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ABSTRACT 

INDIVIDUAL VARIATION IN WINTER BROOK TROUT (SALVELINUS FONTINALIS) 

MOVEMENT IN A SMALL NORTHERN MICHIGAN STREAM 

By 

Benjamin C. Bejcek 

Winter is a time of year of low temperatures and limited food availability. Brook trout 

(Salvelinus fontinalis) survival in winter is dependent on several factors including their condition 

after spawning in the fall and possibly their behavior in winter. Ice that forms during winter can 

potentially aid in survival by decreasing predation risk, decreasing stress, and acting as a thermal 

refuge. The emphasis of this project was to evaluate the relationship between movement patterns 

of brook trout and winter ice distribution. In the fall of 2017 and again in the fall of 2018, brook 

trout in a northern Michigan stream were collected by electroshocking. All fish had their length 

and weight measured, and fish over 100 mm were tagged with a Passive Integrated Transponder 

(PIT). Following tagging, fish were tracked and their locations within the field site were recorded 

as well as if they were in open water or under ice cover. In the spring of 2018 and 2019, 

electroshocking surveys were performed again, and tagged fish were measured for length and 

weight. Tracking surveys occurred biweekly and showed that brook trout used ice covered areas. 

Two movement groups were present, a sedentary group consisting of 90% of fish and a mobile 

group consisting of 10%. Surface covering ice was used by fish throughout all stages of winter. 

Recaptured brook trout did not demonstrate any statistically significant change in their Fulton’s 

condition factor. These results highlight the importance of specific surface cover during winter to 

brook trout behavior and their movement during winter. 
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Chapter 1: Winter Ecology of Brook Trout (Salvelinus fontinalis) Distribution, Movement, 

and Growth 

 

Chapter Summary  

The formation of ice is a component of winter that can benefit the survival of brook trout 

(Salvelinus fontinalis). Ice that forms during winter can limit predation risk, influence foraging, 

and provide thermal cover. By conducting biweekly tracking surveys, the relationship between 

movement patterns of individual brook trout (≥100 m) and winter ice distribution were 

evaluated. The results indicated there was a sedentary and a mobile group of individuals within 

the brook trout population. The sedentary group (movement <100 m) consisted of 90% of the 

brook trout while 10% were more mobile (movement ≥ 100 m). Both movement groups used ice 

covered areas extensively. Fulton’s condition factors were calculated and compared to habitat 

use. No relationship was found between condition factor and surface cover use. This study 

demonstrated that brook trout use ice extensively and suggests that ice is very important in their 

winter ecology.  
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     Introduction 

 

Brook trout (Salvelinus fontinalis) are native to cold lake and river ecosystems over a 

wide area in eastern North America (Huckins et al. 2008). Particularly in their northern range, 

brook trout habitat is commonly subjected to harsh winter conditions that can include fluctuating 

water levels, cold temperatures, decreased light conditions, and limited food availability. Since 

winter occurs after fall spawning, which is a period of high activity for brook trout, the condition 

and behavior of brook trout when they enter winter may affect their ability to survive winter. As 

a result, brook trout have developed seasonal behavior and habitat use. Aggression has been 

documented to change depending on the season. In summer, salmonids tend to be more 

aggressive as demonstrated by forming dominance hierarchies, defending territory, and 

competing for resources (Bachman 1984; Hughes and Dill 1990; Fausch 1998; Heggenes et al. 

1999; Young 2001; Forseth et al. 2003). However, aggression diminishes at low temperatures 

(Hartman 1963; McMahon and Hartman 1989; Heggenes et al. 1993; Whalen et al. 1999; 

Vehanen and Huusko 2002), and as a result, territorial behavior decreases (Cunjak and Power 

1987a; Hillman et al. 1987; Riehle and Griffith 1993; Griffith and Smith 1993). The size of an 

individual may also have an influence in use of winter habitat (Harwood et al. 2002). Along with 

changes in behavior, habitat use in winter changes. Several studies have demonstrated that 

during winter, individuals seek out areas with low water velocities, stable temperatures, and 

cover (Cunjak and Power 1986, 1987b; Cunjak 1996). In winter, structure or cover can take the 

form of ice which can play a role in fish biology. Using a certain habitat indicates that the type of 
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habitat that is being used may be important for individual survival (Rosenfeld 2003). Habitats 

that brook trout use could also be dependent on the formation of ice.  

According to Cunjak (1996), winter is described as the period of time after egg 

deposition in the autumn for fall-spawning salmonids that extends to the loss of surface ice in the 

spring. This definition allows for inter-annual variability across the calendar year and 

responsiveness to environmental change. However, it has also been proposed that winter should  

be divided into three stages: early, middle, and late (Prowse and Gridley 1993). Early winter is 

characterized by water beginning to freeze. Early winter, which starts as the transition from fall 

to winter, is a time when temperatures decrease and ice can begin to form, particularly in lentic 

habitats such as lakes and ponds. Areas within rivers, streams, and other lotic areas with the 

lowest velocity may also begin to form ice at this time. Ice that typically forms in early winter 

sometimes remains until spring thaw. Areas that remain ice covered or completely open 

throughout winter are considered stable environments (Prowse and Gridley 1993; Huusko et al. 

2007). Faster-flowing areas in lotic environments will usually not form ice in the early winter 

stage but can form ice as the season progresses. Stable ice conditions are a hallmark of middle 

winter, and ice breakup defines late winter. The amount and type of ice that forms during these 

stages are dependent upon many physical variables including temperature, water velocity, and 

the structure of the stream (Huusko et al. 2007).  

Some areas in rivers and streams can be considered unstable environments due to 

variable and fluctuating amounts of ice coverage throughout winter (Brown et al. 2011). 

Although some areas of faster moving water can remain ice free throughout the entire winter, 

other areas will be more dynamic. Ice formation during the later parts of early winter and 

throughout the middle winter period may be dynamic with ice forming, melting, and reforming, 
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depending primarily on water velocity, turbulence, and temperature (Prowse and Gridley 1993; 

Huusko et al. 2007). The timing of this dynamic pattern may be short (day) or extended (days to 

weeks). These dynamic ice regimes commonly incorporate frazil ice, defined as free-floating ice 

crystals that form in turbulent water, and anchor ice, defined as a buildup of frazil ice that is 

attached to the bottom substrate (Ashton 1986).   

Ice formation can be both detrimental and beneficial to the survival of brook trout during 

winter. If ice forms in shallow areas, the anchor ice and surface ice can physically limit the 

amount of space that an individual may occupy as well as alter flow characteristics causing 

significant habitat loss (Stickler et al. 2007). In contrast, deep areas that have surface ice cover 

can create stable temperatures and become refuges. In addition, ice covered areas can be used to 

decrease predation from terrestrial predators which is particularly important at a time when 

brook trout swimming performance is diminished by cold water temperatures (Alexander 1979; 

Heggenes et al. 1993; Cunjak 1996; Brown et al. 2011). Winter brook trout survival is, therefore, 

probably affected by not only the condition of the fish after spawning but also their use of ice 

covered areas. 

Brook trout have been observed aggregating in winter pools near ground water discharge 

areas under some form of cover, potentially allowing fish to spend less energy maintaining their 

preferred position in the water column (Cunjak and Power 1986). Ground water maintains a 

relatively steady temperature near the stream bed throughout the year (Van Grinsven et al. 2012), 

providing a thermal refuge for salmonids. Such thermal refuges could provide fish an 

opportunity to remain close to conditions that allow for optimized metabolic rates (Cunjak and 

Power 1986). However, groundwater also tends to limit the development of surface ice, thus 

providing a stable but open habitat. The benefits of stable, relatively warm winter conditions may 
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be sufficient to counteract the loss of surface cover and risk of predation from mammals 

(Alexander 1979). 

Late winter occurs when ice starts breaking apart due to rising temperatures (Huusko et 

al. 2007). It is a complex time for brook trout as areas become flooded due to ice melt, snow 

melt, and additional precipitation. These changes result in increased water velocity, gradually 

increasing water temperatures, and possible loss of habitat that was created by ice coverage. In 

addition, the chemical composition of streams may change quickly when ice and snow melt due 

to the release of atmospherically deposited chemicals concentrated in the ice and snow (Cunjak 

et al. 1998). Areas that were ice covered once again become accessible to predators. Ice dams 

melt which may alter water depths. Late winter ends with the total disappearance of ice and the 

establishment of flow regimes that are not influenced by snow and ice melt.   

A future challenge for brook trout in all of their range is climate change. Rising water 

temperatures are a threat to brook trout which typically live at temperatures between 0 °C and 22 

°C and spawn at temperatures below 9 °C (Raleigh 1982). If temperature increases continue, 

particularly in the southern brook trout range, the available habitat may no longer be able to 

sustain this species. In the brook trout northern range, it is predicted that surface water 

temperatures will increase and ground water flow will decrease. There has already been a 

reduction of groundwater due to increased human water extraction in the Great Lakes region 

(Hall and Stuntz 2008). According to the Intergovernmental Panel on Climate Change (2014), 

precipitation in this region will increase in winter due to changes in the polar vortex (Champagne 

et al. 2019). In the Midwest region of the United States, shifts in precipitation are expected to 

cause an increase in late winter rainfall as opposed to snowfall (Pathak et al. 2017; Byun and 

Hamlet 2018). These changes are already occurring as lotic environments have experienced 
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changes in flow regimes such as flooding (Nijssen et al. 2001; Milly et al. 2002). As a result, 

over the past 50 years, water levels in cold water streams have become more variable within 

seasons, and average water temperatures have risen (Nijssen et al. 2001; Milly et al. 2002; 

Mohseni et al. 2003; Bartolai et al. 2015; Pathak et al. 2017). These environmental challenges 

could be mitigated if brook trout behavioral traits are varied enough to allow fish to search for 

and find appropriate resources and new habitats for survival. Since ice is a critical component of 

the winter environment, understanding how brook trout relate to and use ice covered areas and 

other winter habitats is of interest in predicting how climate change may impact over wintering 

success.  

