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Functional principal component analysis (FPCA) can be used to extract key features from 
time series data for use in statistical models. This study evaluated time normalisation in 
combination with curve registration prior to performing FPCA. Using vertical ground 
reaction force data from countermovement jumps, evaluation was based on linear 
regression for predicting peak power and jump height, and logistic regression for classifying 
jump type (arm swing or not). Datasets not subject to time normalisation generally produced 
better results with the highest accuracy being achieved when using registration with peak 
power as a landmark (peak power R2 = 99.3%, jump height R2 = 94.9%). Classification of 
jump type benefited in some cases from registration (87.0% to 91.2%). These techniques 
could be applied to data from wearable sensors to improve prediction and classification. 

KEYWORDS: countermovement jump, curve registration, classification, functional data 
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INTRODUCTION: Time series data from force platforms, wearable sensors and other 

biomechanical equipment typically exhibit a sequence of characteristic features which can be 

used for predicting performance or classifying movement patterns (Halilaj et al., 2018). Whilst, 

traditional discrete point analysis can discard potentially important information, as has been 

noted by several authors (e.g. Preatoni et al., 2013), functional principal component analysis 

(FPCA) can identify a more complete set of features which can be understood intuitively 

(Ramsay & Silverman, 2005). Functional data analysis requires all time series to be of equal 

length but they typically vary in duration between trials and participants. This is often addressed 

with time normalisation using a suitable linear compression or extension of the whole 

timeframe for each curve. However, such linear transformations can shift the temporal 

positions of features relative to those same features in other curves, increasing phase variance 

rather than reducing it (Page & Epifanio, 2007). Consequently, where features do not align 

cross-sectional standard deviations over certain periods may be inflated (Chau et al., 2005). 

This can be addressed with curve registration (also known as time warping) which aligns 

certain common features (i.e. landmarks) using a suitable non-linear function, h(t) for each 

curve such that f (t) Þ f (h(t))(Ramsay & Li, 1998). Registration effectively separates out the 

variation between curves into amplitude and phase variance so they can be analysed 

independently or together. It preserves the harmonic content of cyclical movements (Sadeghi 

et al., 2000), but in discrete movements, such as vertical jumping, it does not necessarily 

improve predictions of jump height  (Moudy et al., 2018). Establishing the most effective data 

pre-processing techniques may help produce feature sets for statistical models that yield 

higher levels of accuracy, which is vitally important for machine learning (Halilaj et al., 2018). 

The aim of this study is to use gold standard vertical ground reaction force (VGRF) data to 

evaluate time normalisation compared to a simple padding technique, both with and without 

curve registration, when applied to the countermovement jump for the purposes of 

performance prediction and jump type classification. 

 

METHODS: Fifty-five healthy volunteers (36 males, 19 females: respective body mass 

76.8 ± 12.4 kg, 62.2 ± 7.2 kg (mean ± SD); height 1.79 ± 0.08 m, 1.64 ± 0.08 m; and age 

21.4 ± 3.4 years, 22.5 ± 4.1 years) gave their written informed consent for the study which was 

approved by the host University’s Research Ethics and Governance Committee. All but four 
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played sport either at recreational (13), club (34) or national (8) level. The participants 

performed eight CMJs each, divided equally between jumps with (CMJA) and without arm 

swing (CMJNA) with approximately one minute between jumps. All jumps were performed on 

two portable 400 × 600 mm force platforms (9260AA, Kistler, Winterthur, Switzerland), which 

recorded the vertical component of the ground reaction force (VGRF) at a sampling frequency 

of 1000 Hz. The unfiltered VGRF data, summed from both platforms, was normalised to body 

mass and used to calculate the peak power output (W kg-1) and jump height (Owen et al., 

2014; Street et al., 2001), two performance measures commonly used in applied practice. 

