44).  The  significant  reduction  in
boron toxicity by reducing the oxidative damage and
increased  activities  of  antioxidative  enzymes  has
been  shown  by  calcium  (45). Pre-soaking  of  seeds
with  Se  (5,  10  and  20  μM)  alleviated  the  negative
effect  of  cadmium  (Cd)  on  growth  and  due  to  a
decrease in oxidative injuries caused by Cd (46).

Silicon  (Si)  has  been  reported  to  alleviate  the
toxicity of various heavy metals in crops plants (47,
48)  through  an  increase  in  the  pH  of  the  growth
media  (49),  stimulation of  the  antioxidant  enzymes
(50,  51)  and  reduction  of  metal  uptake  (48,  52).
Further, it was reported that Si lessens the Cd toxicity

in  wheat  seedlings  by  increasing  the  plant  growth
and antioxidant  capacity by reducing the uptake of
Cd and lipid peroxidation (52).

Biological priming or bio-priming

It consists of coating the seeds with  a bacterial bio-
control  agent  such  as  Pseudomonas  aureofaciens
Kluyver  AB254  and  after  that  the  seeds  were
hydrated for 20 hrs under warm conditions (23°C) in
a self-sealing plastic  bag in moist vermiculite or on
moist  germination  blotters  and  before  radicle
emergence  the  seeds  were  removed  (53).  Applying
beneficial  microorganisms  to  the  seeds  during
priming may further improve the development of the
crop and it may help the plant to be healthy for long
duration  (54).  It  was  reported  that  application  of
plant–microbe  synergy  to  restore  lands,
contaminated  with  HMs  is  a  promising  technique
(55). It has been suggested the benefits of heavy metal
tolerant-plant growth promoting (HMT-PGP) bacterial
strains  (PGPB)  such  as  Alcaligenes  faecalis
MG257493.1,  Bacillus  cereus MG257494.1  and  A.
faecalis MG966440.1);  as  they  perform  various
functions like increased plant growth and removal or
detoxification of HM from the soil (56). Further, these
three  HMT-PGPB  strains  were  employed  for
alleviation  of  the  toxic  effects  of  heavy  metal’s  on
Sorghum  bicolor and  increased  its  growth
characteristics (57).

Magnetopriming (MP)

MP involves treatment of seeds using a magnetic field
before  sowing.  There  is  a  great  impact  of  such
physical treatment on multiple levels from morpho-
structural aspects to changes in gene expression (22).
Magnetopriming  with  static  magnetic  field  (SMF)
enhance the speed of germination, plant height, leaf
area, photosynthetic pigment, efficiency of PS II, rate
of photosynthesis and yield of soybean plants under
salt and UV-B stress (20, 22). It was observed that MP
mitigates  the  adverse  effect  of  cadmium  stress  by
reducing the level of malondialdehyde, H2O2  and O2-
and  increased  the  growth  and  photosynthetic
parameters,  NO  content  and  nitric  oxide  synthase
activity (58). It has been reported that the mechanism
of alleviation of adverse effects of salt and HMs stress
by MP is related to NO signaling (22, 58). It was found
that  metallothionein  and  receptor  for  activated  C
kinase  1  (RACK1)  play  a  critical  role  in  the  ROS
mediated signal transduction pathway to enhance the
seed  germination  and  seedling  vigor  in
magnetoprimed tomato seeds (59).

Nanopriming

It  includes  the  use  of  several  metal  nanoparticles
(NPs),  such as AuNPs, AgNPs, FeNPs, CuNPs,  ZnNPs,
ZnONPs  and  TiO2NPs  etc.  Nanoparticles  based  on
carbon  (e.g.,  fullerene  and  carbon  nanotubes)  are
also  useful  as  seed  priming  agents  for  promoting
growth  characteristics  and  improve  the  stress
tolerance in crop plants. Nano-TiO2 alleviates the Cd
toxicity in the plants by increase in the growth and
photosynthesis  of  plants  (60). Nano-scale
hydroxyapatite  can  alleviate  the  Cd  toxicity  in
Brassica  juncea (61).  It  was  also  found  that  Si  NPs
protect maize seedlings against arsenic (As) toxicity
through  enhancing  the  activities  of  antioxidant
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enzymes like ascorbic acid peroxidase (APX), dehydro
ascorbate  reductase  (DHAR),  superoxide  dismutase
(SOD),  glutathione  reductase  (GR)  and  limiting  the
accumulation of As and ROS (62). Nano-priming with
AgNPs enhanced the α-amylase activity,  resulting in
higher soluble sugar content for supporting seedling
growth.  Furthermore,  these  NPs  stimulate  the  up-
regulation of aquaporin genes in germinating seeds
(63).  It  was  found  that  seed  priming  with  Si  NPs
positively increase the growth, biomass and yield of
wheat plants under cadmium contaminated soil (18).

Conclusion

These methods of seed-priming are the best way to
grow  the  crops  under  unfavorable  conditions  and
overcome the germination related problems, reduce
germination  time,  improve  crop  yield  and  when
crops  are  grown  in  HM  contaminated  areas.
Significant amount of work has been carried out on
the  importance  of  seed-priming  techniques  for
different  crop  plants  affected  by  the  heavy  metal
stress. The data presented in this mini review can be
useful  for  developing  agro-ecological  technology
based on the exogenous application of seed priming
agents  to  improve  tolerance  under  HM
contamination  which  may  contribute  to  the
agricultural  or ecological  sectors,  and explore ways
for further improvisation. This low input technique is
sustainable  and  will  help  in  reclamation  of  HMs
contaminated  soils,  thus  increasing  the  quality  of
seeds and crop yield in such areas.
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