Trout display different movement patterns which link to life history strategy (Gowan and 

Fausch 2002), and these movement patterns may affect over wintering success. Salmonids 

appear to become less aggressive, possibly allowing for a higher density of fish in more desirable 

locations (Heggenes et al. 1993; Vehanen and Huusko 2002). Variability in response at the 

individual or population level can offer important resiliency for the species when environmental 

change is unexpected or unpredicted. As climate change progresses, brook trout winter survival 

could be dependent on the variability of individual fish movement. Increased movement may 

allow brook trout to use different suitable areas as old habitats become uninhabitable. Variability 

in movement patterns has been observed as differences in mobility within a population (Lucas 

and Baras 2001). This variability could include some individual brook trout remaining within 

habitats that are suitable but limited in scope, while other fish are mobile and seek new suitable 

habitats for use. If climate change alters the environment to benefit the behavior of certain 

individuals over others, the survival of the population may hinge on the occurrence of individual 

variability in movement patterns.  
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Year round salmonid movement is often considered limited to a home range of <50 m as 

demonstrated by Gerking (1959) and Bachman (1984). However, other studies have shown that 

brook trout can travel well over 3,000 m for both dispersal and migration (Gowan and Fausch 

1996; Cross 2013). This suggests that individuals may display different movement patterns and 

that this variability occurs within a population. Cunjak and Power (1986, 1987a) and Chisholm et 

al. (1987) studied brook trout movement and habitat use in winter. Chisholm et al. (1987) tracked 

brook trout throughout winter in multiple streams in Wyoming, reporting that brook trout used 

regions with low velocity, deep water, and sand/silt substrate in winter. However, Chisholm et al. 

(1987) only tracked a very limited number of brook trout which may not be representative of the 

majority of the population. With a limited number of brook trout being tracked, differences in 

responses to winter may not be observed. Cunjak and Power (1987a) studied the use of cover in 

winter. However, their study did not track individual trout or focus on variability in ice 

availability. To date, winter observations have provided only a general view of behavior in 

regards to habitat use and have not explored individual variability. Since ice cover has the 

potential to aid brook trout survival, studying brook trout at the individual level throughout 

winter can provide information on how individuals use winter habitat, how condition is affected 

by using certain habitat over others, and how individuals differ in movement. 

To advance the understanding of brook trout winter ecology, this study focused on 

tracking brook trout to study their use of ice cover in a dynamic river system. Similar to previous 

studies (Cunjak and Power 1987a; Prowse and Gridley 1993; Cunjak 1996), winter was divided 

into three stages by photoperiod. For this study, the three hypotheses are: 1) brook trout within a 

riverine system will use ice covered surface areas more than open areas during winter, 2) the 

more mobile brook trout are, the more likely they are to use ice covered areas, and 3) the use of 
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ice covered areas will have an impact on Fulton’s condition factor, the relationship between 

weight and length. 
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    Materials and Methods 

 

Study Site  

  The study was conducted on Unnamed Tributary of the Rock River in Alger County, 

Michigan (Fig. 1). Unnamed Tributary was selected due to its intermittent winter ice coverage 

and the impassable culvert that blocks further upstream brook trout migration located 

approximately 3,100 m from the confluence with the main stem Rock River. The tributary flows 

through a mixed coniferous and deciduous forest and splits into two separate channels, denoted 

as Unnamed A and Unnamed B, near the confluence. Unnamed B flows into a cedar (Thuja 

occidentalis) and speckled alder (Alnus incana) swamp that commonly floods, and this branch 

contains variable water levels throughout the year. Most of the water in the system flows through 

Unnamed A, which also flows through a mixed coniferous and deciduous forest until meeting the 

Rock River. Sand, various size gravel/cobble, and woody debris are common substrate. Undercut 

banks are present throughout, and several small habitat restoration efforts have been performed 

by the United States Forest Service to improve the overall quality of the tributary. Weirs have 

been created out of wood structures to allow for pools to form, and gravel has been added into 

the waterway in order to improve salmonid spawning habitat. Common fish found in the 

tributary are brook trout, rainbow trout (Oncorhynchus mykiss), coho salmon (Oncorhynchus 

kisutch), and slimy sculpin (Cottus cognatus). Terrestrial predators such as otter (Lontra 

canadensis) and marten (Martes americana) reside in the area as well. 

 The study site was divided into 100 m reaches using a Nikon range finder (ProStaff Laser 

440, Tokyo, Japan). The start of each reach was marked and Global Positioning System (GPS) 

coordinates determined (Trimble, GeoXH series 7, Westminster, Colorado).   
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Fish Capture and Tracking 

 Electroshocking occurred in the fall of 2017 and 2018 and in the spring of 2018 and 

2019. Shocking occurred in November before ice formation but after peak spawning season in 

late October. Spring shocking sessions were conducted when Unnamed Tributary was free of ice 

(Season 1: 4/20-21/2018 and Season 2: 3/23-24/2019). Backpack electrofishing consisted of a 

single pass (AbP-3TM pulsed DC, ETS Electrofishing, Madison, WI) in an upstream direction 

with two netters. Voltage was adjusted according to fish response.  

All brook trout collected were weighed and had their total length measured. Fish were 

also scanned for PIT tags using an Oregon RFID handheld reader (FEF352AWF, Portland, 

Oregon). Any untagged brook trout ≥ 100 mm were tagged with a 23 mm PIT tag (Oregon RFID 

HDX tags) under NMU IACUC Protocol 308. Fish were tagged through a small horizontal 

incision posterior to the pelvic fins and anterior to the anal fin and then released in their reach of 

capture. No brook trout were tagged in the spring shocking sessions, but more fish were added to 

the tagged population over the summer as part of a different study. In total, 354 brook trout were 

tagged from 2017 to 2019.  

 Active tracking occurred throughout both winter field seasons (2017-2018 and 2018-

2019) utilizing a portable Oregon RFID backpack single reader connected to a hand held Oregon 

RFID pole antenna (wand). Tracking surveys began two weeks after shocking events to avoid 

handling bias and were conducted during the day. The wand operator walked streamside if ice 

formed on top of the water surface or in the stream if open water was present. To provide some 

capture validation, PIT tags attached to rocks within the sampling site were used to assess 

detection of fish. The winter of 2017-2018 had two sample rocks with the detection probability 

of 75% under ice cover and 100% in open water. The number of sample rocks was increased to 
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five during the winter of 2018-2019 with a detection probability of 68% under ice cover and 83% 

in open water. The detection range of the wand was approximately 60 cm which is adequate for 

sampling the field sight at its deepest depth of 67 cm.  

 Passive tracking also occurred within the field site using stationary Oregon RFID 

multiplex antennas. Antenna sites were constructed at the mouths of Unnamed Tributary (Fig. 1) 

encircling the entire stream channel, and antennas were powered by solar arrays and storage 

batteries. Oregon RFID tuners were adjusted to the resonant frequency of each antenna while the 

multiplexing reader recorded fish movement data (PIT tag number, date, time, and antenna 

location). During the winter of 2017-2018, Unnamed A and B antennas were active 56% and 

58% of the time. Unnamed A and B antenna activity time increased to 98% and 85% for the 

winter of 2018-2019.  

Habitat Sampling 

 Habitat analysis for stream depth, substrate analysis, dissolved oxygen, conductivity, pH, 

and water velocity occurred in the fall of 2018 in accordance with methods developed by Wills et 

al. (2006). Each reach was subdivided into five transects (20 m apart) except for Unnamed B 

which had eight transects. The location of each transect was recorded using GPS coordinates. 

The total width of the channel was measured and the width divided into five sites for data 

collection at 0.2, 0.4, 0.6, and 0.8 fractions of the channel width as well as the thalweg. At each 

point on the transect, pebble count (modified Wolman Pebble Count Procedure), depth, water 

velocity (Marsh McBirney 2000 flow meter, Frederick, Maryland), and dissolved oxygen (YSI 

Pro 20, Yellow Springs, Ohio) were measured. At the third transect in every reach, conductivity 

and pH were measured using an Oakton meter (PCTSTestr 50, Denver, Colorado).  
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During both winters, habitat features were documented when a tagged fish was located. If 

a fish was located in an ice free area, the identification number was recorded along with reach 

location, depth, and temperature. When a tagged fish was located in an ice covered section, the 

ice formation characteristic (clear, opaque, or snow covered) was recorded. Along with habitat 

features, GPS coordinates were collected for each fish (Recon and Receiver, Trimble, Corvallis, 

Oregon) in the first field season (2017-2018) and each fish (GeoXH, Trimble, Westminster, 

Colorado) in the second field season (2018-2019). 

For the winter of 2017-2018, water temperature was also monitored every 30 minutes 

using three stationary HOBO loggers (HOBO Pendant Temperature/Light Data Logger: UA-002-

xx) placed in Unnamed Tributary at reaches 1, 11, and 31. Two additional HOBO loggers were 

added in the winter of 2018-2019 at reaches 16 and 25. If ice formed over the temperature 

loggers, no attempt was made to disturb the ice to retrieve the data so as not to influence fish 

movement. Air temperature readings and the amount of snowfall were obtained from the 

National Oceanic and Atomospheric Administration National Centers for Environmental 

Information (NCEI) station number USC00201486 in Chatham, Michigan as this was the closest 

station to the field site.  