Since functional data analysis requires all time series to have the same number of points, two 

methods were evaluated to standardise the length of the VGRF time series: linear time 

normalisation (LTN) using cubic interpolation to resample the data, and padding (PAD) the 

time series by inserting a series of 1’s (equal to bodyweight) at the beginning. The standard 

length for LTN was 1340 points, the mean length to minimise changes to the timeframe, and 

2000 points for PAD. Jumps with long execution times (> 2 s) were excluded as some but not 

all involved the use of practice arm swings (revised n = 394, 187 CMJA and 207 CMJNA). The 

time series were then converted into smooth continuous functions constructed from 5th-order, 

b-spline basis functions with a 3rd order roughness penalty (𝜆 = 10-10), determined by 

generalised cross-validation. There were 200 b-splines for PAD datasets and 134 for LTN 

datasets to ensure the same density of functions. 

A series of different landmark registrations (Ramsay & Li, 1998) were performed on both 

datasets. To align each curve’s landmarks, the time domain was transformed using a smooth, 

monotonic continuous function using 10 1st-order, b-spline basis functions (𝜆 = 10-8). The same 

landmarks used by Moudy et al. (2018), which represent changes of phase or direction in the 

jump, were tested: VGRF minimum (designated ‘L1’), power minimum (‘L2’), the start of the 

propulsion phase (‘L3’) and peak power (‘L4’). A baseline case with no registration was also 

included for both LTN and PAD. For each of the 32 datasets, FPCA was performed to extract 

the functional principal components (FPCs) from the VGRF curves (15 ‘amplitude’ FPCs) and 

from the time warping function (5 ‘temporal’ FPCs), each of which together explained > 99% 

of the variance in their respective curves. The associated FPC scores indicated the relative 

presence of each characteristic pattern described by the FPC in each jump.  

The efficacy of using PAD or LTN in addition to curve registration (or no registration) were then 

evaluated by using common statistical models for each of the 32 datasets. Stepwise linear 

regression was used to estimate peak power and separately jump height using the amplitude 

and temporal FPC scores as the predictor variables. Stepwise logistic regression was used to 

classify the jump type (i.e. the presence of arm swing or not) with FPC scores standardised to 

Z-scores. Accuracy was taken to be the percentage of concordant matched pairs. The models 

were re-run with the temporal FPC scores removed to gauge the effect of registration by 

comparison with the full models. All data processing was performed in MATLAB R2019b 

(Mathworks, Natick, MA, USA) using bespoke scripts calling FDA library functions (Ramsay, 

2012). The statistical models were generated using SAS University Edition 3.8 (SAS Institute, 

Cary, NC, USA). 

 

RESULTS: The peak power outputs were 45.2 ± 7.2 W kg-1 for CMJNA and 51.6 ± 8.6 W kg-1 

for CMJA, while the jump heights attained were 39.9 ± 8.2 cm and 47.7 ± 9.6 cm, respectively. 

The regression models generally achieved higher accuracy (R 
2) when using FPC scores 

based on PAD compared with LTN (Figures 1A & 1B). The best regression model for peak 

power achieved an accuracy of 99.3% and for jump height of 94.9% (both P2 models; Table 1). 

These models were based on PAD and registration with peak power as the sole landmark (L4), 

which was an improvement on the baseline models using the unregistered FPCs (P1), raising 

accuracy by 0.9% for peak power and 1.8% for jump height. However, registration was 

generally to the disadvantage of the PAD regression models with a few exceptions (P2 and 

P3). Registration benefited the LTN models in most cases, which for the best case raised their 

accuracy above baseline (Q1) by 3.7% for peak power (Q2) and 4.1% for jump height (Q3). 
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The classification models benefited from registration in some cases, more so for the LTN 

models, but the PAD models produced the best classifiers (Figure 1C). The best classification 

model (P4) achieved an accuracy 91.2%, an improvement on the baseline of 4.3% (Table 1). 

This was based on PAD FPCs with registration using two landmarks: VGRF minimum (L1) and 

the propulsion phase start (L3).  

 

   
Figure 1: Model fit for (A) peak power, (B) jump height and (C) classification accuracy for PAD (blue) and 
LTN (orange) models indicating the contribution from temporal FPCs introduced by registration. Number 
of landmarks indicated by size of bubble. See Table 1 for details on the models identified: P1–P4, Q1–Q4. 