 Five game trail cameras, one Cuddeback (20160512, Green Bay, Wisconsin), three 

Moultrie (MCG-12715 GM-80xt (Gen 2), Calera, Alabama), and one Bushnell (119836C, 

Overland Park, Kansas) were used to document ice formation in the study site. Two cameras 

were placed within the field site during the first field season (2017-2018) while three more were 

added in the second field season (2018-2019). The five game trail cameras in the winter of 2018-

2019 were stationed throughout Unnamed Tributary (reaches 2, 8, 11, 21, and 31) and covered 

visual sampling grids (see below) ranging in size from 2 m to 3.5 m in width and 4 m to 11 m in 
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length. Each camera was set to photograph its section at least once during the morning and once 

during the afternoon. Cameras were checked and photographs downloaded biweekly. 

Data Analysis  

The software ImageJ (Schindelin 2012) was used to process stream surface cover images. 

For each day during the season, morning and afternoon images were collected and analyzed. 

Each image included four rebar rods that created a grid with known measurements. A template 

image was constructed by creating a four-sided polygon using the rebar rods as the corners. The 

template photograph was transformed into a new polygon resembling the true sample area shape. 

To correct for camera distortion, this image was used to transform all other images using the 

landmark correspondence tool. The area within the sampled areas in the modified image was 

measured and the percentage of surface cover by category recorded using the measure function. 

The different categories of surface cover evaluated were open water, snow covered ice, opaque 

ice, and clear ice.  

Any tagged brook trout that was not found during the winter surveys was excluded along 

with any tag that remained in the same location from the prior field season (determined with GPS 

coordinates) or if the tag was recovered (i.e. lost tags). ArcMap 10.6.1 (ArcMap 2018) was used 

to analyze individual brook trout movement and habitat use. The study site was divided into 1 m 

segments. Individual brook trout GPS points were linked to the closest point that followed the 

river’s outline. If a brook trout was found at a new location within the river, the difference 

between the two positions was recorded as the individual’s movement. Brook trout moving equal 

to or over 100 m from their first detected location were classified as mobile while individuals 

moving less than 100 m were classified as sedentary. This technique was also used to determine 
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the closest habitat sampling transect to brook trout GPS locations to assign the type of habitat 

that was present within the area. 

R (R Core Team 2018) was used to perform statistical analysis. Both winter periods were 

analyzed to assess any overall trends. Brook trout distribution was determined in winter 2017-

2018 with two shocking surveys and eight tracking surveys while winter 2018-2019 was 

analyzed with two shocking surveys and six tracking surveys. Individual survey reaches and the 

surface cover brook trout used were compared using Chi square tests to determine brook trout 

distribution. A similar approach was used to identify habitat use throughout winter between 

mobile and sedentary fish. Brook trout surface cover use was followed throughout winter. For 

each survey, the surface cover that brook trout used was identified to determine the use of 

surface cover between surveys. Two consecutive surveys were analyzed at a time. Only those 

individuals that were detected in both surveys were used for analysis. The surface cover that 

these individuals used was compared using Chi square analysis. Although individuals might not 

be detected throughout all surveys, they were used for analysis if they appeared in two 

consecutive surveys. Fish were classified into four habitat use categories consisting of open 

water moving to ice, remaining in open water, ice moving to open water, and remaining under 

ice between the two surveys. Chi square tests were used to compare the distribution of habitat 

use with the previous survey representing the expected values. This analysis was repeated using 

the next survey as a new starting location and expected values. This was repeated until all the 

surveys were assessed. One occurrence was added to all categories to remove any categories 

with zero detections in order to use Chi square analysis.  

The probability of using ice cover during the three stages of winter (early, middle, late) 

was determined by odds ratios. The stages of winter were modified from Cunjak and Power 
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(1987a). Early winter was defined as the period during which photoperiod decreased from 

approximately 9.5 hours to 8.5 hours (November and December). After winter solstice in late 

December, middle winter was defined as the period when the day length increased from 8.5 

hours to approximately 10.5 hours (January to mid-February). Day length afterwards continued 

to increase, representing late winter (mid-February until ice break out). To determine cover use 

during the three stages of winter, odds ratios were determined. First, the total number of brook 

trout using ice was divided by the number of individuals using open water in the appropriate 

winter stage. Then, the odds of using ice compared to open water for a stage was divided by the 

other winter stage odds values, creating a ratio. The three stages of winter were compared against 

each other, and a calculated odds ratio greater than one indicated that brook trout were more 

likely to use ice cover during a certain period of winter relative to the comparison period. Some 

brook trout were found multiple times throughout winter but were only represented once within a 

survey. The movement and odds ratio analysis included brook trout that were found multiple 

times throughout each winter, but that analysis could not account for repeated measures.  

Fulton’s condition factor (K) was calculated using the following equation: 

𝐾 =  
𝑤𝑒𝑖𝑔ℎ𝑡

𝑙𝑒𝑛𝑔𝑡ℎ3
 ∙ 1𝑥105 

Brook trout that were recaptured during the electroshocking surveys were re-measured, allowing 

for comparisons between the fall and spring survey seasons. The average length and weight 

changes per day were also calculated.   
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Results  

Habitat analysis showed that the dominant substrate in Unnamed Tributary was sand. A 

mix of various size stones ranging from 4-64 mm (pebbles) and 65-256 mm (cobble) was also 

present throughout the field site. Woody debris was common and scattered throughout the 

reaches. The average stream depth was 0.20 ±0.008 S.E.M. m while the average width was 2.28 

±0.13 S.E.M. m at the sampled transects. Undercut banks were present throughout and varied in 

length up to 1 m with an average horizontal length of 0.09 ±0.008 S.E.M. m. During the winter 

of 2017-2018, the average water temperature was 1.35 ±0.01 S.E.M. °C while the average light 

intensity was 70.75 ±2.51 S.E.M. lum·ft2. The mean water temperature and light intensity from 

the winter of 2017-2018 varied slightly from the winter of 2018-2019 at 0.90 ±0.005 S.E.M. °C 

and 19.66 ±0.42 S.E.M. lum·ft2 (Fig. 2). There was a significant difference in water temperature 

and light intensity between winters (water temperature: t = 4.18, df = 319, P<0.001; light 

intensity: t = 5.19, df = 319, P<0.001). Although not directly measured in this study, there was a 

difference in snow accumulation for each winter. The weather service at the National Oceanic 

and Atomospheric Administration National Centers for Environmental Information (NCEI) 

station number USC00201486 in Chatham, Michigan recorded an average snowfall of 0.6 m and 

air temperature of -6.7°C per month for the winter of 2017-2018. For the winter of 2018-2019, 

the average snowfall and air temperature were 0.84 m and -4.3°C per month. Compared to the 30 

year average snowfall (0.70 m) per month, the winter of 2017-2018 was below average while the 

winter of 2018-2019 was above average per month. However, when comparing air temperature 

to the 30 year average (-2.4°C) per month, both winters were below average.  

Throughout Unnamed Tributary, the percentage of open water varied annually and by 

location in the field site, exposing brook trout to different ice conditions. The percentage of open 
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water was calculated from the two trail cameras that were placed at reaches 11 and 31. Although 

five trail cameras were eventually employed in this study, only cameras used at reaches 11 and 

31 were used both years. The winters of 2017-2018 and 2018-2019 were compared statistically 

using a linear mixed model and Tukey’s post hoc test to demonstrate that a difference in ice 

formation occurred year to year between reaches 11 and 31 (t ratio = -2.047, df = 505, P<0.041) 

(Fig. 3). Reach 31 steadily decreased in open water as winter progressed while reach 11 was 

more active in the formation of open water and ice cover. Reach 31 had the most ice cover for 

both study winters. Three other field cameras deployed in the winter of 2018-2019 demonstrated 

that other reaches had a similar variability in open water (Fig. 4). Although ice formation was not 

identical between the two study years, it was evident that in both study years, ice and open water 

were present and allowed different surface cover habitats to be available for fish. 

 For the winter of 2017-2018, 20 brook trout were recaptured in the spring by 

electrofishing resulting in a minimum estimate of survival rate of 11% while in the winter of 

2018-2019, 19 fish were recaptured in the spring giving a minimum survival rate of 24%. For all 

tagged and untagged fish captured between 2017-2019, there was a significant difference in the 

weight and length between fall and spring (weight: KW Chi-squared = 63.077, df = 3, P <0.001; 

length: KW Chi-squared = 44.117, df = 3, P <0.001) (Table 1). For recaptured tagged brook trout 

between the fall of 2017 and the spring of 2018, 60% of them showed an increase in their initial 

length (t = 0.32989, df = 22, P = 0.7446) while between the fall of 2018 and spring of 2019, 74% 

increased in length (t = 0.502095, df = 28, P = 0.619526) (Fig. 5). Between the fall of 2017 and 

the spring of 2018, 55% of the recaptured brook trout had an increase from their initial weight (t 

= 0.27926, df = 20, P = 0.78292), 35% had a decrease from their initial weight (t = 0.55247, df = 

12, P = 0.59077), and 10% had no change from their initial weight. Between the fall of 2018 and 
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spring of 2019, 47% increased in weight (t = 0.174399, df = 16, P = 0.863739), 47% decreased 

in weight (t = 0.3658, df = 16, P = 0.719302), and 6% had no change in their weight. The 

average increase in weight and length per day when combining seasons was 0.002 ±0.007 S.E.M. 

g and 0.015 ±0.006 S.E.M. mm. There was no statistical difference between the two winters for 

average length change per day or average weight change per day (weight: t = 0.083082, df = 

20.937, P = 0.9346; length: t = 0.68812, df = 21.698, P = 0.4987). The calculated Fulton’s 

condition factor indicated that 50% of the brook trout recaptured increased in condition while 

50% showed a decrease during the winter of 2017-2018 (t = 0.43381, df = 38, P = 0.6669). For 

the recaptured brook trout from 2018-2019, 32% showed an increase in condition factor while 

68% showed a decrease (t = 1.6446, df = 36, P = 0.054). The average condition factor for fall of 

2017 was 0.88 ±0.03 S.E.M. and for spring of 2018 was 0.87 ±0.03 S.E.M. while the condition 

factor for fall of 2018 and spring of 2019 was 0.86 ±0.21 S.E.M. and 0.81 ±0.02 S.E.M.  

Between the winters of 2017-2019, the relative frequency of brook trout within each 

reach did not change throughout winter (Fisher’s test P > 0.7711) (Figs. 6 and 7). Both upstream 

and downstream movement occurred throughout the field site, but the middle reaches 

consistently held the majority of brook trout. Individuals that were found in the middle of the 

field site were consistently found under ice. Brook trout found in other reaches were also found 

under ice. 

When evaluating how the distribution of tracked brook trout changed between locations 

over time, the individuals who moved at least 100 m were termed mobile while the other group 

was referred to as sedentary. 90% of tracked individuals did not move more than 100 m from 

their initial location, and the majority of these fish did not move more than 20 m from their 

initial location. Over both winters, 10% of tracked individuals moved more than 100 m (Fig. 8). 
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Within the mobile group of fish, 54% of the brook trout moved between 100-300 m while 46% 

moved over 400 m. The maximum distance traveled by an individual was 1025 m. For both 

winters, there was no statistical difference between the average distance traveled by individuals 

(t = -0.0091, df = 81, P = 0.99236), but the median and range varied between both years (winter 

2017-2018: median = 425 m and range 926 m; winter 2018-2019: median 193 m and range 316 

m).  When compared to the mobile group, the sedentary group was not statistically different in 

average length (mobile: 141.48 ±6.19 S.E.M. mm; sedentary: 133.84 ±1.61 S.E.M. mm; t = -

1.49438, df = 266, P = 0.13) or weight (mobile: 27.79 ±2.94 S.E.M. g; sedentary 24.87 ±1.28 

S.E.M. g; t = -1.60595, df = 261, P = 0.11) (Fig. 9).   

Within the study site, the formation of ice varied between reaches which allowed brook 

trout to use different surface covers (Figs. 3 and 4). For all fish (mobile and sedentary), cross 

tabulation between survey dates and surface cover demonstrated a significant difference among 

surface cover use (winter 2017-2018: Fishers test P < 0.001; winter 2018-2019: Fishers test P < 

0.001; Combined: Fishers test P < 0.001). This was also the case for both winters for mobile and 

sedentary brook trout when analyzed separately (winter 2017-2018: Fishers test P < 0.001; 

winter 2018-2019: Fishers test P < 0.05; Combined: Fishers test P < 0.001) (Fig. 10). However, 

there was no difference in surface cover use between fish with a positive or negative change in 

Fulton’s condition factor (winter 2017-2018: Fishers test P > 0.8181; winter 2018-2019: Fishers 

test P > 0.5787) (Fig. 11). Similarly, there was no significant difference in surface cover use 

between the recaptured brook trout and the rest of the entire tracked populations (winter 2017-

2018: Fishers test P > 0.6382; winter 2018-2019: Fishers test P > 0.1024).  

To determine if the presence of surface cover was favored generally, the odds ratios were 

calculated between use of open water compared to use of all ice surface cover types combined. 



20 
 

Brook trout may have been found multiple times throughout winter, and some fish may be 

represented within the odds ratio analysis multiple times, but they are represented in each survey 

only once. Surveys were combined into three stages of winter, and individuals that were found 

more than once were represented at different times throughout the analysis. The three stages of 

winter were compared to each other, and a calculated odds ratio greater than 1.0 indicated that 

brook trout were more likely to use ice cover during one stage of winter relative to another 

(Table 2). Both winters were combined to assess the different stages of winter and use of surface 

cover. A comparison between mobile and sedentary individuals was not included due to the low 

number of mobile individuals that could be included in this analysis. All tracked brook trout 

(mobile and sedentary combined) used ice covered areas more frequently in the middle of winter 

(Fig. 12).  The analysis to assess movement and habitat use throughout both winters also 

indicated that brook trout used different surface covers (Tables 3 and 4).  

Analyses were conducted to determine if physical parameters such as water temperature, 

air temperature, and light intensity potentially influenced brook trout mobility. There was no 

pattern between movement and either the averages or coefficients of variation of water 

temperature, air temperature, or light intensity (Tables 5 and 6). Linear regression using averages 

of air temperature, water temperature, and light intensity resulted in no statistical relationship 

between the physical parameters and the proportion of sedentary or mobile fish (sedentary: air: P 

> 0.62, water: P > 0.55, light: P > 0.92; mobile: air: P > 0.51, water: P > 0.47, light: P > 0.87). 

Linear regression using coefficient of variation values resulted in no statistical relationship 

between the physical parameters and sedentary brook trout (air: P > 0.44; water: P > 0.39; light: 

P > 0.79) or mobile (air: P > 0.43; water: P > 0.39; light: P > 0.76). There was also no statistical 

significance between water temperature and air temperature coefficient of variation (P > 0.35). 
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However, there was a significant relationship between the average water and air temperatures (P 

< 0.001, r2 = 0.81). These results indicated that water temperature co-varied with air temperature, 

but other factors besides air temperature have an impact on water temperature. 
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Discussion  

Brook trout inhabit a wide swath of northern North America including the U.S. east 

coast, mid-west, and some western states. Whether introduced or native to an area, adfluvial or 

fluvial populations of brook trout variably utilize the ecosystem. Persistence and success of a 

population surviving may be dependent on individual behavior. Winter in northern regions poses 

challenges for brook trout. With ice formation varying from year to year, brook trout response 

may change in response to the new conditions.  

This study supports the concept that there are at least two major movement patterns that 

brook trout employ. A majority of individuals remain sedentary while a smaller group exhibits a 

more mobile pattern. Even though the colder temperatures experienced during winter in this 

study area resulted in a decrease in salmonid swimming performance (Alexander 1979; 

Heggenes et al. 1993; Cunjak 1996; Brown et al. 2011), a few individuals were still observed 

continuing to move within the stream with some traveling considerable distances. The mobile 

fish ranged in movement distance from 100 m to 1000 m. There was also movement of sedentary 

fish less than 100 m, but most of these movements were less than 10 m. These data demonstrated 

that there is a continuum of movement patterns in this population ranging from highly stationed 

behavior to highly mobile behavior. There was no statistical significant difference between the 

distance that brook trout travelled within a given winter, although this may be due to a low 

number of fish censured in a year. These results were similar to several other reports (Komadina-

Douthwright et al. 1997; Jakober et al. 1998; Muhlfeld et al. 2001; Linnansaari et al. 2005) that 

indicated that winter movement is minimal on a population and individual level and that winter 

movement was associated with age (Jakober et al. 1998; Whalen et al. 1999; Nakamura et al. 

2001; Robertson et al. 2003; Kusnierz et al. 2009). Interestingly, although this study did not 
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directly collect age data on fish that were tagged, length which is usually related to age did not 

differ between these movement groups.  

One aspect of this study evaluated if some abiotic factors were related to movement of 

fish throughout winter. Changes in light intensity can affect activity patterns of aquatic 

organisms (Valdimarsson and Metcalfe 2001; Finstad et al. 2004). During cold temperatures, 

salmonids may tend to hide more at high light intensity (Valdimarsson et al. 1997). With changes 

in light intensity, this may possibly result in altered foraging time and movement from concealed 

cover (Jakober et al. 2000; Finstad et al. 2010). The movement of fish in this study did not 

appear to have any relationship to light intensity, as demonstrated by using either coefficients of 

variations or actual averages of this parameter. It is likely since this study was conducted during 

relatively low light conditions that brook trout movement may not have been impacted.  

This study indicated that, as with light intensity, there was no statistical significance 

between air or water temperature coefficients of variation or averages and fish movement 

patterns. Air temperature has been shown to be a covariant to water temperature (Jensen et al. 