 
Table 1: Registration landmarks, explained variance/accuracy for selected models identified in Figure 1 

Model Data Landmark Registration Peak Power Jump Height Classification 
 set L1 L2 L3 L4 R 

2 R 
2 Accuracy 

P1 PAD     98.5% 93.1% 87.0% 

P2 PAD     99.3% 94.9% 86.8% 

P3 PAD     97.9% 94.3% 89.6% 

P4 PAD     95.7% 89.3% 91.2% 

Q1 LTN     86.0% 68.8% 83.0% 

Q2 LTN     89.6% 72.2% 88.9% 

Q3 LTN     89.5% 72.9% 86.3% 

Q4 LTN     86.3% 71.3% 89.8% 

L1: VGRF minimum; L2: Power minimum; L3: Start of propulsion phase; L4: Power maximum 

 

DISCUSSION: This study evaluated the efficacy of using either time normalisation or padding 

in combination with curve registration for the purposes of performance prediction and activity 

classification pertaining to a CMJ, a movement widely used for athlete testing and monitoring 

in sport. Time normalisation resizes the time series to fit a standard length, which involves a 

uniform adjustment to the time domain. Padding achieves this more simply by extending the 

quiet standing period of the jump. Registration keeps the length unchanged but varies time’s 

rate of progress in order to line up the landmark(s) across all curves. The regression models 

predicting peak power and jump height, two widely used performance measures, generally 

achieved greater accuracy when the VGRF time series was padded out to a standard length 

rather than using linear time normalisation. The best regression model used the PAD dataset 

in combination with registration which warped the time domain so that peak power was 

achieved at the same instant across all jumps (model P2). The VGRF curves were also aligned 

at take-off, an implicit second landmark. For other PAD models, registration usually yielded a 

less accurate model indicating that as a general rule the time domain should be preserved 

which may be expected given that jump height and peak power depend on the integration of 

the force time series, and noting that the FPC scores are directly proportional to the impulse. 

The fact that registration was able to improve upon this may be because the FPCs described 

either amplitude or temporal variance rather than having to do both in the case of no 

registration. Consequently, the registration models reported higher t-statistics for the 

regression coefficients and often included more predictors. For the peak power model, without 

registration (P1) the model included 12 amplitude FPCs, but with registration (P2) it included 

14 amplitude FPCs and 2 temporal FPCs. Moudy et al. (2018) took a similar approach 
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combining amplitude and temporal FPCs in their regression models for jump height, finding 

that one registration landmark (VGRF minimum) achieved the best results. 

For classification, more PAD and LTN models benefited from registration although in some 

cases there was a negative contribution from the temporal FPCs indicating the model was 

better using only amplitude FPCs. The PAD models achieved the top three results overall with 

the best model, P4, using the power minimum (L2) and the start of the propulsion phase (L3) 

as landmarks. The results were based on FPC scores without varimax rotation, but as  

interpretation of the FPCs was not the purpose of this study, and the best models using the 

unrotated scores outperformed the best models using the varimax scores, outputs using 

rotated data were not presented. 

The CMJ was chosen as the test case because the jump is well understood, can take two 

different forms suitable for classification, and the performance measures are widely used in 

practice as well as being highly valid when obtained from VGRF data. Since the performance 

measures were impulse-dependent it may be expected that any modification to the time 

domain would produce a less accurate model but that was not always the case. The results 

suggest it may be possible to improve model accuracy in other applications if the curves are 

aligned in the key phase of movement, upon which the outcome variable depends, such as the 

timing of peak power as evident in the current results. For classification, registration could 

improve accuracy by up 4.3% for the PAD models or up to 6.8% for the LTN models (from a 

lower baseline). This is relevant to activity recognition that often take time series data of fixed 

duration, typically from wearable sensors. Such systems may benefit from the decomposition 

of amplitude and temporal features helping to recognise the activities in question.  
 
CONCLUSION: The results show that curve registration can improve predictions of 

performance in the CMJ (peak power or jump height) based on FPCA features, and also 

enhance activity classification accuracy with the appropriate choice of landmarks. Accuracy 

was generally higher for models based on padded time series compared to linear time 

normalisation. More research is needed to establish whether these findings, based on gold-

standard VGRF data and common statistical methods, could translate favourably to 

applications where performance prediction or activity classification are based on data that is 

not directly representative of centre of mass motion, such as from wearable sensors in more 

ecologically valid settings, and where advanced machine learning models could be employed. 
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