1986). Studies that observed fish movement tend to be seasonal and have indicated fish 

movements occur between 3°C to 6°C during the transition from fall to winter habitat (Hillman 

et al. 1987; Jakober et al. 1998; Nykänen et al. 2005; Bramblett et al. 2011). Temperatures 

during the middle of winter were relatively constant, ranging between 1°C to 4°C. With no major 

increase or decrease in temperature during the middle of winter, seasonal movement patterns 

would not be anticipated. However, temperature may indirectly influence winter movement due 

to ice formation. The occurrence of stable and dynamic ice is an important aspect of riverine 

winter habitat.  
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Ice formation can be a potential advantage or disadvantage depending on how much is 

present and where it forms. Potential disadvantages of ice formation include reducing the 

interaction of brook trout with bottom substrate and reducing the available space within the water 

column. Brook trout can either burrow into substrate such as sand or hide in coarse substrate, but 

these interactions can be hindered by formation of ice (Cunjak 1988, 1996; Heggenes et al. 1993; 

Griffith and Smith 1993; Vehanen et al. 2000). To avoid anchor ice, salmonids have been 

observed to move into deeper areas in winter (Jakober et al. 1998; Simpkins et al. 2000; Stickler 

et al. 2007, 2008). Along with anchor ice, hanging ice dams can limit the amount of space 

available. With the formation of hanging ice dams, deeper pockets of water may be a more 

suitable habitat. Brook trout within this study may have already been using deep pockets, 

allowing them to remain sedentary. Mobile individuals may have been forced to find new areas 

within the stream due to more dynamic ice conditions. Even though brook trout might have to 

move in response to ice formation, different areas of the stream may have ice present that could 

be beneficial.  

The use of ice covered areas can have several advantages for brook trout. In general, ice 

provides cover from predators (Watz et al. 2013), decreases stress (Watz et al. 2015), provides a 

thermal refuge (Hicks 2009), and reduces light intensity (Finstad et al. 2004). Since brook trout 

swimming performance is reduced in winter, avoiding predators is more difficult (Alexander 

1979; Cunjak 1996). Predators of brook trout were identified within the study site during this 

project by tracks and photography. Occupying habitats that allow fish to hide may help lower the 

risk of predation in open water, including in winter when swimming performance is reduced 

(Cunjak and Power 1987b; Alexander 1979; Cunjak 1996). From this study, we determined that 

brook trout were more likely to use areas with surface cover.  
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In this study, the use of ice covered areas was most extensive in the middle of winter, 

likely because of its increased availability. However, in early and late winter ice cover was used 

when present. These results aligned with other studies that demonstrate natural and artificial 

cover is used during winter (Cunjak and Power 1987b; Chisholm et al. 1987; Watz et al. 2016). 

Both mobile and sedentary fish used ice covered areas throughout winter.  

Further investigation into water depth and ground water discharge where fish are located 

may indicate that these factors also impact fish location. When ice forms and limits available 

space, the water depth could become more crucial in winter habitat use. Ice formation tends to 

form in low velocity areas such as pools. If ice does not form in certain areas, ground water 

discharge may be influencing the formation of ice. Regions of ground water influx can also 

provide thermal stability which may help brook trout maintain optimal metabolic rates (Cunjak 

and Power 1986).  

Winter environments can influence how a brook trout may respond physiologically. A 

response may be seen as a change of weight or length resulting in a shift in condition factor. 

When calculating the condition factor of a population, the average may not adequately represent 

the condition factor of individuals within that population. There was no statistical difference 

between the condition factor of brook trout in the fall and in the spring of either year. However, 

the fact that some individuals had an increase in condition while others showed a decrease 

suggests that some individuals were more successful at managing winter energy reserves. 

According to Cunjak et al. (1987), brook trout did not have a statistically significant change in 

condition factor from early winter to late winter. Since this study occurred during times that were 

comparable to our paper, our results are in agreement with their findings. Sampling may have 
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been performed at times when brook trout may not have had major changes in condition factors, 

and future study dates should be expanded to capture seasonal transitions. 

This study indicates that brook trout use ice covered areas. As climate change continues 

to impact the environment, many scientists are concerned about the decrease in southern brook 

trout habitat based on increasing summer temperatures (Meisner 1990). However, this research 

suggests that the effects of climate change on the northern range of the species are of concern as 

well. Models presented in Hayhoe et al. (2010) suggest annual temperatures in the region will 

increase by several degrees, and precipitation in spring and winter will increase by 20% to 30% 

by the end of century. With climate change, northern hemisphere winters may see a shift in ice 

formation and flooding. For a species to survive, it is beneficial for individuals to have behaviors 

that vary so that a reproductively sustainable portion of the population will succeed and be able 

to adapt to new conditions, either on a short-term or long-term basis. Those species that can 

exploit a variety of habitats under different conditions are those that will have the greatest chance 

of survival during rapid environmental change. This study has demonstrated that a brook trout 

population includes important individual variation. With respect to winter movement patterns, 

this is likely important for winter success in streams experiencing ice formation. As global 

warming continues to impact the environment, understanding winter ecology of brook trout will 

be critical for evaluating and mitigating the impact of climate change (Bassar et al. 2016).  
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      TABLES 

Table 1. Electrofishing survey results from 2017-2019. Average length and weight were 

calculated along with standard error.  

 Fall 

2017 

Survey 

Fall 

2018 

Survey 

Spring 

2018 

Survey 

Spring 

2019 

Survey 

Fall 

2017 

Tagged 

Fish 

Fall 

2018 

Tagged 

Fish 

Summer 

2018 

Tagged 

Fish 

Fall       

2018 

Recaptures 

Spring 

2018 

Recaptures 

Spring 

2019 

Recaptures 

Number 

of Brook 

Trout 

292 155 165 167 190 78 86 9 20 19 

Average 

Length 

(mm) 

118.31 

±2.22 

107.79 

±3.55 

108.64 

±2.67 

95.79 

±2.43 

140.05 

±2.01 

132.74 

±4.77 

121.65 

±1.77 

143.22 

±6.17 

141.35 

±6.20 

132.74 

±6.15 

Average 

Weight 

(g) 

19.14 

±1.07 

17.15 

±2.35 

14.81 

±1.12 

9.27 

±0.80 

29.17 

±1.67 

27.20 

±4.26 

18.55 

±0.87 

26.20 

±3.53 

28.20 

±4.62 

21.33 

±3.80 

Average 

Condition 

Factor 

(K) 

0.88 

±0.02 

0.85 

±0.01 

0.96 

±0.04 

0.79 

±0.01 

0.86 

±0.01 

0.85 

±0.01 

0.98 

±0.01 
0.89 

±0.03 

0.87 

±0.03 

0.81 

±0.02 
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Table 2. Odds ratios for surface ice cover use during the winters of 2017-2018 and 2018-2019 

for all tagged fish, mobile and sedentary. The proportion of fish found under ice vs open water in 

each stage of winter was divided by the proportion of the other stages. A calculated odds ratio 

greater than one indicates that brook trout are more likely to use ice cover during a certain period 

of winter compared to its appropriate period. - indicates that no individuals were found in open 

water to compare against surface cover. 

  Numerator 

  Sedentary Mobile All Tagged Brook 
Trout 

 Winter 

2017-2018 
Early Middle Early Middle Early Middle 

 
 
 
 
 

Denominator 

Middle 0  -  0  
Late 0 14.17 0 - 0 17.95 

       
Winter 

2018-2019 
Early Middle Early Middle Early Middle 

Middle 0.44  0.50  0.44  
Late 0.10 0.23 0.33 0.67 0.11 0.25 

       
Combined 

Winters 
Early Middle Early Middle Early Middle 

Middle 0.14  0.01  0.12  
Late 0.55 3.94 0.47 38.05 0.56 4.75 
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Table 3. Surface cover use by brook trout throughout the winter of 2017-2018. Only individuals that were detected in both 

consecutive surveys were used for analysis.  

 Comparison between Surveys  

12/2/2017  to  

1/6/2018 

1/6/2018 to  

1/19/2018 

1/19/2018 to 

2/2/2018 

2/2/2018 to  

2/16/2018 

2/16/2018 to  

3/2/2018 

3/2/2018 to 

3/16/2018 

3/16/2018 to  

3/31/2018 

Sedentary Mobile Sedentary mobile Sedentary Mobile Sedentary Mobile Sedentary mobile Sedentary Mobile Sedentary Mobile 

Open 

Water to 

Ice 

37 0 0 0 3 0 2 0 0 1 12 1 2 0 

Remained 

in Open 

Water 

3 0 2 0 5 0 4 0 5 1 30 3 28 4 

Ice to Open 

Water 

0 0 8 0 2 0 0 0 22 4 0 0 22 1 

Remained 

in Ice 

0 0 37 8 24 9 20 7 16 1 13 3 3 1 

 

 

 

 

 

 

 

 

 

 



30 
 

Table 4. Surface cover use by brook trout throughout the winter of 2018-2019. Only individuals that were detected in both 

consecutive surveys were used for analysis 

 Comparison between Surveys  

12/5/2018 to  

12/30/2018 

12/30/2018 to  

1/12/2019 

1/12/2019 to 

1/23/2019 

1/23/2019 to  

2/22/2019 

2/22/2019 to  

3/8/2019 

Sedentary Mobile Sedentary Mobile Sedentary Mobile Sedentary Mobile Sedentary Mobile 

Open 

Water to 

Ice 

27 2 8 0 23 2 6 0 5 0 

Remained 

in Open 
Water 

31 1 27 2 14 0 4 0 0 0 

Ice to 
Open 

Water 

1 0 15 0 3 0 2 0 0 1 

Remained 
in Ice 

10 0 26 1 27 1 10 1 9 0 
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Table 5. Comparison of brook trout movement between abiotic factors for the winter of 2017-2018. Temperature was recorded in 

Celsius and converted to Kelvin to perform the calculation of the coefficient variation.  

 Survey Average 

Water 

Temperature 

(°K) 

Water 

Temperature 

Coefficient of 

Variation 

 

Average 

Light 

Intensity 

(lum/ft^2) 

Light 

Intensity 

Coefficient 

of Variation 

 

Average Air 

Temperature 

(°K) 

Air 

Temperature 

Coefficient of 

Variation 

Proportion 

of fish that 

were 

sedentary 

Proportion 

of fish that 

were mobile 

1 275.34 0.22 13.33 93.88 271.06 1.38   

2 273.67 0.29 22.24 62.29 262.21 2.29 92 8 

3 273.62 0.14 32.05 74.32 263.17 2.35 100 0 

4 273.80 0.18 59.67 30.09 266.06 2.12 94 6 

5 273.301 0.09 9.79 49.08 257.17 2.21 95 6 

6 274.06 0.10 41.42 73.07 267.17 1.89 99 1 

7 273.88 0.09 116.71 101.77 266.98 1.36 97 3 

8 273.85 0.122 0.85 39.30 265.77 2.13 95 5 
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Table 6. Comparison of brook trout movement between abiotic factors for the winter of 2018-2019. Temperature was recorded in 

Celsius and converted to Kelvin to perform the calculation of the coefficient variation.  

Survey Average 

Water 

Temperature 

(°K) 

Water 

Temperature 

Coefficient of 

Variation 

Average Light 

Intensity 

(lum/ft^2) 

Light 

Intensity 

Coefficient 

of Variation 

 

Average Air 

Temperature 

(°K) 

Air Temperature 

Coefficient of 

Variation 

Proportion of 

fish that were 

sedentary 

Proportion of 

fish that were 

mobile 

1 274.36 0.23 224.51 47.17 267.63 1.62   

2 274.55 0.20 33.55 42.96 268.91 1.05 98 2 

3 273.83 0.14 15.56 35.29 266.45 1.57 98 2 

4 273.44 0.12 9.97 53.27 260.78 1.82 98 2 

5 273.41 0.01 8.79 80.46 259.5 2.75 94 6 

6 273.47 0.08 4.33 47.63 258.89 2.63 100 0 
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FIGURES 

 

Fig. 1. Map of the Rock River watershed showing Unnamed Tributary (A and B). 

Approximately 3,100 m were designated as the study location (section highlighted in grey) from 

the mouth of Unnamed Tributary to a high pitched culvert. RFID antennas were located at the 

mouth of Unnamed Tributary (grey circles). 
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Fig. 2. Comparison of abiotic factors between winters of 2017-2018 (grey) and 2018-2019 

(black). (A) Average water temperature (B) Average air temperature (C) Average light intensity. 

Water and light averages were based on multiple readings per day from the HOBO loggers. 

Winter of 2017-2018 used three HOBO loggers while winter of 2018-2019 used five HOBO 

loggers. Air temperature averages were obtained from the National Oceanic and Atomospheric 

Administration National Centers for Environmental Information (NCEI) station number 

USC00201486.  
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Fig. 3. Percentage of open water from winters 2017-2018 and 2018-2019. (A) Reach 11 in 2017-

2018 (black) and 2018-2019 (grey) while (B) Reach 31 in 2017-2018 (black) 2018-2019 (grey). 

Gaps in the line indicate missing data due to camera malfunction or the lens of the camera being 

blocked.  
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Fig. 4.  Percentage of open water from additional reaches in winter of 2018-2019 showing the 

variability of open water among reaches within a year. (A) Reach 2 (B) Reach 8 (C) Reach 21. 

Gaps in the line indicate missing data due to camera malfunction or the lens of the camera being 

blocked.  
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Fig. 5. Length, weight, and condition factor for recaptured brook trout between 2017-2018 and 

2018-2019. Initial measurements were made in the fall and spring electroshocking sessions.  

Length and weight were recorded during the session while Fulton’s condition factor was 

calculated as described in Materials and Methods.
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Fig. 6. Percentage of brook trout found in each reach for each survey performed in winter of 2017-2018. Distribution of brook trout 

per reach is represented by the total percentage of each bar. Reaches 0 and 1 are the mouths of Unnamed Tributary A and B while 

Reach 31 is the end of the study reach. 



39 
 

 

Fig. 7.  Percentage of brook trout found in each reach for each survey performed in winter of 2018-2019. Distribution of brook trout 

per reach is represented by the total percentage of each bar. Reaches 0 and 1 are the mouths of Unnamed Tributary A and B while 

Reach 31 is the end of the study reach. 
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Fig. 8. Brook trout maximum distance moved from winter 2017-2018 (black) and winter 2018-

2019 (white).  (A) All tagged brook trout found once in winter 2017-2018 or 2018-2019 (B) 

Brook trout that moved less than 100 m from home range (C) Brook trout that moved 100 m or 

greater from home range. Maximum distance was calculated as how far a brook trout moved 

from its original starting position.  
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Fig. 9. Comparison of brook trout total length (mm) and maximum distance traveled from 2017-

2019. Brook trout that moved 100 meters or more are indicated as white circles while sedentary 

brook trout are represented by black circles.  
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Fig. 10. Proportion of brook trout found under different surface covers between (A) winter 2017-

2018 and (B) winter 2018-2019. The possible surface covers were ice (light grey), open water 

(white), snow covered ice (dark grey), and undercut bank (black). Numbers in parenthesis 

represent the total number of fish used for each analysis. The surface cover used by brook trout 

from both seasons was significant (winter 2017-2018: Fishers test, P <0.001; 2018-2019: Fishers 

test, P <0.001).  
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Fig. 11. Surface cover use compared against recaptured brook trout condition factor and entire 

tracked population during winters of 2017-2018 and 2018-2019. The colors of the bars indicate 

the percentage of fish using each type of cover and include ice (light grey), open water (white), 

snow covered ice (dark grey), and undercut bank (black). 
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Fig. 12. Use of surface cover by brook trout over the three stages of winter. Data for both the 

2017-2018 and 2018-2019 winters were combined for analysis. Ice (grey), open water (white), 

and undercut bank (black) were the possible surface covers available. Error bars represent ± 

standard deviation.  

 

 



45 
 

Literature Cited  

Alexander, G. 1979. Predators of fish in coldwater streams. In Predator-prey systems in fisheries 
management. Edited by H.R. Stroud and H. Clepper. Sport Fishing Institute. pp. 153–170. 
 

ArcMap. 2018. Environmental Systems Research Institute, Inc, Redlands, California. 
 

Ashton, G.D. 1986. River and lake ice engineering. Littleton, Colo., U.S.A. : Water Resources Publications. 
Available from https://trove.nla.gov.au/version/14821693 [accessed 9 April 2018]. 
 

Bachman, R.A. 1984. Foraging behavior of free-ranging wild and hatchery brown trout in a stream. 
Trans. Am. Fish. Soc. 113(1): 1–32. doi:10.1577/1548-8659(1984)113<1:FBOFWA>2.0.CO;2. 
 

Bartolai, A.M., He, L., Hurst, A.E., Mortsch, L., Paehlke, R., and Scavia, D. 2015. Climate change as a 
driver of change in the Great Lakes St. Lawrence River Basin. J. Gt. Lakes Res. 41(Suppl. 1): 45–
58. doi:10.1016/j.jglr.2014.11.012. 
 

Bassar, R.D., Letcher, B.H., Nislow, K.H., and Whiteley, A.R. 2016. Changes in seasonal climate outpace 
compensatory density-dependence in eastern brook trout. Glob. Change Biol. 22(2): 577–593. 
doi:10.1111/gcb.13135. 
 

Bramblett, R.G., Wright, B.E., and Mason, D.B. 2011. Seasonal use of small tributary and main‐stem 
habitats by juvenile steelhead, coho salmon, and dolly varden in a southeastern Alaska drainage 
basin. Trans. Am. Fish. Soc. 131(3): 498–506. doi:10.1577/1548-
8659(2002)131<0498:SUOSTA>2.0.CO;2. 
 

Brown, R.S., Hubert, W.A., and Daly, S.F. 2011. A primer on winter, ice, and fish: what fisheries biologists 
should know about winter ice processes and stream-dwelling fish. Fisheries 36(1): 8–26. 
doi:10.1577/03632415.2011.10389052. 
 

Byun, K., and Hamlet, A.F. 2018. Projected changes in future climate over the Midwest and Great Lakes 
region using downscaled CMIP5 ensembles. Int. J. Climatol. 38(S1): 531–553. 
doi:10.1002/joc.5388. 
 

Champagne, O., Arain, M.A., and Coulibaly, P. 2019. Atmospheric circulation amplifies shift of winter 
streamflow in southern Ontario. J. Hydrol. 578: 1–13. doi:10.1016/j.jhydrol.2019.124051. 
 

Chisholm, I.M., Hubert, W.A., and Wesche, T.A. 1987. Winter stream conditions and use of habitat by 
brook trout in high-elevation Wyoming streams. Trans. Am. Fish. Soc. 116(2): 176–184. 
doi:10.1577/1548-8659(1987)116<176:WSCAUO>2.0.CO;2. 
 

Cross, R. 2013. Fluvial and adfluvial brook trout (Salveinus fontinalis) movement patterns within 
Sevenmile Creek and Mosquito River, Pictured Rocks National lakeshore, Michigan. Northern 
Michigan University. Available from https://commons.nmu.edu/theses/373. 
 

Cunjak, R.A. 1988. Behaviour and microhabitat of young Atlantic salmon (Salmo salar) during winter. 
Can. J. Fish. Aquat. Sci. 45(12): 2156–2160. doi:10.1139/f88-250. 



46 
 

Cunjak, R.A. 1996. Winter habitat of selected stream fishes and potential impacts from land-use activity. 
Can. J. Fish. Aquat. Sci. 53(S1): 267–282. Available from 
http://www.nrcresearchpress.com/doi/pdf/10.1139/f95-275 [accessed 21 September 2017]. 
 

Cunjak, R.A., Curry, A., and Power, G. 1987. Seasonal energy budget of brook trout in streams: 
implications of a possible deficit in early winter. Trans. Am. Fish. Soc. 116(6): 817–828. 
doi:10.1577/1548-8659(1987)116<817:SEBOBT>2.0.CO;2. 
 

Cunjak, R.A., and Power, G. 1987a. The feeding and energetics of stream-resident trout in winter. J. Fish 
Biol. 31(4): 493–511. doi:10.1111/j.1095-8649.1987.tb05254.x. 
 

Cunjak, R.A., and Power, G. 1987b. Cover use by stream‐resident trout in winter: a field experiment. 
North Am. J. Fish. Manag. 7(4): 539–544. doi:10.1577/1548-8659(1987)7<539:CUBSTI>2.0.CO;2. 
 

Cunjak, R.A., and Power, G. 1986. Winter habitat utilization by stream resident brook trout (Salvelinus 
fontinalis) and brown trout (Salmo trutta). Can. J. Fish. Aquat. Sci. 43(10): 1970–1981. 
doi:10.1139/f86-242. 
 

Cunjak, R.A., Prowse, T., and Parrish, D. 1998. Atlantic salmon (Salmo salar) in winter: “the season of 
parr discontent”? Can. J. Fish. Aquat. Sci. 55: 161–180. doi:10.1139/cjfas-55-S1-161. 
 

Fausch, K.D. 1998. Interspecific competition and juvenile Atlantic salmon (Salmo salar): on testing 
effects and evaluating the evidence across scales. Can. J. Fish. Aquat. Sci. 55(Suppl. 1): 218–231. 
doi:doi.org/10.1139/cjfas-2015-0488. 
 

Finstad, A.G., Berg, O.K., Forseth, T., Ugedal, O., and Næsje, T.F. 2010. Adaptive winter survival 
strategies: defended energy levels in juvenile Atlantic salmon along a latitudinal gradient. Proc. 
R. Soc. B Biol. Sci. 277(1684): 1113–1120. doi:10.1098/rspb.2009.1874. 
 

Finstad, A.G., Forseth, T., Næsje, T.F., and Ugedal, O. 2004. The importance of ice cover for energy 
turnover in juvenile Atlantic salmon. J. Anim. Ecol. 73(5): 959–966. doi:10.1111/j.0021-
8790.2004.00871.x. 
 

Forseth, T., Ugedal, O., Jonsson, B., and Fleming, I. 2003. Selection on Arctic charr generated by 
competition from brown trout. Oikos 101(3): 467–478. doi:10.1034/j.1600-0706.2003.11257.x. 
 

Gerking, S.D. 1959. The restricted movement of fish populations. Biol. Rev. 34(2): 221–242. 
doi:10.1111/j.1469-185X.1959.tb01289.x. 
 

Gowan, C., and Fausch, K.D. 1996. Mobile brook trout in two high-elevation Colorado streams: re-
evaluating the concept of restricted movement. 53: 1370–1381. 
doi:https://doi.org/10.1139/f96-058. 
 

Gowan, C., and Fausch, K.D. 2002. Why do foraging stream salmonids move during summer? Environ. 
Biol. Fishes 64(1–3): 139–153. doi:https://doi.org/10.1023/A:1016010723609. 

 
 



47 
 

Griffith, J.S., and Smith, R.W. 1993. Use of winter concealment cover by juvenile cutthroat and brown 
trout in the south fork of the Snake River, Idaho. North Am. J. Fish. Manag. 13(4): 823–830. 
doi:10.1577/1548-8675(1993)013<0823:UOWCCB>2.3.CO;2. 
 

Hall, N.D., and Stuntz, B.B. 2008. Climate change and Great Lakes water resources: avoiding future 
conflicts with conservation. Hamline Rev 31: 639–677. Available from 
https://papers.ssrn.com/abstract=1120348 [accessed 5 November 2019]. 
 

Hartman, G.F. 1963. Observations on behavior of juvenile brown trout in a stream aquarium during 
winter and spring. J. Fish. Board Can. 20(3): 769–787. doi:doi.org/10.1139/f63-051. 
 

Harwood, A.J., Metcalfe, N.B., Griffiths, S.W., and Armstrong, J.D. 2002. Intra- and inter-specific 
competition for winter concealment habitat in juvenile salmonids. Can. J. Fish. Aquat. Sci. 59(9): 
1515–1523. doi:10.1139/f02-119. 
 

Hayhoe, K., VanDorn, J., Croley, T., Schlegal, N., and Wuebbles, D. 2010. Regional climate change 
projections for Chicago and the US Great Lakes. J. Gt. Lakes Res. 36: 7–21. 
doi:10.1016/j.jglr.2010.03.012. 
 

Heggenes, J., Baglinière, J.L., and Cunjak, R.A. 1999. Spatial niche variability for young Atlantic salmon 
(Salmo salar) and brown trout (S. trutta) in heterogeneous streams. Ecol. Freshw. Fish 8(1): 1–
21. doi:10.1111/j.1600-0633.1999.tb00048.x. 
 

Heggenes, J., Krog, O.M.W., Lindås, O.R., and Dokk, J.G. 1993. Homeostatic behavioural responses in a 
changing environment: brown trout (Salmo trutta) become nocturnal during winter. J. Anim. 
Ecol. 62(2): 295–308. doi:10.2307/5361. 
 

Hicks, F. 2009. Cold regions science and technology. Cold Regions Sci. and Tech. 55(2): 175–185. 
Available from https://www.journals.elsevier.com/cold-regions-science-and-technology 
[accessed 3 July 2019]. 
 

Hillman, T.W., Griffith, J.S., and Platts, W.S. 1987. Summer and winter habitat selection by juvenile 
chinook salmon in a highly sedimented Idaho stream. Trans. Am. Fish. Soc. 116(2): 185–195. 
doi:10.1577/1548-8659(1987)116<185:SAWHSB>2.0.CO;2. 
 

Huckins, C.J., Baker, E.A., Fausch, K.D., and Leonard, J.B.K. 2008. Ecology and life history of coaster brook 
trout and potential bottlenecks in their rehabilitation. North Am. J. Fish. Manag. 28(4): 1321–
1342. doi:10.1577/M05-191.1. 
 

Hughes, N.F., and Dill, L.M. 1990. Position choice by drift-feeding salmonids: model and test for Arctic 
grayling (Thymallus arcticus) in subarctic mountain streams, interior Alaska. Can. J. Fish. Aquat. 
Sci. 47(10): 2039–2048. doi:doi.org/10.1139/f90-228. 
 

Hunt, R.L. 1969. Overwinter survival of wild fingerling brook trout in Lawrence Creek, Wisconsin. J. Fish. 
Board Can. 26(6): 1473–1483. doi:10.1139/f69-138. 

 
 



48 
 

Huusko, A., Greenberg, L., Stickler, M., Linnansaari, T., Nykänen, M., Vehanen, T., Koljonen, S., Louhi, P., 
and Alfredsen, K. 2007. Life in the ice lane: the winter ecology of stream salmonids. River Res. 
Appl. 23(5): 469–491. doi:10.1002/rra.999. 
 

Intergovernmental Panel on Climate Change (IPPC), 2014: climate change 2014: synthesis report. 
contribution of working groups I, II and III to the fifth assessment report. core writing team, 
Pachauri R. K. and Meyer L. A. (editors), Geneva, Switzerland, 151 pp. 2014. 
 

Jakober, M.J., McMahon, T.E., and Thurow, R.F. 2000. Diel habitat partitioning by bull charr and 
cutthroat trout during fall and winter in Rocky Mountain streams. (59): 79–89. 
doi:10.1023/A:1007699610247. 
 

Jakober, M.J., McMahon, T.E., Thurow, R.F., and Clancy, C.G. 1998. Role of stream ice on fall and winter 
movements and habitat use by bull trout and cutthroat trout in Montana headwater streams. 
Trans. Am. Fish. Soc. 127 223-235 127: 223–235. doi:10.1577/1548-
8659(1998)127<0223:ROSIOF>2.0.CO;2. 
 

Jensen, A.J., Heggberget, T.G., and Johnsen, B.O. 1986. Upstream migration of adult Atlantic salmon, 
Salmo salar L., in the River Vefsna, northern Norway. J. Fish Biol. 29(4): 459–465. 
doi:10.1111/j.1095-8649.1986.tb04961.x. 
 

Komadina-Douthwright, S.M., Caissie, D., and Cunjak, R.A. 1997. Winter movement of radio-tagged 
Atlantic salmon (Salmo salar) kelts in relation to frazil ice in pools of the Miramichi River. Canada 
Department of Fisheries and Oceans, Canada. 
 

Kusnierz, P.C., Stimmell, S.P., and Leonard, J.B.K. 2009. Movement and growth indicators in resident and 
adfluvial coaster brook trout (Salvelinus fontinalis) in the Hurricane River, Lake Superior, 
Michigan, USA. J. Gt. Lakes Res. 35(3): 385–391. doi:10.1016/j.jglr.2009.04.004. 
 

Linnansaari, T., Stickler, M., Alfredsen, K., Arnekleiv, J.V., Fjeldstad, H.-P., Halleraker, J.H., and Harby, A. 
2005. Movements and behaviour by juvenile Atlantic salmon in relation to ice conditions in 
small rivers in Canada and Norway. In proceedings from the 13th Workshop on the Hydraulics of 
Ice Covered Rivers. Committee on River Ice Processes and the Environment: Hanover, New 
Hampshire, USA. p. 20. 
 

Lucas, M.C., and Baras, E. 2001. Migration of freshwater fishes. Blackwell Science, Oxford ; Malden, MA. 
 

McMahon, T.E., and Hartman, G.F. 1989. Influence of cover complexity and current velocity on winter 
habitat use by juvenile coho salmon (Oncorhynchus kisutch). Can. J. Fish. Aquat. Sci. 46(9): 
1551–1557. doi:doi.org/10.1139/f89-197. 
 

Meisner, J.D. 1990. Effect of climatic warming on the southern margins of the native range of brook 
trout,  Salvelinus fontinalis . Can. J. Fish. Aquat. Sci. 47(6): 1065–1070. doi:10.1139/f90-122. 
 

Milly, P.C.D., Wetherald, R.T., Dunne, K.A., and Delworth, T.L. 2002. Increasing risk of great floods in a 
changing climate. Nature 415(6871): 514–517. doi:10.1038/415514a. 
 



49 
 

Mohseni, O., Stefan, H., and Eaton, J. 2003. Global warming and potential changes in fish habitat in U.S. 
streams. Climatic Change 59(3): 389–409. doi:doi.org/10.1023/A:1024847723344. 
 

Muhlfeld, C.C., Bennett, D.H., and Marotz, B. 2001. Fall and winter habitat use and movement by 
Columbia river redband trout in a small stream in Montana. North Am. J. Fish. Manag. 21(1): 
170–177. doi:10.1577/1548-8675(2001)021<0170:FAWHUA>2.0.CO;2. 
 

Nakamura, T., Maruyama, T., and Watanabe, S. 2001. Residency and movement of stream‐dwelling 
Japanese charr, Salvelinus leucomaenis, in a central Japanese mountain stream. Ecol. Freshw. 
Fish 11(3): 150–157. doi:10.1034/j.1600-0633.2002.00014.x. 
 

National Oceanic and Atomospheric Administration National Centers for Environmental Information 
(NCEI). 2019. Available from https://www.ncdc.noaa.gov/ [accessed 31 October 2019]. 
 

Nijssen, B., O’Donnell, G.M., Hamlet, A.F., and Lettenmaier, D.P. 2001. Hydrologic sensitivity of global 
rivers to climate change. Clim. Change 50(1): 143–175. doi:10.1023/A:1010616428763. 
 

Nykänen, M., Huusko, A., and Mäki‐Petäys, A. 2005. Seasonal changes in the habitat use and movements 
of adult European grayling in a large subarctic river. J. Fish Biol. 58(2): 506–519. 
doi:10.1111/j.1095-8649.2001.tb02269.x. 
 

Pathak, P., Kalra, A., and Ahmad, S. 2017. Temperature and precipitation changes in the Midwestern 
United States: implications for water management. Int. J. Water Resour. Dev. 33(6): 1003–1019. 
doi:10.1080/07900627.2016.1238343. 
 

Prowse, T.D., and Gridley, N.C. (Editors). 1993. Environmental aspects of river ice. Available from 
http://publications.gc.ca/site/eng/9.608877/publication.html [accessed 4 November 2019]. 
 

R Core Team. 2018. R: A language and environment for statistical computing. Vienna, Austria. Available 
from https://www.R-project.org/. 
 

Raleigh, R. 1982. Habitat suitability index models: brook trout. U.S. Dept. Int., Fish Wildl. Serv., 
Washington D.C. Available from 
https://archive.usgs.gov/archive/sites/www.nwrc.usgs.gov/wdb/pub/hsi/hsi-024.pdf. 
 

Riehle, M.D., and Griffith, J.S. 1993. Changes in habitat use and feeding chronology of juvenile rainbow 
trout (Oncorhynchus mykiss) in fall and the onset of winter in Silver Creek, Idaho. Can. J. Fish. 
Aquat. Sci. 50(10): 2119–2128. doi:10.1139/f93-237. 
 

Robertson, M.J., Clarke, K.D., Scruton, D.A., and Brown, J.A. 2003. Interhabitat and instream movements 
of large Atlantic salmon parr in a Newfoundland watershed in winter. J. Fish Biol. 63(5): 1208–
1218. doi:10.1046/j.1095-8649.2003.00240.x. 
 

Rosenfeld, J. 2003. Assessing the habitat requirements of stream fishes: an overview and evaluation of 
different approaches. Trans. Am. Fish. Soc. 132(5): 953–968. doi:10.1577/T01-126. 
 

Schindelin, J. 2012. Fiji: an open-source platform for biological-image analysis. Available from 
http://www.nature.com/nmeth/journal/v9/n7/full/nmeth.2019.html. 



50 
 

Simpkins, D.G., Hubert, W.A., and Wesche, T.A. 2000. Effects of fall‐to‐winter changes in habitat and 
frazil ice on the movements and habitat use of juvenile rainbow trout in a Wyoming tailwater. 
Trans. Am. Fish. Soc. 129(1): 101–118. doi:10.1577/1548-
8659(2000)129<0101:EOFTWC>2.0.CO;2. 
 

Stickler, M., Alfredsen, K., Scruton, D.A., Pennell, C., Harby, A., and Økland, F. 2007. Mid-winter activity 
and movement of Atlantic salmon parr during ice formation events in a Norwegian regulated 
river. Hydrobiologia 582(1): 81–89. doi:10.1007/s10750-006-0559-4. 
 

Stickler, M., Enders, E.C., Pennell, C.J., Cote, D., Alfredsen, K.T., and Scruton, D.A. 2008. Habitat use of 
Atlantic salmon Salmo salar parr in a dynamic winter environment: the influence of anchor-ice 
dams. J. Fish Biol. 73(4): 926–944. doi:10.1111/j.1095-8649.2008.01988.x. 
 

Valdimarsson, S.K., and Metcalfe, N.B. 2001. Is the level of aggression and dispersion in territorial fish 
dependent on light intensity? Anim. Behav. 61(6): 1143–1149. doi:10.1006/anbe.2001.1710. 
 

Valdimarsson, S.K., Metcalfe, N.B., Thorpe, J.E., and Huntingford, F.A. 1997. Seasonal changes in 
sheltering: effect of light and temperature on diel activity in juvenile salmon. Anim. Behav. 
54(6): 1405–1412. doi:10.1006/anbe.1997.0550. 
 

Van Grinsven, M., Mayer, A., and Huckins, C. 2012. Estimation of streambed groundwater fluxes 
associated with coaster brook trout spawning habitat. Groundwater 50(3): 432–441. 
doi:10.1111/j.1745-6584.2011.00856.x. 
 

Vehanen, T., Bjerke, P.L., Heggenes, J., Huusko, A., and Mäki–Petäys, A. 2000. Effect of fluctuating flow 
and temperature on cover type selection and behaviour by juvenile brown trout in artificial 
flumes. J. Fish Biol. 56(4): 923–937. doi:10.1111/j.1095-8649.2000.tb00882.x. 
 

Vehanen, T., and Huusko, A. 2002. Behaviour and habitat use of young-of-the-year Atlantic salmon 
(Salmo salar) at the onset of winter in artificial streams. Arch. Für Hydrobiol. 154: 133–150. 
doi:10.1127/archiv-hydrobiol/154/2002/133. 
 

Watz, J., Bergman, E., Calles, O., Enefalk, Å., Gustafsson, S., Hagelin, A., Nilsson, P.A., Norrgård, J.R., 
Nyqvist, D., Österling, E.M., Piccolo, J.J., Schneider, L.D., Greenberg, L., and Jonsson, B. 2015. Ice 
cover alters the behavior and stress level of brown trout Salmo trutta. Behav. Ecol. 26(3): 820–
827. doi:10.1093/beheco/arv019. 
 

Watz, J., Bergman, E., Piccolo, J.J., and Greenberg, L. 2013. Effects of ice cover on the diel behaviour and 
ventilation rate of juvenile brown trout. Freshw. Biol. 58(11): 2325–2332. 
doi:10.1111/fwb.12212. 
 

Watz, J., Bergman, E., Piccolo, J.J., and Greenberg, L. 2016. Ice cover affects the growth of a stream-
dwelling fish. Oecologia 181(1): 299–311. doi:10.1007/s00442-016-3555-z. 
 

Whalen, K., Parrish, D., and Mather, M.E. 1999. Effect of ice formation on selection of habitats and 
winter distribution of post-young-of-the-year Atlantic salmon parr. Can. J. Fish. Aquat. Sci. 56: 
87–96. doi:10.1139/cjfas-56-1-87. 



51 
 

Wills, T.C., Zorn, T.G., and Nuhfer, A.J. 2006. Streams status and trends program sampling protocols. In 
Manual of Fisheries Survey Methods II: with periodic updates. Edited by Schneider, James C. 
Michigan Department of Natural Resources, Fisheries Special Report 25, Ann Arbor, Mich. 
Available from http://www.dnr.state.mi.us/publications/pdfs/IFR/manual/SMII_Chapter26.pdf 
[accessed 15 October 2017]. 
 

Young, K.A. 2001. Habitat diversity and species diversity: testing the competition hypothesis with 
juvenile salmonids. Oikos 95(1): 87–93. doi:10.1034/j.1600-0706.2001.950110.x. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



52 
 

 


	INDIVIDUAL VARIATION IN WINTER BROOK TROUT (SALVELINUS FONTINALIS) MOVEMENT IN A SMALL NORTHERN MICHIGAN STREAM
	Recommended Citation

	tmp.1599847541.pdf.xUkVv

